by.
TERRY LEE APPLEGATE
B.S., Kansas State University, 1977
A MASTER'S THESIS
Submitted in partial fulfillment of the requirements for the degree
MASTER OF SCIENCE
Department of Industrial Engineering KANSAS STATE UNIVERSITY
Manhattan, Kansas

1978

Approved by:

ACKNOWLEDGEMENTS

A 65
C. 2

I would like to thank my family, the faculty and personnel of the Department of Industrial Engineering at Kansas State, and my fellow students. Each of these groups helped make this segment of my education meaningful. Special thanks is given to Dr. Doris Grosh, whose faith and guidance were instrumental in my completing my course of studies and to my wife, Debora, without whose encouragement and understanding nothing would have been worthwhile.

TABLE OF CONTENTS

CHAPTER PAGE
I. INTRODUCTION 1
1.0. Genesis 1
1.1. The Problem 1
1.2. Purpose and Objective 1
1.3. Method 2
1.3.1 The Index of Non-Congruity - δ 2
1.3.2. The Procedure 3
1.3.3. The McGill Random Number Generator 8
II. THE EXPONENTIAL CASE 10
2.0. Introduction 10
2.1. Determination of the Point of Intersection 10
2.2. The Index of Non-Congruity: Exponential Case 12
2.3. Description of Exponential Program Features 13
2.3.1. Program Listing 13
2.3.2. Definition of Program Variables 13
2.3.3. Inputs to the Program 14
2.3.4. Outputs of the Program 15
2.3.5. Special Programming Considerations 15
2.4. Results of the Exponential Program 16
III. THE NORMAL CASE 29
3.0. Introduction 29
3.1. Determination of the Point or Points of Intersection 29
3.2. The Index of Non-Congruity: Normal Case 31
3.3. Description of Normal Program Features 34
3.3.1. Program Listing 34
CHAPTER PAGE
3.3.2. Definition of Program Variables 34
3.3.3. Inputs to the Program 37
3.3.4. Outputs of the Program 37
3.3.5. Special Programming Considerations 37
3.4. Results of the Normal Program 40
IV. CONCLUSION 68
SELECTED BIBLIOGRAPHY 70
APPENDIX 1 71
APPENDIX 2 80
Figure Page
1-1. Illustration of the Index of Non-Congruity 4
1-2. Distribution divided into Equi-probability Regions 6
2-1. The Index of Non-Congruity for Exponential Distri- butions 11
2-2. δ vs. $\lambda_{2} / \lambda_{1}$ 19
2-3. $\quad X_{P S}^{2}$ vs. $\lambda_{2} / \lambda_{1}$ 202-4. $x_{P S}^{2}$ vs. δ21
2-5. $\quad x_{R}^{2}$ vs. $x_{P S}^{2}$ 22
2-6. $\hat{\alpha}$ vs. $\lambda_{2} / \lambda_{1}$ 23
2-7. α vs. δ 24
2-8. Possible Model of the Relationship of α and δ 26
3-1. \quad The Normal Case with Two Points of Intersection 32
3-2. The Normal Case for Equal Standard Deviations 33
3-3. \quad Tree Diagram for Sorting Procedure 39
3-4. $x_{P S}^{2}$ vs. δ - Single Variation 42
3-5. $x_{P S}^{2}$ vs. δ - Dual Variation 43
3-6. $\quad \delta$ vs. η_{1} - Single Variation 44
3-7. $\quad \delta$ vs. n_{1} - Dual Variation 45
3-8. $x_{P S}^{2}$ vs. n_{1} - Single Variation 46
3-9. $x_{P S}^{2}$ vs. n_{1} - Dual Variation 47
3-10. $\quad x_{R}^{2}$ vs. $x_{P S}^{2}$ - Mean-Variate Data 48
3-11. x_{R}^{2} vs. $x_{P S}^{2}$ - Variance-Variate Data $\sigma_{1}<\sigma_{2}$ 49
3-12. x_{R}^{2} vs. $x_{P S}^{2}$ - Variance-Variate Data $\sigma_{1}>\sigma_{2}$ 50
3-13. x_{R}^{2} vs. $x_{P S}^{2}-D u a l$ Variation 51
3-14. a vs. δ - Mean-Variate Data 52
3-15. a vs. δ - Variance-Variate Data $\sigma_{1}<\sigma_{2}$ 53
Figure Page
3-16. 人 vs. δ - Variance-Variate Data ${ }_{1}>\sigma_{2}$ 54
3-17. a vs. δ - Dual Variation 55
3-18. $\hat{\alpha}$ vs. η_{1} - Mean-Variate Data 56
3-19. $\hat{\alpha}$ vs. η_{1} - Variance-Variate Data $\sigma_{1}<\sigma_{2}$ 57
3-20. $\hat{\alpha}$ vs. η_{1} - Variance-Variate Data $\sigma_{1}>\sigma_{2}$58

LIST OF TABLES

TABLE PAGE
2-1. Results of the Exponential Program 17
3-1. Results of the Normal Program 62

Chapter 1

Introduction

1.0 GENESIS

This study had its origin in an earlier study for the United States Nuclear Regulatory Commission concerned with diesel engine failure data obtained from several nuclear power plants throughout the United States (3). A result of this earlier study was a number of questions concerning differences between statistical distributions with the primary question being "How does one determine statistically significant differences between statistical distributions?". A subsequent study by K. Lakshminarayan (4) applied the methodology used'in this study to Beta distributions.

1.1 THE PROBLEM

Statistical significance is usually concerned with comparing different sets of sample data or with making inferences about the populations being sampled. Various parametric and non-parametric techniques therefore exist for making these decisions. However, no such techniques exist for comparing the populations themselves. The problem to be investigated is: given a family of statistical distributions, how much may a pair of distributions from this family differ before they can be detected as being significantly different, or "How different is different?".

1.2 PURPOSE AND OBJECTIVE

There are primarily two reasons for studying differences between similar distributions of the same family. The first reason deals with the theoretical insights which can result from studying the effects that perturbations of distribution parameters have on the "sameness" of family members. With better understanding of the role of distribution parameters and their
relative importance in determining the characteristics of a particular distribution, hopefully more powerful estimating and comparative statistical techniques can be developed. The second and probably more important reason is the practical applications which could result from studying differences between statistical distributions. Applications could include new methods for establishing when sample data from similar sources could be pooled, parametric "goodness of fit" tests, and sample-free hypothesis testing.

With these two broad underlying reasons for studying differences in statistical distributions from the same family, the expressed objective of this study is: to develop a method of comparing differences in statistical distributions from the same family (normal distributions and exponential distributions are the families of statistical distributions studied), to use this technique to examine the effects of varying the parameters of the distributions on their "sameness", and to attempt to draw some conclusions pertaining to the usefulness of this technique in answering the question of "How different is different?".

1.3 METHOD

1.3.1. The Index of Non-Congruity - δ

The following discussion is an adaptation of material presented by Lakshminarayan (3).

Theoretically, two continuous distributions are the same only if their probability density functions are identical and for their probability density functions to be identical the two distributions must have exactly the same parameters. In practical situations however, two distributions Whose probability density functions (and therefore parameters) are nearly the same, may produce random samples which are indistinguishable from one
another. It is this type of situation which indicates that merely examining the probability density functions (or the parameters) of two distributions to see if they are identical does not provide enough information to judge if the two distributions are similar enough to consider them practically as being the same, or if they are different enough that they must be considered as different.

One measure that determines differences between continuous distributions is the difference in the areas bounded by each probability density function in the region of interest or the amount of non-overlapping area bounded by the curves. If $f_{1}(x)$ and $f_{2}(x)$ are the probability density functions (Figure 1-1) of the two distributions being compared, then the amount of non-overlapping area or what we have termed "the index of noncongruity" is given by:

$$
\begin{equation*}
\delta=\int_{-\infty}^{\infty}\left|f_{1}(x)-f_{2}(x)\right| d x \tag{1}
\end{equation*}
$$

The non-overlapping area is shown by the shaded portion of Figure 1-1 and the total amount of this shaded area equals δ. To qualify as probability density functions, $f_{1}(x)$ and $f_{2}(x)$ each must satisfy the criterion:

$$
\begin{equation*}
\int_{-\infty}^{\infty} f(x) d x=1 \tag{2}
\end{equation*}
$$

Therefore the values that can be assumed by the index of non-congruity are $0 \leq \delta \leq 2$. If two distributions are approximately the same then δ will be close to zero and if two distributions are radically different the value of δ will approach 2 .

1.3.2. The Procedure

The general procedure used in this study is to choose a particular

FIGURE 1-1 Illustration of the Index of Non-Congruity
distribution from a family of distributions and then compare it to a similar distribution from the same family. The first distribution will be termed the "model distribution" (Distribution 1) and the similar distribution will be termed the "alternative distribution" (Distribution 2).

The procedure by which the alternative distribution is compared with the model distribution consists of a number of steps. The first step is to calculate the index of non-congruity between the two distributions as explained in Section 1.3.1.

Secondly, the model distribution is divided into ten equi-probability regions. A set of values $\{x(i)\}$ of the independent variable is calculated such that:

$$
\begin{equation*}
\int_{-\infty}^{x(i)} f_{1}(x) d x=i / 10 \quad i=1, \ldots, 10 \tag{3}
\end{equation*}
$$

The values $\{x(i)\}$ are such that the sample space of the independent variable is divided into regions which have the same area under the curve of the probability density function, as shown in Figure 1-2. After the equiprobability regions for the model distribution have been determined, a "perfect" sample is drawn from the alternative distribution by using the $\{x(i)\}$ from the model distribution as interval boundaries of the alternative distribution. A "pseudo" $-x^{2}$ statistic is then calculated from this "perfect" sample. This pseudo- χ^{2} statistic, x^{2} PS, is :

$$
\begin{equation*}
x_{P S}^{2}=\sum_{i=1}^{10} \frac{\left\{\left[F_{2}(i)-F_{2}(i-1)\right] M-.1(M)\right\}^{2}}{.1(M)} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{2}(i)=\int_{-\infty}^{x(i)} f_{2}(x) d x, \tag{5}
\end{equation*}
$$

M is the sample size and $F_{2}(0)=0$. We are interested in small sample sizes because small sample sizes are usually encountered in practical

FIGURE 1-2 Distribution divided into Equi-probability Regions
situations, and with very large sample sizes even small differences are discernable. Therefore a value of 50 is used for M in this study. The "pseudo" x^{2} and "perfect" sample are used to reduce the effects introduced by random fluctuations and to better ascertain the basic relationship between the index of non-congruity and differences between the model and alternative distributions.

The third step in the procedure comparing the alternative distribution to the model distribution is that a genuine random sample of size M is drawn from the alternative distribution and the sample is compared to the model distribution. The comparison is made by an ordinary x^{2} goodness of fit test. The random x^{2} statistic is calculated to provide a check on the x^{2} PS results and to provide additional insight into the question of differences between statistical distributions. Once the random x^{2}, denoted by χ_{R}^{2}, has been determined, the level of significance $\hat{\alpha}$ is calculated. Usually when a x^{2} statistic is calculated it is then compared to a value obtained from an appropriately chosen x^{2} distribution to determine significance at a prescribed confidence level. In this situation this technique is not totally satisfactory since we are not only interested in whether a particular χ_{R}^{2} value is significant but also in how significant it is. The level of significance $\hat{\alpha}$ is the area to the right of the computed (observed) x_{R}^{2} of a x^{2} distribution with 9 degrees of freedom. There are 9 degrees of freedom since the model distribution is divided into 10 equiprobability regions and the random observations are sorted into these regions for ease of computation. The level of significance gives a more intuitively comprehensible measure of difference than the x^{2} PS and x_{R}^{2} values.

The final step in comparing the alternative distribution with the model distribution is the calculation of parametric indicators which
attempt to quantify the differences between the model distribution and the alternative distribution. It is hoped that a relationship can be discovered between a parametric indicator and the index of non-congruity. Using this relationship combined with knowledge about the relationship between the index of non-congruity and statistical significance it may be possible to find a measure of statistical difference between distributions based solely on the parameters of the distributions. Such a parametric indicator would be of considerable practical importance because it would be easy to calcu-. late.

In summary, the comparison procedure given a model distribution and an alternative distribution is:

1) Calculate δ, the index of non-congruity
2) Calculate $x^{2} P S$, the "pseudo" chi-square statistic from a "perfect" sample
3) Calculate x_{R}^{2} from a random sample from the alternative distribution
4) Calculate $\hat{\alpha}$, the level of significance for χ_{R}^{2}
5) Calculate various parametric indicators

1.3.3 The McGill Random Number Generator

This study is primarily based on the use of a computer to perform the comparison procedure outlined in Section 1.3.2. One of the major problems in the development of a program to perform this procedure is the generation of a random sample from the alternative distribution to be used in calculating $X_{R}{ }^{2}$. The McGill Random Number Generator developed by members of the School of Computer Science of McGill University seemed particularly well suited for the requirements of this study. The McGill RNG has several features which led to its selection. First, the use of the McGill RNG
is FORTRAN compatible and the rest of the program will be written in FORTRAN. Second, the McGill RNG is called as a FORTRAN function rather than as a subroutine, which is advantageous in terms of computation time. Third, the previous value returned is maintained internally by the McGill RNG which leads to easier programming. Fourth, the McGill RNG has special procedures for generating random samples from normal and exponential distributions, thereby eliminating the need to program a transformation for converting a uniform distribution to either of these distributions. Finally, the McGill RNG is included in the subroutine library of the Kansas State University computing system, eliminating the need to include an additional subprogram for the random number generator in the index of noncongruity program.

Chapter 2

THE EXPONENTIAL CASE

2.0 INTRODUCTION

This chapter describes the specific procedure for calculating the index of non-congruity for exponential distributions, the program developed to perform the comparison procedure outlined in Section 1.3.2. for exponential distributions, and the results of using this procedure to compare several pairs of exponential distributions.

2.1 DETERMINATION OF THE POINT OF INTERSECTION

Let $f_{f}(x)$ be the probability density function of an exponential distribution with parameter λ_{1} and let $f_{2}(x)$ be the probability density function of an exponential distribution with parameter λ_{2}. Assume that $\lambda_{2}>\lambda_{1}$. Consider Figure 2-1 which shows two exponential distributions fulfilling these requirements. The shaded area represents the index of non-congruity for this pair of distributions. This area difference is given by Equation (1) which is repeated again for clarity.

$$
\begin{equation*}
\delta=\int_{-\infty}^{\infty}\left|f_{7}(x)-f_{2}(x)\right| d x \tag{1}
\end{equation*}
$$

To facilitate calculation of δ, this integral can be divided into 2 components.

$$
\begin{equation*}
\delta=\int_{0}^{\infty}\left|f_{1}(x)-f_{2}(x)\right| d x=\int_{0}^{X_{A}}\left[f_{2}(x)-f_{1}(x)\right] d x+\oint_{A}^{\infty}\left[f_{1}(x)-f_{2}(x)\right] d x \tag{6}
\end{equation*}
$$

X_{A} is the point of intersection of the two probability density functions. Finally note that this expression applies for the case where $\lambda_{2}>\lambda_{1}$ and for the case where $\lambda_{1}>\lambda_{2}$ the limits of integration for the component integrals would have to be exchanged to insure the proper sign for δ.

FIGURE 2-1 The Index of Non-Congruity for Exponential Distributions

The following calculation demonstrates the determination of the point of intersection X_{A}. At $X=X_{A}$

$$
\begin{align*}
& \lambda_{1} e^{-\lambda_{1} X_{A}}=\lambda_{2} e^{-\lambda_{2} X_{A}} \tag{7}\\
& e^{\left(\lambda_{2}-\lambda_{1}\right) X_{A}}=\frac{\lambda_{2}}{\lambda_{1}} \tag{8}\\
& \left(\lambda_{2}-\lambda_{1}\right) X_{A}=\ln \frac{\lambda_{2}}{\lambda_{1}} \tag{9}\\
& X_{A}=\left[\frac{1}{\lambda_{2}-\lambda_{1}}\right] \ln \frac{\lambda_{2}}{\lambda_{1}} \tag{10}
\end{align*}
$$

2.2 THE INDEX OF NON-CONGRUITY: EXPONENTIAL CASE

Having determined the point of intersection X_{A} the expression for the index of non-congruity can be modified. Substituting into Equation (6) we obtain:

$$
\begin{align*}
& \delta=\int_{0}^{X_{A}}\left[\lambda_{2} e^{-\lambda_{2}} X_{-\lambda_{1}} e^{-\lambda_{1}} \mathrm{X}\right] d x+\int_{X_{A}}^{\infty}\left[\lambda_{1} e^{-\lambda_{1} X^{X}}-\lambda_{2} e^{-\lambda_{2}}{ }^{X}\right] d x \tag{11}\\
& =\int_{0}^{X_{A}} \lambda_{2} e^{-\lambda_{2}}{ }^{X} d x-\int_{0}^{X_{A} \lambda_{1}} e^{-\lambda_{1} X} d x \tag{12}\\
& +\int_{X_{A}}^{\infty} \lambda_{1} e^{-\lambda_{1} x} d x-\int_{X_{A}}^{\infty} \lambda_{2} e^{-\lambda_{2} x} d x \\
& =-e^{-\lambda_{2}} X_{0} X_{A}--e^{-\lambda_{1}} X_{0} X_{A} \tag{13}\\
& +-\left.e^{-\lambda} 1\right|_{X_{A}} ^{\infty}--e^{-\lambda} 1_{1} X_{X_{A}}^{\infty} \\
& =\left[-e^{-\lambda_{2} X_{A}}+1\right]-\left[-e^{-\lambda_{1} X_{A}}+1\right] \tag{14}\\
& +\left[0+e^{-\lambda} X^{X} A\right]-\left[0+e^{-\lambda} 2^{X} A\right] \\
& =2 e^{-\lambda_{1} X_{A}}-2 e^{-\lambda_{2} X_{A}} \tag{15}
\end{align*}
$$

Therefore

$$
\begin{equation*}
\delta=2\left[e^{-\lambda} 1^{X} A-e^{-\lambda} 2^{X} A\right] \tag{16}
\end{equation*}
$$

This development is for the case where $\lambda_{2}>\lambda_{1}$. For the case where
$\lambda_{1}>\lambda_{2}$ the index of non-congruity is:

$$
\begin{equation*}
\delta=2\left[e^{-\lambda_{2} X_{A}}-e^{-\lambda_{1} X_{A}}\right] \tag{15a}
\end{equation*}
$$

and:

$$
\begin{equation*}
x_{A}=\frac{1}{\lambda_{1}-\lambda_{2}} \ln \frac{\lambda_{1}}{\lambda_{2}} \tag{10a}
\end{equation*}
$$

2.3 DESCRIPTION OF EXPONENTIAL PROGRAM FEATURES

2.3.1 Program Listing

A complete listing of the computer program to perform the comparison procedure for exponential distributions is given in Appendix 1.

2,3.2. Definition of Program Variables
AHAT: the level of significance, $\hat{\alpha}$
CADTR: function subroutine to determine $\hat{\alpha}$
DIFFL: absolute difference of λ_{1} and $\lambda_{2},\left|\lambda_{1}-\lambda_{2}\right|$
DELTA: the index of non-congruity, δ
EI: the expected frequency in the equi-probability regions, M/10 FREQ(10): the array containing the frequency counts of the random sample sorted into the equi-probability regions
F2SUM: the sum of the components of the array FREQ squared
ISEED: one of the seeds for the McGill RNG
JSEED: the other seed for the MCGill RNG
K: the index for the array FREQ. K can take on integer values from 1 to 10.
LAMDA1: the parameter of the model exponential distribution
LAMDA2: the parameter of the alternative exponential distribution
M: the sample size
NU: the degrees of freedom for the x^{2} distribution which $x_{P S}^{2}$ and x_{R}^{2} are compared with

P2(10): the array containing the cumulative probability of the alternative distribution at the region boundries $\{x(i)\}$

RATIO: the ratio of λ_{1} and λ_{2}, if $\lambda_{2}>\lambda_{1}$

$$
\text { RATIO }=\frac{\lambda_{2}}{\lambda_{1}} \text { and if } \lambda_{1}>\lambda_{2} \text { RATIO }=\frac{\lambda_{1}}{\lambda_{2}}
$$

REXP: subroutine to generate a random deviate from an exponential distribution with mean $\lambda=1$

RSTART: subroutine to initialize the McGill Random Number Generator SAMPL(200): the array containing the random sample from the alternative distribution

T1: the point of intersection X_{A}
$\mathrm{XI}(10)$: the equi-probability region boundaries $\{x(i)\}$
X2ACT: the random x^{2} statistic, x_{R}^{2}
X2PS: the pseudo x^{2} statistic, x^{2} pS
X2SUM: the sum of $\left[P 2(10)-\mathrm{XI}_{1}(10)\right]^{2}$ used in the calculation of X2PS 21: variable equal to the negative of the product of LAMDA1 and Tl
z2: variable equal to the negative of the product of LAMDA2 and T 1

2.3.3. Inputs to the Program

The variables required as input to the program are:
LAMDAT, LAMDA2, M, ISEED, JSEED
The input is given on two separate cards with the indicated format.

LAMDAT, LAMDA2, M	1 card	(2E10.4, I5)
ISEED, JSEED	1 card	(215)

Multiple runs of the program can be made by supplying additional input cards (two per replication) containing the information described above. Program completion is indicated by a blank card.

2.3.4. Outputs of the Program

The program provides two types of output. The first type is an echo check of the input. The second type is information calculated by the program. The following information is produced as output of the second type: the array $\mathrm{X1}$, the array P 2 , the first M components of the array SAMPL, the array FREQ, DELTA, X2PS, X2ACT, and AHAT. A sample output is shown in Appendix 1.

2.3.5. Special Programming Considerations

Using the McGill Random Number Generator The use of the McGill RNG is accomplished by the two subroutines RSTART and REXP. RSTART initializes the RNG. The arguments of RSTART are ISEED and JSEED. The transfer from the main program to the RSTART subroutine is made by the statement Call RSTART (ISEED, JSEED). The RNG provides default values if RSTART is not used. REXP generates a random exponential deviate from an exponenetial population with parameter $\lambda=1$. This random deviate is transformed into a random deviate from an exponential population with parameter λ_{A} by dividing by λ_{A} e.g. $z=x / \lambda_{A}$ where z is the random deviate from the desired distribution and x is the generated random deviate. The argument of REXP is a dummy integer constant which is ignored by the program. In other words use of $\operatorname{REXP}(10)$ or $\operatorname{REXP}(98765)$ produces the same effect i.e. the generation of an exponential random deviate. Use of the function subroutine REXP is accomplished by using $\operatorname{REXP}(1)$ in an arithmetic function e.g. SAMPL(I) $=$ $\operatorname{REXP}(1) /$ LAMDA2.

Sorting the Random Sample Observations In designing a sorting procedure the objective is to minimize the expected number of sorting trials for a sample set while maintaining a level of simplicity in the programming. The sorting procedure used in the program consists of a loop containing a
set of test statements which compares the random deviate with the equal probability region boundaries sequentially until the deviate is less than the boundary value. The deviate is then placed in the frequency region which has the boundary value as its upper bound. This sorting procedure would minimize the expected number of trials for the case where $\lambda_{2}>\lambda_{1}$. However for the case where $\lambda_{1} \gg \lambda_{2}$ this procedure would result in a high expected number of trials. This was not considered a significant problem since we are primarily concerned with cases where λ_{1} and λ_{2} are nearly equal. Calculating $\hat{\alpha}$ The level of significance, $\hat{\alpha}$, is calculated by the function subroutine CADTR which is a slightly modified version of the CDTR subroutine contained in IBM's Scientific Subroutine Package. The modifications include changing the subprogram from a subroutine subprogram to a function subprogram and modifying the inputs and outputs of the subprogram.

2.4. RESULTS OF THE EXPONENTIAL PROGRAM

Four different sets of values of random number generator seeds were used in investigating the exponential case. Values of distributions compared varied from $\lambda_{2} / \lambda_{1}=1 / 3$ to $\lambda_{2} / \lambda_{1}=3$. For $\lambda_{1}>\lambda_{2}$ the value of λ_{2} was set to equal 10 and for $\lambda_{2}>\lambda_{1}$ the value of λ_{1} was set equal to 10 . Therefore in every pair of distributions compared the smallest parameter was equal to 10. This was done for computation convenience since only the ratio is pertinent (as seen from Equations (10) and (16)), rather than the absolute size of λ_{1} and λ_{2}. The sample size used in the comparison was set equal to 50 in all cases. The results of the various combarison runs are summarized in Table 2-1.

Various relationships between comparison indices are graphically presented in Figures 2-2 to 2-7. Examination of these figures indicates that there is good reason to believe that there is a strong relationship

TABLE 2-1
Results of the Exponential Program

λ_{1}	λ_{2}	RATIO	RNG Seed	δ	$\begin{array}{r} 2 \\ \times P S \\ \hline \end{array}$	x_{R}^{2}	α
30	10	1/3	A	. 7698	76.80	86.00	. 0000
			B			84.40	. 0000
			C			120.40	. 0000
			D			75.20	. 0000
20	10	1/2	A	. 5	28.67	24.40	. 0037
			B			39.20	. 0000
			C			48.80	. 0000
			D			41.60	. 0000
17.5	10	4/7	A	. 4064	17.93	20.00	. 0179
			B			46.80	. 0000
			C			37.20	. 0000
			D			36.00	. 0000
15	10	2/3	A	. 2963	8.88	9.20	. 4190
			B			28.80	. 0007
			C			21.60	. 0102
			D			18.40	. 0508
12.5	10	$4 / 5$	A	. 1638	2.48	4.80	. 8514
			B			14.40	. 1088
			C			10.40	. 3191
			D			14.00	. 1223
10	12.5	5/4	A	. 1638	2.00	10.40	. 3191
			B			12.40	. 1917
			C			10.00	. 3505
			D			9.20	. 4190
10	15	$3 / 2$	A	. 2963	6.13	10.40	. 3191
			B			13.60	. 1373
			C			10.80	. 2897
			D			12.80	.1719
10	17.5	7/4	A	. 4064	11.12	17.60	. 0401
			B			20.00	. 0179
			C			18.80	. 0269
			D			18.80	. 0269
10	20	2/1	A	. 5	16.50	19.60	. 0205
			B			23.20	. 0058
			C			18.80	. 0269
			D			26.40	. 0018

Table 2-1 continued

λ_{1}	λ_{2}	RATIO	$\begin{aligned} & \text { RNG } \\ & \text { SEED } \\ & \hline \end{aligned}$	δ	$x_{P S}^{2}$	χ_{R}^{2}	$\hat{\alpha}$
10	30	3/1	A	. 7698	39.50	48.40	. 0000
			B			40.40	. 0000
			C			43.60	. 0000
			D			47.60	. 0000
$\begin{aligned} M=50, R N G= & A(51562,62155) \\ & C(50020,11292)\end{aligned}$					$B(62155,51562)$		

FIGURE $2-2$ ovs. $\lambda_{2} / \lambda_{1}$

FIGURE $2-3 \quad x_{\text {PS }}^{2}$ vs. $\lambda_{2} / \lambda_{1}$

FIGURE 2-4 $x_{\text {PS }}^{2}$ vs. s

FIGURE $2-5$ x_{R}^{2} vs. $x_{P S}^{2}$

FIGURE $2-5 \quad \hat{\alpha}$ vs. $\lambda_{2} / \lambda_{1}$

between all of the comparison indices plotted. It is only possible at present to make very tentative estimates of most of these relationships. The comparison variable pairs where a clear relationship exists are δ vs $\lambda_{2} / \lambda_{1}, x_{\text {PS }}^{2}$ vs δ, and $\chi_{\text {PS }}^{2}$ vs $\lambda_{2} / \lambda_{1}$. These relationships do not vary with different random samples. However, for the relationships involving variables which are affected by different random samples-namely x_{R}^{2} and $\hat{\alpha}$ - it is only possible to make tentative estimates of the relationships. To obtain better insight into these relationships, it would be necessary to increase the number of replications (using different random number seed values each time). Increasing the number of replications would increase the knowledge of the distribution of the values assumed by x_{R}^{2} and $\hat{\alpha}$ at fixed values of the non-effected variables $\left(\delta, \lambda_{2} / \lambda_{1}\right.$, and $x_{\text {PS }}^{2}$ and would also increase the accuracy of the estimate of the mean value of the affected variables. With sufficient replications it would be possible to obtain very reliable figures of the type shown in Figure 2-8 which illustrates a possible model of the relationship of $\hat{\alpha}$ and . The knowledge of these tentative relationships is believed to be sufficient for the purposes of this study but it is recognized that further research should proceed in the effort to better quantify these relationships. Examination of Figures 2-2 to 2-7 provides some valuable insights and also produces some interesting observations. First, as shown in Figure 2-2, δ changes at a faster rate for a given change in the lambda ratio for $\lambda_{2} / \lambda_{1}<1$ than for $\lambda_{2} / \lambda_{1}>1$. This indicates that if an alternative distribution is compared to a model distribution having a smaller parameter, of size $\lambda_{2}-\varepsilon$ say, it is more likely that the two distributions can be considered as equivalent (because of a smaller δ value) than if the alternative distribution was compared to a model distribution having a correspondingly larger parameter of $\lambda_{2}+\varepsilon_{\text {。 }}$

Second, as indicated in Figures 2-3 and 2-4, $x_{P S}^{2}$ (and therefore

FIGURE 2-8 Possible model of the Relationship of α and δ
presumably χ_{R}^{2} and $\hat{\alpha}$) is more sensitive to differences in the distributions being compared for $\lambda_{2} / \lambda_{1}<1$ than for $\lambda_{2} / \lambda_{1}>1$. This sensitivity is in addition to the effect on δ of the relative magnitude difference of the parameters of the distributions. This indicates that in addition to the added likelihood that an alternative distribution and a model distribution can be considered equivalent for $\lambda_{2} / \lambda_{1}>1$ due to the magnitude effect, there is also an additional effect caused by the reduced sensitivity to difference for $\lambda_{2} / \lambda_{1}>1$.

Figure 2-5 indicates that $x_{P S}^{2}$ in general tends to be smaller than x_{R}^{2}. It also appears that there is a linear trend between $x_{P S}^{2}$ and x_{R}^{2} if the point $x_{P S}^{2}=76.8, x_{R}^{2}=120.40$ is not considered. A least-squares line was calculated for this relationship. The equation of this line is $X_{R}^{2}=.95465 x_{P S}^{2}+$ 9.36853.

Figure 2-5 and Table 2-1 also produce two interesting observations. First, there is a tighter grouping of x_{R}^{2} from cases where $\lambda_{2} / \lambda_{1}>1$. Second, RNG seed A seems to produce peculiar results for cases where $\lambda_{2} / \lambda_{1}<1$. The underlying causes of these two phenomena are not fully understood.

From Figure 2-7 it appears that δ tends to be significant at the . 05 level above values of . 4 . At values between $.3 \leq \delta \leq .4$ the result is ambiguous if the judgment is to be based on $\hat{\alpha}\left(x_{R}^{2}\right)$. If $x_{P S}^{2}$ is used to judge the two distributions for equivalence the range of uncertainty for δ can be determined from Table 2-1. Significance occurs at x^{2} values around 17 at the .05 level. Therefore $x_{\text {PS }}^{2}$ would indicate significance at the .05 level above 8 since $.95465(8)+9.36853=17$. It appears that if $x_{P S}^{2}$ is used as the judgment criterion, then for δ to indicate significance its value must be greater than .3 for $\lambda_{2} / \lambda_{1}<1$ and greater than .35 for $\lambda_{2} / \lambda_{1}>1$. Using $x_{P S}^{2}$ as the judgment criterion the uncertainty range for
δ appears to be

$$
\begin{array}{ll}
.2 \leq \delta \leq .3 & \lambda_{2} / \lambda_{1}<1 \\
.25 \leq \delta \leq .35 & \lambda_{2} / \lambda_{1}>1
\end{array}
$$

These δ values imply that if $\lambda_{2} / \lambda_{1}$ is to be used to test for significance as opposed to δ then the uncertainty regions are

$$
\begin{aligned}
& \left\{\begin{array}{l}
.57 \leq \lambda_{2} / \lambda_{1} \leq .67 \quad \lambda_{2} / \lambda_{1}<1 \\
1.5 \leq \lambda_{2} / \lambda_{1} \leq 1.75 \quad \lambda_{2} / \lambda_{1}>1
\end{array}\right\} \hat{\alpha} \text { basis } \\
& \left\{\begin{array}{l}
.65 \leq \lambda_{2} / \lambda_{1} \leq .75 \quad \lambda_{2} / \lambda_{1}<1 \\
1.45 \leq \lambda_{2} / \lambda_{1} \leq 1.6 \quad \lambda_{2} / \lambda_{1}>1
\end{array}\right\} x_{\text {PS basis }}^{2}
\end{aligned}
$$

and significance is indicated for values of

$$
\begin{aligned}
& \lambda_{2} / \lambda_{1} \leq .57 \text { or } \lambda_{2} / \lambda_{1} \geq 1.75 \quad \hat{\alpha} \text { basis } \\
& \lambda_{2} / \lambda_{1} \leq .65 \text { or } \lambda_{2} / \lambda_{1} \geq 1.6 \quad x_{\text {PS }}^{2} \text { basis }
\end{aligned}
$$

Chapter 3

THE NORMAL CASE

3.0 INTRODUCTION

This chapter describes the specific procedure for calculating the index of non-congruity for normal distributions, the program developed to perform the comparison procedure outlined in Section 1.3.2. for normal distributions, and the results of using the procedure to compare several pairs of normal distributions.

3.1 DETERMINATION OF THE POINT OR POINTS OF INTERSECTION

Let $f_{f}(x)$ be the probability density function of a normal distribution with mean u_{1} and standard deviation σ_{1}. Let $f_{2}(x)$ be the probability density function of a normal distribution with mean u_{2} and standard deviation σ_{2}. At a point of intersection we have,

$$
\begin{equation*}
\frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{-1 / 2\left(\frac{x-u_{1}}{\sigma_{1}}\right)^{2}}-\frac{1}{\sqrt{2 \pi} \sigma_{2}} e^{-1 / 2\left(\frac{x-u_{2}}{\sigma_{2}}\right)^{2}}=0 \tag{17}
\end{equation*}
$$

and $\quad\left[\left(\frac{x-u_{1}}{\sigma_{1}}\right)^{2}-\left(\frac{x-u_{2}}{\sigma_{2}}\right)^{2}\right]=-2 \ln \frac{\sigma_{1}}{\sigma_{2}}$.
Then $\left(\sigma_{2}{ }^{2}-\sigma_{1}{ }^{2}\right) x^{2}-2\left(\sigma_{2}{ }^{2} u_{1}-\sigma_{1}{ }^{2} u_{2}\right)+\left[\sigma_{2}{ }^{2} u_{1}{ }^{2}-\sigma_{1}{ }^{2} u_{2}{ }^{2}+\right.$

$$
\begin{equation*}
\left.2 \sigma_{1}{ }^{2} \sigma_{2}{ }^{2} \ln \frac{\sigma_{1}}{\sigma_{2}}\right]=0 \tag{20}
\end{equation*}
$$

Equation (20) is of the form

$$
\begin{equation*}
A x^{2}+B x+C=0 \tag{21}
\end{equation*}
$$

The number of roots of equations of this form can be determined from the discriminant. If $\left(B^{2}-4 A C\right)$ is
negative there are no real roots
zero one real root $X_{A}=\frac{-B}{2 A}$
positive

$$
\text { two real roots, } x_{A 1}=\frac{-B+\sqrt{B^{2}-4 A C}}{2 A}
$$

$$
X_{A 2}=\frac{-B-\sqrt{B^{2}-4 A C}}{2 A}
$$

Denoting the discriminant by R, we find that

$$
\begin{equation*}
\mathrm{R}=4\left(\sigma_{2}^{2} u_{1}-\sigma_{1}^{2} u_{2}\right)^{2}-4\left(\sigma_{2}^{2}-\sigma_{1}^{2}\right)\left[\sigma_{2}^{2} u_{1}^{2}-\sigma_{1}^{2} u_{2}^{2}+2 \sigma_{1}^{2} \sigma_{2}^{2} \ln \frac{\sigma_{1}}{\sigma_{2}}\right] \tag{22}
\end{equation*}
$$

which reduce to the conditions
R negative yields no real roots
R zero
yields no real roots
yields one root $X_{A}=\frac{\sigma_{2}{ }^{2} u_{1}-\sigma_{1}{ }^{2} u_{2}}{\sigma_{2}{ }^{2}-\sigma_{1}{ }^{2}}$
R positive yields two roots $X_{A 1}=X_{A}+\frac{\sqrt{R}}{2\left(\sigma_{2}{ }^{2}-\sigma_{1}{ }^{2}\right)}$

$$
x_{A 2}=x_{A}-\frac{\sqrt{R}}{2\left(\sigma_{2}^{2}-\sigma_{1}^{2}\right)}
$$

Now in the special case where $\sigma_{2}=\sigma_{1}=\sigma$, then Equation (17) reduces to

$$
\begin{equation*}
\frac{1}{\sqrt{2 \pi} \sigma} e^{-1 / 2\left(\frac{x-u_{1}}{\sigma}\right)^{2}}-\frac{1}{\sqrt{2 \pi} \sigma} e^{-1 / 2\left(\frac{x-u_{2}}{\sigma}\right)^{2}}=0 \tag{17a}
\end{equation*}
$$

which yields $\left(x-u_{1}\right)^{2}=\left(x-u_{2}\right)^{2}$

$$
\begin{align*}
& x^{2}-2 x u_{1}+u_{1}^{2}=x^{2}-2 x u_{2}+u_{2}^{2} \tag{25}\\
& 2 x u_{2}-2 x u_{1}=u_{2}^{2}-u_{1}^{2} \tag{26}\\
& x=\frac{u_{2}^{2}-u_{1}^{2}}{2\left(u_{2}-u_{1}\right)} \tag{27}\\
& x_{A}=\frac{u_{2}+u_{1}}{2}
\end{align*}
$$

3.2 THE INDEX OF NON-CONGRUITY: NORMAL CASE

The two most common situations with normal distributions, where there are two points of intersection and $\sigma_{1}=\sigma_{2}$, are shown in Figures 3-1 and $3-2$. The shaded area in these figures equals the index of non-congruity. The index of non-congruity is given by Equation (6).

$$
\begin{equation*}
\delta=\int_{-\infty}^{\infty}\left|f_{1}(x)-f_{2}(x)\right| d x \tag{6}
\end{equation*}
$$

This expression can be modified according to the number of intersection points. If there is no point of intersection then obviously $\delta=2$. If there is one point of intersection, X_{A}, the integral can be decomposed into two terms. Assume that $f_{1}(x)>f_{2}(x)$ for $x<X_{A}$ then

$$
\begin{align*}
& \delta=\int_{-\infty}^{X_{A}}\left(f_{1}(x)-f_{2}(x)\right) d x+\int_{X_{A}}^{\infty}\left(f_{2}(x)-f_{1}(x)\right) d x \tag{29}\\
& \delta=\int_{-\infty}^{X_{A}} f_{1}(x) d x-\int_{-\infty}^{X_{A}} f_{2}(x) d x+\int_{X_{A}}^{\infty} f_{2}(x) d x-\int_{X_{A}}^{\infty} f_{1}(x) d x \tag{30}\\
& \delta=F_{1}\left(X_{A}\right)-F_{2}\left(X_{A}\right)+\left[1-F_{2}\left(X_{A}\right)\right]-\left[1-F_{1}\left(X_{A}\right)\right] \tag{31}\\
& \delta=2\left[F_{1}\left(X_{A}\right)-F_{2}\left(X_{A}\right)\right] \tag{32}
\end{align*}
$$

where $F_{i}(x)$ is the cumulative probability function of $f_{i}(x)$. In general, for the case where there is one point of intersection

$$
\begin{equation*}
\delta=2\left|F_{1}\left(X_{A}\right)-F_{2}\left(X_{A}\right)\right| \tag{33}
\end{equation*}
$$

If there are two points of intersection (see Figure 3-2) then the index of non-congruity integral can be separated into three parts. Let C_{1} and $C_{2}\left(C_{1}<C_{2}\right)$ be the points of intersection.

Assume that $f_{1}(x)>f_{2}(x)$ for $x<c_{1}$ then

$$
\begin{equation*}
\delta=\int_{-\infty}^{C_{1}}\left(f_{1}(x)-f_{2}(x)\right) d x+\int_{C_{1}}^{C_{2}}\left(f_{2}(x)-f_{1}(x)\right) d x+\int_{C_{2}}^{\infty}\left(f_{1}(x)-f_{2}(x)\right) d x \tag{34}
\end{equation*}
$$

FIGURE 3-1 The Normal Case with Two Points of Intersection

FIGURE 3-2 The Normal Case for Equal Standard Deviations

$$
\begin{align*}
\delta & =F_{1}\left(C_{1}\right)-F_{2}\left(C_{1}\right)+\left[F_{2}\left(C_{2}\right)-F_{2}\left(C_{1}\right)-F_{1}\left(C_{2}\right)+F_{1}\left(C_{1}\right)\right] \\
& +\left[1-F_{1}\left(C_{2}\right)-1+F_{2}\left(C_{2}\right)\right] \tag{35}\\
\delta & =2\left[\left(F_{2}\left(C_{2}\right)-F_{2}\left(C_{1}\right)\right)-\left(F_{1}\left(C_{2}\right)-F_{1}\left(C_{1}\right)\right)\right] \tag{36}
\end{align*}
$$

In general for the case where there are two points of intersection

$$
\begin{equation*}
\delta=\left|2\left[\left(F_{2}\left(C_{2}\right)-F_{2}\left(C_{1}\right)\right)-\left(F_{1}\left(C_{2}\right)-F_{1}\left(C_{1}\right)\right)\right]\right| \tag{37}
\end{equation*}
$$

3.3 DESCRIPTION OF NORMAL PROGRAM FEATURES

3.3.7. Program Listing

This section describes the essential features of the program for comparing normal distributions. A complete listing of the program is given in Appendix 2.

3.3.2. Definition of Program Variables

AHAT: the level of significance, $\hat{\alpha}$
Cl : the lower point of intersection, C_{1}
C2: the upper point of intersection , C_{2}
CADTR: function subroutine to determine $\hat{\alpha}$
D: an output parameter of subroutine NDTR which is not used in the main program

DELTA: the index of non-congruity, δ
EI: the expected frequency in the equi-probability regions, M/10
F1: the cumulative probability $F_{\mathcal{F}}(X)$ at X_{A}
F1C1: the cumulative probabiltiy $F_{1}(X)$ at C_{1}
F1C2: the cumulative probability $\mathrm{F}_{1}(\mathrm{X})$ at C_{2}
F1DIF: FIC2 - FIC1
F2: the cumulative probability $F_{2}(X)$ at X_{A}
F 2 Cl : the cumulative probability $\mathrm{F}_{2}(\mathrm{X})$ at C_{1}
F2C2: the cumulative probability $F_{2}(X)$ at C_{2}

F2DIF: F2C2 - F2C1
F2SUM: the sum of the components of the array FREQ squared FREQ(10): The array containing the frequency counts of the random sample sorted into the equi-probability regions
FRSFAC: $4\left(\sigma_{2}{ }^{2} u_{1}-\sigma_{2}{ }^{2} u_{2}\right)^{2}$
IER: error indicator used in subroutine NDTRI
IND: indicator showing the number of intersection points
ISEED: one of the seeds for the McGill RNG
JSEED: the other seed for the McGill RNG
K: the index for the array FREQ
MU1: population mean ${ }_{1}$
MU2: population mean μ_{2}
M: the sample size
NDTR: subroutine to calculate $\mathrm{F}_{\mathrm{i}}(z)$
NDTRI: subroutine to calculate the standard normal deviate z, given $F_{i}(z)$
P : input parameter to subroutine NDTRI containing $F_{i}(z)$
P2(10): the array containing the cumulative probability of the alternative distribution at the region boundaries $\{x(i)\}$

RAD: $\quad \mathrm{R}$ of Equation (22)
RADPRT: $\sqrt{R} / 2\left(\sigma_{2}{ }^{2}-\sigma_{1}{ }^{2}\right)$
RATIO: the ratio of population standard deviations, σ_{1} / σ_{2}
RNOR: McGill RNG function to generate standard normal deviate
RSTART: subroutine to initialize the McGill RNG
SAMPL(200): the array containing the random sample from the alternative distribution

SIGMA1: population standard deviation, σ_{1}
SIGMA2: population standard deviation, σ_{2}

SNDFAC: $4\left(\sigma_{2}{ }^{2}-\sigma_{1}{ }^{2}\right)\left[\sigma_{2}{ }^{2} u_{1}{ }^{2}-\sigma_{1}{ }^{2} u_{2}{ }^{2}+2 \sigma_{1}{ }^{2} \sigma_{2}{ }^{2} \ln \frac{\sigma_{1}}{\sigma_{2}}\right]$
$\begin{array}{ll}\text { SQMUI: } & u_{1}{ }^{2} \\ \text { SQMU2: } & u_{2}{ }^{2} \\ \text { VAR1: } & \sigma_{1}{ }_{2}\end{array}$
VAR2: $\quad \sigma_{2}{ }^{2}$
VARDIF: VAR2 - VAR1
VXM12: $\quad \sigma_{1}{ }^{2} u_{2}$
VXM21: $\quad \sigma_{2}{ }^{2} u_{1}$
VXMD2: $\left(\sigma_{2}{ }^{2} u_{1}-\sigma_{1}{ }^{2} u_{2}\right)^{2}$
VXMDIF: $\left(\sigma_{2}{ }^{2} u_{1}-\sigma_{1}{ }^{2} u_{2}\right)$
VXSI2: $\quad \sigma_{1}{ }^{2} u_{2}{ }^{2}$
vXS21: $\quad \sigma_{2}{ }^{2} u_{1}{ }^{2}$
$\mathrm{XI}(10)$: the equi-probability region boundaries $\{X(i)\}$
X2ACT: the random x^{2} statistic, x_{R}^{2}
X2PS: the pseudo x^{2} statistic, $x_{\text {PS }}^{2}$
X2SUM: the sum of $[\mathrm{P} 2(10)-\mathrm{Xl}(10)]$ used in the calculation of X2P
XLNFAC: $2 \sigma_{2}{ }^{2} \sigma_{1}{ }^{2} \ln \frac{\sigma_{1}}{\sigma_{2}}$
$X x$: the single point of intersection, X_{A}
XXI: one of two points of intersection, $X_{A 1}$
XX2: the other of two points of intersection, $X_{A 2}$
Z: a standard normal deviate used in calculating $\mathrm{XI}(10)$
$\mathrm{Z1}: \quad$ standard normal equivalent of X_{A} for distribution 1
ZIC1: standard normal equivalent of C_{1} for distribution 1
Z1C2: standard normal equivalent of C_{2} for distribution 1
Z2: \quad standard normal equivalent of X_{A} for distribution 2
$\mathrm{Z2C1}$: standard normal equivalent of C_{1} for distribution 2
Z2C2: standard normal equivalent of C_{2} for distribution 2 Z2PS!(10): array containing standard normal equivalent of $\mathrm{X1}$ (10) for distribution 2

3.3.3. Inputs to the Program

The inputs to the program are the distribution parameters $-u_{1}, \sigma_{1}$, u_{2}, σ_{2}; the sample size M; and the RNG seed values - ISEED, JSEED. The input is given on two separate cards with the indicated format.

MUT, SIGMAT, MU2, SIGMA2, M	1 Card	(4E10.4, I5)
ISEED, JSEED	1 Card	(215)

Multiple runs are possible by supplying additional input cards (two per replication). Program completion is indicated by a blank card.

3.3.4. Outputs of the Prooram

The output of the normal program is almost identical with the output of the exponential program. There are two types of output of the normal program. The first type is an echo check of the inputs to the program and the second type is the set of values calculated by the program. As in the exponential program, the second type of output for the normal program consists of the values of $\delta, x_{P S}^{2}, x_{R}^{2}, \hat{\alpha}, X_{1}(10), P 2(10)$, the first M elements of SAMPL(200), and FREQ(10). In addition to these second type outputs, the normal program also prints the number of intersection points and their values. A sample output is contained in Appendix 2.

3.3.5. Special Programming Considerations

Definition of Non-Overlapoing Distributions In actuality any two normal distributions will intersect in at least one point, since both span the interval from $-\infty$ to $+\infty$ and both have unit area. However, for widely separated distributions the amount of overlapping area is small and at some point could be considered zero. In the program, if $u_{S}+5 \sigma_{S}$ is less than $u_{L}-5 \sigma_{L}$ (where u_{S} refers to the smaller mean, u_{L} refers to the larger mean, and σ_{S} and σ_{L} refer to the corresponding standard deviations) then the distributions are defined as non-overlapping and δ is set equal
to 2.
Using the McGill RNG Use of the McGill RNG is accomplished in this program through the use of two subprograms - RSTART and RNOR. The use of RSTART is described in section 2.3.4. RNOR is used to generate a sample from a standard normal distribution. Its use is similar to the use of REXP described in Section 2.3.4. The sample from a standard normal distribution is transformed to a sample from a normal distribution with mean u and standard deviation σ by the equation

$$
\begin{equation*}
x=u+\sigma z \tag{38}
\end{equation*}
$$

where z is the sample from a standard normal distribution and X is the observation from the desired distribution.

Sorting the Random Sample Observations The normal index of noncongruity program uses a different sorting scheme than the exponential program did because of the different shapes of the two distributions. The sorting scheme is shown in the tree diagram shown in Figure 3-3. This scheme is designed to search the middle equi-probability regions first. The efficiency of this sorting scheme is dependent on the nature of the alternative distribution and, therefore, the scheme does not minimize the expected number of tests in all situations. However, the scheme does reduce the maximum number of tests to 5 , as compared with 9 in the scheme used in the exponential program.

Calculating the Normal Cumulative Probability of X The cumulative probability for an argument X is calculated by first converting the number to standard form by the transformation,

$$
\begin{equation*}
z=(x-u) / \sigma \tag{39}
\end{equation*}
$$

The cumulative probability is then calculated by the IBM Scientific Subroutine Package subroutine NDTR which uses the following approximation taken from Hastings

FIGURE 3-3 Tree Diagram for Sorting Procedure

$$
\begin{equation*}
F(z)=1-f(z)\left(b_{1} t+b_{2} t^{2}+b_{3} t^{3}+b_{4} t^{4}+b_{5} t^{5}\right) \tag{40}
\end{equation*}
$$

where

$$
\begin{aligned}
& f(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2 / 2}}, t=\frac{1}{1+r z}, r=.2316419, \\
& b_{1}=.31938153, b_{2}=-.356563782, b_{3}=1.7181477937, \\
& b_{4}=-1.821255978, \text { and } b_{5}=1.33027449
\end{aligned}
$$

This approximation has a maximum error of 7.5×10^{-8} and is valid only for $z \geq 0$. For $z<0$ the complement of $F(-z)$ gives the desired value.

Calculating X given a Normal Cumulative Probability A value X from a $N\left(\mu, \sigma^{2}\right)$ population can be calculated from a given normal cumulative probability P by first calculating the value z from a standard normal distribution with cumulative probability P and then applying the transformation given in Equation (38). The value z is calculated by the IBM Scientific Subroutine Package subroutine NDTRI which uses the following approximation taken from Hastings,

$$
\begin{equation*}
z=w-\sum_{i=0}^{2} a_{i} w^{i} / \sum_{i=0}^{3} b_{i} w^{i} \tag{41}
\end{equation*}
$$

where $w=\sqrt{\ln \left(1 / p^{2}\right)}, a_{0}=2.515517, a_{1}=.802853, a_{2}=.010328$,

$$
b_{0}=1, b_{1}=1.432788, b_{2}=.189269, b_{3}=.001308
$$

This approximation has a maximum error of 4.5×10^{-4} and is valid only for $P \leq .5$. For $P>.5, z$ of $1-P$ is calculated and then the sign of z is changed.

3.4 RESULTS OF THE NORMAL PROGRAM

Four different sets of values for random number generator seeds were used in investigating the normal case. The standard normal distribution was chosen as the model distribution. Three different types of alternative distributions were considered. In the first type the mean of the alternative
distribution was different from zero and the standard deviation was equal to one. This set of alternative distributions is referred to as the meanvariate set. In the second type the mean of the alternative distribution was equal to zero and the standard deviation was different from one. This set of alternative distributions is referred to as the variance-variate set. In the third type of alternative distribution considered, the mean of the alternative distribution was different from zero and the standard deviation was different from one. This set is referred to as the mean-variancevariate set. The sample size used in the comparisons was 50 in all cases.

One of the steps in the comparison procedure outlined in Section 1.3.2 is the calculation of various parametric indicators. The parametric indicator which was chosen in the normal case was,

$$
\begin{equation*}
n_{1}=\left|u_{1}-u_{2}\right|+\left|\sigma_{1}-\sigma_{2}\right| \tag{42}
\end{equation*}
$$

Various relationships between comparison indices are graphically presented in Figures 3-4 to 3-20. There appears to be a strong relationship between all of the comparison indices plotted. Examination of these figures provides some valuable information. Figure 3-4 shows the relationship between $x_{\text {PS }}^{2}$ and δ. This figure indicates that for the cases of the mean-variate and variance-variate sets of alternative distributions $x_{P S}^{2}$ and δ are strongly related. The figure also indicates that two distributions with a particular δ value are more easily detected as being significantly different if their means are different than if their standard deviations are different. The figure also shows a greater difference in $x_{\text {PS }}^{2}$ for a given δ value for $\sigma_{1}<\sigma_{2}$ than for $\sigma_{1}>\sigma_{2}$. (Recall that in the exponential case this type of a relationship existed; $x_{\text {PS }}^{2}$ for $\lambda_{2} / \lambda_{1}<1$ was greater than $x_{P S}^{2}$ for $\lambda_{2} / \lambda_{1}>1$. This is a similar result since the standard deviation of an exponential distribution is $1 / \lambda$ and therefore

FIGURE $3-4 x_{\text {PS }}^{2}$ vs. δ - single Variation

FIGURE 3-5 $x_{p s}^{2}$ vs. o- Dual variation

FIGURE $3-6$ ovs. n_{1} - Single Variation

FIGURE 3-7 \quad \& vs. n_{1} - Dual Variation

FIGURE $3-8 \quad x_{\text {PS }}^{2}$ vs. n_{1} - Single Variation

FIGURE 3-9 $x_{P S}^{2}$ vs. n_{1} - Dual Variation

FIGURE 3-10 x_{R}^{2} vs. $x_{P S}^{2}$ - Mean-Variate Data

FIGURE $3-11 \quad x_{R}^{2}$ vs. $x_{P S}^{2}$ - Variance-Variate Data $\sigma_{1}<\sigma_{2}$

FIGURE 3-12 x_{R}^{2} vs. $x_{P S}^{2}$ - Variance-Variate Data $\sigma_{1}>\sigma_{2}$

FIGURE 3-1 4 âvs. s - Mean-Variate Data

FIGURE 3-18 $\hat{\alpha}$ vs. n_{1} - Mean-Variate Data

FIGURE $3-19 \quad \hat{\alpha}$ vs. n_{1} - Variance-Variate Data $\sigma_{1}<\sigma_{2}$

the ratio of the standard deviations is $1 / \lambda_{2} / 1 / \lambda_{1}=\lambda_{1} / \lambda_{2}$. Hence if $\lambda_{2} / \lambda_{1}<1$ then $\sigma_{\text {exp } 1}<\sigma_{\exp 2 \cdot}$)

Figure 3-6 indicates the relationship between δ and η_{1} for the meanvariate and variance-variate data. The most sensitive case is for the variance-variate case with $\sigma_{1}>\sigma_{2}$. This sensitivity is partially offset by the relationship between $x_{P S}^{2}$ and δ for this case (which is not as sensitive as the other two cases shown) as shown in Figure 3-4. However it is not completely offset as seen in Figure $3-8$ which shows that the case of variance-variate data with $\sigma_{1}>\sigma_{2}$ produces a much higher $\chi_{P S}^{2}$ value for a given n_{η} than the other two cases (which produce comparable values).

As in the exponential case $x_{P S}^{2}$ tends to be smaller than x_{R}^{2}, as seen in Figures $3-10$ to $3-13$. There also appears to be a linear trend between x_{R}^{2} and $x_{P S}^{2}$ in each of these figures. A least-squares line was calculated for each of these cases. The obviously outlying points of Figures 3-11 and 3-13 were omitted from the calculations. The derived lines are

Figure 3-10 Mean-Variate Data

$$
x_{R}^{2}=.90935 \quad x_{P S}^{2}+6.55919
$$

Figure 3-11 Variance-Variate Data $\sigma_{1}<\sigma_{2}$

$$
x_{R}^{2}=.92777 \quad x_{P S}^{2}+4.95750
$$

Figure 3-12 Variance-Variate Data $\sigma_{1}>\sigma_{2}$

$$
x_{R}^{2}=.85908 \quad x_{P S}^{2}+3.29251
$$

Figure 3-13 Mean-Variance-Variate Data

$$
x_{R}^{2}=.580767 \quad x_{P S}^{2}+5.83267
$$

From Figures $3-14$ to $3-16$ it appears that (based on $\hat{\alpha}$ as the criterion) δ tends to be significant at the . 05 level as indicated below:

Figure Type Significance Range
3-14
Mean-Variate Data
$\delta \geq .47$

Figure
Type
Significance Range
3-15 Variance-Variate Data $\sigma_{1}<\sigma_{2} \quad \delta \geq .39$
3-16 Variance-Variate Data $\sigma_{1}>\sigma_{2} \quad \delta \geq .6$
If $x_{\text {PS }}^{2}$ is used as the criterion, $x_{P S}^{2}$ would indicate significance at the following values calculated from the regression equations to correspond to a x_{R}^{2} value of $17(\hat{\alpha}=.05)$.

$$
\text { Type } \quad \text { Significance Range }
$$

Mean-Variate Data

$$
\begin{gathered}
x_{P S}^{2} \geq 11.5 \\
2 \\
x_{P S} \geq 13.0
\end{gathered}
$$

Variance-Variate Data $\sigma_{1}<\sigma_{2}$

$$
\text { Variance-Variate Data } \quad \sigma_{1}>\sigma_{2} \quad \underset{P S}{2} \geq 16.0
$$

Based on these values and consulting Figure 3-4, δ would indicate significance at the . 05 level as given below.

Type Significance Range
Mean-Variate Data
$\delta \geq .36$
Variance-Variate Data $\sigma_{1}<\sigma_{2}$
$\delta \geq .4$
Variance-Variate Data $\sigma_{1}>\sigma_{2}$
$\delta \geq .55$
The uncertainty regions can be estimated as
Mean-Variate Data $.38 \leq \delta \leq .47$
Variance-Variate Data $\sigma_{1}<\sigma_{2} \quad .34 \leq \delta \leq .39 \quad \hat{\alpha}$ basis
Variance-Variate Data $\sigma_{1}>\sigma_{2} \quad .48 \leq \delta \leq .6$
Mean-Variate Data $\quad .32 \leq \delta \leq .36$
Variance-Variate Data $\sigma_{1}<\sigma_{2} \quad .34 \leq \delta \leq .4 \quad x_{P S}^{2}$ basis
Variance-Variate Data $\sigma_{1}>\sigma_{2} \quad .45 \leq \delta \leq .55$
These values for δ imply that if η_{1} is to be used as a test for significance instead of δ, then the uncertainty regions can be estimated from Figure 3-6 to be

$$
\begin{array}{lll}
\text { Mean-Variate Data } & .48 \leq n_{1} \leq .6 \\
\text { Variance-Variate Data } & \sigma_{1}<\sigma_{2} & .43 \leq n_{1} \leq .5 \quad \hat{a} \text { basis } \\
\text { Variance-Variate Data } & \sigma_{1}>\sigma_{2} & .4 \leq n_{1} \leq .46 \\
& & .4 \leq n_{1} \leq .44 \\
\text { Mean-Variate Data } & & .42 \leq n_{1} \leq .52 \quad \chi_{\text {PS }}^{2} \text { basis } \\
\text { Variance-Variate Data } & \sigma_{1}<\sigma_{2} & .38 \leq n_{1} \leq .42
\end{array}
$$

These regions compare favorably with results which can be taken from Figures $3-18$ to $3-20$ for the $\hat{\alpha}$ basis and Figure $3-8$ for the $x_{P S}^{2}$ basis. Significance is therefore indicated for n_{1} values of

Mean-Variate Data		$\eta_{1} \geq .6$	
Variance-Variate Data	$\sigma_{1}<\sigma_{2}$	$\eta_{1} \geq .5$	$\hat{\alpha}$ basis
Variance-Variate Data	$\sigma_{1}>\sigma_{2}$	$\eta_{1} \geq .46$	

Mean-Variate Data
${ }^{n} 1 \geq .44$
Variance-Variate Data $\sigma_{1}<\sigma_{2} \quad \eta_{1} \geq .52 \quad x_{P S}^{2}$ basis
Variance-Variate Data $\quad \sigma_{1}>\sigma_{2} \quad \nu_{1} \geq .42$

Figures $3-5,3-7,3-9,3-13$ and $3-17$ show the various relationships between indices for the mean-variance-variate data. Indications of strong relationships between the various indices are shown by these figures. However, it is believed that the knowledge of these relationships is too limited to draw any satisfactory results. Further research, in which the range of the comparison indices is expanded, is needed to better quantify these relationships.

TABLE 3-1
Results of the Normal Program

DISTRIBUTION 2 (Alternative)	$\begin{aligned} & \text { RNG } \\ & \text { SEED } \\ & \hline \end{aligned}$	δ	$\stackrel{c}{2}^{2}$	x_{R}^{2}	$\hat{\alpha}$
$(.1,1)$	A	. 0798	. 48	7.60	. 5749
	B			2.80	. 9717
	C			2.40	. 9835
	D			12.00	. 2133
$(.2,1)$	A	. 1593	1.94	8.40	. 4944
	B			2.00	. 9915
	C			6.80	. 6579
	D			12.80	. 1719
$(.3,1)$	A	. 2385	4.41	13.20	. 1538
	B			10.00	. 3505
	C			8.00	. 5341
	D			12.40	. 1917
$(.4,1)$	A	.3170	7.97	13.60	. 1373
	B			8.00	. 5341
	C			10.00	. 3505
	D			20.00	. 0179
$(.5,1)$	A	. 3948	12.70	20.00	. 0179
	B			11.60	. 2368
	C			16.00	. 0669
	D			25.20	. 0028
$(.6,1)$. 4716	18.70	30.00	. 0004
	B			19.20	. 0235
	C			18.00	. 0352
	D			33.20	. 0001
$(.7,1)$	A	. 5473	26.08	34.00	. 0001
	B			22.00	. 0089
	C			30.40	. 0004
	D			40.80	. 0000
$(.8,1)$	A	. 6217	34.94	43.20	. 0000
	B			26.40	. 0018
	C			38.00	. 0000
	D			44.00	. 0000
$(.9,1)$	A	. 6946	45.38	62.40	. 0000
	B			40.40	. 0000
	C			40.80	. 0000
	D			53.20	. 0000

Table 3-1 continued

DISTRIBUTION 2 (Alternative)	$\begin{aligned} & \text { RNG } \\ & \text { SEED } \\ & \hline \end{aligned}$	δ	$x_{P S}^{2}$	${ }^{2}$	$\hat{\alpha}$
$(1.0,1)$	A	. 7659	57.45	66.40	. 0000
	B			48.40	. 0000
	C			49.60	. 0000
	D			63.20	. 0000
(1.1, 1)	A	. 8354	71.19	83.60	. 0000
	B			67.20	. 0000
	C			66.80	. 0000
	D			77.60	. 0000
$(1.2,1)$	A	. 9030	86.58	97.20	. 0000
	B			76.00	. 0000
	C			78.80	. 0000
	D			92.80	. 0000
(1.3, 1)	A	. 9686	103.55	137.60	. 0000
	B			85.60	. 0000
	C			89.20	. 0000
	D			106.00	. 0000
$(1.4,1)$	A	1.0321	121.99	143.20	. 0000
	B			95.60	. 0000
	C			111.60	. 0000
	D			123.60	. 0000
$(1.5,1)$		1.0935	141.70	172.40	. 0000
	B			118.80	. 0000
	C			126.00	. 0000
	D			126.00	. 0000
$(1.6,1)$	A	1.1526	162.46	184.00	. 0000
	B			147.20	. 0000
	C			141.20	. 0000
	D			156.40	. 0000
(1.7, 1)	A	1.2093	184.00	206.40	. 0000
	B			163.20	. 0000
	C			155.20	. 0000
	D			180.00	. 0000
$(1.8,1)$	A	1.2638	206.00	246.40	. 0000
	B			173.60	. 0000
	C			175.60	. 0000
	D			180.80	. 0000
$(1.9,1)$	A	1.3158	228.15	274.80	. 0000
	B			197.20	. 0000
	C			235.60	. 0000
	D			206.80	. 0000

Table 3-1 continued

DISTRIBUTION 2 (Alternative)	$\begin{aligned} & \text { RNG } \\ & \text { SEED } \\ & \hline \end{aligned}$	δ	$x_{P S}^{2}$	x_{R}^{2}	$\hat{\alpha}$
$(2.0,1)$	A	1.3654	250.11	290.80	. 0000
	B			226.80	. 0000
	C			261.20	. 0000
	D			220.80	. 0000
(0, . 1)	A	1.5964	194.35	182.80	. 0000
	B			174.40	. 0000
	C			192.80	. 0000
	D			181.20	. 0000
(0, .2)	A	1.2942	117.35	95.60	. 0000
	B			125.60	. 0000
	C			113.60	. 0000
	D			88.80	. 0000
(0, .3)	A	1.0435	67.04	63.60	. 0000
	B			58.40	. 0000
	C			75.60	. 0000
	D			50.00	. 0000
$(0, .4)$. 8300	40.56	39.60	. 0000
	B			40.80	. 0000
	C			42.00	. 0000
	D			26.40	. 0018
(0, .5)	A	. 6453	24.72	25.20	. 0028
	B			22.00	. 0089
	C			32.40	. 0002
	D			15.60	. 0757
(0, .6)	A	. 4840	14.48	14.40	. 1088
	B			14.40	. 1088
	C			20.00	. 0179
	D			9.20	. 4190
(0, .7)	A	. 3416	7.63	9.20	. 4190
	B			16.00	. 0669
	C			10.40	. 3191
	D			6.40	. 6993
(0, .8)	A	. 2151	3.19	4.80	. 8514
	B			5.20	. 8165
	C			11.60	. 2368
	D			2.40	. 9835
(0, .9)		. 1019	. 75	6.00	
	B			2.40	. 9835
	C			8.00	. 5341
	D			4.40	. 8832

Table 3-1 contined

DISTRIBUTION 2 (Alternative)	$\begin{aligned} & \text { RNG } \\ & \text { SEED } \end{aligned}$	6	$x_{P S}^{2}$	x_{R}^{2}	$\hat{\alpha}$
$(0,1.1)$	A	. 0922	. 65	5.60	. 7792
	B			6.80	. 6579
	C			4.00	. 9114
	D			10.80	. 2897
(0, 1.2)	A	. 1760	2.42	6.40	. 6993
	B			7.20	. 6163
	C			6.00	. 7399
	D			18.80	. 0269
$(0,1.3)$	A	. 2525	5.05	9.20	. 4190
	B			10.00	. 3505
	C			7.60	. 5749
	D			22.00	. 0089
(0, 1.4)	A	. 3226	8.29	15.20	. 0856
	B			11.20	. 2622
	C			14.40	. 1088
	D			32.00	. 0002
(0, 1.5)	A	. 3872	11.97	17.20	. 0457
	B			19.60	. 0205
	C			16.00	. 0669
	D	.		35.60	. 0000
$(0,1.6)$	A	. 4467	15.93	18.80	. 0269
	B			20.40	. 0156
	C			22.40	. 0077
	D			47.20	. 0000
(0, 1.7)	A	. 5019	20.07	19.60	. 0205
	B			24.40	. 0037
	C			24.40	. 0037
	D			45.60	. 0000
$(0,1.8)$	A	. 5531	24.29	27.60	.0011
	B			26.80	. 0015
	C			25.20	. 0028
	D			45.60	. 0000
(0, 7.9)	A	. 6008	28.52	27.60	. 0011
	B			32.80	. 0001
	C			28.40	. 0008
	D			55.60	. 0000
(0, 2.0)	A	. 6453	32.73	30.40	. 0004
	B			40.40	. 0000
	C			40.40	. 0000
	D			62.40	. 0000

Table 3-1 continued

DISTRIBUTION 2 (Alternative)	$\begin{aligned} & \text { RNG } \\ & \text { SEED } \\ & \hline \end{aligned}$	δ	$x_{P S}^{2}$	x_{R}^{2}	$\hat{\alpha}$
(.7, .8)	A	. 2282	3.59	5.60	. 7792
	B			10.00	. 3505
	C			10.40	. 3191
	D			4.40	. 8832
(.1, .9)	A	. 1262	1.19	6.40	. 6693
	B			3.60	. 9357
	C			6.00	. 7399
	D			6.00	. 7399

$(.1,1.1)$	A	.1142	1.16	9.20	.4190
	B			7.20	.6163
	C			4.00	.9114
	D			14.80	.0966

$(.1,1.2)$	A	.1868	2.95	9.60	.3838
	B			8.40	.4944
	C			9.20	.4190
	D			17.20	.0457
	A	.2659	4.79	12.00	.2133
	B			5.60	.7792
	C			6.00	.7399
	D			6.00	.7399
	A	.1876	2.52	7.60	.5749
	B				10.80
	C				.2897
	D			6.00	.7399

$(.2,1.1)$	A	.1698	2.70	8.40	.4944
	B			4.80	.8514
	C			8.00	.5341
	D			16.40	.0590
	A	.2177	4.52	12.80	.1719
	B			4.00	.9114
	C			8.80	.4559
	D			23.60	.0050
	A	.3230	6.86	13.60	.1373
	B			6.80	.6579
	C				7.60
	D			.5749	
	A	.2639	4.81	11.60	.2897
	B			6.00	.7368
	C			8.00	.5341
	D				14.00
					.1223

Table 3-1 continued

DISTRIBUTION 2 (Alternative)	$\begin{aligned} & \text { RNG } \\ & \text { SEED } \\ & \hline \end{aligned}$	δ	$x_{P S}^{2}$	x_{R}^{2}	$\hat{\alpha}$
(.3, 1.1)	A	. 2389	5.29	13.60	. 1373
	B			7.20	. 6163
	C			7.20	. 6163
	D			21.20	. 0118
(.3, 1.2)	A	. 2648	7.16	14.80	. 0966
	B			6.40	. 6993
	C			7.20	. 6163
	D			26.80	. 0015
$\begin{aligned} & M=50, \quad \text { RNG: } A(51562,62155) \\ & D(11292,50020) \end{aligned}$			$B(62155,51562)$		$c(50020,11292)$

Chapter 4

CONCLUSION

In concluding this study, two questions need to be answered. The first question is "How well did this study accomplish its objective?". The second question is "What direction should future research in this area take?".

The first question can be answered by reconsidering the objective of this study which was to develop a comparison method, use this method to investigate the effects of varying distribution parameters, and to evaluate the usefulness of this technique. The first two parts of this objective have already been accomplished and the third part can be completed by a brief review of the results of the study. The technique used in this study to compare statistical distributions appears to have considerable usefulness because of the consistency of results (i.e. δ in all cases indicated significance in the range $.3 \leq \delta \leq .6$), the ability to compare distributions for statistical difference in terms of only their parameters $\left(\lambda_{2} / \lambda_{1}\right.$ for exponential distributions, r_{i} for most normal distributions), and the relative simplicity of the method.

The reader should recognize that in the normal case, a technique already exists to answer the question of "How different is different?" based on the classical z-test. This technique is statistically sufficient and is therefore more powerful than the method presented in this study. The use of the z-test is demonstrated below for $M=50, \alpha=.05$, and $\sigma_{1}=\sigma_{2}=\sigma$.

$$
\begin{align*}
& 1.96 \leq\left(u_{1}-u_{2}\right) / \sqrt{\sigma^{2} / 50} \tag{43}\\
& u_{1}-u_{2} \geq .277 \sigma \tag{44}
\end{align*}
$$

This indicates that for our investigation ($\sigma=1$) significance would be indicated for a η_{p} value greater than or equal to .277 , as compared to a n_{1} value of .60 for the index of non-congruity method.

The second question concerning the direction of future research is easily answered. There are four readily apparent directions for future research. They are:

1. Extension of this research in terms of additional replications and inclusion of more mean-variance-variate comparisons for the normal case as mentioned in Sections 2.4 and 3.4.
2. Application of the methodology used in this study to other continuous distributions such as the Weibull, Log-Normal, or Gammia distribution.
3. Development of a similar methodology which can be applied to the evaluation of statistically significant differences in discrete distributions.
4. Application of the methodology used in this study to study statistical differences of similar distributions which are from different families.
(1) Hasting, Cecil, Jr., Approximations for Digital Computers, Princeton: Princeton University Press, 1955.
(2) IBM System/360 Scientific Subroutine Package Version III Programmer's

Manual, White Plains, New York: IBM Corporation, Technical Publications Department, 1968.
(3) Lakshminarayan, K., "Progress Report to the U.S. Nuclear Regulatory Commission under NRC Contract No. AT (49-24)-0339 on the Analysis of Diesel Engine Failure Probability Data", (Kansas State University Document KSU-2662-1, CES-24, October, 1976).
(4) \qquad , "Estimating Statistically Significant Differences Between a Pair of Beta Distributions", (Unpublished Masters Thesis, Kansas State University, 1978).

APPENDIX 1


```
FORTRAN IV G LEVEL 21 MAIN
    l CONTINUE
        X2SUM=X2SUN+(EI-M*(1-P2(9)))**2
    C CALCULATE THE PSEUDO CHI-SUUARE STATISTIC
0034
    C GENERATE RANDDN SAMPLE FRCM SECOND DISTRIEUTIDN
    C READ RANDDM NUNBER GENEKATOR SEED VALUES
        RELD(5,97)1SEED,JSEED
    97 FDRMAT(2I5)
    C ECHO SEED VALUES
        WR{TE (6,96)1SEED, JSEEO
        96 FCRMAT (IX,/////, 1X, 'THE SEED VALUES FOR THIS RUNI ARE',////,11X,'ISE
        IED EGUALS',1I2,1/,11X,'JSEED EJUALS',1121
    C INITIALILE RANODM NUHDER GENERATOR
0041 CALL RSTARTIISEED,JSEED)
    C GENERATE SAMPLE
        DD 2 1=1,M
        SAMPL(1)=REXP(1)/LAMDA2
    2 CONTINUE
        SCRT RANDCM OBSERVATIDNS INTO FREQJENCY CLASSES
    100 DD 3 I=1,M
        IF(SAMPL(I)-LE.XI(1)) GO TD 101
        IF(SAMPL(1)-LE-XI(2)) GC TO 102
        IF(SAMPL(I).LE.XI(3)) GC IO 103
        IF(SAMPL(I)-LE.XI(4)) GO TO 104
        IF(SANPL(I).LE.X1(5)) GC TO 105
        IF(SAMPL(I).LE.XI(6)) GO TO 106
        IF(SAMPL(1)-LE=X1(7)) GC 10 107
        IF(SAMPL(1).LE.XI(3)) GO TO 108
        IFISAMPL|II.LE.XI(9)) GD TO 109
        K=10
        GD TO 110
    101 K=1
        GD TO 110
    102 K=2
        GOTO 110
    103 K=3
        GO 10 110
    104 K=4
        GO 10 110
    105 K=5
        GO 10110
    106 K=6
        GD TO 110
    107 K=7
        GO TO 110
    108 K=8
        GD IO 110
    109 K=9
    110 FREO(K)=FREG(K)+1
        3 CONTINUE
        CALCULATE THE ACTUAL CHI-SQUARE STATISIIC FCR RANDCY SAMPLE
        004 {=1,10
        F2SUM=F2SUM+FREQ(1)**2
        4 \text { CONT INUE}
            X2ACT=F2SUM/EI-M
            NU=9.
    C CALL FUNCTICN TO CALCULATE "ALPHA HAT* FOR THE COMPUTED CHI-SOUARE
    c
        value
```

```
fortran IV g level 21
```

0081 C AHAT=CAOTR(X2ACT,NU)

```
0081 C AHAT=CAOTR(X2ACT,NU)
OOB2 C WR1TE(C,95) DLLTA,X2PS,X2ACT, AHAT
OOB2 C WR1TE(C,95) DLLTA,X2PS,X2ACT, AHAT
OO83 95 FORMAT(/////,11X,'THE VALUE OF THE INDEX LF NON-CONGRUITY(DELTA) E
OO83 95 FORMAT(/////,11X,'THE VALUE OF THE INDEX LF NON-CONGRUITY(DELTA) E
    ICUAL'S',F12.4,1/,11X, 'THE VALUE OF THE P SEUDC CHI-SOUARE STATISIIC
    ICUAL'S',F12.4,1/,11X, 'THE VALUE OF THE P SEUDC CHI-SOUARE STATISIIC
    2EQUALS',F12.2.1/,11X,'THE VALUE OF THE CHI-SGUARE STATISIIC EUUALS
    2EQUALS',F12.2.1/,11X,'THE VALUE OF THE CHI-SGUARE STATISIIC EUUALS
    3,,F12.2,1/,11X, THE AREA OF THE CHI-SQUARE OISTRIEUTICN TO THE RIG
    3,,F12.2,1/,11X, THE AREA OF THE CHI-SQUARE OISTRIEUTICN TO THE RIG
    4HT OF THE CHI-SGUARE STATISTIC (ALPHA HAT) EOUALS',F12.4)
    4HT OF THE CHI-SGUARE STATISTIC (ALPHA HAT) EOUALS',F12.4)
    WR1TE(6,94)
    WR1TE(6,94)
    WP.ITE{6,92)(X1(1), l=1,10)
    WP.ITE{6,92)(X1(1), l=1,10)
    WR1TE (6,91)(P2(1),1=1,10)
    WR1TE (6,91)(P2(1),1=1,10)
    WR1TE (6,93)(SAMPL(1),1=1,N)
    WR1TE (6,93)(SAMPL(1),1=1,N)
    WRITE (6,90)(FREC(1),1=1,10)
    WRITE (6,90)(FREC(1),1=1,10)
    94 FCRMAT(/////)
    94 FCRMAT(/////)
    S3 FORMATI'O','RANDLM SAYPLE',IOF11.4)
    S3 FORMATI'O','RANDLM SAYPLE',IOF11.4)
    92 FCRMAT 'O','REGICN BCUNORIES',IOF11.41
    92 FCRMAT 'O','REGICN BCUNORIES',IOF11.41
    91 FORMAT('0','CUMULATIVE PRCB', IOFIL.4)
    91 FORMAT('0','CUMULATIVE PRCB', IOFIL.4)
    90 FORMAT''O','CELL FRECUENCY',1OF11.11
    90 FORMAT''O','CELL FRECUENCY',1OF11.11
        GO TO 200
        GO TO 200
    201 STGP
    201 STGP
    ENO
```

 ENO
    ```





the sahple sile equals 50
lamoal equals 0.tovoe 02
lamoaz equals 0.1250e oz
the seeo values for this run tre
62155
JSEEO EQUALS 51562
isefo equals
2.00

the value of the pseuod chi-square statistic equals the value of the chi-square statistic equals 12.40
the area of the chi-square oistribution to the rigit of the chi-square stailstic talpha hatl eguals
0.1917
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline REGION BOUNORIES & 0.0105 & 0.0223 & 0.0357 & 0.0511 & 0.0693 & 0.0916 & 0.1204 & 0.1609 & 0.2309 & 0.0 \\
\hline cumulative prob & 0.1234 & 0.2434 & 0.3597 & 0.4719 & 0.5796 & 0.6819 & 0.7780 & 0.8663 & 0.9438 & . 0 \\
\hline ranocm sample & 0.5302 & 0.0023 & 0.4798 & 0.3014 & 0.0083 & 0.0028 & 0.1542 & 0.0115 & 0.0736 & 0.1119 \\
\hline ranoor sample & 0.0837 & 0.3412 & 0.0602 & 0.0210 & 0.0250 & 0.0664 & 0.0686 & 0.2834 & 0.1306 & 0.0428 \\
\hline ranoor sahple & 0.1768 & 0.0614 & 0.0193 & 0.0102 & 0.0275 & 0.0137 & 0.0085 & 0.1358 & 0.4015 & 0.0403 \\
\hline ranoor sample & 0.0212 & 0.0008 & 0.0145 & 0.3709 & 0.2125 & 0.0620 & 0.0581 & 0.0016 & 0.0265 & 0.1270 \\
\hline ranoor sample & 0.1136 & 0.0519 & 0.1323 & 0.1319 & 0.0296 & 0.0045 & 0.0603 & 0.0596 & 0.0573 & 0.0428 \\
\hline cell frequency & 7.0 & 6.0 & 4.0 & 3.0 & 10.0 & 3.0 & 2.0 & 6.0 & 2.0 & 7.0 \\
\hline
\end{tabular}

APPENDIX 2

```

0036

```
0036
0037
0037
0038
0038
0 0 3 9
0 0 3 9
0040
0040
0041
0041
0042
0042
0043
0043
0044
0044
0045
0045
0046
0046
0047
0047
0048
0048
0049
0049
0050
0050
0051
0051
0052
0052
0053
0053
0054
0054
0055
0055
0056
0056
0057
0057
0058
0058
0059
0059
0060
0060
0061
0061
0062
0062
0 0 6 3
0 0 6 3
0064
0064
0065
0065
0066
0066
0067
0067
0068
0068
0069
0069
0070
0070
    0071
    0071
    0072
    0072
    0073
    0073
    0074
    0074
    0075
    0075
    0076
    0076
    0077
    0077
    0078
    0078
    0079
    0079
    0080
    0080
    0081
    0081
    0082
    0082
    0083
    0083
    0084
    0084
    900 FORMAT{//,11X, 'OISTRIGUTIONS ARE NON-OVERLAPPING. DELTA EQUALS 2'J
    900 FORMAT{//,11X, 'OISTRIGUTIONS ARE NON-OVERLAPPING. DELTA EQUALS 2'J
        READ 97, ISEEC,JSELO
        READ 97, ISEEC,JSELO
        GO TO 300
        GO TO 300
    C THERE IS ONE INTERSECTION PCINT
    C THERE IS ONE INTERSECTION PCINT
        10IO XX= (MUL+MUZ)/2.
        10IO XX= (MUL+MUZ)/2.
        GO TO 1011
        GO TO 1011
        101 XX={VXM21-VXM12)/VAROIF
        101 XX={VXM21-VXM12)/VAROIF
    1011 21=(xX-MU1)/SIGMA1
    1011 21=(xX-MU1)/SIGMA1
        Z2=(xX-MUZ)/SIGMAZ
        Z2=(xX-MUZ)/SIGMAZ
        CALL NOTR(21,F1,0)
        CALL NOTR(21,F1,0)
        CALL NDTR(22,F2,0)
        CALL NDTR(22,F2,0)
        OELTA=2.*ABS(F1-F2)
        OELTA=2.*ABS(F1-F2)
        1ND=1
        1ND=1
        GO TO 103
        GO TO 103
    c THERE ARE TWO INTERSECTION POINIS
    c THERE ARE TWO INTERSECTION POINIS
    102 XX=(VXM2I-VXM12)/VARDIF
    102 XX=(VXM2I-VXM12)/VARDIF
    RAOPRT=SORT{RAO)/(2.*VARD1F)
    RAOPRT=SORT{RAO)/(2.*VARD1F)
    XXI= XX +RAOPRT
    XXI= XX +RAOPRT
        x 22=xx-RAOPRT
        x 22=xx-RAOPRT
        IF(XXI.LE.XX2) GO TO 1021
        IF(XXI.LE.XX2) GO TO 1021
        C1= X X2
        C1= X X2
        C2 = x x1
        C2 = x x1
        GO TO 1022
        GO TO 1022
    1021 C1 = X X1
    1021 C1 = X X1
    C2=x\times2
    C2=x\times2
    1022 21C1={C1-MU1)/SIGMA1
    1022 21C1={C1-MU1)/SIGMA1
    Z2C1={C1-MU2)/SIGMA2
    Z2C1={C1-MU2)/SIGMA2
        Z1C2={C2-MU1)/SIGMA1
        Z1C2={C2-MU1)/SIGMA1
        Z2C2=(CZ-MUZ)/SIGMA2
        Z2C2=(CZ-MUZ)/SIGMA2
        CALL NOTR{ZIC1,F1C1,0)
        CALL NOTR{ZIC1,F1C1,0)
        CALL NOTP\ZIC2,F1C2,0)
        CALL NOTP\ZIC2,F1C2,0)
        CALL NOTR(22C1,F2C1,0)
        CALL NOTR(22C1,F2C1,0)
        CALL NDTR(Z2C2,F2C2,O)
        CALL NDTR(Z2C2,F2C2,O)
        F2OIF=F2C2-F2C1
        F2OIF=F2C2-F2C1
        F1D1F=F1C2-F1C1
        F1D1F=F1C2-F1C1
        DELTA=2.*ABS(F2DIF-F1D!F)
        DELTA=2.*ABS(F2DIF-F1D!F)
        INO=2
        INO=2
    C OETERMINE VALUES FOR CLASS ROUNORIES FOR EQUAL PROBABILITY REGIONS
    C OETERMINE VALUES FOR CLASS ROUNORIES FOR EQUAL PROBABILITY REGIONS
    OF MOOEL DISTRIBUTION (DISTRIBUTION 1)
    OF MOOEL DISTRIBUTION (DISTRIBUTION 1)
    103 00 1 1=1,9
    103 00 1 1=1,9
        P= -1*I
        P= -1*I
        CALL NOTRI(P, Z,O,IER)
        CALL NOTRI(P, Z,O,IER)
        1 XIIII=MU1+SIGMAI*Z
        1 XIIII=MU1+SIGMAI*Z
        DETERMINE CUMULATIVE PROBABILITIES FOR CLASS SCUNORIES FOR ALTERNATIVE
        DETERMINE CUMULATIVE PROBABILITIES FOR CLASS SCUNORIES FOR ALTERNATIVE
        C
        C
        OISIRIBUTION (OISTRIBUTION 2)
        OISIRIBUTION (OISTRIBUTION 2)
        00 2 1=1,9
        00 2 1=1,9
        Z2PS(1)={X1(1)-MUZ)/SIGMAZ
        Z2PS(1)={X1(1)-MUZ)/SIGMAZ
        2 CALL NDTR(Z2PSII),PZ(I),DI
        2 CALL NDTR(Z2PSII),PZ(I),DI
    C
    C
        CALCULATE THE EXPECTED VALUE FDR CELL FREGUENCIES
        CALCULATE THE EXPECTED VALUE FDR CELL FREGUENCIES
        El=M/10.
        El=M/10.
    C CALCULATE THE PSEUDO CHI-SQUARE STATISTIC
    C CALCULATE THE PSEUDO CHI-SQUARE STATISTIC
    X2SUM={EI-M*P2(1)|**2
    X2SUM={EI-M*P2(1)|**2
        00 3 I=2,9
        00 3 I=2,9
        3 <2SUM=X2SUM+{EI-M*(P2(I)-P2{I-1))I**2
        3 <2SUM=X2SUM+{EI-M*(P2(I)-P2{I-1))I**2
        X2PS= X2SUM+(EI-M*(1.-P2(91))**2
        X2PS= X2SUM+(EI-M*(1.-P2(91))**2
            XZPS = X 2PS /EI
            XZPS = X 2PS /EI
    C READ RANOOM NUMGER GENERATOR SEED VALUES
    C READ RANOOM NUMGER GENERATOR SEED VALUES
    READ(5.97)ISEED,JSEED
```

 READ(5.97)ISEED,JSEED
    ```


```

FORTRAN IV G LEVEL 2INDT RIDATE $=78094$10/00/33

```



\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{FORTRAN} & & LEVEL & 21 CADTR DATE \(=78094\) & 10/03/40 \\
\hline & & \[
\begin{aligned}
& c \\
& c \\
& c \\
& c
\end{aligned}
\] & COMPUTE P FER G GREATER THAN OR EUUAL TO 4.0 AND LESS THAN OR EQUAL TO 1000.0 & \begin{tabular}{l}
COIRO875 \\
CDIR0880 \\
CDTR0885 \\
CDTR0890 \\
CDIRO895
\end{tabular} \\
\hline 0107 & & 460 & or \(3=0.00\) & COTR0900 \\
\hline 0108 & & & \(00 \quad 480 \quad 13=2, k\) & CDTR0905 \\
\hline 0109 & & & TMPI \(=\) DFLOAT (I3) + THE TA & CDTRO910 \\
\hline 0110 & & & CALL DLGAMITHPI, GTH, \({ }^{\text {a }}\) (GK) & CDIRU915 \\
\hline 0111 & & & OLT3=THP1*OLX2-CLXX-X2-GTH & CDIR0920 \\
\hline 0112 & & & IF(DLT3+1.68002) \(480,480,470\) & CDTR0925 \\
\hline 0113 & & 470 & OT3 3 OT3 + OEXP(DLT3) & CDTR0930 \\
\hline 0114 & & 480 & CONTINUE & COIR0935 \\
\hline 0115 & & & T3 = SNGL \(10 \mathrm{~T}^{\text {3 }}\) & CDIRO940 \\
\hline \multirow[t]{4}{*}{0116} & \multirow[t]{5}{*}{} & \multirow[b]{3}{*}{C} & \(\mathrm{P}=\mathrm{T} 1-\mathrm{T} 3-\mathrm{T} 3\) & CDIR0945 \\
\hline & & & SET ERRCR INDICATOR & CDIR0950 \\
\hline & & & SET ERRLR INDICATOR & CDIR0955 \\
\hline & & & \(1 F(P)=00,520,520\) & CDIR0960 \\
\hline 0117 & & 490
500 & 1F(ABSiP)-1.E-7) 510,510,600 & COTR0965 \\
\hline 0118 & & 500 & 1F(ABS(P)-1.E-7) 510.510.600 & CDTR0970 \\
\hline 0119 & & \multirow[t]{2}{*}{510} & \[
\begin{aligned}
& P=0.0 \\
& G O T 0.610
\end{aligned}
\] & CDIR0975 \\
\hline 0120 & & & G0 TC 610 & CDIR0980 \\
\hline 0121 & & 520 & IF(1.-P) \(530.550,550\) & COTR0985 \\
\hline 0122 & & 530 & 1F(ABS: \(1 .-P\) )-1.E-7) 540,540,600 & CDIR0990 \\
\hline 0123 & & \multirow[t]{2}{*}{540} & \(\mathrm{P}=1.0\) & CDTR0995 \\
\hline 0124 & & & GO TO 610 \(\quad 560,560,570\) & CDTR1000 \\
\hline 0125 & & 550 & 1F(P-1.E-E) \(560,560,570\) & CDTR1005 \\
\hline 0126 & & \multirow[t]{2}{*}{560} & \(P=0.0\)
\(G O\) T0 610 & CDTR1010 \\
\hline 0127 & & & GO TO 610 & CDTR1015 \\
\hline 0128 & & 570 & IF( \(1.0-P)-1 . E-8) 580,580,610\) & COTR1020 \\
\hline 0129 & & \multirow[t]{2}{*}{580} & \(\mathrm{P}=1.0\) & COTR1025 \\
\hline 0130 & & & GO TO 610 & CDIR1030 \\
\hline 0131 & & \multirow[t]{3}{*}{590} & \(1 E R=-1\) & CDTR1035 \\
\hline 0132 & & & \(0=-1 . E 75\) & CDTR1 040 \\
\hline 0133 & & & \(\mathrm{P}=-1 . E 75\) & COTR1045 \\
\hline 0134 & & & 6010620 & CDTR1050 \\
\hline 0135 & & \multirow[t]{3}{*}{600} & \(1 E R=+1\) & CDIR1 055 \\
\hline 0136 & & & \(P=1 . E 75\) & COTR1060 \\
\hline 0137 & & & GO TO 620 & COTR1065 \\
\hline 0138 & & 610 & IER=0 & CDTR1070 \\
\hline 0139 & & \multirow[t]{2}{*}{620} & CAOTR=1-0-P & CDTR1075 \\
\hline 0140 & & & 1FIIER.EC. IIPRINT 910 & CDIR1080 \\
\hline 0141 & & \multirow[t]{2}{*}{910} & FORMATI'O', 10X, 'FAlLURE TC CONVERGE IN X -SO FUNCTION' & CDTR1085 \\
\hline 0142 & & & IFIIER.EC, -1)PRINT 911 & COTR1090 \\
\hline 0143 & & \multirow[t]{3}{*}{911} & FORMATI'0', 10X, 'INVALID INPUT IO X (-SQ FUNCTION' & COTR1095 \\
\hline 0144 & & & RETURN
END & COTR1100 \\
\hline 0145 & & & END & \\
\hline
\end{tabular}


0.1000 01
0.1200 E1
0.0
hean and stanoard oeviation of olstribution i hean ano stanoaro deviation of oistribution 2 THE SAMPLE SIIE EQUALS 50
the seed values for this run are
62155
51562
the value of the inoex of non-Congruitytdeltai equals 0.2648
7.16
the area of the chi-square otstridution to the right of the chi-square statistic (alpha hat) equals
\(6669^{\circ} 0\)
iseeo equals
jseeo equals
 the value cf the cili-scuare staristic equals e.40 the area of the chi-souare oistridution to then
0.68
ovr

50\%
there me two poinis of intersection. they are
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline There & ARE TWO PO & INTS OF INTE & ERSECTION. & THEY ARE & -2.05 & Ano & . 68 & & & & \\
\hline REGION & BOUNDRIES & -1.2817 & -0.8415 & -0.5240 & -0.2529 & 0.0 & 0.2529 & 0.5240 & 0.8415 & 1.2817 & \\
\hline cumula & TIVE PROE & 0.0937 & 0.1707 & 0.2661 & 0.3225 & 0.4013 & 0.4844 & 0.5740 & 0.6741 & 0.7934 & \\
\hline RANDOM & SAMPLE & 0.7170 & 4. 3540 & -1.4125 & 0.4722 & -0.2033 & -0.7719 & -0.3549 & 1.0924 & -0.5331 & -0.3329 \\
\hline RANOOH & SAMPLE & 0.1506 & -0.8829 & -0.8850 & -0.6316 & 1:1461 & 0.7400 & -2. 2633 & 0.8774 & 0.0849 & -0.4979 \\
\hline RANOOH & SAMPLE & 0.2298 & -0.0376 & 1.5552 & 0.3529 & 3.2375 & 3.7394 & 2.4928 & 0.6124 & 1.6426 & 0.5917 \\
\hline RANOON & SAMPLE & -1.0056 & -0.7294 & 0.9239 & -1.0840 & -1.0789 & 0.0053 & 0.5922 & 0.9800 & 0.0062 & 0.1151 \\
\hline RANOOM & SAMPLE & 0.8669 & 0.7669 & -0.7807 & 1.6423 & -0.1953 & 1.1252 & -2.8222 & 1.5932 & -2.0086 & \(-1.8013\) \\
\hline CELL FR & REQUENCY & 5.0 & 5.0 & 5.0 & 3.0 & 3.0 & 6.0 & 2.0 & 6.0 & 7.0 & 8.0 \\
\hline
\end{tabular}
0.8415
0.6741
1.0924
0.6124 0.9800
1.5932
..
0.5240
0.5740
\(-0.3549\)
2.4928 N N N
N゙
~
i
\(\underset{\sim}{\sim}\)
\(\stackrel{-}{-}\) \(-0.2033\)
1. 1461 \(-1.0789\) \(n\)
n
\(i\)
\(i\)
i.

\(0525^{\circ} 0-\)
\(-1.4125\)
\(-0.8850\)
1.5552 0.9289 \(i\)
\(\stackrel{\circ}{\infty}\)
\(i\)
\(i\)
5.0
\(51980^{\circ} 0-\)
 \(-0.0376\) -0.7294 0.7669 2182*) 0.7170 0.1506 0.2298 .
0.5


\title{
NON-CONGRUENCE OF STATISTICAL DISTRIBUTIONS: HOW DIFFERENT IS DIFFERENT?
}
by

TERRY LEE APPLEGATE B.S., Kansas State University, 1977 AN ABSTRACT OF A MASTER'S THESIS

Submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering KANSAS STATE UNIVERSITY

Manhattan, Kansas

This thesis studies differences between statistical distributions of the same family. In particular it studies members of the exponential and normal families of statistical distributions. In theory two distributions are the same only if their probability density functions are identical (which implies that their parameters are identical also). However, in practical situations, two distributions which have closely similar probability density functions may produce random samples of small size which are indistinguishable from one another. This thesis is concerned with studying this situation in an attempt to better understand the question of "How different is different?" in relation to differences in statistical distributions from the same family.

The methodology used to study the difference between a pair of statistical distributions from the same family consists of a number of steps. The first step in the comparison procedure consists of determining the amount of non-overlapping area bounded by the probability density functions of the two distributions being compared. The second step consists of drawing a "perfect" sample from one distribution and comparing it with the other distribution. The third step consists of drawing a random sample from one distribution and comparing it with the other distribution. The final step consists of calculating certain indices from the parameters of the distributions and relating these indices to the other comparison results.

Results of the comparison procedure for a sample size of 50 indicate that in both the exponential case and the normal case statistical significant differences at the .05 level would be indicated for amounts of nonoverlapping area in excess of a threshhold value occurring somewhere in the region of .3 to .6. In addition to this there appears to be strong relationships between the indices derived from the parameters of the distributions being compared and the various other comparison indices.

These strong relationships would allow the comparison of statistical distributions solely on the basis of their parameters without requiring the use of sampling.

Special topics covered in the study which might be of interest to other researchers are the use of the McGill Random Number Generator developed by members of the School of Computer Science of McGill University and the suggestions for further research in this area.```

