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Abstract

The science of complex networks has significantly advanced in the last decade and

has provided valuable insights into the properties of real world systems by evaluating their

structure and construction. Several phenomena occurring in real technological and social

systems can be studied, evaluated, quantified, and remedied with the help of network science.

The electric power grid is one such real technological system that can be studied through

the science of complex networks. The electric grid consists of three basic sub-systems:

Generation, Transmission, and Distribution. The transmission sub-system is of particular

interest in this work because its mesh-like structure offers challenging problems to complex

networks researchers. Cascading dynamics of power grids is one of the problems that can be

studied through complex networks. The North American Electric Reliability Corporation

(NERC) defines a cascading failure as the uncontrolled successive loss of system elements

triggered by an incident at any location.

In this dissertation, we primarily discuss the dynamics of cascading failures in the power

transmission grid, from a complex networks perspective, and propose possible solutions for

mitigating their effects. We evaluate the grid dynamics for two specific scenarios, load

growth and random fluctuations in the grid, to study the behavior of the grid under critical

conditions. Further, we propose three mitigation strategies for reducing the damage caused

by cascading failures. The first strategy is intentional islanding in the power transmission

grid. The aim of this method is to intentionally split the grid into two or more separate self-

sustaining components such that the initial failure is isolated and the separated components

can function independently, with minimum load shedding. The second mitigation strategy

involves controlled placement of distributed generation (DG) in the transmission system in

order to enhance robustness of the grid. The third strategy requires the addition of a link in



the transmission grid by reduction of the average spectral distance, utilizing the Ybus matrix

of the grid and a novel algorithm.

Through this dissertation, we aim to successfully cover the gap present in the complex

networks domain, with respect to the vulnerability analysis of power grid networks.
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Chapter 1

Introduction

In the times of the early man, fire obtained by rubbing flint stones together was the only

source of heat and light. Life was simple because only basic needs such as food, clothing,

and shelter needed to be fulfilled. In the 18th century, electricity was invented and life

completely changed. Many years have passed and the modern day world of morning coffee,

cell phones, and air conditioners is now a reality. Not a day goes by in which a TV, computer,

or music player is not utilized. Electricity has become so commonplace and necessary that

it is often taken for granted, until it is no longer available because of a disruption. In this

dissertation, we extend the science of complex networks to a real-world system - the power

grid. The power grid is one of the greatest man-made engineering wonders. However, most

of the times we fail to realize what goes on in the background when we turn on our devices,

and the long distances traversed by the electricity to reach our homes and offices, as and

when demanded. The stress on the grid keeps increasing with the ever increasing number

of devices operating on electricity, introduction of new kinds of generation sources, and so

on.

Few theories about the different dynamic effects of the power grid have been proposed

in the past. Through this dissertation, we bring forth, not only a few other challenges

that the modern electric grid faces, but also some methods by which a small change in the

infrastructure can go a long way to strengthen the grid.
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1.1 Background

A world without electricity is beyond our imagination. Starting from the prehistoric times,

man has made much progress in every walk of life. We have become accustomed to get-

ting everything at the flick of a switch, touch of a button, or turn of a knob. While we

have become so used to enjoying the benefits of electricity, it is not easy to imagine how

electricity travels from its source to our homes and offices. It sometimes has to cover large

distances through a complex network of transmission lines and power substations to provide

us the facilities and entertainment that we take for granted. This network which transports

electricity from the source to the consumers is called the electrical network. The electrical

network is a collective term for different components such as transformers, transmission lines,

substations, and different stages and sub-networks devoted to generation, transmission, and

distribution. Sometimes, there may be sub-transmission and secondary distribution net-

works too. A simple schematic of an electric network is shown in Figure 1.1. In the past

decade, analysis of the electrical power system as a complex network has been evolving as

a challenging topic of research. A power grid can be represented as a network of buses

connected to each other by transmission lines. The flow dynamics of the network accounts

for the power flow through the electrical grid. The Figure 1.2 shows a complex networks

representation of a power grid through nodes and links. The generators, loads, as well as

the other buses are all represented as homogeneous nodes in this picture. However, they

can be distinguished from each other depending on the type of analysis.

1.2 Motivation

Critical infrastructure, in general, refers to the assets that an economy and a society cannot

function without. The electrical power grid is one such asset. Our dependence on electricity

has increased so much, that even small periods of absence of electricity can cause a huge

chaos. The aging grid is not just handling excessive stress in the modern years, but also a

threat of attacks. As a result, it becomes necessary to study the dynamics occurring in the

2



Figure 1.1: This figure shows a simple block schematic of an electrical network. The
electrical network is generally divided into three sub-networks: Generation, Transmission,
and Distribution. Additionally, sub-transmission and secondary distribution systems may
be present. The transmission system operates at the highest voltage. The sub-transmission
operates on medium voltage levels, while the distribution system operates on low voltage.

Figure 1.2: The picture shows the modeling of an electrical grid as a complex network.
The buses are represented as nodes, and the transmission lines as the links connecting these
nodes. The picture typically depicts a transmission system, with a mesh-like structure.
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power grid due to the modern practices, and find a solution to the problem before it turns

into a crisis.

While power system researchers are working their way towards the upgrading and safety

of the grid, the research on power grid is an interdisciplinary problem, crossing over several

disciplines. The structure of the network of transmission lines and buses stores a huge

amount of useful information that can be unraveled and used for the benefit of the society

through the science of complex networks. It is with this goal that we have modeled the

power grid as a complex network, in this work, to analyze the dynamics of the grid from a

networks perspective, and suggest some strategies that can help to strengthen the grid. In

this dissertation, we have mainly focused on the cascading phenomenon of the grids through

simple models and used techniques from the network science domain to suggest methods

to mitigate such disturbances. According to the most recently approved definitions by

the North American Electric Reliability Corporation (NERC)93, a cascading failure is the

uncontrolled successive loss of system elements triggered by an incident at any location, and

results in widespread electric service interruption that cannot be restrained from spreading

beyond an area predetermined by studies. Blackouts resulting from a cascading failure

can cause inconvenience to customers and financial losses to the electric utilities. Cascading

failures can occur due to several reasons or combination of reasons, such as excessive demand

on the system, weather conditions, or human error. It is not only important to study the

cause and effect of cascading failures, but also ways to mitigate them. As a result, this

dissertation is mainly directed towards examining the causes of cascading failures through

a simulative approach, and proposing small structural changes through which the grid can

regain the capability to handle increasing stress.

1.3 Contribution

This dissertation is primarily focused on the power transmission grid. The transmission grid

has a mesh-like structure, and hence presents very interesting challenges to the complex
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networks researchers. One of the things that we study in this work is the dynamics of the

power transmission grid under two different scenarios, load growth, and presence of random

load fluctuations, and how these scenarios affect the normal functioning of the grid. These

scenarios show interesting results pertaining to the complex dynamics of the power grid

network. The load growth scenario indicates the presence of a threshold phenomenon, while

the random load fluctuations show smoother transition. The results also indicate that the

fragility of the network may increase with increasing size. However, as mentioned, the power

grid is an extremely complex system and several different scenarios must be tested to get a

deeper insight into the dynamics of power grids.

Considering the ever increasing demand and the changes coming in the electrical power

grid, it is very important to find solutions to the existing problems, that will be on par with

the current, as well as the future status of the grid. With this consideration, we propose

three mitigation strategies for cascading failures in power grids.

The first strategy is based on intentional islanding in the transmission grid, to separate

the grid into self-sustaining parts, so that an initial failure, which could lead to a cascade of

overload failures, is isolated from the remaining part of the grid. We propose two methods

for intentional islanding, derived from a complex networks based quality function called

modularity. Modularity has been widely used in social and other networks for community

detection. We have chosen two popular modularity based algorithms, called the Fast Greedy

algorithm, and the Bloom algorithm, out of the many available algorithms because these

two methods have given promising results for the other kinds of complex networks that they

have been used for. In this work, we have have modified these modularity based algorithms

to include a power flow model and a load shedding model, in order to make them suitable

for a power grid network. The results of islanding obtained by these two methods are then

compared with an optimal islanding scheme and we find that these strategies provide a

good balance between the complexity of the algorithm and the accuracy of the results. The

accuracy of the results is tested by comparing the amount of load shedding performed by each
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method whenever an islanding scenario occurred, with the optimal load shedding scenario.

The intentional islanding using Modified Fast Greedy and Modified Bloom methods have

been performed on the IEEE 14-, 30-, 57-, 118-, and 300-node systems31. The optimal

islanding method has high complexity and can be used only for the 14-node and the 30-node

network. However, the other two algorithms can solve the islanding problem for networks

up to thousands of nodes in a matter of few seconds or minutes, depending on the network

size. Moreover, Modified Bloom algorithm is faster in execution than Modified Fast Greedy

and also causes less load shedding than Modified Fast Greedy during island creation. We

also compare the two algorithms, in terms of execution time and load shedding for different

number of islands. Modified Bloom performs better for all cases, but the best number

of islands for different networks is different for the two algorithms. These algorithms are

described in detail in Appendix C.

The second mitigation strategy discusses the controlled placement of distributed gener-

ators in the transmission grid as a way to enhance the robustness of the grid. In this work,

distributed generators refer to conventional sources. The presence of distributed generators

allows power to be supplied to the nodes locally or through shorter distances. Also, pres-

ence of several small generators in the system allows power to be supplied to loads by more

than one sources, thus reducing the risk of leaving a few nodes without power in case of a

generator failure. The determination of correct locations for the placement of DG is crucial

to achieve the the best benefit of the strategy, in terms of load retention in the grid in case

of a failure. Improper placement in incorrect amount can actually have an opposite effect on

the robustness of the grid, making it more vulnerable. We used two electrical measures to

determine the location of DG - electrical centrality and electrical node significance. These

measures are used together to determine the set of candidate locations for the placement

of DG. The amount of DG that must be placed in the selected nodes from the candidate

set depends on the relative significance of the node, and is done exhaustively. Vulnerability

analysis is performed before and after DG placement, and the results prove that correct
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placement of DG can really help improve the robustness of the power grid network. We

used the IEEE 30-, 57-, and 118-node networks for the analysis. The 14-node network is

too small of a test system and is not flexible enough to test the above mentioned technique.

We also compare our results of vulnerability analysis with that of another method for DG

placement, recently proposed in literature. We find that the results obtained by our method

improve the robustness of the grid much more than the other method.

The third mitigation strategy considers the strategic addition of a link in the transmis-

sion network, using a spectral method. The spectrum of a graph, or in this case, network,

holds important information about the characteristics of the network. We utilized this in-

formation to determine the location of an additional link. The presence of an additional

long link can provide a new path for connecting the distant nodes in the network and new

routes for redirecting the power flow, if required. We call our method the spectral distance

method and utilize the eigenvectors corresponding to the second, third, and fourth smallest

eigenvalues of the Ybus matrix of the power grid to compute the spectral distance between

all pairs of nodes in the network. The computation of spectral distances gives an indication

of the nodes that are spectrally distant from most other nodes. Using this information,

the location of the link is selected. This is done based on a method that we describe in

Chapter 6. We perform vulnerability analysis of the system before and after placement

of the link, and the results clearly show an improvement in the robustness of the network

in terms of load retention in the network after the failure. We compare our results with

a popular method in the complex networks, known as algebraic connectivity method, and

find that the results by the spectral distance method are better than those obtained by

the algebraic connectivity method. We also test several cases of random link addition and

conclude that our method provides a substantial enhancement in robustness of the grid.

We, finally, compare the characteristics of the networks, such as characteristic path length,

diameter, clustering coefficient, and average degree, before and after link placement to test

if changes in the spectral characteristics have an effect on the physical characteristics, and
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find that structural changes do occur in some cases. This method was tested on the IEEE

30-, 57-,and 118-node networks.

Although we have not used optimization strategies for the above methods, these meth-

ods provide substantial improvement in the robustness of the grid, and are also low in

complexity. The results obtained by all the above methods clearly show an improvement in

the robustness of the system than without any strategy, and hence they show the merit of

the strategies.

1.4 Organization

The dissertation is organized as follows:

In Chapter 2, we give, in detail, a review of the work previously done in the vulnerability

analysis of power grids from a complex networks perspective, the details that are missing in

these previous studies, and how the inclusion of these missing details would make them much

more useful in the vulnerability analysis of power grids. It is these gaps in the literature

that have motivated us to continue the work done by previous researchers and present the

results in the form of this dissertation.

The first part of this dissertation - dynamics on power transmission grids with respect

to cascading failures - has been discussed in Chapter 3. In this chapter, we show, through

simulative analysis, how the grid dynamics are affected, using two different scenarios. We

discuss the different mitigation methods Chapter 4 onwards. In Chapter 4, we propose two

intentional islanding methods as a way to enhance the robustness of the grid. These are

complex networks based methods, using the quality function called modularity, to partition

the grid into islands. We compare the results of the islands obtained by these methods, with

an MILP based optimal islanding scheme. In Chapter 5, we discuss the controlled placement

of DG in the transmission grid, based on two electrical measures: electrical centrality and

electrical node significance. The results of this work have been compared with another

complex networks based methods, recently proposed in literature, and the vulnerability
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analysis before and after placement of DGs is performed. Chapter 6 discusses the method

to place an additional long link in the transmission system, followed by vulnerability analysis

of the grid, to show that the addition of the link indeed improves the robustness of the grid.

Conclusions, and scope for future work are finally discussed in Chapter 7.
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Chapter 2

Literature Review

The electrical network has been introduced in Chapter 1. In this chapter, the electrical grid

as a complex network will be discussed in more detail, starting with an overview, followed

by the development of this field of study, the relevance of these studies with respect to the

scope of the dissertation, and the improvements in the methods discussed in the dissertation,

as compared to the previous work.

2.1 Overview

As mentioned in the previous chapter, a general electrical network consists of three main

parts: Generation, Transmission, and Distribution. The aim of the electrical network is

to transport electricity from the source to the consumers. The transmission sub-system

is the backbone of the complete electrical network and connects all the main load centers

in the system to the main generating plants, while operating at the highest voltage level.

Sometimes, there is no clear distinction between the transmission and sub-transmission

networks and sometimes they are distinctly separated from each other. The generation

and transmission sub-systems together constitute the bulk power system. The distribution

sub-system consists of the final stage of power transfer to the individual consumers70.

The transmission sub-system has been the most studied of the sub-networks of the

electrical network. The mesh structure of the transmission network makes it particularly

interesting to study different problems on this network. The distribution sub-network usu-
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ally has simple topologies such as a tree or a ring. Most radial networks are meshed networks

initially. However, for a better analysis of their protection schemes and losses, they are al-

ways represented and analyzed as an equivalent radial or ring network115.

All real systems can be modeled into graphs with the individual entities of the system as

the nodes and the connections between these entities as the links. The types of connections

help us to classify these graphs as random, scale-free, hybrid, or some other kind of topology.

When dynamics are considered on these graphs, either on nodes or links, they are referred

to as networks. It is the particular dynamic and the models considered for the analysis of

these dynamics which distinguish different networks from each other. The study of power

grid as a complex network started a little before the beginning of the last decade, and gained

more importance and momentum after the North American blackout of 200346 and other

European blackouts that followed in the same year73,65,35. A basic electrical network can be

regarded as a connection of buses through transmission lines, where every bus carries a load

or demand that must be satisfied by the power flowing through these lines. Every electrical

network must follow the basic laws of Physics called the Kirchoff’s equations. These are

equalities that deal with the conservation of charge and energy in electrical circuits.

Most of the complex network analysis has been carried out on high voltage transmission

grids because their structure is mesh-like and it projects a complexity that is very interesting

in the study of different characteristics of electrical networks. In general, power grid networks

tend to be sparse networks, as indicated by the IEEE power grid data available at31. The

average node degree of the transmission grid is small. There is a common agreement among

the researchers that the average degree of the transmission grid is between 2.5 and 5 (for

both, American and European grids). It is important to note, from a security point of

view, that a power grid should not have topological hubs. There are some nodes which are

“critical” since they carry a high load, yet their degree is not large relative to the size of the

grid.

Every node in the electrical network is characterized by a finite capacity, described
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by the maximum load that the node can carry. Similarly, every link is characterized by a

capacity which indicates the maximum amount of power flow that the link can carry, without

overheating or melting. The capacity of the link is one of the factors governing the flow of

power on the link. It is important to incorporate the flow dynamics into the topological

model of the electrical network through power flow models. A simple approximation of the

complete AC power flow model is the linearized DC model49. The set of equations of this

model not only incorporate the Kirchoff’s laws but also give a rule for the flow of power

through each link based on its reactance and the phase angles of the nodes at the two ends

of the link. The model is discussed in detail in Appendix A.

This field has constantly evolved and continues to evolve. There are many more chal-

lenges that the electrical network of the future offers and the answers are hidden, at least

partly, in the structure and design of the networks. The field of complex networks has a big

responsibility of understanding these challenges and bringing forth the answers.

2.2 Vulnerability Analysis

Much work has been done in the area of robustness studies of electrical networks, con-

sidering the increasing occurrences of power grid blackouts all over the world, in the last

decade. Cascading failures used to be a rare phenomenon, but with the unprecedented

dependence on the electricity infrastructure, bad practices, and the lack of restructuring

of the system, it is now becoming an occurrence that can be heard of several times a

year46,102,32,12,45,92,76,133,91,57,68,130,33. Many times, these cascading failures are triggered

by small local disturbances which spread throughout the network due to the complex flow

dynamics of the electrical system.

At the very beginning, a study of the cascade spread models, as adapted to power grids

was emerging. One of the first studies in this area was presented in110, in which a very

simple model for spread of disturbances in power transmission grid was proposed. This

model considered a network of nodes, each representing a power generation or transmission
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element and the connections between these nodes were not transmission lines, but coupling

between the nodes, which was a way to simulate the circuit equations in a real power

network. Every node was characterized by a load and a threshold of the load that it could

handle. Whenever a node reached its load threshold, load was randomly transferred to

the neighboring nodes. The power grid networks considered for evaluation were either well-

defined simple ring networks or ring-like structures with some randomness to add a paradigm

of complexity as compared to the simple ring structures. The ring-type random power grid

networks considered in this work were characterized by their path lengths and clustering

co-efficient.

Another model, known as the “capacity” model, was proposed in84 and was supposedly the

first “dynamic” model suggested for the power grid. This model considered the flow of a

quantity between two nodes through a shortest path and the load on a node was the total

number of shortest paths through that node, or in other words, the betweenness of the node,

as mentioned in61. The capacity of the node was the maximum load it could handle and

it was assigned to each node in proportion to the initial load carried by the node. If there

was an overload failure in a node, there was a load redistribution among the neighboring

nodes of the failed node, or in other words, the redistribution of the shortest paths in the

neighboring nodes. The results indicated that this redistribution can lead to a cascade of

overload failures in networks with a heterogeneous distribution of loads.

In the “efficiency” model for dynamic complex networks, presented in38, the focus was

also on cascades caused by overloading of nodes and the subsequent redistribution of the

flow on the network but this model was different from the other models because it did

not remove the overloaded nodes from the network but simply reduced the efficiency of

the flow through this node. As a result, it caused a redistribution of flows through other

nodes, indirectly redistributing the shortest paths and the damage to the network was

quantified as the decrease in global efficiency, as described in74. This work mentioned that

the degree distribution of an electrical power grid is exponential but it is heterogeneous in

13



the distribution of loads in the network.

The same model has also been used, specifically for the Italian electric power grid in39

with the result that the grid is very vulnerable to those failures that occur on the nodes

with the highest betweenness. This model distinguished between the nodes as generators

and distribution stations, similar to7 in which the structural vulnerabilities of the North

American power grid were evaluated. The authors of this work also agree with9 in noting

that the degree distribution of the North American grid, similar to the Western power grid,

is exponential. It is a single-scale network and there is a cost involved with addition of each

edge. They also showed the vulnerability of the North American grid based on the edge

range approach, discussed in85, which was one of the first few works to consider attacks

on links. They further go on to discuss a connectivity loss measure to find the number

of generator nodes that are connected to any given substation node. The authors of101

formulate a bi-level mixed integer nonlinear programming problem to identify the small

groups of lines, which if removed, can cause a severe blackout.

In62, two real power grid networks, the Nordic grid and the Western States US grid

have been studied, their topological characteristics with respect to cascading failures have

been compared and these results are further compared with networks from two theoreti-

cal models, the Erdos-Renyi random network model42 and the Barabasi-Albert scale-free

network model16. These comparisons show clearly the similarities and differences of the

two real power grids with respect to the theoretical models, as well as with respect to each

other. Some important topological characteristics of the two real grids are highlighted in

this study. The robustness of the European power grids under intentional attack has been

tested in114 by selective node removal process. A mean field analysis of the fragility is also

presented.

In24, the authors have presented an initial evidence of the electrical network possessing

a self-organized criticality and have studied the global dynamics related to the cascading

failures using time-series correlation data of power system blackout sizes. Two types of

14



transitions in the cascading failure blackouts were suggested in22. They show that the

probability distribution of the blackout size of the North American blackout data has a

power tail. This work was followed up in25, where it was established that the power system

is indeed a self-organized critical system. The total number of transmission lines tripped

and the total amount of load shed were the measures used to quantify the size of the cascade

in67. Load shed is the amount of load intentionally removed from the system to bring the

system back to a stable state from the disturbed state. When there are failures, especially

those which lead to the loss of the system elements causing a large redistribution of load,

load shedding becomes necessary to curtail the excess load in the disturbed system, which

can be restored after system stability is achieved. Load shedding, although a last resort

measure, can be useful to prevent a total blackout of the system. In the above work, the

authors use a Galton-Watson branching process to approximate the cascading process of

load shed in blackouts.

2.3 Mitigation Strategies

Proposing mitigation strategies for preventing the spread of cascades has become the need

of the hour and is a way to suggest solutions to the problem at hand. The work in83

discusses a method to reduce the size of a cascade in complex networks with a heterogeneous

degree distribution, after the initial failure has taken place, but before it begins to spread

throughout the network. This method has been applied to the electric power network and

involves making costless modifications to the network in a time less than that would take

the initial failure to spread. It talks about strategies for intentional removal of nodes or

links that would significantly reduce the size of cascades.

The probabilistic hidden failure model, which throws light on the protective system

failures, was proposed in117. Hidden failures in the elements of protection systems were

considered to be one of the leading causes of cascading failures in electrical power grids,

after the 1996 blackout of the Western grid of the United States. More work on such
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reliability study was undertaken soon after, as seen in14,122, and28. This hidden failure

model was further adopted in blackout propagation and mitigation studies in29,27,23. These

works included the linearized DC power flow model, to account for the underlying dynamics.

In96, three mitigation strategies have been discussed for mitigating cascading failures

in power grids. Two of the proposed strategies are load shedding strategies while the third

one is intentional islanding using distributed sources. Intentional islanding is the intentional

splitting of the power grid into sub-parts with their own generation so that these sub-parts

can sustain on their own when separated from the remaining network. In this work, islanding

is performed using modularity. If all the islands do not have a generator after the first step

of islanding, a second step called super-islanding is performed. A polynomial time optimal

load shedding algorithm is presented in17 to control cascading failures occurring due to

deterministic failures. The author also proposes another algorithm for stochastic failures.

All these models justify the use of DC power flows for the reason that during emergency

situations, a faster and always converging solution is needed, especially if the network size

is large.

2.4 Vulnerability Indices or Robustness Metrics

Several metrics and vulnerability indices have been suggested as a way to identify nodes

and links which play an important role in the spread of the cascade. A vulnerability index

based on identification of vulnerable links by weighted betweenness of the links is proposed

in30. The weights on the links are represented by the reactances of the links and the shortest

electric distance is represented as the sum of the weights along the shortest electric path,

where the shortest electric path between two nodes is the path whose sum of the weights

is the smallest among all possible paths between the two nodes. They also do time domain

simulations which verify that their vulnerability metric can not only identify the most critical

lines in the system but also those lines which may be vulnerable due to their position in the

system, even though they are lightly loaded. They tested their results on the IEEE 39-bus

16



test system and the Huazhong-Chuanyu power grid.

The concept of random-walk betweenness was introduced in88 where an example of an

electric circuit was used to show the effectiveness of the method. It is based on random

walks, counting how often a node is traversed by a random walk between two other nodes.

It is a generalized technique that may be used for the analysis of power grid networks.

Attention shifted towards the use of power flow model along with the topological models

since it was being realized that all the information about power grids was not being captured

by purely topological models, although they provided useful information about the structure

of the system. The work in58 talks about the electrical centrality measure for power networks

considering the electrical topology rather than the physical topology. They mention the use

of the standard AC power flow model for this work49, without going into the details of the

model. The flow propagates through the path of least resistance, and this flow distribution

is governed by the relative complex impedance of each path. Also, there can be several paths

through which power can flow between two nodes. They use the bus impedance matrix or

the inverse of the admittance matrix to define electrical distance between nodes and use this

information to represent an electrical topology. They present a conclusion that electrically,

the power grid is a scale-free network, although a lot of topological studies indicate a single-

scale structure7,9,87,8,106, while a few show a scale-free structure16,26. Similar work has

been done in128, without the use of any power flow model. Other centrality measures, based

on not only the topology but also the electrical parameters of the grid are investigated in129.

“Efficiency” of the network, as mentioned in previous works was replaced by “net-ability”

in11. The results obtained using efficiency and net-ability were compared with the reference

DC power flow model and net-ability emerged to be a better metric than efficiency. Another

metric called “entropic degree” was presented in18, along with net-ability. These findings

were further strengthened by the work presented in59, in which the authors use the DC

power flow model with the IEEE 300-bus system31. The results of this work indicate that

although topological models can provide the general vulnerability trend, they may not be
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realistic to suggest any risk mitigation resources without the help of physics-based models.

A metric, η, to measure the robustness of a power grid network with respect to cascading

failures was discussed in138, based on probability of link survival as well as the average rank

of the link. Probability of link survival is calculated as the ratio of the number of times a

particular link failed due to the removal of an initial link to the total number of links in

the network, while the average link rank is calculated depending on the stage of cascade

that the link fails at, considering different initial failures. The average depth of cascade is

then the product of the link survival probability and the average link rank and it is used to

determine η.

The long-term reliability effects for an electric transmission grid, evolving over time,

are explored in105. The authors take into account policies such as N-1 criterion as well

as direct response policy to quantify the reliability of the evolving transmission grid with

respect to cascading line overloads and outages as well as slow load growth. The N-1 policy

is the standard policy which ensures the upgrade of the transmission lines to satisfy the

requirement that a single outage does not lead to overloading of the other transmission

lines. The direct response policy leads to an upgrade of the transmission lines involved

in the cascading outage that led to some load-shedding. The authors have compared the

long-term effect of these policies on the probability distribution of outage size with different

number of contingencies.

An electrical power system can be considered as robust only if it can operate in a state of

equilibrium, not just in normal but also in perturbed conditions. This was a possibility until

a few years ago, but in the current state of affairs, an upgrade in the electrical infrastructure

is definitely called for. The stability study of electrical networks, in general, is a topic of

multi-disciplinary research, involving fields like electrical and computer engineering, physics,

networks, controls, and others. It depends on many natural and human factors which lead

to one or more of the events such as load or generation change, short circuit of transmission

lines, which is regarded as a link failure in network theory, and other behavioral changes.
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2.5 Interconnected Networks and Grid of the Future

Restructuring the electrical network would be an important step in the planning and design

of the future electrical network. However, implementation and operation also need to be

changed and this realization has driven us towards the Smart Grid. The Smart Grid would

lead to many changes in the current infrastructure of the electrical power system, includ-

ing heavy incorporation of decentralized distributed generators (DGs), renewable energy

resources, energy storage, bidirectional flows, improved communications, higher security,

climate change mitigation, an increased degree of interconnections37 and above all, the need

for systemic governance.

Interconnections are an inherent part of electrical systems, whether it is the intercon-

nection of several electrical grids or the interconnection of electrical grids with other complex

systems such as communication networks. A recent report by the World Energy Council

discusses the importance of interconnecting different grids, even across the borders, to fulfill

the increasing energy demands of the world36. At the same time, it also talks about the

challenges that would be faced for such interconnections. Several approaches to model the

interdependence between the telecommunication network and the electrical network are dis-

cussed in54, including the use of Bayesian networks and “precedence graphs”. A simulative

approach has been used to evaluate the interdependence between the communication and

power grid networks in69 using MPLS. The results show how a fault in the communication

network may propagate to the connected power grid and lead to failures in the latter.

As studied in20, interconnected networks behave very differently with respect to failures

in comparison to single networks. When there is a failure in one network, the dependent

nodes in the other network also fail and this may result in a cascade of failures in the

interdependent networks. They study the percolation threshold for interconnected networks

which is much larger than that of a single network. This study is continued in99 and48. In

order to understand how interdependence among systems affect the cascading behaviors,

the authors in19 study a sandpile model on modular random graphs as well as graphs based
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on interdependent power grids. They show both, the advantages and disadvantages of

interdependent systems and conclude that some interdependence is beneficial but too much

interdependence opens up new possibilities of cascading failures.

In general, electrical networks usually do not operate in isolation. There is usually some

kind of loose tie between the electrical systems owned by different utilities, within a region,

a country or even between neighboring countries. Whenever failures take place, there is

always a risk that the initial failure that occurred in one part of the interconnected power

grid might spread to the other parts. This is what happened in the very recent blackout

in India, where the Northern, Eastern, and the North Eastern grids were affected due to

the failure that occurred in one location33. Power grid intentional islanding is gaining a lot

of importance as a mitigation strategy for cascading failures in interconnected power grids.

However, it is also necessary that the island creation does not lead to further failures in

the system and cause excessive load-shedding. Multiple approaches to intentional islanding

have been suggested to find the optimal set of lines to be disconnected, including modularity,

mixed-integer non-linear programming, spectral matrix methods, simulated annealing, slow-

coherency based methods and many others96,44,118,55,56,107,100,136,125.

Some of the basic quantities that are usually monitored in case of an electrical network

using an AC model are voltages, currents, power, and phase angles. In case of a DC model,

the number of quantities to be monitored reduces to real power and phase angles, which are

closely related to each other. The two power flow models are explained in Appendix A.

Electrical power grids as critical infrastructures continue to evolve and pose newer

challenges. While topological models give important information about the structure of the

grids, the electrical models add information about the complex flow dynamics. It is very

important that the topological and electrical models are incorporated into each other and

work hand in hand for the planning and restructuring of the grid, and for the implementation

of proper measures to make it robust to all kinds of failures. Also, further investigation

into the design of interconnected networks, such that the pros are higher than the cons, is
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essential. In the present times when the demand for electricity is ever increasing, a proper

restructuring could be the key to more robust and stable interconnected electrical grids.
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Chapter 3

Dynamics of Cascading Failures in
Power Transmission Grids

3.1 Introduction and Related Work

The need for electric power is becoming indispensable in almost every situation, and life

seems to come to a standstill even with a small disruption. Blackouts were rare, but the

frequency of large blackouts has increased in the last 10 years. Power grids are non-linear

systems, and many researchers have used chaos theory43,22,41,63 to analyze the complex

dynamics of the power flowing through the grid. The chaos theory analysis predicts that

the frequency of occurrence of massive cascading failures is related to their magnitude.

In mathematics, a popular model called the ‘sand pile’ model15 states that when sand is

continuously piled in a heap, a point occurs when a portion of the pile suddenly begins to

subside. If an attempt is made to prevent the breakdown by adding more sand, the pile

just collapses. Drawing analogy with this model, the researchers in15 have mentioned that

as a power grid approaches a critical point, the possibility of a collapse increases. With

the addition of new elements to the grid, increasing demand, interconnections, and increase

in power flows, the grid may be quickly approaching its critical point. At such a point, it

becomes necessary to study the complex dynamics arising in the grid and to find possible

solutions to problems that may arise because of these dynamics.

Research has been done on power grids as complex networks, including vulnerability
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analysis and quantification of damage to the grids through robustness metrics. However,

most cascade models for power grids are exclusively topology-based models38,123,124 of local

redistribution of load upon failure, and these models disregard the flow dynamics of electric-

ity. The load is measured in terms of topological metrics such as betweenness centrality in

these topological models. The authors of59 assert that the combination of topological and

power flow models is necessary for network science to provide meaningful solutions for the

power grid. One of the simplest models for cascading failures was proposed in84 and was

popularly known as the “capacity” model because each node and link had a finite capacity

in this model. The capacity was proportional to the initial load on each node, and the initial

load was the betweenness centrality of the node when the network was normally functioning.

When a failure occurs, all the shortest paths change, thus changing the betweenness central-

ity or load of the nodes. This model was followed by the “efficiency” model proposed in38

and74. Another model, known as the OPA model, was presented in13 and24. This model is

most similar to the model used in this dissertation, as described in the further sections.

The lack of a complex networks based model for the analysis of power grid was a

major drawback of the studies conducted some years ago. We adapted the above models

to include the power flow equations with actual load and impedance information31, and we

named this model as the Overload Cascade model. This model assigns capacity to the links

in the network proportional to the initial power flowing through them, in the absence of any

disturbance. When a disturbance occurs, these power flows are redistributed and the flow

dynamics of the network are observed. The model is described in detail in the next section.

In this work, we subject the grid to two scenarios, load growth and random fluctuations,

and observe the effects of these individual scenarios on the dynamics of the grid, through

extensive simulations, using the Overload Cascade model. These two scenarios simulate real

world conditions: The increasing power demand represents the load growth scenario, and one

of the possible examples of random fluctuations is the inclusion of distributed generation in

the grid. The results of these two situations give insights into the behavior of the grid under
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different stress conditions and a distinct behavior is observed in each case. More detail and

discussion on these behaviors follow further in the chapter. This simulative analysis lays

the foundation for the following chapters of this dissertation, in which we describe three

different methods to alleviate the undesired effects occurring as a result of the dynamic

behavior of the grid under different stress conditions.

3.2 Model

As mentioned before, many models used for power grid analysis in complex networks domain

have been entirely topological38,123,124,84,74. However, in order to make the work realistic,

the underlying dynamics must be considered and used with the model to achieve meaningful

results. This research considers a model introduced in our previous work96,111,95 to simulate

a cascading failure scenario and we call it the Overload Cascade model. In this model, the

initial load and generation on the nodes represent the initial state of the system. Power

flows are calculated using the DC Power Flow model explained in Appendix A, and every

link has a capacity which determines the maximum amount of power that can be carried

by that link. During normal operation, the system is stable and all power flows are within

limit. If a disturbance, such as failure of an element, sudden increase in demand, or load

fluctuations, takes place in the system, all power flows are recalculated using flow equations

and utilization of all links is checked to see whether or not they are within their capacity. If

any link exceeds its capacity, it is removed from the system, and its power is redistributed

among other links, depending on impedances of the other links. Even though the model is

simple, the presence of the flow equations guarantees that Kirchoff’s and Ohm’s laws are

properly considered, thus making the model more realistic for use with the power grid. The

reduced complexity of this method allows its use even with large systems and provides a

reasonable balance between complexity of the method and accuracy of the results. Moreover,

the accuracy of the method and results depends on the type of analysis. The analysis in this

dissertation mainly concerns monitoring the amount of real power flow in every line and the
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direction of power flow. As a result, the accuracy provided by the Overload Cascade model

along with the DC Power Flow model is adequate for the purpose. Also, as mentioned in

studies conducted in94,103, the accuracy of DC models with respect to active power flows is

very close to that of the complete AC model.

The main equation of the Overload Cascading model is:

Cij = β ∗ P 0
ij (3.1)

where Cij is the capacity of link i − j, β is a constant, usually 0.5, and P 0
ij is the initial

power flow through link i− j. This equation says that the capacity of a link is proportional

to the initial power it carries, which in turn, is a function of the inductance of the link,

as seen from the equations of the DC Power Flow model. It will be observed in the next

equations that the power flow in a link is determined by the total load on the node.

The main equation of the DC Power Flow model is as follows:

Pij =
δij
xij

(3.2)

where Pij is the power flow in the link i − j, δij is the difference in phase angles between

the voltages at the sending bus (i) and receiving bus (j), and xij is the inductance of the

transmission line. The voltages are considered as 1 p.u. for the DC Power Flow model.

Kirchoff’s law is expressed by the equation:

Pi =
N∑
j=1

Pij (3.3)

where Pi is the total load on a node and it is equal to the algebraic sum of the power flowing

through the node. If the demand on the node increases, the flow of power through the links

connected to that node also changes.
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3.3 Cascading Failures in Power Grids

In this work, we subject the power grid to two scenarios. First, a case is considered in which

increasing demand on a power grid leads to line overloads and outages, corresponding to a

scenario in which the power grid is operated to its limit. Second, we consider the presence

of random fluctuations in the network and analyze the behavior of the grid in response to

random changes in load. With the results of these two scenarios, we provide insights into

the dynamic behavior of the grid.

For the analysis of cascading failures, the IEEE test networks31, as well as the Polish

grid obtained from MATPOWER141 have been used.

3.3.1 Effect of Load Growth on the Dynamics of the Power Grid

As previously stated in the above references, if the power grid reaches its critical point, the

possibility of a breakdown is apparent. Thus, one way to study cascading behavior of the

grid is to stress it to its critical point. This is a realistic situation because the demand for

electrical energy is constantly increasing in the modern society. This load growth is modeled

by increasing all loads simultaneously by a factor of α, between 0 and 1, in steps of 0.1.

Every time the loads are increased, the Overload Cascade model is run to calculate the power

flow in the network. The increase in the demand causes increased power flows through the

links. Since each link is bound by a finite capacity, some of the links exceed their capacity

and get overloaded in order to supply the increased demand. These overloaded links fail

and the power that was being carried by them is redistributed among the other links in

the network. As a result of this redistribution, some more links may reach their capacity

and fail. This may lead to a cascade of overload failures. This simulation is performed for

different values of α between 0 and 1, in steps of 0.1, and the fraction f of links that failed

at the end of each simulation is recorded. The final fraction of links lost is plotted against

the corresponding α as shown in Figure 3.1. The sub-figures 3.1(a), 3.1(b), 3.1(c) and 3.1(d)

show results of simultaneous load growth in the 14-, 30-, 57-, and 300-node IEEE networks.
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(a) 14 bus (b) 30 bus

(c) 57 bus (d) 300 bus

Figure 3.1: The effect of load growth can be seen on IEEE 14-, 30-, 57-, and 300-node
networks. The load is increased by an amount α between 0 and 1 as represented on the x-axis.
The fraction f of tripped links corresponding to each α is plotted on the y-axis. It is seen
that there exists a threshold of load growth, below which the network is intact or undergoes
very few failures, and beyond which it approaches a complete breakdown. A sharp transition
is seen for the 14-node and 30-node network. The networks go through an intermediate stage
before complete breakdown in case of the 57-node and 300-node networks.
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As seen from Figure 3.1, the networks remain intact or have a very small number of

link failures up to an increase in load by a critical value of load growth αc, after which

the network approaches a breakdown state. The state in which there are no failures or few

failures (less than 5%) is termed as the operational state or normal working state, and the

state in which the grid undergoes failure of more than 95% of the links is considered as the

complete breakdown state. The state of the network between 5% - 95% failures is termed

as the intermediate state. For the 14-node network, the transition is sudden, in the sense,

that the network is intact up to the value of α approximately equal to 0.45 (corresponding

to 45% increase in load on all the nodes), and then completely disintegrates as the load

is increased beyond this value of α. Similarly, the transition for the 30-node network is

abrupt. In case of both, 14-node and 30-node networks, the transition occurs close to 45%

of load increase. The occurrence of the point of transition depends, to a certain extent, on

the topology of the network and its size. For the 57-node network, a transition phenomenon

is seen, but at an earlier stage than the 14-node and 30-node networks. For the 300-node

network, transition occurs around 34% of simultaneous load increase. Thus, the common

characteristic observed in these results is the threshold phenomenon. A transition threshold

is present for each network below which the network is intact or in the normal working state,

and beyond which a considerable damage to the network is seen in terms of the fraction of

links remaining.

To further test the occurrence of the threshold phenomenon, we generated synthetic

power grid networks, using the properties of the real grids, and the algorithm used in96.

Power grids are critical infrastructure, and hence little data is publicly available. Synthetic

networks of 50-, 100-, 200-, and 400-nodes were generated to complete the tests. The syn-

thetic networks are randomly generated, and hence, it is necessary to perform the tests on

many instances of every network. As a result, we generated 100 instances of each of the

synthetic networks. Similar to the procedure for the IEEE test networks, the synthetic net-

works were also subjected to continuously increasing load, by a factor of α. The simulations,
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using the Overload Cascade model, were repeated for different values of α between 0 and

1 in steps of 0.1, and the results were plotted in the graph shown in Figure 3.2. Similar

to the case of IEEE networks, a threshold phenomenon is observed in the case of synthetic

networks also. Since these generated networks are random, the point of transition for each

network of the same size will change. As a result, the final fraction f of failed links for every

α is recorded by averaging over the values of f obtained for the each of the 100 instances

of a particular network under consideration. Table 3.1 indicates the average value of αc, at

which the transition occurs, for each of the synthetic networks. Figure 3.2 shows results of

the cascading effects in the synthetic networks, thus confirming the presence of the threshold

phenomenon.

Table 3.1: Average value of αc for the synthetic networks

Network(N) Transition point αc

50 0.19
100 0.17
200 0.195
400 0.160

3.3.2 Effect of Random Fluctuations on the Dynamics of the
Power Grid

Random perturbations can occur in the grid for several reasons. If these random fluctuations

are small, their effect may not be felt. However, if the fluctuations are considerable in

magnitude, they can cause many undesirable effects on the functioning of the grid, including

the initiation of a cascading failure. As an example, random perturbations can occur due

to the incorporation of renewable distributed generators (DGs), such as wind turbines and

solar panels, in the grid.

In order to implement a random load variation, a two-step procedure is followed: a ran-

dom variable vector Xi is generated for each node i of the network under consideration, and

a value σ between 0 and 1 is selected to be used with the random variable vector to produce
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(a) 50 bus (b) 100 bus

(c) 200 bus (d) 400 bus

Figure 3.2: The effect of load growth on the synthetic networks of sizes 50, 100, 200, and
400 nodes, is represented in this figure. The networks are randomly generated, therefore, 100
instances of each network are considered and the results shown in the figure are averaged
over the 100 instances of the network under consideration. The load is increased by an
amount α between 0 and 1 as represented on the x-axis. The average fraction f of tripped
links corresponding to each α is plotted on the y-axis. It is seen that a threshold exists at
the critical point, in this case also, below which the network is intact or in normal working
condition, and beyond which it approaches a breakdown state. All the networks go through
an intermediate state before complete breakdown.
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the fluctuations, as shown in equation 3.4. If Li
new is the new value of load/generation for

each node i of the network under consideration, and Li is the corresponding original value,

the new value, after the introduction of random fluctuation is calculated using the following

equation:

Li
new = Li ∗ [1 + (σ ∗Xi)], i = 1, 2, ..., N (3.4)

where N is the number of nodes in the network and σ changes in steps of 0.1.

As an example, consider the IEEE 14-node network. A random variable vector X

for this network would be of size 14, to match with the number of nodes in the network,

one random variable for each node. We generate 100 such vectors of random variables

for each of the IEEE networks of size 14, 30, 57, and 300 nodes. The value of σ ranges

between 0 and 1, and changes in steps of 0.1. For each network, random variable vector,

and sigma, the fraction of links tripped, f , is recorded. The flow dynamics are regulated

by the Overload Cascade model in conjunction with the DC Power Flow model, and a link

is tripped if it exceeds the capacity assigned to it. For the IEEE networks, the fraction of

failed links corresponding to each σ is obtained by averaging over the number of random

variable vectors, which is 100 in this case. Figure 3.3 shows the results of the simulations

for the different IEEE test networks. It can be noticed from the figure that the transition

becomes much smoother, as compared to the load growth scenario, and no obvious threshold

is seen. Moreover, for the random fluctuation case, it can be seen that the value of f for σ

= 1 does not reach complete breakdown in the examined range of σ. The graphs show an

increasing trend and if the range of σ is expanded, it may be possible to see the networks

approaching a breakdown state. In the case of random fluctuations, f depends not only on

σ, but also on the selected random variable vector. In general, the introduction of random

fluctuations smooths out the transition, thus causing a gradual change in the operational

state of the network.

Similarly, in Figure 3.4, results for introduction of random load fluctuations in the
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synthetic networks of sizes 50, 100, 200, and 400 nodes are shown. In this case, the networks

are randomly generated and 20 instances of each network are used. Each of these instances

is subjected to 20 generated random variable vectors and final results of f corresponding

to each σ are computed by averaging over the number of instances of the network as well

as the number of random variable vectors. It can be observed in Figure 3.4 also that the

networks do not reach complete breakdown in the examined range of σ. They show an

increasing trend, in general, and may reach a state of complete breakdown if the range of σ

is extended. These graphs illustrate that the transition for random fluctuations is smoother,

unlike the transition for load growth, for the IEEE and the synthetic networks.

3.3.3 Effects of load growth and random fluctuations on large
networks - Polish grid

The Polish grid has been used to test the effect of load growth and random fluctuations,

in order to observe the qualitative behavior of a large network under different scenarios.

The Polish winter-off-peak grid, available at141, is a large grid with 2746 nodes and 3505

links. The Polish grid is an example of a real network, with realistic values of loads and

impedances. This network is part of the national high-voltage power grid of Poland, and the

data is collected and used by Polish transmission system operators. This network is used

to test the effect that its large size can have on its behavior, with respect to load growth

and random fluctuations. The results of applying the two scenarios on the Polish grid are

shown through the graphs in Figure 3.5.

Figure 3.5(a) shows that, as expected, increasing all loads in the grid causes an abrupt

breakdown, indicating the presence of a threshold. All the loads in the grid were increased

by a factor α ranging between 0 and 1, and changing in steps of 0.001. It can be seen

that the critical transition point for load growth scenario arrives much sooner for the Polish

grid, as compared to both, IEEE test networks and synthetic networks. One of the possible

reasons for the early transition is the large size of the network. Figure 3.5(b) shows results

of introducing random fluctuations in the Polish grid. Random fluctuations were generated
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(a) 14 bus (b) 30 bus

(c) 57 bus (d) 300 bus

Figure 3.3: The effect of random fluctuations on the IEEE 14-, 30-, 57-, and 300-node
networks is shown in this figure. The relative strength of the random fluctuation depends on
the random variable vector and the value of σ used. A set of 100 different noise configurations
are used with σ ranging between 0 and 1. The number of links failed must be averaged to
account for each of the 100 random variable vectors, and hence, the figure represents the
average value of f for each value of σ. An important characteristic of this figure is the
vanishing threshold. The transition in this case becomes much smoother, as compared to the
case of load growth. Also, a complete breakdown is not reached for the examined range of σ.
The graphs show an increasing trend and if the range of σ is expanded beyond 1, it may be
possible to see the networks approaching a breakdown state.
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(a) 50 bus (b) 100 bus

(c) 200 bus (d) 400 bus

Figure 3.4: The effect of random fluctuations in synthetic networks of size 50, 100, 200,
and 400 nodes is shown in this figure. In this case, in addition to the random variable
vectors, there is randomness in the networks also. Hence, the final fraction of links failed, f
is averaged, not only based on the 20 instances of the network under consideration, but also,
on the 20 random variable vectors. In this figure also, it can been seen that the transition is
smoother, no definite threshold is visible, and f is less than 1 for the examined range of σ,
with the graphs showing an increasing trend, in general.
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using the same procedure as described previously, using 100 different realizations of random

variable vectors with different values of σ ranging between 0 and 1 and increasing in steps

of 0.01.

It can be observed from Figure 3.5(b) that the transition is abrupt even in the case

of random fluctuations for the Polish grid, with 2746 nodes. In this case, a threshold

phenomenon can be seen. One main difference between this network and the previous

networks that were subjected to random load fluctuations, is the size of the network. This

leads us to the understanding that the fragility of the grid may increase with increasing size.

In previous scenarios, a threshold was not seen for random fluctuations, but it is evident in

the case of the 2746-node Polish grid.

3.4 Discussion

The work in this chapter analyzes the effect of load growth and random fluctuations on

IEEE test networks, synthetic networks, and the large Polish grid. The analysis indicates

that blackouts due to line overloads may follow a threshold phenomenon. A specific transi-

tion point is evident in case of load growth for all the networks. Such a transition becomes

smoother for random fluctuations and no specific threshold can be seen. However, for large

systems such as the Polish grid, a threshold is observed even in the case of random fluctua-

tions, indicating that large systems may be more fragile. This result implies that, although

it is beneficial to create large systems by interconnection of grids, these interconnected net-

works1,2 experience a risk of cascading failures, as the fragility of a system may increase

with its size.

Further more, the system does not reach a complete breakdown in the case of random

fluctuations, for any of the networks, besides the Polish grid, in the examined range of

random fluctuations. The graphs show an increasing trend, in general, and if the range of σ

is expanded beyond the examined range, the networks would probably experience complete

breakdown at a later stage. Both the situations, load growth and random fluctuations, can
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(a) Polish grid load growth

(b) Polish grid random load fluctuations

Figure 3.5: The effect of load growth and random fluctuations for a large network, the 2746
bus Polish grid (off-peak configuration, winter 2003-2004) is shown in this figure. Fig. 3.5(a):
Continuous load growth by a factor of α causes the network to break down completely after
a threshold. This threshold arrives very early, as compared to the other networks which
underwent the same experiment, and this early breakdown is possibly a characteristic of large
networks. Fig. 3.5(b): Every point in the graph corresponds to 100 different realizations of
random variable vectors that were used to produce the random fluctuations, in combination
with σ. The transition is abrupt, unlike the occurrence of a smooth transition for the other
networks subject to random fluctuations. Again, the large size of the network is a possible
reason for the presence of a threshold in the case of random fluctuations in the Polish grid.
This experiment indicates that the fragility of the grid may increase with size.
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be regarded as realistic situations, the former indicating continuous increase in demand, and

the latter suggesting an instance such as presence of renewable distributed generation in the

network. However, the power grid is a complex system with complex flow dynamics. Several

other scenarios are possible and can be modeled besides the two scenarios, load growth and

random fluctuations, that were considered in this chapter. The power grid exhibits different

critical behaviors under different conditions and it is not easy to predict or conclude the

type of behavior the grid would exhibit under a particular condition. More scenarios must

be simulated and tests must be conducted in order to get a deeper understanding of the

dynamic behavior of power grid networks under different stress conditions.
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Chapter 4

Mitigation Strategies - Intentional
Islanding

4.1 Introduction

Power grids were designed for the purpose of transfer of electricity from the generators

to the consumers, and were engineered keeping in mind the ever-increasing demand for

electricity. However, in modern times the grid has reached a point where it has become

very important to allow for its expansion in terms of technology and intelligence. Since the

last few years, power grids have become increasingly interconnected. There are exchanges

of large amounts of power over very long distances among different utilities to satisfy the

increasing demand from the customers. The current setup is making the grid less stable

and more vulnerable to intentional and unintentional failures. The system reliability and

stability has been affected. As a matter of fact, there have been many occurrences of

cascading failures in the recent past. Defined by the North American Electric Reliability

Corporation (NERC), a cascading failure is “the uncontrolled loss of any system facilities or

load, whether because of thermal overload, voltage collapse, or loss of synchronism, except

those occurring as a result of fault isolation” as mentioned in34. In simple words, when

one failure leads to successive failure of other elements of the grid, leading to huge losses,

the process is called a cascading failure. Some strategies such as reciprocal altruism60,

changing the dynamic equilibrium of the system to a point of self-organized criticality13,64,
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and different load shedding schemes96,134,10,50 have been suggested in the past for reducing

the effects of cascading failures.

Intentional islanding of the power system is one such strategy. Intentional islanding

can be defined as the intentional splitting of the grid into separate controllable parts or

islands, each with its own independent generation. Intentional islanding may be accompa-

nied by some load shedding in order to balance the generation and load in the sub-systems.

Intentional islanding can be very helpful in isolating failures or localizing them within the

region where they occurred and preventing them from spreading throughout the system.

Several techniques have been proposed previously for islanding in power systems, such as

those based on spectral analysis, slow coherency, ordered binary decision trees as well as

optimization.

Intentional islanding does not take place every time there is a failure. We maintain

a list of vulnerable links, the links which if disconnected, can cause a huge damage to the

system. If any of these vulnerable links happen to be the initial failure, islanding must be

initiated. Using the vulnerability index proposed in138, we also know the order in which the

links fail. Hence, whenever a vulnerable link fails as a secondary failure to a non-vulnerable

link, the islanding scheme must be activated. An example of an islanding scheme for a small

test network with 12 nodes and 21 links is shown in Figure 4.1.

In this dissertation, we propose two methods for intentional islanding, based on network

partitioning, and derived from the Fast Greedy algorithm86 and the Bloom algorithm113.

The original Fast Greedy and Bloom algorithms are based on the community detection

quality function called modularity3,89,47,90. Since the concept of islanding is similar to

that of detecting communities, by integrating the power flow model, we can make these

algorithms realistic for islanding in power grids. We call these new algorithms as Modified

Bloom and Modified Fast Greedy methods. Both the methods have a polynomial running

time, but the Modified Bloom approach is faster. In general, these methods are an efficient

balance between the amount of load shedding and the algorithm scalability. Both have been
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(a) Island 1 (b) Island 2 (c) Island 3

(d) Combined island structure

Figure 4.1: The structure of three islands that belong to an example power grid with 12
nodes and 21 lines. Sub-figures 4.1(a)-4.1(c) show individual islands in different colors.
These islands are connected with their topological complements by the dotted lines. Sub-
figure 4.1(d) shows the combined island structure with each island represented by the corre-
sponding color of the islands shown in sub-figures 4.1(a)-4.1(c) at the top.

tested on the IEEE 57-, 118- and 247-node networks, besides the 14-node and the 30-node

networks. The 247-node network is a modification of the IEEE 300-node network and has

been obtained as discussed in96.

The island boundaries can be computed offline for both the techniques and can be

known to the operators in advance. Whenever a failure occurs, the predetermined set of

transmission lines in the region where the island is needed, can be disconnected. Hence, the

strategies can be implemented in real time. The results of islanding of the two methods is

compared with the results of an optimal islanding scheme presented in137.

4.2 Related Work

Since the past few years, the problem of intentional islanding is being studied as an im-

portant approach for isolating failures in the power grid108,77,125,136,104,44,55. It has been

proposed by some researchers as an appropriate control action to protect the system when
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large disturbances take place. It is also considered to be an effective method to contain

disturbances within a smaller area. Islanding leads to a faster restoration of the system to

its initial state, as shown in108,77. Different methods have been suggested to define islanding

based on slow coherency generator grouping combined with graph theory, ordered binary

decision diagrams (OBDD), linear and non-linear optimization as well as spectral methods.

While slow coherency methods are among the first few methods proposed for islanding,

spectral methods are fairly new.

The slow coherency methods are based on grouping the generators according to slow

coherency and then trying to find the minimum cut-set from the interface network between

the generator groups using some search techniques108,52,125,53,136,139. The other category

of methods deals with the ordered binary decision diagrams approach104,66. For large-scale

power networks, islanding using OBDD is an NP-hard problem. Hence, different two and

three phase variants of this strategy have been suggested.

The authors of44 and118 present a mixed integer programming approach for optimal

power grid islanding, both with the objective of minimizing load shedding only within the

island. The authors of44 also discuss connectivity constraints so that the nodes within each

island are connected. As opposed to the techniques mentioned before, these two optimization

techniques can form multiple islands at the same time.

The authors of55 have used spectral matrix methods for islanding. They used successive

bisection techniques based on the signs of the Laplacian eigenvalues to partition the grid.

Cluster optimization using simulated annealing is suggested in56. In82, separation of a power

system into islands based on the second largest eigenvalue of the graph of the power system,

also known as the algebraic connectivity, is presented. The authors have also shown that

the computation time of this method has a linear relationship with number of transmission

lines used for partitioning. However, these methods suffer from the drawback of the absence

of a power flow model which makes them unrealistic for use within a power system.

While the above are the more common approaches for islanding in power grid, some
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researchers have also proposed the use of global search meta-heuristics such as genetic algo-

rithm77 and particle swarm optimization75 for islanding as computationally efficient meth-

ods. A few of the above methods can form only two islands at a time, although the procedure

can be repeated to obtain more islands.

4.3 Optimal Intentional Islanding

The authors of97 have presented an MILP formulation to find the optimal islands when a

failure takes place in any part of the grid. The number of islands is represented by nisl, and

the island index is k such that k = 1 . . . nisl. The number of islands is given as an input to

the formulation and is mainly limited by the number of generators present in the network.

The power grid topology is denoted to be G, the island topology to be gk, the group of links

that interconnects the island with its topological complement to be lk, and the topological

complement of the island to be Tk = G\{lk ∪ gk}. They denote s to be the index that

distinguishes between the two partitions of the power grid due to the existence of an island

k i.e. for island k, s = 1 denotes the island topology (gk) and s = 2 denotes the island

topological complement (Tk). For a given power grid, islands are constructed such that the

amount of generation/load change from normal operation and the island size are minimized

as follows

Minimize A
i=N∑
i=1

k=nisl∑
k=1

| poweri − dki |

+B
i=N∑
i=1

j=N∑
j=1

k=nisl∑
k=1

µk,1
i,j (4.1)

where N is the number of nodes, A and B are optimization parameters.

The first part of the objective function aims at minimizing the load shedding in the island

and the complement with poweri being the original load of each node i and dki being the

new load after partitioning the grid, whose value is decided based on the formulation and
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the constraints. The smaller the difference between the original and the new values, the

better is the result of islanding. The links which interconnect the different islands are chosen

by the optimization such that the removal of those links does not cause additional damage

to the network in terms of load loss. The second part of the objective function aims at

minimizing the size of the island to limit the failure to a small region of the network. The

variable µ counts the size of the island in terms of number of links. The subscript i, j refers

to the link i − j and the superscript k, 1 refers to the presence of the links within (s = 1)

the island k. The values of parameters A and B can be used to decide the dominant part

in the optimization

The islanding topology and power flow constraints are discussed in detail in Appendix B.

Optimal islanding is computationally expensive for larger systems. The running time to

solve the constraint programming problem for IEEE 14-node and 30-node networks is 45

minutes and 3.5 hours, respectively. To overcome this problem of scalability, we propose

two methods based on modularity for islanding of power grids.

4.4 Complex Networks based Methods for Islanding

A community is usually a set of well connected nodes that are less connected to the remaining

network. If we think of a power grid to be a network of nodes connected by transmission

lines, we can use the power flow model incorporated into a community detection algorithm to

“partition” the grid or to form islands such that this island formation leads to minimum load

shedding in the system. Out of the numerous community detection algorithms, we select

two among the faster and more efficient algorithms for island formation: Fast Greedy86

and Bloom113. We modify these two algorithms by incorporating the power flow model and

imposing some conditions to adapt them to a power grid.

In general, modularity is a quality function that determines the quality of the partitions

on a scale of 0 to 1, with 1 being the best value. For a general network, modularity can be
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defined as:

Q(P,G) =
1

2L

N∑
i=1

N∑
j=1

(aij −
didj
2L

)δcicj , (4.2)

where N is the number of nodes and L is the number of edges in the graph G; aij represents

the existence of an edge between nodes i and j, di represents the degree of node i or the

number of nodes connected to node i. P is the partition of the graph that divides it into

communities by the quality measure Q. The communities of nodes i and j are represented

as ci and cj respectively. The δ-function is 1 if nodes i and j are in the same community (ci

= cj), otherwise it is 0.

The objective of the two methods presented in this chapter is to minimize the amount

of load shedding in the system (both island and complement) and is given as:

J = Minimize
N∑
i=1

nisl∑
k=1

| poweri − dki | (4.3)

This objective is the same as the first part of the objective function of the optimization, as

shown in Equation B.1. However, we do not impose any restrictions on the size of the islands

as described in the second part of Equation B.1 because any such restriction would only

reduce the quality of the islands and result in higher load shedding. Thus, the size of the

islands is decided by the partitioning methods themselves. Similar to the optimization, the

number of islands is limited by the number of generators in the network and the modified

partitioning methods make sure that every island has at least one generator. Both methods

are polynomial in complexity, but the Bloom method is faster than the Fast Greedy.

4.4.1 Islanding using Modified Fast Greedy Method

The original Fast Greedy algorithm is an example of an agglomerative algorithm that begins

with a number of partitions equal to the number of nodes in the network and merges these

partitions depending on the benefit to the objective. For a power grid with N nodes, we

begin with n′isl = N islands and a n′isl×n′isl benefit matrix ∆J from Equation C.1. Thus, at

the beginning, each node is an individual island. According to the algorithm, the pairwise
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benefit ∆Jr,s = Jnew − Jold is computed for every pair of islands Islr and Isls. Jnew is the

value of the objective after combination of islands and Jold is the value of the objective in

the current state. This benefit is computed for each potential pair of islands by a linear

programming problem for minimal load shedding, which is basically the objective of the

problem. Thus, the pair of islands that gives the largest decrease in the objective value or

in other words, the minimal load shedding, is merged. This merged pair is now an individual

island and can be merged with any other islands to continue the process. After every merge,

the benefit matrix ∆J shrinks in size and must be recomputed. One of the requirements

that this method must meet is the presence of at least one generator in every island. The

required number of islands, nisl <= ngen, where ngen is the number of generators in the

system, is given as an input. Once there are ngen islands, if nisl = ngen, the process stops.

However, if nisl < ngen, the process of “superislanding” begins by combining two or more

of these ngen islands to reach the final goal of attaining nisl islands after which the process

stops. The process of superislanding also happens in the same way as above. The size of

∆J is the same as the final number of islands nisl at the end of the process.

The original Fast Greedy approach has a running time complexity of O(N2logN) and

the incorporated linear programming load shedding scheme adds a complexity of O(N3).

Thus, this method is polynomial in complexity with a running time of O(N5logN). The

algorithm for this method is shown in Appendix C.

4.4.2 Islanding using Modified Bloom Method

The Bloom type method begins with a few seed nodes and the islands grow from these seeds

by adding adjacent nodes one at a time. In the original Bloom algorithm, the selection of

the initial seeds is a stochastic process. However, in the case of islanding, we imposed all

the generators in the network to be the initial seeds so that the number of islands at the

beginning is equal to ngen. This step is to make sure that every island has at least one

generator. The nodes which are covered by the islands are said to be in the “covered” set
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and the other nodes are said to be in the “uncovered” set. Thus, at the beginning, all the

generator nodes are a part of covered. We maintain a set of “boundary” nodes for each

island. These boundary nodes have at least one connection to the island they are boundary

nodes for, and they may become a part of that island. Again, the required number of

islands, nisl should be less than or equal to ngen. All the islands are grown in parallel from

the initial seeds, as opposed to growing one community at a time in the original Bloom.

This is because the original Bloom has only one stochastically chosen seed node at a time

whereas the modified Bloom for islanding has multiple seeds nodes determined right at the

beginning. Similar to the Fast Greedy approach, this approach also computes a benefit

matrix ∆JN×ngen after every merge which expresses the change to the objective value if any

adjacent node merges into an island, using the linear programming problem for minimal

load shedding. The node that adds the maximum benefit to the objective function (or the

minimal load shedding) is chosen to merge with the island and moves from the boundary

set to the covered set and its adjacent nodes move to the boundary set from the uncovered

set. The nodes that already are a part of one island cannot be a part of any other island to

avoid any overlapping of islands. The algorithm continues until all the nodes of the system

are covered.

The original Bloom approach has an average running time of roughly O(N) and a worst

case running time of roughly O(N2). The linear programming contributes O(N3). Thus,

the average running time of this approach is roughly O(N4) and the worst case running

time is roughly O(N5). Bloom type approach is computationally more efficient than the

Fast Greedy approach and in general, gives better results for load shedding. The algorithm

for this method is described in Appendix C.

Few different partitioning methods have been described in literature for partitioning of

power grids as mentioned before. However, to the best of our knowledge, no other network

partitioning algorithms using modularity have been applied previously for this purpose.
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The two approaches - Fast Greedy and Bloom, are very promising algorithms for network

partitioning, in terms of complexity and are among the faster and highly efficient algorithms.

4.5 Results and Comparison of the Different Methods

of Intentional Islanding

Optimal islanding has been tested on the IEEE 14-node and the 30-node networks and

the two modularity-based methods have additionally been tested on the 57-, 118- and 247-

node networks31. Results and comparisons are shown through tables and graphs. The

original 30-node network has only 2 generators, but to make it more suitable for islanding,

7 other generators were introduced in the system and the generation was equally divided

among these 9 generators. Those nodes in the 30-node network that were carrying no

load were converted into the 7 additional generator nodes. Similarly, the original 247-node

system has 1 large generator and 7 other small distributed generators. The generation was

equally divided among all these 8 generators and then island formation was carried out.

These islanding techniques would be very suitable for the future grid which would have the

incorporation of more distributed generation.

Table 4.1 shows the average percentage of total load that remains after islanding in the

14-node network, using each of the three strategies. There are 2 generators in the system

and hence, there are 2 islands. The number of islands is represented by nisl. The results

show that the islands formed by each of the two modularity-based methods are exactly

matching with the islands formed by the optimization. Also, as indicated in the table, the

techniques can preserve around 86% of the load on average per island, in the system. The

island structure is shown in Figure 4.2. The circles represent the nodes and the connections

between them are the transmission lines. The big circles represent the generator nodes and

the small circles are the load nodes. Every island is represented by a separate color and

nodes belonging to the same island have the same color.

Optimal islanding on the 30-node system, with 9 generators and 5 islands, is a more
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Figure 4.2: Optimal islands for the 14 node system. The two islands are represented in a
separate color and all nodes having the same color belong to the same island. The big circles
represent the generators and small circles represent the load nodes.

Table 4.1: Average percentage per island of total load remaining in the 14-node system by
optimization and the two modularity approaches for 2 islands

Average percentage of total load remaining
nisl Optimal Bloom

type
Fast Greedy
type

2 86.28 86.28 86.28

challenging case. Hence, we explain this case in detail. We apply the optimal islanding

strategy on the IEEE 30-node system with 5 islands as the input. The topology of the

islands and their topological complements are shown in Figure 4.3. The dotted lines (- - -)

are the transmission lines that interconnect every island with its topological complement.

Sub-figures [a]-[e] represent individual islands connected to their topological complement

and sub-figure [f] represents the complete 5-island structure. Every island is represented

by a separate color and all nodes of the same color belong to an island. The gray colored

nodes belong to the topological complement of the island in each sub-figure. The big circles

represent the generators and the small circles represent the load nodes.

As shown in Figure 4.3, every island has at least one generator and two transmission

lines to guarantee the island connectivity. In addition, the test results show that due to line

48



capacities, a few nodes experience load shedding but majority of the loads do not need any

load shedding. Hence, the power generation is reduced at some generators. Another reason

that a generator reduces its output power is that the total load in the island becomes less

than its normal output generation. Table 4.2 shows the results for the 30-node system with 9

generators and 5 islands. The optimization can converge up to at most 5 islands. The table

indicates that the optimization performs better than the modularity-based methods in this

case. Each merging decision made by these two methods is irreversible such that the local

improvement at one step might not prove to be the best choice eventually and might lead

to situations such as the one with the 30-node system where these methods give solutions

which are below the optimal. Refinements to these methods might help to improve their

performance to give results closer to optimal solution. Nevertheless, still approximately

60% of the load is maintained using these approaches which is a substantial gain when

compared to the collapse of the entire system. Figure 4.4 represents the different islanding

structures for the optimal, Bloom type and, the Fast Greedy type approach respectively.

This difference in the islanding structures is an indication of the difference in the amount

of load shedding by the different methods.

Table 4.2: Average percentage per island of total load remaining in the 30-node system by
optimization and the two modularity approaches for 5 islands

Average percentage per island of total load remaining
nisl Optimal Bloom

type
Fast Greedy
type

5 93.84 60.65 59.94

In Tables 4.3, 4.4, 4.5, we show the results for the 57-,118- and the 247-node systems

for the two modularity-based methods. Since the optimization is not scalable for networks

much larger than 30-nodes, further tests are done using only the Fast Greedy and Bloom

approaches.

For the 57-node network, both the methods perform very well and preserve 95-96%

of the load in the network. There are 2 generators in this network and so the tests were
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(a) Island 1 (b) Island 2 (c) Island 3

(d) Island 4 (e) Island 5 (f) Combined optimal island
structure

Figure 4.3: The optimal islanding solution for the 30-node system. The system has 9 gen-
erators and 21 load nodes. Every island is represented by a separate color and all nodes
having the same color belong to the same island. The big circles represent the generators
and small circles represent the load nodes. The sub-figures 4.3(a)-4.3(e) represent the 5 in-
dividual islands and the sub-figure 4.3(f) represents the combined optimal islanding solution.
The generators are only shown in the respective island in sub-figures 4.3(a)-4.3(e).
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(a) Optimal (b) Bloom type (c) Fast Greedy type

Figure 4.4: The 5-island scenario for the 30-node system using optimization (a), Bloom
type approach (b) and the Fast Greedy type approach (c). The difference in the island
structure from these three approaches leads to different amounts of load shedding in the
system.

carried out for 2 islands. We did not add more generators to this network as in the earlier

case of the 30-node network because we wanted to test the approaches on the original net-

work, without altering the existing generation and load. In the previous case of the 30-node

network, modifications were made to fully exploit the possibilities with the optimization

problem and to see the limits to which it may be used.

Table 4.3: Average percentage per island of total load remaining in the 57-node system by
the two modularity approaches for 2 islands

Average percentage per island of total load remaining
nisl Bloom type Fast Greedy

type
2 95.42 95.91

For the 118-node system, we tested the two approaches for different number of islands

from 2 to 6. For each case, we see that the Bloom type approach performed better than the

Fast Greedy type and the two approaches, in general, showed a good performance. We also

see that the Bloom type method has the minimum load shedding with 3 islands whereas the
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Fast Greedy type has its best results with 6 islands. Figures 4.5 and 4.6 show the 6 island

structures for the 118-node system with the Bloom and the Fast Greedy type approaches

respectively. Again, different islands are represented by different colors and the big circles

represent the generator nodes.

For the 247-node system, once again, in general, Bloom type method performs better

than the Fast Greedy type. The best case for the Bloom type approach is the one with 2

islands in which it preserves about 68% of the system load. On the other hand, the Fast

Greedy type performs the best with higher number of islands with about 59% system load

preserved for 5 and 6 islands.

Table 4.4: Average percentage per island of total load remaining in the 118-node system by
the two modularity approaches for different number of islands

Average percentage per island of total load remaining
nisl Bloom type Fast Greedy

type
2 83.98 77.52
3 86.36 77.43
4 84.81 78.31
5 83.76 78.76
6 83.03 78.81

Table 4.5: Average percentage per island of total load remaining in the 247-node system by
the two modularity approaches for different number of islands

Average percentage per island of total load remaining
nisl Bloom type Fast Greedy

type
2 68.44 55.74
3 63.36 43.87
4 59.89 56.93
5 57.92 59.56
6 56.65 59.33
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Figure 4.5: The 6-island scenario for the 118-node system using Bloom type approach.
Every island is represented by a separate color and all nodes having the same color belong
to the same island. The big circles represent the generators and small circles represent the
load nodes.

Figure 4.6: The 6-island scenario for the 118-node system using Fast Greedy type approach.
Every island is represented by a separate color and all nodes having the same color belong
to the same island. The big circles represent the generators and small circles represent the
load nodes.
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4.5.1 Island Characterization - Modified Fast Greedy and Modi-
fied Bloom Methods

As can be seen from the results above, the modified Bloom algorithm gives a better solution

for the islanding structure than the modified Fast Greedy algorithm. This can be said

because it not only is less complex and gives results in shorter time, but also the amount of

load shedding that is needed with the modified Bloom is less than that needed with modified

Fast Greedy. However, it may be possible to obtain much more useful information about

the effectiveness of the methods and the stability of the islands through their structural

properties. Tables 4.6 and 4.7 show the characteristics of the different islands of the 118-node

network with the modified Fast Greedy and modified Bloom, respectively. The 118-node

network has 6 islands with both the methods. However, with the modified Bloom method,

one of the islands is an individual node, which is both a generator as well as a load. The

characteristics of this island have not been considered in this analysis.

Table 4.6: Characteristics of islands created by modified Fast Greedy method for the 118-
node network

I1 I2 I3 I4 I5 I6
Clustering coefficient 0.238s 0 0.11 0 0.13 0

Diameter 11 6 6 2 5 5
Radius 6 3 3 1 3 3

Characteristic path length 5.162 2.636 2.949 1.5 2.618 2.356
Average node degree 3 2.167 2.154 1.5 2 2

Table 4.7: Characteristics of islands created by modified Bloom method for the 118-node
network

I1 I2 I3 I4 I5
Clustering coefficient 0.154s 0.205 0.208 0.208 0.123

Diameter 8 3 6 5 10
Radius 4 5 3 3 5

Characteristic path length 3.436 2 2.705 2.487 5.138
Average node degree 2.154 2.2 2.308 2.615 2.912

As seen from the tables, the general observation for all islands created by each of the two

methods is that the clustering coefficient of all the islands by the modified Bloom method

54



is higher than the clustering coefficient of the islands created by the modified Fast Greedy

method. In some of the islands by Fast Greedy, the clustering coefficient is 0, indicating that

the nodes of the islands created by the modified Bloom method are better connected to each

other. The diameters and radii of the individual islands of the modified Bloom are smaller

than the individual islands of the modified Fast Greedy. This indicates that the nodes in the

modified Bloom type islands are closer to each other. The most important of the properties

is the characteristic path length. A shorter characteristic path length indicates that it is

easier to reach the distant nodes. As far as th characteristic path length is concerned, the

results are mixed for the two methods. There is no consistency as such, some of the modified

Bloom islands have a shorter characteristic path length, while some of the modified Fast

Greedy islands have a shorter characteristic path length. As observed, the modified Bloom

islands seem to have a more robust structure than that of the modified Fast Greedy due to

the closeness of the nodes in the former method, but it is not easy to say which of the two

methods is better without performing the vulnerability analysis to test the efficiency of the

schemes.

4.6 Discussion

Intentional islanding in power systems has become an important subject of research because

there is a need to find efficient solutions for the increasing frequency of blackouts. We

explored two different schemes for intentional islanding in power grid - 1) Modified Bloom

and 2) Modified Fast Greedy approaches, both based on modularity, and compared their

results with that of an optimal islanding scheme. The optimization formulation considers

two parts of the system - the island and its topological complement - and works towards

minimizing the load shedding in both parts of the system. It is capable of forming multiple

islands and is a very efficient scheme for small networks, maintaining about 80-90% of the

load after islanding. However, due to its exponential complexity, this method cannot be

used for large networks.
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We developed two approaches based on modularity, with the DC power flow model

incorporated into them, for islanding in medium and large networks. The Bloom type and

the Fast Greedy type methods were tested for the 57-, 118- and the 247-node networks,

in addition to the 14- and the 30-node networks. These approaches also had the objective

of minimizing load shedding, both in the island and the complement. They, in general,

performed efficiently for all these systems, maintaining, at an average, at least 50% of the

total load in the network.

It was imposed that every island must have at least one generator for independent

survival. With more distributed generation, there would be better islanding opportunities

and these methods will be well suited for the power grid of the future.

The characterization of islands obtained using the two methods does not throw much

light on the quality of the islands, and do not give an indication of whether the islands formed

by one method are more robust than the islands formed by another method Vulnerability

analysis of the grid, with island formation based on both the methods must be performed

to understand which of the two methods gives more robust islands.
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Chapter 5

Mitigation Strategies - Controlled
Distributed Generator Placement in
Transmission Grid based on Electrical
Measures

5.1 Introduction

According to132, distributed generation refers to small electric power generators, typically

ranging in capacity from 15 to 10,000 kW, which can be located on the utility system,

at the customer site, or at a location not connected to the grid. Distributed generation

can be conventional, such as combined cycle turbines, small diesel generators, combustion

turbines, or renewable, such as wind turbines, and solar generation. In this chapter, we

propose the use of distributed generators (DGs) in the transmission system as a strategy

to mitigate cascading failures. While the use of DGs is common in the distribution system,

little research has been conducted in the field of complex networks regarding the use of DGs

in the transmission system and the mitigation of cascading failures.

Although distributed generators present their own challenges, their importance contin-

uously increases because of their advantages, such as providing local power, thus preventing

power transport over long distances, which, in turn, also improves grid reliability. This work

focuses on placement of conventional distributed generators in the transmission system. Re-

57



newable energy sources can be treated as a separate area of study. The placement and sizing

of DGs is done based on the relative importance of nodes in the system, obtained using two

electrical measures: electrical centrality and electrical node significance.

5.2 Related Work

A lot of work has been done in the area of DG placement in the distribution network51,116,78,5,109.

Among the few studies on the placement of DGs in the transmission system,40 discusses the

impact on grid dynamics if the grid is powered using DGs. The authors, in this work, assert

that different dynamics can be seen on the grid by varying the fractions and distributions

of DGs in the transmission system. They use a dynamic model of the power transmission

grid, called the OPA model22, to perform this analysis. They also mention that improper

distribution and sizing of the DGs may lead to increased vulnerability of the grid instead of

increased robustness. In112, the authors discuss that the stability and reliability of the grid

improves with the use of conventional DGs close to the loads, but if an increasing penetration

of stochastic renewable energy sources is present in the grid, these energy sources introduce

erratic power inputs into the grid, thereby causing it to fail with a sharp transition.

The authors of81 use a topological approach to discuss how the interconnection of

several DGs in the transmission system causes a structural change in the grid and, therefore,

how properties of the system would change. The authors used indices, such as characteristic

path length, degree and degree distribution, clustering coefficient, and betweenness to decide

how the interconnection of DGs affects topological characteristics of the grid. They have

also used weighted graph indices and have suggested new indices based on structure and

operational conditions of the grid for the evaluation of structural properties of the grid

with incorporated DGs. Similar analysis, based on certain indices, is conducted by the

authors of21. They proposed three vulnerability indices, Structural Vulnerability Index

(SVI), Contingency Vulnerability Index (CVI), and Operational Vulnerability Index (OVI),

which were used to evaluate topological vulnerability, in order to identify the vulnerable
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component in the grid and determine operational states of the network, respectively.

The main contribution of the work described in this chapter is to propose a simple

yet effective method for the placement of DGs in the transmission system, based on two

electrical measures, electrical centrality and node significance, and show that this placement

of distributed generators enhances the robustness of the power grid network and prevents

cascading failures. Vulnerability analysis is performed before and after the placement of the

DGs using the DC Power Flow model49 and the Overload Cascade model95. Results of our

method are also compared with results of an existing method, called Method II here, for

simplicity. Our method gives better results than Method II, for robustness improvement in

terms of load retained in the network after a link failure, for all possible cases.

5.3 Topological and Electrical Structure of Power Grids

As discussed previously, extensive research has been conducted in vulnerability analysis of

power grids in the field of complex networks. However, most work in this area has considered

only topological properties of the network. While analyzing a complex network, such as a

power grid, it is important to consider flow dynamics of the network. Topological measures,

such as, node degree and betweenness cannot capture all properties of the electrical network.

However, the field of complex networks and topological analysis provide useful insights into

network structure. Hence, topological measures, combined with electrical measures and

power flow models, can be used for the study of power grid networks.

Previous studies on power grid have described it as a scale-free network, while other

studies have claimed that it is a small-world network9. However, these claims are based on

topological properties. In reality, structure of a power grid does not fit into any particular

category of network models exactly, as is the case with most real-world networks. In58,

the authors distinguished between the topological and electrical structure of power grids,

by means of a measure called electrical centrality. Additional information on electrical

centrality is given in the following subsection.
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5.3.1 Electrical Centrality

Electrical centrality is a measure used in topological analysis of power grid networks, which

differentiates electrical structure of the grid from its topological structure. Electrical central-

ity uses the impedance matrix, or the Zbus matrix of the transmission system, to determine

which nodes are more electrically central to the system and indicates them as candidate

locations for the placement of DGs. The measure was introduced in58. Several discussions

have occurred regarding physical topology of the power grid. However, the electrical topol-

ogy of the grid indicates that power grids possess “electrical hubs”, thus, indicating that

some nodes in the power grid have strong electrical connections with other parts of the

network. This phenomenon is very different from the physical topology of power grids as

their average degree is usually between 2 and 5, indicating the absence of hubs. As men-

tioned, electrical centrality is calculated using the Zbus matrix, which in this dissertation is

computed as the inverse of the Ybus matrix or the admittance matrix of the system. The

Ybus matrix is usually sparse, and, hence, the Zbus matrix is obtained as a dense matrix.

Every element in the matrix represents an equivalent electrical distance between two nodes.

Figures 5.1and 5.2 show the physical and electrical topology of the 57-node network, and

Figures 5.3 and 5.4 show the physical and electrical topology of the 118-node network, re-

spectively31. In Figures 5.2 and 5.4, the size and color of the nodes indicate their relative

importance in the network, with electrical centrality decreasing as the size decreases. In

Figure 5.2, the large green nodes represent nodes with the highest centrality, or the highest

number of electrical connections in the network. Similarly, for Figure 5.4, the largest green

nodes represent the highest centrality nodes, followed by the cyan and the purple nodes.

The small red nodes are the nodes with very small electrical centrality.

Since the Zbus matrix is a non-sparse, dense matrix, there are N(N−1)
2

different electrical

connections possible. However these figures show the most important L connections to

match with the number of connections in the physical topology. For example, the 57-node

network has 78 links in the physical topology. There are 1596 different electrical connections
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Figure 5.1: This figure represents the physical structure of the 57-node network, showing the
physical connections between the nodes. This is the actual topology of the 57-node network
and the average node degree for this network is between 2 and 3. There are no “hub” nodes
present in the network.
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Figure 5.2: The electrical topology of the 57-node network is represented in this figure. The
relative electrical importance of the nodes is shown by their size and color. The big nodes in
green are the most electrically central nodes having the maximum electrical connections. The
remaining small nodes in red are much less connected, electrically, to the rest of the network.
The Zbus matrix, from which the electrical centrality is derived, is a non-sparse matrix and
the possible number of electrical connections is N(N−1)

2
= 1596, for the 57-node network.

Only L = 78 strongest connections are shown in this picture, where L is the number of
links in the physical topology. This picture gives a completely different set of connections, as
compared to the physical topology, and this picture shows the existence of “electrical hubs”
in the network.
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Figure 5.3: This figure represents the physical structure of the 118-node network, showing
the physical connections between the nodes. This is the actual topology of the 118-node
network and the average node degree for this network is between 2 and 3. There are no
“hub” nodes present in the network.
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Figure 5.4: The electrical topology of the 118-node network is represented in this figure.
The relative electrical importance of the nodes is shown by their size and color. The big nodes
in green are the most electrically central nodes, followed by the slightly smaller nodes in cyan,
and then in purple. The remaining small nodes in red are much less connected, electrically,
to the rest of the network. The Zbus matrix, from which the electrical centrality is derived, is
a non-sparse matrix and the possible number of electrical connections is N(N−1)

2
= 6903 for

the 118-node network. Only L = 179 strongest connections are shown in this picture, where
L is the number of links in the physical topology. This picture gives a completely different
set of connections, as compared to the physical topology, and this picture shows the existence
of “electrical hubs” in the network.
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possible. However, the strongest 78 electrical connections are shown in order to match with

the number of connections of the physical topology.

5.3.2 Electrical Node Significance

The authors of135 have proposed a metric to quantify the robustness of power grid networks

with respect to cascading failures by targeted attacks. This robustness metric is a product

of different values, one of which is electrical node significance. The concept of electrical node

significance ranks nodes as more or less significant, depending on the quantity of power that

is distributed by them to the rest of the network. In terms of power systems, electrical node

significance is defined as follows:

δi =
Pi∑N
j=1 Pj

where Pi is the total power distributed by node i and N is the number of nodes in the

network. This equation indicates that if node i distributes a large quantity of power and a

link which carries power out of this node is disconnected, a portion of the large quantity of

power being delivered by node i must be redistributed to other parts of the network, thus

leading to further failures. Consequently, node i is electrically significant. Significant nodes

for the 57- and the 118-node networks are shown in Figures 5.5 and 5.6.

5.3.3 Method for Placement of DG in the Transmission System

Correct placement of DG in the transmission system is of strategic importance to improve

robustness of the grid. Incorrect placement may make the grid more vulnerable to failures or

attacks. Two measures were utilized, electrical centrality and electrical node significance, in

order to locate nodes where DGs can be placed. The size of the DGs depends on the relative

importance of the nodes. Our experiments suggest that the use of electrical centrality or

node significance alone does not fulfill the purpose of the analysis. However, when both

metrics are used together, significant improvement is noted in the results.

The first step of the procedure is to calculate electrical centrality and node significance
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Figure 5.5: The electrical significance of nodes for the 57-node network is shown in this
figure. The relative importance of the nodes is shown by their size and color. The biggest
node in green is the most significant node, followed by the slightly smaller node in cyan, and
then purple. All the other small yellow nodes are the common nodes of the network, with
very small values of electrical significance.
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Figure 5.6: The electrical significance of nodes for the 118-node network is shown in this
figure. The relative importance of the nodes is shown by their size and color. The biggest
node in green is the most significant node, followed by the cyan node, purple nodes, and red
nodes. All the other small yellow nodes are the common nodes of the network with small
values of electrical significance.
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of every node in the network. This calculation gives a clear indication of which nodes are

more important nodes in the network and offers a candidate set of locations where DGs can

be placed. We observed that for all the test networks, most nodes indicated by electrical cen-

trality differed from those indicated by electrical node significance. This shows that different

methods can indicate multiple possibilities of locations for DG placement. Individually, they

can produce slightly satisfactory results, but with a combination of these methods, the qual-

ity of results can be enhanced. The electrically central nodes occur together in groups. For

small networks such as the 30- and the 57-node networks, all electrically central nodes were

found in a single group of adjacent nodes. For large networks, few distinct groups of electri-

cally central nodes were obtained, as indicated by Fig. 5.4. However, electrically significant

nodes were spread throughout the networks.

In this work, we consider that all generation is obtained through DGs. For small

networks, we selected only the most central node from the set of electrically central nodes

since placing excess generation in one area can actually make the grid more vulnerable rather

than robust. Remaining generators were selected from among different electrically significant

nodes. Generators which were a part of the original network always appeared in the set of

candidate locations for DG, either as electrically central nodes or as electrically significant

nodes. However, depending on the relative importance of these nodes as compared to all

other nodes in the candidate set, their generation was either increased or decreased. Deciding

the size of the DGs in terms of percentage of total generation was an exhaustive process

within the final set of locations selected from the candidate set. The final set consisted of

4-20 locations for DG placement, depending on the size of the network.

Vulnerability analysis was performed using the DC Power Flow model and the Overload

Cascade model. Results showed that the placement of DGs obtained by the above procedure

significantly improved the robustness of the power grid against cascading failures and more

load could be saved as compared to the original network. In order to show the effectiveness of

this method, results of this method were compared with results of another method proposed
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in140, referred to as Method II for simplicity. The method and results are explained in the

following sections.

5.4 Comparison with Method II

The authors of140 have recently proposed a method based on complex networks theory, to

place DGs in the transmission grid and then assess vulnerability of the power grid network.

This work discusses the placement of DG in the transmission grid using complex networks

theory, for the purpose of improving robustness of the grid. One primary difference be-

tween this work and our method is that the authors of140 consider the power grid to be a

weightless graph, indicating that they do not make use of the impedances/admittances of

the transmission lines. The other significant difference is the absence of a power flow model

in Method II.

In Method II, the authors make use of efficiency and global efficiency metrics, slightly

modified to include load and generation information for analysis of the power grid. They

use the following definition of efficiency:

ei =
1

PDi
nG

∑
j∈VG

PGj

2dij−1
(5.1)

where ei is the power supplying efficiency of the entire network to the load node i, PDi

is the active load of node i, PGj
is the active capacity of generation node j, dij is the

length of the shortest path between the load node i and the generation node j, VG is the

set of generators, and nG is the total number of generation nodes in the network. This

equation indicates that if the shortest path between a node and a generator is long, the

power supplying efficiency to that node will be reduced. The authors used the IEEE 57-

node network to test their method, and they calculated the shortest path lengths between

all load nodes and all generators, followed by the calculation of power supplying efficiencies

of each load node using the above equation. They selected five nodes with the lowest power

supplying efficiencies to be locations for DG placement. The locations and sizes of the
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already-existing generators was kept the same and five new DGs of a fixed size were added

to the network. They also used complex networks based methods for vulnerability analysis.

However, as compared to our method, we used the locations for DGs indicated by Method II

and performed vulnerability analysis with the power flow and cascade model. Comparison

shows that for the 57-node network, our method saves an overall of 8.7% more load than

Method II. Detailed analysis of results are given in the next section.

5.5 Results

The results of the vulnerability analysis of the 57-node network without DGs, with DGs

placed using the electrical measures, and with DGs placed using Method II are shown in

Figures 5.7, 5.8, 5.9. The X-axis of each figure represents the link id from 1-78, and the

Y-axis represents the total load of the system as a per unit (p.u) quantity. The figures

are divided into four parts horizontally. The first partition is created at the 25% mark of

the total load on the Y-axis. The second partition is created at the 50% mark, and the

third partition is created at the 75% mark. These partitions allow to specify the range in

which the load can be retained when a particular link is disconnected from the network.

The same results are also represented in the form of histograms in Figures 5.10, 5.12, ??

for more clarity and finer information. The X-axis on the histograms represent the total

load remaining in the network (pu) and the Y-axis represents the frequency of links in a

particular load range. Thus, the histograms give an information about how many links in

the network retain the amount of load in a given load range on being the initial failure.

Vulnerability analysis is performed using Overload Cascade model96, in which every

link is characterized by a finite capacity. The capacity of each link is proportional to the

power the link carries when the system is in a stable state. Whenever the power in a

link exceeds the capacity of the link, the link is considered failed and is disconnected from

the network. Then, the power carried by this link is distributed among other links in the

network, depending on the flow dynamics, which are based on the power flow model.
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Figure 5.7: This figure represents the results of vulnerability analysis for the 57-node net-
work in the absence of distributed generation. The x-axis represents the link id and the
y-axis represents the load remaining in the network, in p.u, when the corresponding link on
the x-axis fails. The y-axis is divided into 4 parts: The first partition is created at the 25%
mark of the total load, the second partition is marked at 50% load, and the third partition
is created at the 75% load level. These partitions help to understand the range in which the
load can be retained when a particular link fails. From this figure, it is seen that the load
remaining on the network for the vulnerable links is, in general, in the 25-50% range, and
for some links, it is also in the 0-25% range. For the non-vulnerable links, failure does not
spread across the network and close to 100% of the load can be retained.
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Figure 5.8: This figure represents the results of vulnerability analysis for the 57-node net-
work with DGs placed using the two electrical measures. The x-axis represents the link id
and the y-axis represents the load remaining in the network, in p.u, when the corresponding
link on the x-axis fails. The y-axis is divided into 4 parts: The first partition is created at
the 25% mark of the total load, the second partition is marked at 50% load, and the third
partition is created at the 75% load level. These partitions help to understand the range
in which the load can be retained when a particular link fails. From this figure, it can be
observed that there is a considerable increase in the amount of load that can be retained
even due to the failure of vulnerable links. More number of points move into the 75-100%
range, few points move into the 50-75% range as compared to no points in this range for the
original network without DGs, and some points also move up into the 25-50% range from
the 0-25% range, indicating an overall increase in the robustness of the grid. A few points
have shifted into the lower-mot partition, but this number is not significant as compared to
the gain in the overall load.
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Figure 5.9: This figure represents the results of vulnerability analysis for the 57-node net-
work with DGs placed using Method II. The x-axis represents the link id and the y-axis
represents the load remaining in the network, in p.u, when the corresponding link on the
x-axis fails. The y-axis is divided into 4 parts: The first partition is created at the 25% mark
of the total load, the second partition is marked at 50% load, and the third partition is created
at the 75% load level. These partitions help to understand the range in which the load can
be retained when a particular link fails. From this figurre, it can be seen that the state of
the system does not change much as compared to the original network, without DGs. Few
points move up into the 75-100% load range, but at the same time, few points move down
in the 0-25% range as well. Just as in the case of the original network without DGs, there
are no points in the 50-75% load range. This performance of Method II can be attributed to
the fact that, although the methods considers the presence of loads and generation, it does
not consider the presence of a power flow model. The flow distributio is performed using
the concept of shortest path, and hence, the results are different from those predicted by this
method, when used with a power flow model.
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Figure 5.10: This figure represents the distribution of links that retain load in a given load
range in the 57-node network without DG. On the X-axis, the total load remaining in the
network as a result of an initial failure is represented in pu. The number of links falling in
a given load range represents the number of links that retain the amount of load in that load
range when they are the initial failure.
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Figure 5.11: This figure represents the distribution of links that retain load in a given
load range in the 57-node network with DG placed in the network using electrical measures.
On the X-axis, the total load remaining in the network as a result of an initial failure is
represented in pu. The number of links falling in a given load range represents the number
of links that retain the amount of load in that load range when they are the initial failure. It
is seen that there is an increase in the number of links in the last load range in this network
as compared to the network without DG. As represented by the vulnerability analysis graphs,
there is a shift from the left to the right side of the histogram.
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Figure 5.12: This figure represents the distribution of links that retain load in a given load
range in the 57-node network with DG placed in the network using Method II. On the X-axis,
the total load remaining in the network as a result of an initial failure is represented in pu.
The number of links falling in a given load range represents the number of links that retain
the amount of load in that load range when they are the initial failure. It can be seen that
although the number of links in the 75-100% load range in the vulnerability analysis is seen
for MII as compared with the system without DG, this number is split into the last 3 bins of
the histogram and represents an overall increase in the range.
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The range in which the load is saved for different links by various methods for the 57-node

network is shown in Table 5.1.

The results of vulnerability analysis of the 118-node network are also shown in Figures 5.13

and 5.14 and these results are not available for Method II. The histograms for the 118-node

network without and with DG using electrical measures are shown in Figures 5.15 and 5.16.

The range in which the load is saved for different links with and without the presence of the

long link for the 118-node network are shown in Table 5.2.

Table 5.1: Comparison of the results of vulnerability assessment of the 57-node network
without DGs, with DGs based on electrical measures, and with DGs based on Method II

Load range Frequency of links in a load range
(Percent) No DG DG based on Elec. Meas. DG based on M II

0− 25 7 8 13
25− 50 34 14 26
50− 75 0 10 0
75− 100 37 46 39

Table 5.2: Comparison of the results of vulnerability assessment of the 118-node network
without DGs, and with DG placement based on electrical measures

Load range Frequency of links in a range
Percent No DGs DGs based on electrical measures

0− 25 101 44
25− 50 0 5
50− 75 1 41
75− 100 77 89

As shown in Table 5.1, the number of links, the removal of which retains only 0-25% of

the load is quite high for Method II as compared to the size of the network. For the 25-50%

of the load range, our method has fewer number of links than Method II and the original

network. However, the number of links in the 50-75% range is 0 for both, the original

network and Method II. Our methods improves the load level for certain links which were

in the 25-50% range in the original network, up to the 50-75% range, clearly showing that

the system performs significantly better in the case where DGs are placed on nodes that
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Figure 5.13: This figure represents the results of vulnerability analysis for the 118-node
network in the absence of distributed generation. The x-axis represents the link id and the
y-axis represents the load remaining in the network, in p.u, when the corresponding link on
the x-axis fails, with partitions at 25%, 50%, and 75% of total load. From this figure, it is
seen that all the points are either in the 0-25% range or in the 75-100% range, indicating that
a vulnerable link causes a complete breakdown of the 118-node network and a non-vulnerable
link retains almost all the load in the network.
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Figure 5.14: This figure represents the results of vulnerability analysis for the 118-node
network with DGs placed using the two electrical measures. The x-axis represents the link id
and the y-axis represents the load remaining in the network, in p.u, when the corresponding
link on the x-axis fails, with partitions at 25%, 50%, and 75% of total load. In this figure,
it is easily noticeable that many points from the 0-25% load range move up into the 50-75%
load range, with a few points also moving into the 75-100% and in the 25-50% load range.
This indicates that a substantial reduction in the level of vulnerability of the network occurs
due to the placements of DGs in the network, using the electrical measures.
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Figure 5.15: This figure represents the distribution of links that retain load in a given load
range in the 118-node network without DG. On the X-axis, the total load remaining in the
network as a result of an initial failure is represented in pu. The number of links falling in
a given load range represents the number of links that retain the amount of load in that load
range when they are the initial failure.
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Figure 5.16: This figure represents the distribution of links that retain load in a given load
range in the 118-node network with DG placed in the network using electrical measures.
On the X-axis, the total load remaining in the network as a result of an initial failure is
represented in pu. The number of links falling in a given load range represents the number
of links that retain the amount of load in that load range when they are the initial failure. It
is seen that there is an increase in the number of links in the last load range in this network
as compared to the network without DG. As represented by the vulnerability analysis graphs,
there is a shift from the left to the right side of the histogram.
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are selected based on electrical measures. Similarly, Figures 5.10 and 5.12, and Table 5.2

demonstrate that the robustness of the 118-node network with DGs is much higher than the

network without DGs. Table 5.2 shows a significant change in the number of links whose

removal brings the load in the 0-25% range. Also, a significant increase in the number of

cases where the remaining load on the network is in the 50-75% or in the 75-100% range is

present. We observed that an overall improvement of 19.69% in robustness is achieved by

placement of DGs for the 118-node network. Results for this network by Method II are not

available.

5.6 Discussion

In this chapter, we have proposed a simple yet effective method based on electrical measures

in order to place DGs in the transmission system as a strategy to prevent cascading failures.

The presence of DGs enables power supply to the loads locally, without the need to supply

power over long distances, thereby improving reliability, reducing transmission and distri-

bution costs, and reducing system losses. The DGs are placed using two measures, electrical

centrality and electrical node significance. Electrical centrality differentiates between the

topological and electrical structure of the power grid, highlighting “electrical hubs” in the

system which are the high electrical centrality nodes. Node significance selects more signif-

icant nodes in the system by their power distribution ability in the system. The method

involves choosing a correct combination of the most important nodes in the network and

placing DGs with sizes according to the relative importance of those nodes. Results indicate

that the placement of DGs by this method improves the robustness of the 30-node network

by 5%, that of the 57-node network by 9%, and improvement in the 118-node network is

approximately 20%. The method also performs better than Method II in all cases for the

57-node network. Results for other networks by this method are not available.
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Chapter 6

Mitigation Strategies - Addition of a
Link in the Transmission Grid based
on Spectral Distance Method

6.1 Introduction

As can be seen from the discussion before, even a small change in the structure of the network

causes the properties of the network to change. Besides the physical properties of a network,

another set of properties exist, called the spectral properties of the network. The spectrum

of a network is the entire range of eigenvalues that are obtained from the matrices of the

network, such as the adjacency matrix and the Laplacian matrix. Just like the physical

properties of the networks, spectral properties also hold a lot of useful information about

the network. There is a set of eigenvectors associated with the spectrum of any network, one

eigenvector corresponding to each eigenvalue. Sometimes, it is more useful to look at the

spectral properties of the network for certain kinds of analyses, including robustness analysis.

The second smallest eigenvalue of the Laplacian matrix is called algebraic connectivity and

it is used a lot in the robustness analysis of complex networks, due to its close connection

to the node and link connectivity metrics. In this chapter, we describe the utilization of the

spectral properties of the power grid network to devise a method to find the location where

a link must be placed in the network, in order to enhance the robustness of the network.

The idea is to check if the reduction in the average spectral distance of the network helps
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to make it more robust, and provide a method for the reduction of the average spectral

distance by means of strategic placement of an additional link in the network.

6.2 Related Work

Topological characteristics of complex networks have often been linked to the robustness of

the network, with respect to random failures as well as intentional attack. Several researchers

have shown that by adding long range links in the network, the robustness of the network

to attacks can be improved131,98,85. The main property of the networks considered in all of

these works is long range links. Long range links contribute to a shorter average path length,

also known as the characteristic path length, which in turn contributes to the robustness of

the networks.

The topology of real networks like power grids traditionally did not include long links.

This was partially because of the power losses that were caused if the length of the trans-

mission line was increased beyond a certain threshold, and partially because the topology

of the grid was decided based on geographical, cost, and other constraints. However, with

the deregulation of the power industry, and the need to supply power over longer distances,

there has been progress in the direction of adding long AC and DC transmission lines in

power systems79,80.

In the complex networks domain, several researchers have proposed methods to improve

the robustness of networks by slight topological modifications to the network. One of the

significant works in this direction is presented in121 in which the authors try to maximize the

algebraic connectivity of the network by link addition. Algebraic connectivity, which is the

second smallest eigenvalue of the Laplacian matrix of a network, has been studied extensively

because of its importance for connectivity, a crucial measure for network robustness127,126,72.

The authors of121 have demonstrated two ways of adding a link to the network to optimize

the algebraic connectivity, one based on topological metrics and the other based on the

spectral metrics of the Laplacian. The first method to increase the algebraic connectivity
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is to add the link between a minimum degree node and a random other node, which is

not connected to the minimum degree node because the algebraic connectivity is limited

by the lowest degree nodes. In the second method, they use the Fiedler vector, which is

the eigenvector corresponding to the second smallest eigenvalue of the Laplacian and select

nodes such that the absolute difference between two of its elements is maximized. These

two elements correspond to the nodes between which the link should be connected. The

authors test these strategies on random and scale free network models.

In4, the authors try to optimize the algebraic connectivity by link rewiring instead of

addition of a new link. In fact they extend the analysis to rewiring of multiple edges to

obtain the maximum increase in the algebraic connectivity, or in other words, to obtain an

optimal value for the algebraic connectivity. This rewiring procedure is carried out in two

steps: first, to add a link which would increase the algebraic connectivity the most, and

second, to remove a link which would reduce the algebraic connectivity the least.

Another link rewiring technique is described in119. The authors use the example of

the World Transportation Network and propose a strategy to improve the robustness of the

network by a small number of interventions considering the cost constraints. They have

devised a smart method to simply swap the link connections, based on node degree of the

node and its neighbors. They do so in order to keep the node degrees of all nodes the same

before and after rewiring. A series of such successive swaps lead to an improvement in the

robustness of the network.

The authors of120 use link addition as a means to obtain optimal controllability of the

network. The find the set of links to be added with their locations using the concept of

maximal matching. Besides achieving their objective of optimizing controllability of the

network, they also show how addition of links affect the properties of the complex network

such as clustering coefficient, degree-degree correlation, and network heterogeneity. Simi-

larly, the authors of71 use link addition as a method to enhance controllability of networks.

They achieve this by calculating the degree ratio, which is calculated using the out-degree
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and the in-degree of nodes. They calculate the node degree ratio of every node and connect

the lowest ratio node to the highest ratio node.

The main contribution of this chapter is to determine the location of addition of a link

in the transmission system, using the spectral characteristics of the Ybus matrix of a power

grid network, in order to enhance the robustness of the power grid network. We consider

the eigenvectors corresponding to the second, third, and fourth smallest eigenvalues. We

consider the addition of a single link in the network, since there is a cost associated with

every additional element in the network. The advantage of using more than one eigenvalue

is that it gives a very clear picture about the nodes which are spectrally distant from most of

the nodes in the network. This gives us a candidate set of links, one out of which is selected

as the link to be added to the network. We compare our results with those obtained by

adding a link using algebraic connectivity, as well as by random addition of links, and

find that the spectral distance method performs the best out of the three methods of link

addition, for improving the robustness of the grid.

6.3 Ybus matrix and Laplacian

A power grid is a real network with electrical properties such as load or demand on the

nodes, the impedances of the links, and the power flow in the network, and it is important

to consider these characteristics, even when performing an analysis from another perspective.

The spectral properties of the Laplacian matrix, combined with the DC power flow model,

effectively capture all the properties necessary to make it a realistic mitigation strategy for

cascading failures in power grids. In fact, the impact of the complex power flow dynamics

of the power grid are apparent in the results of this work.

The Laplacian matrix of a general complex network is equivalent to the Ybus matrix of

the power grid. The Laplacian matrix L of a network is an NxN matrix, where N is the

number of nodes in the network, and is defined as:

L = D − A (6.1)
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where, D is the diagonal matrix of the node strengths and A is the adjacency matrix of

the network. The diagonal matrix D consists of the total node degree of the node for

an unweighted network on the diagonals, with all other elements being 0. For a weighted

network, the diagonal elements are the total strength of the nodes, depending on the type

of network and weight. In general, the diagonal elements are the sum of their corresponding

rows in the adjacency matrix. For an unweighted network, the adjacency matrix A has an

entry of 1 if the link exists and 0 if the link does not exist. If the network is weighted, the

1’s are replaced by the respective weights on the existing links.

For a power grid, the Ybus matrix is formed in a similar way. The Y matrix is like the

adjacency matrix. Whenever a link exists, the corresponding entry in the Y matrix is the

impedance of that link. If a link does not exist, the corresponding entry is 0. Thus, the

Y matrix may also be called as the admittance matrix of the power grid. The Ybus matrix

is formed by placing the negative sum of the rows of the Y matrix as the corresponding

diagonal element.

Thus, the Ybus matrix can be written as:

Y kl
bus = Gkl + jBkl, k 6= l

= −
∑
k 6=l

(Gkl + jBkl), k = l

The Ybus matrix can be computed by a standard procedure given in49. The use of this

matrix ensures that Kirchoff’s laws are properly taken into account. The inverse of this

matrix is called the impedance matrix or the Zbus matrix. However, the Ybus matrix as it

is, is a singular matrix and cannot be inverted. For this purpose, a very small admittance

of the order of 10−2 is added to each of the diagonal elements of the Ybus matrix. In the

sense of power systems, it accounts for a small admittance from the node to the ground.

Thus, the Laplacian matrix for the power system is slightly different from that of the normal

definition of a Laplacian matrix. The impact of this is seen on some of spectral properties

of the Laplacian, such as the smallest eigenvalue of the Ybus matrix is not 0 but a very small

number. However, the final results of the location of the long link are not affected by this
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change. In order to keep the system realistic, we have considered the presence of the ground

admittances in this dissertation.

6.4 Procedure to Find the Location of the New Link

As mentioned above, the spectral properties of the Ybus matrix are utilized to determine the

location of placement of the long link in the power grid network. The difference in this work

from the previous work is the use of eigenvectors corresponding to the second, third, and the

fourth smallest eigenvalues, instead of only the second smallest eigenvalue, better known as

the algebraic connectivity. This was done in order to get finer information about the location

where the link might be placed. In this method, we calculate the spectral distance between

nodes in 3 dimensions, consisting of the second, third, and the fourth smallest eigenvectors.

If there are N nodes in the network, the spectral distance is calculated as:

spectral distance =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 i, j = 1, 2, .., N ; i 6= j

where x, y, and z are the elements of the eigenvectors corresponding to the second, third,

and the fourth smallest eigenvalues of the Ybus matrix, respectively. The spectral distance is

calculated between every pair of nodes, i and j, in the network to give N + (N − 1) + (N −

2) + ...+ 1 =
∑N

i=1 i distances. These distances are then arranged in the ascending order of

magnitude. When this ordering of distances takes place, it can be easily observed that, in

particular, there are one or two nodes that have longer spectral distances to the rest of the

network. This is very useful information that is obtained by the use of three eigenvectors,

instead of one. One advantage of this information is that it gives a small subset of links, of

size N − 1, that must be tested to select one link that gives a substantial improvement in

robustness of the network against link failures. The second advantage is that it is very easy

to select locations for the addition of more than one links, if desired. However, as mentioned

before, in this chapter, we have considered the addition of only one long link, due to the

cost constraint
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Once we know which node is spectrally the most distant node in the network, we select

the subset of the links which have the spectrally distant node as one of the extreme nodes,

and perform the vulnerability analysis of the network. This is done by removing one link at

a time and estimating the damage to the network in terms of loss of load. The vulnerability

analysis is done using the DC Power Flow model49 and the Overload Cascade model96. The

results of the vulnerability analysis after link addition are compared with the results of the

vulnerability analysis of the original network, without any additional link. All the links in

the candidate set improve the robustness of the network as compared to the original, but

the one that gives maximum benefit, in terms of lad retention after failures, among these

candidate links, is selected as the additional link in the network. The results of vulnerability

analysis with the selected link are also compared with the vulnerability analysis by link

addition through algebraic connectivity and by random link addition method.

We also compared the properties of the networks before and after link addition, both

by spectral distance method and by algebraic connectivity method. The results of this

comparison are summarized in Tables 6.2 and 6.3. We observed that the selected link did

not give the shortest possible characteristic path length, but it was between that of the

original network and the network with the shortest characteristic path length. The link,

the addition of which, gives the shortest characteristic path length, did not improve the

robustness of the network as much as the addition of the selected link with the spectrally

distant node as one of its extremes did, and this can be attributed to the complex power

flow dynamics of the power grid network. The numerical results and analysis are discussed

in more detail in the next section.

6.5 Results

The results of this chapter are presented in two parts: The vulnerability analysis and the

structural properties. The vulnerability analysis gives a numerical evaluation of the robust-

ness of the different tested networks and the structural analysis shows how the change in
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the properties of the network before and after addition of the long link.

We used the DC Power Flow model to consider the flow dynamics of the networks

and the Overload Cascade model for the vulnerability analysis. The main focus is on link

failures, where every link is characterized by a finite capacity. Whenever a link goes beyond

its capacity, it is considered as a failed link and removed from the network, with its power

being shifted to the other links in the network. The power carrying capacity of a link is

mainly a function of the inverse of its impedance. Lower the impedance, higher is the power

carrying capacity.

After the new link obtained by spectral distance method was added to the network,

the results were obtained by removing each link from the new network, one at a time, and

performing the vulnerability analysis. The same analysis was performed after link addition

by algebraic connectivity method. There can be R = N(N−1)
2
−L− (N − 1)− 1 possibilities

for connecting a random link in the network, where N(N−1)
2

is the total number of links for

a fully connected network, L is the number of links already present in the original network,

N − 1 is the size of the candidate set of links tested using the spectral distance method and

1 link is suggested by algebraic connectivity. Thus, the number of random link connections

possible is given by R. This set can be very big, especially as the network size increases.

Hence, we selected 10% of the links from R, which have a high spectral distance. Figures 6.1

and 6.2 show the location of addtion of the long link on the physical topology of the 57- and

the 118-node networks, respectively. These networks have links represented in two colors,

red and green. The green links indicate the non-vulnerable links and the red links represent

the vulnerable links, before the new link is added to the network. Vulnerable links are those

the failure of which cause more than 10% loss in the total load of the system.

The results of the vulnerability analysis of the 118-node network are shown in Fig-

ures 6.3, 6.4, and 6.5, each of these figures showing the vulnerability analysis without the

additional link, with the link based on spectral distance method, and with the link placed

by algebraic connectivity method, respectively. The x-axis shows the link ids of the differ-
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Figure 6.1: This figure shows the location of the additional link in the 57-node network. The
additional link is shown as the dotted blue line. The addition of this link reduces the average
spectral distance of the network, which, in turn, improves the robustness of the network. The
red and green links represent the vulnerable and the non-vulnerable links, respectively, before
the link is added. Vulnerable links are those the failure of which cause more than 10% loss
of total load in the network.
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Figure 6.2: This figure shows the location of the additional link in the 118-node network.
The additional link is shown as the dotted blue line. The addition of this link reduces the
average spectral distance of the network, which, in turn, improves the robustness of the
network. The red and green links represent the vulnerable and the non-vulnerable links,
respectively, before the link is added. Vulnerable links are those the failure of which cause
more than 10% loss of total load in the network.
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ent links in the network, and the y-axis represents the total load remaining on the network

(in p.u.) when a corresponding link on the x-axis is disconnected. The first observation

is that the average load remaining on the network increases by approximately 10% after

the addition of the long link by the spectral distance method. The figures show that the

long link added to the network using the spectral distance method improves the robustness

of the network more than both, the link added by algebraic connectivity, as well as the

random additions. For the 30 node network, we see that the robustness of the network with

link addition by spectral distance was 8% higher than that of the original network, and it

was 3.67% higher than the algebraic connectivity method. Similarly, we see that for the 57

node network, the robustness by the spectral distance method was 10.46% higher than the

original, whereas it was only about 1.66% better than the algebraic connectivity method.

Similarly, for the 118-node network, the improvement in robustness of the spectral distance

method was about 16% as compared to the original network as well as the algebraic con-

nectivity method. Figures 6.6, 6.7, 6.8 represent the histograms for the link distribution in

different load ranges for 118-node network without additional link, with link addition us-

ing Spectral Distance method and with link addition using Algebraic Connectivity method,

respectively.

Table 6.1 shows the characteristics of the 57-node network before and after the addition

of the long link, both using our method and using algebraic connectivity. Table 6.2 shows

the characteristics of the 118 node network.

Table 6.1: Characteristics of the 57-node network before and after the addition of long link
Original Spectral distance Algebraic Connectivity

Characteristic path length 4.954 4.853 4.726
Diameter 12 11 10
Average degree 2.737 2.772 2.772
Clustering Coefficient 0.122 0.122 0.122

For the 57-node network, we observe that the addition of the long link slightly reduces

the characteristic path length of the network from that of the original. For the 118-node
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Figure 6.3: This figure shows the results of vulnerability analysis of the 118-node network
without the additional link. The vulnerability analysis is performed by removal of each link,
on the x-axis, one at a time, and running the Overload Cascade model to record the final
percentage of load remaining at the end of the failure. The average load retained on the
network when the link failure simulation is done for every link in the network, is 45.12%
and it is indicated by the partition on the y-xis. It can be seen that the vulnerable links in
the network lead to a complete breakdown of the network

.

Table 6.2: Characteristics of the 118-node network before and after the addition of long
link

Original Spectral distance Algebraic Connectivity

Characteristic path length 6.309 6.156 6.261
Diameter 14 14 14
Average degree 3.034 3.051 3.051
Clustering Coefficient 0.165 0.164 0.165
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Figure 6.4: This figure shows the results of vulnerability analysis of the 118-node network
with the addition of a link, using spectral distance method. It can be seen that the average
load retained on the network increases to 54.8%, an increase of approximately 10% from the
network without the additional link. Also, a number of points move up, at a postion closer
to the average load, and some points move up closer to the 100% load level.
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Figure 6.5: This figure shows the results of vulnerability analysis of the 118-node network
with the addition of a link, using algebraic connectivity method. The figure indicates that the
results do not differ much from the results of the original network, without the additional link.
Also, the average load retained by the network by adding a link using algebraic connectivity
is 45.2%, close to the average load retention of the original network. This can be attributed
to the fact that the vulnerability analysis previously done in literature does not account for
the complex power flow dynamics of the network. When a power flow model is used, the
results are different, as indicated by this figure, from those mentioned in literature.
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Figure 6.6: This figure represents the distribution of links that retain load in a given load
range in the 118-node network without the additional link. On the X-axis, the total load
remaining in the network as a result of an initial failure is represented in pu. The number
of links falling in a given load range represents the number of links that retain the amount
of load in that load range when they are the initial failure.
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Figure 6.7: This figure represents the distribution of links that retain load in a given load
range in the 118-node network with additional link placed in the network using Spectral
Distance method. On the X-axis, the total load remaining in the network as a result of
an initial failure is represented in pu. The number of links falling in a given load range
represents the number of links that retain the amount of load in that load range when they
are the initial failure. It is seen that there is an increase in the number of links in the
last load range in this network as compared to the network without the additional link. As
represented by the vulnerability analysis graphs, there is a shift from the lower load ranges to
the middle and the higher ranges, indicating that some of the vulnerable links have become
less vulnerable due to the presence of the new link which provides alternate path for power
to flow from one node to the other.
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Figure 6.8: This figure represents the distribution of links that retain load in a given load
range in the 118-node network with additional link placed in the network using Algebraic
Connectivity method. On the X-axis, the total load remaining in the network as a result
of an initial failure is represented in pu. The number of links falling in a given load range
represents the number of links that retain the amount of load in that load range when they are
the initial failure. It is seen that there is not much difference in the state of the network from
the original network. This is because the original method, in literature, was implemented
without the inclusion of the power flow model. In the present work in this dissertation, the
Algebraic Connectivity method was used with the power flow model and results indicate that
the system remains close to the original system in this case.
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network, there is hardly any change in the network characteristics from the original with

either of the two methods. We also observe that the algebraic connectivity method or

random addition of a link may give us a shorter characteristic path length than obtained

by the spectral distance method, but this is attributed to the complex flow dynamics of

the power system. These selected links give a marginal decrease in the characteristic path

length but increase the robustness of the grid by a substantial amount. Some other links

which would give a much shorter characteristic path length might not be able to improve

the robustness as much.

Table 6.3 gives the average percentage of the load remaining on the network when there

is no additional link, with a link addition based on spectral methods, with a link addition

based on algebraic connectivity, and with many random link additions, for the 57- and the

118-node networks.

Table 6.3: Average load remaining on the 57- and 118-node network (in %) by link addition
based on different methods

Network No additional link Spectral distance Algebraic Connectivity Random
57 65.09 71.64 70.99 66.95
118 45.12 54.8 45.2 43.6

Figures 6.9and 6.10 represent the comparison of the vulnerability of the original network

with the new network (with an additional link by the spectral distance and the algebraic

connectivity methods) using the case of a single failure, for the 118-node network. Figure 6.9

represents the results for failure of link number 20 and Figure 6.10 represents the results for

link number 113 of the 118-node network, respectively.

6.6 Discussion

In this chapter, we propose a simple method based on spectral properties of the Ybus matrix

to improve the robustness of the power transmission grid against cascading failures. The

eigenvalues and eigenvectors of the Laplacian or the Ybus matrix hold a lot of important

information about the properties of the network. We use this information to our advantage
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Figure 6.9: This figure represents the simulation for a single link failure considering the
original 118-node network without an additional link, and the new 118-node networks, with
an additional link, placed using the spectral distance method and the algebraic connectivity
method. The link used for simulation is link 20. This is a vulnerable link, as it causes the
complete breakdown of the original network, when it fails. The different stages of cascade
that the original network goes through, are indicated by the dashed red line in the figure. The
x-axis represents the different stages, in terms of times steps, and the y-axis represents the
load remaining in p.u. The results of vulnerability analysis for the network with additional
link placed using algebraic connectivity is shown in the dotted black line. This network
performs equal to the original network, in terms of load retention for the first few steps, but
then it breaks down completely. The results of the network with the link addition by spectral
distance method are shown in the solid blue line. This new network is able to retain all the
load in the network, in spite of the failure of link 20, which was a vulnerable link in the
original network.
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Figure 6.10: This figure represents the simulation for a single link failure considering the
original 118-node network without an additional link, and the new 118-node networks, with
an additional link, placed using the spectral distance method and the algebraic connectivity
method. The link used for simulation is link 20. This is a vulnerable link in the original
network. The result of vulnerability analysis of the original network, new network with link
addition by algebraic connectivity, and new network with link addition by spectral distance
are shown in the dashed red, dotted black, and solid blue lines, respectively. In this case, it is
observed that algebraic connectivity performs almost equally as good as the spectral distance
method.
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and propose a method that involves addition of a link in the network, the location of which

is determined based on the spectral distance between the nodes of the network. We use

the second, third, and fourth smallest eigenvalues of the Ybus matrix to obtain information

about the nodes which are spectrally distant from most other nodes in the network, and

then select a link from the set of candidate links.

Algebraic connectivity, which is the second smallest eigenvalue of the Laplacian matrix,

and the eigenvector corresponding to it have been extensively used in the past for robustness

analysis since it is directly related to the connectivity of the graph. However, with the use

of higher order eigenvalues and eigenvectors, we show that the other components of the

spectrum also provide information, such as the spectral distance of a node from the other

nodes in the network.

The results indicate that the link introduced in the network by this method substantially

improves the robustness of the network as compared to the original network without the

new link. The method also produces better results from vulnerability analysis as compared

to the link addition by algebraic connectivity and random link addition. Even though the

location of the link placement may not be optimal, the improvement in robustness of power

grid networks is substantial. Thus, we achieve a proper balance between the simplicity of

the method and the effectiveness of the results.
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Chapter 7

Conclusions and Future Work

In this chapter, we finally discuss the conclusions of all the work that has been done as a

part of this dissertation, and discuss the scope for future work.

7.1 Conclusions

The operation of the power grid, which was designed almost a century ago, has changed a

lot in recent years due to increased demand, interconnections, increased power flow in the

system, and incorporation of intermittent distributed generators. We examined the state

of the power grid under two scenarios: Load growth causing the grid to reach its capacity,

and the incorporation of random fluctuations in the grid. Through simulations on the real,

realistic, and synthetic networks, we observed that in the load growth scenario, there comes

a critical point at which the grid breaks down with an abrupt transition. This critical point

is the threshold of load after which the network approaches a breakdown state. Depending

on the size and topology of the grid, it either goes to a complete breakdown immediately

or goes through an intermediate state in which a fraction of the links of the network is

disconnected, and it approaches a complete breakdown if load is increased any further. The

breakdown is smoother in the case of random fluctuations. There is no clear transition point

and the presence of a threshold is not apparent. Moreover, the IEEE and synthetic grids do

not reach a point of complete breakdown in the examined range of fluctuations. The graphs

show an increasing trend and if the range of fluctuations is expanded, it is possible to see

104



a complete breakdown of the networks. However, as the size of the system increases, the

sensitivity of the system to both load increase and random fluctuations may increase. The

presence of a threshold is evident in both the scenarios for the Polish grid. This indicates

that the fragility of the grid may increase with increasing size. Also, the 2746-node Polish

grid is the only real network used in the analysis. Further analysis and test scenarios are

needed to gain more insights and reach any conclusions on the dynamics of the power grid

network.

Considering the current status of the grid, preparation to reduce the effects of a cas-

cading failure is important. Intentional islanding can be a practical method to isolate faults

during times of emergency, thus mitigating cascading failures. Complex networks based

algorithms for community detection, Bloom and Fast Greedy, are utilized for island for-

mation in this dissertation. These algorithms have been modified to make them suitable

for the power grid. The results have been compared with an optimal strategy for island

formation. The complexity of the optimal islanding method is very high, and it can solve

IEEE systems up to 30 nodes only. Modified Bloom and Modified Fast Greedy algorithms

give sub-optimal results for islanding but can be give islanding solution for networks up to

thousands of nodes within seconds or a few minutes, depending on the network size and

number of islands required. Modified Bloom performs better than Modified Fast Greedy,

both in terms of time of execution (complexity) as well as load shedding. Both techniques

achieve their best results with different number of islands, indicating the importance of is-

land structure in determining the amount of load shedding. Island characterization reveals

that, while the islands created by the Modified Bloom method appear to be more robust,

due to shorter characteristic path length ensuring better connectivity of nodes, a vulnera-

bility analysis of islands formed by both methods will actually reveal the true efficiency of

both the islanding methods.

A method to prevent the spread of cascades due to generator failure is to provide the

load nodes access to multiple generators located close to the nodes. This is possible by the
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introduction of DGs in the transmission system. However, the locations where the DGs are

placed must be carefully selected, and also the size of DGs. Improper locations and sizes

can lead to more damage to the system than improving its robustness. In this dissertation,

DGs refer to conventional DGs, and their placement was done based on electrical centrality

and node significance measures. Electrical centrality differentiates between the electrical

and physical structure of the power grid showing that the grid actually contains “electrical

hubs”. Node significance decides the more significant node in the network by the node’s

ability to distribute power. Any single method did not bring significant improvement in

the system robustness. However, when the two methods were combined and used for DG

placement, there was a considerable improvement in the robustness, in terms of the amount

of load that could be retained in the network in the event of a failure, as compared to the

case without DGs. Results obtained by comparison with another method clearly shows the

merits of our method.

The properties of a network can be significantly changed by introducing a small change

in the structure of the network. Strategic placement of an additional link, using the spectral

characteristics of the Ybus matrix of the transmission grid, was used as a method to reduce

the vulnerability of the grid. Eigenvectors corresponding to the second, third, and fourth

eigenvalues were chosen to determine the spectral distances between all node pairs in the

network. The sorting and arranging of links by spectral distance indicate that there exists

at least one node in the network that has much longer spectral distances to the other nodes

in the network. The hypothesis was, that by bringing this spectrally distant node closer

to the other nodes in the network, and thereby reducing the average spectral distance of

the network, the robustness of the grid can be enhanced. We select a link with one of the

extreme nodes of the link as the spectrally distant node, with the help of an algorithm, as

the additional link in the network. Vulnerability analysis of the network is performed before

and after link placement, and the results of the spectral distance method are compared with

the results of algebraic connectivity method and random link placement method. In the
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random link placement method, 10% from the set of possible random links are selected and

added to the network, one at a time, and the vulnerability analysis is performed. Our results

indicate that the spectral distance method performs better than the algebraic connectivity

method and the random link placement method.

7.2 Future Work

The following points discuss the scope of future research, related to the work discussed in

this dissertation:

1. More analysis of different methods by which the grid can be stressed up to the critical

point should be done. Such analysis could give substantial information about the

behavior of the grid under stress. Additionally, large real networks should be used for

the analysis to study the behavior that would be exhibited by large interconnected

systems when subject to undesirable effects.

2. The optimal islanding technique could be simplified using semi-definite programming

or other linearization technique. This would enable the use of the optimal islanding

technique for large networks, for different number of islands.

3. Refinements could be proposed for the modularity based islanding methods, to enable

them to reverse a previously taken decision, if the decision does not prove to be

advantageous to the system in the long term. In this case, advantage would mean

minimization of load shedding.

4. Vulnerability analysis of the grid using the islanding scenarios would help to determine

the quality and efficiency of the two islanding techniques, and the actual amount of load

shedding taking place as a result of the islanding. Island characterization gives an idea

that the Modified Bloom technique provides more robust islands than the Modified

Bloom technique, but this can only be confirmed by simulating failure scenarios after

island creation and performing the vulnerability analysis.
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5. Other spectral methods such as the spectral gap method must be explored to obtain a

location for the placement of the additional link in the transmission grid. This method

would involve reducing the spectral gap of the adjacency matrix. The spectral gap has

a close relation with algebraic connectivity and plays an important role in determining

the robustness of networks. It would be interesting to see if these graph properties also

prove to be true for a real network such as the power grid, with its capacity constraints

and complex flow dynamics. Comparison of results with the spectral distance method

could reveal the merits and demerits of the respective strategies.
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Appendix A

Power Flow Models

Two different power flow models are widely used for power systems - the complete AC model

and the simplified linearized DC model. Both the models are explained in detail below:

A.1 AC Power Flow Model

The AC power flow model comprises of the complete set of equations representing the

non-linear dynamics of the power grid. Standard methods and algorithms such as Newton-

Raphson method or Gauss-Seidel technique49 are used to analyze the power grid using the

AC power flow model. To find the power flowing through each link in the power grid, we

first apply Kirchhoff’s Current Law (KCL) at each node. We obtain a group of equations

representing the relationship between the voltages and currents, which can be written in a

matrix form as follows


Y11 Y12 . . . Y1N

Y21 Y22 . . . Y2N

. . . . . . . . . . . .

. . . . . . . . . . . .
YN1 . . . YN(N−1) YNN




V1

V2

.

.
VN

 =


I1
I2
.
.

IN

 (A.1)

Where Ik is the current that enters the node from the generator/load side. The first

matrix is called the admittance matrix or the Ybus matrix. Each diagonal element Ykk

equals the sum of the admittances of all branches connected to bus k. Every off-diagonal
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element Yjk where j 6= k is the sum of admittances of all branches between bus j and bus

k multiplied by -1. Using Eq.(A.1), we obtain the following equation at node k

V1Yk1 + V2Yk2 + · · ·+ VkYkk + · · ·+ VNYkN = Ik =
Pk − jQk

V∗k
. (A.2)

To find all unknown active power, reactive power, voltage magnitudes, voltage angles,

different numerical techniques such as Gauss-Seidel or Newton-Raphson methods may be

used.

The AC power flow model takes a longer time to converge and adds to the complexity

of the islanding problem. Since the DC power flow model is linear, it does not add much to

the complexity of the different islanding techniques we have discussed in this paper. Below

we describe the fundamentals of the DC power flow model.

A.2 DC Power Flow Model

The DC power flow model represents a linearization of the full AC model. In the AC

model, let Vi and Vj represent the voltage at the buses i and j, respectively. In addition,

let Yij represent the admittance of the transmission line between buses i and j. the relation

between real power, complex voltages and line impedance is expressed through the following

equation which describes the amount of real power flowing through a transmission line

Pij = |Vi||Vj||Yij|cos(δi − δj + θij) (A.3)

where θij is the phasor angle of the admittance Yij. To obtain the DC power flow

model, the following assumptions are applied to Eq.(A.3) as follows

• Voltage angle differences are small, i.e. sin(δij) ≈ δij.

• Flat Voltage profile: All voltage magnitudes are considered to be 1 p.u.
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• Line resistance is neglected since R << X.

Applying Taylor expansion on Eq.(A.3) around the operating voltage, and neglect the cou-

pling between the power flow and the voltage, we obtain

Pij =
δij
xij

(A.4)

where δij is the difference in phase shift angle between the voltages at the sending

and receiving buses, and xij is the reactance of the transmission line. The DC power flow

equation (A.4) can be written in matrix form where P is the N ×N matrix of power flows

between each node i and j in the network, δ is the N × 1 vector of phase angles and X is

the N ×N weighted adjacency matrix, each element of which represents the reactance of a

transmission line. It is a real number if a line is present between two nodes, and 0 otherwise.

In matrix form,

[P ] = [b][δ] (A.5)

The matrix [b] represents the imaginary part of the Ybus matrix of the power grid, where

bij = − 1
xij

and bii =
∑

i∈N −bij for i 6= j. We usually assume that there is a reference node

with voltage angle equals 0 (which is the same node as the slack generator, in the most

general sense). The power handled by each node is the net sum of all the ingoing and

outgoing power flows at that node as follows:

Pi =
N∑
j=1

Pij =
N∑
j=1

(−bijδij) (A.6)

The total load at each node is given, while the phase angles are computed using the

following equation:

[δ] = [b]−1[P ] (A.7)
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Appendix B

Optimal Islanding Algorithm

The optimal islanding scheme can be studied in detail at137. This optimization formulation

has two sets of constraints: Topological constraints to ensure proper physical implemen-

tation of the islanding scenario, and power flow constraints describing the DC power flow

model, which directs the flow of power through the power grid network. The optimization

formulation and the constraints are given and described in detail below:

B.1 Given:

Number of islands: nisl

Island index: k

Power grid topology: G, island topology: gk

The group of links that interconnects the island with its topological complement: lk

Topological complement of the island: Tk = G\{lk ∪ gk}

Index that separates the two parts due to existence of an island: s,

for eg: for island k, s = 1 denotes the island topology (gk) and s = 2 denotes the island

topological complement (Tk)

Number of nodes: N

Original load: poweri
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B.2 Objective function:

Minimize A
i=N∑
i=1

k=nisl∑
k=1

| poweri − dki |

+B
i=N∑
i=1

j=N∑
j=1

k=nisl∑
k=1

µk,1
i,j (B.1)

B.3 To Find:

New load after islanding: dki

Size of the island: µ

B.4 Constraints:

B.4.1 Topological constraints

k=nisl∑
k=1

µk,1
i,j ≤ ai,j ∀ i, j = 1 . . . N (B.2)

µk,1
i,j + µk,2

i,j ≤ 1 ∀ i, j = 1 . . . N, k = 1 . . . nisl (B.3)

i=N∑
i=1

j=N∑
j=1

µk,s
i,j ≥ 4 ∀ k = 1 . . . nisl, s = 1, 2 (B.4)

j=N∑
j=1

(µk,1
i,j + µk,2

i,j ) ≥ 1 ∀ i = 1 . . . N, k = 1 . . . nisl (B.5)

k=nisl∑
k=1

(µk,1
i,j + µk,2

i,j ) ≤ ai,jnisl ∀ i, j = 1 . . . N (B.6)

j=N∑
j=1

k=nisl∑
k=1

µk,1
i,j ≥ 1 ∀ i = 1 . . . N (B.7)

129



( j=N∑
j=1

(µk,1
i,j + µk,1

j,i ) ≥ 1
)

⇒
( j=N∑

j=1

(µk,2
i,j + µk,2

j,i ) = 0
)
∀ i = 1 . . . N, k = 1 . . . nisl (B.8)

( j=N∑
j=1

(µk,2
i,j + µk,2

j,i ) ≥ 1
)

⇒
( j=N∑

j=1

(µk,1
i,j + µk,1

j,i ) = 0
)
∀ i = 1 . . . N, k = 1 . . . nisl (B.9)

( j=N∑
j=1

µk,1
i,j ≥ 1

)

⇒
( j=N∑

j=1

k′=nisl∑
k′=1,k′ 6=k

µk′,1
i,j = 0

)
∀ i = 1 . . . N, k = 1 . . . nisl (B.10)

µk,s
i,j = µk,s

j,i ∀ i, j = 1 . . . N, k = 1 . . . nisl, s = 1, 2 (B.11)

µk,s
i,i = 0 ∀i = 1 . . . N, k = 1 . . . nisl, s = 1, 2 (B.12)

The group of inequalities in B.2 - B.12 describes the topological constraints for creating

the islands.

Inequality B.2 imposes that the decision variable µk,1
i,j can equal 1 only if the transmission

line (i, j) exists in the power grid i.e. ai,j = 1. In other words, if transmission line (i, , j)

does not exist in the power grid (ai,j = 0), the decision variable µk,1
i,j equals 0 for all the

islands k = 1 . . . nisl. Also this inequality guarantees that the transmission line (i, j) can

belong to at most one island k, s = 1.

In inequality B.3, a transmission line (i, j) can either be a part of the island µk,s=1
i,j = 1 or

its complement µk,s=2
i,j = 1, or an interconnecting line between two islands. In the latter

case, the transmission line does not belong to any island and the decision variables µk,s=1
i,j
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and µk,s=2
i,j equal 0 for all k. This ensures that the interconnecting transmission lines do not

carry power flow.

Inequality B.4 ensures that the number of transmission lines in every island and its topo-

logical complement is at least 2. Notice that the transmission lines are undirected (even

though the power flowing through the lines is directional). Hence the decision variables µk,s
i,j

and µk,s
j,i are equal and the right-hand side of this inequality is 4.

Inequality B.5 ensures that every node i in the power grid is assigned to either an island or

to its topological complement and there is at least one transmission line that connects node

i with another node that belongs to the same island component. In addition, in inequality

B.6, every line (i, j) can belong to an island or its topological complement, and it can belong

to any combination of them at most nisl times.

Inequality B.7 guarantees that every node i is assigned to an island. In other words, for

every node i, there is at least one transmission line (i, j) that connects node i with another

node j in island k, s = 1. Notice that inequalities B.7 and B.6 together ensure that each

node belongs to an island.

Constraints B.8, B.9 and B.10 are formulated using the logical constraints. Each constraint

has two parts, the conditional constraint (left-hand side), and the actual constraint (right-

hand side). If the conditional constraint is true, the actual constraint is applied to the

problem. As shown in constraint B.8, if there is at least a transmission line that is con-

nected to node i in island k, s = 1 imposing that node i belongs to island k, s = 1, it implies

that there is no transmission line that is connected to node i in the topological complement

k, s = 2 imposing that node i does not belong to the topological complement k, s = 2. Con-

straint B.9 shows the case for the topological complement in the conditional constraint such

that if there is at least one transmission line that is connected to node i in the topological

complement k, s = 2, it implies that node i does not belong to island k, s = 1. Constraint

B.10 ensures that if node i has at least one transmission line in island k, s = 1, node i does

not have any link in other islands k′ 6= k. This constraint implies that node i can only
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belong to one island k, s = 1 and it does not belong to other islands.

Inequality B.11 says that the line is symmetric or i− j is the same as j − i, and inequality

B.12 avoids self connecting nodes or self-loops.

B.4.2 Power flow model constraints

All the power flow calculations are based on the DC power flow model? . The DC model is

linear and it does not add significantly to the complexity of the optimization formulation.

The use of the DC model allows the optimization to easily converge for a few test cases in

spite of its complexity. The DC model has been used in the recent works44,? for islanding

using MIP.

δkgenerator(1) = 0 ∀k = 1 . . . nisl (B.13)

(
µk,1
i,j + µk,2

i,j = 1
)

⇒
(
| bi,j(δki − δkj ) |≤ ci,j

)
∀ i, j = 1 . . . N, k = 1 . . . nisl (B.14)

dkgen(g) ≤ 0 ∀ g = 1 . . . ngen, k = 1 . . . nisl (B.15)

dkgen(g) ≥ 1.05 ∗ powergen(g) ∀ g = 1 . . . ngen, k = 1 . . . nisl (B.16)

dkload(l) ≤ powerload(l) ∀ l = 1 . . . nloads, k = 1 . . . nisl (B.17)

dkload(l) ≥ αpowerload(l) ∀ l = 1 . . . nloads, k = 1 . . . nisl (B.18)

The group of constraints B.13 - B.18 represents the DC power flow model equations, the

upper bounds, and the lower bounds of the generated power and loads. For DC power flow

model, we assume that node 1 is the slack generator with voltage angle equals 0 as shown

in equation B.13. The logical constraint B.14 indicates that whether a line (i, j) belongs
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to an island or to the complement, the amount of power it can carry is always restricted

by a finite capacity of the transmission line, given by ci,j. The second part of this logical

constraint is the main equation of the DC power flow model which computes the amount

of power flowing through a link. Inequalities B.15 and B.16 represent the bounds on the

amount of generated power from each generator gen(g) for each island scheme k. Thus,

the generation is made flexible so that any fluctuations in the load can be accounted for.

The inequalities B.17 and B.18 represent the bounds on the delivered loads. We impose the

lower bound on the delivered power at each node to be a fraction α of the total load, where

α is a real number between 0 and 1. Thus, we allow load shedding in the network but at

the same time a minimum fraction α of the load must be satisfied in each node.

In addition to the topological constraints and power flow model constraints, the author

has used the network flow model6 to ensure that every island is a single component in which

all buses are interconnected by transmission lines.
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Appendix C

Algorithms for Modularity Based
Islanding Methods - Modified Fast
Greedy and Modified Bloom

The common objective of the two algorithms is stated below and the algorithms are described

one after the other:

Objective:

J = Minimize
N∑
i=1

nisl∑
k=1

| poweri − dki | (C.1)
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Algorithm 1 Modified Fast Greedy algorithm for intentional islanding, adapted from86

and3

Given: A power grid with N nodes, L transmission lines
ngen is the number of generator nodes in the system
nisl(n

′
isl) is the required (current) number of islands

Initialize: P ← A partitioning of N islands with 1 node in each
n′isl ← N
∆J ← The N ×N benefit matrix for J by merging any pair of islands Islr and Isls
while (n′isl > ngen) do

Find Islr and Isls such that ∆JIslr,Isls is the minimum element in the matrix ∆J and
they are not both generators
Merge islands Islr and Isls (This is the update for P )
n′isl ← n′isl − 1
Update ∆Jn′

isl×n
′
isl

using the linear programming load shedding scheme for optimal load
shedding

end while
Superislanding
while (nisl < n′isl) do

Find islands Islr and Isls from the n′isl islands such that ∆Jr,s is the minimum element
in the matrix ∆J
Merge islands Islr and Isls (This is the update for P )
n′isl ← n′isl − 1
Update ∆J using the linear programming load shedding scheme for optimal load shed-
ding.

end while
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Algorithm 2 Modified Bloom algorithm for intentional islanding, adapted from113

Given: A power grid with N nodes, L transmission lines
ngen is the number of generators nodes in the system
nisl(n

′
isl) is the required (current) number of islands

Initialize: P ← A partition of ngen islands (these are the island seeds).
covered← The set of ngen seed nodes
uncovered← The set of all nodes except the seed nodes
boundary ← The set of nodes ∈ uncovered which are neighbors of the seeds
∆J ← The N × ngen benefit matrix
while (uncovered 6= ∅) do

Select node p and island Islk such that p ∈ boundary and ∆Jp,Islk is minimal (for
largest decrease in J)
Copy any uncovered neighbors of p to boundary
boundary ← boundary \ {p}
covered← covered ∪ {p},
uncovered← uncovered \ {p}
Add p to island Islk (This is the update for P )
Update ∆J using the linear programming load shedding scheme for optimal load shed-
ding

end while
Superislanding
while (nisl < n′isl) do

Find islands Islr and Isls from the ngen islands such that ∆Jr,s is the minimum element
in the matrix ∆J
Merge islands Islr and Isls (This is the update for P )
n′isl ← n′isl − 1
Update ∆J using the linear programming load shedding scheme for optimal load shed-
ding.

end while
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