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 

Abstract—Two detailed models of permanent-magnet direct-

drive (PMDD) wind turbines with full converters are presented 

in this paper: one for a 10 kW turbine, and one for a 5 MW 

turbine. The models are verified by comparing the power curves 

found through simulation with field test data. Other results are 

also presented that show the unprecedented detail of the models. 

The mathematical representations include switching models for 

the full converters, circuit models for permanent-magnet 

synchronous generators, realistic aerodynamics, tower and blade 

vibrations, and many other variables. The models are valuable 

tools for wind turbine design and research and can be used for a 

wide range of purposes including control system design, 

sensitivity analysis, and interactions between the electrical and 

mechanical parts of a PMDD wind turbine. Simulation of the 

models is carried out in the MATLAB/Simulink environment 

using the FAST aeroelastic simulator. 

 
Index Terms—FAST, permanent-magnet synchronous 

generator (PMSG), pulse width modulated (PWM) converters, 

wind energy 

I.  INTRODUCTION 

IND energy penetration in the world’s electric grids has 

skyrocketed in recent years. The field of wind power 

engineering has come a long way since the first variable-speed 

wind turbines in the United States came online in the 1970’s 

[1]. As demand for wind turbines grows, so too does demand 

for useful tools with which to design and test them. A detailed 

MATLAB/Simulink model was recently published for 

photovoltaic panels, however, no corresponding tool for 

permanent-magnet wind turbines currently exists [2].  The 

major contribution of this work is the detailed development of 

comprehensive models of a residential-scale and a utility-scale 

permanent-magnet direct drive (PMDD) wind turbines. 

Simulations of these models provide realistic results for the 

electrical, mechanical, and aerodynamic parts of a wind 

turbine. Therefore, the models can be used in the design 

process of a wind turbine shown in Fig. 1. The models are 

novel tools that can be easily reproduced and can be used to  
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design and study many different aspects of both large and 

small wind turbines, including control systems and 

electromechanical interactions.  

There has been significant interest in electromechanical 

simulations of variable speed wind turbines in recent years. 

Fadaeinedjad et al. and Beltran et al. used FAST to investigate 

the mechanical effects of electrical faults on doubly-fed 

induction generator (DFIG)-based wind turbines [3] [4]. Both 

used high-level models for the turbine’s electrical systems. 

Krishna and Reeba reported executing electromechanical 

simulations using FAST with a switched-reluctance generator 

[5]. Zhang et al. used a torque-speed equation to model a 

permanent-magnet synchronous generator (PMSG) as part of 

FAST simulations for control design [6]. Corbus and Meadors 

first modeled the 10 kW system that is the basis of the one in 

this paper in FAST with a simple torque-speed curve as the 

generator model [7]. Hemeida et al. modeled a PMSG turbine 
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with a full converter but did not compare their results to field 

data [8]. None of these workers have produced a complete 

model of the PMDD with a full converter.  

This work begins with a description of each system being 

modeled. Next, details on the models and control designs for 

each generator, active rectifier, voltage source inverter (VSI), 

and LCL filter are presented. Results are then presented that 

show the validity of the models as well as the high level of 

detail they are capable of simulating. Conclusions are then 

drawn and ideas for future work are given. 

II.  SYSTEM DESCRIPTION 

A.  Electrical System 

Variable-speed wind turbines have two major advantages 

over constant-speed ones: they are capable of operating over a 

wider range of speeds and they can provide reactive power 

support to the grid. There are two prevailing topologies for 

variable-speed wind turbines today: the DFIG with partial 

power converter and the PMSG with full power converter. The 

direct-drive PMSG schematic is shown in Fig. 2. The topology 

shown in Fig. 2 is called a back-to-back or full converter and it 

consists of an active rectifier, a DC link capacitor, a VSI, an 

LCL filter, and a transformer. This topology is prevalent in 

PMDD wind turbines designs [9] [10]. Relevant information 

on the electrical models for each system is given in Table I. 

All of the electrical components have been modeled in 

Simulink with blocks from the SimPowerSystems toolbox.  
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Fig. 2.  Electrical system model. The model includes a PMSG, an active 
rectifier, a DC link capacitor, a 3-phase inverter, a LCL filter, a transformer, 

and the grid. 

TABLE I 
ELECTRICAL MODEL SUMMARY 

Parameter 10 kW System 5 MW System 

Nominal grid voltage 208 V 34.5 kV 

Nominal PMSG voltage 260 V 690 V 

CDC 600 μF 2000 μF 

PMSG poles  28 - 36 18 

PMSG stator resistance 0.05 – 0.2 Ω 0.476 mΩ 

PMSG synchronous inductance 1 – 4 mH 0.177 mH 

IGBT forward voltage drop 2.0 V 2.0 V 

Diode forward voltage drop 1.0 V 1.0 V 

IGBT conducting resistance 55 mΩ 7 mΩ 

IGBT fall time 70 ns 200 ns 

Transformer turns ratio 2.308:1 1:53.0769 

Back EMF constant 1-3 Vpeak,LL/Hz 1.724 kVpeak,LL/Hz 

 

TABLE II 

AEROELASTIC MODEL SUMMARY 

Parameter 10 kW Turbine 5 MW Turbine 

Rotor diameter 7 m 123 m 

Nacelle mass 260.5 kg 240,000 kg 

Nacelle inertia 39.81 kg m2 2,6078,9000 kg m2 

Generator inertia 0.5 kg m2 534.116 kg m2 

Hub inertia 7.71 kg m2 115,926 kg m2 

Blade nodes for BEM 15 17 

Blade mass 21.7724 kg 17,740 kg 

B.  Wind Turbine Models 

The small wind turbine model used in this work is a 

combination of the Small Wind Research Turbine (SWRT) 

developed by the National Renewable Energy Laboratory 

(NREL) and the Bergey Excel 10 as it was produced in 2012. 

The SWRT is a modified version of the Bergey Excel 10 as it 

was produced in 2005 [7]. It is a 3-bladed, horizontal axis, 

upwind turbine with passive yaw. Since 2005 there have been 

several upgrades to the turbine, including a new PMSG and 

longer blades [11]. A proprietary model from Bergey 

Windpower was used for the generator parameters, and, as a 

result, ranges rather than exact values for those quantities are 

provided in Table I. The tower model used was developed by 

NREL for use in testing a research turbine. Detailed 

information on the 11.5 m tower can be found in [12].  

The 5 MW turbine’s mechanical and aeroelastic models, 

including a 90 m tower, are from of the NREL 5 MW machine 

[13]. The NREL 5 MW turbine is not a direct model of any 

one turbine, but it is based heavily on the REpower 5 MW. 

The model in this paper, including the full electrical model 

summarized in Table I, is compared to the REpower machine 

in Section V. 

The key parameters of the mechanical model for each 

system are given in Table II. 

Four different public domain design codes distributed by 

NREL were used in developing the models and in their 

simulation: Modes for the mode shapes of the towers, 

TurbSim for 3-dimensional turbulent wind, AeroDyn for 

aerodynamic simulations, and FAST for aeroelastic and 

mechanical simulations [14] [15] [16] [17]. 

III.  GENERATOR CONTROL 

The PMSG in each turbine model is represented by the 

well-known circuit model in a reference frame attached to the 

machine’s rotor- namely [18],  
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where subscript “ ” denotes direct-axis quantities, subscript 
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“ ” denotes quadrature-axis quantities, and subscript “ ” 

denotes rotor quantities.   is the per-phase stator resistance,   

is the number of pole pairs,    is the rotor speed in rad/s and 

  is the flux established by the permanent-magnets in webers. 

Equations (1) - (3) assume that positive currents flow into the 

PMSG. Negative generator torque (τe) corresponds to 

operation as a generator. It is assumed that         , 

where    is the synchronous inductance, so (3) may be 

rewritten as 

   
 

 
      (5) 

Equation (5) shows that the generator torque may be 

controlled by controlling the quadrature-axis current. It also 

shows that direct-axis current plays no role in torque 

production, so it can be regulated to zero to minimize resistive 

losses. A block diagram of the control scheme is shown in Fig. 

3. The PI blocks indicate proportional-integral control, 

variables with a “*” superscript are setpoints, and SVPWM, 

CCT1, and CCT2 are defined below. 

A.  Field-Oriented Control (FOC) 

Equation (1) is a nonlinear equation whose linear part can 

be written in the Laplace domain as 

  
  

 
 

     
   (6) 

Standard techniques such as Bode or root locus can be used to 

design a controller for (6), then the nonlinear terms can be 

added to the output of the controller to find vd
*
. This control 

scheme is called feedback linearization. The setpoint,   
 , 

passed to the rectifier is 

  
    

           (7) 

where    is the output of the PI controller shown in Fig. 3. 

Thus 

               (8) 

A controller for the generator torque can be designed in a 

similar way. Solving (3) for    and substituting the result into 

(2) gives 

  ( )

  ( )
 

   

       
  (9) 

 

SVPWM

ia

ib

 iq

            τe 

 abc

            dq

ΣΣ PId

CCT1

id
*

-

id

iq

Σ Σ PIτ 

CCT2

vd
*

vq
*

d/dt θr

τe

-

Σωr
*

-
ωr

VDC

PMSG

PIω 

τe
*

vd
’

vq
’

 

Fig. 3.  Generator/Rectifier control scheme 

 

The second linearizing input term is then 

        (      )  (10) 

In order to achieve speed control, a reference speed is supplied 

to the controller by a maximum power point tracking (MPPT) 

algorithm. As shown in Fig. 3, a slow outer loop with a third 

PI controller uses the speed error to determine a torque 

command. This PI controller has anti-windup protection. The 

controller gains are given in Table III.   

B.  Space Vector Pulse-Width Modulation 

Once the controllers have provided reference voltages, (  
  

and   
 ) space vector pulse-width modulation (SVPWM) is 

used to force the generator terminal voltages to those 

setpoints. It is assumed that the DC link voltage varies slowly 

so it can be assumed to be constant. Therefore, the active 

rectifier operates in very much the same way as a VSI: holding 

the DC link voltage constant, the controller fixes the output 

voltage of the generator. Although the generator produces a 

back EMF voltage proportional to the speed of rotation, the 

generator’s resistance and inductance decouples the back EMF 

from the terminal voltage, which can be set by the rectifier 

because the DC link voltage is approximately constant.  

SVPWM is based on the fact that there are six nonzero 

voltage vectors and two zero voltage vectors in the stationary 

reference frame that the rectifier can apply to the generator. 

The possible space vectors can be found by taking the Clarke 

transform of the line-to-neutral voltage of a six-step 3-phase 

bridge [19]. The voltage setpoint in the dq frame can be 

referred to the stationary reference frame through the inverse 

Park transform, rendering a complex space vector voltage 

setpoint, V
*
 [20]. An example is shown in Fig. 4. SV1 and 

SV2 in Fig. 4 are space vectors that represent two different 

state combinations of the six insulated gate bipolar transistor 

(IGBT) switches that make up the active rectifier. The rectifier 

switches between SV1, SV2 and a zero space vector quickly 

so that the average voltage applied to the generator is V
*
.  

 
TABLE III 

GENERATOR CONTROLLER GAINS 

Gain 10 kW Turbine 5 MW Turbine 

KP (  ) 0.27 0.5 

KI (  ) 1.2 0.12 

KP (  ) 0.07 0.01 

KI (  ) 10.5 20 

KP (  ) 900 3*107 

KI (  ) 12460 1.5*107 

 

 

 

jβ 

SV1 

SV2 

V* 

θ 

𝜋

 
 

α 



 4 

Fig. 4.  SVPWM in sector I. Sector I consists of 0 ≤θ ≤ π/3. 

 

The magnitude of V
*
 and the DC link voltage determine the 

modulation index as 

  
|  |

   

  (11) 

Though Fig. 4 shows only sector I, the principles can be 

easily extended to the other sectors (combinations of IGBT’s). 

This procedure has been well studied and details can be found 

in the literature [18] [21]. 

IV.  GRID-SIDE CONTROL 

Because the systems use full converters, it is possible to 

achieve a great deal of control over the power that is injected 

into the grid. This control is performed in the synchronous 

reference frame and an LCL filter is used to limit the 

harmonics in the inverter output current. A phase-locked loop 

(PLL), hosted on the inverter controller, is used to find the grid 

angle for the reference frame conversion [22]. A transformer 

is used to provide isolation between the VSI and the grid.  

A.  LCL Filter 

A circuit diagram of one phase of the filter is shown in Fig. 

5. An LCL filter is a better choice than a simple L filter in this 

application because better harmonic attenuation can be 

achieved with smaller components. However, LCL filters are 

inherently unstable due to resonance. One common way of 

damping that resonance is to place a resistor in series with the 

capacitor; this is called passive damping. 

The LCL filter in this paper was designed according to the 

guidelines provided by Liserre et al. [23]. The component 

values selected are L1=L2= 0.574 mH, C=5.6 μF, RD=5 Ω. The 

guidelines depend on the switching frequency of the inverter 

which was chosen to be 7 kHz. Instead of using a discrete 

inductor for L2, the transformer was designed in such a way 

that the primary winding functioned as L2. Also, the resonant 

frequency was slightly higher than recommended by Liserre et 

al., but no resonance problems were seen in the results. 

B.  Reactive Power Control 

One of the advantages of using a 3-phase full converter is 

the relative ease of controlling reactive power. Reactive power 

control is achieved in the reference frame attached to phase A 

of the grid voltage, called the synchronous reference frame. 
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Fig. 5.  One phase of an LCL filter with a passive damping resistor. 

 

  

 

 

Assuming that the grid is relatively stiff and no fundamental 

current flows into CAC, KVL loop equations can be written in 

the synchronous reference frame as 

              
   

  
     (12) 

and 

              
   
  

      (13) 

where   is the combined series resistance of the filter and 

grid,   is the combined series inductance of the filter and gird, 

   is the inverter voltage,    is the grid voltage, and   is the 

angular frequency of the grid. It should be emphasized that the 

d-axis and q-axis quantities in this section are in no way 

related to those in Section III. The grid voltage space vector is 

[
   

   
]  [

 
 ̂
]  (14) 

where  ̂ is the peak phase voltage. It is assumed that the phase 

voltages are cosinusoidal. The active and reactive power 

outputs of the inverter can be written as 

  
 

 
      (15) 

and 

  
 

 
      (16) 

respectively.     is assumed to be fixed because the grid is 

stiff so   can be completely controlled by controlling   . In a 

way very similar to the FOC of the generator, a reactive power 

controller can be designed using feedback linearization. R and 

L in (12) and (13) were considered to be that of the filter and 

the transformer for the purposes of feedback linearization. A 

block diagram for the controller is shown in Fig. 6 where 

KP=0.24and KI=0.85 for the PI controller.  

C.  DC Link Voltage Control 

It is common practice to use the q-axis grid current to 

control the DC link voltage [9] [10] [24] [25]. If the DC link 

voltage is constant, all of the power flowing out of the rectifier 

must then flow out of the inverter, less losses. The block 

diagram for the DC link voltage controller is shown in Fig. 7.  
 

 
Fig. 6.  Reactive power controller block diagram. 
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Fig. 7.  DC link voltage controller block diagram. L is the total inductance of 

the filter. 
 

 
Fig. 8.  DC link voltage process reaction curve for the 10 kW system. 
 

Unlike reactive power control, there’s no easy way to find a 

linearized transfer function for DC link voltage control. 

Therefore, the process reaction curve method, developed by 

Ziegler and Nichols, was used to find a starting point for 

tuning the PI controller [26]. Based on the process reaction 

curve (step response), the initial PI gains were determined as 

[27] 

 

   
    

  
 (17) 

and 

   
     

 
  (18) 

where S is the slope of the tangent line of the curve and T is 

the time between when the step command was issued and the 

process, DC link voltage in this case, began to change. The 

process reaction curve for the DC link voltage is shown in Fig. 

8. 

The initial gains were found with (17) and (18) and tuned 

until a satisfactory response was obtained. The final gains 

were KP=-0.56 and KI=-0.32. The gains are negative because 

this process exhibits reverse action, meaning an increase in the 

controller output (  ) produces a decrease in the process 

variable (   ) [28]. SVPWM is used as described in Section 

III to realize vsd* and vsq*. 

V.  RESULTS 

A.  10 kW System Model Results  

Simulations that include all of the tools, components, and 

controllers discussed above have been completed with 

operating conditions that are as realistic as possible. Fig. 9 

shows a comparison between the power curve for the Bergey 

Excel 10 as of its Small Wind Certification Council (SWCC) 

certification tests in 2011 and the power curve found with 

simulations as described in this paper, [29]. The results in Fig. 

8 show that the power curve found with the model presented 

in this paper is a reasonable approximation of the measured 

one. It has been documented that the FAST model turbine 

spins too fast at and above 10 m/s due to the lack of blade tip 

torsion in FAST [7]. Despite this, the power output was 

somewhat depressed between 11 and 13 m/s because of 

greater i
2
R losses, which only a detailed model such as this 

accounts for. 

Electromechanical simulations were performed to show the 

high level of detail included in the models in this work, as well 

as the and broad range of variables they are capable of 

simulating. Fig. 10 shows the wind input used in the 

simulations that produced the figures in this subsection. Figs. 

12 – 15 show various electrical and mechanical variables 

captured during the simulation. The first 10 seconds of the 

simulation were disregarded for initialization of the model. 

 
Fig. 9.  Power curve comparison between measured Bergey Excel 10 data and 

simulated data for the 10 kW system. 

 

 
Fig. 10.  Wind input used in 10 kW simulations. 
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Fig. 11.  Speed and generator torque for the 10 kW system. 
 

 
Fig. 12.  D-axis and q-axis current in the 10 kW generator. 

 

 
Fig. 13.  Real and reactive power injected onto the grid for the 10 kW system. 

 

Fig. 11 shows the speed and torque during the simulation. 

Clearly the speed follows the setpoint very closely, and the 

torque varies with approximately the same profile as the wind. 

Negative torque corresponds to generator action in both 

models. 
 

 
Fig. 14.  Tail furl angle for the 10 kW system. 

 

Fig. 12 shows that the generator current control scheme 

from Fig. 3 works properly. The d-axis current is controlled to 

zero to minimize losses in the generator, while the q-axis 

current follows the torque as predicted by (5). 

Fig. 13 shows the real and reactive power produced by the 

system. As expected, the real power (P) approximately follows 

the wind profile, reaching a peak of 7.5 kW at 11.75 m/s. Fig. 

13 also shows the model’s reactive power control in action as 

it is arbitrarily controlled from 0 to 1 kVAR to -1 kVAR. 

Finally, the tail furl angle of the turbine is shown in Fig. 14. 

This is just one example of turbine, tower, and blade variables 

that can be simulated by FAST. A complete list of those 

variables can be found in [17]. 

B.  5 MW System Model Results 

Fig. 15 shows the power curve of the 5 MW system model 

compared to that for the REpower 5 MW machine. The 5 MW 

turbine model, the NREL 5 MW turbine, is based partly on the 

REpower machine. Clearly, from Fig. 15, the 5 MW model 

agrees very closely with the published power curve of the 

REpower machine. 

Fig. 16 shows the wind input used for the simulation results 

shown in this subsection. 

 
Fig. 15.  Power curve comparison between measured REpower 5MW data and 
simulated data for the 5 MW system. 
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Fig. 16.  Wind input used in the 5 MW system simulations. 

 

 
Fig. 17.  Power curve comparison between measured REpower 5MW data and 

simulated data for the 5 MW system. 
 

 
Fig. 18.  D-axis and q-axis current in the 5 MW generator. 

 
Fig. 19.  Real and reactive power injected onto the grid for the 5 MW system. 

 

Fig. 17 shows the speed and torque of the generator. As 

expected, the torque approximately follows the wind as the 

torque controller works to maintain the proper speed. The 

speed matches its setpoint well throughout the simulation. 

Fig. 18 shows the d-axis and q-axis current during the 

simulation. Like Fig. 12 for the 10 kW system, the d-axis 

current is well regulated to zero, and the q-axis current is used 

to produce all of the generator torque.  

Finally, Fig. 19 shows the real and reactive power output of 

the system onto the grid. The real power follows the same 

basic trend as the wind, while the reactive power is arbitrarily 

controlled to show the capability of the model and validity of 

the controllers developed above. The reactive power is 

controlled to ± 1 MVAR, which represents 0.9 leading and 

lagging power factor at an output of 2 MW. 

VI.  CONCLUSIONS AND FUTURE WORK 

Highly detailed models have been developed for two of the 

major classes of wind turbines: residential-scale and utility-

scale. The models are the first to couple the high-detail, high-

accuracy mechanical and aeroelastic simulation capabilities of 

FAST to full electrical system models for PMDD wind 

turbines. Very specific information on the development of the 

models has been provided, especially on the electrical system, 

so that they may be easily reproduced and used in wind 

turbine design and research. Some results have been presented 

that show comparisons between the power curves obtained 

with the models presented in this paper and those obtained 

experimentally. The models’ power curves match the 

experimental ones very closely, which shows the validity of 

the models. Other results have also been presented that show 

some of the high level of detail the models are capable of 

producing. 

Future work includes further validation of the models 

against experimental data, as well as developing a similar 

model for mid-size (150 – 750 kW) PMDD wind turbines. 
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