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Abstract 

 

Cellular encapsulation is the immune response in which insects protect 

themselves from multicellular parasites such as nematodes or parasitoids. During an 

encapsulation episode, certain insect hemocytes become attracted to a foreign invader and 

aggregate on its surface. In short order, the invading entity will become entrapped within 

a capsule comprised of thousands of hemocytes, thus rendering the parasite harmless to 

the insect host. Although the process of cellular encapsulation has been known for a great 

many years, very little knowledge yet exists regarding the biochemistry underlying 

capsule formation. It would seem likely that cell surface adhesion proteins mediate this 

immune response. 

 In a series of in vivo encapsulation assays in the tobacco hornworm, Manduca 

sexta, a collection of anti-hemocyte monoclonal antibodies (mAbs) was screened for their 

ability to inhibit cellular encapsulation. Two of the mAbs that inhibited this immune 

response and incidentally specifically bind plasmatocytes, MS13 and MS34, were used to 

isolate a ≈ 90 kDa protein. Several short peptide sequences contained within this protein 

were acquired via Edman degradation. Degenerate primers based on two of these peptide 

sequences and total RNA from M. sexta hemocytes were used to perform RT-PCR and 5´ 

and 3´ RACE. This resulted in a full-length cDNA sequence of 2426 bp. A 2301 bp open 

reading frame within this cDNA sequence codes for a protein of 767 residues. This 

protein, denominated βMs1, exhibits significant sequence homology to the β-subunits of 

integrins, which are a family of transmembrane, heterodimeric glycoproteins that possess 

adhesive properties. Analysis of recombinant segments of βMs1 showed that the protein 

 



produced from the PCR product is the antigen to MS13 and MS34 and that these mAbs 

bind to the region of the integrin that contains the extracellular binding site. Northern blot 

analysis of various M. sexta tissues together with immunofluorescence labeling with 

MS13 and MS34 shows that βMs1 is solely expressed in plasmatocytes. The totality of 

these experiments demonstrates that integrins are essential for the cellular immune 

response of encapsulation. 
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Abstract 

 

Cellular encapsulation is the immune response in which insects protect 

themselves from multicellular parasites such as nematodes or parasitoids. During an 

encapsulation episode, certain insect hemocytes become attracted to a foreign invader and 

aggregate on its surface. In short order, the invading entity will become entrapped within 

a capsule comprised of thousands of hemocytes, thus rendering the parasite harmless to 

the insect host. Although the process of cellular encapsulation has been known for a great 

many years, very little knowledge yet exists regarding the biochemistry underlying 

capsule formation. It would seem likely that cell surface adhesion proteins mediate this 

immune response. 

 In a series of in vivo encapsulation assays in the tobacco hornworm, Manduca 

sexta, a collection of anti-hemocyte monoclonal antibodies (mAbs) was screened for their 

ability to inhibit cellular encapsulation. Two of the mAbs that inhibited this immune 

response and incidentally specifically bind plasmatocytes, MS13 and MS34, were used to 

isolate a ≈ 90 kDa protein. Several short peptide sequences contained within this protein 

were acquired via Edman degradation. Degenerate primers based on two of these peptide 

sequences and total RNA from M. sexta hemocytes were used to perform RT-PCR and 5´ 

and 3´ RACE. This resulted in a full-length cDNA sequence of 2426 bp. A 2301 bp open 

reading frame within this cDNA sequence codes for a protein of 767 residues. This 

protein, denominated βMs1, exhibits significant sequence homology to the β-subunits of 

integrins, which are a family of transmembrane, heterodimeric glycoproteins that possess 

adhesive properties. Analysis of recombinant segments of βMs1 showed that the protein 

 



produced from the PCR product is the antigen to MS13 and MS34 and that these mAbs 

bind to the region of the integrin that contains the extracellular binding site. Northern blot 

analysis of various M. sexta tissues together with immunofluorescence labeling with 

MS13 and MS34 shows that βMs1 is solely expressed in plasmatocytes. The totality of 

these experiments demonstrates that integrins are essential for the cellular immune 

response of encapsulation. 
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Objective 
 

In most insects, when a large foreign body invades the hemocoel, certain 

hemocyte types from the host will recognize the intruding entity and adhere to it. Within 

a short period, thousands of host hemocytes will form a multilayered capsule around the 

alien mass, thus rendering it harmless. This process is known as cellular encapsulation. 

The objective of this thesis is to determine the molecular basis for hemocyte adhesion 

that allows for the formation of cellular capsules using the tobacco hornworm, Manduca 

sexta, as the experimental insect. 
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Introduction 
 

1) Insect Immune System: 

Parasitism has likely existed at least since the first eukaryotic cell evolved about 

2.5 billion years ago. The serial endosymbiosis hypothesis maintains that the first 

eukaryotic cell came into being when an anaerobic protoeukaryote host cell was invaded 

by a prokaryotic aerobic symbiont (Margulis, 1981). From that point to the time the 

Hexapoda arose 2.1 billion years later (Borror et al., 1989) to the present, the immune 

responses of extant insects to the onslaught of parasitic challenges have undergone great 

evolutionary advances and sophistication. 

Insects have well-developed innate immune systems that utilize genetically 

predetermined proteins that coordinate the engulfment and breakdown of infectious 

organisms (Fearon, 1997; Gillespie et al., 1997; Lavine and Strand, 2002). These 

germline-encoded immune proteins, both soluble in the hemolymph and membrane 

bound on cells, provide a rapid defense against pathogens by being either habitually 

present in the host or quickly induced upon infection. Although the “hard-wired” nature 

of innate immunity imparts a degree of genetic inflexibility, hundreds of millions of years 

of evolution has honed this system to recognize and respond to a great assortment of 

molecular classes common only to pathogens, such as the peptidoglycans and 

lipopolysaccharides that are found on bacteria (see below “pathogen-associated 

molecular pattern (PAMP) molecules”). Innate immunity thus functions by detecting 

entities that possess characteristics of infectious organisms, not by distinguishing every 

extant pathogen individually (Fearon and Locksley, 1996; Fearon, 1997). 

As of yet, there exists no evidence that insects possess an acquired immune 
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system, a trait known among vertebrates (Wallace et al. 1991, Lavine and Strand, 2002). 

In contrast to innate immunity, acquired immunity is characterized by a targeted attack 

upon a unique invader via specific antigen receptors produced by somatic gene 

rearrangement in the host. In other words, pathogens are recognized by their unique 

surface chemical distinctiveness. Through somatic gene rearrangement, evolution is 

compressed to a few weeks, allowing the host to quickly adapt to the selection of variant 

pathogens. In addition, cells of the acquired immune system that express distinct antigen 

receptors to a particular pathogen will remain in the host after the infection is cleared. 

The continued presence of these “memory cells” allows for a rapid response to any 

foreign entity that is multiply encountered (Fearon, 1997). 

The complexity of interactions between the host insect and the particular invading 

parasite or pathogen are great and vary enormously even among closely related species 

(Beerntsten et al., 1989; Hillyer et al., 2003). Differences are known to exist even among 

the various strains within a species (Collins et al., 1986). Within this complexity, the 

insect immune system can be broken down into three integrated and well-developed lines 

of defense: physical, humoral and cellular (Gillespie et al., 1997; Lavine and Strand, 

2002).  

1.1) Physical Defense: 

The first line of protection is the barrier of the integument and gut. All insects are 

covered with a layer of cuticle. The cuticle also lines the ectodermal invaginations of the 

foregut and hindgut as well as the tracheal system. This protective shield can reach 

thicknesses up to 200 µm and is comprised of an endocuticle, an exocuticle and an 

epicuticle. The characteristic component of the endocuticle and exocuticle is the 
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polysaccharide chitin. Each chitin molecule attaches to neighboring chitin molecules via 

hydrogen bonds to form microfibrils that are fixed in a protein matrix. In exocuticle, 

cross-linking among the protein molecules facilitated by highly reactive catecholamines 

causes this part of the integument to harden in a process called sclerotization. Covering 

the exocuticle is the epicuticle. This layer contains extracellular phenoloxidase, but no 

chitin. The presence of this enzyme in the epicuticle facilitates the sclerotization of this 

layer during repair after damage. The outer covering of the epicuticle is a wax layer 

(Chapman, 1998).  

 These cuticular layers make for a very formidable four-fold barrier to pathogens 

and parasites. First, they act as a physical obstruction. Second, the lipids that compose the 

wax layer are hydrophobic and thus repel agents of disease that are mostly hydrophilic. 

Third, the products phenoloxidase activity within the cuticle can be cytotoxic to 

pathogens. And fourth, upon disturbance of the integument, the underlining epidermal 

cells can secrete antibiotic peptides and initiate a signalling mechanism to which 

hemocytes respond (Blomquist and Dillwith, 1985; Dimarcq et al.,  1990; Lee, and Brey,  

1994.  Gillespie et al., 1997; Chapman, 1998). 

1.2) Humoral Defense:  

 Pathogenic microorganisms (i.e. bacteria, fungi, and protozoa) that elude the 

physical barriers must contend with a collection of cytotoxic peptides and proteins in the 

hemolymph (Hoffmann et al., 1994; Gillespie et al., 1997; Hetru et al., 1998; Bulet et 

al., 1999; García-Lara et al., 2005). Recognition by the host of the presence of 

microorganisms within its body will induce the production of these cytotoxins. Each 

insect species produces its own specific assortment of cytotoxic peptides and proteins that 
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will act in synergy against invading pathogens (Bulet et al., 1999). The cytotoxic 

molecules are primarily produced in the fat body, but are also known to be synthesized by 

cells of the epidermis (Brey, et al., 1993; Lee and Brey, 1995), midgut (Dunn, et al. 1994; 

Russell and Dunn, 1996), nephrocytes, (Russell and Dunn, 1990; Chapman, 1998) 

Malpighian tubules, and hemocytes (Mulnix and Dunn, 1994; Gillespie et al., 1997). Of 

the more than 170 cytotoxic peptides and proteins found to date, most share in the 

features of a molecular weight less than 5 kDa (larger proteins include lysozyme and 

attacin) and a structure containing either amphiphilic α-helices or hairpin-like β-sheets or 

a combination of the two  (Bulet et al., 1999).  

Antimicrobial peptides and proteins can be grouped into gene families based on 

similar amino acid sequences and three-dimensional structures (Gillespie et al., 1997). 

The Hoffmann research group at Le Institut de Biologie Moléculaire et Cellulaire has 

further categorized these antibacterial biomolecules into four groups: (i) cecropins, (ii) 

defensins and other cysteine-containing peptides, (iii) proline-rich peptides, and (iv) 

glycine-rich peptides/polypeptides (Hetru et al. 1994; Hetru et al. 1998; Bulet et al, 1999; 

Lamberty et al. 1999).  

1.3) Cellular Immunity: 

 Upon invasion by either micro- or macroorganisms, in addition to a humoral 

immune response, insects launch a hemocyte-mediated immune reaction (Chapman, 

1998; Lavine and Strand, 2002), in which the hemocytes undergo both morphological and 

behavioral changes (Gillespie, et al, 1997; Chapman, 1998). Cellular and humoral 

immunity do not operate independently from one another, but in a well-coordinated 

fashion in which hemocytes and humoral biomolecules influence each other’s actions. 
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For example, recognition of a foreign entity by hemocytes is accomplished either by 

direct contact or through humoral factors that are produced by the host and bind to the 

invader to opsonize its surface. And, as mentioned above, a number of cytotoxic peptides 

are produced by hemocytes. The specific cellular response is dependent on the type and 

number of invading organisms. Cellular responses come in three forms: phagocytosis, 

nodule formation and encapsulation.  

1.3.1) Insect Hemocyte Types:  

 Prior to a discussion of the insect cellular immune response, it is essential to 

characterize the hemocyte types involved.  

 Hemocytes have been described from many orders throughout the Hexapoda 

including Collembola (Ksiazkiewicz-Ilijewa, 1979), Blattaria (Baerwald and Bousch, 

1970; Moran, 1971; Chain et al. 1992; Fenoglio et al. 1993), Orthoptera (Costin, 1975), 

Hemiptera (Barracco et al. 1987; Barracco and Loch, 1989), Hymenoptera (Ahmad, 

1988), Coleoptera (Ahmad, 1992; Giulianini, 2003), Diptera (Luckhart et al., 1992; 

Hillyer and Christensen, 2002; Silva et al., 2002; Meister and Lagueux, 2003) and 

Lepidoptera (Akai and Sato, 1973; Beaulaton, 1979; Chain and Anderson, 1983; Butt and 

Shields, 1996; de Andrade et al, 2003; Falleiros et al. 2003;  Ling et al. 2003).  

 Historically, the various types of hemocytes were distinguished from each other 

by functional, morphological and histological characteristics (Gupta, 1985; 1986; 1991; 

Brehelin and Zachary, 1986). These methods for categorizing hemocytes have proved to 

be insufficient due to many hemocytes having overlapping characteristics (e.g. both 

plasmatocytes and granular cells are known to be phagocytic; the presence of granules, 

while a defining characteristic of granular cells, is in some species of insects a 
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characteristic of other hemocyte types too). To add to the confusion, within a species 

many hemocyte types consist of subtypes. In addition, functional, morphological and 

histological characteristics of a specific hemocyte type can vary con- and interspecifically 

(Gupta, 1991).  

During the 1990s, monoclonal antibody (mAb) markers were created to antigens 

that are expressed on hemocytes from several insect species (Chain et al., 1992; Mullett 

et al., 1993; Willott et al., 1994; Scapigliati et al., 1996; Strand and Johnson, 1996; Hori 

et al., 1997; Gardiner and Strand, 1999). This greatly improved the ability to identify 

specific types and subtypes of hemocytes within the particular species for which the 

antibodies were developed, however, many of these antibodies do not cross-react with 

hemocytes from different species (Willott et al., 1994).  

The result of this ambiguity is a body of literature muddled with numerous names 

for all the variant forms of hemocytes and the likelihood of single hemocyte types being 

given multiple names. This has led to the situation in which it is very difficult to perform 

interspecific comparisons of hemocytes (Brehelin and Zachary, 1986, Gupta, 1991). In 

spite of these difficulties, some general hemocyte types can be described. It is important 

to note that not all insects possess all hemocyte types. 

Prohemocytes (PR): Prohemocytes are small cells that are round or oval (4 to 10 

µm wide by 4 to 22 µm long) (Gupta, 1985; 1991; Brehelin and Zachary 1986; Butt and 

Shields, 1996, Chapman, 1998; Silva et al., 2002; Giulianini et al. 2003). These 

hemocytes are characterized by possessing a relatively large nucleus that nearly fills the 

cytoplasmic space. Other organelles (e.g. smooth and rough endoplasmic reticulum, 

mitochondria, Golgi bodies) are generally low in number. Prohemocytes have been 
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observed containing centrioles and microtubules, thus suggesting a mitotic nature. This 

last observation has led some to speculate that prohemocytes are the precursors to some 

or all the other hemocytes. In in vitro experiments with B. mori hemocytes, Yamashita 

and Iwabuchi  (2001) observed that isolated non-dividing prohemocytes differentiate into 

either granular cells or plasmatocytes and that some of these granular cells subsequently 

transition into spherulocytes. Yamashita and Iwabuchi also observed other prohemocytes 

divide directly into granular cells, plasmatocytes, spherulocytes or new prohemocytes. 

During embryonic development of Drosophila hemocytes, Tepass et al. (1994) observed 

procephalic mesoderm differentiate into prohemocytes, which then underwent a second 

differentiation into plasmatocytes.  

Prohemocytes are often found in small groups and constitute 1% to 7% of the 

population of hemocytes (Gupta, 1985; 1991; Brehelin and Zachary 1986; Chapman, 

1998). 

Plasmatocytes (PL): Plasmatocytes are polymorphic cells of variable size (3 µm 

to 40 µm) (Gupta, 1985; 1991; Götz and Boman, 1985; Brehelin and Zachary 1986; Butt 

and Shields, 1996; Chapman, 1998; Silva et al., 2002). While free-floating in the 

hemolymph, plasmatocytes are round or oval. Upon contact with certain surfaces (e.g. 

glass or a foreign body undergoing encapsulation), plasmatocytes attach, spread by 

sending out filopodia, and become very flat (thus the pseudonym lammellocytes; other 

pseudonyms include: vermiform cells, podocytes and thrombocytoids). The cytoplasmic 

space contains many organelles, including a well-developed rough endoplasmic 

reticulum, Golgi bodies, and numerous mitochondria. The nucleus is most often 

positioned centrally. A recent examination of plasmatocytes of M. sexta larvae revealed 
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that the cells of this species are endomitotic and are thus polyploid (Nardi et al. 2003). 

Silva et al. (2002) observed binucleated plasmatocytes from the larvae of the tephritid 

fruit fly Anastrepha obliqua.  

Plasmatocytes may or may not contain granules. Both Gupta (1991) and Brehelin 

and Zachary (1986) designate all granulated plasmatocytes as granular cells (probably 

Brehelin and Zachary’s granular hemocyte 1).  

Plasmatocytes are among the most numerous of hemocytes and generally 

comprise between 30% to 60% of the total hemocyte count. These hemocytes possess the 

ability to adhere to foreign surfaces and play an important role in wound healing and in 

the immune responses of phagocytosis, nodule formation and encapsulation (Gupta, 

1985; 1991; Götz and Boman, 1985; Brehelin and Zachary 1986; Chapman, 1998; Lavine 

and Strand, 2002). Plasmatocytes also have the important task of phagocytosing cells that 

have undergone apoptosis during embryogenesis and metamorphosis (Tepass et al. 1994; 

Franc et al. 1996; 1999; Chapman, 1998). 

Granular cells (GR): Granular cells are either spherical or oval with a diameter 

range between 4 and 45 µm. The main distinguishing characteristic of these cells is their 

great number of membrane-bound granules. Granules appear to originate from the Golgi 

bodies (Gupta, 1985) and come in various forms which Gupta (1985; 1986; 1991) has 

combined into three groups: 1) structureless electron-dense granules (amorphous blobs 

that appear dark in transmission electron microscopy (TEM)), 2) structureless electron-

lucent granules (amorphous blobs that appear light in TEM) and 3) structured granules 

(granules with defined shape). Based on the types of granules present, Brehelin and 

Zachary (1986) developed four categories of granular cells; the granular hemocytes (GH) 
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1 through 4.  

 Other characteristics of granular cells include the possession of numerous 

lysosomes, free ribosomes and well developed ER and RER, but only a few mitochondria 

(Gupta, 1985; Chapman, 1998). The nucleus is round or elongate and located centrally. 

Nardi et al. (2003) showed that these cells are diploid. Granular cells may or may not 

have micropapillae or filopodia (Gupta, 1985) (although some of what have been 

described as filopodiated granular cells may be what others have referred to as granulated 

plasmatocytes). 

Like plasmatocytes, granular cells can adhere to foreign surfaces and play an 

important role in wound healing and in the immune response, including nodule formation 

and encapsulation (Gupta, 1985; 1986; 1991; Götz and Boman, 1995; Brehelin and 

Zachary 1986; Chapman, 1998). Upon injury or invasion by a foreign body, granular 

cells will readily degranulate. Degranulation is often followed by recruitment of other 

immunocytes (i.e. plasmatocytes and granular cells) and localized coagulation (the 

coagulocytes of some insects may in fact be granular cells) (Gupta, 1991; Pech and 

Strand, 1996). Granular cells in some species are also known to be phagocytic (Wago, 

1991; Gillespie, 1997; Silva et al., 2002). 

Granular cells comprise over 30% of the hemocyte count and, along with 

plasmatocytes, are together the two most numerous of hemocytes (Chapman, 1998). 

Spherulocytes (SP): Spherulocytes are round or oval and variable in size with 

diameters from 5 µm to 25 µm (Gupta, 1985; 1991; Butt and Shields, 1996; Chapman, 

1998). The defining characteristic of these hemocytes is the membrane-bound spherules 

in the cytoplasmic space. The number of spherules varies and range in diameter from 1 
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µm to 5 µm. These spherules appear to enclose some sort of granulated material. 

Histochemical analysis of the spherules has shown that they contain mucopolysaccharide 

and glucomucoproteins (Gupta, 1985; 1991). The cytoplasm also contains ribosomes, 

Golgi bodies, lysosomes, mitochondria and rough endoplasmic reticulum. Although 

many have speculated as to the function of these hemocytes (e.g. silk production, 

melanization, phagocytosis, regulation of clotting and cell adhesion), a definitive answer 

to this question remains elusive (Gupta, 1985; 1991; Brehelin and Zachary 1986; 

Chapman, 1998).  

Oenocytoids (OE): Oenocytoids are opaque hemocytes that range in size from 16 

µm to over 54 µm and have been observed in oval, spherical, elongated and crescent 

shape. They comprise over 5% of the hemocyte count. In the Lepidoptera, oenocytoids 

are the largest in size of all hemocytes (Gupta, 1985; 1991; Brehelin and Zachary, 1986; 

Butt and Shields, 1996; Chapman, 1998). The plasma membrane is generally without 

irregular processes, although SEM of oenocytoids of the German cockroach Blattella 

germanica did show micropapillae (Chiang et al., 1988). The nucleus is small and located 

eccentrically. Gupta (1991) observed mitotic nuclei in the oenocytoids of the hissing 

cockroach Gromphadorhina portentosa. Sometimes oenocytoids possess two nuclei. This 

condition may be the result of nuclear division without or prior to cellular division. The 

cytoplasm appears homogeneous. In oenocytoids from most insect species observed, the 

organelles (e.g. mitochondria, Golgi bodies, RER) are generally underdeveloped, 

however, the cytoplasm is known to contain numerous free ribosomes. A few 

oenocytoids have inclusions that are rod, filament, needle-like, or crystal in shape. In D. 

melanogaster, the oenocytoids are referred to as crystal cells due to the shape of the 
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inclusions (Gupta, 1985; Götz and Boman, 1995; Tepass et al. 1994).  

 Oenocytoids tend to lyse very easily, thus spilling the content of their cytoplasm 

into the hemolymph (Gupta, 1985; 1991; Da Silveira et al. 2003). The cytoplasm of 

oenocytoids contains a number of proteins and peptides that are important to the host 

insect’s physiology. Recent studies of the lysate of oenocytoids from the noctuid moth 

Mythimna (also known as Pseudaletia) separata have shown that it contains growth-

blocking peptide (GBP)-binding protein (Matsumoto et al., 2003). GBP-binding protein 

has a specific affinity for growth-blocking peptide (GBP), a molecule involved in 

stimulation of plasmatocytes, cell proliferation, and larval growth regulation. GBP also 

causes oenocytoids to lyse. It is believed that the release of GBP-binding protein from 

lysed oenocytoids acts as an inhibitor of GBP.  

 Oenocytoids have also been shown to contain pro-phenoloxidase (pro-PO) which, 

when released into the hemolymph and activated to phenoloxidase, plays an important 

role in the melanization response associated with wound healing, protein cross-linking 

and immunity (Jiang et al., 1997; Gillespie, 1997; Hillyer and Christensen, 2002; Hillyer 

et.al., 2003; Da Silveira et al., 2003; Kanost et al., 2004). 

 Recently, there have been two observations of phagocytic oenocytoids; one from 

the scarab beetle Cetonischema aeruginosa in which latex beads were phagocytosed by 

means of a large number of short filopodia (Giulianini et al., 2003), and the second from 

the mosquito Armigeres subalbatus wherein individual bacteria, capsules of melanized 

bacteria, as well as latex particles, were phagocytosed (Hillyer et al., 2003). 

Adipohemocytes (AD): Adipohemocytes are usually spherical or oval (Gupta, 

1985; 1991), but have been observed in the tephritid fruit fly Anastrepha obliqua to be 
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polymorphic (Silva et al., 2002). These hemocytes can vary in diameter from 7 µm to 45 

µm and are characterized by lipid droplets located in the cytoplasm (Gupta, 1985; 1991; 

Butt and Shields, 1996; Chapman, 1998; Silva et al., 2002). The cytoplasm often contains 

non-lipid granules and well-developed mitochondria, Golgi bodies, rough endoplasmic 

reticulum and polyribosomes. The nucleus is small and may be located anywhere in the 

cell.  

 The number of adipohemocytes in the hemolymph is generally low and normally 

represents only 1% to 4% of the total hemocyte population (Gupta, 1991), however 

adipohemocytes are known to reach levels as high as 39% in the pupae of the gypsy 

moth, Lymantria dispar (Butt and Shields, 1996), and are the second most abundant 

hemocyte type in the adult female mosquito A. aegypti (Hillyer and Christensen, 2002). 

 Adipohemocytes are believed to function in storage of energy in the form of 

glycogen and lipid (Hillyer and Christensen, 2002). 

1.3.2) Cellular immune responses:  

 The three principle immune responses involving hemocytes are phagocytosis, 

nodule formation and encapsulation (Chapman, 1998; Lavine and Strand, 2002). For 

most species studied, the primary hemocytes involved in the cellular immune responses 

are granular cells and plasmatocytes. As mentioned above, oenocytoids can play a role in 

any melanization events that may occur during a cell immune response.  

1.3.2.1) Phagocytosis: Phagocytosis is the process in which individual cells, 

referred to collectively as phagocytes, engulf small particulates. This behavior of cells is 

believed to be among the most ancient. It probably first served as a means of obtaining 

nutrition, but has evolved within the Animalia to aid in the defense against invading 
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organisms and to remove cells that have undergone apoptosis (Bayne, 1990; Tepass et al. 

1994; Götz and Boman, 1995).  

 Phagocytosis is the primary cellular response against an invasion of a low number 

of small-sized pathogens (e.g. bacteria, fungal spores or protists). The primary 

phagocytes of insects are plasmatocytes and granular cells (Gillespie, et al, 1997; 

Chapman, 1998; Tojo et al. 2000). 

Phagocytosis initiates with a phagocyte identifying a particle as foreign (Bayne, 

1990, Götz and Boman, 1995; Gillespie, et al, 1997). Such recognition may be achieved 

directly by the detection of unique surface molecules on the particle by the phagocyte. In 

the case of microbes, these surface molecules, called pathogen-associated molecular 

pattern (PAMP) molecules (Lavine and Strand, 2002), include peptidoglycans, 

lipopolysaccharides, lipoteichoic acid, and β-1,3-glucans. Recognition may be indirect by 

the tagging of foreign particles with soluble hemolymph factors called pattern recognition 

proteins (PRPs), or more generally opsonins, which mark the particle for cellular attack. 

Such PRPs include hemolin, peptidoglycan recognition proteins, β-1,3-glucan 

recognition proteins, and C-type lectins (Bayne, 1990; Fabrick, 2003; Kanost et al., 

2004). In either recognition situation, direct or opsonin-dependent, immunocytes require 

pattern recognition receptors (PRRs) on their surfaces to facilitate the identification of 

alien particles for immune attack (Bayne, 1990, Lavine and Strand, 2001; 2002). 

Following recognition, the stages of phagocytosis consist of attachment to the 

particle, outside-in signal transduction to initiate engulfment behavior, formation of 

pseudopodia, ingestion of the particle, and internal sequestering of the particle in a 

vesicle known as a phagosome (Bayne, 1990, Götz and Boman, 1995; Gillespie, et al, 
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1997). The mechanics of engulfment are driven by cytoskeletal actin (Castellano et al., 

2001). As the extrinsic particle is internalized, cytoplasmic organelles, called lysosomes, 

that contain digestive enzymes move towards and fuse with the phagosome, resulting in 

the disintegration of the engulfed particle (Cheng et al. 1975; Bayne, 1990). Individual 

phagocytes are known to be capable of ingesting over 100 bacteria (Hillyer et al., 2003). 

If a phagocyte engulfs particles of indigestible material, the entire cell will migrate to a 

location within the body where it becomes dormant and there adopts permanent residence 

(Bayne, 1990). 

 The degree of phagocytic response is dependent upon the nature of the target 

particle and may be influenced by factors in the plasma. In the mosquito Armigeres 

subalbatus, “primary response towards the Gram-negative bacterium E. coli  is 

phagocytosis” while the “primary response towards the Gram-positive bacterium 

Micrococcus luteus is melanization” (Hillyer et al., 2003). 

In the greater wax moth, G. mellonella, phagocytic behavior by granular cells was 

reduced by “p-NPGB, a serine proteinase inhibitor…known to inhibit the activation of 

the prophenoloxidase cascade,” and to a lesser extent by the phenoloxidase inhibitor 

phenyl thiourea (PTU), thus suggesting that phenoloxidase plays a role in phagocytosis 

by this hemocyte (Tojo et al. 2000).  

1.3.2.2) Nodule Formation: Nodules are aggregates of hemocytes and 

extracellular coagulum that have entrapped large numbers of small-sized foreign entities. 

The formation of nodules is the immune response to high concentrations of non-living 

particles or microbes such as bacteria, fungal spores, yeast cells or protozoa (Götz and 

Boman, 1985; Guzo and Stoltz, 1987; Gillespie, et al, 1997; Chapman, 1998). 
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 An ultrastructural examination of nodule formation in larval G. mellonella by 

Ratcliffe and Gagen (1977) appears to be typical for most Lepidoptera. Within 1 minute 

after injection of heat-killed Bacillus cereus, the granules within the granular cells that 

had randomly encountered the bacteria began to swell. These granules migrated out 

towards the granular cells’ periphery and expelled an adhesive flocculent substance into 

the surrounding hemolymph, which then entrapped the bacteria. This resulted in an 

aggregation of granular cells and bacteria embedded in an extracellular matrix. Little to 

no phagocytosis of bacteria by granular cells was observed. Occasionally, a random non- 

granular cell blood cell was caught in the forming nodule. By 5 minutes, the forming 

nodules were 50-100 µm in diameter. Granular cells were still undergoing degranulation 

as the nodule continued to enlarge. The aggregation became more compact and 

depositions of melanin appeared near entrapped bacteria. The edges of granular cells lost 

their integrity, followed by the disintegration of the granular cells’ nuclei and other 

organelles. 

Two to four hours after initiation of nodule formation, plasmatocytes began to 

attach to the periphery and flatten in a manner similar to encapsulation (See below, 

section 1.3.2.3).  

Nodule formation was complete by 24 hr and nodules ranged in diameter between 

100-150 µm. The completed nodules were comprised of a central flocculent mass 

consisting of bacteria and the remnants of granular cells and any other hemocytes that 

had become entrapped, all embedded in a melanized matrix and surrounded by a 

multilayer of flattened plasmatocytes (≈10 cells thick). Granular cells and plasmatocytes 

were the only hemocytes observed to play a role in nodule formation, however one can 
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speculate that oenocytoids play an indirect role since this hemocyte type contains pro-PO, 

essential for melanization (Ratcliffe and Gagen, 1977; Götz and Boman, 1985; Gillespie, 

et al, 1997; Chapman, 1998). 

1.3.2.3) Cellular Encapsulation: Cellular encapsulation is the immune response 

in which thousands of hemocytes become attracted and attach to a foreign object, thus 

forming a multilayered capsule of cells around an intrusive entity. Targets of 

encapsulation are objects that have found their way into the body of an insect and are too 

large to undergo phagocytosis or nodulation (Götz, 1986; Bayne, 1990; Tanada and Kaya 

1993; Gillespie, et al, 1997; Chapman, 1998). Targets of encapsulation include both 

biotic objects (e.g. trematodes, cestodes, nematodes, parasitoids, eggs of parasites and 

parasitoids, fungi and interspecific tissue transplants) and inanimate experimental objects 

(e.g. Sephadex beads, nylon beads, cotton thread, glass, nylon, latex) (George et al. 

1984; Götz and Boman, 1985; Götz, 1986). Cellular encapsulation is also known to occur 

in a number of other non-insect protostomes including crustaceans (Bauchau, 1981), 

annelids (Cooper and Stein, 1981), diplopods (Ravindranath, 1981) and molluscs 

(Sminia, 1981; Cheng, 1981; Cowden and Curtis, 1981), thus indicating that this immune 

response is very ancient and most probably predates the hexapods. 

Physical description of cellular capsules: Nearly all insects so far investigated 

are known to possess the immune response of cellular encapsulation, with resulting 

capsules exhibiting broadly similar morphology (Götz and Boman, 1985; Götz, 1986). 

The major exceptions are the many Diptera that possess so few hemocytes that only 

humoral (or melanotic) encapsulation occurs. Melanotic encapsulation is an enzymatic 

process whereby melanin polymers and proteins cross-link to form a melanotic coat 
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around a parasite, thus killing the invading entity (Paskewitz et al., 1988; Zhao et al., 

1995).  

 The generalized cellular capsule consists of three regions. The innermost region, 

approximately 10 cells thick, is made up of granular cells. These cells are not flattened, 

but show signs of autolysis. The middle layer is approximately 20-40 cells thick and is 

solely composed of flattened plasmatocytes. The intercellular spaces between the 

plasmatocytes of this middle layer are filled with electron-dense material. The outer 

region is a covering of granular cells, one to ten layers thick. Often the capsule undergoes 

some degree of melanization (Götz and Boman, 1985; Götz, 1986; Tanada and Kaya, 

1993; Peck and Strand, 1996; Gillespie, et al, 1997; Chapman, 1998). While granular 

cells and plasmatocytes are the only hemocytes generally observed in capsules, a few 

studies have mentioned the presence of other hemocyte types including thrombocytoids 

(which may be misclassified granular cells), lamellocytes (which may be misclassified 

plasmatocytes), and oenocytoids. Some of these observations may be fallacious and a 

result of the inconsistencies in hemocyte identification and classification in the years 

prior to immunolabeling (Götz and Boman, 1985). Oenocytoids may play an indirect role 

in encapsulation by providing the pro-phenoloxidase used for capsule melanization.  

 Encapsulation sequence of events: There is a great similarity in the actual 

process of cellular encapsulation throughout much of the Hexapoda. Based on 

observations from a number of insects including the American cockroach, Periplaneta 

americana (Lackie, 1981), the desert locust, Schistocerca gregaria (Lackie, 1981), the 

greater wax moth, G. mellonella (Gagen and Ratcliffe, 1976; Ratcliffe and Gagen, 1977), 

the cabbage white butterfly, Pieris brassicae (Gagen and Ratcliffe, 1976; Ratcliffe and 
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Gagen, 1977), the soybean looper, Pseudoplusia includens (Peck and Strand, 1996; 

Lavine and Strand, 2001) and the tobacco hornworm, M. sexta (Wiegand et al., 2000), the 

following generalized sequence of events can be constructed:  

1) Hemocytes contact a foreign object via random movement or directed chemotaxis. 

2) Granular cells that contact the foreign object adhere and degranulate. 

3) Material discharged from granular cells binds to foreign surfaces and to 

hemocytes. 

4) Substances released from granular cells attract other granular cells and 

plasmatocytes. 

5) Plasmatocytes attach to the capsule, spread and flatten, forming a multilayer 

sheath.  

6) Intercellular spaces between attached immunocytes fill with electron-dense 

material. 

7) Granular cells attached to the target object begin to disintegrate.  

8) A second thin layer of granular cells covers the capsule.  

9) The capsule melanizes. 

 The very first events of cellular encapsulation occur within minutes of an 

intrusion of a foreign entity. Granular cell attachment occurs within the first minute and 

by 5 minutes the intruding object is coated with the first layer of cells. The entire 

encapsulation process can be completed in as little as 2 hr, but on average the 

encapsulation process takes between 12 to 24 hr (Götz and Boman, 1985; Peck and 

Strand, 1996). Studies of hemocytes from P. includens have shown that both granular 

cells and plasmatocytes are required to properly form cellular capsules, with granular 

cells being the first cell type to attach to the target (Pech and Strand, 1996; Lavine and 

Strand, 2001). In in vitro experiments using isolated granular cells and with Dowex 1X-2 

beads as the target, the granular cells initially attached to the beads as they would in the 
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initial phase of encapsulation, but did not form overlapping cell layers. In a similar 

experiment in which only plasmatocytes were present, only 0.4 percent of the Dowex 

beads became encapsulated after 24 hr as compared to about 43 percent in assays 

involving unsegregated hemocytes. However, when the Dowex beads were preincubated 

in a medium conditioned by granular cells, the number of beads encapsulated in 

plasmatocyte-only assays increased to 24 percent. This suggests that granular cells 

possess a signal that recruits and activates plasmatocytes into capsule formation (Pech 

and Strand, 1996).  

 This observation from Pech and Strand agrees well with the proposed mechanism 

of cell recruitment into the encapsulation process put forward by Götz and Boman 

(1985). They noted that of all the hemocytes that compose the capsule, only the first layer 

has contact with the target surface, thus the signal that recruits the cells of the first layer 

must be different from the signal that recruits the cells that form the subsequent layers. 

Furthermore, because the capsule does not grow indefinitely, the signal to recruit new 

hemocytes for encapsulation must decrease with each increased capsule size.  

 Studies have shown that there exist many factors that affect the frequency and 

degree to which an object is encapsulated. One factor is host age. The frequency of 

parasitoid egg encapsulation in nymph soft scales (Homoptera: Coccidae, various spp.) is 

relatively low as compared to ovipositing female soft scales, which often encapsulate all 

eggs and thus thwart parasitism (Blumberg, 1997). Enhanced encapsulation of parasitoid 

eggs in older staged insects has also been observed in other insects including the alfalfa 

weevil, Hypera postica (Coleoptera: Curculionidae) (Berberet 1982), Egyptian alfalfa 

weevil, Hypera brunneipennis (Coleoptera: Curculionidae) (Van den Bosch and Dietrick, 
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1959), various lygus bugs, Lygus spp. (Hemiptera: Miridae) (Debolt, 1991), noctuid 

moths (Lepidoptera: Noctuidae) (Lynn and Vinson 1977), fall webworm moth, 

Hyphantria cunea (Lepidoptera: Arctiidae) (Morris, 1976), and cabbage white butterfly, 

Pieris rapae (Lepidoptera: Papilionidae) (Van Driesche, 1988).  

 A second factor affecting encapsulation is host strain. The same insect host 

species of differing geographic location are known to differentially encapsulate the eggs 

from a single parasitoid stain. The brown soft scale, Coccus hesperidum, from California 

will encapsulate 93% to 100% of the eggs from the parasitoid Metaphycus helvolus 

(Hymenoptera: Encyrtidae), but brown soft scale from Israel encapsulates only 71% to 

74% of M. helvolus eggs, and brown soft scale from the Netherlands encapsulate only 

40% of the parasitoid eggs (Blumberg, 1997). In another example, the parasitoid 

Encyrtus lecaniorum (Hymenoptera: Encyrtidae) originally obtained from the 

Mediterranean area successfully produced offspring from 98% of brown soft scale from 

Texas, but in only 2% of the brown soft scale from California (Bartlett and Ball, 1966).  

 Host stress can also cause a reduction in the rate of parasite encapsulation. 

Exposure of three species soft scale insects (the brown soft scale, Coccus hesperidum; the 

hemispherical scale, Saissetia coffeae; and the pyriform scale, Protopulvinaria 

pyriformis) to the extreme temperature of 40º C for 24 h prior to being parasitized by 

either Metaphycus swirskii (Hymenoptera: Encyrtidae) or Encyrtus infelix (Hymenoptera: 

Encyrtidae) significantly decreases the encapsulation response (Blumberg, 1976; 

Blumberg and Goldenberg, 1992). [On the other hand, increased temperatures within a 

biologically natural range for scale insects, 20° C to 33° C, will produce a corresponding 

increase in the number of parasitoid eggs encapsulated (Blumberg, 1997).] Other stresses 
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known to decrease the level of encapsulation within scale insects include increased 

number of parasitoids per host (Blumberg, 1997). This has also been observed in 

caterpillars of the tomato moth (Lacanobia oleracea) (Salt, 1959) and in the Egyptian 

alfalfa weevil (Van den Bosch and Dietrick, 1959). Also removal of a scale insect from 

its host plant or detachment of a leaf upon which a scale is feeding will induce increased 

stress on the insect and result in a lower level of encapsulated parasitoid eggs (Blumberg, 

1982). 

 Recognition of targets of encapsulation: In order for the innate immune systems 

of insects to function, the physical surface properties of non-self bodies must be 

recognized by a set of genetically predetermined receptors in the host. The principles and 

mechanisms of target recognition for encapsulation are the same as those mentioned 

above for phagocytosis and involve the presence of PRRs on the surfaces of the 

hemocytes that possess an affinity to certain PAMPs on biotic targets or some other 

molecular characteristic on abiotic targets (Lavine and Strand, 2002). An examination of 

the Drosophila genome revealed that it contains several genes that code proteins that 

possess both a sequence homology similar to peptidoglycan recognition proteins and a 

transmembrane domain. Northern blot analyses showed that one of these genes is 

expressed in hemocytes, thus suggesting the presence of membrane-spanning PRRs on 

these cells (Werner et al., 2000).  

 As will be mentioned below and throughout the rest of this compendium, there 

exists strong evidence that integrins, a large family of (α,β)-heterodimeric 

transmembrane proteins, play an important role as PRRs on immunocytes.  

 Properties of substratum that elicit encapsulation: Within a single insect 
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species, different materials evoke different degrees of encapsulation (Götz, 1986). 

Obligate parasitoids and parasites as well as conspecific transplants of organs or tissue 

are most often not encapsulated, whereas accidental parasites and interspecific transplants 

will produce an immune response (Tanada and Kaya 1993). Of those biotic entities that 

do not normally generate an immune response, most will become encapsulated if they are 

wounded or if their surfaces are altered in some other way (Tanada and Kaya 1993; 

Lavine and Strand, 2002). Likewise, different insect species can exhibit different 

encapsulation responses to the same target. For example, newly hatched oncospheres of 

the Cestoda Hymenolepis diminuta are encapsulated within the American cockroach, P. 

americana, but are not by the locust S. gregaria (Lackie, 1981). 

 The physical surface properties of different materials can play a role in the degree 

an object becomes encapsulated. Hemocytes of P. americana adhere more readily to 

polystyrene of greater hydrophilicity and negative charge. In addition, charged Sepharose 

beads, either positive or negative, received a thicker encapsulating coat of cells than 

Sepharose beads of neutral charge. These results appear to be species specific. In the 

same study, hemocytes of S. gregaria adhered to polystyrene surfaces to the same 

minimal degree regardless of charge or wettability, and did not encapsulate negatively 

charged Sepharose beads (Lackie, 1983). In a set of in vitro experiments with the soybean 

looper, P. includens, chromatography beads of various matrices tended to be 

encapsulated more readily if they possessed a positive charge (Lavine and Strand, 2001). 

In vivo assays comparing the encapsulation of chromatography beads with four different 

noctuid moth species, CM-Sephadex and CM-Sepharose (both negatively charged) did 

not encapsulate well in P. includens and T. ni, yet did so easily in H. virescens and 
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Spodoptera frugiperda (Lavine and Strand, 2001). It has been speculated that this 

interspecific variation in the encapsulation response may be a result of the variation of the 

surface charges on the hemocytes themselves. S. gregaria hemocytes possess a charge 

significantly more negative than hemocytes of P. americana This electrostatic 

mechanism could explain why hemocytes of S. gregaria are seemingly not attracted to 

negative substrata (Takle and Lackie, 1985). 

 The various molecular units attached to a foreign entity’s surface also play a 

major role in the ability of hemocytes to recognize the entity as a target of encapsulation. 

In vitro assays with P. includens hemocytes demonstrated that chromatography beads 

with differing functional groups exhibited significant variations in their ability to be 

encapsulated. Chromatography beads with the functional groups diethylaminoethyl 

(DEAE), quaternary amines (Q) or sulfonic (S) were normally encapsulated more readily 

than other bead types examined. The effects of the functional group have shown to be 

greater than that of other recognition properties including charge and the matrix of the 

chromatography bead (Lavine and Strand, 2001).  

 Opsonizing targets of encapsulation: Some targets require opsonization in order 

for hemocytes to recognize them for encapsulation. In in vitro assays, the hemocytes of 

P. includens do not encapsulate the chromatography beads SP-Sephadex, CM-Sephadex, 

DEAE-MacroPrep and Q-MacroPrep unless the beads are first preincubated in the host 

plasma. As mentioned above, in vitro experiments with P. includens hemocytes, 

plasmatocytes alone cannot encapsulate chromatography beads. However, plasmatocytes 

by themselves will encapsulate certain bead types (e.g. SP-, QAE-, CM- and DEAE- 

Sephadex) if these beads are preincubated in the insect’s plasma. Preincubating CM-
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Sephadex beads in plasma prior to injecting them into the hemocoel of larval P. includens 

significantly reduced the time required for the beads to become encapsulated (Lavine and 

Strand, 2001). These experiments indicate that there exist factors in the plasma of insects 

that help target foreign entities for cellular immune attack.  

 In the lepidopteran species P. includens and M. sexta, a peptide has been 

identified that facilitates the adhesion and spreading of plasmatocytes (Clark et al., 1997; 

Yu et al., 2001). This 23 amino acid plasmatocyte spreading peptide (PSP) is expressed 

as a 142 propeptide by fat body, nervous tissue and granular cells (Clark et al., 1998; 

Strand et al., 2000). The mature PSP binds to a 190 kDa protein from hemocytes, the 

identity of which has yet to be determined (Clark et al., 2004).  

 Encapsulation involves an RGD-dependent mechanism for cellular adhesion: 

In order for encapsulation to occur, it is necessary that the immunocytes involved possess 

adhesion molecules that can perform cell-substratum and/or cell-cell bonding (Johansson, 

1999). Thus, to fully understand the workings of the encapsulation process, it is important 

to discern the molecular basis of immunocyte adhesion. An insight to how this 

mechanism functions in insects came through the discovery that peptides containing the 

amino acid sequence arginine-glycine-aspartic acid (RGD) can inhibit cellular 

encapsulation and have other profound effects on immunocyte behavior (Pech and 

Strand, 1995). Using hemocytes from P. includens, Pech and Strand (1995) demonstrated 

that soluble Arg-Gly-Asp-Ser (RGDS), but not Arg-Gly-Glu-Ser (RGES), inhibits 

plasmatocytes and granular cells from spreading on the plastic surfaces of culture plates. 

This suggests that the RGDS peptide may specifically bind to a receptor on these 

hemocytes that is directly involved with cellular attachment and spreading on surfaces. 
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The importance of RGD in hemocyte attachment and spreading was further demonstrated 

in in vitro experiments in which RGDS-Sepharose beads, but not RGES-Sepharose 

beads, were encapsulated when placed in a solution containing free-floating P. includens 

blood cells. Moreover, in assays with purified populations of hemocytes, RGDS-

Sepharose beads, but not RGES-Sepharose beads, could be encapsulated solely with 

plasmatocytes without the presents of granular cells, while granular cells alone could 

only form the initial layer of attached cells. The in vitro encapsulation of RGDS-

Sepharose beads was inhibited if the assay was performed in a solution containing 

soluble RGDS (Pech and Strand, 1995). 

 In vivo studies showed that RGDS-Sepharose beads, when injected into the 

hemocoel of larval P. includens, were readily encapsulated within 3 hr and solely with 

plasmatocytes, while RGES-Sepharose beads were never encapsulated within this period 

of time and could take as long as 24 hr to be encapsulated (Pech and Strand, 1995). 

 The totality of the above evidence suggests that a mechanism of cell adhesion 

mediating hemocyte attachment and spreading upon a foreign target involves adhesion 

molecules on the immunocytes that contained an RGD recognition sequence. Pech and 

Strand (1995) speculate that granular cells, as the first hemocyte type to recognize and 

attach to foreign entities, release during degranulation a protein possessing an RGD 

sequence that opsonizes the intruding body that results in capsule formation by 

plasmatocytes. 

 The significance of RGD as a recognition sequence to which hemocyte adhesion 

proteins bind is that this peptide motif is known to be bound by adhesion proteins of the 

integrin family (Hynes, 1987; 1992; Haas, and Plow, 1994; Johansson, 1999; Plow et al, 
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2000). The role of RGD as a ligand of integrins has been mostly studied in humans and 

other mammals (Hynes, 1987; 1992; Ruoslahti, 1996), but has also been studied in 

several invertebrates (Johansson, 1999).  

2) Integrins: 

Integrins are a major family of animal transmembrane adhesion proteins that 

physically link the cytoskeleton to extracellular entities (Hynes, 1987, 1992; Hemler, 

1990; Ruoslahti, 1991; Calderwood et al., 2000; McDonald, 2000; van der Flier and 

Sonnenberg, 2001; Alberts et al., 2002). Present throughout the Animalia, integrins are 

expressed on all cells that are adhesive or are capable of rapidly become adhesive in 

response to stimuli (Takagi et al., 2001). These molecules constitute the primary 

receptors on the plasma membrane that mediate cell attachment to the extracellular 

matrix (ECM). The ECM, composed of an intricate network of proteins (e.g. collagen, 

fibronectin, laminin) and polysaccharides, is the scaffolding to which the body’s cells 

attach for support (Alberts et al., 2002).  In addition, integrins participate in adhering 

cells to other cells or to other extracellular entities such as pathogens, parasites or abiotic 

objects (Hynes, 1987, 1992, Ruoslahti, 1991; Nelson and Cox, 2000; van der Flier and 

Sonnenberg, 2001; Alberts et al., 2002). Specifically, integrins serve as connector 

molecules that link extracellular ligands to a cell’s cytoskeleton and thus function as 

conduits of mechanical force across the plasma membrane (Tamkun et al., 1986; Grinblat 

et al., 1994; Burridge and Chrzanowska-Wodnicka, 1996; Calderwood et al., 2000, 2002; 

Alberts et al., 2002; Foletti et al., 2005). The name “integrin” was coined for both the 

integral membrane nature of these proteins and for integrating extracellular ligands with 

the cytoskeleton (Tamkun et al., 1986).  
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Integrins not only function as adhesive molecules, but are also involved in signal 

transduction. The adhesive behavior of integrins is regulated by the bi-directional 

signaling that is transmitted through these molecules (Hynes, 1992; Schwartz, 1995; 

Burridge and Chrzanowska-Wodnicka, 1996; Defilippi et al., 1997; Yamada, 1997; 

Takada, 1997; O’Toole, 1997; Giancotti and Ruoslahti, 1999, Qin et al., 2004). 

Interactions between the integrin cytoplasmic regions with various cytoplasmic proteins 

can induce an inside-out signal transduction event that will travel the length of the protein 

to mediate the adhesive nature of the extracellular ligand binding site. Likewise, the 

binding of ligand to the extracellular binding site can induce an outside-in signal through 

to the integrin cytoplasmic regions, which in turn interacts with various cytoplasmic 

proteins resulting in numerous intracellular changes (see below for more detail) (Sastry, 

and Horowitz, 1993; Calderwood et al., 2000; Calderwood, 2004; Qin et al., 2004; Zhu et 

al., 2007). 

Integrins are involved in nearly all animal biological processes that require 

cellular adhesiveness. These receptors mediate myriad cellular functions throughout the 

Animalia including cellular response to mechanical stress, skin integrity, clot retraction, 

hemostasis, tissue repair, inflammation and immune response, muscle attachment and 

function, bone resorption, leukocyte function (including activation, homing, diapedesis 

and phagocytosis), cellular migration, apoptosis, embryogenesis (including cell 

differentiation, gastrulation, neural crest migration, lymphangiogenesis, vasculogenesis, 

neuronal path-finding, morphogenesis), proper development of wing epithelia, and tumor 

cell growth and metastasis (Newgreen et al., 1982; Leptin et al., 1989; Wilcox et al., 

1989; Duband et al., 1996; Springer, 1990; Wilcox, 1990; Balzac et al. 1993; DeSimone, 
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1994; Grinblat et al. 1994; Brower et al., 1995; Clark and Brugge, 1995; Bunch  et al., 

1998; Hogg and Bates, 2000; Gasque, 2004; Bennett, 2005; Sackstein, 2005; Morozevich 

et al., 2006; Pylayeva and Giancotti, 2006; Wiedemann et al., 2006; Takada et al., 2007).

 Integrins are heterodimeric proteins consisting of two noncovalently linked type-I 

glycopeptide subunits; an α-subunit ranging in size from 120-180 kDa and a β-subunit 

whose size ranges from 90-110 kDa (Hynes, 1992, Humphries et al., 2006). Electron 

microscopy and crystallography reveal that these two chains assemble into a single 

globule headpiece with two stalk regions that protrude through the plasma membrane and 

anchor in the cytoplasm (Carrell et al., 1985; Kelly et al., 1987; Nermut et al., 1988; 

Xiong et al., 2001; Adair and Yeager, 2002; Arnaout, 2002). 

  In mammals, 18 α- and 8 β-subunits combine to form the 24 receptors thus far 

discovered; note that not all 144 possible α/β subunit combinations exist (van der Flier 

and Sonnenberg, 2001; Humphries et al., 2006). α-subunits are homologous to all other 

α-subunits (sequence homology among the mammalian α-subunits ≈ 30 percent) and are 

believed to have evolved from a single ancestral α-subunit gene. The same is true for the 

β-subunits (sequence homology among mammalian β-subunits ≈ 45 percent) (see section 

on “Integrin origins”). However, α- and β-subunits are not homologous to each other and 

most likely evolved from distinct genes (Hynes, 1987; Eble, 1997; Burke, 1999; Hughes, 

2001; Huhtala et al., 2005; Takada et al., 2007). 

 Both subunit chains participate in ligand binding (D’Souza et al., 1988; Smith and 

Cheresh, 1988). In electron micrographs, integrins appear as globular heads with two rod-

like stalks, one for the extracellular C-terminal regions of each subunit, extending into the 

cell plasma membrane. It is the globular head region that binds ligand (Carrell, et al., 
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1985; Kelly et al., 1987; Nermut et al., 1988; Weisel et al., 1992; Adair and Yeager, 

2002). 

Ligand specificity is determined by the various combinations the α- and β-

subunits form. Not all α/β combinations bind all ligands of integrins; however single α/β 

combinations may possess multiple ligands (e.g. αVβ3 is known to bind tenascin, LAP-

TGF-β, fibrinogen, fibronectin, thrombospondin, vWF and fibrillin) and multiple α/β 

combinations are known to bind an identical ligand (e.g. αVβ3, α9β1 and α8β1 can all bind 

tenascin) (Delwel et al., 1994; Niessen et al., 1994; van der Flier and Sonnenberg, 2001; 

Humphries et al., 2006). Redundancy in ligand specificity may have evolved to protect 

against phenotypic mutations in cases where a genotypic mutation rendered a particular 

integrin subunit nonfunctional. This role for redundancy is suggested in studies observing 

apical ectodermal ridge formation and organogenesis using single and double knockout 

mice for the α3 and α6 subunits (De Arcangelis et al. 1999). However, numerous other 

studies in mice exhibited distinct phenotypic changes for each integrin subunit knocked-

out, suggesting that many integrins, while possessing redundancy in ligand specificity, 

have specific non-redundant function (Hynes, 2002). This also leads to the hypothesis 

that integrin function may be greatly influenced by which type of cell hosts the receptor.  

The specificity of which subunits heterodimerize to form whole integrins and 

which ligands bind to those integrins is further refined through the alternative splicing of 

the subunit mRNA (Altruda et al., 1990; Languino and Ruoslahti, 1992; Balzac et al., 

1993; 1994; Zhidkova et al., 1995) and by posttranslational modification including the 

glycosylation of some α or β subunits (van der Flier and Sonnenberg, 2001; Gu and 

Taniguchi, 2004).  
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The extracellular ligands with which integrins interact include (Plow et al., 2000; 

Humphries et al., 2006): 

• Laminin (ECM protein that forms sheet-like networks in the basal laminae.) 

• Thrombospondin (adhesive ECM protein synthesized, secreted by various cells 

including platelets - involved in cell adhesion, platelet aggregation, cell proliferation, 

angiogenesis, tumor metastasis, vascular smooth muscle growth, and tissue repair.)  

• Fibronectin (ECM protein involved in adhesion of cells to matrix and help direct 

migrating during development.) 

• Collagen (ECM protein; major component of ECM and connective tissue.) 

• Osteopontin (ECM protein; regulates bone metabolism.) 

• BSP (bone sialoprotein: a significant protein component of the bone ECM.) 

• Del-1 (developmental endothelial locus-1: ECM protein; mediates attachment of 

endothelial cells to ECM – involved in vascular development.) 

• Vitronectin (protein found in blood plasma and the extracellular matrix – regulates 

coagulation, fibrinolytic, and complement cascades, also involved in tissue remodeling.) 

• vWF (von Willebrand factor: a blood protein involved in coagulation - important in 

platelet adhesion to wound sites.) 

• Tenascin (ECM protein; regulates cell-matrix interactions including states of matrix 

attachment that promotes cell motility.) 

• PECAM-1 (platelet endothelial cell adhesion molecule-1 [also CD31]: protein secreted 

by endothelial cells and by platelets following thrombin activation - involved in platelet 

aggregation, tumor metastasis, vascular smooth muscle growth, and skeletal muscle 

repair. Also the receptor that allows Plasmodium falciparum infected erythrocytes to 
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attach to the vascular endothelium.) 

• LAP-TGF-β (latency associated peptide-transforming growth factor β: TGF-β are a 

family of cytokines that are involved in cell proliferation, ECM synthesis, integrin 

expression, immune function, and development . In their secreted latent form, TGF-β is 

noncovalently associated with LAP. This LAP-TGF-β association is also referred to as 

the small latent complex (SLC).) 

• Fibrillin (the protein that is the main component of extracellular microfibrils.) 

• Fibrinogen (blood plasma protein: major substrate for blood coagulation. It is 

converted into the fibrin by the coagulation cascade protease thrombin.) 

• Factor X (also prothrombinase and thrombokinase: a serine endopeptidase involved in 

the coagulation cascade; converts prothrombin to thrombin.) 

• C3bi, (a complement protein formed from the cleavage of C3 into C3a and C3b. C3bi is 

an opsonin [an enhancer of phagocytosis] that attaches to the surfaces of pathogens and 

apoptotic cells, thus marking these particles for ingestion by leukocytes.) 

• ICAM (intercellular cell adhesion molecule: adhesion molecules that possesses either five 

immunoglobulin-like domains [ICAM-1] or two [ICAM-2] immunoglobulin-like domains. These 

molecules are expressed on B and T lymphocytes, fibroblasts, keratinocytes, and endothelial cells 

and function as the ligand for the leukocyte integrin “leukocyte function–associated antigen 1 

[LFA-1].”)  

• VCAM-1 (vascular cell adhesion molecule-1: a molecule expressed by endothelial cells 

that promotes the adhesion of the following leukocytes; lymphocytes, monocytes, 

eosinophil granulocytes, and basophil granulocyte. VCAM-1 is the ligand for the integrin 

“Very Late Antigen-4 [VLA-4].  
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• E-cadherin (epithelial-cadherin: an epithelial transmembrane protein; Ca2+-dependent 

adhesion molecules that bind together epithelial cells.)  

Integrins are also metalloproteins whose ability to recognize and bind 

extracellular ligand is regulated by the presence of the divalent cations Ca2+, Mg2+, and 

Mn2+. Ca2+ in high concentrations is inhibitory and Mg2+, and Mn2+ are activators 

(D’Souza et al., 1988; Gailit and Ruoslahti, 1988; Smith and Cheresh, 1988; Shimaoka et 

al., 2002). Both the α and β integrin chains possess highly conserved low affinity cation 

binding sites called metal ion-dependent adhesion sites (MIDAS) (see more on MIDAS 

below) (Shimaoka et al., 2002). Studies show that the MIDAS on both the integrin chains 

are among the sites in which the divalent cations interact (see LIMBS and ADMIDAS in 

the section below on β-subunit structure for other cation binding sites) (Lee et al., 1995; 

Shimaoka et al. 2002). 

Electron microscopy has revealed three conformations for integrin extracellular 

domains; (1) a bent (or closed) conformation corresponding to a state of low-affinity 

(unactivated) (2) a protracted conformation, but with a ‘closed’ headpiece corresponding 

to a state of intermediate-affinity (partially activated), and (3) a protracted conformation 

with an ‘open’ headpiece corresponding to a state of high-affinity (activated) (Beglova et 

al., 2002; Xiao et al., 2004). An example of the biological importance of the three 

conformational-affinity states would be leukocyte integrin (α4β7) function; the low-

affinity conformation for integrins occurs on circulating leukocytes, intermediate-affinity 

(rolling adhesion) on leukocytes rolling on endothelium that are detecting inflammation 

stimuli, and high-affinity (firm adhesion) for diapedesis (the migration of leukocytes 

through intact capillary walls) and localization at infection site (Chen et al., 2003).  
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Broadly, when in the inactive state, integrins exist in a highly bent structure (Fig. 

1A). Upon activation, the integrin will open in a switchblade-like motion into its adhesive 

conformation (Fig. 1B) (Beglova et al., 2002).  

2.1) Integrin domain structure: 

2.1.1) α-subunit domain structure: Integrin α-subunits range in size from ≈950 

to ≈1140 amino acids (Eble, 1997). The typical mature α-subunit consists of an 

extracellular region of ≈940 amino acids, a single transmembrane-spanning region ≈25 

amino acids in length, and a short cytoplasmic region 20 to 50 amino acids in length.  

 The β-propeller domain: The α-subunit N-terminal region contains seven 60-

residue repeats that have weak homology to one another (Tuckwell et al., 1994; Springer, 

1997; Shimaoka et al., 2002). Each repeat is predicted to fold into a four-stranded β-

sheet. Together, the seven β-sheets are configured in a torus, thus forming a ≈440 residue 

seven-bladed β-propeller (Springer, 1997, Xiong et al., 2001). Repeats 5, 6, and 7 of all 

α-subunits and repeat 4 on some α-subunits possess a Ca2+ binding site between strands 1 

and 2 of the β-sheet (Chothia and Jones, 1997; Oxvig and Springer, 1998). [The β-strands 

of each repeat are numbered 1 through 4 going in the amino-terminal to carboxyl-

terminal direction and arranged with β-strand 1 closest to the propeller axis and β-strands 

2, 3 and 4 aligned in antiparallel successional order out towards the periphery (Chothia 

and Jones, 1997; Springer, 1997).] There is also a putative Mg2+ binding site on the upper 

face of the propeller at its axis where the ion interacts with amino acids from repeats 2 

and 3 (Chothia and Jones, 1997; Springer, 1997).  
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The β-propeller domain interfaces with the I-like domain of the β-subunit (see β-

subunit section below) to form the ligand binding site (Chothia and Jones, 1997; 

Springer, 1997; Zang et al., 2000; Xiong et al., 2002; Takagi et al., 2003).  

 I-domain: Nine of the eighteen mammalian α chains (mammalian subunits α1, 

α2, α10, α11, αD, αE, αL, αM and αX) have an additional domain of ≈200 amino acids 

inserted between β-propellers 2 and 3. This domain is thus called the inserted (I) domain 

(Larson et al., 1989; Shimaoka et al., 2002). Crystal structures have shown that the I 

domain adopts a "Rossmann" fold, which consists of a central β-sheet of five parallel and 

one antiparallel β-strands that is surrounded by seven α helices (Lee et al., 1995; Qu, and 

Leahy, 1995). I domains also possess the highly conserved DxSxS divalent cation 

binding sequence known as a metal ion-dependent adhesion site (MIDAS) (Lee et al., 

1995). The MIDAS is predicted to be located on the surface of the I domain and is known 

to bind such cations as Mg2+ and Mn 2+ (Humphries, 2000; Plow et al., 2000).  

Studies have demonstrated that the I domain also forms a site to which ligands 

bind (Randi and Hogg, 1994). The I domain exhibits two conformations, an open high-

affinity conformation and a closed low affinity conformation. Experiments that locked 

the I domain in one of the two conformations via disulfide bonding by introduced 

cysteines showed that locking this domain in the open position activates ligand binding 

and locking it closed prevents ligand binding (Lu et al., 2001b).  

It is the β-propeller together with the I domain (for those α chains that have it) 

that comprise the α-subunit’s contribution to the integrin’s globular head (Xiong et al., 

2001;Adair and Yeager, 2002; Arnaout, 2002). 
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Stalk region: Extending out from the carboxyl-terminus from the β-propeller is 

the α-subunit stalk region, which connects the α-subunit head region to the plasma 

membrane (Xiong et al., 2001;Adair and Yeager, 2002; Arnaout, 2002). The stalk is 

formed by an amino-terminal thigh domain and two sequential carboxyl-terminal regions 

designated calf-1 and calf-2 (Arnaout, 2002). The thigh domain interfaces with the β-

propeller and is nearly perpendicular to the β-propeller’s central axis (Arnaout, 2002).  

Connecting the thigh to calf-1 is the genu. This site exhibits great flexibility and is 

the location at which the α-subunit bends back and forth between the bent inactive 

position and the extended adhesive position (Arnaout, 2002, Xie et al., 2004; Nishida et 

al., 2006). 

The calf-1 connection to calf-2 is largely hydrophobic and lacks an amino acid 

linker. This prevents any interdomain bending between these two regions (Arnaout, 

2002). Modeling by Xiong et al. (2001) and Adair and Yeager (2002) suggests that there 

could be twisting between calf-1 and calf-2 as well as at the interface of the thigh with 

the β-propeller. 

In α-subunits that lack I domains (mammalian subunits α3, α4, α5, α6, α7, α8, α9, 

αv, and αIIb), post-translational proteolytic cleavage occurs, resulting in a heavy and light 

chain that are linked via a disulfide bond. The heavy chain (Mr ~105 to 125) forms the 

extracellular region of the subunit while the light chain (Mr ~23 to 25) contains the 

membrane-spanning region. (Delwel et al.,1993; Du and Ginsberg, 1997; Defilippi et al., 

1997; Eble, 1997; Berthet  et al., 2000; van der Flier and Sonnenberg, 2001). This 

cleavage site is located within calf-2 (Arnaout, 2002). The two mammalian exceptions 

are α4, which lacks an I domain but is cleaved at an unusual position near the middle of 
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the pro-peptide (Teixido et al., 1992) and αE, which possesses an I domain, yet is cleaved 

near the N-terminous of the stalk (Shaw et al., 1994). 

 Transmembrane (TM) domain: The transmembrane (TM) domain of the α-

subunit spans the plasma membrane once. The amino acids that comprise this domain are 

mainly hydrophobic and fold into an α-helix (Adair and Yeager, 2002). The TM 

functions mainly as a conduit for signal transduction between the extracellular and 

cytoplasmic regions of the α-subunit [see β-subunit TM section below for greater detail] 

(Qin et al., 2004; Schneider and Engelman, 2004). 

 Cytoplasmic tail: The cytoplasmic tail of the α-subunit is relatively short, 

ranging from 20 to 50 residues in length (Eble, 1997). The exception is α7 with a 77 

amino acid tail (Sastry and Horwitz, 1993). While there is a high degree of amino acid 

sequence conservation of the cytoplasmic tail among the vertebrates within an α-subunit 

group (i.e. there is >90% identity among the tails of α3 from murine, human and bird 

sources), there seems to be very little similarity among the tails of the different α-subunit 

groups. This suggests a unique role for each cytoplasmic tail type (Sastry and Horwitz, 

1993; Eble, 1997).  

There does exist one motif that is shared among all α-tails, the consensus 

sequence GFFKR located adjacent to the TM domain (Sastry and Horwitz, 1993, 

Calderwood, 2004). Removal of or mutations to the GFFKR motif will constitutively 

activate integrins, thus the role of this motif is to maintain the integrin in a state of low 

affinity (O’Toole et al., 1994; Calderwood, 2004).  

2.1.2) β-subunit domain structure: Integrin β-subunits range in size from 

around 730 to 800 amino acids (90–110 kDa) (Argraves  et al., 1987; Fitzgerald et al., 
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1987; Kishimoto et al., 1987; Law et al., 1987; Rosa et al., 1988; Zimrin et al,. 1988; 

Ramaswamy and Hemler, 1990; Sheppard et al., 1990; Suzuki, et al., 1990; Yuan et al. 

1990; Erle et al., 1991; Moyle et al., 1991; Hynes, 1992; Eble, 1997). The exception is 

the mammalian β4, which can contain as many as 1778 residues (205 kDa) due to its 

extraordinarily large cytoplasmic domain of over 1000 residues (variant lengths of 

cytoplasmic region occur due to alternative splicing) (Hemler et al., 1989; Kajiji et al., 

1998; Hogervorst et al., 1990; Suzuki and Naitoh, 1990; Tamura et al., 1990).  

 The typical mature β-subunit consists of an extracellular region of ≈660 to 725 

amino acid residues, a single transmembrane-spanning region ≈25 residues in length, and 

a short cytoplasmic region ≈53 residues in length with the exception of β4 (Zimrin et al,. 

1988; Ramaswamy and Hemler, 1990; Sheppard et al., 1990; Suzuki, et al., 1990; Yuan 

et al. 1990; Erle et al., 1991; Moyle et al., 1991; Hynes, 1992). The various domains of 

the β-subunit are as follows: 

 The PSI Domain: The first ≈50 N-terminal residues of the β-subunit comprise 

the PSI domain (Bork et al., 1999; Zang and Springer, 2001; Shimaoka et al., 2002; 

Xiong et al., 2004). This domain of integrin β-subunits shares sequence homology with 

the extracellular parts of over 500 signaling proteins primarily in the plexin and 

semaphorin families, thus giving rise to its name; Plexin, Semaphorin, Integrin domain 

(Bork et al., 1999). PSI containing proteins tend to be glycoproteins that mediate cell 

growth, differentiation and migration (Xiong et al., 2004). The PSI domain of β-subunits 

contain seven cysteines of which six are shared among all PSI domains (Bork et al., 

1999; Shimaoka et al., 2002; Xiong et al., 2004). This region folds into a two-stranded 

antiparallel β-sheet that is flanked by two short helices (Xiong et al., 2004). The first 
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cysteine of the PSI domain pairs with a cysteine immediately N-terminal to the Cys-rich 

pseudo repeat region [see below] (Calvete  et al. 1991; Zang and Springer, 2001), 

However, Xiong et al. (2004) claim that it is the second cysteine that pairs with the Cys-

rich pseudo repeat region. A highly conserved tryptophan positioned immediately prior to 

the fifth cysteine is found in all PSI domains and forms a small hydrophobic core within 

this domain (Xiong et al., 2004). 

 The PSI domain is involved in integrin activation (Xiong et al., 2004). Evidence 

suggests that the long-range disulfide bond between the PSI domain and the cysteine 

immediately prior to the Cys-rich pseudo repeat region (see below) holds the integrin in 

the inactive position (Zang and Springer, 2001). Studies that disrupted this long-range 

disulfide bond, either by amino acid substitution (Zang and Springer, 2001; Sun et al., 

2002) or by the binding of monoclonal antibodies (mAbs) to the PSI domain (Honda et 

al. 1995), results in an integrin that is constitutively active. It is believed that the 

disruption of this long-range disulfide bond allows the integrin to become more flexible, 

thus exposing the ligand-binding site of the protein (Xiong et al., 2004). 

 The I-like domain: About 60 amino acids carboxyl-terminal from the PSI 

domain is a highly conserved region known as the inserted (I)-like domain (Huang et al., 

2000;Shimaoka et al. 2002). This name refers to the slight but discernible sequence 

homology to the I-domain of the integrin α-subunit (Huang et al., 2000; Shimaoka et al. 

2002). Among the mammalian β-subunits, the I-like domain spans roughly 240 amino 

acids (Huang et al., 2000; Shimaoka et al. 2002). This domain has been implicated in the 

ligand binding function for the integrin (D'Souza et al., 1988; Smith and Cheresh, 1988; 

Loftus et al., 1990; Bajt et al., 1992; Lanza et al., 1992; Takada  et al., 1992; Bajt and 
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Loftus, 1994; Bajt et al., 1995; Huang et al., 1995; Puzon-McLaughlin and Takada, 1996; 

Huang et al., 2000). Monoclonal antibodies (mAbs) specific to this region have been 

shown to obstruct the binding of ligands (Andrieux et al., 1991; Calvete et al., 1991; 

Huang et al., 2000). 

Nine residues in from the amino-terminal start of the I-like domain is an 

absolutely conserved metal-binding DxSxS sequence motif present in all β-subunits 

known as a metal ion-dependent adhesion site (MIDAS) (Lee et al., 1995; Tozer et al., 

1996). [A MIDAS is also present in the I-domain of the α-subunit (see section on α-

subunits above).] Point mutations in the aspartic acid or either serine of this motif 

abolishes the ability of integrins to bind to ligands, thus implicating the MIDAS of the β-

subunit as being integral to the function of ligand binding (Loftus et al., 1990; Takada  et 

al., 1992; Bajt and Loftus, 1994; Bajt et al., 1995; Huang et al., 1995). Ligand binding by 

the β-subunit requires the presence of divalent cations (e.g. Ca2+, Mg2+, and Mn2+) (Smith 

and Cheresh, 1988). 

A second site within the I-like domain ≈90 amino acids to the carboxyl-terminal 

side of the MIDAS has also been linked to ligand binding function. The binding of 

polyclonal antibodies to this site blocked the integrin from binding to its ligand (Charo, et 

al., 1991). In addition, site-directed mutagenesis of amino acids at this location also 

resulted in the inhibition of ligand binding (Puzon-McLaughlin and Takada, 1996). It has 

also been shown that some cases of thrombasthenia, a rare autosomal recessive disease in 

which platelets fail to aggregate, are a result of a single nucleotide change that switches 

an arginine located in this second site to either a glutamine (Bajt et al., 1992), or to a 

tryptophan (Lanza et al., 1992) in β3 subunits. This single mutation disrupts the adhesive 
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nature of platelet integrins.  

The region between the MIDAS and this second binding site plays a role in 

integrin ligand specificity. Experiments that swapped a 39-residue segment from this 

region from one β-subunit into another resulted in a corresponding switch in ligand 

selection (Lin et al., 1997). Other experiments have shown that for some ligands the β-

subunit binding site is the area immediately carboxyl-terminal to the DxSxS motif, thus 

suggesting that this site contributes to the integrin ligand-binding pocket (Pasqualini et 

al., 1995; Chen et al., 1998). (Although a study that substituted alanine for the various 

residues within this site on β3 had no effect in inhibiting integrin αIIbβ3 from binding of 

fibrinogen (Bajt and Loftus, 1994).) 

Crystal structures of integrins show that the β I-like domain folds into a cluster of 

three aligned divalent cation-binding sites. At the center of the cluster is the MIDAS. 

Flanking the MIDAS to one side is the ligand-induced metal-binding site (LIMBS) and 

on the other is the adjacent to metal ion-dependent adhesion site (ADMIDAS) (Xiong et 

al., 2001; Shimaoka et al. 2002; Xiao et al., 2004; Chen et al., 2006).  

If Ca2+ is the only ion present or is present at high concentrations [10 mM], the 

ion occupies the ADMIDAS and has an inhibitory effect. Mn2+ competes with Ca2+ for 

the ADMIDAS site. When Mn2+ is in the ADMIDAS, the cation-binding cluster takes on 

a differing conformation that promotes ligand binding. At low Ca2+ concentrations [50 

µM] in the presence of Mg2+, Ca2+ occupies the LIMBS and has a positive effect. Mg2+ is 

the preferred cation for binding to the MIDAS. The MIDAS can take on two different 

geometries and it is the presence of Mg2+ at this site that stabilizes the conformation. If 

the MIDAS and LIMBS are occupied by Mg2+ and Ca2+ respectively, the MIDAS 
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stabilizes the cation-binding cluster in a high-affinity (firm adhesion) conformation. If the 

MIDAS and ADMIDAS are occupied by Mg2+ and Ca2+ respectively, the presence of 

Mg2+ offsets the inhibitory effect of Ca2+ and the cluster stabilizes in the intermediate-

affinity (rolling adhesion) conformation (Chen et al., 2003).  

ADMIDAS also appears to play a role in signal transduction through the integrin. 

In integrins with mutant ADMIDAS, signal transduction is disrupted. One result is, in 

spite of the mutations positive adhesive effect, cells possessing this type of mutant 

integrin fail to spread on adhesive substrates. Spreading is a dynamic process requiring 

cooperation between the integrin cytoplasmic domain/cytoskeleton and the extracellular 

region. Thus if a non-functional ADMIDAS prohibits transmembrane signaling, no 

spreading can occur (Chen et al., 2006). 

 The I-like domain associates with the β-propeller of the α-subunit I domain to 

form the integrin ligand-binding headpiece (Zang et al., 2000). Current understanding of 

integrin function is that in integrins with α-subunits containing an I domain, the I-like 

domain of the β-subunit acts in a regulatory role. This is based on evidence that shows 

that isolated αL subunits locked in the open (i.e. binding-receptive) position by disulfide 

bonds will bind ligand equally well as wild-type αLβ2 integrin. Additionally, mAb that 

bind to the I-like domain of β2 and inhibit ligand binding in wild-type αLβ2 did not inhibit 

ligand binding when bound to β2 in αLβ2 integrins that were locked in the open position 

(Lu et al., 2001b; Shimaoka et al., 2002). Studies on integrins with α-subunits lacking I 

domains (specifically α4β7 and α5β1) show that the LIMBS and ADMIDAS of the β-

subunit I-like domain mediates the binding of ligand to the β chain too (Chen et al., 

2006).  
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 The stalk and the cysteine-rich pseudo-repeat (or EFG-like) region: The 

remaining portion of the extracellular region, that which is carboxyl-terminal to the I-like 

domain, produces the stalk region for the β chain upon which the β-subunit globular 

headpiece sits (Adair and Yeager, 2002; Arnaout, 2002; Shimaoka et al., 2002).  

Much of the stalk is composed of four consecutive cysteine-rich pseudo-repeats. 

These repeats show statistically significant sequence homology to epidermal growth 

factor (EGF) and EGF-like domains of other proteins (Yuan et al., 1990; Takagi et al., 

2001; Tan et al., 2001). Because of this homology, the cysteine-rich pseudo-repeat region 

(CRR) is also referred to as the EGF-like domain with each individual repeat designated 

EGF-1 through EGF-4 (Adair and Yeager, 2002; Arnaout, 2002; Shimaoka et al., 2002). 

The repeats also show statistically significant sequence homology to one another, thus are 

most likely themselves to be evolutionarily related (Takagi et al., 2001). 

Each repeat is ≈40 residues in length and generally contains 8 cysteines. The 

exception is EGF-1, which possess just six cysteines (Argraves et al., 1987; Fitzgerald et 

al., 1987; Law et al., 1987; Rosa et al., 1988; Zimrin et al., 1988; Ramaswamy and 

Hemler, 1990; Sheppard et al., 1990; Suzuki et al 1990; Tan et al., 2001; Takagi et al., 

2001). The disulfide bonds formed by the cysteines of a repeat are to the other cysteines 

within the same repeat. The pairings of the cysteines within a repeat are predicted to be as 

follows; first-fifth, second-fourth, third-sixth, seventh-eighth (Takagi et al., 2001). Each 

repeat is predicted to fold in the manner typical of EGF motifs; that is of two antiparallel 

β-strands (Takagi et al., 2001). 

As mention above (see PSI-domain section), the first cysteine N-terminal to EGF-

1 forms a long-range disulfide bond with the very first (some say second) cysteine of the 
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mature β chain (Calvete  et al. 1991; Zang and Springer, 2001; Xiong et al., 2004). This 

long-range disulfide bond causes the β-subunit to fold in a manner in which the PSI 

domain is proximal to EGF-1 (Xiong et al., 2001; Adair and Yeager, 2002; Arnaout, 

2002). 

 One major function of the CRR is to be a conduit for signal transduction between 

the β chain cytoplasmic tail and the ligand-binding headpiece (Lu et al., 2001a; Shimaoka 

et al., 2002). Compared to other signaling proteins, the distance signals must travel 

through the β-subunit is relatively large (Du et al., 1993; Lu et al., 2001a; Takagi et al., 

2001). Conformational changes to specific sites in the CRR can induce ligand binding in 

the headpiece. This has been deduced from experiments involving mAbs that bind to 

specific sites of the CCR and subsequently induce integrin activation. Evidence suggests 

that the binding of antibody creates a change in the conformation of the CRR that results 

in activating the receptor (Andrew et al., 1993; Du et al., 1993; Stephens et al., 1995; 

Faull et al., 1996). Thus, the current model of integrin function is that conformational 

changes at one end of the β-subunit (i.e. either in the I-like domain or cytoplasmic tail) 

will send a signal to the opposite end of the protein via conformational changes in the 

CRR. 

 Transmembrane (TM) domain: The β-subunit spans the plasma membrane 

once. This region contains ≈22 to 26 amino acids and spans ≈30 Å (Adair and Yeager, 

2002). The amino acids that comprise the TM segment are mainly hydrophobic and fold 

into an α-helix as the case is for the TM region of the α-subunit (Adair and Yeager, 

2002). 

 The TM segments of both the α and β chains are the conduit for propagating 
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signals back and forth between the extracellular and cytoplasmic regions of the integrin 

receptor (Qin et al., 2004; Schneider and Engelman, 2004).  

In resting integrins, the β chain TM domain associates with the TM domain of the 

α chain in a parallel crossed α-helical structure (Fig. 1A) (Adair and Yeager, 2002; Qin 

et al., 2004). Upon the activation, these domains undergo dissociation and separation 

(Fig. 1B) (Lou et al., 2004; Qin et al., 2004; Yin et al., 2006). This TM separation is 

necessary for transmembrane signaling leading to integrin activation (Lou et al., 2004; 

2005; Zhu et al., 2007). The activated integrins cluster into focal adhesions. It is believed 

that in these clusters the separated TM domains associate with TM domains from other 

integrins, but of the same chain type (i.e. α-subunit TM domains associate with other α-

subunit TM domains and β-subunit TM domains associate with other β-subunit TM 

domains) in interaction called homotypic oligomerization of the transmembrane domains 

(Li et al. 2003; Qin et al., 2004). 

Cytoplasmic tail: The carboxyl-terminal most region of the β-subunit is the 

cytoplasmic tail, usually consisting of 20 to 60 residues (Argraves  et al., 1987; Fitzgerald 

et al., 1987; Kishimoto et al., 1987; Law et al., 1987; Rosa et al., 1988; Zimrin et al,. 

1988; Ramaswamy and Hemler, 1990; Sheppard et al., 1990; Suzuki, et al., 1990; Yuan 

et al. 1990; Erle et al., 1991; Moyle et al., 1991; Hynes, 2002; Calderwood et al., 2000, 

2003) The exception is the mammalian subunit β4 whose tail possesses over 1000 

residues (Hemler et al., 1989; Kajiji et al., 1998; Hogervorst et al., 1990; Suzuki and 

Naitoh, 1990; Tamura et al., 1990). Due to its relative shortness and intrinsic lack of 

enzymatic activity, the cytoplasmic tail is believed to be a mediator of protein–protein 

interactions which anchor the receptor to the cytoskeleton and of signal transduction 
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through the receptor and signaling pathways within the cytoplasm (Fitzgerald, 2001; 

Chen et al., 2006).  

 In spite of the shortness of the cytoplasmic tail compared to the rest of the β 

chain, the specific amino acid sequence that comprises this domain profoundly influences 

the behavior of the entire integrin (Burridge and Chrzanowska-Wodnicka, 1996). This is 

readily demonstrated by the four naturally occurring isoforms for the human β1 subunit; 

β1A, β1B, β1C and β1D (Altruda et al., 1990; Languino et al., 1992; Balzac et al., 1993; 

1994;  van der Flier et al., 1995; Belkin et al., 1996; 1997). Generated by alternative 

splicing, the amino acid sequences for all β1 isoforms are homologous save for the unique 

alternatively spliced domain located at the very distal end of the COOH-terminal 

cytoplasmic tail; all β1 isoforms even share the same first 26 membrane proximal amino 

acids in the cytoplasmic tail. Yet this small change at the terminal end of the β1 subunit 

differentially affects cell adhesion, cell migration, cell proliferation, integrin localization 

in focal adhesions, and interactions with intracellular proteins that influence the signal 

transduction pathway and integrin attachment to the cytoskeleton (Languino and 

Ruoslahti, 1992; Balzac et al., 1993, 1994; Meredith et al., 1995, 1997, 1999; Belkin et 

al., 1996, 1997; Fornaro and Languino, 1997; Pfaff et al., 1998; Fornaro et al., 2000).  

The cytoplasmic tails of most β subunits possess three conserved clusters of 

amino acids. Reszka et al. (1992) labeled these 3 clusters as cyto-1 (≈10 residues in 

length beginning ≈7 amino acids carboxyl-terminal from of the TM domain; β4 lacks a 

cyto-1), cyto-2 (the first NPxY motif beginning ≈10 residues from the carboxyl-terminus 

of cyto-1), and cyto-3 (the second NPxY motif beginning ≈8 residues from the carboxyl-

terminus of cyto-2).  
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Cyto-1 appears to play an inhibitory regulation role. Deletions in this region will 

result in an integrin constitutively in the high-affinity ligand binding state that is 

independent of all other cellular signals (Hughes et al., 1995; Lu et al., 2001c; 

Calderwood, 2004). Cyto-2 and –3 appear to mediate integrin activation. Deletions or 

mutations at these NPxY motifs will block integrins from switching from a low affinity 

state to a state of high affinity (Calderwood, 2004). The NPxY motifs also control the 

recruitment of integrins into focal adhesions (Vignoud et al., 1997). 

 Interactions between these three conserved clusters and various cytoplasmic 

proteins are important for integrin signal transduction (O'Toole et al., 1994, Clark and 

Brugge, 1995; Leisner et al., 1999), intracellular signaling (Fitzgerald, 2001), the 

localizations of integrins in focal adhesions (Burridge and Chrzanowska-Wodnicka, 

1996; Vignoud et al., 1997), and the anchoring the integrin receptor to the actin 

cytoskeleton (Grinblat et al., 1994; Burridge and Chrzanowska-Wodnicka, 1996; 

Maniotis et al., 1997; Calderwood et al., 2000; 2003). 

 The structural proteins that are known to anchor the β chain cytoplasmic tail to 

the actin cytoskeleton include F-actin, myosin, skelemin, talin, vinculin, α-actinin, 

filamin, tensin and paxillin (Otey et al., 1993; Burridge and Chrzanowska-Wodnicka, 

1996; Calderwood et al., 1999; 2000; 2002; Lu et al., 2000; Liddington, and Ginsberg, 

2002; Tadokoro et al., 2003).  

 The β tail also interacts with a number of intracellular signaling proteins including 

cytohesin-1, cytohesin-3, focal adhesion kinase (FAK), integrin linked kinase (ILK), 

integrin cytoplasmic domain-associated protein-1 (ICAP-1), and receptor for activated 

protein kinase C (Rack1) (Hemler, 1998; Liu et al., 2000). An outside-in signaling event 
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can result in an interaction between the cytoplasmic tail and these signaling proteins, 

leading to an intracellular cascade that can result in such cellular responses as clustering 

of integrins on the plasma membrane and the formation of focal adhesions, altered gene 

expression, apoptosis, cellular differentiation or cellular proliferation. An interaction with 

the cytoplasmic tail initiated by a signaling protein often leads to an inside-out signal 

transduction event (Burridge and Chrzanowska-Wodnicka, 1996; Liu et al., 2000).  

 In addition, the β cytoplasmic tail associates with calnexin, a chaperone protein 

that it is involved in assembling the α and β chains into a complete integrin protein 

(Lenter and Vestweber, 1994).  

 NPxY motifs are known to bind to certain proteins that possess phosphotyrosine-

binding (PTB) domains. Some PTB domains require the NPxY tyrosine to be 

phosphorylated to bind, while others bind to this motif via a hydrophobic interaction with 

nonphosphorylated tyrosine or phenylalanine (Uhlik et al., 2005). In a set of in vivo 

experiments with integrin β1, replacement of the two NPxY motif tyrosines with alanines 

made all PTB interaction with the cytoplasmic tail defunct and resulted in a complete loss 

of integrin function. This indicates that this motif is critical for integrin function. The 

replacement of the tyrosines with phenylalanines, however, resulted in a reduced loss of 

function. This would suggest that these NPxY motifs interact with a variety of proteins, 

some requiring tyrosine phosphorylation to bind, and some that do not (Chen et al., 

2006).  

 The different phosphorylation states of the NPxY motif play an important role in 

regulating which cytoplasmic proteins interact with the integrin. For example, 

phosphorylated NPxY disrupts talin binding, but not tensin binding. This leads to the 
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speculation that tyrosine phosphorylation could be a regulatory switch for integrin 

function (McCleverty et al., 2007). 

 Experimental evidence indicates that the binding of talin to the NPxY motif of 

cyto-2 is necessary for inside-out integrin activation (Calderwood et al., 1999, 2000; 

2002; Liddington, and Ginsberg, 2002; Tadokoro et al., 2003). It is believed that this 

binding event disrupts a salt bridge that links the α- and β-subunits, thus holding the 

integrin in the inactive state (Vinogradova et al., 2002). 

Through outside-in signaling, interactions of the extracellular domain of the 

integrin modulate the ability of the β chain cytoplasmic tail to bind with the various 

cytoplasmic proteins. An unoccupied binding site in the extracellular domain suppresses 

the integrin from locating into a focal adhesion. Attachment of ligand to the integrin 

extracellular binding site creates conformational changes to occur along the length of the 

receptor. This action exposes the ligand-induced binding sites (LIBS) in the cytoplasmic 

tail, thus allowing the integrin to interact with the appropriate cytoplasmic proteins 

(LaFlamme et al., 1992; Burridge and Chrzanowska-Wodnicka, 1996). This event often 

initiates a protein kinase pathway resulting in the attachment of the integrin receptor to 

the cytoskeleton and to localization within focal adhesions (Fornaro and Languino, 1997; 

Fornaro et al., 2000; Fitzgerald, 2001). 

2.2) Integrins throughout the Animalia: 

Integrins have been exceedingly well studied in mammals, particularly humans. A 

PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed) search in April 

2007 for the term “integrin” resulted in retrieving 35,000-plus citations with roughly 70 

percent dealing with integrins from humans and another 23 percent were studies from 
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mice. Although only 2 percent of citations from the search pertained to integrins from 

invertebrates ( with only 0.8% from insects), this protein has been found in every 

organism throughout the Animalia for which integrins where searched (see Burke, 1999 

for early review of invertebrate integrins). The following is a near-complete survey of 

invertebrate taxa in which integrins have been described at the time of this writing:  

• Proifera: the sponges (Brower et al., 1997; Wimmer et al., 1999; Kuhns et al., 2001). 

• Cnidaria: represented by the coral Acropora millepora (Brower et al., 1997), and the 

jellyfish Podocoryne carnea (Reber-Muller et al., 2001). 

• Nematoda: specifically Caenorhabditis elegans (Gettner et al. 1995; Lee et al. 2001; 

Cox and Hardin, 2004). 

• Mollusca: including snails (Davids, et al., 1999; Plows et al. 2006) and the oyster 

Crassostrea gigas (Terahara et al., 2006). 

• Arthropoda-Crustacea: represented by the signal crayfish, Pacifastacus leniusculus 

(Holmblad et al., 1997) and the kuruma prawn, Penaeus japonicus (Rojtinnakorn et al., 

2002). 

• Arthropoda-Insecta: represented in the Diptera by the fruit fly, Drosophila 

melanogaster (Wilcox, 1990; Bunch et al., 1992; Burke, 1999), the African malaria 

mosquito, Anopheles gambiae (Mahairaki et al. 2001; Moita et al., 2006) and the black 

fly, Simulium damnosum (Hagen and Klager, 2001); and in the Lepidoptera by the 

soybean looper, Pseudoplusia includens (Lavine and Strand, 2003), the tobacco 

budworm, Heliothis virescens, (Loeb et al., 2001; Loeb, 2006) and the tobacco 

hornworm, Manduca sexta (Levin et al., 2005).  

• Echinodermata: represented by the purple sea urchin, Strongylocentrotus purpuratus 
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(Marsden and Burke, 1997) and the green sea urchin, Lytechinus variegates (Hertzler and 

McClay, 1999).  

• Urochordata: represented by the ascidians/sea squirts, Halocynthia roretzi (Miyazawa 

et al., 2001; Miyazawa and Nonaka, 2004), Ciona intestinalis (Ewan et al., 2005) and 

Polyandrocarpa misakiensis (Huhtala et al. 2005). 

When the research described in this dissertation commenced in the mid-1990s, 

practically nothing was known about integrins in invertebrates. At the time, the best 

characterized invertebrate integrins were from Drosophila melanogaster, a result of the 

extensive genetic research performed on this organism. The first reported mutation that 

later was shown to be in an integrin gene was inflated, which exhibited the phenotype of 

blisters on the wings (Weinstein, 1918; Wilcox et al., 1989). Other mutations of integrins 

include mys (myospheroid: embryonic lethal; muscles detach from site of attachment 

after first contraction and body subsequently rounds-up) (Wright, 1960; MacKrell et al., 

1988), mew (multiple edematous wings: mostly larval lethal with abnormal gut 

morphogenesis. If adulthood is reached, wings display blisters.) (Brower et al., 1995), 

and scb (scab: embryonic lethal due to a failure of dorsal closure) (Stark et al., 1997). D. 

melanogaster is now known to possess five integrin α-subunits (αPS1 through αPS5) and 

two β-subunits (βPS and βν [beta-nu]) (Burke, 1999; Yee and Hynes, 1993; Stark et al., 

1997; Humphries, 2000; Narasimha and Brown, 2006).  

2.3) Integrin-like proteins in fungi and amoeboid protozoa: Integrins have 

long believed to be a protein found solely in Animalia, however integrin-like molecules 

have been identified from several amoeboid protozoa and yeast. A β2 integrin-like protein 

was reported from the internal-primate protozoans Entamoeba histolytica (responsible for 

51 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_Abstract&term=%22Miyazawa+S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_Abstract&term=%22Nonaka+M%22%5BAuthor%5D
http://en.wikipedia.org/wiki/Amoeboid


 

amoebic dysentery in humans) and Entamoeba dispar (commensal in humans) (Pillai and 

Kain, 2005). This β2 integrin-like protein is believed to be involved in allowing these 

protists to adhere to the host’s intestinal and vascular endothelium. In the slime mold 

Dictyostelium amoebae, a transmembrane adhesion molecule with a number of features 

similar to integrin β-subunits, (i.e. domains with similar amino acid sequence and 

structure, similarity of overall protein function and association with the anchor protein 

talin), has been identified (Cornillon et al., 2006). Both the Dictyostelium and the 

Entamoeba are taxonomically related and are placed within the same phylum, 

Amoebozoa.  

The parasitic yeast Candida albicans, the main causative agent of candidiasis, 

possesses a protein called fungal cell adhesion molecule (F-CAM), which is involved in 

allowing the yeast to adhere to host tissue. This protein exhibits similarities to integrins 

based on antigenic, structural and functional homologies (Tronchin et al., 1991). In 

addition, Gale et al. (1996) isolated a gene from C. albicans that codes for a protein, 

designated αInt1p, that shares numerous motifs with integrin α-subunits including “a 

putative I domain, two EF-hand divalent cation-binding sites, a transmembrane domain, 

and a cytoplasmic tail with a single tyrosine residue.”  

2.4) Integrin origins: The presence of integrins in all taxa of the kingdom 

Animalia leads to the likelihood that integrins evolved prior to the diversification of the 

animals. With the discovery of integrin-like proteins in Amoebozoa and fungi, Cornillon 

et al. (2006) speculate that the animal, protistan and fungal integrin and integrin-like 

molecules could have stemmed from the same ancestral protein. Genomic analysis of the 

Amoebozoa indicates that this group diverged from the fungus/animal clade after the 
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plant - fungus/animal split (1000 mya), but prior to the fungus - animal split (965 mya) 

(Bapteste et al., 2002; Eichinger et al., 2005). As integrin-like molecules are not believed 

to be present in plants, the hypothesis of Cornillon et al. implies that the first ancestral 

integrin originated between 1000 and 965 mya. (Note: Hughes [2001] phylogenetic 

analysis of just the animal integrin genes estimates the origin of the α-subunit occurred 

about 993mya [β-subunit estimate was unresolved]. This estimate is based on the 

phylogenetic analysis by Wang et al. [1999] of 571 sequences across 75 genes who place 

the plant-fungi-animal split at 1576 ± 88 mya and the Porifera-Cnidaria-Ctenophora) 

divergence between 1200-1500 mya. With integrin-like proteins now known from the 

Amoebozoa and fungi, the Wang et al. estimate would place the integrin origins between 

1200-1664 mya.) 

 In the following set of experiments, I describe an integrin β-subunit found 

exclusively on plasmatocytes from M. sexta and demonstrate that this integrin β-subunit 

is involved in the process of cellular encapsulation. 
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Materials and Methods 
 

Insects: Fourth or fifth instar larvae of Manduca sexta were used in all of the following 

experiments. The laboratory colony was originally started from eggs purchased from 

Carolina Biological Supply. Larvae were raised in incubators at 26°C under a 

photoperiod of 16 L: 8 D and fed on artificial diet as described by Dunn and Drake 

(1983).  

 

Hemocyte Buffers: Manduca saline buffer (MSB) and anticoagulant saline (AC-saline) 

were prepared as according to Willott et al. (1994). MSB: pH 6.8, consisting of 4 mM 

NaCl, 40 mM KCl, 1.7 mM PIPES, 18 mM MgCl2, 3 mM CaCl2, 146 mM sucrose, and 1 

g polyvinylpyrrolidone per liter. AC-saline: pH 6.8, consisting of 4 mM NaCl, 40 mM 

KCl, 1.7 mM PIPES, 8 mM EDTA, 9.5 mM citric acid, 27 mM sodium citrate, 146 mM 

sucrose, and 1 g polyvinylpyrrolidone per liter. 

 

Monoclonal Antibodies: The monoclonal antibodies (mAbs) specific for M. sexta 

hemocytes were produced by Willott et al. (1994). Table 1 lists all mAbs used in the 

following experiments, their immunoglobulin class, and hemocyte type to which they 

bind. Antibody-producing hybridoma cells were grown in RPMI medium with 1-5% fetal 

bovine serum. Antibody MS2, MS9 and MS13 were purified by ammonium sulfate 

precipitation followed by dialysis against phosphate buffer solution (PBS) and then MSB. 

MS2 and MS13 were further purified by protein A affinity chromatography (Pierce: 

AffinityPak™Prepacked Columns of ImmunoPure® Plus Immobilized Protein A).  
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Hemocyte spreading assay: Three fifth instar day 4 M. sexta larvae were chilled for 

several minutes until lethargic then surfaced sterilized with 70 percent ethanol. 

Hemolymph was extracted by dripping out through a distally amputated proleg and 

individually collected into three separate sterile polyproylene test tubes, one for each 

insect, each containing 2 ml ice cold sterile anti-coagulant (AC) saline. The 

hemolymph/AC saline mixture was mixed thoroughly with a polyethyene transfer pipette, 

followed by centrifugation at 300xg for 20 min at 4°C in order to pellet hemocytes. The 

supernatant was removed and replaced with fresh ice cold AC saline. The hemocyte 

pellet was then re-suspended in the AC saline with a transfer pipette and centrifuged 

again (300xg, 20 min, 4°C). After the second wash, the supernatant was removed, and the 

pellet was re-suspended in 3 ml ice cold sterile Manduca saline buffer (MSB). The cell 

count in each test tube was approximately 3.0x106 cells/ml.  

 Each of the three hemocyte preparations was divided in half; one experimental 

and the other control. The experimental samples for each insect were further divided into 

three 50 µl aliquots with each receiving a different concentration of purified mAb MS13 

(final concentrations were: 1.0 µg/ml, 0.1 µg/ml, or 0.01 µg/ml). Two separate controls 

for each insect were also prepared; a 50 µl hemocyte sample with the final concentration 

of 1.0 mg MS2/ml (MS2 is an IgG1 mAb that binds to granular cells) and a 50 µl 

hemocyte sample in MSB alone. All mixtures were incubated for 1 h at 4°C.  

After incubation, 20 µl from each mixture was pipetted onto individual wells of a 

12 well glass slide. The slides were left at room temperature (24°C) for 1 h. The cells 

were then fixed with a 4% solution of paraformaldehyde. Indirect immunofluorescence 

using MS9 (IgM mAb against plasmatocytes) was used to visualize plasmatocyte 
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spreading. Immunofluorescence photographs were taken of 3 to 4 microscope fields in 

each well, meaning that approximately 450 plasmatocytes were examined for each 

treatment (range 350–634). Each photograph was scored for the percentage of 

plasmatocytes that spread. 

 

In vivo Encapsulation Assay: Fourth instar larvae were chilled on ice for several 

minutes until they became lethargic. The larvae were then surface sterilized with 70% 

ethanol and injected with a solution containing a specific anti-hemocyte mAb or a control 

solution lacking antibodies. For assays involving MS16 (n=3), MS34 (n=5), X11G9 

(n=3), Z7E8 (n=4), X2F2 (n=4) and X7C4 (n=4), larvae were injected with 100 µl of 2.5 

to 10 times concentrated supernatant from mAb-producing hybridoma cell cultures. For 

assays involving mAbs MS2 (n=24), MS9 (n=3) and MS13 (n=6), larvae were injected 

with 100 µg purified mAb and 100 µg bovine serum albumin (BSA) dissolved in 50 µl 

MSB. Two controls were conducted. Control A (n=5) insects were injected with 100 µl 

of 10 times concentrated mAb-free hybridoma cell culture media. Control B (n=48) 

insects were injected with 300 µg BSA dissolved in 50 µl MSB. 

 Following this first injection, the larvae rested at room temperature for 1 h, were 

chilled again on ice, and then injected with approximately 100 DEAE-Sephadex beads 

stained with Congo red in 100 µl MSB (Lavine and Beckage, 1996). The larvae were 

place on diet at room temperature for approximately 24 h. Insects were then dissected, 

and all beads that could be found were removed and placed in a solution of 4 percent 

paraformaldehyde. Beads were then observed by phase contrast microscopy and scored 

for encapsulation. Beads were judged fully encapsulated if there was a minimum of one 
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complete layer of hemocytes attached with no surface of the bead visible. Beads were 

scored as partially encapsulated if more than 15 hemocytes were attached, but the surface 

of the bead was not completely covered with cells. Beads with fewer than 15 hemocytes 

attached were scored as not encapsulated (Fig. 2).  

 Statistical differences among the mean number of encapsulated beads from the 

various treatments were calculated by the Student-Newman-Keuls multiple comparison 

test.  

 

Purification of a membrane protein recognized by MS13 and MS34 (performed by 

Dr. James Nardi, University of Illinios): Developing wings from insects 3 to 6 days post 

pupation, which are abundant in plasmatocytes, were removed and immediately frozen on 

dry ice prior to storage at -80°C. Wings were thawed and washed in PBS containing 1 

mM phenylmethylsulfonyl fluoride (PMSF; a protease inhibitor), 1 mM EDTA, and 80 

µM phenylthiourea (for inhibition of melanization). Wing samples were then centrifuged 

at 10,000xg for 10 minutes. 

 To solubilize cell membrane proteins in the resulting pellet, the pellet was 

homogenized using a glass dounce homogenizer in a lysis buffer containing 10 mM 

triethanolamine (TEA), 0.15 M NaCl, 2% Nonidet P-40 (NP-40), 0.5% sodium 

deoxycholate (DOC), 0.5 mM sodium EDTA, 1 mM PMSF, and the following six 

protease inhibitors each at a concentration of 1 µg/ml: leupeptin, pepstatin, antipain, 

chymostatin, Na-p-tosyl-L-lysine chloromethyl ketone (TLCK), and N-tosyl-L-

phenylalanine chloromethyl ketone (TPCK). The homogenate was stirred for 1 h in the 
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cold and then centrifuged at 13,000xg for 30 min. The supernatant was re-centrifuged at 

100,000xg for 1 h to remove any extra-fine cellular debris. 

The supernatant was applied to a 2 ml affinity column containing mAb MS13 or 

MS34 coupled to agarose beads. To prepare the column, antibody was affixed to the 

beads in a solution of 0.1 M phosphate buffer (pH 7.0) containing 4-6 mg of purified 

MS13 or MS34 using sodium cyanoborohydride as a reducing agent. A flow rate of 5-6 

column volumes (10-12 ml) per hour was maintained. After application of the wing lysate 

samples, the column was washed at 10-12 ml per h with 40 ml each in sequence of the 

following wash buffers (pH 8.2): (a) 10 mM TEA, 0.15 M NaCl, 1% NP-40; (b) 10 mM 

TEA, 0.15 M NaCl; (c) 10 mM TEA, 0.15M NaCl, 0.5% DOC; (d) 10 mM TEA, 1.0 M 

NaCl, 1% NP-40. All four wash buffers contained the protease inhibitors listed above for 

the lysis buffer, each at 1 µg/ml. Antigens to MS13 or MS34 bound to the affinity 

column were eluted with 12 ml of 50 mM triethylamine, 0.15 M NaCl, 1% NP-40 (pH 

11.5). The elution buffer also contained all the protease inhibitors listed above for the 

lysis buffer, each at 1 µg/ml. Each 1.0 ml eluted fraction was neutralized with 30 µl of 

1.0 M sodium phosphate (pH 4.25). Proteins eluted from the column were concentrated 

with Amicon microconcentrators and then precipitated by the addition of four volumes of 

1:1 acetone:methanol  followed by storage at –25ºC for at least 24 hours. The protein 

precipitate was collected by centrifugation at 10,000 rpm for 30 min.  

 

Amino acid sequencing: The proteins isolated from MS13 and MS34 columns were 

dissolved in nonreducing sample buffer and resolved by SDS-PAGE (8% acrylamide). 

Gels were visualized by silver staining followed by Western blot analysis using MS13 
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and MS34 as primary antibody. A band ~90 kDa recognized by MS13 and MS34 from 

each preparation was excised from the gels. Samples of excised protein, approximately 

10 µg each, were sent to the HHMI Biopolymer/Keck Foundation Biotechnology 

Resource Laboratory at Yale University. At Yale, the samples were subjected to trypsin 

digestion. The resulting peptides were isolated by reverse phase HPLC and sequenced via 

Edman degradation.  

 

cDNA cloning: Three degenerate primers based on the peptide sequences obtained from 

immunoaffinity purification were used for reverse transcription (RT)-PCR. The single 

forward primer MS34-5F (5´-CARTTYAARCCICARGTIAT-3´) was based on the 

peptide sequence QFKPQVM. The two reverse primers MS34-4BR (5´-

ACRAAIGAIGGDATRTCRTARTC-3´) and MS34-4CR (5´-

ACRAARCTIGGDATRTCRTARTC-3´) were based on the reverse complement for the 

sequence DYDIPSFV. RT-PCR was performed using total RNA from fifth instar M. 

sexta larval hemocytes as template, isolated as described by Yu et al. (1999). RT-PCR 

was carried out using Superscript II/Platinum Taq (SuperScript One-Step RT-PCR with 

Platinum Taq; Invitrogen) under the thermocycler conditions of 50°C, 30 min; 94°C, 2 

min; followed by 35 cycles of 94°C, 15 s; 45°C, 30 s; and 72°C, 1 min, with a final 

incubation at 72°C, 10 min. The RT-PCR product was re-amplified using PCR Master 

Mix (Promega) under condition of 94°C, 30 s; 45°C, 30 s; and 72°C, 1 min for 35 cycles. 

PCR product was isolated by electrophoresis on a low melting point (LMP) agarose gel. 

DNA bands of expected size (≈ 800 bp) were excised and purified via Wizard Preps kit 

(Promega). This purified DNA was ligated with pGem-T vector (Promega) and used to 
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transform E. coli XL1 blue strain. Plasmids were isolated using Wizard Plus Minipreps 

(Promega) and sequenced by Iowa State University DNA sequencing facility. 

 To obtain a full length cDNA sequence, 3´ and 5´ rapid amplification of cDNA 

ends (RACE) was employed using the GeneRacer Kit version E (Invitrogen) and the 

following three gene specific primers based upon the partial DNA sequence obtained: 

FOR34R-1 (5´-AGTCGGAGCTGAGTACGCCGAACTGAA-3´) for 3´ RACE and 

REV34-3 (5´-TCCAGTTCGGCGTACTCAGCTCCGACTA-3´) and REV34-4 (5´-

GCCTTGAGCCAGGCCTCCACCCTATTTC-3´) for 5´ RACE. The template used was 

hemocyte total RNA collected from day three fifth instar M. sexta larvae. The resulting 

DNA products were isolated by electrophoresis on a LMP agarose gel. DNA bands of 

expected size (≈ 1500 bp for 3´ RACE and ≈1175 bp [from use of primer REV34-3] and 

≈800 bp [from use of primer REV34-4] for 5´ RACE) were excised and purified using 

Wizard Preps (Promega). Purified DNA was ligated into pGem-T vector (Promega), 

which was used to transform E. coli strain TOP10 (Invitrogen). Plasmids were purified 

using QIAprep spin miniprep kit (250) (Qiagen) and sequenced at the Kansas State 

University DNA sequencing facility. 

 

Computer analysis of sequence data: Multiple sequence alignment was carried out 

using the ClustalW program: http://www.ebi.ac.uk/clustalw/ (Thompson et al., 1994). 

Potential O-glycosylation sites were predicted using NetOGlyc 3.0 

(www.cbs.dtu.dk/services/NetOGlyc-3.0). 
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Northern blot analysis: Total RNA from hemocytes or fat body from naïve fifth instar 

larvae and from larvae 24 h after injection of E. coli was prepared as described earlier 

(Yu et al., 1999). Total RNA from Malpighian tubules, epidermis and midgut were 

prepared as described by Dittmer et al. (2004). RNA samples (20 µg) were resolved by 

electrophoresis in agarose gels containing formaldehyde, transferred to uncharged nylon 

membranes (GeneScreen Plus; DuPont) and probed with 32P-labeled M. sexta β-integrin 

cDNA using ULTRAhyb (Ambion) as the hybridization solution. The radioactive probe 

was made with the Prime-a-Gene Labeling System (Promega), using the original 810 bp 

partial β-integrin cDNA as the template. To confirm equal RNA sample loading, 

membranes were re-probed with a ribosomal protein S3 (rpS3) cDNA (Jiang et al., 1996).  

 

Expression and purification of β-integrin protein fragments and western blot 

analysis: Segments of the β-integrin cDNA were generated by RT-PCR using the 

SuperScript One-Step RT-PCR kit (Invitrogen). The three segments created and the 

primers used for their creation were: segment (a) (forward primer X34-30F [5´-

CCGGAATTCAATCACTTAGGGACATGCGGG-3´] and reverse primer X34-270R 

[5´-CGGGGTACCTCATCACATTTTGCCGTCACCAGCGCT-3´]; 720 bp), segment 

(b) (forward primer X34-130F [5´-CCGGAATTCGCCGAGCACTTTCTTTTAGAT-3´] 

and reverse primer X34-270R; 420 bp) and segment (c) (forward primer X34-270F [5´-

CCGGAATTCATGATAGGCATTATCAAACCC-3´] and reverse primer X34-700R [5´-

CGGGGTACCTCATCAATTTCCTCTTGGGGGTGCCTC-3´]; 1290 bp). All forward 

primers possessed an Eco RI site for ligation into the transformation vector. All reverse 

primers contained two consecutive stop codons, followed by a Kpn I site to facilitate the 
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ligation into the transformation vector. Thermocycler conditions for RT-PCR were as 

follows: reverse transcription at 50°C, 30 min; 94°C, 2 min; followed by 40 amplification 

cycles of 94°C, 15 s; 55°C, 30 s; 72°C, 1 min; with a final incubation at 72°C, 10 min. 

The cDNA products were resolved by low melting point agarose gel electrophoresis. The 

bands of expected size were excised and purified with QIAquick Gel Extraction Kit 

(Qiagen). Following digestion with EcoRI/KpnI, the purified cDNA segments were 

ligated into the plasmid vector pPROEX HTa (LifeTechnologies), and then used to 

transform E. coli strain DH5α (Subcloning Efficiency DH5α Competent Cells 

(LifeTechnologies)). To express β-integrin segments, two 3 ml cultures of LB with 

0.01% ampicillin were inoculated with 200 µl from an overnight culture and incubated 

with shaking at 37°C. When cell density reached an OD600 between 0.5 and 0.7, 30 µl of 

IPTG (100 mM) was added to one of the tubes for each sample pair to induce 

recombinant protein production. Bacteria were then incubated with shaking for 6 h to 8.5 

h at 37°C. Cultures were centrifuged and pellet was frozen at –20°C. To lyse bacteria, 

each pellet was resuspended in 25 ml CelLytic B (Sigma) with 125 µg DNase I followed 

by centrifugation at 27000xg for 25 min at 4°C. The pellet was resuspended with 5 ml 

CelLytic B, 6 mg lysozyme and 25 ml Tris (20mM, pH 7.5). After centrifugation at 

27000xg for 25 min at 4°C, the protein pellet was suspended in 20 ml equilibration buffer 

(0.1M sodium phosphate pH 8, 8.0 M urea) and then centrifuged at 12000xg to remove 

any remaining debris. The expressed protein was then purified via his-affinity 

chromatography by applying all 20 ml of the supernatant to a HIS-Select Cartridge 

(Sigma). The cartridge was washed once with 10 ml equilibration buffer and eluted with 
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10 ml elution buffer (0.1M sodium phosphate pH 8, 8.0 M urea, 250 mM imidazol). 

Eluted protein was collected in 1 ml fractions.  

 Prior to SDS-PAGE, the protein samples were prepared by mixing 1.7 µl protein 

sample with 0.8 µl 1.0 M sodium phosphate buffer (pH 8), 1.7 µl 6x SDS-PAGE buffer 

containing β-mercaptoethanol, and 5.8 µl H2O. The prepared samples were then heated at 

95° C for 5 min. Immediately following the heating step, the protein samples were then 

loaded into a 12.5% acrylamide Criterion Precast Gel (Bio-Rad) and underwent 

electrophoresis at 200 V for 50 minutes. Gels were either stained with Coomassie blue or 

transferred to nitrocellulose for Western blot analysis. Primary antibodies used for 

Western blot analysis were anti-6 histidine (1:2000 dilution), MS13 (1:250 dilution of 

hybridoma cell supernatant) and MS34 (1:125 dilution of hybridoma cell supernatant). 

Secondary antibody was goat anti-mouse AP conjugate (1:3000 dilution).  
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Results 
 
 Monoclonal antibodies against insect hemocyte antigens are a potentially valuable 

tool for understanding the functioning of these cells. Insects from which anti-hemocyte 

mAbs were created include the American cockroach Periplaneta americana (Chain et al., 

1992), the stick insect Bacillus rossius (Scapigliati et al., 1996), the soybean looper 

Pseudoplusia includens (Strand and Johnson, 1996), the flesh fly Sarcophaga peregrina 

(Hori et al., 1997), and the fruit fly Drosophila melanogaster (Kurucz et al, 2003). In the 

early 1990’s, mAbs against the hemocytes of the tobacco hornworm, Manduca sexta, 

were generated to distinguish among the various blood cell types and (Willott et al., 

1994) to probe the functions of hemocyte proteins. Using this group of M. sexta mAbs, I 

isolated and identified an adhesive protein on plasmatocytes that is essential to the 

encapsulation immune response.  

 

Effect of mAb MS13 on plasmatocyte spreading: Wiegand et al. (2000) showed that 

plasmatocytes were inhibited from spreading on glass microscope slides after incubation 

with mAb MS13. To further characterize this effect, a dose response experiment was 

performed to determine the concentration of MS13 needed to inhibit encapsulation. Over 

the entire 100-fold range of antibody concentrations from 1.0 µg/ml to 0.01 µg/ml, MS13 

inhibited the spreading of plasmatocytes as compared to the two controls of Manduca 

saline buffer (MSB) alone and a 1.0 µg/ml concentration of anti-granulocyte mAb MS2 

(Fig. 3). The percentage of plasmatocytes that displayed spreading was not statistically 

different among the MS13 treated samples (Mann-Whitney Test); i.e. no dose response 

was observed. However, hemocytes at all three MS13 concentrations exhibited 
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significantly less spreading than either control. The two controls were not significantly 

different from one another. This result can be accounted for if all three MS13 

concentrations tested exceeded a threshold required for binding sufficient antigen to 

block spreading of plasmatocytes. 

  

In vivo assay analysis: A group of mAbs previously shown to label the surface of 

plasmatocytes was screened for their ability to inhibit the encapsulation of DEAE-

Sephadex beads injected into the larvae of M. sexta. Fourth instar larvae were injected 

with one of ten mAbs that bind to hemocyte surfaces (Table 1) or with one of the two 

control substances followed by an injection of DEAE-Sephadex beads. After 24 h, the 

beads were dissected out of the larvae and scored for the degree to which they were 

encapsulated (Fig. 4).  

Treating larvae with MS13 or MS34 significantly lowered the number of beads 

encapsulated as compared to the controls or to the other mAbs. Both of these mAbs 

specifically label plasmatocytes, but not other M. sexta hemocyte types (Fig. 5). In earlier 

experiments, MS13 had been shown to inhibit the intrinsic ability of plasmatocytes to 

spread (i.e. produce pseudopodia) on glass microscope slides (Wiegand et al., 2000). The 

remaining mAbs did not significantly lower the number of beads encapsulated. 

 

Immunoaffinity purification and analysis of the membrane protein recognized by 

MS13 and MS34: Previous experiments have shown that the antigens recognized by 

MS13 and MS34 are associated with the plasma membrane of plasmatocytes and that 

they can be extracted with detergents (Jeremy Gillespie, Sherry Anderson, Michael 
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Kanost; personal communication). This suggests that these antigens are integral 

membrane proteins.  

In order to isolate and identify the corresponding antigens on plasmatocyte 

surfaces to which MS13 and MS34 bind, thus causing the inhibition of encapsulation, 

two immunoaffinity columns, one for each of these mAbs, were created. A lysate from 

the developing wings of pupating M. sexta was passed through these columns. This tissue 

was chosen for isolating the antigen due to the abundance of hemocytes that accumulate 

in the hemocoel between the monolayers of the developing wings. Proteins eluted from 

the column were separated by SDS-PAGE and visualized by silver staining and by 

immunoblotting with MS13 or MS34 as the primary antibody. Both MS13 and MS34 

recognized a single band at approximately 90 kDa (Fig. 6A and 6B).  

To identify the 90 kDa protein antigens recognized by the mAbs MS13 and 

MS34, the purified proteins eluted from each column were subjected to trypsin digestion 

followed by Edman degradation of purified peptides. This procedure revealed for the 

antigen recognized by MS13 the two peptide sequences LDYDIPSFVR and 

THELVINPVSLNDK (Fig. 7, yellow highlighted fragments C and D) , and for MS34 the 

three peptide sequences, IQFKPQVMR, EALISQANQIYK and LDYDIPSFVR (Fig. 7, 

yellow highlighted fragments A, B and C). It is of interest to note that the peptide 

sequence LDYDIPSFVR is common to both antigens, thus suggesting that MS13 and the 

MS34 recognized related or identical proteins.  

 

cDNA cloning and analysis: The peptide sequence data from the Edman degradation 

were used to design degenerate oligonucleotide primers that were used for reverse 
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transcription-PCR (RT-PCR) using hemocyte RNA as template. Primers based on the 

MS34 antigen sequences QFKPQVM and DYDIPSFV (Fig. 7, fragments A and C) 

yielded an 803 bp product that encoded a protein fragment with high similarity to the β-

subunit of integrins. 5´ and 3´ RACE was employed to obtain a full-length sequence of 

2426 bp (Genbank accession AY630342). This complete cDNA sequence possesses a 

2301 bp open reading frame that encodes a deduced amino acid sequence of 767 residues. 

Searches of amino acid sequence databases revealed that the protein has significant 

similarity with integrin β-subunits (Fig. 7), including 35% identity to a Drosophila 

melanogaster β-integrin known as βPS (Position Specific) or myospheroid (MacKrell et 

al., 1988), 34% identity to a β-integrin from the mosquito, Anopheles gambiae (accession 

XP_311354), and 31% identity to integrin βPi-1 from Pseudoplusia includens (Lavine 

and Strand 2003). The M. sexta protein also had 33% identity with β-integrins from 

hemocytes of a crustacean (the crayfish, Pacifastacus leniusculus) (Holmblad, 1997) and 

a mollusk (the Pacific oyster, Crassostrea gigas) (Terehara, 2003).  

 The deduced protein possesses a predicted 19 amino acid signal sequence (Levin 

et al. 2005), a 675 amino acid extracellular region (Gln20-Lys695), a 22 residue 

hydrophobic membrane-spanning domain (Trp696-Trp721), and a 46 residue cytoplasmic 

tail. All four peptide sequences obtained by the Edman degradation from both the MS13 

and MS34 antigens are also present in the deduced sequence. The sequence includes 10 

potential N-glycosolation sites, one potential O-glycosylation site at Thr391, and 52 

cysteines, 42 of which are conserved among all known integrin β-subunits from other 

arthropods. The predicted protein exhibited the following sequence characteristics 

common to nearly all β-subunits of integrins (refer to Fig. 1B; Fig. 7; and Fig 8A):  
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1) An amino-terminal PSI domain consisting of the first 50 residues of the 

mature protein. Consistent with PSI domains from all other β-subunits, the 

predicted protein contains seven cysteines and a tryptophan immediately prior 

to the fifth cysteine, all located in highly conserved positions. This domain 

type is shared with plexins and semaphorins, thus giving rise to its name; 

Plexin, Semaphorin, Integrin. 

2) An I-like domain spanning the 95 residues from Pro128 through Asp223. This 

domain acts together with the β-propeller (and the I-domain if present) of the 

integrin α-subunit to form the extracellular ligand-binding site (Diamond et 

al., 1993; Michishita et al., 1993; Bajt et al., 1995; Plow et al., 2000; Zang et 

al., 2000; Shimaoka et al., 2002). 

3) A metal ion-dependent adhesion site (MIDAS; residues Asp136-Thr140) within 

the I-like domain. The MIDAS of this Manduca integrin exhibits the 

distinctive DXSXS motif; however, it does possess a conserved substitution in 

the fifth position of threonine for the serine. Occupation of the MIDAS by 

Mg2+ or Mn2+ results in a conformational change in integrins that stimulates 

ligand binding (Bajt et al., 1995; Goodman and Bajt, 1996; Harris et al, 2000; 

Liddington and Ginsberg, 2002; Shimaoka et al., 2002).  

4) A region with four consecutive cysteine-rich pseudo-repeats (Cys433-Asp596). 

This region shows similarity to motifs in epidermal growth factor. An unusual 

feature of the predicted protein is that the third repeat has only six cysteines 

instead of the typical eight. This atypical number of cysteines in the third 
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repeat is also a characteristic of mammalian subunits β4 and β8 (Moyle et al., 

1991; Tan et al., 2001; Takagi et al., 2001). In mammalian integrins, the 

cysteine-rich pseudo-repeat region acts as a conduit for signal transduction 

between cytoplasmic tail and the ligand-binding headpiece (Lu et al., 2001a; 

Shimaoka et al., 2002). 

5) An extremely conserved lysine (K722) twenty-three amino acid residues 

downstream from the predicted start of the membrane-spanning domain. 

6) Three conserved sequences on the cytoplasmic tail; the first corresponding to 

the residues His728-Glu739 and the two NPXY motifs, Asn750-Tyr753 and 

Asn762-Tyr765. The amino acids at these sites are required for proper 

localization of integrins in focal adhesions (Reszka et al., 1992; Ylänne et al., 

1995; Burridge and Chrzanowska-Wodnicka, 1996; Vignoud et al., 1997) and 

are known to interact with various cytosolic proteins including talin (Horwitz 

et al., 1986; Vignoud et al., 1997; Hemler, 1998; Pfaff, 1998; Yan, 2001; 

Calderwood et al., 1999; 2000; 2003), filamin (Hemler, 1998; Pfaff, 1998), α-

actinin (Otey et al., 1990, 1993; Burridge and Chrzanowska-Wodnicka, 1996), 

and integrin cytoplasmic domain-associated protein (ICAP)-1 (Hemler, 1998; 

Calderwood et al., 2002; 2003; Chang, 2002). 

 In the published article describing the integrin β subunit from M. sexta  (Levin et 

al. 2005), this protein was christened “M. sexta integrin β1.” Upon later reflection, I 

believe that this designation may prove to be confusing with the nomenclature established 

for mammalian β subunits (i.e. β1 through β8), particularly since the M. sexta β subunit 

has the greatest degree of similarity with mammalian subunit β3. Therefore, following the 

69 



 

nomenclature establish by Lavine and Strand (2003) for hemocyte integrin subunits 

found in the soybean looper, P. includens, the integrin β subunit characterized in this 

thesis will be referred to hereafter as βMs1. 

 

Analysis of recombinant segments of integrin β-subunit: Immunoblot analysis was 

employed to identify the regions of βMs1 recognized by MS13 and MS34. To 

accomplish this, three truncated recombinant forms of the βMs1 were created: peptide-

fragment (1) corresponds to amino acids 24 to 264 of the full length β subunit, which 

represents the region of the protein from the mature amino-terminus through just past the 

predicted I-like domain; peptide-fragment (2) corresponds to amino acids 124 to 264, 

which represents the region containing the predicted I-like domain; and peptide-fragment 

(3), corresponding to amino acids 264 to 694, which represents the region from just after 

the I-like domain to the predicted start of the membrane-spanning sequence (Fig. 8A). 

Analysis by SDS-PAGE confirmed that all three purified recombinant protein sequences 

were of expected size (Fig. 8B; Coomassie stain). Immunoblot analysis showed that both 

MS13 and MS34 recognize fragments 1 and 2, representing the amino-terminal end of 

βMs1. Neither mAb recognized the carboxyl-terminal fragment 3 representing the 

remainder of the extracellular portion of the β subunit (Fig. 7B; MS13 and MS34 blot). 

Recognition of peptide-fragment 2 indicates both mAbs bind to an epitope within the I-

like domain.  

 This experiment establishes that the mAbs used to block encapsulation in vivo 

also bind to the integrin β-subunit fragments encoded by the cloned cDNA. Since it has 

been demonstrated that MS13 and MS34 bind to ligands on no other cell in M. sexta 
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other than those on plasmatocytes (Willott et al., 1994; Wiegand et al., 2000), this result 

further confirms that the antigen blocked by these mAbs in vivo and required for 

encapsulation is a β subunit of integrins. 

 

Analysis of the M. sexta integrin β-subunit gene expression: Northern blot analysis 

was employed to investigate tissue-specific expression of βMs1. The βMs1 cDNA probe 

hybridized with a 2.3 kb RNA from hemocytes, a size consistent with that expected from 

the cDNA sequence (Fig. 9A). No transcript was recognized from total RNA samples 

from midgut, epidermis, Malpighian tubules, or fat body. Northern blotting was also 

performed to investigate if βMs1 is inducible by a bacterial challenge. Injection of larvae 

with E. coli did not significantly affect the expression of integrin β-subunit in hemocytes 

and did not result in detectable β-subunit mRNA in fat body (Fig. 9B).  

These results in combination with fluorescent immunolabeling studies with MS13 

and MS34 (Willott et al., 1994; Wiegand et al., 2000) indicate that the integrin β-subunit 

discovered in the above experiments are present solely on plasmatocytes. In addition, 

βMs1 appears to be constitutively present on plasmatocytes and its induction is not 

stimulated by a bacterial challenge from E. coli. 
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Discussion 
 

The research presented here definitively demonstrates that an integrin located on 

the surface of plasmatocytes plays an important role in the encapsulation immune 

response in the tobacco hornworm, Manduca sexta. This investigation was accomplished 

through a series of experiments that first assayed mouse monoclonal antibodies (mAb) 

generated against M. sexta hemocytes (Willott et al., 1994) to determine which of these 

antibodies, if any, could inhibit the encapsulation of DEAE-Sephadex chromatography 

beads in vivo. This test was conducted under the assumption that if a mAb did inhibit 

encapsulation, it may be doing so by directly binding to a protein necessary for this 

immune response and physically or sterically hindering it from performing its function. If 

such a case did occur, then the inhibiting mAb could then be used for isolating its 

antigen. As reported in the Results section, two inhibiting mAbs were attained; MS13 and 

MS34 (Fig. 4). It is of interest to note that both of these antibodies bind to antigens solely 

found on the surface of plasmatocytes and not to any other hemocyte nor any other tissue 

in M. sexta. MS13 and MS34 were subsequently shown to prevent plasmatocytes from 

spreading on glass surfaces, a natural behavior of untreated plasmatocytes (Wiegand et 

al., 2000).  

The mAbs MS13 and MS34 were chosen for the isolation their plasmatocytic 

antigens via immunoaffinity purification. This purification step was performed by Dr. 

James Nardi of the Department of Entomology, University of Illinois at Champaign-

Urbana and made use of a lysate from the developing wings of pupating M. sexta, a tissue 

profuse with hemocytes. Immunoaffinity purification of the lysate with both MS13 and 

MS34 each resulted in the isolation of a single protein antigen approximately 90 kDa in 
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size (Fig. 6). This is in congruence with a previously performed Western blot analysis of 

hemocyte lysate with MS13, which recognized a protein of the same size (Wiegand et al., 

2000). To further analyze these purified protein products, Dr. Nardi treated the MS13 and 

MS34 antigens with trypsin, which then underwent Edman degradation. The Edman 

degradation produced two peptide sequences for the MS13 antigen and three peptide 

sequences for the MS34 sequence. As noted earlier, one of the MS13 sequences was 

identical to one of the MS34 sequences, which led us to believe at this point of the 

investigation that both antigens were either related or identical proteins.  

 To fully resolve the identity of the isolated antigens, it next was necessary to 

obtain the DNA sequence that encodes these proteins. This was accomplished by reverse 

transcription-PCR (RT-PCR) using hemocyte RNA as the template and degenerate 

oligonucleotide primers based on two of the MS34 antigen amino acid sequences 

acquired from the Edman degradation. The results of the RT-PCR produced an 803 bp 

product representing an internal segment of the complete gene. The full-length 2426 bp 

cDNA sequence (Fig. 6), here designated βMs1 (Genbank accession AY630342) was 

obtained via the technique of rapid amplification of cDNA ends (RACE). An 

examination of the 767-length amino acid sequence shows that it possesses all the peptide 

sequences from the Edman degradation, further suggesting that both MS13 and MS34 

recognize the same protein antigen. A survey of amino acid sequence databases indicated 

that the deduced amino acid sequence from the above set of experiments possesses a high 

degree of similarity to the β subunits of proteins known as integrins. 

 Before progressing further, it was necessary to establish that the βMs1 gene 

sequence obtained did in fact code for the plasmatocyte protein recognized by MS13 and 
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MS34. By producing three truncated recombinant forms of the βMs1 representing 

different segments of the complete protein and performing an immunoblot analysis on 

these three peptides not only would I be able to demonstrate that βMs1 is the antigen to 

MS13 and MS34, but also which segment of protein contains the epitope for these 

antibodies. The results of this experiment revealed that both antibodies recognized an 

epitope between amino acids 124 to 264 of the full-length protein (Fig. 7). The I-like 

domain of the β-subunit is located within this peptide segment. The I-like domain of the 

β-subunit, together with the β-propeller (and I-domain if present) of the α-subunit, forms 

the extracellular ligand-binding site of integrins (Diamond et al., 1993; Michishita et al., 

1993; Bajt et al., 1995; Plow et al., 2000; Zang et al., 2000; Shimaoka et al. 2002). 

Accordingly, it is reasonable to believe that the binding of MS13 or MS34 to the I-like 

domain would interfere with the proper function of βMs1, thus offering a highly probable 

explanation why these mAbs inhibit the encapsulation response. Given that both MS13 

and MS34 recognize only one antigen in M. sexta, these results offer further proof that 

βMs1 is in fact the antigen in question that is involved in immune encapsulation and that 

the epitope is located near the amino-terminal end of the protein.  

Northern blot analysis was employed to investigate tissue-specific expression of 

βMs1. The probe hybridized solely to a 2.3 kb RNA from the hemocyte sample and not 

to RNA from other tissues. This is consistent with results of antibody labeling with MS13 

and MS34, indicating that the protein is present only in hemocytes, specifically 

plasmatocytes (Wiegand et al., 2000). These results are in partial agreement with the 

experiments of Foukas et al. (1998). As mentioned in the Results section, the mammalian 

integrin subunit most similar to βMs1 is β3. Using antibodies against β3, Foukas et al. 
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found a protein from the Mediterranean fruit fly (Ceratitis capitata) that is the same size 

as β3 from hemocytes and, unlike my results, from fat body too. The treatment of C. 

capitata hemocytes with anti-β3 antibody or RGD peptide was shown to inhibit 

phagocytosis (see below for discussion on integrin mediated phagocytosis), further 

supporting the notion that the protein of Foukas et al. is an integrin.  

 A second northern blot analysis tested whether βMs1 gene expression is affected 

by bacterial challenge. The results of this analysis show that the βMs1 transcript is 

constitutively present in hemocytes and that introduction of E. coli into the hemocoel of 

M. sexta does not alter this gene’s expression (Fig. 9B). Integrins are known to mediate 

phagocytosis in vertebrates (Arnaout, 1990; Ylänne et al., 1995; Hill et al., 1998; Xia and 

Ross, 1999; Plow et al., 2000; Castellano et al., 2001) and evidence from the 

Mediterranean fruit fly, Ceratitis capitata (Foukas et al., 1998; Metheniti et al, 2001) and 

Anopheles gambiae (Moita et al., 2006) suggest that insect hemocytes possess integrins 

that are also involved in the phagocytosis of bacteria. It is also known that some integrins 

under certain conditions are inducible; i.e. the fibronectin receptor α5β1 and the 

fibronectin and tenascin receptor αvβ6 of mammalian keratinocytes (= epidermal cells 

that produces keratin) are upregulated during wound healing (Breuss et al. 1995; 

Häkkinen et al., 2000; Watt, 2002). In light of such facts, one can speculate that the 

presence of bacteria, which are phagocytized by M. sexta plasmatocytes, could promote 

an upregulation of integrins in these hemocytes too. This, however, appears not to be the 

case for the βMs1 subunit. Although this inquiry needs further examination, these early 

results suggest that plasmatocytes possess a physiologically predetermined complement 

of βMs1 regardless of the presence of foreign entities. This does not address the 
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possibility of bacterial induced production of other integrins that may exist on 

plasmatocytes or even granulocytes, which are hemocytes also known to phagocytize 

bacteria in insects (Lavine and Strand, 2002).  

Comprehensive studies of the total insect immune response show that the 

hemocyte response, together with the action of constitutively present antibacterial 

peptides, occurs early and is then followed by an induced humoral response (see 

introduction for details). Thus, there is an early period in an infection while the insect 

immune system gears-up to fight against an assault by invading pathogens. This means 

that circulating pre-infection hemocytes must be instantaneously ready to act against a 

bacterial challenge to protect the host from pathogen invasion while antibiotic peptides 

are being synthesized. Circumstantial evidence does exist for rapid immune response by 

hemocytes. When M. sexta is injected with bacteria or bacterial cell walls, plasmatocytes 

become rapidly removed from circulation (Geng and Dunn, 1989). This is likely a result 

of these hemocytes becoming adhesive and forming nodules or adhering to internal 

structures. Furthermore, insect plasmatocytes, along with other hemocytes, also play an 

important role in plugging wounds (Chapman, 1998; Lai, 2001; Lavine and Strand, 

2002). It is likely that integrins are involved in this process too, as is the case for 

hemocyte integrins in mammals (Shattil, et al., 1998; Shimaoka et al., 2002; Grüner et al., 

2003). Sealing a wound must occur expeditiously in order to prevent seepage of bodily 

fluids and the invasion of pathogens. Being that rapid hemocyte action in insects is 

critically important in both immune response and wound repair, if integrins are crucial in 

these processes, it would be reasonable to assume that insects evolved in a manner in 
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which hemocytes constantly express the necessary complement of integrin in order to 

respond to these situations quickly.  

 Subsequent to the completion of my research, an RNA interference (RNAi) 

experiment was performed by fellow graduate student Lisha Breuer using small 

interfering double stranded RNA (siRNA) based on the βMs1 gene (Levin et al., 2005). 

In RNAi, the presence of siRNA suppresses the expression of genes with complementary 

nucleotide sequences. Injecting fourth instar M. sexta larvae with βMs1-siRNA resulted 

in a gradual decrease in βMs1 levels on plasmatocytes starting 3 days post-inoculation. 

This was determined by (a) visual analysis via immunofluorescent labeling of 

plasmatocytes using anti-βMs1 mAb MS34 as the primary antibody (plasmatocytes from 

βMs1-siRNA treated larvae did not fluoresce nearly as well as plasmatocytes from 

control larvae), and (b) measuring the βMs1-mRNA levels in hemolymph samples 

through RT-PCR assays. Additionally, the encapsulation of DEAE Sephadex beads in 

βMs1-siRNA treated larvae was severely impaired. These three observations further the 

evidence that plasmatocytes possess integrin β-subunit βMs1 and that this subunit is 

necessary for encapsulation.  

Additional evidence for the involvement of integrins in the lepidopterous 

encapsulation response had been previously presented for the soybean looper, 

Pseudoplusia includens. This evidence showed that: (a) encapsulation involves the 

recognition of an RGD amino acid motif; the same motif recognized by many integrins to 

prompt adhesion (Pech and Strand, 1995) and (b) integrins are expressed on the 

hemocytes of P. includens (Lavine and Strand, 2003). This role for integrins was further 

supported by a study by Irving et al. (2005) demonstrating that mutations in the 
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Drosophila integrin β-subunit βPS can disrupt the encapsulation of the larval stage of the 

parisitoid wasp Leptopilina boulardi by lamellocytes, a Drosophila hemocyte type that is 

adhesive and involved in encapsulation (Russo et al., 1996; Lavine and Strand, 2002). 

The Irving et al. (2005) experiment utilized two thermosensitive alleles for the βPS gene. 

At the permissive temperature of 18° C, flies carrying the thermosensitive alleles 

encapsulated the same percentage of wasp larvae as the wild-type flies. At the restrictive 

temperature of 29° C, however, flies carrying the thermosensitive alleles encapsulated 

significantly lower percentages of parasitoids than that of the wild-type flies. The 

encapsulation percentage of the wild-type flies at the restrictive temperature was not 

significantly different than those of any of the fly groups at the permissive temperature. 

 

Potential applications of this research:  

There are known instances of indigenous or introduced parasitoids attempting to 

utilize an exotic insect pest as a host, but fail due to the ability of the host to encapsulate 

the eggs of the parasitoid. For example, in Hawaii, the generalized parasitoid Fopius 

arisanus (Hymenoptera: Braconidae), chooses as a host the larvae of three pest tephritid 

flies; the Mediterranean fruit fly (Ceratitis capitata), the oriental fruit fly (Bactrocera 

dorsalis), and the melon fly (Bactrocera cucurbitae). The wasp can successfully 

parasitize both the Mediterranean and oriental fruit flies, but not the melon fly. In the 

melon fly, the eggs of F. arisanus become encapsulated and subsequently fail to develop 

(Neil Miller, personal correspondence). Now that it is known that integrins play an 

essential role in encapsulation, perhaps future researchers can use this knowledge to help 

F. arisanus overcome the cellular immune response of the melon fly.  
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 The promotion of encapsulation in instances where it does not occur can be of 

importance too. Insects vector numerous diseases of humans and livestock. With many of 

these diseases, the etiological agent is potentially suitable for encapsulation (i.e. large in 

size and spends a part of its life cycle in the hemocoel of the insect host), yet is able to 

avoid inducing the cellular immune response in the insect host. Such diseases include 

malaria, filariasis, onchocerciasis (or river blindness), trypanosomiasis (specifically 

sleeping sickness), cestodiasis (i.e. tapeworm) and loiasis (Harwood and James, 1979; 

Lane and Crosskey, 1993; Service, 2004). Future control of these maladies may possibly 

be achieved by either the manipulation of host hemocyte integrins in a manner that will 

allow for integrin recognition of surface antigens on the parasite or by the manipulation 

of parasite surface antigens in a manner that will allow for recognition by host integrins. 

If either is achieved, an encapsulation response by the host against the parasite may 

result, thus preventing the spread of these ailments. 

 

Future research: 

 Finding αMs1: As βMs1 has been sequenced and shown to be the β-subunit of 

an integrin essential for encapsulation, an important next step would be to characterize 

the corresponding α-subunit and demonstrate that it too mediates encapsulation. Based 

on my findings described in this dissertation, fellow laboratory associate Shufei Zhuang 

purified a putative integrin from larval hemocytes via immunoaffinity to MS13 (Levin et 

al. 2005). SDS-PAGE separated this protein into two bands, one at ~90 kDa and the other 

at ~105 kDa (Fig. 6C). Amino-terminal sequencing of the 90 kDa band together with 

immunoblot analysis using rabbit antiserum generated against a recombinant protein 
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produced from βMs1 cDNA (Fig. 6D) confirmed the 90 kDa band to be βMs1. The 105 

kDa band associated with βMs1 is a size consistent with the heavy chain of the integrin 

αIIb subunit (Du and Ginsberg 1997; Adair and Yeager, 2002). (It is interesting to note 

that αIIb associates with β3 to form an integrin on platelets that mediates thrombosis and 

β3 is the subunit from mammals that is the most similar to βMs1.) From this purified 

presumed α subunit heavy chain, a full DNA sequence needs to be deduced and 

examined to make certain that its sequence is that of an integrin α-subunit. If this protein 

is in fact an α-subunit, to verify that it is involved in encapsulation, antibodies to a 

recombinant protein based on the presumed α-subunit DNA sequence should be 

produced and injected into larval M. sexta to see if it inhibits encapsulation.   

 Finding ligands to plasmatocyte integrin: It will also be important to determine 

the ligands to which the M. sexta plasmatocyte integrin binds. Little is known about such 

ligands in insects, however there are a few speculative candidates.  

A 23 amino acid peptide from M. sexta designated paralytic peptide 1 (PP1) 

promotes plasmatocyte aggregation and spreading behaviors, along with inducing rapid 

paralysis and an inhibition of growth and development (Wang et al., 1999). PP1 has a 

high sequence identity (>70%) with plasmatocyte-spreading peptide 1 (PSP1) from P. 

includens, growth-blocking peptide (GBP) of Mythimna (= Pseudaletia) separata, and 

the paralytic peptides from Heliothis virescens and Spodoptera exigua. (Volkman et al., 

1999; Strand et al., 2000). Among these peptides, PSP1 has been best studied. In vitro 

experiments demonstrated that increasing concentrations of this peptide results in a 

corresponding increase in the number of plasmatocytes that spread (Clark et al., 1997). 

Northern blot analysis showed that PSP1 mRNA is expressed in fat body, nervous tissue 
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and granulocytes (Clark et al. 1998). PSP1 seems to stimulate plasmatocyte adhesion by 

promoting surface changes on this hemocyte (Strand and Clark, 1999). In receptor 

labeling experiments, a photoaffinity analog of PSP1 crosslinked to a 190 kDa protein 

from hemocytes (Clark et al., 2004). To date, the receptor to PSP1 or any of its naturally 

occurring analogs has yet to be characterized in the literature, but the 190 kDa size is 

consistent with that of an integrin β-subunit together with the heavy chain of an α-

subunit. It is thus possible that the peptides of the PSP1/PP1/GBP family could function 

as an opsonizing agent for plasmatocyte integrins.  

 Regulation of plasmatocyte integrin: In response to an invading foreign entity, 

plasmatocyte integrins must shift from being passive non-adherent receptors into active 

adherent ones. While there is an overabundance of knowledge on how integrins are 

activated and regulated in mammalian and other vertebrate systems (Calderwood et al., 

1999; 2000; 2002; Woods and Couchman, 2000; Fitzgerald, 2001; Liddington and 

Ginsberg, 2002; Takagi and Springer, 2002; Calderwood, 2004), next to nothing is 

known about the regulation of invertebrate integrins. In M. sexta, in response to an 

immune challenge, granular cells release the proteins lacunin and a ligand for the lectin 

peanut agglutinin (PNA ligand). Both lacunin and PNA ligand co-localize on 

plasmatocyte surfaces with the integrin to which βMs1 is a subunit and neuroglian, 

another adhesion receptor and a member of the immunoglobulin superfamily (i.e. it 

contains 6 Ig-like domains). This results in the clustering of neuroglian and integrin on 

plasmatocyte plasma membranes (Nardi et al., 2005; 2006; 2007). Studies of mammalian 

systems have demonstrated that such clustering of adhesive receptors on cell surfaces 

enhances avidity (Burridge and Chrzanowska-Wodnicka, 1996; Alberts et al., 2002; 
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Sastry and Burridge, 2000; Lo, 2006). The mechanisms behind the receptor clustering 

and how neuroglian and integrin interact has yet to be elucidated and an area for future 

inquiry.  

 Intracellularly, a couple of studies have been published showing that the 

Ras/mitogen-activated protein kinase signal transduction pathway and the FAK/Src 

complex plays a role in regulating the putative hemocyte integrins that mediate 

phagocytosis in Mediterranean fruit fly, C. capitata ( Foukas et al., 1998; Metheniti et al., 

2001). Another study with Drosophila has shown that the Jun-N-terminal kinase (JNK) 

pathway coordinates myospheroid and scab integrin function during the embryogenic 

process of dorsal closure (see introduction on Drosophila integrins) (Homsy et al., 2006). 

Sorting out the homologous pathway for M. sexta plasmatocyte integrins would be 

important for gaining a full understanding of the encapsulation process. 

 Search for undiscovered M. sexta integrins: βMs1 is to date the only integrin 

subunit isolated and sequenced from the tobacco hornworm and, as mentioned above, a 

presumptive α-subunit to βMs1 has been isolated. Knowing that integrins are involved in 

a multitude of physiological functions and essential for animal life and that multiple α- 

and β-subunits have been found in Drosophila (Wilcox, 1990; Bunch et al., 1992; Burke, 

1999) and on P. includens hemocytes (Lavine and Strand, 2003), there exists most 

certainly a number of undiscovered integrin subunits in M. sexta. A search for M. sexta 

integrins and an elucidation of their function will greatly increase the capacity to gain an 

in-depth and accurate understanding of the role of these cell adhesion proteins in insect 

physiology.  
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Table 
 
mAb         Ig class          hemocyte type recognized
MS2            IgG                                GR 
MS9            IgM                            SP, PL 
MS13          IgG                                PL 
MS16          IgM                          most cells 
MS34          IgG                                PL 
X11G9          ?                              GR, PL  
Z7E8           IgM                                OE     
X2F2           IgG                         GR, OE, PL 
X7C4            ?                               GR, PL 
 

Table 1. Monoclonal antibodies used in the experiments described in this paper. GR= 
granular cell, OE= oenocytoid, PL= plasmatocytes, SP= spherulocyte. 
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FIG. 1. Ribbon models depicting the shape and domain structure of an integrin in the 
inactive (A) and active states (B). The α -subunit is colored blue and the β-subunit is 
colored red. (A) In the inactive state, the transmembrane domains (TMs) of the two 
chains associate with one another in a crossed parallel structure. This maintains the 
extracellular domains in a bent configuration. (B) Upon activation, the TMs unclasp and 
separate. This permits the integrin to spring open into an extended conformation. It is in 
this elongated shape that ligand can bind to the integrin at the globular headpiece. This 
headpiece is comprised of the I-like domain of the β chain and the β-propeller domain 
and if present the I domain of the α chain. The various integrin domains of the 
heterodimer are labeled. The extracellular amino-termini of each chain are labeled N and 
the cytoplasmic carboxyl-termini are labeled C. (Modified from Qin et al., 2004. with 
permission.) 
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FIG. 2. Examples of in vivo encapsulation of DEAE-Sephadex beads. (A) a bead 
exhibiting complete encapsulation. (B) a bead exhibiting no encapsulation.   
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Fig. 3. Inhibition of plasmatocyte spreading by MS13. Washed hemocytes were 
preincubated in different concentrations of mAb MS13 in MSB. MSB and 1.0 
mg/ml of mAb MS2 in MSB were used as controls. Data are expressed as mean 
values ± S.E.M. for three insects; Mann-Whitney Test of significance: (a) 
significantly different from MSB treatment, P << 0.005; (b) significantly 
different from treatment with mAb MS2, P << 0.02 to 0.07. 
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Fig. 4. Inhibition of encapsulation by monoclonal antibodies to hemocyte surface 
antigens. Experimental larvae (n=3 to 6) were injected with 100 µl of concentrated 
supernatant from mAb- producing cell cultures. For MS13 (n=6) and MS2 (n=24), larvae 
were injected with 50 µl (100 µg) of purified mAb. Control A larvae (n=5) were injected 
with 100 µl of 10x concentrated cell culture media. Control B larvae (n=48) were injected 
with 50 µl of MSB containing 300 µg BSA. After 1 h, larvae were injected with DEAE-
Sephadex beads suspended in 100 µl MSB. Beads were dissected out 24 h later and 
examined for degree of encapsulation.  
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Fig. 5. Specific labeling of plasmatocytes by monoclonal antibody MS34. Hemocytes 
were allowed to settle on a glass coverslip submerged in Grace’s medium (Invitrogen) for 
60 min before being fixed with 4% paraformaldehyde in PBS. Cells were double labeled 
with MS34-FITC (green) and with propidium iodide (red), which binds to nuclei 
(granular cell nuclei are small and diploid; plasmatocyte nuclei are larger and polyploid). 
Plasmatocytes, displaying varying degrees of spreading, are labeled with MS34-FITC. 
Granular cells, which are not labeled with MS34 under these conditions, appear as 
smaller propidium iodide-labeled nuclei.  
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Fig. 6. Hemocyte encapsulation-facilitating antigen purified by immunoaffinity 
chromatography. (A) SDS-PAGE analysis (silver stain) of protein isolated from a lysate 
of developing wings by affinity to monoclonal antibody MS34. (B) Immunoblot analysis 
of the protein shown in A, using monoclonal antibody MS34 and goat anti-mouse IgG 
second antibody. A and B represent separation on 8% acrylamide gels. (C) SDS-PAGE 
analysis (Coomassie stain, 10% acrylamide bis-Tris gel) of integrin isolated from larval 
hemocytes. The band marked β was shown by amino-terminal sequencing to match the 
predicted amino-terminus of Manduca sexta integrin β-subunit βMs1 predicted from its 
cDNA sequence. This band was recognized by antibody to recombinant βMs1 (see panel 
D). The band marked α is the expected size for an integrin α-subunit of the purified 
integrin heterodimer. (D) Immunoblot analysis of the protein shown in C, using rabbit 
polyclonal antiserum to the recombinant amino-terminal fragment of βMs1 (construct 1 
in Fig. 8A) and goat anti-rabbit IgG as secondary antibody. (A) and (B) preformed by Dr. 
James Nardi. (C) and (D) preformed by Dr. Shufei Zhuang. 
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Dm  MILERNRRCQLALLMIAILAAIAGQTDAQKAAKLTAVSTCASKEKCHTCIQTEG    CAWCMQPDF-KGQSRCYQNTSS    LCPEEFAY 
Ag      MLPRAGPMAAGALLLLVALVADTTLGQLSNYQLTTCPGKTTCSQCIQTTN    CRWCTMPNF-THP-RCHGQIEK    YCPEEYTV 
Pi       MYIHRSSVLRLCVWVSLLALCWGQRAEQLLAQNPCSSKTTCSDCIRTAS    CAWCFASDF-NGPRCFNPAMERGGTAGCDEAYIF 
Pl       MRHRGILVWAVVSVVWLVVVGVVTAQQHQQVVDKCNAQRKCVDCIQTPD    CMWCSKLKN-ESEQRVARCQHIR    ADPPPSA 
Ms                   MWNIYSIVFVSLCLKLINCQSVCNHLGTCGECIGFSSGTERCIWCQQETLDNYTSRCQPESYLKKEGWCDSKFIE 
                                           *     *  **        * ** 
 
Dm  SPITVEQILVNNKLTNQYKAELAAGGGGSAMSGSSSSSYSSSSSSSSFYSQSSSGSSSASGYEEYSAGEIVQIQPQSMRLALRVNEKHNIKI 
Ag  DPSNTFQLVQGRELTKPSRRVLEGQSERESYYSSSHYQSSSSSSSSSSFQQSSYES       ESGAGSIVQISPQRVSLKLRLNEAFRFNV 
Pi  NPDNQRSVDPRYNMELSRAKSRMGMAGGSFEESMSSKGSSFSGSSASGSAAAAAGS          GESLVQMKPQRVSLNLRMNQMQKLTF 
Pl  APDHLENITNSVFITQDTPLTVAGNENRGTTG                                 EADKIVQLKPQRMKLKLRKGVPINITL 
Ms  NPKKVQLIEVDKDFGSTMD                                                DLKIQFKPQVMRMKARPGTKLYFNM 
     *     :     :                                                     (A):*: ** : :  *    :  
 
Dm SYSQAEGYPVDLYYLMDLSKSMEDDKAKLSTLGDKLSETMKRITNNFHLGFGSFVDKVLMPYVSTIPKKLEHPCENCKAPYGYQNHMPLNNNT 
Ag NYAQAEDYPVDLYYLMDLSKSMEDDKTILSTLGADLASEMRKITSNFKLGFGSFVDKVLMPYVSTVPKNLREPCPGCVAPYGYHNLMPLSTDA 
Pi AYSRAQDYPVDLYYLMDLSRSMKNDKEKLSTLGSLLSDTMKNMTSNFWIGFGSFVDKLVMPYVSTVPKNLISPCDGCAAPYGYQNQMSLSNDT 
Pl TYRQARDYPVDLYYLMDLSNSMSDDKKQLAALGSELAKLMKGLTSQFTLGFGSFVDKVLMPYADTSPQKLLQPCPGCAPPYSFRNDLPLDDDP 
Ms SYKPAEHFPLDVYYLMDTSYTMTMHREALISQANQIYKELTSLTNNVQLGVGSFVEKPGYPYFDKNKQ          ESVAFINVLPLTKNI 
    *  *  :*:*:***** * :*   :  * : (B):   :  :* :  :* ****:*   **     :              : * : *  : 
 
Dm ESFSNEVKNATVSGNLDAPEGGFDAIMQAIACRSQIGWREQARRLLVFSTDAGFHYAGDGKLGGVIAPNDGECHLSPKGEYTHSTLQDYPSIS 
Ag NLFSQEVQRANVSGNLDAPEGGFDAIMQAIVCREQIGWREKARRLLLFSTDAGFHYAGDGKLGGVITPNDGECHLDHNGRYTHSTTQDYPSIS 
Pi NFFVKAVANADVSGNLDAPEGGFDAIMQAVVCKQQIGWRDQARRLLVFSTDAGFHYAGDGKLGGIVQPNDGECHMKGN TYTHSTLQDYPSIS 
Pl KQFTIKVNEAPISGNMDSPEGGFDALMQVMVCTDQIGWREQARRIVIFSTDAKFHHAGDGRLAGIVAPNDETCHLNNLQEYTDFDKYDYPSIA 
Ms KQFTQSVQNMSFGSNYDDMEAGLDALMQVMTCEKEIGWRPGSRRIIVLCTDSPYHSAGDGKMIGIIKPNDMLCHLKEQ KYEAEMAQDYPSVS 
   : *   *       * *  * *:**:** : *  :****  :**:::: **: :* ****:: *:: ***  **:     *      ****:: 
 
Dm QINQKVKDNAINIIFAVTASQLSVYEKLVEHIQGSSAAKLDNDSSNVVELVKEEYRKISSSVEMKDNATGDVKITYFSS CLS NGPEVQTSK 
Ag QINLKVKQNAINVILAVTAEELSVYEQLSRLVEGSSAAKLSNDSSNIVSLVRDQYNKISSSVEMKDNRTDNVIDVKYYSRCRNTNGALQQTNR 
Pi QINHKVKKHAINVIFAVTAEQISVYEQLSKHIEGSSTGVLSNDSDNIVDLVREQYNKITSAVEMKDSSSDAVQIVYYSS CLS GKELIQTNK 
Pl QINKIAKEKNINVIFAVSSHEL-LYKELSGMIETSSYGMLDADSGNVVELVRDQYNKISSTMRLTDNSTNSAVSVRYFSSCKE GGAPVLTRE 
Ms KINKVAKQGKFGIIFAALAEVRDVYTLLAEQIVGAEYAELKKQKSNIVEIIIKAYQRSVRSIKLDYDIPSFVRLKLNQS CDG      TPIN 
   :**   *   : :*:*  :    :*  *   :  :   *  :   *:* ::   * :   :: :   (C)        * * 
 

                                                         1 
Dm CDNLKEGQQVSFTAQIQLLKCPEDPRDWTQTIHISPVGINEVMQIQLTMLCSCPCENPGSIGYQVQANSCSGHGTSMCGICNCDDSYFGNKCE 
Ag CEGLKVGDVVTFEAHITLLKCPTDPRDWQQVLQIYPVGINESLTVDIEMLCSCPCEHPSDPEYRERADECSNAGTYKCGICECDGTYHGQRCE 
Pi CDGLKVGDVVEFTAEITLKECPKDRSKWRQTLDISPVGISDSLVVDLEMVCDCPCEQPGHHAYNDSPLVCSGEGVSACGVCVCAPGRFGKSCE 
Pl CGDIKENDTIDFLLEITAVECPKDAN    TTYVEVKTLQDNLVLEIEFKCSCGCADPEFVEEN  AAGCKGKGDLVCGVCACQEGYRGEVCQ 
Ms CASTYENPVVTIPAILEVKECPKENK  THELVINPVSLNDKLIIKLEVICKCECEVKSDISSR     CNNAGYIQCGICKCLDSSYGDECQ 
   *        : :   :  :**:           : (D)  : : : :   * * *              *   *   **:* *     *  *: 
                   
   2                                                        3 
Dm CSATDL--TSKFANDTSCRADSTSTTDCSGRGHCVCGACECHKRPNPIEIISGKHCECDNFSCERNRNQLCSGPDHGTCECGRCKCKPGWTGS 
Ag CSAMES--LLEPGMVDACRMSN-ASEECSGRGQCVCGVCVCERRPNPDELIDGRYCECDNFSCDRPGGLLCSGPDHGRCVCGQCECREGWTGP 
Pi CSAHGG--VSAEQERGCRPTNASSGPLCSNRGTCICGVCECNKMDDPLKVISGPFCECDNFTCDMNKGLLCSGPDHGECVCGKCSCTADYTGP 
Pl CSNEYS--DNSESDTLLCMAKE-GDKVCSGLGYCSCGLCICNDKP    VVHGTYCECNSRKCQSGVGMACSG  HGTCDCNKCRCDQGYTGD 
Ms CSVTSSGVANKEKDDAKCRKDLNDIVLCSGKGVCMCGKCTCNPDR      SGKYCEFDDKACDN    LCSN  HGICTLGSCQCDSGWSGN 
   *:                         **  * * ** * *           *  ** :   *:      **   ** *    * *   ::* 
      4       
Dm NCGCQESNDTCMPPGGGEICSGHGTCECGVCKCTVNDQG  RFSGRHCEKCPTCSG RCQELKDCVQCQMYKTGELKNGD-DCARNCTQFVPV 
Ag ACDCRASNETCMPPGGGELCSGHGTCECGTCRCTVTEDG  RYTGRYCEKCPTCAG RCNEFKHCVQCQQYKTGPLAEAN-ECATNCTLFVPI 
Pi ACQCLKDQTPCRSPENNEICSGNGQCVCGQCMCNSDDDR  HYSGKYCEKCPTCPG RCGEFKDCVLCEVHKRGPKYNADTDTCGDCALFPIV 
Pl LCQCR DDSACRLQGTQETCSGHGKCECGKCKCSQQHGI  TYTGQYCEDCPTCTAGKCFEFRDCVQCQQFNTGKLKDTACLNCSINSNKIDS 
Ms DCGCPTSNTDCYAQYSEEVCSGNGECVCGKCQCAKVKGKNETYTGVFCDTCNDCQSKYCKALEPNVECNYKQGLEACDKIYNNTENNVVIKMV 
    * *   :  *      * ***:* * ** * *         ::*  *: *  *    *  :   * *:  :     : 
 
Dm GVEKVEIDETKDEQMCKFFDEDDCKFMFKYSE        QGELHVYAQENKECPAKVFMLGIVMGVIAAIVLVGLAILLLWKLLTTIHDRRE 
Ag PVEKVTIDEERNDNKCTFFDEDDCRFEFSYNDSD      QDKVVVTAQENRECPPKVFMLGIVLAVIAVVVLIGMAVLLLWKVLTSIHDRRE 
Pi EEGKIEANESRNEHLCSFYDDEDCLYVYVYSYNE      NQQLVIRAQKERECPKKVPIPGIVLGVIAAIVLVGLALLMLWKMATTSHDRRE 
Pl LDGQVATG    ARLCTFEDEEGCLFNFTYRYIDSASDTKPQQYQIFVQKDRQCPQPPPVLGIVFGLVAAIVAIGLLTLLIWKLLTTLHDRRE 
Ms NKTEINSPKWSGATWCKKVIEDGSFIIFRYYHNAT     THGLHIIIQTEPEAPPRGNKWIALISCIVAVVLIGLLTLIAWKILVDLHDKRE 
      ::          *    ::     : *               :  * : : *        ::  :  :* :*:  *: **:    **:**  
 
Dm FARFEKERMNAKWDTGENPIYKQATSTFKNPMYAGK 
Ag FARFEKERMMAKWDTGENPIYKQATTTFKNPTYAGK 
Pi FARFEKERMMAKWDTGENPIYKQATSTFKNPTYAGK 
Pl YAKFEKERKLPSGKRAENPLYKSAKTTFQNPAFAQSK 
Ms YAKFEEESRSRGFDVSLNPLYQEPEINFSNPVYNANASH 
   :*:**:*          **:*:     * ** :       
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Fig. 7. Alignment of the deduced amino acid sequence of M. sexta integrin βMs1 with β 
integrins from Drosophila melanogaster (myospheriod protein, accession number 
A30889) (Dm), Anopheles gambiae (Ag) (XP_311354), Pseudoplusia includens (Pi) 
(AAO85806), and Pacifastacus leniusculus (Pl) (CAA67357). The “*” marks positions 
with identical residues, and the “:” marks positions with conservative substitutions. The 
predicted secretion signal peptide sequences are highlighted in green. Residues in the I-
like domain are in red. The MIDAS motif within the I-like domain is in purple. The 
region containing the four cysteine-rich pseudo-repeats is colored blue, with each repeat 
designated by a number above the sequence. The predicted transmembrane region is 
orange. The motifs in pink near the carboxyl terminus are two conserved intracellular 
NPXY motifs. The sequences highlighted in yellow correspond to sequences obtained by 
Edman degradation analysis of tryptic peptides from protein purified by immunoaffinity 
from wing lysate using monoclonal antibody MS34 (A, B, C) or MS13 (C, D). The 
sequence highlighted in turquoise corresponds to the amino-terminal sequence obtained 
by Edman degradation analysis of β integrin isolated from larval hemocytes using MS13. 
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Fig. 8. Mapping of the region recognized by MS13 and MS34: (A) Schematic map of 
integrin βMs1 and constructs expressed as recombinant proteins. Regions labeled 1, 2, 
and 3 were expressed in E. coli, purified, and analyzed by immunoblotting. (B) SDS-
PAGE and immunoblot analysis of recombinant integrin βMs1 protein segments. Lanes 
are labeled with the number of the recombinant integrin βMs1 fragment that was loaded. 
In panels labeled ‘‘MS13 blot’’ and ‘‘MS34 blot’’ proteins were detected using the 
indicated mAb, with goat anti-mouse IgG-alkaline phosphatase conjugate as secondary 
antibody. 
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Fig. 9. Integrin βMs1 mRNA expression. (A) Tissue specificity of β integrin expression. 
Samples of total RNA (20 mg) from larval midgut (M), epidermis (E), Malpighian 
tubules (T), fat body (F) and hemocytes (H) were separated by agarose gel 
electrophoresis. The RNA was then transferred to uncharged nylon membranes and 
probed with 32P-labeled integrin βMs1 cDNA. The arrow points to the 2.3 kb integrin 
βMs1 mRNA observed solely in hemocytes. The membrane was re-probed with 
ribosomal protein S3 (rpS3) cDNA to assess mRNA loading in each lane. (B) Exposure 
to bacteria does not affect integrin βMs1 expression. Samples of total RNA (20 mg) from 
fat body of larvae injected with saline (F) or with E. coli (IF), and hemocytes from βMs1 
mRNA observed solely in hemocytes. The membrane was re-probed with ribosomal 
protein S3 (rpS3) cDNA to assess mRNA loading in each lane. (B) Exposure to bacteria 
does not affect integrin βMs1 expression. Samples of total RNA (20 mg) from fat body of 
larvae injected with saline (F) or with E. coli (IF), and hemocytes from uninjected larvae 
(H) or larvae injected with E. coli (IH) were analyzed as described for part A. 
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