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Abstract 

Built-up plate girders are typically used in construction when there are large loads and 

long span that rolled shapes do not work. The high web slenderness ratio makes plate girders 

susceptible to buckling among other limit states. Transverse stiffeners are often required along 

the span of the girder to prevent local buckling. The use of a corrugated web eliminates the need 

for transverse stiffeners, which reduces fabrication cost significantly.  

The flexural and shear behaviors of Corrugated Web Plate Girders are different from 

regular plate girders due to its unique web geometry. Various web geometries are available with 

further research developing design equations for each. The web introduces a transverse moment 

that the flanges must resist in addition to in-plane loads. Design equations are used in Europe 

through Eurocode. Researchers have proposed equations for use in North America with similar 

assumptions as those in Europe, however they are not adopted yet in design code. This report 

seeks to introduce design methods and practice of corrugated web plate girders in Europe as well 

as proposed North American design methods.   
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Chapter 1: Introduction 

Structural steel is a prominent material used for buildings, bridges, and other structures. 

As a material, steel has high strength-to-weight ratios, ductile behavior, and other properties 

which influence the behavior of it. Effective in both tension and compression, steel has high 

strength capacities when compared to other materials. For many projects, steel is an economical 

choice because of these advantages. Steel structural members often are not limited by shear or 

flexure strengths but deflection criteria. To meet deflection requirements, larger sections are 

required. 

When specifying structural steel sections, rolled shapes are often preferred. Hot-rolled 

steel shapes are produced by heating steel to an elevated temperature which allows it to be 

shaped easily. It is then rolled through a mill into the desired shape. Rolled shapes are desirable 

as calculations for section properties and strengths are readily available in the AISC Steel 

Construction Manual. Most rolled shapes can sufficiently carry the loads required and satisfy 

other requirements, however, special cases require built-up shapes known as plate girders. 

1.1 Plate Girders 

Plate girders are an alternative to rolled sections. Plate girders are built-up shapes 

consisting of individual steel plates that are constructed to create a larger section than what rolled 

shapes are, increasing the strength and stiffness. This may be advantageous when high loads and 

long spans are required of a structure. Plate girders are often used in bridges for this purpose. 

Plate girders can be constructed in a variety of shapes. With built-up I-shaped members, sections  

do not have to be doubly symmetric. They can be singly symmetric with AISC 360 Specification 

for Structural Steel Buildings addressing design requirements. Although singly symmetric I-

shaped sections are allowed, they are not commonly used in building design. 
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Figure 1.1 Plate Girder 

 

Plate girders first emerged in the late 19th century for uses in railroad bridges. They 

quickly became economical choices, being able to efficiently use material compared to rolled 

beams. While plate girders can be either welded, bolted, or riveted during fabrication, welding 

quickly became the most common choice with improved fabrication methods in the 1950s. Plate 

girders do not have to use the same material strengths throughout the girder. Sizes of plates may 

also change along the span length. Changing plate sizes and material strengths along the span 

length of the girder results in an economical design. 

The flexural strength of plate girders depends on the proportions of the flange. Flanges 

are classified as compact, noncompact, or slender which influences the design procedure. The 

limit states for flexure are similar to rolled I-shapes but include additional limit states due to the 

high slenderness. The limit states include compression flange yielding, lateral-torsional buckling, 

compression flange local buckling, tension flange yielding, and web local buckling.  
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Increased beam depth results in a higher shear strength due to the cross-sectional area of 

the web. The shear behavior of plate girders differs compared to rolled sections. With the high 

depth to web thickness ratio associated with high loads, the slenderness ratio typically is high 

which introduces issues related to stability. Because plate girders are often designed with 

transverse stiffeners, post-buckling strength of the web may be realized through a behavior called 

tension field action. The web of the girder along with the transverse stiffeners act as a truss once 

the web buckles, providing some additional post-buckling strength. The design of the girder for 

shear can either consider or not to consider tension field action. 

To combat web buckling associated with slender webs, stiffeners are provided to increase 

the strength and stiffness of the girder. Stiffeners are plates welded to the web and flange of the 

girder. The plates are not required to be welded to both flanges. There are two types of stiffeners. 

Stiffeners distributed along the girder span are known as intermediate stiffeners and are used to 

increase the shear strength. This is done by controlling the buckling strength of the web or 

increasing the post-buckling strength. Stiffeners form panels with the aspect ratio, a/h, which 

governs design. Bearing stiffeners are placed at locations of high concentrated loads where the 

strength of the girder is not adequate. Bearing stiffeners resist the limit states of web local 

yielding, web local crippling, and web sidesway buckling with compressive forces. Web local 

yielding and flange local bending must be checked when tension forces are applied. Although it 

is possible to design plate girders without stiffeners, it is typically not an economical choice. 

While the benefits of stiffeners on plate girders are significant, they also have disadvantages such 

as increased steel tonnage and fabrication costs. Stiffeners welded to the web reduce the fatigue 

life of the girder as well. For plate girders to be economical, they must be designed to optimize 

both the amount of steel used and the fabrication costs. 
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1.2 Corrugated Web Plate Girders 

Due to the associated amount of steel, plate girders must be carefully designed to be 

economical. Corrugated web plate girders may offer a solution to reduce the amount of steel 

while also decreasing fabrication costs compared to flat web plate girders. This innovative idea 

emerged as a possible solution to increase out-of-plane stiffness, web buckling resistance, and 

weight reduction without the use of transverse stiffeners. 

 

Figure 1.2 Corrugated Web Plate Girder 

 

Corrugated web plate girders offer increased shear resistance, similar to normal plate 

girders, with a significant reduction in weight. This weight decrease is due to the web thickness 

being significantly thinner than what rolled shapes or normal plate girders are constructed of. 

The corrugated web also eliminates the need for transverse stiffeners in many cases by increasing 

the out-of-plane stiffness and buckling strength of the girder. Corrugated web plate girders are 

similar in construction to normal plate girders except for a corrugated plate for the web as 
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opposed to a flat plate. Connections between the web and flanges are welded for ease of 

fabrication and to ensure high strength. 

Design of corrugated web plate girders continues to be a highly researched topic. 

Equations have been proposed based on assumptions and research. Currently, there is no code 

requirements in AISC 360 Specification for Structural Steel Buildings while Eurocode has 

provisions on the design of corrugated web plate girders. 

1.3 Report Structure 

This report seeks to introduce an innovative structural system which results in a reduced 

amount of steel, more importantly reduced fabrication costs, while having the same strength 

capacities compared to normal plate girders. First, web geometry and behaviors of the web are 

explained. The assumptions for design methods as well as industry examples are introduced. 

Next, proposed strength equations by North American researchers and from Eurocode will be 

explained. An example comparing a corrugated web plate girder designed by the North 

American proposed method and Eurocode method is presented. Additionally, the design of a flat 

web plate girder according to AISC 360 is included for comparison purpose. Corrugated web 

plate girders seek to provide an economical option for long spans with high shear loads. 
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Chapter 2: Literature Review 

Corrugated web plate girders have seen many uses in recent history. It continues to grow 

in popularity around the world. Most design equations consider the same methods however vary 

slightly. This chapter will introduce corrugated web plate girders and the design equations used 

for shear and flexural resistance. 

2.1 History of Corrugated Web Plate Girders 

Corrugated sheet metal was first patented in 1829. It was used for aircraft in the early 

1900s. Corrugated sheets were used as the skin for the fuselage and wings to provide a stiff, 

lightweight solution. Beams with trapezoidal profiles were first manufactured in Sweden since 

1966 and were soon seen in the Soviet Union (Pasternak, 2004). France began development of 

corrugated web beams in the early 1980s. However, due to high manufacturing costs, it did not 

gain popularity (Pasternak, 2004). 

It soon became clear that for corrugated web plate girders to be economically feasible, 

manufacturing costs had to be reduced. The first fully automated production of corrugated web 

beams occurred in 1990 at the company Zeman & Co. in Vienna. Standard sizes of flanges, web, 

and lengths are available. The thickness of the web ranges from 1.5 mm to 3 mm. Due to the thin 

web, fillet welds between the web and flanges can be welded on one side only through a special 

metal active gas (MAG) welding process called transferred ionized molten energy (TIME). The 

penetration of the weld ensures there is no corrosion-sensitive gap on the non-welded side 

(Pasternak, 2004). By fully automating the process, corrugated web plate girders became an 

economical choice for designers to use. 
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2.2 Web Profile 

Many different web profiles have been proposed and used. Some of these geometries 

included trapezoidal, sinusoidal, triangular, and rectangular. Of these listed, trapezoidal, and 

sinusoidal geometries are the most popular among the research community and industry. This 

report will focus on trapezoidal webs and their associated properties. The web profile is one of 

the most important properties of the girder. The web height, thickness, and corrugation geometry 

directly affect the shear strength. Different nomenclature is used between the proposed North 

American method and Eurocode. A representation of typical geometry notation of the corrugated 

web can be seen in Figure 2-1. The top image is for the proposed North American method while 

the bottom image is for Eurocode. 

 

 

Figure 2.1 Corrugated Web Profile Notation 

 

Each flat piece of the web is known as a panel or “fold”. These panels are either 

classified as inclined or longitudinal panels. The first variables of the web are b (a1) and c (a2) 

which are the lengths of the longitudinal and inclined panels respectively. The next variable is 
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the projected length of the inclined fold in the longitudinal direction, defined as d (a4). The 

height of the inclined panel measured in the transverse direction is defined as hr (a3). The angle 

of the web corrugation is known as α. The corrugation angle is typically kept between 30 degrees 

and 45 degrees (Driver Et al., 2006). The ratio of lengths of longitudinal fold to inclined fold is 

known as β. The equation can be defined as: 

𝛽 =
𝑏

𝑐
 

 

It is recommended for β to be between one and two (Driver Et al., 2006). Satisfying these 

limits will result in an economical design. With a low value of β, excess web material will be 

required while a large value will result in low global buckling strength.  

A vertical plane is formed by the centerline of the web. The top and bottom flanges are 

symmetrically attached to this centerline, known as the middle plane. The middle plane serves as 

a reference point for the girder. When analyzing the cross section of the girder, an idealized cross 

section consisting of thin-walled elements is used. An origin point is chosen along the middle 

plane based on the centroid of the flanges. The origin point will always lie on the middle plane 

but may change position vertically if flange dimensions vary from each other. Figure 2-2 

demonstrates the idealized cross section with the x-axis in the horizontal direction and y-axis in 

the vertical direction. 
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Figure 2.2 Idealized Cross Section 

 

With the idealized cross section, the following equations for the area of the top and 

bottom flanges are given by: 

𝐴𝑡𝑓 = 𝑏𝑡𝑓𝑡𝑡𝑓  

𝐴𝑏𝑓 = 𝑏𝑏𝑓𝑡𝑏𝑓  

Once flange areas have been determined, the distance to the neutral axis from either the 

top or bottom of the idealized section is given by: 

ℎ𝑡 =
𝐴𝑏𝑓ℎ

𝐴𝑏𝑓 + 𝐴𝑡𝑓

 
 

ℎ𝑏 =
𝐴𝑡𝑓ℎ

𝐴𝑏𝑓 + 𝐴𝑡𝑓

 
 

Finally, the moment of the inertia about the x-axis is given by:  

𝐼𝑥 =
𝐴𝑏𝑓𝐴𝑡𝑓ℎ2

𝐴𝑏𝑓 + 𝐴𝑡𝑓
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Loads applied to the middle plane are known as in-plane loads while loads applied 

transversely to this plane are known as out-of-plane loads. In-plane loads cause a bending 

moment, about the x-axis, as well as a shear force, in the y-direction. 

2.3 Shear Strength 

With the production of corrugated web plate girders starting in the 1960’s, many design 

equations have been proposed to estimate the shear strength of the web. Experimental tests and 

finite element analysis models were used to predict the shear strength of corrugated web plate 

girders. The current European design standard Eurocode 3 – Design of steel structures – Part 1-

5: Plated structural elements includes design rules for plate girders with corrugated webs. While 

currently no standards exist in North America, Driver Et al. (2006) proposed equations to 

estimate the shear strength.  

2.3.1 North America Proposed Method - Driver Et al., (2006) 

Shear strength tests conducted on small scale specimens with corrugated webs are readily 

available across the world. Three limit states for shear must be analyzed, global shear buckling, 

local shear buckling, and web yielding. Driver Et al. (2006) suggested that many previously 

proposed equations overestimate the shear strength of the web due to the small-scale tests of 

these girders. As a result, finite element analysis and full-scale girder tests were performed to 

obtain more accurate predictions for the shear strength.  

Shear strength is a function of the web thickness, web height, corrugation geometry, and 

material properties. The main assumptions associated with corrugated web plate girders are that 

the bending moment is carried by the flanges with no contribution from the web while shear is 

carried by the web with no contribution from the flanges. These assumptions come from thin-

walled beam theory that cross-sectional forces of the web and flanges are carried only in their 



11 

 

own plane (Driver Et al., 2006). Experimentally, longitudinal stresses due to bending were 

shown to not be significant in the web. From these results, the assumption that moment-shear 

interaction can be neglected was confirmed (Driver Et al., 2006). With these assumptions, the 

web is subject to pure shear stress which allows the shear strength to be predicted using plate 

stability theory. Stiffeners are provided on slender flat web plate girders, increasing the stiffness 

and strength. With corrugated web plate girders, the web possesses increased stiffness and 

strength eliminating the need for stiffeners. 

The web is subject to the limit states of web yielding and shear buckling. Shear buckling 

can be classified either as global buckling or local buckling. Global buckling occurs across a 

large portion of the girder while local buckling occurs within a single panel. When local buckling 

occurs, an interactive failure may result, propagating into adjacent folds. Local buckling is 

considered a function of the slenderness ratio of an individual panel while global buckling is a 

function of the entire web. The theory of shear strength formulas assumes each fold is simply 

supported by adjacent panels as well as by the flanges (Driver Et al., 2006). When adjacent folds 

have different widths, local shear buckling of the wider fold is restrained by the narrower width 

fold. The narrower fold will have the greater local shear buckling strength. β determines the 

governing panel for local shear buckling. When β =1, both panels are equally critical for local 

shear buckling. When β >1, the longitudinal folds are critical and restrained by the inclined folds. 

When β <1, the inclined folds are critical and restrained by the longitudinal folds. Slender webs 

will typically fail in shear buckling with slender flanges leading to ineffective cross-section 

utilization.  

The first limit state to check for shear strength is local elastic shear buckling. The local 

elastic shear buckling stress is determined by plate stability theory. Each panel is assumed to be 
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supported by adjacent panels on vertical sides and by the flanges along the horizontal sides. The 

equation used by Driver Et al., (2006) is as follows: 

(𝜏𝑐𝑟 ,𝐿)
𝑒𝑙

= 𝑘𝐿

𝜋 2𝐸

12(1 − 𝑣2)(𝑤/𝑡𝑤)2
 

(Driver Et al., (2006) Eq. 1) 

Where E is the modulus of elasticity, v is Poisson’s ratio, w is the maximum panel width, tw is the 

web thickness, and kL is the local shear buckling coefficient. The local shear buckling coefficient 

depends on the aspect ratio of the panel and the boundary conditions being assumed of the panel. 

If the panel is considered simply supported, the value is 5.34. If the panel is assumed to be fixed, 

the value is 8.98. Research has indicated that the true value is between a simply supported 

condition and fixed condition (Driver Et al., 2006). To be conservative, the simply supported 

value is typically chosen. 

To determine the global elastic buckling stress, the web of the girder is treated as an 

orthotropic flat web. This gives the equation: 

(𝜏𝑐𝑟 ,𝐺 )
𝑒𝑙

= 𝑘𝐺

𝐸𝑡𝑤
1/2 𝑏3/2

12ℎ𝑤
2

𝐹(𝛼, 𝛽) 
(Driver Et al., (2006) Eq. 2) 

Where b is the longitudinal panel width, hw is the web height, and kG is the global shear buckling 

coefficient. Once again, the coefficient depends on the considered boundary conditions for the 

web with simply supported being 31.6 and 59 being fixed. F(α, β) is a coefficient that 

characterizes the geometry of the web and is given by: 

𝐹(𝛼, 𝛽) = √
(1 + 𝛽) sin3 𝛼

𝛽 + 𝑐𝑜𝑠𝛼
⋅ {

3𝛽 + 1

𝛽2(𝛽 + 1)
}

3/4

 

(Driver Et al., (2006) Eq. 3) 
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Where α is the angle of the inclined panel and β is the ratio of longitudinal fold width to inclined 

fold width. A large β value will result in low global buckling strength while a low value will 

result in uneconomical design. The values for β are commonly between 1 and 2 while the values 

for α are typically between 30 and 45 degrees with recommendations to be no less than 30 

degrees (Driver Et al. 2006). If values of β are less than 1, excess web material will be used. If 

values of β are greater than 2, the web will have a low post-buckling strength. 

When elastic shear buckling stress exceeds 80% of the shear yield stress, the following 

inelastic equation may be used for the critical of local or global buckling: 

(𝜏𝑐𝑟)𝑖𝑛𝑒𝑙 = √0.8𝜏𝑦(𝜏𝑐𝑟)𝑒𝑙 ≤ 𝜏𝑦 
(Driver Et al., (2006) Eq. 4) 

With the yield stress given by: 

𝜏𝑦 =
𝐹𝑦

√3
 

(Driver Et al., (2006) Eq. 5) 

Low post-buckling strength remains a problem with corrugated web plate girders. Due to 

low post-buckling strength, it is recommended to prevent global buckling. By rearranging 

equations for yield stress, inelastic shear stress, and the elastic global buckling stress, yielding of 

the web will control the shear strength if the web height to thickness ratio satisfies the following 

equation: 

ℎ𝑤

𝑡𝑤

≤ 1.91𝜓√
𝐸

𝐹𝑦

(
𝑏

𝑡𝑤

)
1.5

𝐹(𝛼, 𝛽) 

(Driver Et al., (2006) Eq. 11) 

Where the factor ψ provides a factor of safety and with a recommend value of 0.9. 
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Design equations are developed based on the local buckling slenderness ratio. The local 

buckling slenderness ratio is given by: 

𝜆𝐿 =
𝑤

𝑡𝑤

√
𝐹𝑦

𝐸
 

(Driver Et al., (2006) Eq. 15) 

Where 𝑤 is the maximum of either the longitudinal panel width or inclined panel width. Once 

the local buckling slenderness ratio has been determined, the nominal shear strength may be 

calculated based on the limit state of the web. 

For yielding: 𝜆𝐿 ≤ 2.586 

𝑉𝑛 = 0.707 (
𝐹𝑦

√3
) ℎ𝑤𝑡𝑤 

(Driver Et al., (2006) Eq. 12) 

For inelastic buckling: 2.586 < 𝜆𝐿 ≤ 3.233 

𝑉𝑛 = √
1

1 + 0.15𝜆𝐿
2

(
𝐹𝑦

√3
) ℎ𝑤𝑡𝑤  

(Driver Et al., (2006) Eq. 13) 

For elastic buckling: 3.233 < 𝜆𝐿 

𝑉𝑛 = √
1

1 + 0.014𝜆𝐿
4

(
𝐹𝑦

√3
) ℎ𝑤𝑡𝑤  

(Driver Et al., (2006) Eq. 14) 

To maximize the shear local buckling strength and ensure the previous equations are applicable, 

the following equation must also be satisfied: 
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𝑏

𝑡𝑤

≤ 2.586√
𝐸

𝐹𝑦

 
(Driver Et al., (2006) Eq. 16) 

Where 𝑏 is the width of the longitudinal panel. 

By satisfying both the web height to thickness as well as the longitudinal width to web 

thickness limits, the girder’s shear strength will be maximized through yielding. Satisfying both 

limits results in an economical girder design for shear strength. 

2.3.2 Eurocode 

There are code provisions in current European standards for the design of plate girders 

with corrugated webs. Eurocode 3 – Design of steel structures – Part 1-5: Plated structural 

elements includes a section in Annex D which details design rules. Both trapezoidal and 

sinusoidal web geometries are included in this code. Section D.1 gives general information about 

variables that differ slightly than those discussed above.  

Like other research, local and global shear buckling limit states are checked. The critical 

stress for local buckling is found as a long plate while global buckling is derived from 

orthotropic plate theory. The commentary states that some authors define the global buckling 

factor (Dx) without the factor (1-v2), where v is Poisson’s ratio. However, including the factor is 

more accurate. Panel edges once again are assumed to either be simply supported or fixed. 

Simply supported conditions are often chosen as the flanges are not rigid enough to restrain 

rotation. EN 1993-1-5 includes two checks for local and global buckling to show the post-critical 

strength which is not present in global buckling.  

Section D.2.2 of EN 1993-1-5 details shear strength requirements. Shear strength is given 

as: 
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𝑉𝑏𝑤,𝑅𝑑 = 𝜒𝑐

𝑓𝑦𝑤

𝛾𝑀1 √3
ℎ𝑤𝑡𝑤 

(EN 1993-1-5 Eq. D.4) 

Where 𝜒𝑐  is the lesser of the reduction factors for local buckling or global buckling and 𝛾𝑀1  is a 

safety factor. The local buckling factor is calculated from (EN 1993-1-5 Eq. D.5) as: 

𝜒𝑐,𝑙 =
1.15

0.9 + 𝜆𝑐,𝑙

≤ 1.0 
(EN 1993-1-5 Eq. D.5) 

Where the local slenderness ratio (�̅�𝑐,𝑙) is calculated as: 

𝜆𝑐,𝑙 = √
𝑓𝑦𝑤

𝜏𝑐𝑟,𝑙√3
 

(EN 1993-1-5 Eq. D.6) 

Where 𝑓𝑦𝑤 is the yield stress of the web and 𝜏𝑐𝑟 ,𝑙 is the critical local shear stress given by: 

𝜏𝑐𝑟,𝑙 = 4.83𝐸 [
𝑡𝑤

𝑎𝑚𝑎𝑥

]
2

 
(EN 1993-1-5 Eq. D.7) 

Where 𝑎𝑚𝑎𝑥  is the larger of 𝑎1 and 𝑎2. 

The reduction factor for global buckling is given by: 

𝜒𝑐,𝑔 =
1.5

0.5 + 𝜆𝑐,𝑔

2
≤ 1.0 

(EN 1993-1-5 Eq. D.8) 

Where the global slenderness ratio (�̅�𝑔,𝑙 )  is calculated as: 

𝜆𝑐,𝑔 = √
𝑓𝑦𝑤

𝜏𝑐𝑟 ,𝑔√3
 

(EN 1993-1-5 Eq. D.9) 

Where 𝜏𝑐𝑟,𝑔  is the critical global shear stress given by: 

𝜏𝑐𝑟,𝑔 =
32.4

𝑡𝑤ℎ𝑤
2

√𝐷𝑥𝐷𝑧
34
 

(EN 1993-1-5 Eq. D.10) 

Where the factor 𝐷𝑥 is given by: 
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𝐷𝑥 =
𝐸𝑡𝑤

3

12(1 − 𝑣2)

𝑤

𝑠
=

𝐸𝑡𝑤
3

12(1 − 𝑣2)

𝑎1 + 𝑎4

𝑎1 + 𝑎2

 
(EN 1993-1-5 Commentary Eq. 13.10) 

Where 𝑠 is the longitudinal projected length of one-half wavelength, 𝑤 is the gross length of one-

half wavelength, and 𝑣 is Poisson’s ratio. 

The factor 𝐷𝑧 is given by: 

𝐷𝑧 =
𝐸𝐼𝑧

𝑤
=

𝐸𝑡𝑤𝑎3
2

12

3𝑎1 + 𝑎2

𝑎1 + 𝑎4

 
(EN 1993-1-5 Commentary Eq. 13.11) 

Where 𝐼𝑧  is the second moment of area of one corrugation 𝑤. 

Next, flange induced buckling must be considered. Eurocode does not allow for flange 

induced buckling and provides a limit that must be satisfied. The effective area of the 

compression flange and the buckling factor must be determined. The effective area is to be 

determined according to section 4.4 in the same way normal plate girders are. However, the 

buckling factor differs and is taken as the larger of the following: 

𝑘𝜎 = 0.43 + (
𝑏

𝑎
)

2

 
(EN 1993-1-5 Eq. D.2) 

𝑘𝜎 = 0.6 (EN 1993-1-5 Eq. D.3) 

Where b is the maximum outstand width from edge of weld and 𝑎 = 𝑎1 + 2𝑎2. 

 Section 4.4 gives requirements for calculating the effective area of the compression 

flange. The following equation is used to calculate the effective cross-sectional area: 

𝐴𝑒,𝑓𝑓 = 𝜌𝐴𝑒 (EN 1993-1-5 Eq. 4.1) 

Where 𝜌 is the reduction factor for plate buckling and 𝐴𝑒 is the gross cross-sectional area. 

The reduction factor is found from section 4.4(3) from outstand compression elements with the 

given limits where: 

𝜌 = 1.0 𝑓𝑜𝑟 �̅�𝑝 ≤ 0.748 (EN 1993-1-5 Eq. 4.3) 
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𝜌 =
�̅�𝑝 − 0.188

�̅�𝑝
2

≤ 1.0 𝑓𝑜𝑟 �̅�𝑝 > 0.748 

The slenderness ratio is found from section 4.4(3) by: 

�̅�𝑝 = √
𝑓𝑦

𝜎𝑐𝑟

=
𝑏 𝑡⁄

28.4𝜀√𝑘𝜎

 

(EN 1993-1-5 Eq. 4.3) 

Where 𝑘𝜎 is the buckling factor, 𝑡 is the thickness of the flange, 𝑏 is equal to 𝑐: the distance from 

the edge of the flange to the web for outstand flanges, and 𝜀 is given by: 

𝜀 = √
235

𝑓𝑦 [
𝑁

𝑚𝑚2 ]
 

(EN 1993-1-5 Eq. 4.3) 

 With the effective area of compression flange determined, the following limit can be 

solved:  

ℎ𝑤

𝑡𝑤

≤ 𝑘
𝐸

𝑓𝑦𝑓

√
𝐴𝑤

𝐴𝑓𝑐

 
(EN 1993-1-5 Eq. 8.1) 

Where 𝑘 is a factor based on whether plastic rotation, plastic moment resistance, or elastic 

moment resistance is utilized. 𝐴𝑤 is the cross-sectional area of the web and 𝐴𝑓𝑐  is the effective 

cross-sectional area of the compression flange. With this limit satisfied, flange induced buckling 

is avoided. 

 

2.4 Flexural Strength 

2.4.1 North America Proposed Method - Abbas Et al. (2006) 

As introduced earlier, shear is carried entirely by the web and the web has no contribution 

to the flexural strength of the girders. This is due to the high flexibility of the web compared to 
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conventional plate girders. Based on this assumption, the flanges carry the entire bending 

moment. This flexibility caused by web corrugation is known as the accordion effect. The 

accordion effect is the expansion and contraction of the corrugated web due to low axial 

stiffness. An expression that compares the flexibility of the web to a normal flat web is given by: 

𝐹𝑅 = 2 (
ℎ𝑡

𝑡𝑤

) (
3𝛽 + 2

𝛽 + 𝑐𝑜𝑠𝛼
) 

(Abbas Et al., (2006) Eq. 1) 

The high values of FR indicate that the web does not carry significant axial stresses compared to 

a flat plate web which leads to the following assumptions essential for predicting the behavior of 

the girder (Abbas Et al., 2006): 

1. The flanges resist bending moment with no contribution from the web. 

2. The web resists shear with no contribution from the flanges. 

3. Cross sections do not deform. 

4. For the web and flanges, plane section remains plane after bending. 

5. Saint Venant’s torsion contribution is negligible. 

6. The girder is constructed of materials that are elastic, homogenous, and isotropic. 

7. Strains, deformations, and deflections are small with equilibrium in the undeformed state. 

Due to low axial rigidity of the web, little interaction occurs between the web and 

flanges. Web contribution to the flexural capacity is assumed to be zero, although some 

additional resistance may be provided by the web. Profiles with unequal fold widths have a 

higher web participation and moment capacities than web profiles with equal fold widths. The 

accordion effect is significantly higher in slender webs than compact webs. 
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Since the web of the girder is not always in the same plane as the load, it  causes 

eccentricity. Due to this eccentricity, the flange must resist stresses due to in-plane bending and 

flange transverse bending. This eccentricity will cause the girder to twist out-of-plane at the 

same time deflects in-plane due to in-plane loads. To analyze the behavior of the flanges, 

conventional beam theory can be used for in-plane bending while flange transverse bending is 

analyzed by applying equivalent out-of-plane loads due to the web eccentricity. As seen in 

Figure 2-3, resultant forces on the flanges occur due to shear flow from the web. The greatest 

moment occurs when the web is farthest away from the centerline while the greatest shear occurs 

at the intersection of the web and the centerline. 

 

Figure 2.3 Resultant Forces Due to Shear Flow 

 

A primary bending moment and a primary shear are produced by in-plane loads. When 

calculating the bending stresses due to in-plane bending, the conventional assumption follows: 

two equal and opposite flange normal forces resist the bending moment. The distributed flange 

normal stresses are given by: 
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𝜎𝑏 =
𝑀𝑥𝑌

𝐼𝑥

 
(Abbas Et al., (2006) Eq. 22) 

Where 𝑀𝑥 is the primary bending moment, 𝑌 is the distance from the neutral axis, and 𝐼𝑥  is the 

moment of inertia of the two flanges about the X-axis. 

When calculating the moment of inertia, only the flanges are considered without any 

contribution of the web. The shear flow in the flanges and web due to changes of the uniformly 

distributed flange normal stresses is given by the relationship: 

𝑞 =
𝑉𝑦𝑄𝑥

𝐼𝑥

 
 

The next assumption is that the web carries the entire shear force with no bending moment. This 

gives the shear stress constant over the height of the web and is given by: 

𝜏𝑤 =
𝑉𝑦

ℎ𝑡𝑤

 
 

with the corresponding shear flow given by: 

𝑞𝑤 =
𝑉𝑦

ℎ
 

 

Due to eccentricity caused by the web, e, a force of the resultant shear stresses in the flanges is 

related to the primary shear by: 

𝑉𝑏 = 𝑉𝑦
𝑒

ℎ
. (Abbas Et al., (2006) Eq. 2) 

In-plane loads cause a torsional moment in addition to bending moment about the major 

axis. Due to this, the beam must be analyzed for in-plane bending as well as flange transverse 

bending. The flange transverse bending problem may be solved using either f lange transverse 
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displacement or as a torsion problem. The results by Abbas Et al., (2006) do not provide flexural 

strength equations like the shear strength equations. Instead, the theoretical normal stresses in the 

bottom flange are determined due to both in-plane bending as well as flange transverse bending. 

Using superposition, the total stresses within the flanges can be calculated. 

 Stresses due to flange transverse bending must also be considered. The stresses due to 

flange transverse bending is calculated from: 

𝜎𝑡 =
𝑀𝑡𝑥

𝐼𝑡

 
(Abbas Et al., (2006) Eq. 22) 

Where 𝑀𝑡 is the flange transverse bending moment, 𝑥 is the location along the flange in the 

transverse direction, and 𝐼𝑡 is the moment of inertia of the flange about its major axis, (coincides 

with the global y-axis). 

 To calculate the transverse bending moment, two methods are introduced: the fictitious 

load method and the C-factor method. Abbas Et al., (2007) introduces the simplified C-factor 

method to calculate the transverse bending moment which will be discussed. The C-factor 

method relates the transverse bending moment of a sinusoidally corrugated web girder to other 

web geometries. 

 The C-factor method involves the relationship of transverse shear and transverse moment 

acting on the girder. The flange transverse shear is found by the relation: 

𝑉𝑡 =
𝑑𝑀𝑡

𝑑𝑧
= −

2𝑉𝑦𝑒

ℎ
+ 𝐴1 

(Abbas Et al., (2007) Eq. 1) 

Where 𝑉𝑦 is the primary shear, ℎ is the effective depth of the section considering thin-walled 

sections, 𝑒 is the web eccentricity, and 𝐴1 is a constant of integration based on the boundary 

conditions of the flanges. 
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 The flange transverse moment can be found by the moment-curvature analysis 

relationship: 

𝑀𝑡 = −𝐸𝐼𝑡

𝑑2𝑢𝑡

𝑑𝑧2
 

(Abbas Et al., (2007) Eq. 2) 

Where 𝐸 is the modulus of elasticity, 𝐼𝑡 is the moment of inertia of the flange about the y-axis, 

and 𝑢𝑡 is the flange transverse displacement. 

For calculating the transverse bending moment using the C-factor method, Abbas Et al., 

(2007) solves the above equations for two cases: a simply supported span with a uniformly 

distributed load and a simply supported span with a concentrated end moment. Both equations 

apply to a sinusoidally corrugated web girder as the base beam. The transverse bending moment 

of a sinusoidal corrugated web plate girder subject to a uniformly distributed load is found from: 

𝑀𝑡 =
𝑝𝑦 𝐿2𝑒0

2𝜋𝑛ℎ
{[1 − 2

𝑧

𝐿
] cos (2𝜋𝑛

𝑧

𝐿
) +

2

2𝜋𝑛
sin (2𝜋𝑛

𝑧

𝐿
)

+ [cos(2𝜋𝑛) −
2

2𝜋𝑛
sin(2𝜋𝑛) + 1]

𝑧

𝐿
− 1} 

(Abbas Et al., (2007) Eq. 3) 

Where 𝑒0 is the amplitude of corrugations or ℎ𝑟 2⁄ , 𝑧 is the longitudinal position, 𝑛 is the number 

of corrugations, and 𝐿 is the length of the span. 

 Abbas Et al., (2007) indicated that the transverse bending moment is related to the 

accumulated area under the corrugation profile. As a result, a ratio known as the C-factor is 

introduced which relates the area of a sinusoidal corrugated web to other web geometries. The C-

factor for various web geometries can be found in the following table: 
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Table 2-1 C-Factors 

Profile C-factor 

Sinusoidal 1 

Trapezoidal 
𝜋 [

𝑏 + 𝑑 2⁄

𝐿 0

] 

Triangular 𝜋 4⁄  

Rectangular 𝜋 2⁄  

 

 Once the transverse bending moment of a sinusoidal corrugated web plate girder has been 

calculated, it can be directly related to other geometries using the corresponding C-factors by the 

relation: 

𝑀𝑡
𝐼

𝑀𝑡
𝐽 =

𝐶 𝐼

𝐶𝐽
 

(Abbas Et al., (2007) Eq. 31) 

Where 𝐼 and 𝐽 represent the two profiles being related. 

 The fictitious load method applies loads transversely to the flange to determine the 

transverse shear, moment, and displacement of the flanges (Abbas Et al., 2006). The fictitious 

load is given as a load per unit length by: 

𝑝𝑡 =
2

ℎ
[𝑉𝑦

𝑑𝑒

𝑑𝑧
+ 𝑒

𝑑𝑉𝑦

𝑑𝑧
] 

(Abbas Et al., (2007) Eq. 5) 

Where ℎ is the effective depth of the section considering thin-walled elements, 𝑉𝑦 is the primary 

shear, and 𝑒 is the web eccentricity. Figure 2.4 demonstrates this fictitious loading for a 

triangular web profile. 
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Figure 2.4 Fictitious Loading on Triangular Profile 

 

Two special conditions must also be considered when calculating the transverse load. The 

first involves when the web eccentricity is discontinuous. This only occurs in webs with 

rectangular profiles. The fictitious load for this point is found from: 

𝑃𝑡 =
2

ℎ
𝑉𝑦Δ𝑒 

(Abbas Et al., (2007) Eq. 6) 

Where Δ𝑒 is the change of web eccentricity. 

 The second condition is when the primary shear is discontinuous. This occurs at locations 

with point loads. The fictious load is then found from: 

𝑃𝑡 =
2

ℎ
𝑒Δ𝑉𝑦 

(Abbas Et al., (2007) Eq. 7) 

Where Δ𝑉𝑦 is the change in primary shear. 

 Once these fictitious loads are determined, they are applied transversely to the flange. 

From these new loads, the transverse shear, moment, and displacement may be found using 
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conventional structural analysis methods. Finally, the superposition of stresses due to in-plane 

bending and flange transverse bending may be calculated by: 

𝜎 =
𝑀𝑥𝑌

𝐼𝑥

+
𝑀𝑡𝑥

𝐼𝑡

 
(Abbas Et al., (2006) Eq. 22) 

 

2.4.2 Eurocode 

Eurocode also has standards for flexural strength derived with some of the same 

assumptions. Section D.2.1 is used to determine flexural strength (EN 1993-1-5: Eurocode 3, 

Design of steel structures, Part 1-5: Plated structural elements). Nominal moment strength is 

derived as the smallest axial resistances of either of the flanges times the distance between the 

centroids of the flanges. Lateral-torsional buckling may influence the strength if the compression 

flange is not braced adequately. However, studies have found that the corrugated web provides 

some additional resistance against lateral-torsional buckling compared to flat web girders. 

Flexural strength must also consider a reduction of yield stress due to transverse moment 

resulting from the shear flow in the flanges.  

If there is a large shear force in the cross section, the axial resistance may be influenced 

by lateral bending. The maximum transverse moment is found where the inclined part of the web 

intersects the center on the flange. The maximum transverse moment can be found from: 

𝑀𝑧,𝑚𝑎𝑥 =
𝑉 𝑎3

4ℎ𝑤

(2𝑎1 + 𝑎4 ) 
(EN 1993-1-5 Commentary Eq. 13.1) 

Flange induced buckling must also be considered and prevented. Rules from EN 1993-1-

5 section 4.4(1) and 4.4(2) are used when calculating flange induced buckling with new buckling 

coefficients introduced for the corrugated web. Two flange buckling modes are possible. One 

considers plate buckling while the other considers torsional buckling of the flange around the 
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centerline. The new buckling coefficient considers a hinged support along the web. Instead of 

calculating the buckling coefficient, a conservative value of 0.60 is also provided. 

Similar, to other methods, Eurocode considers only the flanges when determining the 

flexural strength of the girder. The flexural strength is the smallest value calculated by the 

following equations: 

For yielding of the tension flange:  

𝑀𝑦,𝑅𝑑 =
𝑏2𝑡2 𝑓𝑦𝑓,𝑟

𝛾𝑀0

(ℎ𝑤 +
𝑡1 + 𝑡2

2
) 

(EN 1993-1-5 Eq. D.1) 

For yielding of the compression flange:  

𝑀𝑦,𝑅𝑑 =
𝑏1𝑡1𝑓𝑦𝑓,𝑟

𝛾𝑀0

(ℎ𝑤 +
𝑡1 + 𝑡2

2
) 

(EN 1993-1-5 Eq. D.1) 

For the compression flange considering lateral-torsional buckling: 

𝑀𝑦,𝑅𝑑 =
𝑏1𝑡1𝜒𝑓𝑦𝑓

𝛾𝑀1

(ℎ𝑤 +
𝑡1 + 𝑡2

2
) 

(EN 1993-1-5 Eq. D.1) 

Where 𝑏 is the flange width, 𝑡 is the flange thickness, ℎ𝑤 is the height of the web, and 𝑓𝑦𝑓,𝑟 is the 

reduced yield stress of the flanges due to transverse moment which can be found by: 

𝑓𝑦𝑓,𝑟 = 𝑓𝑦𝑓𝑓𝑇 (EN 1993-1-5 Eq. D.1) 

Where the reduction factor is given by: 

𝑓𝑇 = 1 − 0.4
√

𝜎𝑥(𝑀𝑧)

𝑓𝑦𝑓

𝛾𝑀0

= 1 − 0.4√
6𝑀𝑧𝛾𝑀0

𝑓𝑦𝑓𝑏𝑓
2𝑡𝑓

 

(EN 1993-1-5 Commentary Eq. 13.2) 

Where 𝜎𝑥 (𝑀𝑧) is the stress in the flange due to transverse moment, 𝜒 is a reduction factor for out 

of plane buckling from section 6.3 of EN 1993-1-1, and 𝛾𝑀0  is a safety factor. The transverse 

moment, 𝑀𝑧, is due to the shear flow of the flanges, as shown above. 
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2.5 Accordion Effect 

The accordion effect is the stretching and contraction of the corrugated web due to the 

low axial stiffness. Due to the low rigidity, previously derived equations for flexural strength do 

not consider the interaction between the web and flanges. Recent research has found that some 

flexural strength may be attributed to the web (Innam Et al., 2022). Since the web contribution is 

assumed to be zero in design equations, additional flexural strength from the web may be 

considered. However, this increase in moment resistance is often minimal and typically 

neglected. The main influences on the accordion effect are the corrugation angles, flange 

proportions, and web proportions. If the web contribution is to be considered, a web participation 

factor is defined to quantify the accordion effect. Web participation is the inverse of the 

accordion effect with coarse corrugations undergoing a higher accordion effect than dense 

corrugations (Innam Et al., 2022). 

Web participation decreases with an increase in corrugation angle. The web participation 

in moment resistance remains the same when the flanges width increases. However, web 

participation increases significantly when the flange thickness increases. The accordion effect 

increases with an increase in web height, decreasing the web participation. If the accordion effect 

is low, the web contribution can be considered when calculating flexural strength. Innam Et al., 

(2022) proposed conditions that must be met to consider web participation.  

2.6 Fatigue Life 

The initiation and formation of cracks in metals under cyclic stresses is known as fatigue. 

Fatigue is the result of repetitive loading, often seen in plate girders. Welds are prone to crack 

initiation. Stiffeners on normal plate girders are welded to the web and flanges. The details in 

these locations result in a reduced fatigue life due to stress concentrations. At these connections, 
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the fatigue strength is determined by factors including the number of cycles, applied stress range, 

and connection type (Ibrahim Et al., 2006). 

Due to the elimination of stiffeners, the use of a corrugated web provides an increased 

fatigue life compared to normal plate girders requiring stiffeners. Fatigue life of corrugated web 

plate girders is 50-80% longer than plate girders with full-depth stiffeners and 30-50% longer 

than plate girders with stiffeners cut short of the tension flange (Ibrahim Et al., 2006). Due to 

repetitive loading, stresses have a high variation through the life of the girder, making bridges a 

good application for corrugated web plate girders. Longer fatigue life results in lower inspection 

costs, reduction in material, and labor costs (Ibrahim Et al., 2006).  

Corrugated web plate girders subject to fatigue result in cracks occurring in the tension 

flange. With fillet welds being used to connect the flanges to the webs, cracks begin at the toe of 

the web-to-flange weld at the connection between the parallel and inclined web panels. The 

crack then spreads in the direction perpendicular to the longitudinal stress in the tension flange. 

These cracks may either spread across the whole width of the flange or only through part of it , 

additionally spreading into the web.  

 

Figure 2.5 Fatigue in the Tension Flange 
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Longitudinal stresses measured in the parallel folds are 2.5-3.0 times what is measured in the 

inclined folds of the web. Due to the “accordion effect” and flexibility of the web, these stresses 

decrease significantly the farther the distance from the flange. Dividing the bending moment by 

the average cross-section height results in a good approximation of the force in the flanges 

(Ibrahim Et al. 2006).  

2.7 Examples in Industry 

Examples of corrugated web plate girders are seen in Europe and Asia. Most uses occur 

in composite bridge girders. The following are a few examples in industry of corrugated webs 

around the world. 

Located in France, the Cognac Bridge is the first corrugated steel web bridge in the 

world. Completed in 1986, the bridge is a three-span continuous box girder bridge. The longest 

span of the bridge is 42.91 meters while the total length is 107.82 meters. The thickness of the 

web is 8 mm with a web height of 1.771 meters (Sayed-Ahmed 2001). 

 

Figure 2.6 Cognac Bridge (The Constructor) 

 Another bridge that uses corrugated webs is the Dole Bridge. Also located in France, the 

bridge has seven spans with a total length of 496 meters and longest span of 80 meters. Another 
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composite box girder bridge, the webs are tapered ranging with a thickness of 8 mm to 12 mm 

near supports. The depth of the tapered bridge varies from 2.5 meters at midspan to 5.5 meters at 

the supports (Sayed-Ahmed 2001). 

 

Figure 2.7 Dole Bridge (Sayed-Ahmed, 2003) 

 The longest span corrugated web bridge is located in Japan. The Aigawa Bridge consists 

of two separate bridges, one with the longest span of 179 meters. The depth of the bridge is 11.5 

meters. The corrugated web design was chosen to lower seismic forces and have a lightweight 

structure. Japan has quickly become a popular area to use corrugated webs with over 200 uses in 

bridges since the early 1990s (Structurae 2018). 
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Chapter 3: Corrugated Web Plate Girder Design Examples 

 The following chapter will present calculations for shear and moment strength of a 

corrugated web plate girder designed using proposed North American equations as well as 

Eurocode equations. Results will also be compared to a flat web plate girder designed using 

AISC 360 Specification for Structural Steel Buildings. Detailed calculations for each girder can 

be found in Appendices A, B, and C. 

A 100 foot simply supported beam subject to uniform load of 5 k/ft was used to design 

the girders. The girder is assumed to be braced against lateral-torsion buckling. Table 3-1 

presents the results of the calculations. Flange dimensions, web dimensions, and weights for each 

girder are presented. The same web corrugation geometry was used for both designs of 

corrugated web plate girders. A yield stress of 𝐹𝑦 = 36 𝑘𝑠𝑖 was used across all three girders.  

 

Figure 3.1 Beam Loading 

 

The first step is to determine the loads the girder must resist. 

𝑀𝑢 =
𝑤𝑙2

8
=

(5 𝑘 𝑓𝑡⁄ )(100 𝑓𝑡)2

8
= 6250 𝑘 − 𝑓𝑡 

 

𝑉𝑢 =
𝑤𝑙

2
=

(5 𝑘 𝑓𝑡⁄ )(100 𝑓𝑡)

2
= 250 𝑘 
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Accounting for shear and moment due to self-weight of the corrugated web plate girders 

results in the loads both girders must resist (girder weights are from the final design, see Table 3-

1): 

Table 3-1 Combined Eurocode and North American Designs 

 Flat web plate girder with 

stiffeners 

Corrugated web plate 

girder (Eurocode) 

Corrugated web plate 

girder (North 
American) 

Flange Width 28 in. 26 in. (0.6604 m) 26 in. 

Flange Thickness 1.125 in. 1.125 in. (0.0286 m) 1.125 in. 

Web Height 82 in. 82 in. (2.0828 m) 82 in. 

Stiffeners (32) 82 in. x 6 in. x 5/16 

in. 

--- --- 

Web Thickness 0.25 in. 0.25 in. (0.00635 m) 0.25 in. 

Weight 29952.1 lbs. 27558.3 lbs. 27558.3 lbs. 

 

For Eurocode: 

𝑀𝑢 = 1.2
(

27796.5 𝑙𝑏𝑠
1000 ∗ 100

) (100 𝑓𝑡)2

8
= 416.9 𝑘 − 𝑓𝑡 + 6250𝑘 − 𝑓𝑡

= 6667 𝑘 − 𝑓𝑡 𝑜𝑟 9039 𝑘𝑁 − 𝑚  

𝑉𝑢 = 1.2
27796.5 𝑙𝑏𝑠

2000
= 16.7 𝑘 + 250 𝑘 = 266.7 𝑘 𝑜𝑟 1186 𝑘𝑁 

For the North American Method 

𝑀𝑢 = 1.2
(

27796.5 𝑙𝑏𝑠
1000 ∗ 100 ) (100 𝑓𝑡)2

8
= 416.9 𝑘 − 𝑓𝑡 + 6250𝑘 − 𝑓𝑡

= 6667 𝑘 − 𝑓𝑡   
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𝑉𝑢 = 1.2
27796.5 𝑙𝑏𝑠

2000
= 16.7 𝑘 + 250 𝑘 = 266.7 𝑘 

The flange dimensions for both the Eurocode and North American girders will be 26 in. 

(0.6604 m) wide and 1.125 in. (0.0286 m) thick. The web dimensions are 82 in. (2.0828 m) tall 

and 0.25 in. (0.00635 m) thick. The corrugation geometry for the web and cross section are as 

follows: 

 

Figure 3.2 Example Girder Web Geometry 

 

Figure 3.3 Example Girder Cross-Section 
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3.1 Eurocode Design 

Flexure will be designed first. The transverse moment due to the web geometry must first 

be calculated.  

𝑀𝑧,𝑚𝑎𝑥 =
𝑉 𝑎3

4ℎ𝑤

(2𝑎1 + 𝑎4 ) 
(EN 1993-1-5 Commentary Eq. 13.1) 

𝑀𝑧,𝑚𝑎𝑥 =
(1186 𝑘𝑁)(0.0672 𝑚)

4(2.0828 𝑚)
(2(0.127 𝑚) + 0.0762𝑚) = 3.2 𝑘𝑁 − 𝑚 

 Next, the yield stress of the flanges must be reduced due to the transverse moment. 

𝑓𝑇 = 1 − 0.4
√

𝜎𝑥(𝑀𝑧)

𝑓𝑦𝑓

𝛾𝑀0

= 1 − 0.4√
6𝑀𝑧𝛾𝑀0

𝑓𝑦𝑓𝑏𝑓
2𝑡𝑓

 

(EN 1993-1-5 Commentary Eq. 13.2) 

𝑓𝑇 = 1 − 0.4√
6(3.2 𝑘𝑁 − 𝑚)(1)

(2.5 ∗ 105 𝑘𝑃𝑎)(0.6604 𝑚)2(0.0286 𝑚)
= 0.969 

𝑓𝑦𝑓,𝑟 = 𝑓𝑦𝑓𝑓𝑇 (EN 1993-1-5 Eq. D.1) 

𝑓𝑦𝑓,𝑟 = (2.5 ∗ 105 𝑘𝑃𝑎)(0.969) = 242201 𝑘𝑃𝑎 

With the reduced yield stress, the flexural strength of the girder may now be determined. 

Since both of the flanges are the same dimensions and the girder is restrained against lateral-

torsional buckling. Only one limit state must be checked. 

𝑀𝑦,𝑅𝑑 =
𝑏2𝑡2 𝑓𝑦𝑓,𝑟

𝛾𝑀0

(ℎ𝑤 +
𝑡1 + 𝑡2

2
) 

(EN 1993-1-5 Eq. D.1) 

𝑀𝑦,𝑅𝑑 =
(0.6604 𝑚)(0.0286 𝑚)(242201 𝑘𝑃𝑎)

(1)
(2.0828𝑚 +

(0.0286 𝑚 + 0.0286 𝑚

2
) 

𝑀𝑦,𝑟𝑑 = 9650 𝑘𝑁 − 𝑚 

𝑀𝑢 = 9039 𝑘𝑁 − 𝑚 ≤ 9650 𝑘𝑁 − 𝑚 
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The calculated moment is greater than the ultimate moment resulting in an adequate 

design for flexure. 

 The first step for shear is to determine the governing panel width.  

𝑎𝑚𝑎𝑥 = 0.13 𝑚  

Using this value, the critical local shear stress is determined by: 

𝜏𝑐𝑟,𝑙 = 4.83𝐸 [
𝑡𝑤

𝑎𝑚𝑎𝑥

]
2

 
(EN 1993-1-5 Eq. D.7) 

𝜏𝑐𝑟,𝑙 = 4.83(2.1 ∗ 108𝑘𝑃𝑎) [
0.00635 𝑚

0.13 𝑚
]

2

= 2.54 ∗ 106 𝑘𝑃𝑎 

The local slenderness ratio is then determined by: 

𝜆𝑐,𝑙 = √
𝑓𝑦𝑤

𝜏𝑐𝑟,𝑙√3
 

(EN 1993-1-5 Eq. D.6) 

𝜆𝑐,𝑙 = √
2.5 ∗ 105 𝑘𝑃𝑎

(2.54 ∗ 106)√3
= 0.24 

Using this local slenderness ratio, the safety factor for local buckling if found from: 

𝜒𝑐,𝑙 =
1.15

0.9 + 𝜆𝑐,𝑙

≤ 1.0 
(EN 1993-1-5 Eq. D.5) 

𝜒𝑐,𝑙 =
1.15

0.9 + 0.26
= 1.01 ≤ 1.0 

 

With the safety factor for local buckling now determined, the safety factor for global 

buckling must be calculated. First, the factors 𝐷𝑥 and 𝐷𝑧 must be calculated from: 

𝐷𝑥 =
𝐸𝑡𝑤

3

12(1 − 𝑣2)

𝑤

𝑠
=

𝐸𝑡𝑤
3

12(1 − 𝑣2)

𝑎1 + 𝑎4

𝑎1 + 𝑎2

 
(EN 1993-1-5 Commentary Eq. 13.10) 

𝐷𝑥 =
(2.1 ∗ 108 𝑘𝑃𝑎)(0.00635 𝑚)3

12(1 − 0.282)

0.127 𝑚 + 0.0762 𝑚

0.127 𝑚 + 0.1 𝑚
= 4.32 𝑘𝑁 − 𝑚3  
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𝐷𝑧 =
𝐸𝐼𝑧

𝑤
=

𝐸𝑡𝑤𝑎3
2

12

3𝑎1 + 𝑎2

𝑎1 + 𝑎4

 
(EN 1993-1-5 Commentary Eq. 13.11) 

𝐷𝑧 =
(2.1 ∗ 108 𝑘𝑃𝑎)(0.00635 𝑚)(0.048 𝑚)2

12

3(0.127 𝑚 + 0.1 𝑚)

(0.127 𝑚 + 0.0762 𝑚)
= 1191.9 𝑘𝑁 − 𝑚3 

Using these values, the critical global shear stress may be calculated from: 

𝜏𝑐𝑟,𝑔 =
32.4

𝑡𝑤ℎ𝑤
2

√𝐷𝑥𝐷𝑧
34
 

(EN 1993-1-5 Eq. D.10) 

𝜏𝑐𝑟,𝑔 =
32.4

(0.00635 𝑚)(2.0828 𝑚)2
√(4.32 𝑘𝑁 − 𝑚3 )(1191.9 𝑘𝑁 − 𝑚3 )34

= 3.44 ∗ 105 𝑘𝑃𝑎 

This value is used to determine the global slenderness ratio: 

𝜆𝑐,𝑔 = √
𝑓𝑦𝑤

𝜏𝑐𝑟 ,𝑔√3
 

(EN 1993-1-5 Eq. D.9) 

𝜆𝑐,𝑔 = √
2.5 ∗ 105 𝑘𝑃𝑎

(3.44 ∗ 105 𝑘𝑃𝑎)√3
= 0.648 

 With the global slenderness ratio determined, the safety factor for global buckling finally 

may be determined from: 

𝜒𝑐,𝑔 =
1.5

0.5 + 𝜆𝑐,𝑔

2
≤ 1.0 

(EN 1993-1-5 Eq. D.8) 

𝜒𝑐,𝑔 =
1.5

0.5 + (0.648)2
= 1.6 ≤ 1.0 

 

 The local buckling safety factor governs and is used to determine the shear strength: 

𝑉𝑏𝑤,𝑅𝑑 = 𝜒𝑐

𝑓𝑦𝑤

𝛾𝑀1 √3
ℎ𝑤𝑡𝑤 

(EN 1993-1-5 Eq. D.4) 

𝑉𝑏𝑤,𝑅𝑑 = (1.0)
(2.5 ∗ 105 𝑘𝑃𝑎)

(1)√3
(2.0828 𝑚)(0.00635 𝑚) = 1909 𝑘𝑁 

𝑉𝑢 = 1186 𝑘𝑁 ≤ 1909 𝑘𝑁 
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 The calculated value for shear resistance is greater than the ultimate shear resulting in an 

adequate design. 

 The final check for Eurocode involves checking for flange induced buckling. The 

buckling factor must first be determined by the greater of: 

𝑘𝜎 = 0.43 + (
𝑏

𝑎
)

2

 
(EN 1993-1-5 Eq. D.2) 

𝑘𝜎 = 0.43 + (

0.6604 𝑚 + 0.0672 𝑚
2

0.127 𝑚 + 2(0.0762 𝑚)
)

2

= 2.13 

𝑘𝜎 = 0.6 (EN 1993-1-5 Eq. D.3) 

 Next, the plate slenderness is determined: 

𝜀 = √
235

𝑓𝑦 [
𝑁

𝑚𝑚2 ]
 

(EN 1993-1-5 Eq. 4.3) 

𝜀 = √
235

250 𝑀𝑃𝑎
= 0.97 

 

�̅�𝑝 = √
𝑓𝑦

𝜎𝑐𝑟

=
𝑏 𝑡⁄

28.4𝜀√𝑘𝜎

 

(EN 1993-1-5 Eq. 4.3) 

�̅�𝑝 =
0.36 𝑚 0.0286 𝑚⁄

28.4(0.97)√2.13
= 1.4 

 

With the plate slenderness calculated, a reduction factor may be determined and applied 

to the gross area of the compression flange to find the effective area. 

𝜌 =
�̅�𝑝 − 0.188

�̅�𝑝
2

≤ 1.0 𝑓𝑜𝑟 �̅�𝑝 > 0.748 
(EN 1993-1-5 Eq. 4.3) 
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𝜌 =
1.4 − 0.188

1.42
= 0.61 ≤ 1.0 

 

𝐴𝑒,𝑓𝑓 = 𝜌𝐴𝑒 (EN 1993-1-5 Eq. 4.1) 

𝐴𝑒,𝑓𝑓 = 0.6(0.6604 𝑚)(0.0286 𝑚) = 0.0115 𝑚2 

 Finally, the limit for flange induced buckling is checked with the following equation: 

ℎ𝑤

𝑡𝑤

≤ 𝑘
𝐸

𝑓𝑦𝑓

√
𝐴𝑤

𝐴𝑓𝑐

 
(EN 1993-1-5 Eq. 8.1) 

2.0828 𝑚

0.00635 𝑚
= 328 ≤ (0.55)

(2.1 ∗ 108 𝑘𝑃𝑎)

(2.5 ∗ 105 𝑘𝑃𝑎)
√

(2.0828 𝑚)(0.00635 𝑚)

(0.0115 𝑚2)
= 496 

The final design for the corrugated web plate girder design using Eurocode can be found 

in Table 3-1. 

3.2 North American Proposed Method Design 

Shear will be designed for first using the proposed North American methods. The girder 

has the same dimensions as the girder design using Eurocode. First, the factor that defines the 

web geometry must first be calculated using values for 𝛼 and 𝛽. 

𝛼 = cos−1 (
3 𝑖𝑛

4 𝑖𝑛
) = 41.4° 

 

𝛽 =
𝑏

𝑐
=

5 𝑖𝑛

4 𝑖𝑛
= 1.25 

 

𝐹(𝛼, 𝛽) = √
(1 + 𝛽) sin3 𝛼

𝛽 + 𝑐𝑜𝑠𝛼
⋅ {

3𝛽 + 1

𝛽2(𝛽 + 1)
}

3/4

 

(Driver Et al., (2006) Eq. 3) 

𝐹(𝛼, 𝛽) = √
(1 + 1.25) sin3(41.4)

1.25 + cos (41.4)
⋅ {

3(1.25) + 1

1.252(1.25 + 1)
}

3/4

= 0.51 

 With this coefficient determined, the limit for web yielding is checked: 
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ℎ𝑤

𝑡𝑤

≤ 1.91𝜓√
𝐸

𝐹𝑦

(
𝑏

𝑡𝑤

)
1.5

𝐹(𝛼, 𝛽) 

(Driver Et al., (2006) Eq. 11) 

82 in

0.25 𝑖𝑛
≤ 1.91(0.9)√

29000 𝑘𝑠𝑖

36 ksi
(

5 𝑖𝑛

0.25 𝑖𝑛
)

1.5

(0.51) 

328 ≤ 328.1 

 Also satisfying the following limit will result in economical web material usage: 

𝑏

𝑡𝑤

≤ 2.586√
𝐸

𝐹𝑦

 
(Driver Et al., (2006) Eq. 16) 

5 𝑖𝑛

0.25 in
≤ 2.586√

29000 𝑘𝑠𝑖

36 ksi
 

20 ≤ 73.4 

 Next, the local slenderness ratio can be calculated from the following equation: 

𝜆𝐿 =
𝑤

𝑡𝑤

√
𝐹𝑦

𝐸
 

(Driver Et al., (2006) Eq. 15) 

𝜆𝐿 =
5 𝑖𝑛

0.25 in
√

36 ksi

29000 𝑘𝑠𝑖
= 0.7 

This slenderness ratio falls withing the limit for web yielding which can be calculated 

from: 
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𝑉𝑛 = 0.707 (
𝐹𝑦

√3
) ℎ𝑤𝑡𝑤 

(Driver Et al., (2006) Eq. 12) 

𝑉𝑛 = 0.707 (
36 ksi

√3
) (82 in)(0.25 in) = 301.2 𝑘 

Applying a resistance factor of 𝜙 = 0.9 results in the design strength of the girder. 

𝜙𝑉𝑛 = 0.9(301.2 𝑘) = 271.1 𝑘  

271.1 𝑘 ≥ 267 𝑘 

Finally, the design for flexure will be shown using the C-factor method for calculating 

transverse moment. The first step involves calculating the transverse moment for a sinusoidally 

corrugated girder with the same wavelength. The maximum transverse moment will be 

calculated at the end of the girder. A corrugation wavelength is equal to 16 in. The total number 

of wavelengths (n) is equal to 75. The longitudinal position (z) that results in the maximum 

transverse moment is one half of a wavelength. The longitudinal position along the wavelength 

for this example is equal to 8 in. 

𝑀𝑡 =
𝑝𝑦 𝐿2𝑒0

2𝜋𝑛ℎ
{[1 − 2

𝑧

𝐿
] cos (2𝜋𝑛

𝑧

𝐿
) +

2

2𝜋𝑛
sin (2𝜋𝑛

𝑧

𝐿
)

+ [cos(2𝜋𝑛) −
2

2𝜋𝑛
sin(2𝜋𝑛) + 1]

𝑧

𝐿
− 1} 

(Abbas Et al., (2007) Eq. 3) 

𝑀𝑡 =
(5 𝑘/𝑓𝑡)(100 𝑓𝑡)2(

2.65
2 𝑖𝑛)

2𝜋(75)(84.25 𝑖𝑛)
{[1 − 2

(8 𝑖𝑛 12⁄ )

(100 𝑓𝑡)
] cos (2𝜋(75)

(8 𝑖𝑛 12⁄ )

(100 𝑓𝑡)
)

+
2

2𝜋(75)
sin

(8 𝑖𝑛 12⁄ )

(100 𝑓𝑡)

+ [cos(2𝜋(75)) −
2

2𝜋(75)
sin(2𝜋(75)) + 1]

(8 𝑖𝑛 12⁄ )

(100 𝑓𝑡)
− 1} = 3.29 𝑘 − 𝑓𝑡 

Using the C-factors for trapezoidal and sinusoidal profiles, the transverse moment for the 

girder can be calculated using the following relationship: 
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For sinusoidal profiles: 

𝐶 = 1 

For trapezoidal profiles: 

𝐶 = 𝜋 [
𝑏 + 𝑑 2⁄

𝐿0

] = 𝜋 [
5 𝑖𝑛 + 3 𝑖𝑛 2⁄

16 𝑖𝑛
] = 1.3 

𝑀𝑡
𝐼

𝑀𝑡
𝐽 =

𝐶 𝐼

𝐶𝐽
 

(Abbas Et al., (2007) Eq. 31) 

𝑀𝑡 =
1.3

1
∗ 3.29 𝑘 − 𝑓𝑡 = 4.2 𝑘 − 𝑓𝑡 

With the transverse moment now determined, the superposition of bending stress and 

flange transverse bending stress may be determined: 

𝐼𝑡 =
(26 𝑖𝑛)(1.125 𝑖𝑛)3

12
+ (26 𝑖𝑛)(1.125 𝑖𝑛) (

(82 𝑖𝑛 + 1.125 𝑖𝑛)

2
)

2

= 50531 𝑖𝑛4  

𝑥 =
2.65 𝑖𝑛

2
= 1.32 𝑖𝑛 

𝜎𝑡 =
𝑀𝑡𝑥

𝐼𝑡

=
(4.2 𝑘 − 𝑓𝑡)(12)(1.32 𝑖𝑛)

50530.7 𝑖𝑛4
= 0.0013 𝑘𝑠𝑖 

𝐼𝑥 =
𝐴𝑏𝑓𝐴𝑡𝑓ℎ2

𝐴𝑏𝑓 + 𝐴𝑡𝑓

=
2(26 𝑖𝑛)(1.125 𝑖𝑛)(82 𝑖𝑛 + 2 ∗ 1.125 𝑖𝑛)

(26 𝑖𝑛)(1.125 𝑖𝑛) + (26 𝑖𝑛)(1.125 𝑖𝑛)
= 103809 𝑖𝑛4 

𝑌 =
(82 𝑖𝑛 + 2 ∗ 1.125 𝑖𝑛)

2
= 42.1 𝑖𝑛 

𝜎𝑏 =
𝑀𝑥𝑌

𝐼𝑥

=
(6667 𝑘 − 𝑓𝑡)(12)(42.1 𝑖𝑛)

103809 𝑖𝑛4
= 32.5 𝑘𝑠𝑖 

𝜎𝑡𝑜𝑡𝑎𝑙 = 32.5 𝑘𝑠𝑖 + 0.0013 𝑘𝑠𝑖 = 32.5013 𝑘𝑠𝑖 

Applying a resistance factor of 𝜙 = 0.9 results in the stress of the girder: 

36 𝑘𝑠𝑖 ≥ 36 𝑘𝑠𝑖 
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Table 3-1 summarizes the results of the two corrugated web plate girder design as well as 

their total weights. The design for the flat web plate girder with stiffeners can be found in 

Appendix A. 

 The corrugated web plate girder designed using the proposed North American equations 

and Eurocode resulted in the same weight. The weight of the corrugated web plate girders is less 

than the weight of the flat web plate girder with stiffeners. This comparison used the same web 

thickness and heights. The thickness of the corrugated web plate girder designed using Eurocode 

could be reduced to a 3/16 in. thick web, resulting in even less steel. Table 3-2 shows the design 

strengths and the ratio of ultimate load to design strengths. 

 

Table 3-2 Girder Strengths Comparison 

 Shear Flexural 

𝜙𝑉𝑛 𝑉𝑢

𝜙𝑉𝑛

 
𝜙𝑀𝑛 𝑜𝑟 𝐹𝑦 𝑀𝑢

𝜙𝑀𝑛

𝑜𝑟
∑ 𝑓

𝐹𝑦

 

Flat web plate girder with 

stiffeners 

278.3 k 0.96 6686.6 k-ft 0.99 

Corrugated web plate girder 

(Eurocode) 

429 k 

(1909 kN) 

0.62 7117.5 k-ft 

(9650 kN-m) 

0.94 

Corrugated web plate girder 

(North American) 

271.1 k 0.98 36 ksi 1.0 

  

As seen in Table 3-2, the shear strength of the corrugated web plate girder using 

Eurocode utilizes much less compared to the proposed North American Method. As a result, less 

web material may be used. The use of a corrugated web may result in a lower self-weight 

compared to a flat web plate girder for certain applications. The self-weight of the girder will 
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also depend on the code being used.  Automated production of the girder may also result in 

reduced manufacturing costs, avoiding welding individual stiffeners along the web. 
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Chapter 4: Conclusion 

Steel is a common choice of material for various construction projects. Plate girders can 

be good choices for projects when rolled shapes are not feasible. Plate girders typically have a 

high resistance to shear and moment as the plate sizes are specifically designed to resist the 

required loads, often changing sizes for longer spans. To resist high shear loads, stiffeners are 

provided. However, as they add weight and increase fabrications costs significantly, as well as 

worsen fatigue problems in the girder. Corrugated web plate girders offer an innovative approach 

to plate girders without stiffeners, reducing the total amount of steel and  particularly fabrication 

cost. 

With the new geometry of the girder associated with the web, different behaviors occur. 

The web is subject to the limit states including global shear buckling, local shear buckling, and 

shear yielding. Compared to normal plate girders, the web has a lower post buckling strength. As 

a result, factors are applied within the shear strength equations based on both experimental and 

finite element analysis results. For the design to be optimized, yielding of the web is the 

preferred limit state. The equations derived from various researchers to estimate the shear 

strength of the corrugated web differ slightly but result in similar values. Flexural strength is 

determined based on the flanges only with no contribution from the web. Due to the low axial 

rigidity of the web known as the accordion effect, the web does not contribute to the flexural 

strength. 

Currently, all applications of corrugated web plate girders are seen in Europe and Asia. 

Eurocode 3 – Design of steel structures – Part 1-5: Plated structural elements is the main code 

used to design corrugated web plate girders. Some standard size girders are available in Europe 

in both trapezoidal and sinusoidal web geometries. There are no code provisions in the United 



46 

 

States, and further research must be performed to include them into North American codes. 

While some research to implement them into AISC and AASHTO is available, it is lacking as 

compared to the information available for EN 1993-1-5. Most research on corrugated web plate 

girders involve the shear strength of the girder but not the flexural strength. 

Steel plate girders are not the only use for corrugated webs. Other applications of 

corrugated web are also undergoing research. One of these is the use of prestressed composite 

box girders with corrugated webs. These girders use reinforced concrete for flanges and 

corrugated steel for webs results in a low structural weight and a quicker construction time. 

Another application of corrugated webs is at the reduced beam section in moment frames. 

Reduced beam sections are used to weaken a beam near the beam-column connection in a 

moment frame. This reduction of strength is to create a hinge which experiences a nonlinear 

behavior. Typically, both flanges are cut to reduce the flexural strength and cause this failure. 

Creating a corrugated section known as an accordion-web reduced beam section is a new method 

proposed. Since a corrugated web does not contribute to the flexural capacity of a beam, the 

reduced beam section will result in a lower flexural capacity. 

While corrugated web plate girders are not commonly used, they have promising 

potential. The main obstacle as to why these are not seen in North America is that there are no 

available codes. Standard web sizes and geometries would also benefit usage allowing to easily 

choose sizes. The other main disadvantage is manufacturing costs. With automatic processes like 

what is available in Austria, manufacturing costs may be reduced  allowing for corrugated web 

plate girders to become an economical option. Corrugated web plate girders have many 

advantages compared to normal plate girders.  
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Appendix A – AISC Plate Girder Design Example 

The following appendix demonstrates a normal plate girder design example based on 

AISC 360. 
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Appendix B – EN 1991-1-5 Design Example 

The following appendix demonstrates a corrugated web plate girder design example 

based on EN 1991-1-5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



57 

 

 

 



58 

 



59 

 

 



60 

 

Appendix C – Proposed North American Design Example 

The following appendix demonstrates a corrugated web plate girder design example 

based on the proposed methods of Driver Et al. (2006) and Abbas Et al. (2006). 
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