f/;N OVERVIEW OF ARTIFICIAL INTELLIGENC%};

by
DONALD J. G?MAEII—ILICH
L f , .
B. S., Kansas State University, 1983

A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Electrical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1984

Approved by:

ZZ&_-#‘_‘-
Major Profes&sor

IT.

ITI.

Iv.

VI.

VII.

VIII.

IX.

D ;
tcég g; %EIEUE &555&5

R¥

1984 TABLE OF CONTENTS
cHs

. & .

Introduction « +« « o & ¢ &+ o« & &
Intelligence. + « + « & & + &

Problem solving methods.

Heuristic programming
Search strategies

Knowledge representation
Monotonic representation. . .

Nonmonotonic representation .
Structured representation . .

Learnirlg . L] . . L] (] . . . L] ® & 8 ooa

Trial-and-error learning. . .
Parameter adjustment learning
Concept learning.
Natural language understanding .

Keyword matching.
Conceptual dependency . « . .

Perception « « ¢« o o« o « o ¢ o

Speech recognition.
Visual perception . . + . .« &

Expert systems . « « + « + o «

The structure « « « « « o«
Reasoning processes . « .+

Implementation . « « « « « « + &

Artificial intelligence languages
Artificial intelligence hardware.
Artificial intelligence machine .

C OnCl US ion L] L] L] - - L] L) L] . . L]
FOOtnOteS- L] L] L] . L] . L . L] . -

Bibliography « «+ « ¢« o« ¢ & ¢ o« &

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH THE ORIGINAL
PRINTING BEING
SKEWED
DIFFERENTLY FROM
THE TOP OF THE
PAGE TO THE
BOTTOM.

THIS IS AS RECEIVED
FROM THE
CUSTOMER.

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

11.

LIST OF FIGURES

A Sample SearCh tree . L L] - - L] . L] * L] - 1]

Best-first search process. + « « « o« « &+ « & &

Minimax search Process « o+ + « « « o o « « s
Concepts of arches « &+ « &+ « « « & &« o o 2 s
Conceptual dependencies. & R B G e o

Constraint propogation lines « « « « + + + .+ &
Constraint propogation vertices. . + + + . . &

Possible vertices of constraint propogation. .
Objeet analysis using constraint propogation .
Dataflow structure . . « « & +:5 s « « s & s

Concept of an artificially intelligent machine

12
15
31
36
L1

. 41

42
43
54
57

I. INTRODUCTION

Almost since the genesis of the first digital
computer, computer scientists have dreamed a seemingly
impossible dream, to create a computer which could mimie
human thought. They wanted a computer which could find a
problem, solve that problem, and then explain its
solution to the problem.

In the 1960's, the integrated circuit was developed,
making possible the development of more powerful
machines. However, even these pieces of miniturized
circuitry or their descendant of the 70's, the micro-
computer, are not the bridge to the next generation of
computers, the fifth generation. The next step is into

the realm of artificial intelligence.

Intelligence

How can a machine be intelligent? Can a computer
be "taught" to reason, to learn, to think without a
programmer? The answers to these questions have been
searched for since the dawn of the modern computer age;
vet, a basic problem must first be solved. What is
intelligence?

In the early days of computers, & machine was

considered to be intelligent if it could display intellectual

powers equal to a human. These "electronic brains" were
compared to the human brains in their abilities. John
Von Neumann formulated comparisons associating data with
human knowledge, a program's operation with decision
making, the ongoing record of the program's operation
with the stream of consciousness and the procurement

of data with 1earning.1 However, the relatively new
theories of artificial intelligence have proven that these
comparisons are totally without basis.

One of the easiest tools to use to study intelligence
is the playing of games, since the processes used to
play games model those of real 1ife.2 Computers can
analyze many situations more quickly than a human can,
and most early, "intelligent," game-playing computers used
this ability to their advantage.3 Using sophisticated
programs to play chess and checkers, these machines could
choose moves by looking twenty, forty, or more moves ahead
to see if a winning situation resulted; however, these
machines did not prosper because they were very slow and
because they were not truly "intelligent."

In recent years, the criteria of intelligence has
changed. The criteria includes the ability to solve
general problems, the ability to use perception skills,
such as sight and speech, the ability to solve "expert"
problems, and the ability of learning by 'l:rial-and—error.’+
These four items are the basic abilities which currently

set man apart from machine, and in limited cases a single

machine has been able to perform one of these tasks by
using complex programs.5
Additionally, in order to think like a human, data
must be accessed as it is in a human brain which requires
a memory system with a different structure, a knowledge
base system.
Only when all of these basic components of intelligence
can be combined together into a single library of computer
programs in the machine's memory can the machine respond

coherently to human questioning, and intelligence be

achieved.6

ITI. PROBLEM SOLVING METHODS

When a problem is to be solved, the goal state is
the solution to the problem. Most problems are so large
or so complex that a single process cannot lead straight
from the initial state to the goal state without creating
intermediate states or subgoals. These intermediate
states represent the breaking of the main problem into
smaller problems, each with its own goal.7 Whenever an
action is performed to achieve a subgoal, new actions
become available to advance to a new subgoal. At each
subgoal, new courses of action can be used: one state
can lead to many. The map of these possible actions is
known as a search tree with the root (the initial state)
at the top of the tree and the branches (the possible
actions) flowing downward. At the end of each branch is
a node (a possible outcome) with one or more of these
possible outcomes being the desired goal state8 (see
Figure 1).

In order to generate the search tree of a problem, a
set of rules is used which describe possible actions.
Each of these rules consists of a "right side" containing
conditions of the current state and a "left side"” which
shows the new state after the action is performed.9

At each node, the current state conditions are compared to

n

Starting node

Actions

Intermediate
nodes

Ending
nodes

Figure 1. A sample search tree.

the "right side" of the rule, and fer each "right side"
that matches the current conditions of a node, a new
node is generated using the "left side."10
In early programs, whenever a search tree was
examined, the computer searched for the optimum answer.
This search required looking over the entire search
tree. This process was very slow in finding a solution
and very wasteful of computer time, and in many computers
the search tree was too large to feasibly search for the

solution.11

Heuristic programming

Since finding the optimum solution is sometimes very

difficult or in some cases impossible, most problem

solving routines use informal rules that do not guarantee
that the best answer will be found, only that a very good
answer will be found. These rules are known as heuristic
principles.l2 Heuristic programming, basically, improves
the efficiency of the searching of a search tree by
choosing the most promising pathways early in the search
and eliminating the less promising paths. The disadvantage
is that the search process is incomplete.

Heuristic programs take the current state and all
possible actions leading from the state, analyze the
result of each action, and determine (usually by a scoring
method) which path is most promising. The chosen path is
then explored further. If it leads to a dead end, the
program backs up to the previous node. Ii a new state
is found, the process repeats. This type of programming
may sometimes fail to notice an excellent path, but
usually, good answers can be found without using the time
needed to search all of the tree.

In addition to the time saving aspects of heuristics,
other arguments can be found to support the use of
heuristic programs in artificial intelligence systems.
First, in most cases, an optimum solution is not required.
Most people in most situations do not look for a best
answer. Rather, if a solution that satisfies their
requirements is found, the search is ended. Although
heuristics are not very reliable in worst case situations,

14

in the real world, worst cases are rarely encountered.

Heuristic programming is an important tool of problem
solving in artificially intelligent systems and is the

corner stone of the following problem solving methods.

Search strategies

Heuristic search is a powerful technique that is used
to solve many complex problems. However, a heuristic
program needs a control scheme to determine how efficient
the solving process actually is.

Generate-and-test. The simplest approach to problem

solving is the generate-and-test strategy.15 The steps to
this strategy are 1) use the rules to generate a new node
which could be a possible solution, 2) test the new node
against the solution state, and 3) if the new node is a
solution, stop the search. If it is not a solution,
repeat the procedure. If this strategy 1is performed
systematically, a solution will eventually be found.
However, if the search tree is very large, the search
process will take a very long time, or if a branch of the
search tree has an infinite length, the process will never
stop.16

The generate-and-test method has many forms which
can simplify or complicate the search procedure. In its
crudest form, without heuristics, the search tree is
probed randomly, reducing the chance of finding a solution.
At the other end of the spectrum, a totally controlied
exhaustive, depth-first search williin most cases find

a solution before random probing, but if the solution

state of the problem lies on the opposite side of the
search tree from where the search started, the solution
will not be found for a long time.l?
Between these two extremes lies a search procedure,
using heuristics, which can choose whichever path appears
to be the most promising at that point. With the addition
of backtracking capabilities, if a path starts to loop back
upon itself or ends without a solution, the program can
back through the search tree and find a new path to follow.
In simple problems, an exhaustive search procedure
like the generate-and-test method can be useful; however,
if the problem is more complex, the generate-and-test
method becomes ineffective. Yet, if the search tree can
be reduced in size by using other methods, such as limiting
the depth of the initial search to a predetermined number
of nodes (a depth-limiting search),18 the generate-and-
test procedure can be very effective in finding a solution.
By combining search procedures in this way, the advantages
of the separate techniques can be used advantagously while
reducing each technique's disadvantages.19

Hill climbing. The hill climbing technique is a

variation of the generate-and-test method. 1In this
method, the heuristic function analyzes the current state
and estimates how close a solution is and selects the
action most likely to lead towards the solutinn.zo
Basically, the current state is tested to see if it is

a solution, and if it is a solution, the problem is

solved. If it is not the solution, the rules of the
problem are used to generate new nodes. These nodes are
tested to see if any of them are solutions, and if one is,
the problem is solved. However, if none of these nodes
is a solution, the heuristics extimates which new node is
more quickly moving towards a solution state. This
node is made the next generating node and the procedure
repeats.21
The hill climbing technique is not perfect. In some
cages, the search procedure cammot find a move that
satisfies the requirement to move towards a solution.
First, the local maximum is a state which is closer to a
solution than its neighbors, but it is not a solution.
A second variety of problems is the plateau, or a group
of neighboring nodes with approximately the same test value.
A best direction cannot be determined from the data in
each of these cases.
These problems can be solved by using variations of the
hill climbing procedure. Backtracking to previous
nodes can eliminate local maximum problems, and plateaus
can be traversed by taking a set of~jumps in the same
direction, applying the same rule again and again. Yet,
even with these methods, hill climbing is not practical
for a large scale search. If another search method can
localize a solution location, the hill climbing technique

can more easily find the solution.22

10

Breadth-first. The two previous procedures, generate-

and-test and hill climbing, are depth-first search
procedures, the search progressed down a single branch
until a solution was found or a dead end occurred. The
breadth-first search technique, on the other hand, travels
down each branch one node deep looking for a solution. If
a solution is not found, the search progresses to the
second layer of nodesg, and these nodes are checked for
solutions. This procedure continues until a solution is
found.23
If the tree being searched has a solution that lies
a finite distance from the start node, the breadth-first
technicue guarantees that the solution will be found. If
a solution lies N nodes down in the search tree, the
solution will be found when the path lengths from the
start are N long. This technicue also guarantees to find
the solution that is closest to the starting node.24
The disadvantages of the breadth-first search procedure
are numerous. First, since the number of nodes increases
with every level explored, a lot of memory is recuired to
store the data of each node. If the solution path is long,
the work recuired also increases very cuickly because
each node at every level must be checked to see if it is a
solution. Furthermore, if the search tree loops back upon
itself, irrelevent nodes are stored, taking up memory

25

space. Finally, in search trees with long solution

paths, a depth-first search method will probably find

11

the solution first.

Best-first search. The best-first search is a

combination of depth-first search and breadth-first

search.26

The advantages of each of the two methods are
kept and used to negate the disadvantages of the other.

In the best-first search procedure, the start node
conditions are used to generate the first layer of
successor nodes. A heuristic function is used on each
successor node to determine which is the most promising.
The most promising node is used to form a new set of nodes.
These new nodes are analyzed and placed in a group with the
other unused nodesg, and the most promising of this set
is used as the start node in the next expansion. This
expansion process continues until a solution is found.

To illustrate, node A is the starting node of a
search tree (see Figure 2). Using node A as the generating
node, three nodes are generated and are analy%ed. Of these
three nodes, node B has the highest value, making it the
most promising. New nodes are now generated from node B,
creating nodes E and F; however, both of these nodes have
a lower value than node D, making node D the new most
promising node. The generation process is performed at
node D, forming two more nodes. The values of G and H are
placed with the values of the remaining unused nodes;

C, E, and F. Of these nodes, F has the highest value;
thus, the next generation of nodes would be from node F.

This procedure continues until a solution is found.

® B S C (6 D
(D
A
® B [C |9 D
O E |@® F
)
A
® B @ C @ D
»f E @ F @ G | H
©)
Figure 2. Best-first search process.

12

13

Minimax method. Game playing has been a fascination

of artificial intelligence designers for years since the
major strategies of games is to search for the best move.
In one person games, such as a slide puzzle, a best-first
strategy works the best. However, two person games
become more complex; so, a more powerful technique is
needed. This technique is the minimax search procedure.

In order to use the minimax procedure, a few
assumptions are required about the problem. The following
discussion deals with a conventional two person board
game with the reduirements: +the players alternate moves,
the moves are chosen from a known set, the loss of a piece
by one player is considered a gain by the other player,
and both players can "see" the board and examine moves.z?
These restrictions simplify the minimax method while still
exposing its strong points.

The minimax search procedure is a depth-first, depth-
limiting search procedure.28 The starting node is used as
the initial condition for a plausible-move generator (the
set of moves for game pieces). These new nodes that are
generated are analyzed using an evaluation test which
assigns a numeric value to each node, and the best new
position (usually the largest number) is noted. Since
the evaluator is designed to return large numbers to
indicate good positions, the basic result of this first
step is to maximize the position rating.

In the next step, the program analyzes the opponent's

14

possible moves. Each node from the first step is used
to generate new nodes (second level) representing the
opponent's possible moves. These nodes are evaluated as
before and their numeric values are recorded. However,
in this case, the assumption is that the opponent will
chose the best countermove for each of the first level
moves, trying to minimize the first player's position.
Thus, for each second level node group, the minimum value
of each group is found and transfered backward to the
corresponding first level node. Then, the new values of
the first level nodes are to be maximized; so, the node
with the maximum value is found, and the value is moved
up to the starting node.29
For instance, Figure 3 shows a minimax process
containing two layers of searching. New nodes are
generated from the start node, and these nodes are
evaluated. Since the maximum value is wanted, the node
with a value of 9 is chosen. However, when the next
layer of nodes are generated and evaluated, the new
values are found. The second layer is the opponent's
moves; so, the minimum values are chosen and moved back
up the tree to the first level. The passed back values
are then maximized, and the maximum value is chosen.
In this case, the value is 1. This method shows that
the best choice at one level may not be the best choice
when looking farther ahead.

Minimax searching, however, is not foolproof. Its

15

*q
+G
+T Q
G
+5
q O+e
+T
23 - (4 2 1 3

(&)

h
r 3

16

major drawback is the horizon effect, an occurrence in
which inevitable bad moves creep out of view by various
tactics. In chess, if many fronts are used to attack the
computer's position, minimax programming can "lose"
pieces that are in vulnerable positions.BO Also,

static evaluation techniques are used in this method; so
if an unstable situation is present, such as a queen
exchange, faulty values can be arrived at, and the wrong

31

decision made.

IIT. KNOWLEDGE REPRESENTATION

A major attribute of the modern computer is that
large volumes of information can be accessed relatively
auickly. The need for large volumes of information is a
concern for artificially intelligent machines because as
the machine learns, it needs more space to store the new
knowledge. With this new knowledge, more problems can
be solved, creating the need for yet more storage space.
This upward spiral in needed storage is in conflict with
the finite memory available to a machine.

To help solve this space problem and to make machine
memories easier to access, the current database memory
was changed into the new knowledge base memory. The
knowledge base is made up of two main structures: an
unstructured set of facts, and rules which can be used to
determine new facts to solve problems.32

The architecture of the knowledge base system is
also very different from the architecture of a database
system. In a database system, the data storage is well
structured with each piece of data having its own little
pidgeon hole, and if the piece of data has an associated
piece of data, the second piece has its own pidgeon hole.
33

Both of these locations are looked after by the computer.

In a database system, the computer always knows which

17

18

pidgeon hole a piece of data is kept in. Conversely, the
knowledge base is totally unstructured, and related items,
such as data from an array, are considered as isolated
pieces of data. The relationships between the isolated
facts are determined as the problem is solved instead of

34

being determined by the programmer.

Monotonic representation

Inside a knowledge base, data can be represented
in a number of ways: monotonic representation, nonmono-
tonic representation, and structured representation.

The first type of knowledge representation, monotonic,
is a system of logic where known facts are used to create
more facts. These facts are totally consistent with all
previous facts; so the number of facts known to the machine
is constantly growing. Every new fact which is learned
or discovered will not change any old fact or rule.35

The basic form of monotonic structure is propositional
logic. Propositional logic is relatively easy to deal
with and decision making techniques have been developed
to work with it. However, propositional logic has its
drawbacks. For example, this type of representation
is fine for single cases, but when a statement contains
aualifications, the propositional system breaks down.

The fact, "all men are mortal,” is impossible to represent
in propostional logic except by writing a seperate
statement for each man.36

Since propositional logic does not function for all

19

cases, predicate logic is the next choice. With predicate
logic, the basic facts are stored in predicate form. For
example, the English sentence, "Socrates was a man.",
would be represented as "Man(Socrates)". With this type
of data representation only a small subset of all facts
need to be entered into the machine. All other necessary
facts can be determined by using the original facts and
the rules of the knowledge base.37

The major problem with predicate logic is that the
reasoning chain can be easily broken if even the smallest

38

problem arises. If logical statements are generated
from English sentences, correct interpretations can be
difficult to arrive at because English sentences have a
tendency to be ambiguous. Furthermore, in some cases

data can be represented in a number of ways with the best
way of representation depending upon the facts used in the
problem solving method. Even if the sentence can be
represented clearly in predicate logic, the sentence set
probably does not have enough information to solve the

'problem.39 Predicate logic reguires data that humans

take for granted.

Nonmonotonic representation

The second variety of knowledge representation,
nonmonotonic logic, differs from monotonic logic.
Nonmonotonic representation is very useful in most real
world problem domains which have incomplete information,

changing situations, and a need of assumptions to solve

20

problems.uo

The main difference between nonmonotonic and
monotonic representations is that nonmonotonic logic has
a changing knowledge base. If a piece of data contradicts
a known piece of data, the knowledge base is changed,
removing the old piece of contradictory data. Then the
entire knowledge base must be checked to see which facts
relied on the deleted fact. If these facts can be proved
from other sources, they are kept. If the facts cannot be
reproved, they are also deleted, and the process repeats-41
This deletion process requires that each fact must have
a listing containing the statements reguired in the
creation of that fact.

As stated above, most real world problems do not
give all of the required information. Nonmonotonic
reasoning takes care of this problem by using default
reagoning, a process of making sensible guesses when no
contradictory evidence is present.l"2 For instance, a
person needs a gift for a friend. Since he knows that most
people like chocolate, he assumes that his friend also
likes chocolate since he has no evidence to the
contrary. However, when the gift is given to the friend,
the friend returns the gift and says that he does not
1ike chocolate. This new data is added to the knowledge
base, and all beliefs relying on the old assumption
are discarded.

The computational definition of default reasoning

21

relates a lack of some information to a conclusion, but
due to the nature of the knowledge base, all pieces of
information are not stored exp.‘L:'Lcitly.LL3 This changes
the relationship to "if X cannot be proved, then Y is true."
However, proofs can become very long or seemingly
impossible to finish without more precise information; thus
the definition is again changed to state, "if X cannot
be proved in some specified amount of time, then conclude
r."

The last definition appears to cause a large problem
because if X cannot be proved in a set period of time, X
is assumed to be unprovable. Then, whenever Y is used to
prove another statement, the new statement could be
considered invalid. Yet, default reasoning allows a
program to assume a most probable case as long as no
information is available to say differently.qq

Additionally, nonmonotonic reasoning is useful since
the real world is continuously changing. Information that
was true an hour ago, may not be true an hour from now. A
nonmonotonic system can change as information changes.
If a once true piece of information is now found to be
falgse, it and all of the information it created can be
deleted, and the new piece of information can be added.
A changing world can be more easily described by using a
changing knowledge base.

A third advantage of using nonmonotonic reasoning

is that in many real world problems, a beginning

22

assumption must be made in order to solve the problem.

This assumption provides a starting point for the problem

solving program, and if this assumption can be proved to

be untrue, or if it does not provide a solution; the

initial assumption is discarded, and a new assumption

is made. With the new assumption, the routine starts

the problem solving procedure over a.gain."*5
Nonmonotonic systems can be used very effectively in

representing real world information, but this type of

system requires more maintenance programming to remove

inconsistent data and more memory to store the generated

data.

Structured representation

Most facts can be stored in a knowledge base system,
but some facts must be stored together because they are
related. Information that needs to be stored together to be
meaningful must be stored in a more structured form.46
This type of structured storage is useful in representing
knowledge of how to do sonething and in representing
heuristic knowledge. The most common knowledge structures
in knowledge bases are frames and scripts.

Frames are information storage systems that are used
to describe objects. When a human comes upon a new
experience, he does not build a new information structure
on this experience alone. Instead, old memories of

similar experiences are recalled with information from

the new experience added wherever necessary. In-a

23

knowledge base system, frames contain data on objects
or experiences which can be built upon.47
Frames, usually, are used to describe stereotyped

48 Fach frame consists

objects, such as a door or a table.
of a set of "slots" that can be filled with the subject’'s
essential characteristics. Along with these characteristics
can be a list of conditions that must be met for the object
to fit the frame, or if data is missing, a default value is
issued to fill the empty slot. For example, a table's
default listing would include a rectangular, horizontal
surface supported by four vertical members attached at each
corner of the horizontal surface. When enough frames have
been added to the knowledge base, the machine has the

49

capability to infer concepts without being told. For
instance, since Fido is a dog, and since dogs like bones,
Fido probably likes bones.

Frames can be used to reason by creating a temporary
frame of the current situation with the situation's
characteristics. The temporary frame's characteristics
are compared to the other frames' characteristics to find
a match. When a close match has beén found, a new frame
of the current situation can be easily made by recording
all matching information and detemmining the different
characteristics. With each new object or new situation
that is encountered, a new frame needs to be developed
50

about that object or situation.

Scripts, on the other hand, are special-purpose

24

knowledge structures that can be used to summarize common

51

human experiences. From a low-level look, scripts and
frames are identical since scripts, like frames, have
slots that are filled by either data or a defaulted value.
However, a script is different from a frame because the
script deals with a stereotyped sequence of events instead
of dealing with objects.
The important components of a script are 1) the
entry position, conditions that must be satisfied before
the remainder of the script can occur; 2) the result, the
conditions that should be true after the script is finished;
3) the props, special objects required in the events of the
script; 4) the roles, people who are involved in the script;
5) the track, variations on the general pattern that
can occur; and 6) the scenes, the actual sequence of
events. These components can be recorded in a script
because in the real world, events follow set patterns.52
For example, a script on restaurants would describe
the events of eating in a restaurant from entering,
ordering, eating, and leaving. Using a script, a machine
could infer that when John ordered a steak and paid for it
at a restaurant, he most likely also ate the steak since
that is the normal procedure. A script on restaurants
can also help to resolve ambiguous statements which could
lead to improper translation by the machine.

Like monotonic and nonmonotonic representations,

structural knowledge representation is a useful part of

25

the knowledge base in artificial intelligence. Each has
its own ﬁnique purpose, and the three together help to
provide a solid system to represent the vast quantities

of information in the real world.

IVv. LEARNING

One ability that many artificial intelligence experis
believe that a machine must have before it can be
considered intelligent is the ability to learn. If a
machine is unable to learn from experience, from its own
mistakes, or from its own successes, then the machine is
limited to using whatever knowledge the programmer gives it.
Without the ability to learn, the machine will not be able
to adapt to new situations or environments, and many people
feel that a sign of intelligence in a being, or in a
machine, is the ability to adapt to new situations.53

But why does an intelligent machine have to be able
to learn? Without the ability to learn, a computer could
rnot perform any action that was beyond its knowledge. For
example, a machine can be given a program on how to unstack
two stacked blocks, but what does the machine do when it
is given the job of unstacking three stacked blocks? One
reaction by the machine is that the task cannot be done
because it has no knowledge of how to perform the task.
This is the reaction of the dumb machine. If the machine
has the capability to use its knowledge to reason, the
machine can solve the problem of unstacking the three
blocks, but without learning abilities, the machine has

no way to save this knowledge itself. The machine can

26

27

find the procedure to unstack the three blocks, but each
time this procedure is needed, the machine wastes time by
solving the problem over again.

Just as with knowledge representations and problem
solving methods, a variety to methods exist that allow a

machine to learn.

Trial-and-error learning

Trial-and-error learning is just as the name implies.
This method is learning by trial-and-error. If the
generated procedure does not give the desired results, then
the procedure is scrapped, and a new procedure is generated.
This process is repeated until a workable procedure is
achieved. When the procedure works as required, that
procedure is saved for future reference.5u

In a world composed only of blocks, three blocks
are sitting on top of each other. Suppose the desired
result is to have each of the blocks resting on the table.
Further, the machine does not have a procedure to unstack
three blocks, but it does know how to unstack two blocks.
First, the machine develops a set of subgoals which could
or could not reach a solution. The first subgoal developed
by the machine is to unstack the middle block, but the
middle block has a block resting on top of it; therefore,
the two block unstacking procedure cannot work to achieve
this subgoal. Since that subgoal cannot be used, a new

subgoal is selected, unstack the top block. This subgoal

can be accomplished since the top block rests on a block

28

and no block rests on top of it. This subgoal is recorded,
and two blocks remain to be unstacked. However, the machine
has a routine to unstack two blocks. When the goal state
is reached, the machine stores the procedures that were
ugsed to unstack the blocks, and the machine now hasg the
knowledge of how to unstack three blocks. Basically, the
machine has randomly produced a set of procedures for the
unstacking of blocks and has kept the one giving the
degired result.55
Using the trial-and-error learning technique, the
machine can also develop generalizations dealing with
problem solving and can use the generalizations by asking
if it (the machine) has seen this situation before.56 This
generalization can be used to solve one of many similar
situations rather than having a special procedure for each
situation. In the above case, if the machine was working
with four blocks, a new procedure could be developed to
unstack four blocks. On the other hand, the machine could
recognize a similarity in subgoals between the three block
routine and a four block routine. The machine sees that
only the top block of the stack can be removed, creating a
new procedure, "remove top block." A general procedure
to unstack N blocks would be developed by executing "remove
top block” N-1 times.”!
Trial-and-error learning is a rather simple learning
method, but it can be useful in developing new procedures

to achieve goals.

29

Parameter adjustment learning

Where trial-and-error learning deals with developing
new methods to achieve a goal state, parameter adjustment
learning is concerned with altering the testing procedure
of the heuristics. As described in the generate-and-test
problem solving method, at each step of the problem
solving process, the results are tested to see which is
the best. This testinhg is accomplished by using a

preprogrammed formula

Sum = clt1 + 021:2 + . . .+ cntn

where Ch is the weighting of the nth contributing feature
and t is the nth contributing feature.58 As the learning
process progresses, the ¢ values (the weighting of each
factor) are changed until the optimum values are found.

In some cases, such as image recognition, parameter
ad justment learning works very well since all of the
weights of the terms which correctly predicted the results
can be increased and all of the other weights can be
reduced. Thus, the next time through the program, the
image should be recognized more easily.59

However, not all programs that use testing functions
are able to have their weights changed as easily as
described above. This problem is very apparent in game
playing programs since the entire game instead of single

moves must be analyzed. Furthermore, what is adjusted

if the machine loses, but always makes good moves, or if

30

the machine wins, but it makes bad moves? One method to
solve this problem involves having the machine play itself
with one side using the current weights and the other side
using altered weights. Whichever side wins is assumed to
have the better weight values-6O
Parameter adjustment learning resembles the hill
climbing problem solving method since the parameter values
are progressing uphill in the direction of the most promising
values. Because it resembles hill climbing, parameter
ad justment also has the problems of the hill climbing

method. Parameter adjustment learning is not a universal

learning method, but it can be useful in many situations.

Concept learning

Concept learning, like the two previous learning
methods, deals with learning in a specialized area, in this
case, concepts. In concept learning, a concept is entered
into the machine's knowledge base. This concept can then
be used to classify other objects as being like that
concept, or as not like that concept. The concept is
started out in a very basic form. Then, by comparing the
concept to different representations of the concept, a
general concept structure can be developed.61

For example, the machine is shown a representation
of an arch (see Figure 4). The program develops a basic
concept of what an arch is. By analyzing the representation

of the arch, basic characteristics can be found, such as

an arch has two upright blocks sitting apart with a third

b i

Arches Not Arches

0

Figure 4. Concepts or arches.

block resting on top of the first two. By showing other

representations of arches and representations that are

not arches, a more concrete concept of an arch can be

learned, and with this expanded concept, new variations

of the arch should be easily discovered to be arches.
Concept learning is a mseful tool in teaching machines

about different physical atructures in the real world. If

the teaching of the concept is concise enough, the

machine will be able to recognize the structure, no matter

what variations on the theme are presen't.62

V. NATURAL LANGUAGE UNDERSTANDING

The medium currently used to converse with computers
is known as a computer language, but creating a program
which allows a computer to understand a natural language
(English, Japanese, French, etc.) is one of, if not the,
most difficult charge of the artificial intelligence
research today. The average toddler in the world knows
very little about playing chess, but knows how to speak
the native language: a feat computers are unable to
master.63 Some attempts at natural language understanding
have been made in the past twenty years, but the simplest
programs are limited to narrow fields of knowledge, such
as in expert systems.éu

The earliest work in natural language understanding
dealt with translation machines. These machines were
equipped with a blingual dictionary and with the syntax
rules of the different languages, but these machines were
a failure. In one case, the English sentence, "The spirit
is weak, but the flesh is willing.", was translated into
Russian and back into English with the result, "The
vodka is strong, but the meat is rotten."65 In another
instance, researchers found references to a "water-goat"

in a translation. Later, these researchers found that the

32

33

"water-goat" was the machine's translation for "hydraulic-

66 Without the ability to understand the language,

ram."
translation proved to be little more than gibberish.

In order to have a true natural language machine,
the machine must be able to accept and give answers to
requests in the user's natural 1anguage.6? In addition,
the user should be able to phrase the request any way he
pleases. If part of the statement is ambiguous, the
machine must find the ambiguity and ask the user to explain
further. Currently, the user must know the quirks of the
machine and its language, but the natural language
ability would shift the burden from the user to the
machine. With a natural language machine, the machine
would learn the quirks of the user and his language.68

The major problem of a natural language system is the
understanding of what the user is saying. First, the
machine must understand a single sentence by understanding
each word and then putting the words together to under-
stand the entire sentence. The major steps are 1) syntactic
analysis, transformation of a sentence into a structure
showing how the words relate; 2) semantic analysis, = .
assigning meanings to the structure; and 3) pragmatic
analysis, the structure in reinterpretting to find out

69

what is actually meant.

Keyword matching

One of the simpest and earliest approaches to naturail

language understanding is keyword matching, combining the

34

three processes into one step. This procedure is
accomplished by matching the input sentence with simple
keywords stored in the memory. This approach also
bypasses any true knowledge of the language; thus, unusual
and ungrammatical languages can still be processed. The
machine does not have an understanding of the conversation.?o
An early program which uses keyword matching is
ELIZA written by John Weizenbaum in 1966, which simulated
71

a therapist. This program relies almost entirely on
a system of fixed responses. Each input response has a
set of output responses which can be used; so, the program
does not truly understand what is said. The input sentence
is mapped directly to an output sentence and is then
forgotten.

ELIZA has a script of primary keywords that provide
the mapping ability to the output. For example, if the

user mentiong the word, "sister," ELIZA replies with one

of its response sentences, such as "Tell me more about

your £amily." However, if told "My friend's sister likes
me.", ELIZA's response is again "Tell me more about your
family.” The inappropriate response is given because the

keyword, "sister," appears and the word, "friend's," is
ignored.72
Even with this inefficient method of natural language
understanding, keyword matching programs are very large,
but not very practical in modern artificial intelligence

machines.

35

Conceptual dependency

Conceptual dependency representation is a more
complex system of natural language understanding than is
keyword matching because conceptual dependency tears the
sentence apart to find its meaning.?3 In conceptual
dependency, the parsing, the separation of the sentence
into its various parts, is set up around the main verb of
the sentence. Since the representation of the verb is a
low level representation, predication can also be analyzed
to give greater understanding of the sentence.

The basic procedure of conceptual dependency represen-
tation is similar to the parsing procedure taught in
grade schools. The first step is the use of a syntactic
analyzer to extract the main noun and verb irom the
sentence, and the analyzer also determines the type of
verb. The three verb types are 1) MTRANS, actions of
transferring mental information; 2) ATRANS, actions
involving the transfer of possession; and 3) ATTEND, actions
involving the senses.74

After these two steps are completed, the conceptual
processor begins working by taking the verb and determining
the correct usage of it. The conceptual processor takes
the remainder of the sentence and attempts to parse
it and place it in the empty slots of the verb structure.
For example, if the sentence being analyzed is "John gave

Mary a bicycle.”, the structure would be represented as

36

Mary
John &EASLs ampaNg ¢ OBIECT 5 icycle{
John

The use of conceptual dependencies also helps to show
the differences between sentences. Sentences that on the
surface appear to be similar, but have different meanings,
have different diagrams (see Figure 5). Furthermore,
the diagram of a sentence and the diagram of a paraphrased
version of the sentence are similar even though the
sentences may be very different.

This form of representation allows an easier form to
represent natural language sentences, but, as with all
natural language representations, a large knowledge base

is required to hold all of the data needed.

PAST

—>X+6 John=-"22==%D0
; PAS —»X+Y
Slzeé?:é:%: Sizeg 1t
X LA 2 <X
John Corn
"John grew six inches.” "John grew corn.”
ary
Johne=EASTs, s mp g Nge2BJECT Bicycle(-EM
John
"John gave Mary a bicycle."
ary
Mary%ATRANS &I—EQ—LBicycle (—El:
ohn

"Mary received a bicycle from John."

Figure 5. Conceptual dependencies.

VI. PERCEPTION

In order to make a computer more capable in the real
world, the machine must be able to draw information directly
from the environment by using the abilities of touch,
sight, hearing, smell, and ‘l:as‘l:(-:'.?5 0f the five senses,
sight and hearing have been the most studied and applied
in artificial intelligence research. If robots and
computers had better perception abilities, they would be
more welcome in the work place.?6

Perception research has been limited mainly to
pattern recognition and speech understanding, but the
major problems with both vision and hearing are that the
amount of data needed to analyze a simple input signal is

very large and ambiguities are very common.77

Speech recognition

With speech recognition, a number of problems exist.
The perception of speech (a set of sound waves of varying
frequencies) is the easy part. The hard part of speech
recognition is grouping the sounds together to get
meaningful sentences. For example, the sentence, "You
gave the cat your dinner.”, can be misunderstood as "You
gave the catcher dinner."” In current machines, the chance

of a computer understanding a three word phrase is only

37

38

around 50%.78

Secondly, with speech recognition, absolute pattern
matching cannot be used because two people do not say
the same words in the same way. In fact, one person does
not always say the same word in the same way. If a pattern
recognition of a word's spectral frequencies is used,
only relative matching could be used which reduces the
accuracy of the speech recognition procedure.

The third major problem is that at most times more
than one signal is present. Some machines have been able
to understand single spoken words, but when the words
are run together, as in normal speech, the accuracy
drops off since there are no clear boundaries between
words.

However, even with these problems, advancements in
speech recognition have continued to occur. In speech
recognition, the recognition procedure is divided into
five steps: 1) digitization, 2) smoothing, 3) segmentation,
4) labeling, and 5) analysis-79

In digitization, the machine takes the input analog
signal and digitizes it, creating a binary representation.
The speech signal is sampled at a very high frequency:
(usually 20,000 Hz), and these samples are converted into
a number with the higher amplitudes of the signal being
represented as larger numbers.

The digitized signal is then inspected and smoothed.

If a value of a sample is much larger or much smaller than

39

the values around it, the samples are altered. Since the
real world deals mostly with continuous signals, the
upward or downward spikes can be eliminated because they
are probably caused by random noise.

The third step, segmentation, takes the smoothed
values and combines similar values together. These new
groups of values represent phones, individual sounds. The
basic phonetic building blocks are assembled in this step.

The phones next are labeled. Basically, this step
assigns a label to each phone with each label representing
a different sound.

Finally, the analysis of the speech begins. The
labeled segments are placed together in order to form
a coherent statement. In this stage, the need for specific
information about the domain is often required to determine
accurate interpretations. However, in speech recognition,
gpecial effects, such as intonation patterns, can help
define sentences and sentence segments-so Additionally,
the analysis process can be made easier by finding
"jslands" (easily recognized words or phrases) from which
to start the analysis. The "island" approach can prove
ugeful since some words are normally pronounced more

clearly than others.

Visual perception

Visual perception has the same problems as speech
recognition. To identify a scene, the lines must be

identified, and these lines must be grouped together to

40

form shpaes, objects, and shadows. Since a camera looks
at a three-dimensional image and gives the machine a two-
dimensional picture, ambiguous shapes can exist in pictures,
such as lines being partially obstructed by other objects.81
In other cases, pictures of the same object are shown at
different distances, meaning that absolute matching of
pictures will not work properly.82 In this type of
recognition, relative matching must again be used. Also,
many objects must be analyzed at the same time since even
in the simplest line drawing, parts of many objects can be
obscured by other objects.83
In visual perception, the problem of identifying the
various objects in a picture can be very difficult due
to hidden lines, and possible perspectives of the objects.
The amount of input data is very large and, unlike speech
recognition, the possible variations of objects can be
very large. However, by using a process known as constraint
propogation, the number of possible combinations can be
reduced by eliminating any cases that cannot occur.s"+
In constraint propogation, or constraint satisfaction,
the first step is to identify each line. The machine has
already found the lines in the picture and has its own
drawing. Each line in the figure ig identified as being
1) an obscuring edge, a boundary between objects or
objects and background; 2) a concave edge, an edge between

faces that points away from the viewer; er 3) a convex

edge, an edge between faces that points toward the

41

viewer.85 This identification process can be extended to
include lines showing cracks and shadow lines.

Using the three line types described above (see
Figure 6), objects can be described by labeling the
object's vertices. Since three line types are present,

a figure can be labeled in BN different ways, where N
is the number of lines in the figure. For trihedral

figures, there are four possible types of vertices (see

Figure 7).
R Convex line
= Concave line
- Boundary line with interior
- to right
sl Boundary line with interior

to left

Figure 6. Constraint propogation lines.

N T

L FORK ARROW T

Figure 7. Constraint propogation vertices.

42

Examining the vertices, the number of combinations
of lines can be determined. For the L vertex, two lines
meet, giving 16 line combinations. Each of the three
other cases; the arrow, the fork, and the T; have a three
line connection; thus, they can be formed in 64 different
ways. Addition of these numbers shows 208 different
combinations for any given trihedral figure: however,

only 18 are physically possible as shown in Figure 8.86

-~ S5
T = + A
1 2 3l 4
AN AN N
Arrow + 7, _
_ 5 G T
A L
Fork r
8 le] ¥ 12
L -
I3 14 s i@ IT ie

Pigure 8. Possible vertices of
constraint propogation.

43

For example,;constraint propogation is used on
Figure 9 to see if the object ié consistent. First, the
vertices are arbitrarily labeled with numbers, and all
object-background baundaries are defined (see Figure 9b).
Starting with a vertex, an attempt to find the vertex
type is made. Since the interior of the object lies inside
the angle, vertex 2 has only one angle type that fits the
characteristic: Type 13. All vertices that can be labeled
in this way are, labeling undefined lines with the
appropriate labels (Figure 9c). The procedure is repeated
on the remaining undefined vertices, and the newly labeled

vertices can define more unlabeled lines (Figure 94).

2 3
‘ T
~ 4
<%
@ © ®
(3 O 3 @
oS _+ T4 0+ ©4
+
+ AN 3)
4 ()
GH =< @ () A (A]
© =)

Figure 9. Object analysis using
constraint propogation.

If an ambiguous figure is énalyzed, the constraint
propogation procedure will try to place two or more
labels on a single vertex. Since this cannot happen in
the physical world, the procedure is aborted.a?

As with speech perception, the major problem lies in
the large amount of memory required to analyze a scene,
even in a simple block world. When the machine is given
the ability to analyze the complex structures of the real
world, the amount or memory required will also increase
by as much as a few orders of magnitude.88 However, these
problems could be offset by giving the machine the ability
to see better than a human. By giving the machine a
camera able to see infra-red and ultra-violet, to see
smaller things and farther away objects; the intelligent

89

machine will be able to fit into its environment.

VII. EXPERT SYSTEMS

The problem solving methods of the previous sections
have been designed with an emphasis on "common sense"
applications that almost any person could perform; however,
there are a group of tasks that require a large amount of
specialized knowledge which most people do not have. These
tasks require the use of an expert system.

An expert system is a computer system that can
perform a specialized task or a group of specialized tasks

which only an "expert,'
Q0

who has acquired specific knowledge,
could perform. The expert system works in a similar
mammer to other artificial intelligence problem solving
systems, but the knowledge base of the expert system contains
very detailed information on a very small range of related
subjects, the system's area of expertise. For instance,
expert systems have been developed for use in the fields

of medical diagnosis, electronic design, 0il well problems,

91 With the help of an expert

and even computer repair.
system, human experts can make better choices.

Dedicated systems that fit the description of expert
systems have been around for many years; however, expert
systems have one major characteristic: they can explain

92 This explanation is an important

their reasoning process.
step since in many of the fields where expert systems are

]

46

employed, such as in medical diagnosis, the results probably
would not be accepted without some evidence. The user of
the expert system can be told the reasons why a certain

procedure is proposed or not proposed.

The structure

The basis of the expert system lies in its knowledge
base. The need for knowledge of a specialized area is so
great that a very large knowledge base is created for a
single expert system. This lafge amount of knowledge is
a necessity because if not enough knowledge is available,
the system cannot find accurate answers.93

Since the expert system relies extensively on its
knowledge base, the structure of the knowledge is
important. In early machines, the knowledge base was
entirely unstructured, but modern research shows that a
need for more structure in the knowledge exists. Additionally,
the knowledge of the expert system falls into two
catagories: the data of the knowledge base, and the
program. The data of the knowledge base needs to be in
a flexible memory structure to allow change at any time by
the user. On the other hand, the program needs to be
constant, being changed only in eXtreme cases. These two
sections can then be controlled by simple procedures

94

which vary with the situation.

Reasoning processes

In expert systems, the reaching of a correct answer

L7

is very important to the users of the system. This first
step in the process of determining correct answers is the
elimination of binary decision making, decisions with a yes
or no answer.95 In binary decision making, an item is
either true or false. If the wrong answer is chosen, the
result is completely wrong. Instead of determining what
the absolute reason absolutely is, the expert system program
deals with relative chances and likelihoods of a cause
giving an e:f‘fec:'!:.g6
In the set of rules, which help to guide the search
procedure, each rule is given a rating from 0 to 1. These
fractional numbers represent the certainty of the rule
being true, if the given data is true. For example, a
rule states that if the car is John's, then (.99) the
car is red. This rule means that the expert system can
predict with .99 certainty (1.0 being perfect certainty)
that any car owned by John is red. Rules, like the one
above, can be combined, and by using algorithms, the
certainty rating can be calculated for two or more
rules used together.97 By combining rules and certainty
ratings, an expert system is able to take bits of inconclu-
sive information and put then together to form a conclusive
result. Additionally, the system can, by searching back-
ward, find tests that should be conducted in order to help
prove or to help eliminate pessible answers to the problem.
The use of certainty ratings can also help in the

determination of more than one answer. In some fields,

48

such as medicine, more than one answer is possible for a
given set of data. With the help of certainty ratings,
the two or three most likely answers can be determined,
and the expert system can prescribe procedures to work
with each result.

Expert systems are the basis for most artificial
intelligence work because these systems can simulate the
reasoning process of an expert dealing in a specific area
of knowledge.97 Furthermore, since expert systems are
eagier to duplicate (after the original is built) than
humans can be made into eXperts, expert systems are
beginning to be used in jobs where the number of human

experts is very limited.

VIII. IMPLEMENTATION

In order to implement any of the artificial
intelligence techniques described above, a special
artificial intelligent machine should be constructed.
This machine would have its own special language, one
which can represent symbols instead of numbers. This new
machine would also have to be built with many processors
working in parallel to be able to think fast enough to

operate the new programs.

Artificial intelligence languages

Basically, any program can be written in any language,
but artificial intelligence systems regquire a language that
can be used to work with both the data and the control
procedures.

In early research, five system features of an
artificial intelligence language were considered to be
important: 1) the use of a large variety of data types,

2) the ability to decompose a process into small, independent
parts for easier maintenance, 3) incorporation of

flexible control structures, 4) the ability for inter-

active communication, and 5) the ability to produce

98

efficient code. These five major attributes have been

incorporated in early artificial intelligence languages,

49

50

but in recent artificial intelligence research, additional
characteristics have been found to be desirable: 1) the
ability to work with lists, 2) the ability to find data
relationships as the system runs, 3) the ability to
perform automatic deductions, U4) the facilities to build
complex data structures; frames, scripts, ete.; and 5) the
use of goal-directed behavior control structures.99 No
existing language can provide all of these features, but
some language can perform a few of the characteristics
well at the expense of the others.

LISP is one of the earliest artificial intelligence
languages and is the most impertant today. LISP is also
the most widely used of the artificial intelligence
languages.loO The major reason for the widespread use
of LISP in artificial intelligence research is that LISP
is very efficient at handling symbols, particularly words
and phrases.101 Another important characteristic is that
the symbols can be easily linked into data structures, such
as scripts and frames, which are easier forms in which to
store knowledge in a computer. Each data site also has
pointers that show the direction to other lists, creating
list processing.

However, the beauty of LISP is not entirely conflined
to its data structuring. LISP programs have:the unusual
capability to consider other LISP programs or even them-
102

selves as a set of symbolic concepts which can be altered.

Thus, LISP programs can be used to write other LISP

51

programs, or in relation to artificial intelligence, LISP
programs can be used to alter themselves as they run. For
example, a chess program using LISP would have the capability
to rewrite programmed strategies depending on their
effectiveness during the game.

Yet, LISP is not the only language that has been
created for use in artificial intelligence machines.
INTERLISP is a dialect of LISP that has the capabilities
of LISP and that has a variety of data types, arrays and
strings, in addition to lists.1%? INTERLISP also has the
ability to run more than one routine at a time.

SAIL is the artificial intelligence language that is
most similar to conventional high-level]_a.n,guages.101‘L
The language is reserved for areas in which conventional
computing is required after an artificial intelligent
solution is found.

PLANNER is a language built on top of LISP with its
emphasis placed on goal-directed reasoning.105 However,
the language was never completely implemented because its
reasoning process is limited to starting at the desired
goal state and working backward to the initial state. This
method can be very inefficient in some circumstances.

KRL is a language that is built upon INTERLISP. KRL
has the ability to frame data structures very efficiently-106
In KRL, each entity is represented as a unit with each
unit having a set of information. However, in order to

answer some questions, a KRL structure must store redundant

52

information. For example, in KRL the facts, "person 1 is

the wife of person 2," and " person 2 is the husband of
person 1," must both be stored. This type of redundant
information can cause the required memory space to be

prohibitively large.

Artificial intelligence hardware

Just as the languages of artificial intelligence
machines must be spec¢ialized for the task, the artificial
intelligence machine is also a very special device. LISP
and the other artificial intelligence languages can be
implemented on conventional mainframe; however, since
the conventional mainframe is not designed to take
advantage of the languages' special characteristics, the
computing process is very inefficient.lo? In recent years,
much research has gone into the design and construction of
artificial intelligence machines.

For years, most computer designers have said that any
procedure that can be processed in parallel processors
can be processed in a serial processor. The serial
processing will just be a bit slower. However, as the
program becomes more complex, the serial processing
becomes more than just a little slower. To increase
computing capabilities of artificial intelligent
machines, many processors can be placed in the machine

108 One version of this scheme

to work at the same time.
has four processors and nine memory units. If a processor

needs data from memory, the processor requests the needed

53

data from memory, This type of processing speeds up the
computing process because the processor controls the accessing
of data rather than a controller.

The most radical design for artificial intelligence
machines is being used by the Japanese on their fifth
generation computer.lo9 The design, known as dataflow,
has a large number of identical processors working in
parallel with each other. Unlike the conventional parallel
machine which has a main processor controlling the program's
operation, the dataflow machine has each processor working
cooperatively with each other processor, eliminating the
need for a central controller. However, the main problem
with a dataflow machine is the division of the work
between the processors. If the work is not divided evenly,
one set of processors may be overworked, creating a data
bottleneck, while other processors are idle, wasting
computing time.110

In order to eliminate this problem, each piece of
data is tagged. The tag tells the processor what operation
the data is to be used in.

When a piece of data arrives at a processing unit, the
data follows the path shown in Figure 10. First, the
processing unit tries to match the new data's tag with
the tage of another piece of data in the matching unit.

If a match is found, the pieces of data are sent to the
instruction-fetch unit. If no match is found, the data is

stored for later use. The instruction fetch unit reads the

54

Mokchran %
Wntd

Trnstruetvan Prograrn
Fetch = Memory

Data
Stocage AL

Vi
Outpst €

Y
Figure 10. Dataflow structure.

tag on the data and determines what operation is to be
executed on that data. The data is operated upon in the
ALU, and the new data is sent to the output unit. In the
output unit, the data receives the location of the next
processing unit. Since each processor is working on
whatever data is present, the dataflow processors are
working a greater share of the time than the conventional
machine's processors.111

The major problems with dataflow machines are in the
transferring of data from one processing unit to another.
If a piece of data must continually travel between opposite
sides of the machine to be processed, the communication
time lage can become very significant compared to the
actual processing time. Additionally, as the number of
processors increases, the cost of communications between
each processor increases dramatically. For instance,

2 i
to connect n processors, n- connections must be made.

55

This growth of connections causes the cost to become
prohibitive very quickly. Both of these problems can be
solved by placing the processors in a ring structure and by
allowing each processor to only "talk" with its immediate
neighbors. With this arrangement, the number of connections
increase linearly, and the number of long distance

communicat ions are kept to a minimum.112

Artificial intelligence machine

Up until this point, each charactersitic of the
artificial intelligent machine has been discussed separately.
Machines have been developed which can perform one or two
of those characteristics, but for a machine to be
intelligent, all of those characteristics must be integrated
into its structure.113

The current concept of an artificially intelligent
machine would incorporate all of those functionsiiq (see
Figure 10). This conceptual system would have an
intelligent interface to the outside world with the
capability to perform input-output operations with
speech and graphic displays. It would be able to use
natural languages and be able to translate these languages
almost automatically. The intelligent machine would have
access to a set of expert systems, and the various mathods
to use them to solve complex problems. This system of
expert systems would be built upon the basic problem

solving machine with its knowledge base using both

conventional:andldataflow designs in the processing unit.

This machine will be the first intelligent machine
to be created. This machine is the fifth generation

computer.

56

i

Source:

Yasaki, Edward K., "Tokyo LOo™5.to the 90's",
Datamation, Vol. 29, p. 112, July, 1983.

Figure 11. Concept of an
artificially intelligent machine.

IX. CONCLUSION

The emphasis of artificial intelligence research has
shifted in recent years. In the early years-of artificial
intelligence research, the goals were aimed at the long-
term development of an intelligent machine, a pipe dream
at that time. In the 1970's, the goal of most artificial
intelligence researchers turned toward the design, the
development, and the marketing of very profitable expert
systems.115 However, since the announcement of the
development of the Japanese fifth generation machine, the
emphasis of artificial intelligence research has again
shifted to the development of an intelligent machine.

With this new emphasis on artificial intelligence,
many questions have been asked. Is the building of
intelligent machine morally right? Can man become a
god by granting intelligence to whatever pleases him? Can
an intelligent machine be "kept in its place?" However,
the only question worth asking is "Can an intelligent
machine be built?"

Experts cannot agree if an intelligent machine will
appear, but whether that is today, ten years from now, or
ten times ten years from tomorrow; artificial intelligence
is one intellectual development that could benefit society
by improving the quality of decision-making.

58

REFERENCES

12,
13.
14,
15.
16.
17,
18.
19.
20.
21.
22
23.
24,

60

FOOTNOTES

Waltz, David L., "Artificial Intelligence", Scientific
American, Vol. 247, Oct 1982, p. 118.

Michie, Donald, On Machine Intelligence, John Wiley
and Sons, New York, 1974, p. 21.

Rich, Elaine, Artificial Intelligence, McGraw Hill,
New York, 1983, p. 2.

Rich, p. 4.
Michie, p. 67.
Michie, p. 52.

Hunt, Earl B., Artificial Intelligence, Academic
Press, New York, 1975, p. 238.

Waltz, p. 118.
Biech, p. 31.
Ibid.

Rich, p. 34.
wWaltz, p. 118.
Rich, p. 35.
Rich, p. 36.
Rich, p. 73.
Hunt, p. 230.
Rich, p. 74.
Hunt, p. 230.
Rich, p. 74.
Rich, B« 75
Ibid.

Rich, p. 77.
Rich, p. 77.
Hunt, p. 266.

61

25. Rich, p. 77.
26. Rich, p. 78.
27. Hunt, p. 244.
28. Rich, p. 116.
29. Rich, p. 118.
30. Rich, p. 130.
31. Hunt, p. 252.

32. Harris, Larry R., "Fifth Generation Foundation",
Datamation, Vol. 29, July 1983, p. 149.

33. Berry, Adrian, The Super-Intelligent Machine,
Jonathan Cape Ltd., London, 1983, p. 127.

34. Harris, p. 149,
35. Rich, p. 176.
36, Righ, p. 138.
37. Harris, p. 150.
38. Rich, p. 140.
39. 1Ibid.

40. Rich, p. 176.
41. Ibid.

42. 1Ibid.

43, Rich, p. 177.
44, Rich, p. 177.
45. Rich,:p.1178.

46. Alexander, Tom, "Teaching Computers the Art of Reason”,
Fortune, Vol. 105, May 17, 1982, p. 88.

47. Rich, p. 229.
48. Waltz, p. 132.
49. Alexander, p. 88
50. Rich, p. 223.

62

51. Alexander, p. 88.
52. Rich, p. 234.

53. Berry, p. 94.

54. Waltz, p. 123.
55. Michie, p. 15.
56. Michie, p. 67.
57. Waltz, p. 123.
58. Rich, p. 366.

59. Rich, p. 367.

60. 1Ibid.

61. Waztz, p. 123.
62. Waltz, p. 124.
63. Alexander, p. 86.
64. Waltz, p. 130.
65. Ibid.

66. Alexander, p. 86.
67. Harris, p. 154.
68. Ibid.

69. Rich, p. 304.

70. Rich, p. 305.

71. Waltz, p. 130.
72. Rich, p. 305.

73. Rich, p. 325.

74. Waltz, p. 130.
75. Hunt, p. 344.

76. Alexander, Tom, "Useless Science", Fortune, Vol. 105,
May 31! 19821 P- 139-'

77. Hunt, p. 345.

78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.

92.

93.
9’4’-

95.

97.
98.
99.
100.

63

Berry, p. 113.
Rich, p. 349.
Hunt, p. 366.
Hunt, p. 346.
Hunt, p. 347.
Rich, p. 351.
Waltz, p. 126.
Waltz, p. 124.
Rich, p. 355.
Waltz, p. 128.
Hunt, p. 356.
Berry, p. 106.
Harris, p. 154.

"Artificial Intelligence, The Second Computer Age
Begins", Business Week, March 8, 1982, p. 69.

Yasaki, Edward K., "A.I. Comes of Age", Datamation,
Vol. 26, Oct 1980, p. 50.

Rich, P 2514"
Rich, p. 255.

"Artificial Intelligence, The Second Computer Age
Begins", p. 69.

Staples, Betsy, "Computer Intelligence: Unlimited
and Untapped"”, Creative Computing, Vol. 9, Aug
1983, p. 165,

Rich, p. 285.

Harris, p. 156.
RiCh. P 390-

Myer, Edith, "Machines that LISP", Datamation, Vol. 27,
Sept 1981, p. 105.

101.

102.
103.
104,
1054
106.
107.
108.

109.

110.

111.
112,
113.
114,
115.

64

Alexander, Tom, "Computers on the Road to Self-
Improvement”, Fortune, Vol. 105, June 14, 1982,
p. 149.

Ibid.

Rich, p. 395.

Rich, p. 396.

Hunt, p. 281.

Rich, p. 397.

Rich, p. 405.

Marbach, William K. and Cook, William J., "The Race
to Build a Supercomputer"”, Newsweek, Vol. 102,
July &, 1982, p. 60.

Yasaki, Edward K., "Tokyo Looks to the 90's", Datamation,
Vol. 29, July, 1983, p. 113.

Lerner, Eric J., "Data-flow Architecture", IE

_

Spectrum, Vol. 21, April 1984, p. 57.
Lerner, p. 59.
Lerner, p. 60.
Michie, p. 67.
Yasaki, "Tokyo Looks to the 90's", p. 113.

Bass, Alison, "Artificial Intelligence in a Rut",
Technology Review, Vol. 86, Aug-Sept 1983, p. 82.

65
BIBLIOGRAPHY
Alexander, Tom, "Teaching Computers the Art of Reason",

Fortune, Vol. 105, pp 82-92, May 17, 1982.

Alexander, Tom, "Useless Science”, Fortune, Vol. 1035,
pp. 139-145, May 31, 1982. -

Alexander, Tom, "Computers on the Road to Self-
Improvment", Fortune, Vol. 105, pp. 148-160, June 14, 1982,

"Artificial Intelligence, The Second Computer Age
Begins, " Business Week, pp. 66-75, March 8, 1982.

Bass, Alison, "Artificial Intelligence in a Rut",
Technology Review, Vol. 86, p. 82, Aug-Sept 1983.

Berry, Adrian, The Super-Intelligent Machine, Jonathan
Cape Ltd., London, 1983.

Harris, Larry R., "Fifth Generation Foundations",
Datamation, Vol. 29, pp. 148-156, July 1983.

Hunt, Earl B., Artificial Intelligence, Academic
Press, New York, 1975.

Lerner, Eriec J., "Data-flow Architeeture", IEEE Spectrum,
Vol. 21} pp. 57-62, April 1984,

Marbach, William D., and Cook, William J., "The Race to
Build a Supercomputer", Newsweek, Vol. 102, pp. 58-64,
July 4, 1983.

Michie, Donald, On Machine Intelligence, John Wiley
and Sons, New York, 1974.

Myer, Edith, "Machines that LISP", Datamation, Vol. 27,
pp. 164-166, Aug 1983.

Rich, Elaine, Artificial Intelligence, McGraw Hill,
New York, 1983.

Staples, Betsy, "Computer Intelligence: Unlimited
and Untapped", Creative Computing, Vol. 9, pp. 164-166,
Aug 1983.

Waltz, David L., "Artificial Intelligence", Scientific
American, Vol. 247, pp. 118-132, Oct 1982.

Yasaki, Edward K., "A.I. Comes of Age", Datamation,
Vol. 26, pp. 48-54, Oct 1980,

Yasaki, Edward K., "Tokyo Looks to the 90's",
Datamation, Vol. 29, pp. 110-115, July, 1983.

66

AN OVERVIEW OF ARTIFICIAL INTELLIGENCE

by

DONALD J. GEMAEHLICH

B. S., Kansas State University, 1983

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

ABSTRACT

The dream of artificially intelligent machines has
been around for as long as computers have, but not until
now has the technology been equal to the task. Artificial
intelligence is the terminology used to describe the
machine's ability to think like a human. With the ability
to store information as the human brain does, to reason
through problems, to communicate in the native language,
to perceive data from the environment, and to learn from
its mistakes; the artificially intelligent machine will be
able to adapt to the changing world. Using designs for
computer hardware and new languages to run that hardware,

the time for intelligent computers is not too far away.

