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Abstract 

Leafy greens have been recognized as vehicles for transmission of foodborne pathogens 

and an effective pre-harvest intervention to control them is currently lacking. After harvest, 

lettuce is often subjected to chlorinated water to reduce the microbial load in the water and on 

the lettuce tissue. While moderately effective, there is also a need for improved postharvest 

interventions. 

 The purpose of Objective I was to 1) determine potassium bisulfate efficacy at reducing 

populations of Escherichia coli (E. coli) and Listeria innocua (L. innocua) when applied pre-

harvest to lettuce, and 2) assess the impact on product quality at harvest. Potassium bisulfate 

reduced E. coli populations on inoculated lettuce by 1.32 log10 CFU/g (P=0.0002) and L. innocua 

by 1.18 log10 CFU/g (P=0.0017). No detectable differences were observed in color (P>0.05); 

however, brown spots were observed on various leaves sprayed with potassium bisulfate.  

 The purpose of Objective II was to employ a blend of benzalkonium chloride, acetic acid, 

and methyl paraben (BAM) as a postharvest wash on romaine and iceberg lettuce and to 1) 

determine efficacy at reducing populations of Listeria monocytogenes (L. monocytogenes), E. 

coli O157:H7 and Salmonella, 2) measure changes in aerobic bacteria throughout the shelf life, 

and 3) quantify benzalkonium chloride and methyl paraben residues post-washing. 

To quantify efficacy of BAM reducing pathogenic bacterial populations, fresh-cut 

romaine and iceberg lettuce were inoculated with L. monocytogenes, E. coli O157:H7, or 

Salmonella and washed in BAM at concentrations of 0%, 1%, 2% or 3% for one or five minutes. 

When plated on recovery media, contact time and wash concentration was not significant 

(P>0.05) for Salmonella on either product. Concentration was significant (P=0.0189) for L. 

monocytogenes on romaine; however, the greatest reduction observed was <1.0 log10 CFU/g. The 

3% wash significantly reduced E. coli O157:H7 on romaine by 1.75 log10 CFU/g, which is 0.66 



  

log10 CFU/g better than the 0% wash. Following washing, wash water was analyzed and data 

demonstrate that all wash concentrations significantly (P≤0.05) reduced each foodborne 

pathogen by >2.0 log10 CFU/g in the wash water. 

To quantify benzalkonium chloride and methyl paraben residues, as well as changes in aerobic 

bacteria and product quality, fresh-cut romaine and iceberg lettuce were subjected to a 1 minute 

wash in BAM at concentrations of 0%, 1%, 2%, or 3% and immediately sampled to determine 

aerobic populations and product quality.  Concentrations 0% and 2% were also packaged into 

retail storage bags and sampled on days 0, 3, 5, and 7. Residues were quantified on these days as 

well. On day 0, aerobic populations did not vary according to wash concentration (P>0.05). With 

regards to shelf-life data, the 2% wash significantly reduced (P=0.0203) aerobic bacteria on 

romaine lettuce; however, no significant difference was observed on iceberg lettuce (P=0.0819). 

With regards to overall visual appearance of romaine or iceberg lettuce, no significant difference 

was detected between 0% and 2% BAM washes for each day throughout the shelf-life study 

(P>0.05). Methyl paraben and benzalkonium chloride residues were <5.0 and <10.0 ppm, 

respectively, on both products on each sampling day. 
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Chapter 1 - Introduction 

The United States government defines produce as any fruit, vegetable, or nut (19). 

Produce, and their related safety, is regularly in the news, which warrants investigation into 

effective food safety interventions for these products (18). Of the over 9.6 million cases of 

foodborne illness with a known etiologic agent, 45.9% were produce-related; the highest of any 

other food commodity group (19, 21). The Centers for Disease Control and Prevention (CDC) 

estimates that overall foodborne illness is much higher, at around 48 million cases annually, due 

to underreporting and underdiagnoses (19, 21). When extrapolating the 45.9% of produce-related 

outbreaks to this CDC estimation, it can be estimated that over 22 million people become sick 

from contaminated produce annually. Complicating matters, produce can be compromised 

anywhere along the farm-to-fork continuum with a foodborne pathogen. The farm-to-fork 

continuum can be described as the cycle of production, distribution, and consumption of fruits, 

vegetables, and nuts. Pre-harvest, postharvest, postharvest processing, and consumer practices 

are the key components of the farm-to-fork continuum. 

In a 2010 Nutritional Reviews® article, University of Massachusetts professor David 

Nyachuba hypothesizes why foodborne illness, including cases with produce as the etiologic 

agent, is still so high given intense research and preventative efforts in the last thirty years (15). 

In Nyachuba’s argument, the United States’ push for more fruits and vegetables in the American 

diet is likely a main culprit for the rise in related foodborne outbreaks. This is supported by a 

2008 United States Department of Agriculture (USDA) report indicating a 19% total increase in 

fruit and vegetable consumption from the years 1970-2005 (23). That same USDA report 

indicates that the per capita fruit and vegetable consumption in 2005 is still nearly 45% below 

their recommended mark. As a result, the United States government is continuing to push for 



2 

more consumption through nutrition assistance programs (e.g. food stamps), food guidance 

systems (e.g. MyPyramid), and education outreach initiatives which may perpetuate produce 

related foodborne illness (3). There is clearly a need for improving preventative measures as well 

as research into viable antimicrobial interventions throughout the farm-to-fork continuum. 

Recent reports recognize that the underlying cause of foodborne illness is dynamic and 

multilateral. It is not solely because more produce is available to consumers; moreover, there is a 

growing susceptible population. In present day, the elderly population, as well as those with 

weakened or compromised immune systems, continues to grow. Recent studies suggest as many 

as 30% of the U.S. population fits into one of those categories (9, 14). Others with heightened 

risk for foodborne illness, such as those with below average immunity, include children and 

pregnant mothers (9). As populations with increased susceptibility to foodborne pathogens rise, 

so does overall foodborne illness. This may partially explain why an estimate of 22 million 

foodborne illnesses associated with produce every year is a feasible approximation. 

The food system continues to evolve so that fewer farms are experiencing the burden of 

feeding more people (23). As a result, existing farmers must grow greater amounts of food. It has 

been suggested that this may be contributing to foodborne illness outbreaks, as a large amount of 

product will be affected if contaminants (e.g. pathogenic microorganisms) enter the produce 

production chain. This large amount of product can then affect a large population. Dr. Robert 

Gravani of Cornell University has stated that, “in our complex food supply chain, with the 

multiple handling of produce during harvesting, sorting, washing, transportation, and storage, 

there is a greater chance of production contamination and temperature abuse to occur” (9). 

Produce is not exempt from this statement, as these products often go through washing, 

distribution, shipping (perhaps multiple times), and display before reaching the consumer. 
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Not only is foodborne illness a serious public health issue, but it also comes with serious 

economic ramifications. A 2011 cost-of-illness model from The Ohio State University, which 

has been accepted by the USDA, estimates the cost of foodborne illness to be approximately $51 

billion annually (22). This model includes physician care, hospital services, laboratory testing, 

productivity loss, and a variable of uncertainty, which attempts to account for the wide 

underreporting and underdiagnoses of foodborne illness (22). What this model does not include, 

however, is the cost to the food industry, affected consumer confidence, and litigation disputes; 

meaning the true cost of foodborne illness extends far beyond $51 billion annually (7). 

To further examine the severe implications of even a single foodborne outbreak, the 2006 

E. coli O157:H7 outbreak of spinach will be used as an example. On September 14, 2006, the 

Food and Drug Administration (FDA) made an announcement to all U.S. retailers to stop selling 

all fresh, bagged spinach (5). This notification arose from the CDC advice after fifty illnesses 

and eight cases of kidney failure were reported across the country, all of which had fresh spinach 

as the suspected vehicle of transmission (10). Over the next two weeks, the FDA slowly began 

isolating the source of contaminated spinach by targeting California suppliers, with emphasis 

placed on spinach grown in Monterey, Santa Clara, or San Benito, California (5). As might be 

expected, spinach sales immediately plummeted, taking nearly fifteen months to recover to pre-

outbreak sales levels (5). While spinach sales from all growers (California or otherwise) 

plummeted, growers of other leafy greens also experienced a decrease in sales over the next three 

months (4). Canada, which imports the largest amount of U.S. leafy greens, briefly blocked trade 

of leafy greens, and the market remained low until June 2007 (4). With so much at stake and a 

tarnished reputation, California leafy green growers joined together in 2007 to form the 

California Leafy Green Products Handler Marketing Agreement (LGMA), a collaborative effort 
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with universities, food safety specialists, farmers, and government officials to create a validated 

food safety program for the growing of leafy greens (2). This effort aims to target sources of 

microbial contamination, survey farms, establish safe worker practices and establish government 

audits for participating farms (2). The mission of the LGMA recognizes that prevention and 

control of foodborne pathogens on produce needs to be holistic and at every step of the 

growing/production process. 

 Farms with the most progressive and rigorous food safety standards are not immune to 

microbial contamination due to the inherent fact that the majority of produce is grown outside, 

where pathogens are naturally occurring, and lacks a major lethality step during processing and 

preparation before consumption (6). This creates a challenging, dynamic dilemma, which 

establishes a market for antimicrobial interventions throughout the farm-to-fork continuum. 

Currently, the availability of pre-harvest antimicrobials for fruit, vegetable, and nut growers is 

limited. Processers of fruits and vegetables commonly add chlorine to wash water; however, it is 

intended to kill pathogens in the water, rather than on the surface of plant tissue (12). Other 

research has been done on postharvest washes, but none have been successful enough to change 

the market standard of chlorine. A likely reason is that chlorine remains cheap, yet moderately 

effective at controlling pathogens. However, introducing a safe, more effective postharvest 

antimicrobial to washing may significantly reduce foodborne illness related to produce. 

A gap exists with regards to suitable antimicrobials designed for pre-harvest and 

postharvest applications. A single outbreak can not only destroy the livelihood of the implicated 

farm, but also can make consumers ill and in severe cases, cause death. Even growers of similar 

products can be negatively impacted economically. Past outbreaks have strengthened our food 
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system, but there is still opportunity for improvement based on the frequency in which outbreaks 

occur.  

The overall objective of this study was to evaluate a pre-harvest and a postharvest 

antimicrobial intervention with the aim of reducing foodborne pathogen populations, such as E. 

coli, L. monocytogenes, and Salmonella, on lettuce. The first objective was to determine if a 

0.25% (w/v) solution of potassium bisulfate could be applied at either one week, two days, or 

one week and two days before harvest, and effectively reduce populations of the foodborne 

pathogen surrogates E. coli and Listeria innocua (L. innocua) on lettuce without negatively 

impacting product quality at harvest. The second objective evaluated a blend of benzalkonium 

chloride, acetic acid, and methyl paraben as a postharvest antimicrobial wash to reduce 

foodborne pathogens and aerobic bacteria on romaine and iceberg lettuce without negatively 

impacting product quality or resulting in chemical residues on the product.  
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Chapter 2 - A Review of the Literature 

 2.1 Background and Significance 

Foodborne illness is not a new issue. In fact, foodborne pathogens may have infected 

notable people of the past.  Some theorize that Alexander the Great, the 335 BC Macedonian 

king and conqueror of the Persian Empire, contracted the foodborne pathogen Salmonella 

enterica subspecies Typhi that ultimately caused his premature death (5). Other notable people 

have also fallen victim of foodborne illness including U.S. president Zachary Taylor, novelist 

Rudyard Kipling, and aircraft innovator Wilbur Wright (4). In fact, the delirium and hysteria 

associated with the infamous Salem Witchcraft Trials is thought to have been rooted in a toxic 

fungus growing in consumed grain products (4). These historical examples came from a time 

before knowledge of disease causes and prevention, foodborne and alike. It was not until the 

middle nineteenth century when research by John Snow, working on a London outbreak of 

cholera, and Robert Koch, who further researched bacteria and is credited with Germ Theory, 

were able to link microscopic creatures to disease (25). Germ theory not only paved the way for 

enhanced public health awareness regarding how diseases spread but also ignited research into 

impactful interventions including vaccines, antibiotics, and antimicrobials. This understanding of 

disease is an important reason, among many, why the life expectancy of developed countries has 

increased in the last 150 years (76). 

While overall disease incidence is down over the last 150 years, it begs the question why 

foodborne illness continues to plague public health today? To partially answer that question, an 

understanding of both the past and present food system is needed. The industrialization of the 

United States (and the world) in the late nineteenth century led to a massive efflux of farmers 

into factories as laborers (41). The growing U.S. population demanded remaining farmers to 
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“specialize, mechanize, simplify, and routinize” (41). This meant famers had to be more efficient 

and produce more food while lowering cost. This industrialized system enabled the United States 

to develop one of the better economies of the world and provide food and clothing in abundant 

amounts to all its citizens, which, by itself, isn’t inherently bad (41). This system eventually 

spread around the world and created the global food market we know today. While the luxuries 

and abundance of food from this globalized market are unparalleled in human history, they have 

also brought unintended consequences to food safety. A foodborne outbreak originating from a 

farm now often means a large amount of product is contaminated, thus reaching a greater number 

of consumers (15, 60). This often leads to outbreaks involving many people in very different 

geographic locations, as contaminated products are also often distributed all over the world, only 

exacerbating the problem (3, 15). Researchers also hypothesize that pathogens are evolving into 

new serovars, partly due to large-scale farming and the broad ecologies seen around the world 

(15). Foodborne pathogens are becoming more virulent and more resilient to environmental 

stress and antimicrobials. These reasons at least partially explain why foodborne illness remains 

a challenge for public health. With increased fruit and vegetable consumption over the last forty 

years, produce is becoming increasingly implicated in outbreaks.  

 2.2 Sources of Foodborne Pathogen Contamination 

Examining the production chain for produce, all agrarian steps in the production of raw 

produce is termed “pre-harvest” (79). This includes planting, irrigating, harvesting, and other 

processes. “Postharvest” is the term used to describe the steps after the raw commodity has been 

harvested, which include (but are not limited to) storage, transportation, washing, and other 

processing necessary to get to market (79). While contamination can also happen in retail 

establishments or consumer kitchens, it has been recognized and agreed upon that pre-harvest 
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and postharvest environments are the most common areas for foodborne pathogen contamination 

based on recent quantitative microbial risk assessments (QMRA) (61). Therefore, producers and 

researchers alike focus on pre- and postharvest as presenting the most logical opportunities for 

prevention and the application of antimicrobials. Currently, postharvest processing is the most 

common point for application of antimicrobials (particularly chlorine washes); however, the pre-

harvest setting is probably of biggest concern for foodborne pathogen introduction (56). 

Pre-harvest risks for microbial contamination most commonly originate from animals in 

the form of feces or contaminated water (63). It is well understood that animals, particularly 

ruminants, can harbor pathogenic E. coli and Salmonella spp. in their natural flora but can also 

contain L. monocytogenes (63). Animals are therefore highly discouraged from being proximal to 

growing produce fields. It is atypical for farmers to allow roaming livestock in production fields; 

however, wildlife can be difficult to deter, even with fencing (11). Nets and covers can be used 

to control birds, which are important, as their feces have been shown to harbor both Salmonella 

spp. and E. coli O157:H7 (63). Experimental research also reports certain invertebrates (e.g., 

house flies, aphids, thrips, et cetera) as possible vectors of pathogen transfer, although the true 

role and the practical risk are currently unknown (11, 63). 

Animal waste has one major route of contamination that has been recognized as a vector 

for disease: irrigation water. In fact, irrigation water may be the key contributor to pathogen 

contamination of produce (47). Epidemiological research confirms that the quality (and safety) 

of irrigation water is directly related to the safety of growing produce (11). Agriculture is 

inherently heavily dependent on water, and many opportunities are available for it to become 

microbiologically compromised. The source of contamination largely depends on the source of 

water. Surface water (e.g., from lakes, rivers, and streams) can become contaminated with 



11 

pathogens from wildlife, agricultural run-off, human waste, and industrial effluent (61). It is, 

therefore, crucial for farmers to test their irrigation water regularly for pathogens, as no practical 

water disinfection method has been developed to accommodate the large volumes needed for a 

large farm setting (11). Ground water (e.g. from wells) is typically thought of as posing less risk 

for pathogens, but contamination can still occur in the same manner as surface water 

contamination, meaning testing is equally important (11). Research suggests that the method of 

irrigation may also be important in controlling risk of foodborne pathogens. Surface drip and 

overhead irrigation pose increased risk for microbial contamination, compared with furrow 

(corrugated) and surface irrigation, presumably because water is coming into direct contact with 

produce (11, 63). However, method of irrigation and foodborne pathogen risk is controversial 

and currently the subject of additional research efforts (11). Contaminated on-farm water 

systems can find their way onto produce beyond irrigation as well. Fertilizers, herbicides, and 

pesticides are prepared with water that directly makes plant contact. 

The soil in which produce is grown is another consideration when evaluating foodborne 

pathogen risk associated with produce (63). This particularly applies to produce grown in close 

proximity to the ground, such as leafy greens, melons, and root crops—further explaining their 

elevated risk (49). The soil ecosystem can harbor many foodborne pathogens including: L. 

monocytogenes, Bacillus cereus, Clostridium spp., and others (61). Farmers that use animal 

waste as fertilizer can have a broadened profile of pathogens, including pathogenic E. coli and 

Salmonella spp. if waste is not composted correctly (61). Farmers often use manure as it has 

shown to increase water-holding capacity, increase aeration, decrease soil erosion, and increase 

nutrient density (42). Once contaminated, enteric pathogens can survive upwards of 260 days in 

soil, depending on soil temperature, moisture, and source of contamination (61). Current research 
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suggests lower temperatures and higher moisture are more conducive to enteric pathogen 

survival (42).  

It is clear that when fruits, vegetables, or nuts are growing on a farm, the potential for the 

introduction of foodborne pathogens is present. Improperly composted manure, farm water, and 

soil are the major inoculum sources for the introduction of pathogens, but many others do exist 

to a lesser extent. Many items are still hand harvested by humans, which presents a risk that 

pathogens carried by a human may be transmitted onto produce (11). Even produce that is 

harvested by machines is at risk for pathogen introduction, as harvesting machines constantly 

come into contact with the soil and water (61). Other less frequent, but possible, sources of on-

farm contamination include: the bins in which harvested produce is stored, dust, and air pollution 

(11, 61). Foodborne pathogens pose a dilemma to producers, as they cannot ensure everything 

they grow is pathogen free. To minimize risk, growers of fruits, vegetables, and nuts need to be 

aware of potential sources of pathogen introduction and develop a plan to prevent introduction to 

growing commodities. Fortunately, the U.S. government is making it easier for growers by 

issuing advised on-farm practices as well as the introduction of good agricultural practices 

(GAPs).  

After harvest, produce is transported, processed, and distributed to market. Transporting 

offers risks with regards to the containers holding the produce, but also with anything that comes 

into contact with the product (e.g., water drippings, dust, et cetera). Depending on the 

commodity, processing presents additional risks for product contamination.  More specifically, 

contamination may occur by means of the water for washing, the machines for slicing, and any 

packing equipment bundling produce together (56).  
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 2.3 The Food Safety Modernization Act and Produce Safety 

On January 4, 2011, President Barack Obama signed into law the Food Safety 

Modernization Act (FSMA), reforming over 70 years of food safety law when Franklin D. 

Roosevelt signed the Food, Drug, and Cosmetic Act in 1938. The FSMA includes many sections 

aimed at shifting our food safety system from reactionary legislation to prevention. Among the 

sections, the FSMA includes a Produce Safety rule that sets standards for the growing, 

harvesting, packing, and storage of produce destined for fresh markets. Importantly, all standards 

are backed by scientific literature (10). 

As water is associated with transmission of human foodborne pathogens to produce, the 

Produce Safety rule includes water testing specifications for growers of fresh produce. Testing 

parameters and allowable limits of generic E. coli for untreated surface and ground water have 

been set forth by the Produce Safety rule.  It should be noted that generic E. coli cannot be 

detected in any of these samples if the water directly contacts produce, is to be used on food 

contact surfaces, is used for the washing of hands, or is used for the irrigation of sprouts. This 

ruling does not apply to growers who use municipal water but to those who use untreated surface 

or ground water (10). 

Additional regulations in the Produce Safety rule address other common routes of human 

pathogen transmission on a farm setting. Growers who use raw manure on-farm are now 

mandated to wait at minimum 120 days between the application and the harvest of crops that 

come in direct contact with soil. Crops that do not contact soil have a 90 day interval. While the 

FDA is currently conducting a risk assessment to determine the appropriate time to eliminate 

pathogens from raw manure, these parameters are based on standards outlined in the USDA’s 

National Organic Program. Additional sections in the Produce Safety rule specify animal (both 
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wild and domestic) exclusion standards, the sanitation of all equipment that may come into 

contact with produce (including bins and tools), and an entire section dedicated to the growing of 

sprouts (10).  

The Produce Safety rule of the FSMA also addresses the health and hygiene of farm 

workers who come into direct contact with produce. Farms are to prevent sick employees from 

working, give adequate restroom and hand-washing facilities, and prevent visitors from possibly 

introducing contaminants on the farm (by means of exclusion, hand-washing, etc) (10) 

The FSMA final rule for Preventive Controls for Human Food requires FDA food 

processing facilities to “establish and implement a food safety system that includes an analysis of 

hazards and risk-based preventive controls” (10). For example, all facilities covered by this rule 

are to generate and follow a HACCP-based food safety plan addressing all potential hazards of 

processing. Operations that fall under the FSMA definition of a ‘farm’ will not be subject to this 

rule. The FDA does offer assistance to industry to improve comprehension and implementation 

of FSMA requirements. There are many exemptions to these FSMA rules, particularly for very 

small farms, particularly those whose produce is destined for processing (e.g. canning), and very 

small processors (10). 

 2.4 Pathogens Implicated with Leafy Greens 

The major foodborne pathogens associated with leafy greens are indicative of the major 

sources of contamination. As feces play a predominant role in contamination, many of the 

foodborne pathogens seen in outbreaks are endogenous to excrement and are part of the natural 

flora of animals (59). The most predominant pathogens in animal feces are Salmonella spp. and 

E. coli, which at least partially explains their frequent implication in produce outbreaks. Listeria 

monocytogenes, a ubiquitous environmental pathogen that can be a major problem with 
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processors, is also commonly implicated in produce outbreaks (1). Norovirus, which is 

associated with an estimated 20% of produce outbreaks, is also a problem in the produce sector; 

however, introduction typically occurs in consumer’s hands and during preparation (23). Other 

foodborne pathogens have been implicated in produce outbreaks including: Campylobacter 

jejuni, Hepatitis A, Cyclospora cayetanensis (a protozoan parasite), Giardia lamblia, and 

Staphylococcus aureus (10, 59). It has been established that Salmonella spp., E. coli, and L. 

monocytogenes are the primary outbreak culprits and deserve the most attention with regards to 

prevention and intervention efforts (59). 

A CDC epidemiological study by Herman et al. (2015) researched leafy greens outbreaks 

from the years 1973-2012. Data were collected from volunteering local, state, and territorial 

health departments across the United States. This study found that from 1973-2012 a total of 606 

(an average of four per year) foodborne outbreaks were associated with contaminated leafy 

greens. The results of this study revealed that 42.9% of leafy greens outbreaks were caused by 

Norovirus, 8.1% by shiga toxin-producing Escherichia coli (STEC), 5.3% by various Salmonella 

serovars, and 2.3% by Shigella. A large number (34.2%) of leafy greens outbreaks never had a 

confirmed pathogen. Improving surveillance to better determine implicated pathogens will focus 

preventative efforts in the future (37). 

 2.5 Mechanisms of Pathogenicity  

As Salmonella spp., E. coli, and L. monocytogenes are the most common bacterial causes 

of produce outbreaks; they will be the focus for pathogenicity. Each microbe will be followed 

from ingestion to illness. 

Ingested Salmonella pass through the stomach where many cells succumb. However, 

some Salmonella cells are capable of surviving the acidic environment via an acid tolerance 
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response (ATR) (64). This ATR includes lysine carboxylase converting available lysine into 

cadaverine and ammonia, ultimately raising the pH of the area immediately surrounding the cell, 

which helps Salmonella cells to tolerate the low pH of stomach acid (64). Another mechanism 

Salmonella uses is the up-regulation of acid-shock protein (ASP) genes, which function to 

remove excess hydrogen ions from the cytoplasm and assist in preventing destruction of an 

acidified cytoplasm (64). Cells able to survive the stomach acid travel to the lower 

gastrointestinal (GI) tract where they use their flagella to attach to an epithelial cell (29). 

Salmonella cells must also compete with endogenous microflora, but capable cells attach to 

epithelial cells and use a needle like apparatus, called a type-three secretion system (T3SS), to 

inject proteins into the cytosol of the intestinal epithelial cell (29, 57). Injected proteins 

ultimately lead to a reshuffling of the host’s outer membrane (29), and the Salmonella cell 

invades. More specifically, once inside the GI tract, Salmonella invades at the M cells and 

through the Peyers patches, where it is engulfed by the phagosome vacuole (46). Salmonella then 

releases more proteins, namely SifA, to protect itself from host defenses and allow replication 

(29, 46). Cells are ultimately released to the bloodstream where they are isolated to the spleen, 

lymph nodes, liver, gall bladder, or bone marrow (46). This leads to symptoms of gastroenteritis 

including diarrhea and cramps and possible complications such as meningitis, endocarditis, and 

osteomyelitis (7). Since Salmonella can enter the gall bladder, one strain (Salmonella Typhi, i.e. 

Typhoid fever) can remain in the body undetected in the infected individual, who remains 

asymptomatic and sheds cells in their feces (34). Such was the case for the famous early 

twentieth century cook Mary Mallon, otherwise known as Typhoid Mary (48). Mary Mallon was 

perhaps the most notable asymptomatic Salmonella Typhi carrier and she is estimated to be 
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responsible for as many as 50 fatalities (48). Her refusal to stop cooking, as well as her changing 

aliases, makes exact figures difficult to ascertain. 

Pathogenic E. coli is responsible for one of the largest foodborne outbreaks to date: the 

2006 outbreak involving spinach. Escherichia coli can be categorized into a number of different 

groups: enterotoxigenic (ETEC), enteroinvasive (EIEC), enteropathogenic (EPEC), 

enteroaggregative (EAEC), diffusely adhering (DAEC), and enterohemorrhagic (EHEC); each 

grouped based on virulence, pathogenicity, symptoms, and serotypes. Serotypes are 

differentiated based on antigens present on the surface of the capsule (K), flagella (H), and cell 

wall, otherwise known as the somatic antigen (O). Most E. coli strains are differentiated based on 

their O and H antigens. Enterohemorrhagic E. coli (EHEC) causes the most cases of foodborne 

illness (59). 

Pathogenic EHEC have an array of virulence factors that enable the infection of 

susceptible hosts. Similar to Salmonella, EHECs have a certain degree of acid tolerance and the 

capability of surviving stomach acid (pH ~ 2), which enables a small number of cells (10-100) to 

infect a host (40). Three acid-resistance systems are known for E. coli. The least known 

mechanism is controlled by a sigma factor, RpoS, and is a general gene product that is induced 

by any stressor (12). It is currently thought that RpoS induces a gene that protects proteins from 

acid damage, but more research is needed (13). The other two acid-resistance systems involve 

the decarboxylation of either of the amino acids glutamate or arginine, thus consuming 

cytoplasmic protons and creating antiporter molecules that further rid the cytoplasm of hydrogen 

ions (13). 

Upon reaching the lower GI tract, an E. coli cell docks itself on top of an intestinal 

microvillus and creates a pedestal-like lesion (59). Intimin, an outer membrane binding protein, 
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is made and presented on the E. coli surface (57). Escherichia coli then injects a Tir protein into 

the microvillus, via a T3SS.  The Tir protein acts as the intimin receptor, which allows for firm 

adhesion to the microvillus (59). All genes required for microvillus attachment are collectively 

known as the locus of enterocyte effacement (LEE) island and are imperative for E. coli 

infections (59). What separates pathogenic from non-pathogenic E. coli is not only the ability to 

attach to a microvillus but the production of one or two shiga toxins, otherwise known as Stx. 

Two variants of the toxin exist, Stx1 and Stx2, and are related to the toxin produced by Shigella 

dysenteriae (54). The shiga toxins are located on the E. coli chromosome; however, they are 

associated with a lambdoid prophage that inserted itself into the E. coli genome some time ago 

from Shigella (54). This lysogenic phage only decides to go lytic (i.e. remove itself from the 

chromosome and turn into an active virus) when DNA damage has occurred in the E. coli cell 

(54). The phage not only excises itself out of the E. coli chromosome, but also causes substantial 

upregulation of the Shiga toxin (54). While the effected E. coli cell does lyse, the Shiga toxin 

destroys the attacking host leukocytes and neutrophils (54). It has been suggested that this 

fratricide is for the greater good of the entire population (54). Throughout this process, infected 

individuals may experience severe cramps, and diarrhea, which is often bloody—a hallmark 

symptom of a Shiga-toxin producing E. coli infection (STEC). Severe cases lead to kidney 

failure in the form of hemolytic uremic syndrome (HUS) or clotting of the blood vessels by 

means of thrombotic thrombocytopenic purpura (TTP) (61). 

Another foodborne pathogen commonly implicated in produce outbreaks, L. 

monocytogenes, has the highest untreated mortality rate at between 15-25% (27, 61). This 

ubiquitous organism can grow between -0.4°C to 50°C and is known to be a potent biofilm 

former (38). It is an organism that food growers and manufactures monitor, and it is very 
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difficult to remove from environments once present (61). Listeria monocytogenes has unique 

virulence factors that aid in evading the immune system. Further, L. monocytogenes can invade 

highly sensitive areas such as the spinal cord, brain, and the placenta of pregnant mothers (61). 

Listeria monocytogenes regulates initial virulence factors by the use of a DNA binding 

protein, PrfA, and only allows dissociation from the DNA with either an acidic or temperature 

(37°C) stressor—both of which occur when ingested in the human body (45). When PrfA 

dissociates, the operon of virulence genes is upregulated and the gene products are produced. 

Gene products include key invasive proteins, namely, internalin (45). Upon reaching the lower 

gastrointestinal tract, L. monocytogenes uses the internalin protein to bind to E-Cadherin of host 

epithelial cells, and causes host cell membrane reshuffling to invade (45). After passing through 

the intestinal epithelial cells, L. monocytogenes cells are engulfed by macrophages where they 

are sequestered within the vacuole for death (61). Listeria monocytogenes cells, however, are 

able to avoid death, and replicate inside a macrophage vacuole, leading to an escape mediated by 

listeriolysin-O and phosphatidylinositol phospholipase C (61). Cells unable to escape are 

avirulent, making this step crucial for survival and dissemination within the host (35). Upon 

escaping the macrophage vacuole, L. monocytogenes cells upregulate the protein ActA and 

recruit host actin to bind to a scaffolding on one end of the Listeria cell (35). Enough actin 

creates a “tail,” which causes L. monocytogenes to spin, ultimately creating movement inside the 

macrophage cytosol (35). This movement propels cells out of the current macrophage into 

adjacent cells where it can start replicating again (35). In this way, L. monocytogenes cells can 

propel themselves into the host bloodstream, meninges, and, in a pregnant woman, the placenta 

(61). Those experiencing listeriosis should only expect to feel mild flu-like symptoms throughout 

this process, followed by intense illness depending on where the bacteria invades (61). 
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 2.6 Microbial Attachment to Plants 

The surface of the average plant tissue is composed of a multilayered hydrophobic cuticle 

that provides protection from infection, insect damage, and water loss (31). Stomata, pore 

openings on the surface of the tissue, allow gas exchange and reduce water loss (31). Trichomes, 

which are hair-like appendages that project from the plant cuticle, provide plant tissue defense 

from insects in the way of chemical and physical repellant (31). Bacteria tend to cluster around 

stomata and trichomes (23). Research shows that bacteria on the surface of a plant, also known 

as epiphytes, will aggregate around wounds on the plant due to nutrient leakage (23). The 

hydrophobic cuticle is believed to make it more difficult for bacterial cells to attach; however, 

cells able to attach may have increased resistance to antimicrobials (31). This may explain why it 

is generally recognized that postharvest produce washes are meant for disinfecting the water 

rather than the plant tissue (17). Microbes that attach to plants must also survive stresses 

including: the aerobic environment, temperature changes, humidity changes, poor nutrient 

availability, varying water availability, and ultraviolet light (18). 

Understanding how foodborne pathogens attach to produce is important for human health 

and food safety. A complete understanding is important in order to effectively approach pre- and 

postharvest habits and microbial removal. Microbes utilize a combination of van der Waals 

forces, hydrophobic interactions, and hydrogen bonding to achieve firm attachment (68). 

Bacterial polysaccharides and proteinaceous pili act as the bacterial attachment points to the 

hydrophobic plant surface (23). Some microorganisms produce a complex, jelly-like matrix 

called an extracellular polymeric substance (EPS) that may also aid in plant attachment (66). 

Evidence suggests that the level of attachment on a plant tissue is dependent on the serovar of the 

pathogen (44). Jeter and Matthysse (2007) found that strains of pathogenic E. coli capable of 



21 

causing diarrhea in humans were also able to attach to plant tissue more readily compared to 

non-diarrheic strains (44). This suggests that human epithelial attachment genes may play a role 

in attaching to plant tissue (18). Research also suggests that the side of the leaf may be important 

for attachment as the abaxial (underside) showed greater attachment compared to the adaxial 

(top); perhaps showing the abaxial side is prone to fewer stressors (21). Others hypothesize 

bacteria prefer colonizing the abaxial side of the leaf due to more trichomes and stomata (14).  

Biofilm formation can also occur on the surface of plant tissues (66). A biofilm is a 

highly resistant, complex network of cells that enables nutrient flow and waste removal (66). The 

increased resistance is due to the reduced ability for antimicrobials to penetrate the biofilms. 

Encompassed cells also have a slower growth rate, thus reducing uptake of any antimicrobial 

introduced to a biofilm (26). This enables cells to be tolerant of conditions that are sub-optimal 

or otherwise lethal (23). Biofilms are formed when a large number of associated bacteria 

“communicate” with each other via signal molecules. This is known as quorum sensing. Bacteria 

constantly secrete these signal molecules into the environment, and when the concentration of 

them is high enough, cells recognize this and an up-regulation of genes takes places, which 

manifests into a biofilm (23). Biofilms are very difficult to rid from a surface, including the plant 

tissue surface. 

 2.7 Past Research on Postharvest Antimicrobials 

Researching viable alternatives to chlorine sanitizers as a postharvest processing aid have 

been numerous and ongoing. Chlorine sanitizers are effective at removing pathogens from water, 

but are not overly efficacious at removing pathogens attached to lettuce tissue. Chlorine 

sanitizers are also prone to organic loading (the reduction in free chlorine by binding to organic 

matter—reducing overall efficacy), and are sensitive to temperature and pH. Therefore, 
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alternatives have been researched in the past including: ozone, peroxyacetic acid (PAA), 

hydrogen peroxide, and quaternary ammonium compounds (QAC) (62, 75). 

Ozone has been shown to be effective at reducing Salmonella, L. monocytogenes, and E. 

coli by greater than 3.0 log10 CFU/g in free wash water. Research using ozone as a produce wash 

has reported positive results, although its overall ability to reduce foodborne pathogens has not 

been significantly better than chlorine.  Research has also demonstrated that ozone can be 

corrosive to machinery and maintaining concentration in a water system can be difficult. It is 

also dangerous to humans so a ventilated processing facility would be required (62). 

Peroxyacetic acid (PAA) has been evaluated as a postharvest produce wash: however, 

research is conflicted regarding its ability to remove foodborne pathogens and data are often 

confidential by companies. One study found a 2.0 log10 CFU/g reduction of L. monocytogenes on 

cut-salad mixtures when exposed to 90 ppm PAA for 15 seconds, however, no significant 

difference was found compared to a 100ppm chlorine wash. Peroxyacetic acid has been shown to 

inhibit bacterial growth better than chlorine, which may increase the shelf life of products 

exposed to it (62). 

Hydrogen peroxide has been evaluated at 1% and 2% concentrations on many different 

produce items, including fresh-cut lettuce. Its efficacy has been shown to not be any better than 

chlorine, which has discouraged use. It also has been shown to negatively impact the sensory 

quality of lettuce, further discouraging use (62). 

 Quaternary ammonium compounds (QAC) have been evaluated as a produce postharvest 

wash. Research into QAC shows effectiveness to be best against gram positive microorganisms 

with optimal activity between a pH of 6-10. Efficacy is significantly worsened in an acidic 

environment (pH <6.0) or in the presence of surfactants. A proprietary (company has not 
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disclosed formulation) QAC solution of 200ppm demonstrated moderate effectiveness as a 

postharvest wash by reducing total aerobic bacteria by 95% (1.30 log10 CFU/g) on the surface of 

lettuce, compared to 60% (0.40 log10 CFU/g) of the water control. The FDA does not currently 

allow QACs to be used commercially as they need to determine if produce treated with them are 

safe for consumption (62). 

 2.8 Surrogate Microorganisms  

In food microbiology and food safety, a surrogate can be defined as a nonvirulent, model 

microorganism that mimics survival and growth of a pathogenic microorganism of interest. Their 

use stems from the need to not introduce pathogens to a specific environment, but to study how 

pathogens behave in that environment (72). For example, lactic acid may prove to be an effective 

intervention to control pathogenic E. coli in a laboratory setting, but in-plant validation is needed 

to ensure efficacy translates to the setting and environment of its intended use. Due to the safety 

risk, pathogens would never be allowed in a facility where food production takes place, but 

surrogates may be allowed for research purposes. The primary benefit of using surrogates is that 

they are safer to work with compared to pathogens (19) and, thus, are not a risk to human health.  

Choosing an appropriate surrogate for a pathogen can be a difficult task. Often, there is 

not a perfect nonvirulent model organism for the intended research pathogen. Busta et al. (2003) 

argue the best surrogate is a nonvirulent strain of the pathogen.  However, when access to such a 

microorganism is not possible, characteristics of a good surrogate include: 1) growth kinetics that 

can be used to predict pathogen, 2) differentiated between microflora, 3) susceptibility of injury 

similar to pathogen, 4) easily grown to high numbers (19). The use of surrogates is important to 

research in order to evaluate how pathogens would behave in a particular environment or matrix 

without using the pathogens themselves. 
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 2.9 Risk of Fresh-Cut Lettuce 

Due to the chopping process, fresh-cut lettuce is injured and, thus, releases intercellular 

fluids into the environment (36). These intercellular fluids have been shown to be nutritive to 

bacteria and may allow growth of foodborne pathogens, particularly when exposed to 

temperature abuse. Listeria monocytogenes and E. coli have both been shown to grow on fresh-

cut lettuce (36, 50). Temperature control becomes paramount at controlling growth on any fresh-

cut produce item, but particularly for lettuce. As stated by Harris et al., “survival of foodborne 

pathogens on produce is significantly enhanced once the protective epidermal barrier has been 

broken.” (36). Additionally, the shredding process may introduce foodborne pathogens as it may 

process hundreds of pounds of lettuce between washes. A contaminated head of lettuce may 

transfer pathogens to the shredding machinery, which may subsequently transfer pathogens to all 

lettuce shredded until the machinery is adequately washed (36). 

Fresh-cut lettuce may also be further prone to water infiltration, particularly when a large 

difference exists between the temperature of the water and lettuce itself (36). A common 

procedure is to not allow the temperature difference to increase beyond 10°F, as infiltration 

greatly increases above this temperature (62). Internal gas pressure, as well as the hydrophobic 

lettuce surface, typically does not allow this unless a large temperature difference exists between 

the product and water. However, internal gas pressure and the hydrophobic surface are greatly 

reduced on a cut product leading to greater water infiltration susceptibility (36). This poses a 

challenge, as water harboring foodborne pathogens may infiltrate cut lettuce tissue where 

nutrients are present for bacterial growth. Additionally, internalized bacteria are less susceptible 

to antimicrobial interventions, as the lettuce is a barrier to exposure. 
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The addition of a sanitizer to a fresh-cut lettuce (or other leafy greens) operation is a 

necessary step to prevent the transfer of foodborne pathogens. Studies generally suggest the 

commonly used sanitizer chlorine does not significantly reduce common foodborne pathogens on 

lettuce tissue compared to a water control (62). As stated by Parrish et al., “there are no known 

mitigation strategies to completely remove pathogens once contamination has occurred while 

maintaining produce freshness” (62). Chlorine, and many other sanitizers, do effectively destroy 

pathogens in water, so their addition is still important to processing environments, at they reduce 

the transfer of pathogens between products (62).  

 2.10 Potassium Bisulfate Mode of Action and Past Research 

Potassium bisulfate (IUPAC name potassium hydrogen sulfate) is a colorless crystal that 

emits a mild sulfuric odor. This odor occurs because it is the potassium salt of sulfuric acid. 

According to its safety data sheet (SDS), its purest form (≥95% by weight) may cause severe 

skin burns, eye irritation, inhalation dangers, and severe complications if consumed (8). 

Potassium bisulfate is, by definition, a weak acid; however, with a uniquely low pKa of 1.9, it is 

much stronger than other weak acids in its ability to donate hydrogen atoms in solution (8).  

The commercial use of potassium bisulfate has been relatively limited; moreover, most 

research has been done with its cation counterpart sodium bisulfate. Some fertilizer companies 

have taken advantage of potassium bisulfate’s ability to deliver potassium to plant systems; 

however, minimal work has been done to determine antimicrobial capacity. Antimicrobial 

activity is by and large the same as other acidic antimicrobials. It is generally recognized that 

small acidic compounds can pass through the lipid cell wall of bacteria and dissociate in the 

cytoplasm—already dissociated compounds are thought to be unable to cross the cell wall (63). 

As bacterial cells require very specific pH ranges in their cytoplasm, the dissociation of an acid, 
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and the subsequent acidification of the cytoplasm, causes the cell to halt unnecessary energy-

dependent reactions and upregulate transmembrane proteins that rid the cytoplasm of the excess 

protons. These excess protons change the charge of amino acids and drastically change protein 

structure (known as denaturing), which likely leads to cell death. Furthermore, cells use 

transmembrane proteins to remove excess protons, but this can lead to metabolic exhaustion if 

cells remain in an acidic environment too long. There is some debate that the accumulation of the 

anion is also harmful to cells, but conclusive evidence has not been established (67).  

During 1997, in an effort to reduce Salmonella Typhimurium, sodium bisulfate was used 

as a carcass intervention on freshly slaughtered chickens (80). The research team tested two 

concentrations, 5% and 10%, three levels of spray pressure, and spray times of 30 seconds and 

90 seconds. Pressure was of little significance in reducing Salmonella Typhimurium populations, 

but the 90 second spray time (of a 10% solution of sodium bisulfate) achieved approximately a 

1.0 log10 CFU/g greater reduction in populations compared to the 30 second spray time (80). 

Under the most rigorous spraying conditions of 827 kPa for 90 seconds, a 2.58 log10 CFU/g 

reduction in Salmonella Typhimurium was achieved (78). The study concluded that contact time 

and the concentration affected the results the most. This study showed potential for potassium 

bisulfate in other applications to reduce Salmonella and other enteric microorganisms. 

 2.11 Benzalkonium Chloride Mode of Action and Past Research 

Benzalkonium chloride is better known as part of QAC group of compounds. Quaternary 

ammonium compounds contain a quaternary nitrogen (thus creating a positive net charge of the 

compound) and usually contain at least one major hydrophobic constituent (33). Specifically, 

benzalkonium chloride is a mixture of n-alkyldimethylbenzyl ammonium chloride where the n-

alkyl group can vary in length. The most common homologues are typically blended, and have 
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either a twelve, fourteen, or sixteen length carbon chain alkyl group. These three lengths have 

been found to be most effective against gram positive and gram negative bacteria (33). 

Benzalkonium chloride is also effective at killing most viruses, protozoan, and fungi. 

Homologues with an alkyl chain of less than four, or greater than eighteen, have very little 

antimicrobial effect, if any (33). It is this combination of large hydrophobic molecules, and the 

net positive charge, that are hypothesized to be responsible for benzalkonium chloride 

antimicrobial activity (28). The net positive charge of benzalkonium chloride is attracted to the 

negative charge of teichoic acids and the lipopolysaccharide for gram positive and gram negative 

bacteria, respectively (28). The large hydrophobic group allows firm attachment to the lipophilic 

cell wall. It is this reason that benzalkonium chloride is commonly used as an antimicrobial in 

food processing plants, clinical settings, and increasingly in domestic households (28). 

Benzalkonium chloride also has a natural propensity to penetrate porous surfaces better than 

other common antimicrobials (28). An example benzalkonium chloride molecule can be found in 

Appendix A.  

In 1989, Japanese scientists found benzalkonium chloride to attach to the outer cell 

membrane of bacterial cells causing the cell membrane to be completely removed from the cell 

(70). This causes a very weak bacterial cell that ultimately succumbs to apoptosis or cytoplasmic 

leakage. In 2005, United Kingdom scientists found the positive charge on the quaternary 

nitrogen to attract and attach to the phospholipids of a cell membrane (33). Following 

attachment, the hydrophobic tail of benzalkonium chloride penetrates into the cell membrane 

core, creating a firm hold. At low concentrations, the consequences are two-fold. This firm 

benzalkonium chloride attachment increases the surface pressure against the cell and also 

decreases permeability of the cell membrane, thus decreasing flow of molecules in and out (33). 
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At higher concentrations, benzalkonium chloride can dissolve the cell membrane and enter the 

cellular cytoplasm, causing coagulation, and ultimately leading to cell death (28).  

As benzalkonium chloride is capable of entering a bacterial cytoplasm, cells with 

competent efflux pumps are hypothesized to be not as sensitive to benzalkonium chloride. The 

role of an efflux pump is to rid the bacterial cytoplasm of molecules the cell does not want in the 

intracellular space. Listeria monocytogenes, a notably resilient microorganism, demonstrates 

increased resiliency to benzalkonium chloride, compared to other bacteria, likely due to such 

efflux pumps (28). Iranian scientists were able to disable the efflux pumps associated with L. 

monocytogenes, resulting in a lower minimum inhibitory concentration of benzalkonium 

chloride—meaning L. monocytogenes became more susceptible to benzalkonium chloride 

without a competent efflux pump (28). Biofilm formation is also hypothesized to reduce 

benzalkonium chloride efficacy against L. monocytogenes, although this holds true for nearly 

every other biocide.  

 2.12 Methyl Paraben Mode of Action and Past Research 

Methyl paraben, a methyl ester of p-hydroxybenzoic acid, is a preservative that has been 

in the United States for the last sixty years and can be found in nearly 22,000 cosmetic products 

(4, 73). It is a relatively safe preservative that is commonly used due to its antimicrobial activity 

(particularly against yeasts and molds), stability, and solubility (73). The FDA has given methyl 

paraben, among other parabens, generally recognized as safe (GRAS) status with a limit in food 

of 0.1% (74). Methyl paraben is also found in pharmaceuticals where it is used as a preservative. 

Methyl paraben is non-carcinogenic, non-genotoxic, non-irritating, and generally, non-toxic (74). 

Parabens also offer no perceptible odor or taste, exhibit no change in pH or color, and are active 

across a large spectrum of temperatures and pH (77). However, parabens have been accused of 
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causing dermatitis and inflammation at the site of application, which has caused many online 

bloggers to discourage use (73). The FDA has ongoing investigations into parabens, but is 

routinely concluding that they are safe to use. Contact irritation may occur for “those with the 

most sensitive skin” (74). An example methyl paraben molecule can be found in Appendix A. 

Methyl paraben can enter through the cell membrane of bacteria and cause a general 

disruption leading to lipid membrane failure (74). The cell can’t survive without a properly 

working cell membrane. For prokaryotic cells, reports suggest methyl paraben binds to cellular 

oxidative enzymes causing respiratory failure (73). Further, research with E. coli and Bacillus 

subtilis have indicated both DNA and RNA binding properties leading to reduced cellular 

translation (74). In summary, methyl paraben needs to cross the cell membrane to affect a cell 

and cause death (73). This is why cells with efficient efflux pumps can tolerate a higher 

concentration of methyl paraben compared to cells lacking efflux pumps (73).   

Studies on multiple animals, including humans, have shown methyl paraben to be non-

toxic, hence its GRAS status. There has been no evidence of accumulation in the body and 

research suggests nearly 90% of ingested methyl paraben is excreted in urine within a twenty-

four hour period (74). Only at the highest doses (10% w/v), administered topically, has 

experimental research shown it to cause mild skin irritation in laboratory rats (74). As a result, 

methyl paraben was accepted in 1974 FAO/WHO Expert Committee on Food Additives as an 

acceptable preservative in foods, cosmetics, and pharmaceuticals (74).  

 2.13 Chlorine Sanitizer Mode of Action and Past Research 

In the food industry, chlorine is the most commonly used antimicrobial in wash water 

systems. It is cheap, effective, and does the necessary task of reducing microbial populations in 

the water. The United States Environmental Protection Agency (EPA) and California 
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Department of Pesticide Registration (DPR) have approved three forms of chlorine disinfectant 

that postharvest processors can use on produce items. Calcium hypochlorite is the most 

commonly used disinfectant in the produce industry mainly due to price and storage capability. 

Sodium hypochlorite is the most commonly used form for small processors and is the same 

active ingredient in household bleach. It is typically more expensive than the other two sources, 

as it is liquid-based and requires larger shipping containers. Chlorine gas is the least expensive 

option and is best suited for large processors. It needs to be monitored closely with constant 

addition for optimal use (75).  

Chlorine mechanism of action towards microorganism has not been fully elucidated to 

date (9). Chlorine molecules are electronegative in aqueous solution and many hypothesize that 

these molecules oxidize the peptide bond between certain amino acids (52). Some propose that 

chlorine breaks the bond between nucleotides, effectively cutting DNA or RNA (9). Others 

hypothesize that chlorine bonds to amino acids, which chlorinates large proteins and renders 

them ineffective (9). The CDC further defines the mode of action to include: decreases uptake of 

nutrients, oxidation of respiratory components, decrease in adenosine triphosphate (ATP) 

production, and reduces DNA synthesis (9). The multiple modes of action make chlorine very 

difficult for microorganisms to develop resistance. 

Without the presence of organic matter, it has been shown that less than five parts per 

million (ppm) of free chlorine is enough to kill vegetative bacteria (9). Spores of Bacillus. 

atrophaeus are killed at just 100 ppm chlorine with a five minute contact time, while twenty-five 

different viruses were killed at a 200 ppm available chlorine concentration after ten minutes (9). 

Salmonella, Staphylococcus aureus, and P. aeruginosa are killed in a 100 ppm solution of free 

chlorine and a ten minute contact time. These parameters indicate that chlorine solutions are 



31 

active at relatively low concentrations against spores, viruses, and most common pathogens. 

However, the contact time shown effective in studies can be difficult to achieve in produce 

processing facilities. 

A 2009 Spanish survey reported that many postharvest processors do not use chlorine-

based sanitation optimally, leading to excessive residue or ineffective microorganism kill (32). 

This is because water quality, temperature, organic matter, product, and concentration greatly 

affect the activity of chlorine-based sanitizers. The number one suggestion to processors is to use 

clean, potable water during processing. Subsequent water quality testing is also necessary. 

Organic loading is also important when working with a chlorine-based sanitation system, as free 

chlorine molecules react with all organic material (e.g. dirt, bacteria, and plant tissue) that enters 

the water.  This reduces free chlorine concentrations, which reduces the overall concentration in 

wash water, thus, reducing efficacy over time. Additionally, higher temperatures can lead to 

further volatilization of chlorine and reduced antimicrobial activity. For these reasons, it is 

important to monitor chlorine concentration, replace wash water as needed, or filter out organic 

material. The monitoring of chlorine concentration is guided by standard operating procedures 

(SOPs), but typically is done more often as product goes through a washing system (75). 

The use of chlorine in wash water has been an important advancement for the produce 

industry in the last forty years. It is thought that the fresh cut market for salads and other pre-

washed vegetables would be nonexistent if not for chlorine-based postharvest washes (32). There 

is little evidence suggesting that a chlorinated water wash (when used appropriately) affects 

quality or shelf life; an important consideration for any postharvest wash (47). Some hypothesize 

there to be an increase in shelf life, as the chlorination may reduce total bacteria on a plant 
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surface (47). Chlorine compounds are also cheap, do not leave residue, and are effective at 

killing bacteria in aqueous solution.  

There is ongoing research into discovering alternatives for chlorine-based sanitation of 

fresh fruits and vegetables. Among the top reasons is its lack of ability to target organisms on a 

plant tissue surface. It effectively destroys bacteria in wash water but does a poor job targeting 

bacteria attached to plant tissue. Chlorine-based washes also need to be monitored constantly to 

ensure adequate concentration. Due to organic loading, washes are prone to losing effectiveness 

without maintenance. There is also speculation that high chlorine concentrations, combined with 

high organic matter (through heavy use), may form volatile compounds such as trihalomethane 

or other carcinogenic by-products (9).  
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Chapter 3 – An Investigation into Potassium Bisulfate as a Pre-

Harvest Lettuce Antimicrobial Intervention targeting Escherichia 

coli and Listeria innocua  

 3.1 Introduction 

Both Listeria monocytogenes (L. monocytogenes) and Escherichia coli O157:H7 are 

highly virulent pathogens that have been implicated in produce outbreaks. A 2015 study by the 

Centers for Disease Control and Protection (CDC) indicates that, from 2003-2012, Escherichia 

coli O157:H7 (E. coli) was implicated in 39 outbreaks linked to produce, 29 of which originated 

from leafy greens (14). From 2009-2011, the CDC documented twelve outbreaks of L. 

monocytogenes, two of which were produce-related (25). However, 2011 saw the deadliest L. 

monocytogenes outbreak in over 90 years when a cantaloupe outbreak sickened 125 people and 

killed 33 (19). Consumers rely on growers effectively implementing on-farm safety practices to 

minimize foodborne pathogen contamination. This is particularly important for produce 

consumed raw, as foodborne pathogens are not visible to the naked eye, and washing does very 

little to remove them (4). Cooking is an option to destroy potential pathogens, but this is not 

always desirable depending on the produce item.  

Preventing foodborne pathogen contamination on produce is challenging because fruits 

and vegetables are primarily grown outdoors and subject to possible contamination throughout 

production, distribution, and consumption. In addition to being consumed raw, some products 

also have minimal to no packaging to protect against contaminants (22). Additionally, it has been 

generally accepted that contamination is most likely to occur pre-harvest, or during initial 

processing steps, making antimicrobial interventions most logical and impactful at these points 
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(22). Research now suggests that foodborne pathogens, such as E. coli O157:H7, may adhere 

more strongly to plant tissue than other produce tissues (5). Currently, the only way growers can 

reduce the possibility of contaminating their produce with foodborne pathogens is to utilize 

preventative measures on-farm.  

Potassium bisulfate has been effective at controlling various enteric organisms; thus, it 

may be a suitable pre-harvest intervention to control enteric microorganisms such as E. coli 

O157:H7 (16, 29). Potassium bisulfate is the potassium salt of sulfuric acid, and has a mode of 

action similar to other acids. Undissociated acids can translocate into the cytoplasm of 

susceptible cells and dissociate, thus causing acidification (17). The stressed cell is forced to 

expel energy to remove excess cytoplasmic protons, which may ultimately lead to cell death due 

to metabolic exhaustion (17).  

According to current literature, potassium bisulfate has not been investigated as an 

intervention for food products.  However, previous research explored the use of sodium bisulfate 

as an intervention for meat products. In this study, meat slurries were inoculated with either 

Salmonella or E. coli O157:H7, sprayed with sodium bisulfate to reach a final pH of 2.81, and 

stored at ambient temperature over a period of twenty-eight days. Within thirty minutes post 

spraying, E. coli O157:H7 populations were reduced by 1.29 log10 CFU/g, with similar 

reductions observed for Salmonella spp. populations in the meat slurries (17). At seven days and 

beyond, both Salmonella spp. and E. coli populations were reduced to <5 CFU/g (17). This 

suggests that applying sodium bisulfate may significantly reduce gram negative, enteric 

microorganisms in a meat matrix given adequate exposure time.  

In the present study, potassium bisulfate was chosen in lieu of sodium bisulfate, as 

potassium bisulfate may be able to supply potassium, a key biochemical nutrient, to plants (10). 
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This would make potassium bisulfate a fertilizer, which may be seen favorably to those 

considering use. Potassium-based fertilizers are regularly applied to plants to promote early 

growth, disease resistance, and efficient water usage (25).  

The overall objective of this study was to determine if a 0.25% potassium bisulfate 

solution applied pre-harvest to lettuce is efficacious at reducing E. coli or L. innocua without 

negatively impacting lettuce quality at harvest.  

 3.2 Materials and Methods 

Preliminary Data Collection 

Potassium bisulfate concentrations of 0.25% and 0.50% (w/v) were sprayed once on 

mature lettuce and observed over the course of four days. Lettuce sprayed with 0.50% potassium 

bisulfate had brown speckling indicating phytotoxicity. By day four, the 0.25% potassium 

bisulfate treatment had no noticeable effect on the leaves. As a result, 0.25% potassium bisulfate 

was evaluated in this study. This preliminary study was performed in late fall, outdoors at the 

Kansas State University Olathe Horticulture Research and Extension Center (Olathe, Kansas). 

Listeria innocua (ATCC® 33090™) and E. coli (ATCC® 1427™) surrogate strains were 

evaluated to compare potassium bisulfate susceptibility to pathogen strains. A single USDA L. 

monocytogenes isolate and a single E. coli O157:H7 strain were used. This preliminary study 

was performed using microplate susceptibility testing to expose a standardized cell density to 

specific potassium bisulfate concentrations. Results from this preliminary study revealed that the 

surrogate strains had the same susceptibility to potassium bisulfate as the pathogenic strains (data 

not shown). Thus, L. innocua (ATCC® 33090™) and E. coli (ATCC® 1427) were used as 

models for the foodborne pathogens L. monocytogenes and E. coli O157:H7, respectively. 
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Study Design 

Mature, inoculated lettuce plants were randomly assigned to one of seven treatments. Six 

lettuce plants were assigned to each treatment group. The treatments were as follows: 1) 

untreated, inoculated control, 2) 0.25% w/v potassium bisulfate applied one week before harvest, 

3) sterilized water applied one week before harvest, 4) 0.25% w/v potassium bisulfate applied 

two days before harvest, 5) sterilized water applied two days before harvest, 6) 0.25% w/v 

potassium bisulfate applied one week and two days before harvest, 7) sterilized water applied 

one week and two days before harvest. The spray applications were applied to the drip point. The 

0.25% w/v potassium bisulfate was prepared with sterilized water; however, the concentrated 

potassium bisulfate was not a sterilized product. A total of six replications were completed in this 

study.  Figures 3-1 to 3-3 are plot maps summarizing this experimental design. 

Growth of Lettuce 

Pelleted Tropicana lettuce seeds (Johnny’s Selected Seeds, Winslow, Maine) were 

planted on January 20, 2015 and grown in a greenhouse at the Kansas State University Olathe 

Horticulture Research and Extension Center (Olathe, Kansas). On February 12, Lettuce seedlings 

were transplanted to individual plastic pots. Lettuce was allowed to mature until March 9 

(foliage ~15cm across), at which point they were inoculated. Lettuce was watered daily via 

overhead irrigation until inoculation, and afterwards, watered from below by filling trays holding 

lettuce pots with water. Briefly, the plastic containers containing the growing lettuce plants were 

placed in another solid container that would hold water and allow dry soil to soak. This was done 

instead of overhead irrigation to eliminate the possibility of irrigation removing attached cells 

from the lettuce plants. 

Inoculation of Lettuce Plants 
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Stock cultures of L. innocua (ATCC® 33090™) and E. coli (ATCC® 1427™) stored at -

80oC in the Kansas State University-Olathe food safety laboratory were removed from frozen 

storage and thawed using ice water. One mL aliquots of L. innocua (ATCC® 33090™) and E. 

coli (ATCC® 1427™) were aseptically transferred to individual sterile bottles, each containing 

750 mL sterile Buffered Peptone Water (BPW) (Remel, Lenexa, Kansas), and incubated for 18-

24 hours at 37°C. Overnight cultures were then transferred to a hand spray bottle, which was 

used to inoculate growing lettuce until the drip point. Briefly, the inoculum was applied until the 

leaves were fully saturated and additional applied liquid would drip off the plant; thus, ensuring 

complete and uniform coverage. Each lettuce plant was inoculated with either L. innocua 

(ATCC® 33090™) or E. coli (ATCC® 1427™) nine days prior to harvest. Approximately six 

hours after inoculation, random leaf samples were collected and transported to the food safety 

laboratory at Kansas State University-Olathe for microbiological sampling. After acceptable titer 

determination, the application of treatments proceeded. 

Application of Treatments  

Seven days prior to harvest (March 10, 2015), water and potassium bisulfate treatments 

were applied to the growing lettuce.  Briefly, a 0.25% w/v potassium bisulfate was prepared in 

sterile tap water and poured into a hand-held spray bottle.  Sterile tap water was also poured into 

a hand-held spray bottle. Treatments were sprayed onto the lettuce until the drip point to ensure 

uniform coverage of the leaf.  On March 15, 2015, tap water and 0.25% w/v potassium bisulfate 

treatments were prepared and applied to all lettuce plants requiring a second application of 

0.25% w/v potassium bisulfate or water two days prior to harvest.  This second treatment 

application was also applied to the drip point.  Fresh sterile tap water and 0.25% w/v potassium 

bisulfate solutions were prepared each day and for reach replication. 
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Harvest & Microbiological Analysis 

On the day of harvest (March 17, 2015), all six lettuce plants in a treatment group were 

torn off at the base of the plant using latex gloves (Aurelia, Aurora, IL) and placed in zip top 

bags. They were immediately transported to the food safety laboratory at Kansas State 

University-Olathe on ice. Twenty-five gram samples of lettuce were randomly taken from each 

treatment bag and stomached (Stomacher® 400 Circulator, Seward, Davie, Florida) with 225mL 

of buffered peptone water (BPW) (BD BBL™, New Jersey) at 230 RPM for sixty seconds. 

Homogenized samples were serially diluted (1:10) using BPW as the diluent and the appropriate 

dilutions were spread plated. Listeria innocua (ATCC® 33090™) inoculated samples were 

plated on oxford medium base (BD BBL™, New Jersey) with added Listeria selective 

supplement (OXOID, Basingstoke, Hampshire, England). Colonies presenting with a black 

clearing were counted as Listeria innocua following incubation at 37°C for 18-24 hours. 

Escherichia coli (ATCC® 1427™) inoculated lettuce samples were plated on MacConkey agar 

(Remel, Lenexa, Kansas) and colonies exhibiting a mauve color were counted following 

incubation at 37°C for 18-24 hours. 

Quality Analysis 

Non-inoculated lettuce was grown and treated in the same manner as in the 

microbiological study in order to investigate the impact of 0.25% w/v potassium bisulfate on 

postharvest lettuce quality. The quality analysis portion of this study was performed in a 

greenhouse during late spring and into early summer. Lettuce quality was determined by visual 

inspection and quantifying color using a Minolta Chroma Meter CR-400 (Minolta, Ramsey, NJ). 

The treatments of potassium bisulfate applied one week and two days before harvest, and 

corresponding water control, were removed from this experiment because lettuce samples 
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observed during the inoculation study demonstrated that even a single application of 0.25% 

potassium bisulfate was burning the leaves. This is contrary to the 4-day preliminary 

investigation, possibly due to the increased contact time on the plants (7 days). To maintain 

quality, harvested lettuce samples (in zip top bags) were immediately stored at 4°C for 

approximately one hour until analysis. Overall quality was assessed by visual inspection and 

color.  

Visual Inspection: Lettuce quality was evaluated subjectively using ratings scales (6). 

Briefly, the scale was from 1-9. More specifically, 1 = severe wilting and discoloration; 3 = more 

yellow than green, decay noticeable; 5 = noticeable loss of green and water loss; 7= slight loss of 

green color, non-objectionable water loss; to 9 = fresh appearance, crisp and no decay. Twenty 

leaves were randomly selected from each sample for evaluation. Samples were randomly 

evaluated by marking bags with a designated color that corresponded with their plot in the 

greenhouse in order to reduce bias and to evaluate lettuce leaves without knowledge of 

treatment. A copy of the lettuce quality rating scale can be found in Appendix B.  

 Color. Ten random leaves from each sample were chosen and evaluated for color on the 

adaxial side of the leaf, on both sides of the midrib. The color indices L*, a*, and b* (the Hunter 

Chroma Scale), were determined with a Minolta Chroma Meter CR-400 (Minolta, Ramsey, NJ). 

The L-axis, between 0-100, represents the lightness of the lettuce (100 = white, 0 = black). The 

a-axis represents the green and red aspects of the leaf with a positive value signifying red, and a 

negative value signifying green. The b-axis represents the yellow and blue aspects of color with a 

positive number being yellow and a negative number representing blue. 

Statistical Analysis 
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This study was categorized as a randomized block design and microbiology data were 

subjected to the MIXED procedure with LSMEANS of Statistical Analysis Software (SAS, 

Version 9.4, Cary, NC). The pdiff option was used to determine differences in LSMEANS and 

evaluate statistical significance at the P=0.05 threshold. All experimental procedures were 

replicated six times; however, attachment populations for both E. coli and L. innocua were not 

adequate for two replications, which were subsequently removed from all analyses. Quality data 

were analyzed using a One-Way ANOVA with Tukey’s Multiple Comparison test (Statistical 

Analysis Software Version 9.4, Cary, NC) using LSMEANS to compare treatments and 

determine statistical significance of the P<0.05 threshold.  

 3.3 Results and Discussion 

Microbial Reduction Study  

The application of water at any point before harvest did not significantly (P>0.05) impact 

E. coli populations at harvest. As shown in Figure 3.4, potassium bisulfate was moderately 

effective at reducing E. coli populations on lettuce, with 1.32 log10 CFU/g less E. coli than the 

control when applied one week prior to harvest. Because E. coli populations were significantly 

reduced (P=0.0002) when potassium bisulfate was applied one week prior harvest in comparison 

to the control, it stands to reason that these reductions should maintain or increase when 

potassium bisulfate is applied at one week and two days before harvest. However, as Figure 3.4 

illustrates, the additional treatment two days before harvest did not demonstrate efficacy. While 

it is possible that variations in attachment might be responsible for the population differences 

between these two treatments, it’s also important to consider environmental exposures and the 

metabolic state of the cell. A 1995 study by Arnold and Kaspar subjected E. coli O157:H7 cells 

to acidic environments (media adjusted to pH of two) at various points (e.g. lag phase) during 
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growth (3). The authors concluded that E. coli O157:H7 cells that were starved during stationary 

phase demonstrated greater acid tolerance than cells actively growing. When potassium bisulfate 

was applied one week before harvest, E. coli cells were two days removed from inoculation, and 

that inoculum was applied with the growth medium BPW. That growth medium may have 

provided enough nutrients for the E. coli cells to maintain some degree of metabolic activity. 

Thus, perhaps the E. coli cells remained susceptible to the initial potassium bisulfate treatment. 

However, the additional potassium bisulfate treatment, which was applied two days prior to 

harvest, was sprayed on what were likely starved E. coli cells in stationary phase that had been 

stressed with the prior exposure to potassium bisulfate. Therefore, it is possible that the second 

potassium bisulfate treatment rehydrated any residual nutrients; thus, allowing the stressed, and 

potentially more acid-tolerant, E. coli cells to recover for two days before harvest.   

It should also be noted that lettuce tissue damage (i.e. burning) was observed following 

application of the 0.25% w/v potassium bisulfate treatment. Thus, it could be hypothesized that 

this damage resulted in nutrient leakage, and/or E. coli gained access to the internal portion of 

the plant through the damaged areas. It is possible that tissue damage caused by the second 

application of 0.25% w/v potassium bisulfate was excessive enough for this to occur.  

As shown in Figure 3.5, potassium bisulfate potassium bisulfate demonstrated moderate 

efficacy as a pre-harvest intervention to reduce L. innocua populations on lettuce. When applied 

twice (one week and two days before harvest), 0.25% w/v potassium bisulfate significantly 

(P=0.0017) reduced L. innocua populations on inoculated lettuce by 1.18 log10 CFU/g in 

comparison to the control. Although not statistically significant (P=0.1333), it is noteworthy that 

applying water twice (one week and two days before harvest) reduced L. innocua populations by 

0.50 log10 CFU/g in comparison to the control.  Two applications of 0.25% w/v potassium 
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bisulfate were significantly (P=0.0482) more effective than two applications of water; however, a 

marginal population difference of 0.68 log10 CFU/g was observed between the two treatments. 

These data suggest that multiple applications of 0.25% w/v potassium bisulfate are needed to 

significantly reduce populations of L. innocua; however, the improved benefit over two 

applications of water must be considered.  

This study is novel in that very little research has been done on the application of an 

antimicrobial on growing lettuce. The limited research completed to date focused more on 

applying an antimicrobial pre-harvest to control decay causing microorganisms rather than 

foodborne pathogens. One study aiming to control yeasts, molds, and total aerobic bacteria used 

aloe vera gel as an antimicrobial on lettuce (30). The authors reported ~1.0 log10 CFU/g 

reduction in aerobic bacteria when applied to lettuce one week before harvest. In comparison, the 

0.25% potassium bisulfate achieved in excess of a 1.0 log10 CFU/g reduction in E. coli and L. 

innocua when applied one week before harvest or one week and two days before harvest, 

respectively. Castillo et al. (2004) suggest that surface antimicrobials may not reduce bacteria 

more than two log10 CFU/g on plant tissue due to the complex nature of tissue and the possibility 

of pathogen internalization (7). By the standards of Castillo et al., 0.25% potassium bisulfate was 

moderately effective at reducing populations of E. coli and L. innocua.  

It is also important to mention that the microorganisms used for inoculation had a longer 

time to attach to the lettuce tissue and were likely in a different metabolic state when potassium 

bisulfate was applied just two days before harvest. This is an important factor to consider when 

determining efficacy and feasibility, as it is impossible to determine when contamination occurs 

in a field.   
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One consideration for future research would be to combine potassium bisulfate with 

another antimicrobial compound. Studies show that using multiple antimicrobials is generally 

more effective than when the antimicrobials are used individually (9, 18). Additionally, the 

concentrations of each antimicrobial can often be reduced (compared to lethality observed at a 

particular concentration when used individually) when compounds act synergistically, meaning 

overuse, and possibly resistance, may become less common (5). Research studies also find 

synergistic compounds offer greater efficacy if each compound has a different mode of action to 

a target microbe (e.g. a combination of two acidic compounds won’t be as effective 

synergistically as other possible combinations) (9). 

Due to the hydrophobic nature of plant surfaces, lettuce leaves can only hold so much 

liquid before excess drips off. Increasing the liquid carrying capacity of the lettuce leaf may 

increase efficacy, as a greater amount of antimicrobial would be retained on the leaf surface. 

Introducing a surfactant to improve leaf coverage and potassium bisulfate adherence may 

improve antimicrobial efficacy and minimize treatment coalescence. This may also positively 

impact by product quality by minimizing burning on the leaf where the 0.25% w/v potassium 

bisulfate presumably coalesced. Tween 80 and Tergitol are common food grade surfactants but 

the FDA also lists calcium lignin sulfonate, methyl glucoside, poloxalene, and sodium lauryl 

sulfate (1). 

Visual Inspection  

A distinct brown speckling on various samples sprayed with of 0.25% w/v potassium 

bisulfate was observed, regardless if spraying occurred one week or two days before harvest. 

Other studies using various fertilizers reported the same result when the concentration was too 

high (3). In an effort to bypass this problem, Azeem et al. (1996) suggests using a lower 
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concentration multiple times, or to utilize a controlled release approach (3). Due to the 

hydrophobic nature on the surface of plant tissues, the application of water or 0.25% w/v 

potassium bisulfate results in coalescence on the surface of the leaf. Presumably, the acidic 

nature of potassium bisulfate caused “burning” where the treatment coalesced on the lettuce 

surface (Figure 3.6) (15). As expected, lettuce sprayed with water prior to harvest exhibited little 

to no quality damage during postharvest quality analyses (Figure 3.7).  As Figure 3.8 illustrates, 

no significant difference in visual quality was observed among treatments. This was likely due to 

the fact that not every leaf exhibited potassium bisulfate damage.  

Color  

 The results from the color analyses are highlighted in Figures 3-9 – 3-11. No significant 

differences (P>0.05) in color were observed among the treatments. Although burning was 

observed for lettuce treated with 0.25% w/v potassium bisulfate, this did not appear to impact 

color quality of the lettuce. As expected, no color difference was observed for untreated and 

water sprayed lettuce. Potassium is not known to contribute to lettuce color (unless there is a 

deficiency); thus, improvements in greening (lower a* values) were unlikely given the short time 

between application and harvest (10). 

 3.4 Conclusions 

This was a preliminary study evaluating the efficacy of applying 0.25% w/v potassium 

bisulfate as pre-harvest intervention on lettuce to reduce populations of the foodborne pathogen 

surrogate microorganisms L. innocua and E. coli. Results from this study demonstrate that 

potassium bisulfate was moderately efficacious as a pre-harvest intervention to control L. 

innocua and E. coli on lettuce. Further research is necessary to determine if efficacy can be 

optimized such that tissue burning is minimized while microbial populations are further reduced. 
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Because of leaf burning, more resilient produce may be better suited for future research. This 

study demonstrated potential in using potassium bisulfate as a pre-harvest produce intervention; 

however, further research is necessary before 0.25% w/v potassium bisulfate can be 

recommended as a pre-harvest intervention on lettuce. 
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Figure 3-1. Plot map used for Escherichia coli inoculated lettuce.  
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Figure 3-2. Plot map used for Listeria innocua inoculated lettuce.  
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Figure 3-3. Plot map used to assess quality of uninoculated lettuce after treatment. 
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Figure 3-4. Escherichia coli populations at harvest on lettuce treated with water and potassium 

bisulfate (PB). 

Error bars represent standard error of the mean. 

a,b Indicates treatments that differ statistically (P<0.05). 
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Figure 3-5. Listeria innocua populations at harvest on lettuce treated with water and potassium 

bisulfate (PB).  

Error bars represent standard error of the mean. 

a,b Indicates treatments that differ statistically (P<0.05).  
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Figure 3-6. Lettuce samples sprayed with 0.25% potassium bisulfate seven days before harvest.  

 

 
Figure 3-7. Lettuce samples sprayed with water two days before harvest.  
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Figure 3-8. Overall quality of lettuce subjected to 0.25% w/v potassium bisulfate and water 

either one week or two days before harvest.  

Error bars represent one standard deviation.  

a Indicates treatments that differ statistically (P<0.05). 
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Figure 3.9. L* values at harvest for lettuce subjected to 0.25% w/v potassium bisulfate and water 

either one week or two days before harvest.  

Error bars represent one standard deviation.  

a Indicates treatments that differ statistically (P<0.05). 
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Figure 3-10. a* values at harvest for lettuce subjected to 0.25% w/v potassium bisulfate and 

water either one week or two days before harvest.  

Error bars represent one standard deviation.  

a Indicates treatments that differ statistically (P<0.05). 
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Figure 3-11. b* values at harvest for lettuce subjected to 0.25% w/v potassium bisulfate and 

water either one week or two days before harvest.  

Error bars represent one standard deviation.  

a Indicates treatments that differ statistically (P<0.05). 
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Chapter 4 – An Investigation into the Efficacy of Benzalkonium 

Chloride, Acetic Acid, and Methyl Paraben in Combination as a 

Postharvest Intervention to control Escherichia coli, Salmonella 

spp., and Listeria monocytogenes on Lettuce 

 

 4.1 Introduction 

A 2010 epidemiological study by Berger et al. reported that past research efforts on 

foodborne pathogen transmission were focused on foods of animal origin (e.g., poultry, beef, 

pork); however, according to Painter et al. (2013), foodborne illness attributed to produce 

exceeds all foods of animal origin combined (including cases caused by egg and dairy products) 

(8, 24). This is primarily due to the increased fruit and vegetable consumption observed in the 

past fifty years, but is also because most produce items (particularly leafy greens) are consumed 

in a raw state (8). Currently, the only common measure to reduce foodborne pathogens on 

produce is the use of a post-harvest chlorinated water wash. However, the efficacy of chlorine is 

not substantial; thus, alternatives should be evaluated (9). 

Postharvest processing of fruits and vegetables is recognized as a potential contamination 

point for foodborne pathogens, and water is the most likely vehicle of transfer, particularly when 

sanitizer is absent, or when the sanitizer is inactivated (2, 22). In a postharvest processing 

operation, water can be used in the way of flumes, tanks, and spray washes, and can be directly 

contaminated via the source, or indirectly contaminated by the introduction of contaminated 

product. The industry has addressed this by adding a chlorine-based antimicrobial to reduce the 

potential for cross-contamination from water to produce (2). Ultimately, the goal of using 
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chlorinated wash water is to prevent cross contamination of organisms from produce wash water 

to the product, but also to prevent contaminated produce from contaminating the wash water 

(30). In general, chlorinated washes are not intended to reduce organisms on produce itself. That 

being said, current research has demonstrated a 90-99% reduction (1-2 log10) in total aerobic 

bacteria can be expected on produce when a properly prepared chlorinated wash (fluctuation 

depends on product, concentration, contact time, etc.) is used (9). A “properly prepared” solution 

typically infers a free chlorine concentration between 75-200 ppm, with a three to five minute 

contact time, and at a temperature that facilitates product cooling (~50°F) (30). The product and 

wash water are to not be more than 10°F apart (i.e. wash water cannot be more than 10oF cooler 

than the product), as this may lead to an influx of water into the product, potentially causing 

foodborne pathogens to enter the product. Eliminating 90-99% (1-2 log10) of aerobic bacteria is a 

reduction that may seem effective; however, it must be considered that some foodborne 

pathogens have infectious doses as low as a few cells (22). Therefore, even if 1% of bacteria are 

not killed by a postharvest wash, a legitimate risk for foodborne illness may exist. This 

establishes a need for further research evaluating the effectiveness of alternative postharvest 

washes in order to achieve microbial reductions in excess of two logs. 

Benzalkonium chloride is a cell membrane disrupter that has activity against gram 

negative and gram positive microorganisms. According to Fazlara et al. (2012), benzalkonium 

chloride is particularly effective against Listeria monocytogenes (L. monocytogenes) and 

Escherichia coli (E. coli), but Salmonella Typhimurium also exhibited a high degree of 

susceptibility (15).  Benzalkonium chloride has been studied as a postharvest wash on 

uninoculated radishes, cilantro, parsley, and basil (15).  When applied at 92 ppm for fifteen 

minutes, total aerobic bacteria on the plant tissue were reduced by approximately 1.2 log10 



68 

CFU/g; however, they did not report a significant difference compared to the water control. 

Washing parsley, cilantro, and basil with 92 ppm benzalkonium chloride, followed by a 

secondary wash of either peracetic acid or hydrogen peroxide improved efficacy compared to 

just a single postharvest treatment. When used in tandem, two separate antimicrobial washes 

were able to achieve up to a 2.8 log10 CFU/g reduction in total aerobic bacteria on the plant 

tissue, further demonstrating the added benefit of employing hurdle technology (15).  

 In 2004, The American College of Toxicology evaluated eighteen studies attempting to 

determine the safety of benzalkonium chloride by studying concentrations ranging from 

0.00045% to 0.01% subjected to humans daily (20). Two of the eighteen studies found human 

subjects to be negatively impacted by benzalkonium chloride exposure when used as a nasal 

spray. However, the overall conclusion of the study was that benzalkonium chloride “appears to 

be safe and well-tolerated for both long- and short-term clinical use” (20). At the present time, 

benzalkonium chloride is not generally recognized as safe (GRAS), but it has been evaluated (5). 

Methyl paraben has the benefit of exhibiting both a mild fungicidal and bactericidal 

effect (29). While antimicrobial efficacy is important, an evaluation of residue remaining on the 

plant tissue post washing is also critical. According to the Code of Federal Regulations (CFR) 

Chapter 21 §184.1490, the limit in or on a food stuff must not exceed 0.1% (4).  

Acetic acid has also been studied as a postharvest antimicrobial. A 0.5% acetic acid dip 

for two minutes was able to reduce E. coli O157:H7 and L. monocytogenes on fresh-cut iceberg 

lettuce by 1.2 log10 CFU/g and 0.8 log10 CFU/g, respectively (31). No significant difference was 

reported between a two and five minute contact time. Acetic acid residue was not evaluated in 

this study as, according to CFR Chapter 21 §184.1005, it is GRAS (up to 0.15% on lettuce) and 

is readily water soluble, minimizing concern of residue on romaine or iceberg lettuce. 
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The overall objective of this study was to investigate the use of a Marvel Technologies™ 

USA, LLC formulated blend of benzalkonium chloride, acetic acid, and methyl paraben called 

Free N Clear™ (FNC) as a novel postharvest intervention on fresh-cut romaine and iceberg 

lettuce. The specific research objective was to determine the antimicrobial efficacy of FNC 

against L. monocytogenes, E. coli, and Salmonella on the lettuce product as well as in wash 

water. A secondary objective was to quantify benzalkonium chloride and methyl paraben 

residues on lettuce after washing with FNC and rinsing with potable water. Visual quality was 

also evaluated to determine if FNC negatively impacted lettuce quality. 

4.2 Materials and Methods 

Preliminary Data Collection 

 Preliminary data was collected to determine the concentrations of both methyl paraben 

and benzalkonium chloride in 1%, 2%, and 3% FNC wash solutions, as prepared in the following 

Washing of Cut Lettuce section. When 100% FNC was prepared according to manufacturer 

guidelines (Marvel Technologies™,Franklin, TN), 0.04 lb benzalkonium chloride solution 

(containing 50% benzalkonium chloride), 0.04 lb methyl paraben, and 0.08 lb of acetic acid were 

added to a container and tap water was added to a final volume of one gallon. When prepared 

accordingly, the concentration of benzalkonium chloride in 1%, 2% and 3% FNC wash solutions 

was nearly double of the theoretical concentrations (theoretical concentrations for 1%, 2%, and 

3% FNC solutions are 23.5 ppm, 47 ppm, and 73.5 ppm, respectively). In an effort to explain 

this, 100% FNC was prepared in a 250 mL volumetric flask and 1%, 2%, and 3% FNC was 

compared to the concentration made according to manufacturer guidelines. Further, 1%, 2%, and 

3% FNC wash solutions were made from each solution into 100 mL, 250 mL, 1,000 mL, or 

2,000 mL volumetric flasks and the resultant concentrations were compared. Results are shown 
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in Appendix C. Based on these preliminary data, the theoretical concentrations of benzalkonium 

chloride were much closer to the prepared concentrations when 100% FNC was mixed in a 250 

mL volumetric flask, compared to when FNC was prepared according to manufacturer 

guidelines, which specifies preparation in a one-gallon volume. These results suggest, that even 

with high agitation and heat, benzalkonium chloride does not seem to evenly disperse in large 

volumes of water. This non-uniformity of benzalkonium chloride mixing should be further 

evaluated for large-scale uses with high volumes of water.  

Study Design 

Three individual studies were accomplished in this objective: a shelf life, residue 

analysis, and pathogen reduction study. Iceberg and romaine lettuce was procured in 25 lb 

cardboard boxes from a local produce supplier in Kansas City, Missouri. The produce was not 

washed or processed in any way before use in these studies. Romaine and iceberg lettuce was 

stored at 4°C overnight. The pathogen reduction study utilized its own box each of romaine and 

iceberg lettuce while separately purchased boxes were both used for the shelf life and residue 

studies (i.e., the same boxes of romaine and iceberg lettuce were used for the shelf life and 

residue analysis studies). One box each of romaine and iceberg lettuce was used for all three 

replications for the pathogen reduction study. The boxes of romaine and iceberg lettuce for the 

shelf life and residue analysis were used for all three replications for each study. It is important 

to note that several heads of lettuce were stored in each box and individual heads of each lettuce 

type were randomly assigned to a single replication. 

 4.2.1 Shelf Life  

Washing of Cut Lettuce 
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Concentrated FNC solution was prepared by combining 0.08 lb acetic acid, 0.04 lb 

methyl paraben, and 0.04 lb of USP-BAC (50% benzalkonium chloride) into one gallon of water. 

This one gallon of concentrated FNC solution was used to prepare 0%, 1%, 2%, and 3% wash 

concentrations by mixing with five gallons of tap water to make individual treatment solutions. 

Fresh five-gallon treatment solutions were prepared for each of the three replications. Romaine 

and iceberg lettuce were cored and chopped into approximately 1” x 1” squares. Two hundred 

grams of romaine and iceberg lettuce samples, separated into individual slotted containers, were 

completely submerged for one minute in the five gallon FNC wash solutions. The same wash 

solution was used to wash iceberg and romaine lettuce. Following FNC treatment, each 200 g 

batch of lettuce was completely submerged in tap water for one minute as a secondary wash prior 

to being spun dry in a salad spinner of 10.25 inches in diameter (Prepworks®, Kent, 

Washington). Pulling the salad spinner cord fully ten times standardized this procedure. A 

diagram illustrating how the washing of lettuce was performed can be found in Appendix D. 

Preparation of Packaged Lettuce 

The 0% and 2% concentrations of FNC were evaluated throughout the shelf life because 

2% FNC is the washing concentration that Marvel Technologies™ is targeting for commercial 

use, and a 0% FNC wash to serve as the control. After dewatering in the salad spinner, five 

duplicate bags each of 0% and 2% FNC washed lettuce were weighed to approximately 55 g in a 

standard lettuce bag film (The American Packaging Corporation, Rochester, NY). The film 

structure was the following: 75Ga OPP/Ink/Adhesive/1.65mil LLDPE with a target oxygen 

transmission rate of 85 cc/100in2/day. Bags were then sealed using a FoodSaver® (Sunbeam 

Products, Neosho, MO) vacuum sealer; however, the vacuum function was not used in this study. 

Sealed bags, for each wash, replication, and lettuce type, were immediately transferred to a 4°C 
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walk-in cooler, randomly assorted in a clear plastic container, and stored throughout the seven 

day shelf life study. The walk-in cooler had a single 2’ x 2’ window exposed to fluorescent 

lighting for 24 hours a day. Fluorescent lighting from the walk-in cooler itself was on no more 

than 30 minutes per day throughout the study. Figure 4-1 illustrates the temperature and relative 

humidity inside the walk-in cooler throughout the seven-day period. Starting on day zero (the 

day of washing), samples were visually observed once a day for seven days using previously 

developed quality methodology found in Appendix B (11, 26).  

 Microbiological Analysis 

Immediately after the dewatering step, fresh-cut romaine and iceberg lettuce washed in 

0%, 1%, 2% and 3% FNC were sampled for total aerobic bacteria, coliforms, and generic E. coli. 

Microbiological analysis was also completed for the 0% and 2% FNC samples on days 3, 5, and 

7 by randomly selecting a sealed bag from the walk-in cooler. This bag was terminal and not 

used for the remainder of the study. At each sampling point, approximately 25-30 g of washed 

lettuce was stomached (Stomacher® 400 Circulator, Seward, Davie, Florida) with 225 mL of 

Dey Engley Neutralizing Broth (BD BBL™, New Jersey) at 230 RPM for sixty seconds. 

Homogenized samples were serially diluted (1:10) using peptone water as the diluent and the 

appropriate dilutions were plated on Aerobic Plate Count Petrifilm™ (3M™, Maplewood, 

Minnesota) in duplicate. Dilutions were also plated on E. coli/coliform (ECC) Petrifilm™ 

(3M™, Maplewood, Minnesota) in duplicate. All Petrifilm™ were incubated at 35oC for 24-48 

hours. 

Appearance Evaluation 

Fresh-cut iceberg and romaine appearance was scored immediately after washing on day 

0, and from sealed bags washed in 0% and 2% FNC on days 2-7. Grading was performed by 

visually inspecting all sample bags and closely evaluating defects under fluorescent lighting. 
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Special attention was given to the cut edges of lettuce, as deterioration was most pronounced 

around these areas. Two trained personnel individually graded each bag, and an overall 

conclusion was recorded for each bag. Appearance ratings were averaged for all bags within a 

treatment (i.e. replications and duplicates were averaged) to generate an individual overall 

appearance score for the day of grading.  

Romaine lettuce quality was evaluated subjectively using previously developed rating 

scales (11). Briefly, the scale was from 1-9, where 1 = severe wilting and discoloration; 3 = more 

yellow than green, decay noticeable; 5 = noticeable loss of green and water loss; 7= slight loss of 

green color, non-objectionable water loss; to 9 = fresh appearance, crisp and no decay. The 

romaine lettuce quality scale can be found in Appendix B. 

Iceberg lettuce quality was evaluated subjectively using previously developed rating 

scales (26). This method used the Karlruher Schema nine point scale where 9 = excellent and 1 = 

very bad (26). The quality scale used can be found in Appendix B. 

Statistical Analysis 

All experimental procedures were repeated a total of three times.  All day zero total 

aerobic plate count log reductions were calculated by comparing the populations recovered from 

each experimental wash compared to the unwashed control.  Log reductions for total aerobic 

plate count populations on romaine and iceberg lettuce treated with 0% and 2% FNC were 

calculated by comparing the treated lettuce populations throughout the shelf life to populations 

from an unwashed control sample on day zero.  All log reductions collected from the shelf life 

study were then used for statistical analyses using GraphPad Prism Version 6.0 (La Jolla, CA). 

More specifically, total aerobic bacteria populations after washing (0%, 1%, 2%, or 3% FNC) on 

day zero were evaluated using a One-Way ANOVA with Tukey’s multiple comparison test. 
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Significance was evaluated at the P=0.05 threshold. Total aerobic bacteria populations 

throughout the shelf life study were evaluated using a Two-Way ANOVA with Tukey’s multiple 

comparison test. The main effects of concentration and day, as well as the concentration x day 

interaction, were also evaluated.  Significance was determined at the P=0.05 threshold. Methyl 

paraben and benzalkonium chloride wash water concentrations, both before and after washing, 

were determined by calculating the average and standard deviation for all three replications using 

Microsoft Excel (Microsoft, Redmond, WA).  Coliform and generic E. coli populations fell 

below the limit of detection (~0.5 log10 CFU/g); therefore, these data have a standard error of 

zero and statistical analyses could not be performed.   

 4.2.2 Residue Analysis 

Samples 

Fresh-cut romaine and iceberg lettuce was evaluated for total benzalkonium chloride and 

methyl paraben residue immediately after washing in 0%, 1%, 2%, or 3% FNC on day zero, and 

for 0% and 2% FNC washed lettuce on days three and seven. Samples for residue analysis were 

taken from the shelf life study. On days three and seven, lettuce samples for residue analysis 

were taken from the same destructive bag as was used for the microbial analysis for the shelf life 

study. Five gram samples of randomly selected lettuce were placed in a 50 mL conical tube and 

immediately frozen until the time of analysis.  

 Benzalkonium Chloride Chromatographic System 

 The procedure for determining benzalkonium chloride in wash waters and fresh-cut 

romaine and iceberg lettuce leaves was based on a published paper by Diez et al. (13). A 

Waters™ (Milford, MA) Acquity UPLC with an Atlantis® T3 3.0-µm 2.1 x 100 mm analytical 

column was used to separate benzalkonium chloride. The flow rate was set at 0.400 mL/minute 
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and the column temperature was set at 40°C. The mobile phases were (A) water and (B) 

methanol, each containing 0.1% of formic acid to improve ionization. A gradient program was 

used and started at 35% A and gradually went to 0% A (100% B) over three minutes. This was 

held for two minutes to remove potential matrix interference from the column. Therefore, the 

total run time for each sample was five minutes. A 1μL loop was used for injection. All samples 

were detected using an Acquity QDa detector (Waters, Milford, MA) using mass spectrometry. 

 Mass Spectrometer Settings 

 The mass of 304 daltons was analyzed and corresponded with the benzalkonium chloride 

molecule that has a twelve carbon alkyl chain. Ionization was performed in positive mode with a 

cone voltage of 15 V. The capillary voltage was set at 1.5 kV. 

 Extraction 

 To accurately quantitate benzalkonium chloride in romaine and iceberg tissue, an 

extraction was required. The extraction protocol was in accordance with QuChERS, per the 

previously published method (13). The 5 g lettuce sample was placed into a 20 mL Nalgene 

(Rochester, NY) centrifuge tube followed by the addition of 15 mL of acetonitrile with 1% acetic 

acid. The lettuce and acetonitrile with acetic acid solution was hand-mixed vigorously for one 

minute. The DisQue™ (Waters, Milford, MA) salt mixture (6 g anhydrous magnesium sulfate 

and 1.5 g sodium acetate) was added to the solution and then vigorously hand-mixed for another 

thirty seconds. This mixture was centrifuged at 1,630 x g at 4 °C for 5 minutes to obtain a well-

defined solid-liquid phase separation. A 1 mL aliquot was then transferred to a clean-up tube 

consisting of 150 mg of magnesium sulfate and 50 mg of a primary secondary amine (PSA) 

bonded silica. Further centrifuging at 5,590 x g for 1 minute followed in order to obtain another 

solid-liquid phase separation. The supernatant was removed with a 1.0 mL plastic syringe 
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(Thermo Fisher Scientific, Waltham, MA) and filtered through a 0.20 micron PTFE filter (VWR 

International, Radnor, PA) before being placed in a 2 mL glass vial (Waters, Milford, MA) 

where UPLC analysis would occur. Extracted samples in vials were stored at 4°C until analysis. 

 Analysis of Lettuce Samples for Benzalkonium Chloride Residue 

 The residual amount of benzalkonium chloride in fresh-cut lettuce was determined after 

washing with various concentrations of FNC, rinsing with potable water, and dewatering by 

creating a standard curve to evaluate the peak area of known concentrations. As lettuce contains 

many compounds that may interfere with detection by the UPLC machine, the standards must be 

as representative of the unknown samples as possible. Therefore, the extraction protocol was 

followed using unwashed, fresh lettuce and the supernatant from the finished extraction was used 

as the diluent for preparing standards. Not only did this create the most representative standard, 

but it is also supported in the literature as a method published by Diez et al. (13). Briefly, a stock 

FNC solution (100% concentration) was diluted to 1,000 ppm of benzalkonium chloride and 

used to make standards for analysis. From the 1,000 ppm solution, known concentrations were 

created with the lettuce extraction matrix, and these solutions were then injected into the UPLC 

as standards. A standard curve was generated from these standards, which was used to determine 

the concentration of unknown samples. More specifically, the peak area generated from the 

unknown sample could then be fit into the standard curve equation to quantify the concentration 

of benzalkonium chloride in the lettuce tissue samples. All solutions were created using 

volumetric flasks to ensure accuracy. 

FNC Wash Water Benzalkonium Chloride Analysis 

Wash water samples were taken before and after romaine and iceberg lettuce were 

washed during the shelf life and pathogen reduction studies to confirm benzalkonium chloride 
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concentrations. Using a serological pipette, water was taken from a random area of the washing 

solution and placed into a 15 mL conical tube. Wash water samples were immediately frozen to -

20°C and saved until the time of analysis. The UPLC chromatographic system settings are 

described above in section Benzalkonium Chloride Chromatographic System. 

Using Standards to Determine Unknown Concentrations in Wash Waters 

To determine free benzalkonium chloride in wash water solutions, a stock FNC solution 

(100% concentration) was diluted in distilled water to prepare standards of a known 

benzalkonium chloride concentration. Figure 4-2 shows an example benzalkonium chloride 

chromatogram. Figure 4-3 illustrates the standard curve and equation used to determine free 

benzalkonium chloride in unknown FNC wash solutions. Methyl paraben standards were 

prepared in the same manner as benzalkonium chloride. Figure 4-4 shows an example methyl 

paraben chromatogram in FNC wash water. Figure 4-5 shows the standard curve and equation 

used to determine free methyl paraben in unknown solutions. As Figures 4-2 and 4-4 illustrate, 

both benzalkonium chloride and methyl paraben generate individual, clear peaks that can be 

integrated and assembled into a standard curve. The integrated peak area corresponds to the 

known concentration; moreover, when an unknown concentration is injected, the peak area 

generated is then inserted into the standard curve equation to generate a value for the unknown. 

Methyl Paraben Chromatographic System 

The chromatographic system parameters for analyzing methyl paraben in wash waters 

and washed romaine and iceberg lettuce was provided by Marvel Technologies™. A Waters™ 

BEH C18 1.7µm 2.1 x 50 mm was employed to facilitate separation of methyl paraben. The 

mobile phases contained (A) water and (B) methanol, each containing 0.1% formic acid to 

improve ionization, and were run isocratically with a 50% mixture of each solvent. The flow rate 
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was 0.400 mL/minute for three minutes. A 1μL loop was used for injection. The 

chromatographic system was equipped with a binary solvent manager, and a photodiode array 

detector (PDA), set at 254 nm, which was used to detect methyl paraben. Empower 3 Software 

developed by Waters™ was used to identify and quantitate samples.  

Analysis of Lettuce Samples for Methyl Paraben Residue 

Methyl paraben residue in both fresh-cut romaine and iceberg lettuce was conducted in 

the same manner as benzalkonium chloride. Because a published method did not exist for this 

analysis, a preliminary study was conducted in order to validate methyl paraben extraction from 

lettuce. Briefly, known concentrations of methyl paraben were introduced onto the lettuce 

surface and the extraction was performed. After extraction, methyl paraben samples (ranging 

from 0-15 ppm were injected and peak areas were compared to methyl paraben standards 

prepared from the extraction supernatant of unwashed lettuce. A percent recovery was 

determined to be 99-101% for methyl paraben concentrations (data not shown). These 

preliminary data demonstrate that the extraction procedure would not impact the true methyl 

paraben concentration in romaine and iceberg lettuce, which validated efficacy of the methods. 

Additionally, unknown concentrations on lettuce could be effectively elucidated using the 

methods described above in section Extraction. 

Statistical Analysis 

Methyl paraben and benzalkonium chloride wash water concentrations, both before and 

after washing, were determined by calculating the average and standard deviation for all three 

replications using Microsoft Excel (V. 2013, Redmond, WA). Methyl paraben and benzalkonium 

chloride residues on iceberg and romaine samples fell below the limit of detection (<5.0 ppm); 

thus these data have a standard error of zero and statistical analyses could not be performed.  
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4.2.3. Pathogen Reduction Study 

Inoculum Preparation 

Two strains of L. monocytogenes (B-33054; Cucumber isolate; USDA ARS; and B-

33245; Environmental isolate; USDA ARS), Salmonella Typhimurium (ATCC 14028), 

Salmonella Newport (ATCC 6962), and two strains of rifampicin resistant E. coli O157:H7 

(ATCC 43890 and 43895) were removed from frozen storage (-80°C) and activated by 

transferring one cryobead into 10 mL Tryptic Soy Broth (TSB; BD BBL™, New Jersey) and 

incubated at 37°C for 24 h. A 100 µL aliquot of each Listeria culture (total of 200µLl) was 

combined with 200 ml of TSB and incubated at 37°C for 24 h. The same transfer was done for 

both Salmonella and both E. coli O157:H7 cultures, separately. Following incubation, cultures 

were centrifuged (5,520 x g; -4°C; 15 min) and the resulting pellets were rehydrated with 100 ml 

0.1% peptone water. One milliliter from each of the rehydrated pellets (total of 3 ml) was 

combined with 150 ml 0.1% peptone water to create a combined master inoculum. Five ml of the 

combined master inoculum was then sprayed onto 1000 g of lettuce. Inoculum concentrations 

were enumerated for each bacterium separately and for the mixed master inoculum. This was 

accomplished using serial dilutions of 0.1% peptone water and plated onto oxford medium base 

(BD BBL™, New Jersey) with Listeria selective supplement added at ½ strength (OXOID, 

Basingstoke, Hampshire, England), xylose lysine deoxycholate (XLD; Remel, Lenexa, Kansas), 

and sorbitol MacConkey (SMACrif; 100 ppm rifampicin added; Remel, Lenexa, Kansas) agars. 

The plates were then incubated at 37°C for 24 h. 

Inoculation of Lettuce 

Whole romaine and iceberg lettuce was purchased from a local produce supplier in 

Kansas City, Missouri. Lettuce was cored and chopped in the ~1 in x 1 in squares. One-thousand 
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gram batches of each lettuce type were inoculated with a mixed cocktail containing two strains 

of Listeria monocytogenes, Salmonella Typhimurium, Salmonella Newport, and two strains of E. 

coli O157:H7. Lettuce batches were inoculated using a light spray mist procedure to target 7 

log10 CFU/g of product. Lettuce was held at room temperature for 30 min, to allow bacterial 

attachment, before FNC wash treatments were applied.  

Washing of Cut Lettuce 

Concentrated FNC solution was prepared by combining 0.08 lb acetic acid, 0.04 lb 

methyl paraben, and 0.04 lb of USP-BAC (50% benzalkonium chloride) with 1 gallon of water. 

The concentrated FNC solution was mixed with tap water to prepare four individual five gallon 

treatment solutions (0%, 1%, 2%, and 3%). New five gallon treatment solutions were prepared 

for each of the three replications. Two hundred grams of inoculated romaine or iceberg lettuce 

were placed in slotted containers and completely submerged for either 1 min or 5 min in the 

different treatment solutions. Following FNC treatment, each 200 g batch of lettuce was 

completely submerged in tap water for 1 min to simulate a secondary wash prior to being spun 

dry in a salad spinner of 10.25 inches in diameter (Prepworks®, Kent, Washington). Pulling the 

salad spinner cord fully ten times standardized this procedure.  

Microbiological Sampling of Lettuce 

Following washing, ~25 g samples of lettuce were randomly stomached (Stomacher® 

400 Circulator, Seward, Davie, Florida) with 75 mL Dey Engley Neutralizing Broth (DNB; BD 

BBL™, New Jersey) at 230 RPM for sixty seconds. Homogenized samples were serially diluted 

(1:10) using 0.1% peptone water as the diluent and the appropriate dilutions were spread plated. 

Samples were plated on Tryptic Soy Agar, (TSA; Remel, Lenexa, Kansas) that was overlaid with 

selective media after six hours of incubation. The TSA+overlay media allowed for the recovery 
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of injured cells, which provides a more conservative estimate of pathogen reductions. More 

specifically, Listeria monocytogenes samples were plated on TSA with an overlay of oxford 

medium base (BD BBL™, New Jersey) with Listeria selective supplement added at ½ strength 

(OXOID, Basingstoke, Hampshire, England). Colonies that turned black with a zone of clearing 

were counted as L. monocytogenes. E. coli O157:H7 samples were plated on TSA with an 

overlay of Sorbitol MacConkey agar with 100 ppm rifampicin (SMAC; Remel, Lenexa, Kansas) 

and colorless colonies were counted. Salmonella samples were plated on TSA with an overlay of 

Xylose Lysine Deoxycholate (XLD) agar (Remel, Lenexa, Kansas), and colonies exhibiting a 

black color were counted. All plates were incubated at 37°C for 18-24 hours. 

Microbiological Sampling of Wash Water 

The wash water solutions for each concentration were sampled after 5 minutes, while 

inoculated produce was submerged, to establish microbial populations in the FNC wash water. 

At each time point, 20 ml of FNC wash water was removed and combined with 20 ml of double 

strength DNB. Samples were serially diluted with 0.1% peptone water and plated onto both 

selective and recovery media as previously described.  

Benzalkonium Chloride and Methyl Paraben Concentrations in Wash Waters 

A 10 mL sample of each wash water solution was collected both before and after product 

washing in order to determine benzalkonium chloride and methyl paraben concentrations in each 

wash solution.  Wash water samples were immediately frozen to -20°C and saved for future 

analysis. Benzalkonium chloride and methyl paraben concentrations in the wash waters were 

analyzed as previously described. 

Statistical Analysis 
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All experimental procedures were replicated a total of three times.  Log reductions were 

calculated by comparing the populations recovered from each experimental wash to the 

inoculated, untreated control.  These log reductions were then used for the statistical analyses.  

Data collected from all three replications were analyzed using the MIXED procedure of 

Statistical Analysis Software (SAS 9.4; Cary, NC) with the Satterthwaite approximation.  The 

RANDOM statement was used to account for variability between replications.  For each 

pathogen, the main effects (media, concentration, and contact time) and the interactions were 

evaluated for statistical significance at the P=0.05 threshold.  The best model was constructed by 

means of backwards elimination.  Due to a large degree of variation in pathogen recovery 

between the two media types, media type was removed from the model and data were 

subsequently analyzed for each individual media type (concentration, contact time, and the 

concentration x contact time interaction). 

 4.3 Results/Discussion 

 4.3.1 Shelf life Study 

 Concentrations of benzalkonium chloride and methyl paraben in all FNC wash waters are 

located in Tables 4-1 and 4-2. 

Appearance 

 Overall product appearance throughout the seven day shelf life study can be found in 

Figures 4-6 for iceberg lettuce and 4-7 for romaine lettuce. Based on Figures 4-6 and 4-7, there 

was no difference (P>0.05) in appearance detected for romaine and iceberg lettuce treated with 

either 0% or 2% FNC. Thus, the 2% FNC treatment did not impact (either positively or 

negatively) the appearance of iceberg and romaine lettuce compared to a water wash control. 

Methyl paraben is commonly used as a preservative in food products and cosmetics, and any 
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extension in shelf life may affect labeling (i.e. a preservative label on lettuce washed with FNC), 

which is not necessary based upon appearance data. Iceberg lettuce remained salable until day 

six where it fell below the overall quality rating of “4”, per the Karlruher Schema scale 

(Appendix B) (26). Pinking was the most obvious defect for 0% and 2% samples, which began 

on day three and became worse over time. Romaine lettuce remained salable throughout the 

study, as it stayed above an overall quality rating of “5” (Appendix B) (9). Pictures were 

captured using fluorescent lighting with a black background and can be found in Appendix D.  

Lettuce quality throughout the duration of a shelf life study has many factors that affect 

the length of salability. Past studies have shown antimicrobials, such as chlorine dioxide and 

sodium hypochlorite, can extend the shelf life of fresh-cut lettuce compared to a water washed 

control (12). In the present study, the 2% FNC wash did not extend the shelf life of fresh-cut 

iceberg and romaine lettuce beyond that of the 0% (water wash control). 

Microbiological Sampling 

 Coliforms and generic E. coli were not detected on any romaine or iceberg lettuce 

samples at any point throughout the shelf life study.  The limit of detection for this assay is ~0.5 

log10 CFU/g; therefore, coliform and E. coli populations were <0.5 log10 CFU/g (data not 

shown).   

On day zero, FNC wash concentration was not a significant variable for iceberg 

(P=0.5974) or romaine (P=0.8917) lettuce with regards to aerobic microorganism populations.  

This indicates that washing lettuce with pure water is as effective at reducing aerobic plate count 

populations as washing with FNC at 1%, 2% or 3% concentrations on day zero (Figures 4-8 and 

4-9).  
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Iceberg and romaine washed with 0% and 2% were analyzed for total aerobic plate 

counts throughout the shelf life.  FNC concentration was nearly a significant variable (P=0.0819) 

for iceberg lettuce (Figure 4-10).  As Figure 4-11 depicts, a significant difference (P=0.0203) in 

concentration was observed for romaine, with the 2% FNC wash demonstrating improved 

efficacy at reducing total aerobic plate counts in comparison to pure water.   

Sampling day was a significant variable (P=0.0305) for iceberg lettuce throughout the 

shelf life.  Because a sampling day x concentration effect was not observed (P=0.7208), data for 

each concentration are not shown across the sampling days.  Thus, when a sampling day effect is 

observed, all data collected on each day for both 0% and 2% FNC washes are averaged together 

into one data point. Figure 4-12 illustrates an initial decline in total aerobic populations on day 0; 

however, these reductions gradually decline, which indicates an increase in total aerobic 

microorganisms throughout the shelf life of iceberg lettuce.  On days five and seven, the negative 

log reductions indicate that total aerobic populations increased above the population that was 

observed for the unwashed iceberg lettuce sample on day 0. Steady growth of microorganisms on 

produce subjected to antimicrobial washes has been previously reported (9, 18). 

Sampling day (P=0.2540) and the sampling day x concentration interaction (P=0.1766) 

were not statistically significant for romaine lettuce.  Figure 4-13 illustrates all 0% and 2% FNC 

data averaged into a single data point value for each sampling day throughout the romaine shelf 

life.  In general, these data demonstrate that washing with 0% or 2% FNC reduces total aerobic 

bacteria populations on romaine lettuce, with population reductions still observed on day seven 

(reductions calculated from the day zero unwashed sample population).  The fact that a negative 

log reduction was not observed on any sampling day indicates that the total aerobic plate count 
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populations on romaine washed with 0% or 2% FNC were, on average, less than the population 

that was recorded for the day zero unwashed control sample.  

4.3.2 Residue Analysis 

A 5 ppm methyl paraben standard prepared using the lettuce extraction supernatant as the 

diluent yielded a distinct peak as shown in Figure 4-14. Lower concentrations of methyl paraben 

(e.g. 2.5 ppm) were evaluated; however, no clear, intense peaks were generated. Therefore, it 

was determined that 5 ppm is the limit of detection for methyl paraben when analyzing samples 

as described above. As Figure 4-15 shows, injecting the extracted lettuce matrix (sans 

benzalkonium chloride or methyl paraben) yielded no peak clarity or intensity. Based on the y-

axis, Figure 4-15 is zoomed in on background, which is presumably representative of lettuce 

debris. Importantly, even a low concentration of methyl paraben (5 ppm) in the lettuce matrix 

generates a clear peak for residue analysis, which indicates that unknown samples with clear 

peaks are informative of methyl paraben concentrations equal to or greater than 5 ppm. As 

shown in Figure 4-16, lettuce subjected to a 3% FNC wash (the highest concentration) followed 

by a potable water rinse and dewatering, yielded a chromatogram with no distinct peaks. In fact, 

the chromatogram resembles that of Figure 4-15, which suggests that the amount of methyl 

paraben on lettuce, when subjected to a 3% FNC wash, is near zero ppm. Because all of the 

methyl paraben chromatograms from FNC washed lettuce highly resembled that of Figure 4-16, 

it was concluded that the residue for all concentrations was <5 ppm. 

The residue of benzalkonium chloride on both romaine and iceberg lettuce washed with 

various concentrations of FNC, followed by potable water rinsing and dewatering, was found to 

be <10 ppm. This conclusion is based off of the chromatogram of lettuce washed with 3% FNC 

(Figure 4-18), which resembled that of the extracted lettuce matrix (Figure 4-15) that did not 
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contain benzalkonium chloride. All benzalkonium chloride chromatograms of FNC washed 

lettuce highly resembled Figure 4-18; thus, it was concluded that <10 ppm benzalkonium 

chloride residue remained on all FNC washed lettuce samples.  The limit of detection was 

determined to be 10 ppm, as lower concentrations lacked peak clarity or intensity.  

Residue data collected from the shelf life samples indicate methyl paraben concentrations 

are <5 ppm on romaine and iceberg lettuce after washing with a FNC solution up to 3%. This is 

not surprising, as FNC washed lettuce was subjected to a second potable water wash that likely 

removed residual methyl paraben and benzalkonium chloride. For lettuce washed with the 

industry standard 150 ppm chlorine, a secondary potable water wash has been shown to remove 

residual chlorine (6, 30). The use of a salad spinner further removes water and decreases the 

likelihood of residue, as well. Methyl paraben is Generally Recognized As Safe (GRAS) by the 

FDA, and according to CFR Chapter 21 §184.1490, methyl paraben must not exceed 0.01% in a 

foodstuff (4). The data generated indicate that the methyl paraben residues on romaine and 

iceberg lettuce, when washed as described herein, satisfy these requirements.  Benzalkonium 

chloride has also been evaluated for GRAS status and, according to a report by the Burdock 

Consulting Group dated September 23, 2013, benzalkonium chloride did earn GRAS status, 

although the FDA does not currently list it as GRAS (5). 

As the lettuce extraction method was based on a benzalkonium chloride method by Diez 

et al. (13), some concern about whether or not the same method can be used for methyl paraben 

extraction may exist. The primary concern would be how soluble methyl paraben is in 

acetonitrile and if it would be removed during extraction from the lettuce tissue. Benzalkonium 

chloride is highly soluble in water, and thus acetonitrile, so it should readily be removed (5, 14). 

Little research has been done on the maximum solubility of methyl paraben in acetonitrile, but its 
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solubility in water may provide insight, as both solvents are polar. The maximum solubility of 

methyl paraben in water is ~25 g/L, an amount less than the 100 g/L maximum solubility of 

benzalkonium chloride in water (15). It is for this reason that substantial preliminary research 

efforts were dedicated to measuring methyl paraben recovery from lettuce tissue to demonstrate 

that methyl paraben that using the methods as described for benzalkonium chloride extraction 

were also effective for methyl paraben.  

Methyl paraben and benzalkonium chloride residues were not detected as a residual on 

iceberg and romaine lettuce; thus, a higher concentration of FNC (> 3%) would have to be 

evaluated to determine the concentration at which residues do remain. A higher concentration of 

the antimicrobial may achieve better bacterial kill on the surface of plant tissues and in the water 

used for washing. However, higher concentrations of FNC must be within the allowable limits 

for use and additional residue analyses would be required to ensure compliance with FDA 

standards. 

 4.3.3 Pathogen Reduction Study  

Concentrations of benzalkonium chloride and methyl paraben in all FNC wash waters are 

located in Tables 4-3 and 4-4. 

Wash water 

 Regardless of whether the FNC wash water samples were plated on selective media or the 

injury recovery media, concentration was a highly significant variable for all pathogens 

investigated (P≤0.05). As Figures 4-19 – 4-24 illustrate, 1%, 2%, and 3% FNC significantly 

reduced pathogen populations in the wash waters in comparison to the 0% FNC wash water. It is 

also important to note that a statistical difference was not observed among the 1%, 2%, or 3% 

concentrations, which suggests that preparing wash waters with 2% or 3% FNC provides no 
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added benefit over the 1% solution. There was a >2.0 log reduction (99% reduction) observed for 

each of these foodborne pathogens regardless of media type used for enumeration. As TSA is a 

nonselective, nutritive agar, the purpose of it is to recover potentially injured cells. Injured cells 

may not be able to immediately grow on selective agar alone. Therefore, using TSA with a 

selective media overlay is more representative of total viable pathogen populations, as it 

accounts for injured cell populations. Injured cells do pose a food safety risk, so their presence 

needs to be evaluated (14). These data indicate that 1%, 2%, or 3% FNC solutions are effective 

at significantly reducing L. monocytogenes, E. coli O157:H7, and Salmonella populations in 

water. Recognizing that controlling pathogen populations in wash water is the primary goal of 

using chlorinated water in the produce industry, it is worth noting that FNC may also be an 

effective and feasible pathogen control treatment for wash water. 

In the present study, 1%, 2%, and 3% FNC significantly (P≤0.05) reduced pathogens in 

wash water by nearly 3 logs when plated on selective media, regardless of washing time, as 

contact time was not a significant variable. This ~3 log reduction of pathogens indicates that 

FNC is effective at reducing pathogen populations in wash water. Research by Beuchat and Ryu 

(9) used a 200 ppm chlorine solution (higher than what is typically used with lettuce) and found 

populations of L. monocytogenes to be reduced by approximately 2.0 log10 CFU/g after a ten 

second exposure. A similar reduction was observed using a Salmonella cocktail. Although not 

analyzed with a 10 second exposure, the current study demonstrated that FNC was able to reduce 

three prevalent foodborne pathogens to a similar degree as the chlorine-based sanitizer. Future 

research may warrant investigating FNC and chlorine in the same study in order to make valid 

comparisons. 

Salmonella Recovery on Plant Tissue 
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 When plated on XLD, FNC concentration (P=0.0009) and contact time (P=0.0127) 

effects were observed. Based on figure 4-25, both 2% and 3% FNC solutions significantly 

reduced Salmonella compared to 0% FNC treatment on romaine lettuce. However, no significant 

difference in Salmonella populations was observed between 1% and 3% FNC. Furthermore, no 

significant difference was found between 0% and 1% FNC. Figure 4-26 shows a 5 minute 

contact time significantly reduced populations on romaine lettuce compared to a 1 minute 

contact time. Although statistically significant, the difference in log reductions between the two 

contact times was 0.14 log10 CFU/g, which is considered negligible from a biological sense. 

When plated on XLD, all log reductions on inoculated cut romaine lettuce were less than 1.0 

log10 CFU/g, and pure water alone (0% FNC) achieved ~0.5 log10 CFU/g reduction in 

Salmonella populations (Figure 4-25). This, coupled with the fact that significant differences 

were not observed for FNC concentration when Salmonella was plated on TSA with an XLD 

overlay (Figure 4-27), demonstrates that there is little to no advantage gained by washing with 

FNC in lieu of pure water. This suggests the TSA overlay was able to revive injured Salmonella 

cells that would not have otherwise survived on selective XLD. This is important, as research 

shows injured cells, otherwise known as viable but nonculturable cells, pose a food safety risk, as 

they can still be pathogenic (14) following recovery. Figures 4-28 – 4-32 illustrate all 

insignificant variables associated with Salmonella reductions on fresh-cut romaine and iceberg 

lettuce. 

Salmonella spp. has been studied in post-harvest produce wash studies; however, much of 

the research is for cantaloupes and honeydew. Beuchat et al. (9) compared a 200 ppm chlorine to 

a 2,000 ppm solution in killing a Salmonella spp. cocktail on lettuce. The authors reported a 

2,000 ppm chlorine solution was effective at reducing Salmonella spp. by 2.30 log10 CFU/g.  
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While this reduction is notable, it is important to consider that such a high concentration is likely 

not realistic for a postharvest processing setting, as a large chlorine residue is likely to occur (9). 

Other research found that soaking cantaloupes for 60 seconds in 200 ppm chlorine solution was 

only able to achieve a 0.7 log10 CFU/g reduction in Salmonella Typhimurium (25). An additional 

reduction was found when scrubbing the cantaloupe but that is not a feasible mechanism for 

delicate romaine and iceberg plant tissue. Like the present study, previous research has 

demonstrated limited success with regards to reducing Salmonella on lettuce and other produce 

products. 

Listeria monocytogenes Recovery on Plant Tissue 

 As shown in Figure 4-33, plating on selective MOX agar revealed that the 3% FNC wash 

significantly (P≤0.05) improved L. monocytogenes population reductions on fresh-cut iceberg 

lettuce in comparison to the 0% and 1% FNC wash solutions. The L. monocytogenes population 

reductions achieved by the 3% FNC wash performed the best; however, this wash achieved a 

1.26 log10 CFU/g reduction, which was only 0.65 log10 better than the 0% water control wash.  

The 2% FNC wash also significantly reduced populations of L. monocytogenes compared to the 

0%; however, no difference was detected for 2% and 1% FNC concentrations. No statistical 

difference was detected between 0% and 1% FNC wash solutions at reducing L. monocytogenes 

populations on inoculated cut iceberg lettuce.  

 As shown in Figure 4-34, plating on TSA with a MOX overlay demonstrated that 1%, 

2%, and 3% FNC wash solutions significantly (P=0.0013) reduced L. monocytogenes on cut 

romaine lettuce compared to the 0% FNC wash. While significant, the reduction of L. 

monocytogenes on cut inoculated iceberg lettuce was less than 0.5 log10 CFU/g greater than the 

reductions observed for the 0% wash. These data suggest that washing lettuce in 1%, 2% or 3% 
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FNC provides little added benefit beyond washing with water (0%). Figures 4-35 – 4-40 

illustrate all insignificant variables associated with L. monocytogenes reductions on fresh-cut 

romaine and iceberg lettuce.  

Research by Zhang and Farber (33) evaluated post-harvest washes to reduce populations 

of L. monocytogenes on fresh-cut lettuce. The authors subjected fresh-cut lettuce to 5 ppm 

chlorine dioxide, 200 ppm chlorine, 1% lactic acid, 1% acetic acid, or trisodium phosphate for 

either a five or ten minute wash. Their results showed a 200 ppm chlorine solution (at 22°C) was 

able to reduce L. monocytogenes by 1.7 log10 CFU/g when washed for ten minutes. The chlorine 

dioxide, lactic acid, and acetic acid solutions were similar with a ~1.0 log10 CFU/g reduction 

(regardless of contact time) while trisodium phosphate did not impact populations (33). A 1.7 

log10 CFU/g reduction of L. monocytogenes is noteworthy; however, it must be questioned if a 

ten minute wash is feasible in a commercial setting.  Similarly, the present study demonstrated 

limited efficacy when evaluating FNC as a more feasible 1 minute or 5 minute wash. 

E. coli O157:H7 Recovery on Plant Tissue 

 When plated on SMACrif, contact time was a significant variable, with a five-minute 

contact time of FNC significantly reducing E. coli O157:H7 populations on both iceberg (Figure 

4-41; P=0.0493) and romaine (Figure 4-42; P=0.0293) lettuce compared to a one minute contact 

time. Although significantly different, the difference in population reductions was well below 0.5 

log10 CFU/g for contact time on both romaine and iceberg lettuce. It is also noteworthy that when 

plated on TSA+SMACrif, these significant differences in contact time were no longer detected 

(P>0.05). Therefore, the greater reductions achieved with a five minute contact time are 

negligible. 
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 A concentration effect was also observed for iceberg (P=0.0097) and romaine (P=0.0257) 

lettuce plated on SMACrif. Figure 4-43 shows the log10 CFU/g reductions found on iceberg 

lettuce plated on SMACrif. A 3% FNC solution was significantly better at reducing E. coli 

O157:H7 populations when compared to 0% and 1% solutions; however no significant difference 

was observed between the 3% and 2% FNC solutions. Figure 4-44 shows 2% and 3% FNC 

solutions are significantly better at reducing E. coli O157:H7 populations compared to 0% FNC, 

on romaine lettuce. However, the 3% and 2% FNC washes were not significantly different 

compared to the 1% wash. All population reductions were well below 1.0 log10 CFU/g, which 

suggests there is little to no benefit of washing with FNC in comparison to pure water.  

Regardless of significant differences in FNC concentration on SMACrif, E. coli O157:H7 

population reductions on inoculated cut lettuce were less than 1.0 log10 CFU/g for all wash 

concentrations and the difference in log reductions achieved by the 1%, 2%, or 3% FNC washes 

in comparison to the 0% wash was less than 0.5 log10 CFU/g. These data indicate that little to no 

advantage exists for washing fresh-cut lettuce with FNC in lieu of pure water relative to reducing 

E. coli O157:H7 populations on the lettuce itself.  

Figure 4-45 shows a significant difference in log10 CFU/g reductions of E. coli O157:H7 

when TSA with a SMACrif overlay was used to recover injured E. coli O157:H7 cells on romaine 

lettuce. A 3% FNC solution significantly reduced populations compared to 0%, 1%, and 2% 

solutions. A marginal reduction was observed, with 3% FNC reducing E. coli O157:H7 

populations by 0.66 log10 CFU/g, 0.37 log10 CFU/g, and 0.41 log10 CFU/g more than the 0%, 

1%, and 2% washes, respectively. The 1% FNC wash was significantly better than the 0% wash; 

however, no difference was detected between 0% and 2% FNC washes. Figures 4-46 – 4-48 
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illustrate all insignificant variables associated with E. coli O157:H7 reductions on fresh-cut 

romaine and iceberg lettuce. 

Data collected in this study indicate that FNC demonstrated similar efficacy against E. 

coli O157:H7 as other interventions previously investigated against this pathogen. A study by 

Keskinen et al. (2009) evaluated the efficacy of various antimicrobial post-harvest washes in 

reducing E. coli O157:H7 on lettuce. The research team artificially inoculated fresh-cut romaine 

and iceberg lettuce with a high population (untreated, inoculated control was ~7 log10 CFU/g of) 

of E. coli O157:H7 and subjected them to either 200 ppm chlorine, acidic electrolyzed water 

with chlorine dioxide, or chlorous acid. The greatest reduction of E. coli O157:H7 on lettuce 

tissue was observed using 200 ppm of chlorous acid, at pH 8.0, but the reduction was only 1.45 

log10 CFU/g. Other treatments were not able to reduce E. coli O157:H7 populations by more than 

one log. The industry standard 200 ppm chlorine wash was able to achieve a mere 0.65 log10 

CFU/g reduction, which provides further evidence that the objective of current postharvest 

washes is not to significantly reduce pathogenic microbes on plant tissue; rather, to reduce 

populations in free water. This study also concluded that the length of time E. coli O157:H7 

attached to the cut lettuce tissue had no impact on efficacy of washes (17). This study evaluated 

the total E. coli O157:H7 population on the surface and interior of fresh-cut lettuce leaves. 

Another study by Beuchat et al. (1998) showed similar results of chlorines ability to reduce E. 

coli O157:H7 on whole lettuce leaves (9). 

Summary of Pathogen Results 

Overall, FNC concentrations of 1%, 2%, and 3% significantly reduced (P≤0.05) 

populations of E. coli O157:H7, L. monocytogenes, and Salmonella in the wash water used for 

inoculated romaine and iceberg lettuce.  However, the FNC concentrations evaluated in this 
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study did not consistently reduce the three foodborne pathogens on inoculated cut romaine or 

iceberg lettuce tissue. The largest reduction observed was 1.75 log10 CFU/g in E. coli O157:H7 

on cut romaine lettuce. However, this wash performed a mere 0.66 log10 CFU/g better at 

reducing E. coli O157:H7 populations than washing with 0% FNC (pure water). 

Overall, no post-harvest wash has been successful enough to change the market standard 

of chlorine. As in this study, some postharvest washes exhibit efficacy in killing foodborne 

pathogens in free wash water; however, exhibiting that same effect on produce tissue has been a 

challenge. Even removing 99% (2.0 log10 CFU/g) of pathogens is hardly worth noting as some 

foodborne pathogens have infectious doses of less than 100 cells (18). The difficulty found with 

post-harvest antimicrobial washes may explain the FDA’s emphasis on prevention as a means of 

reducing foodborne illness associated with and leafy greens and other produce. 
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Table 4-1. Methyl paraben concentrations in 1%, 2%, and 3% washes used during shelf life and 

residue study. Wash samples were taken pre- and post-washing. All values are in parts per 

million. 

Methyl Paraben Concentrations  

  Rep 1 Rep 2 Rep 3 Mean 

Standard 

Deviation 

1% FNC Wash Pre Wash 95.45 101.18 90.41 95.68 5.39 

1% FNC Wash Post Wash 94.27 100.07 88.45 94.26 5.81 

2% FNC Wash Pre Wash 183.19 165.22 160.79 169.73 11.86 

2% FNC Wash Post Wash 158.91 164.35 154.31 159.19 5.03 

3% FNC Wash Pre Wash 276.51 286.34 289.57 284.14 6.80 

3% FNC Wash Post Wash 233.22 275.02 232.93 247.06 24.22 

 

Table 4-2. Benzalkonium chloride concentrations in 1%, 2%, and 3% washes used during shelf 

life and residue study. All values are in parts per million. 

Benzalkonium Chloride Concentrations 

  Rep 1 Rep 2 Rep 3 Mean Standard Deviation 

1% Wash Pre Wash 61.71 63.45 64.97 63.38 1.63 

1% Wash Post Wash 59.99 54.78 58.53 57.77 2.69 

2% Wash Pre Wash 103.47 103.48 110.08 105.68 3.81 

2% Wash Post Wash 101.51 98.47 108.24 102.74 5.00 

3% Wash Pre Wash 169.73 164.19 171.13 168.35 3.67 

3% Wash Post Wash 166.48 157.01 159.21 160.90 4.96 
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Table 4-3. Methyl paraben concentrations (ppm) in 1%, 2%, and 3% FNC washes used during 

the Pathogen Reduction Study. Wash solution samples were taken pre- and post-washing of cut 

lettuce.  

Methyl Paraben Concentrations  
  Rep 1 Rep 2 Rep 3 Mean Standard Deviation 

1% Wash Pre Wash 45.95 66.93 77.11 63.33 15.89 

1% Wash Post Wash 67.81 61.80 71.83 67.15 5.05 

2% Wash Pre Wash 127.99 135.35 136.37 133.24 4.57 

2% Wash Post Wash 114.84 114.62 130.21 119.89 8.94 

3% Wash Pre Wash 189.55 182.04 229.00 200.20 25.23 

3% Wash Post Wash 186.77 170.66 201.77 186.40 15.56 

 

 

Table 4-4. Benzalkonium chloride concentrations in 1%, 2%, and 3% washes used during the 

Pathogen Reduction Study. All values are in parts per million. 

Benzalkonium Chloride Concentrations 
  Rep 1 Rep 2 Rep 3 Mean Standard Deviation 

1% Wash Pre Wash 48.07 50.29 58.00 52.12 5.21 

1% Wash Post Wash 51.48 47.38 50.34 49.73 2.12 

2% Wash Pre Wash 82.32 84.51 90.67 85.83 4.33 

2% Wash Post Wash 77.04 79.37 84.83 80.41 4.00 

3% Wash Pre Wash 131.96 120.23 133.60 128.60 7.29 

3% Wash Post Wash 117.81 118.98 131.35 122.71 7.50 
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Figure 4-1. Temperature and relative humidity (RH) of the cooler throughout the shelf life study. 

The red line depicts the temperature (°C) and the blue line relative humidity (%rh). 
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Figure 4-2. Example chromatogram of benzalkonium chloride in FNC wash solutions. 
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Figure 4-3. The standard curve used to analyze the amount of benzalkonium chloride in FNC 

wash solutions. 
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Figure 4-4. Example methyl paraben peak in FNC wash solutions. 
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Figure 4-5. Standard curve used to analyze the amount of methyl paraben in FNC wash 

solutions. 
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Figure 4-6. Overall appearance scoring results throughout seven shelf life study for iceberg 

lettuce stored at ~4°C. No significant difference was observed (P>0.05).  

Error bars represent one standard deviation from the mean. 
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Figure 4-7. Overall appearance results from seven day shelf life study for romaine lettuce stored 

at ~4°C. No significant difference was observed (P>0.05).  

Error bars represent one standard deviation from the mean. 
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Figure 4-8. Log reduction of total aerobic bacteria compared to unwashed iceberg lettuce on day 

zero.  

Error bars represent one standard deviation from the mean. 

a indicates wash concentrations did not differ statistically (P=0.5974)  
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Figure 4-9. Log reductions of total aerobic bacteria compared to unwashed romaine lettuce on 

day zero.  

Error bars represent one standard deviation from the mean. 

a indicates wash concentrations did not differ statistically (P=0.8917) 
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Figure 4-10. Log reductions in total aerobic bacteria on iceberg lettuce achieved by 0% and 2% 

FNC when compared to unwashed iceberg lettuce on day zero.  

Error bars represent one standard deviation from the mean. 

a indicates wash concentrations did not differ statistically (P=0.0819) 
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Figure 4-11. Log reductions of total aerobic bacteria population on romaine lettuce achieved by 

0% and 2% FNC when compared to the day zero unwashed control sample.  

Error bars represent one standard deviation from the mean. 

a, b indicates FNC wash concentrations that differ statistically (P=0.0203).  
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Figure 4-12. Log reductions in total aerobic bacteria on iceberg throughout the shelf life when 

compared to the day zero unwashed control sample.  

Error bars represent one standard deviation from the mean. 

a,b,c indicates sampling days that differ significantly (P=0.0305) 
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Figure 4-13. Log reductions in total aerobic bacteria on romaine throughout the shelf life when 

compared to the day zero unwashed control sample.  

Error bars represent one standard deviation from the mean. 

a indicates day did not differ statistically (P=0.2540) 
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Figure 4-14. Five parts per million methyl paraben standard in an extracted lettuce supernatant.  

 

Figure 4-15. Injected extracted lettuce matrix for methyl paraben determination.  
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Figure 4-16. An example chromatogram from a methyl paraben extraction. This fresh-cut lettuce 

extraction had been subjected to a 3% FNC wash. 
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Figure 4-17. Fifteen parts per million benzalkonium chloride standard in extracted lettuce 

supernatant. 
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Figure 4-18. An example chromatogram from a benzalkonium chloride extraction. This lettuce 

extracted had been subjected to a 3% FNC wash.
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Figure 4-19. Salmonella detected in FNC wash water post-washing of inoculated cut lettuce 

plated on XLD agar.  

Error bars represent standard error of the mean. 
ab indicates concentrations that differ statistically (P<0.0001).  
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Figure 4-20. Salmonella detected in FNC wash water post-washing of inoculated cut lettuce, 

plated on TSA with an XLD overlay.  

Error bars represent standard error of the mean. 
ab indicates concentrations that differ statistically (P<0.0001).  
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Figure 4-21. Listeria monocytogenes detected in FNC wash water post-washing of inoculated cut 

lettuce, plated on MOX.  

Error bars represent standard error of the mean. 
ab indicates concentrations that differ statistically (P<0.0001).  
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Figure 4-22. Listeria monocytogenes detected in FNC wash water post-washing of inoculated cut 

lettuce, plated on TSA with a MOX overlay.  

Error bars represent standard error of the mean. 
ab indicates concentrations that differ statistically (P<0.0001).  
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Figure 4-23. Escherichia coli O157:H7 detected in FNC wash water post-washing of inoculated 

cut lettuce, plated on SMAC.  

Error bars represent standard error of the mean. 
abindicates concentrations that differ statistically (P<0.0001).  
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Figure 4-24. Escherichia coli O157:H7 detected in FNC wash water post-washing of inoculated 

cut lettuce plated on TSA with a SMAC overlay.  

Error bars represent standard error of the mean. 
a indicates concentrations that differ statistically (P<0.0001).  
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Figure 4-25. Salmonella population reductions achieved on inoculated cut romaine lettuce 

(inoculated at ~7.0 log10 CFU/g) after washing with increasing concentrations of FNC solutions. 

Salmonella populations determined by plating on selective XLD agar. 

Error bars represent standard error of mean 
abc indicates concentrations that differ significantly (P=0.0009) 
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Figure 4-26. Salmonella population reductions on inoculated cut romaine lettuce based on FNC 

contact time, as determined by plating on selective XLD agar.  

Error bars represent standard error of mean 
a indicates a statistical difference (P=0.0127) 
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Figure 4-27. Salmonella population reductions achieved on inoculated cut iceberg lettuce 

(inoculated at ~7.0 log10 CFU/g) after washing with varying concentrations of FNC solutions. 

Salmonella populations determined by plating on TSA with an XLD overlay. 

Error bars represent standard error of mean 

Concentrations do not differ statistically (P=0.2601) 
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Figure 4-28. Salmonella population reductions achieved on inoculated cut iceberg lettuce 

(inoculated at ~7.0 log10 CFU/g) after washing with varying contact times. Salmonella 

populations determined by plating on TSA with an XLD overlay. 

Error bars represent standard error of mean 

Contact times do not differ statistically (P=0.2501) 
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Figure 4-29. Salmonella population reductions achieved on inoculated cut romaine lettuce 

(inoculated at ~7.0 log10 CFU/g) after washing with varying concentrations of FNC solutions. 

Salmonella populations determined by plating on TSA with an XLD overlay. 

Error bars represent standard error of mean 

Concentrations do not differ statistically (P=0.3851) 
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Figure 4-30. Salmonella population reductions achieved on inoculated cut romaine lettuce 

(inoculated at ~7.0 log10 CFU/g) after washing with varying contact times. Salmonella 

populations determined by plating on TSA with an XLD overlay. 

Error bars represent standard error of mean 

Contact times do not differ statistically (P=0.5201) 
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Figure 4-31. Salmonella population reductions achieved on inoculated cut iceberg lettuce 

(inoculated at ~7.0 log10 CFU/g) after washing with varying concentrations of FNC solutions. 

Salmonella populations determined by plating on selective XLD agar. 

Error bars represent standard error of mean 

Concentrations do not differ statistically (P=0.5725) 
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Figure 4-32. Salmonella population reductions achieved on inoculated cut iceberg lettuce 

(inoculated at ~7.0 log10 CFU/g) after washing with varying contact times. Salmonella 

populations determined by plating on selective XLD agar. 

Error bars represent standard error of mean 

Contact times do not differ statistically (P=0.2667)  
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Figure 4-33. Listeria monocytogenes population reductions achieved on inoculated cut iceberg 

lettuce (inoculated at ~7.0 log10 CFU/g) after washing with increasing concentrations of FNC 

solutions. Listeria monocytogenes populations determined by plating on selective MOX agar. 

Error bars represent standard error of mean 
abc indicates concentrations differ significantly (P=0.0125) 
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Figure 4-34. Listeria monocytogenes population reductions achieved on inoculated cut romaine 

lettuce (inoculated at ~7.0 log10 CFU/g) after washing with increasing concentrations of FNC 

solutions. Listeria monocytogenes populations determined by plating on TSA with a MOX 

overlay. 

Error bars represent standard error of mean 
ab indicates concentrations differ significantly (P=0.0013) 

 

  



130 

 

Figure 4-35. Listeria monocytogenes population reductions achieved on inoculated cut iceberg 

lettuce (inoculated at ~7.0 log10 CFU/g) after washing with varying concentrations of FNC 

solutions. Listeria monocytogenes populations determined by plating on TSA with a MOX 

overlay. 

Error bars represent standard error of mean 

Concentrations do not differ statistically (P=0.1712) 
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Figure 4-36. Listeria monocytogenes population reductions achieved on inoculated cut iceberg 

lettuce (inoculated at ~7.0 log10 CFU/g) after washing with varying contact times. Listeria 

monocytogenes populations determined by plating on TSA with a MOX overlay. 

Error bars represent standard error of mean. 

Contact times do not differ statistically (P=0.0879)  
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Figure 4-37. Listeria monocytogenes population reductions achieved on inoculated cut romaine 

lettuce (inoculated at ~7.0 log10 CFU/g) after washing with varying contact times. Listeria 

monocytogenes populations determined by plating on TSA with a MOX overlay. 

Error bars represent standard error of mean 

Contact times do not differ statistically (P=0.4656) 
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Figure 4-38. Listeria monocytogenes population reductions achieved on inoculated cut romaine 

lettuce (inoculated at ~7.0 log10 CFU/g) after washing with varying concentrations of FNC 

solutions. Listeria monocytogenes populations determined by plating on selective MOX agar. 

Error bars represent standard error of mean 

Concentrations do not differ statistically (P=0.9937) 
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Figure 4-39. Listeria monocytogenes population reductions achieved on inoculated cut romaine 

lettuce (inoculated at ~7.0 log10 CFU/g) after washing with varying contact times. Listeria 

monocytogenes populations determined by plating on selective MOX agar. 

Error bars represent standard error of mean 

Contact times do not differ statistically (P=0.5648) 
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Figure 4-40. Listeria monocytogenes population reductions achieved on inoculated cut iceberg 

lettuce (inoculated at ~7.0 log10 CFU/g) after washing with varying contact times. Listeria 

monocytogenes populations determined by plating on selective MOX agar. 

Error bars represent standard error of mean 

Contact times do not differ statistically (P=0.0956)  

1 
M

in
ute

s

5 
M

in
ute

s

0.0

0.5

1.0

1.5

LM Ice MOX

FNC Wash Concentration

L
o

g
 R

e
d

u
c
ti

o
n

s
 (

L
o

g
1
0
 C

F
U

/g
)

1 Minutes

5 Minutes



136 

 

Figure 4-41. Escherichia coli O157:H7 population reductions on inoculated cut iceberg lettuce 

based on FNC contact time, as determined by plating on selective SMAC agar. All FNC 

concentrations (0-3%) were pooled to get these data. 

Error bars represent standard error of mean 
ab indicates a statistical difference (P=0.0493) 
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Figure 4-42. Escherichia coli O157:H7 population reductions on inoculated cut romaine lettuce 

based on FNC contact time, as determined by plating on selective SMAC agar. All FNC 

concentrations (0-3%) were pooled to get these data.  

Error bars represent standard error of mean 
ab indicates a statistical difference (P=0.0293)  
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Figure 4-43. Escherichia coli O157:H7 population reductions achieved on inoculated cut iceberg 

lettuce (inoculated at ~7.0 log10 CFU/g) after washing with increasing concentrations of FNC 

solutions. Escherichia coli O157:H7 populations determined by plating on selective SMAC agar. 

Error bars represent standard error of mean 
abc indicates concentrations differ significantly (P=0.0097) 

 

 

  



139 

 

 

Figure 4-44. Escherichia coli O157:H7 population reductions achieved on inoculated cut 

romaine lettuce (inoculated at ~7.0 log10 CFU/g) after washing with increasing concentrations of 

FNC solutions. Escherichia coli O157:H7 populations determined by plating on selective SMAC 

agar. 

Error bars represent standard error of mean 
ab indicates concentrations differ significantly (P=0.0257) 
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Figure 4-45. Escherichia coli O157:H7 population reductions achieved on inoculated cut 

romaine lettuce (inoculated at ~7.0 log10 CFU/g) after washing with increasing concentrations of 

FNC solutions. Escherichia coli O157:H7 populations determined by plating on TSA with a 

SMAC overlay. 

Error bars represent standard error of mean 
abc indicates concentrations differ significantly (P=0.0013) 
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Figure 4-46. Escherichia coli O157:H7 population reductions achieved on inoculated cut iceberg 

lettuce (inoculated at ~7.0 log10 CFU/g) after washing with varying concentrations of FNC 

solutions. Escherichia coli O157:H7 populations determined by plating on TSA with a SMAC 

overlay. 

Error bars represent standard error of mean 

Contact times do not differ statistically (P=0.5792) 
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Figure 4-47. Escherichia coli O157:H7 population reductions achieved on inoculated cut iceberg 

lettuce (inoculated at ~7.0 log10 CFU/g) after washing with varying contact times. Escherichia 

coli O157:H7 populations determined by plating on TSA with a SMAC overlay. 

Error bars represent standard error of mean 

Contact times do not differ statistically (P=0.2409) 
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Figure 4-48. Escherichia coli O157:H7 population reductions achieved on inoculated cut 

romaine lettuce (inoculated at ~7.0 log10 CFU/g) after washing with varying contact times. 

Escherichia coli O157:H7 populations determined by plating on TSA with a SMAC overlay. 

Error bars represent standard error of mean 

Contact times do not differ statistically (P=0.3383) 
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Chapter 5 – Summary and Conclusions 

 Antimicrobials were applied both pre- and postharvest in order to investigate novel 

approaches to reducing microbial populations on romaine and iceberg lettuce. While controlling 

microbial populations is important, a number of considerations are critical for assessing 

intervention efficacy, including product quality and shelf life. Therefore, microbiological and 

post-treatment quality assessments were performed in Objectives I and II. Applying an 

antimicrobial pre-harvest to lettuce is a somewhat novel approach to controlling microbial 

populations on lettuce and potassium bisulfate in particular had not been investigated for this 

purpose. Therefore, Objective I was designed as a preliminary study to evaluate efficacy of this 

compound as a novel pre-harvest intervention.  

 Objective I evaluated the efficacy of a 0.25% solution of potassium bisulfate at reducing 

previously inoculated populations of either nonpathogenic E. coli or L. innocua on lettuce pre-

harvest. The impact of treatment on overall quality of the lettuce products was also investigated. 

Reductions in surrogate microorganism populations were compared to an inoculated, untreated 

control as well as inoculated lettuce treated with water. Comparing the mean populations of E. 

coli at harvest showed that the only significant reduction of E. coli populations occurred when 

potassium bisulfate was applied one week before harvest. Interestingly, when potassium bisulfate 

was applied one week and two days before harvest, E. coli populations were statistically similar 

to that of the untreated, inoculated control. This indicates that the additional potassium bisulfate 

application two days before harvest may have negatively impacted the ability of potassium 

bisulfate to at reduce previous inoculated populations of E. coli on lettuce. It is possible 

surviving E. coli populations either became more acid tolerant or became less susceptible to 

potassium bisulfate prior to the application of the second treatment. However, it is also possible 
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this observed phenomenon is random and due to variations in attachment. Listeria innocua data 

showed a statistically significant decrease in populations when 0.25% potassium bisulfate was 

applied both one week and two days before harvest, which suggests that multiple applications 

impacts efficacy. Results from the post-treatment overall quality analysis revealed brown 

speckling on various leaves of lettuce subjected to potassium bisulfate following a single 

application. No significant difference in overall quality was detected, which presumably was 

because brown speckling was not on every leaf, and the defects were small when present. 

However, efforts to reduce or eliminate this leaf burning should be emphasized in the future, 

particularly if potassium bisulfate will be applied more than once pre-harvest.  

 Data from this objective indicates potential use of potassium bisulfate as a pre-harvest 

antimicrobial to control either foodborne pathogens like Escherichia coli O157:H7 or, 

potentially, L. monocytogenes. It should be noted that surrogate microorganisms were used in 

this study; therefore, all data presented can only provide a general indication as to how 

Escherichia coli O157:H7 and L. monocytogenes may behave under similar conditions. 

Unfortunately, no single treatment was able to control both foodborne pathogen surrogates 

making optimization a likely necessity. For example, including a surfactant with the treatment, 

varying the spray application, or combining with another antimicrobial may improve the success 

already shown. The addition of a surfactant may also reduce treatment burning, as it would more 

evenly spread the solution across the hydrophobic leaf cuticle upon application. As potassium 

bisulfate was used in favor of the more researched antimicrobial sodium bisulfate (due to 

potassium being a key plant nutrient), further studies may be warranted to determine if 

application of potassium bisulfate applied more than seven days before harvest would impact 

plant health. 
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 Objective II was a two-part study evaluating the use of benzalkonium chloride, methyl 

paraben, and acetic acid as a postharvest lettuce wash. As with Objective I, lettuce was evaluated 

to elucidate the impact of this wash on microbial populations and product quality. The first part 

of the study evaluated the efficacy of this postharvest wash at reducing previously inoculated 

populations of E. coli O157:H7, Salmonella, and L. monocytogenes in the wash water and on the 

tissue of lettuce (fresh-cut romaine and iceberg). Data suggest that the blend of benzalkonium 

chloride, methyl paraben, and acetic acid significantly reduced populations of each pathogen by 

2-3 log10 CFU/mL (99-99.9% reduction) in the wash water. Such a reduction in pathogens within 

five minutes surpasses the industry standard of 150 ppm chlorine, which has been shown in 

previous research to reduce the same foodborne pathogens in wash water by ~97.8% (nearly 2 

logs) during a 3 minute contact time. This would make a blend of benzalkonium chloride, methyl 

paraben, and acetic acid a viable alternative to chlorine-based sanitation. 

 The ability of this postharvest wash to reduce E. coli O157:H7, Salmonella, and L. 

monocytogenes in lettuce tissue revealed results similar to other postharvest washes. In general, 

statistical differences were most evident at the highest antimicrobial concentration evaluated, 

particularly when plated on selective media. However, no single concentration significantly 

reduced pathogen populations on both iceberg and romaine lettuce. When considering the more 

conservative injury recovery medium, pathogen reductions were less than 0.5 log10 CFU/g 

greater than the water control. Therefore, washing with even the highest FNC concentration 

provided little to no added benefit. In general, there was little to no added benefit to washing 

with any of the FNC concentrations for five minutes rather than 1 minute 

 The second part of Objective II evaluated the shelf life of lettuce and residues of 

benzalkonium chloride and methyl paraben post-washing. This was accomplished by sampling 
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random lettuce samples immediately after washing and subjecting them to a previously 

developed method for extracting benzalkonium chloride from lettuce. The results in this study 

demonstrate that concentrations of methyl paraben and benzalkonium chloride on iceberg and 

romaine lettuce post-washing were below the limit of detection (<5 ppm for methyl paraben and 

<10 ppm for benzalkonium chloride). No difference in shelf life was observed for romaine and 

iceberg lettuce subjected to 0% and 2% FNC washes. On day zero, total aerobic populations on 

romaine and iceberg lettuce were significantly reduced by 0%, 1%, 2%, and 3% FNC washes in 

comparison to an unwashed control sample. With exception of romaine, the 2% wash did not 

significantly improve reductions in total aerobic populations in comparison to the 0% water wash 

during the shelf life. In general, 0% and 2% FNC washes inconsistently reduced populations 

throughout the shelf life of iceberg and romaine lettuce. This suggests a preservative effect is 

lacking, which would mean that additional labeling in a retail setting would not be required if 

lettuce was subjected to the antimicrobial blend of benzalkonium chloride, methyl paraben, and 

acetic acid.  
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APPENDIX A 

MOLECULAR STRUCTURES 
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Benzalkonium chloride molecule courtesy of: http://www.sigmaaldrich.com/catalog/product/aldrich/234427?lang=en&region=US 

Figure A-1. An example benzalkonium chloride molecule 

 

 

 

Methyl Paraben molecule courtesy of: https://pubchem.ncbi.nlm.nih.gov/compound/Methyl_4-hydroxybenzoate#section=Top 

Figure A-2. An example methyl paraben molecule 

  

http://www.sigmaaldrich.com/catalog/product/aldrich/234427?lang=en&region=US
https://pubchem.ncbi.nlm.nih.gov/compound/Methyl_4-hydroxybenzoate#section=Top
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APPENDIX B 

QUALITY SCALES 
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Figure B-1. Quality scale used to evaluate romaine lettuce (Brecht, 2012) 
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Figure B-2. Quality scale used to evaluate iceberg lettuce. (Paulus et al., 1969). 
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APPENDIX C 

OBJECTIVE II: THEORETICAL VS ACTUAL WASH WATER CONCNETRATIONS 
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Table C-1. Concentrations of benzalkonium chloride in solutions made in various volumes from 

100% FNC made in one gallon. To values for each volume/concentration combination show 

same solution injected twice. 

  Made from 1 gallon stock FNC  

Volume of solution 

made 1% Mean 2% Mean 3% Mean 

100mL 44.81 46.65 45.73 87.28 92.98 90.13 151.10 155.05 153.08 

250mL 30.23 32.07 31.15 90.366 92.63 91.50 153.57 148.8 151.19 

1000mL 43.18 43.9 43.54 96.68 97.87 97.28 156.75 158.81 157.78 

2000mL 44.16 46.47 45.32 86.66 91.52 89.09 158.24 158.60 158.42 

 

Table C-2. Concentrations of benzalkonium chloride in solutions made in various volumes from 

100% FNC made in 250 mL. 

  Made from 250mL stock FNC (made 31Aug16) 

Volume of solution 

made 1% Mean 2% Mean 3% Mean 

100mL 23.19 24.37 23.78 51.71 52.12 51.92 80.80 80.17 80.49 

250mL 21.56 22.02 21.79 47.72 50.59 49.16 77.55 77.93 77.74 

1000mL 23.28 22.62 22.95 44.07 45.41 44.74 76.22 75.51 75.87 

2000mL 18.43 19.89 19.16 48.57 48.56 48.57 85.46 87.11 86.29 
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APPENDIX D 

ADDITIONAL OBJECTIVE II FIGURES AND PICTURES 
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 Figure D-1. Day three shelf life study picture of iceberg lettuce washed in 2% FNC.  

 

 

Figure D-2. By day five, pinking became noticeable for all iceberg lettuce specimens. 

This negatively impacted the appearance score. 
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Figure D-3. By day seven, romaine lettuce washed in 2% FNC still had high enough 

salable quality. 

 

 

Figure D-4. The step-by-step process of washing fresh-cut romaine and iceberg lettuce in 

FNC. 


