NON-CONGRUENCE OF STATISTICAL DISTRIBUTIONS:

HOW DIFFERENT IS DIFFERENT?

by.

TERRY LEE APPLEGATE

B.S., Kansas State University, 1977

A MASTER'S THESIS

Submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering KANSAS STATE UNIVERSITY Manhattan, Kansas

1978

Approved by:

ACKNOWLEDGEMENTS

LD 2468 .T4 1978

A 105

^{c 2} I would like to thank my family, the faculty and personnel of the Department of Industrial Engineering at Kansas State, and my fellow students. Each of these groups helped make this segment of my education meaningful. Special thanks is given to Dr. Doris Grosh, whose faith and guidance were instrumental in my completing my course of studies and to my wife, Debora, without whose encouragement and understanding nothing would have been worthwhile.

ii

СНАРТ	TER		PAGE
Ι.	INTRO	DUCTION	1
	1.0.	Genesis	1
	1.1.	The Problem	1
	1.2.	Purpose and Objective	1
	1.3.	Method	2
		1.3.1 The Index of Non-Congruity - 8	2
		1.3.2. The Procedure	3
		1.3.3. The McGill Random Number Generator	8
II.	THE E	XPONENTIAL CASE	10
	2.0.	Introduction	10
	2.1.	Determination of the Point of Intersection	10
	2.2.	The Index of Non-Congruity: Exponential Case	12
	2.3.	Description of Exponential Program Features	13
		2.3.1. Program Listing	13
		2.3.2. Definition of Program Variables	13
		2.3.3. Inputs to the Program	14
		2.3.4. Outputs of the Program	15
		2.3.5. Special Programming Considerations	15
	2.4.	Results of the Exponential Program	16
III.	THE N	IORMAL CASE	29
	3.0.	Introduction	29
	3.1.	Determination of the Point or Points of Intersection	29
	3.2.	The Index of Non-Congruity: Normal Case	31
	3.3.	Description of Normal Program Features	34
		3.3.1. Program Listing	34

CHAPTER		PAGE			
	3.3.2. Definition of Program Variables	34			
	3.3.3. Inputs to the Program	37			
	3.3.4. Outputs of the Program	37			
	3.3.5. Special Programming Considerations	37			
3.4.	Results of the Normal Program	40			
IV. CONC	LUSION	68			
SELECTED	BIBLIOGRAPHY	70			
APPENDIX 1					
APPENDIX	2	80			

L	IST	0F	FIGURES	

	Page
Illustration of the Index of Non-Congruity	4
Distribution divided into Equi-probability Regions	6
The Index of Non-Congruity for Exponential Distri- butions	11
δ vs. λ_2/λ_1	19
χ^2_{PS} vs. λ_2/λ_1	20
χ _{PS} vs. δ	21
$\chi^2_{\rm R}$ vs. $\chi^2_{\rm PS}$	22
$\hat{\alpha}$ vs. λ_2/λ_1	23
α vs. δ	24
Possible Model of the Relationship of $\stackrel{\cdot}{\alpha}$ and δ	26
The Normal Case with Two Points of Intersection	32
The Normal Case for Equal Standard Deviations	33
Tree Diagram for Sorting Procedure	39
χ^2_{PS} vs. δ - Single Variation	42
	43
δ vs. η - Single Variation	44
δ vs. η - Dual Variation	45
x_{PS}^2 vs. n_1 - Single Variation	46
	47
	48
	49
	50
	51
α vs. δ - Mean-Variate Data	52
$\hat{\alpha}$ vs. δ - Variance-Variate Data $\sigma_1 {<} \sigma_2$	53
	Distribution divided into Equi-probability Regions The Index of Non-Congruity for Exponential Distri- butions δ vs. λ_2/λ_1 χ^2_{PS} vs. λ_2/λ_1 χ^2_{PS} vs. δ χ^2_R vs. χ^2_{PS} $\hat{\alpha}$ vs. λ_2/λ_1 $\hat{\alpha}$ vs. δ Possible Model of the Relationship of $\hat{\alpha}$ and δ The Normal Case with Two Points of Intersection The Normal Case for Equal Standard Deviations Tree Diagram for Sorting Procedure χ^2_{PS} vs. δ - Single Variation δ vs. n_1 - Single Variation δ vs. n_1 - Single Variation δ vs. n_1 - Dual Variation χ^2_{PS} vs. χ^2_{PS} - Mean-Variate Data χ^2_{R} vs. χ^2_{PS} - Variance-Variate Data $\sigma_1 < \sigma_2$ χ^2_{R} vs. χ^2_{PS} - Dual Variation $\hat{\alpha}$ vs. $\hat{\alpha}_{PS}$ - Dual Variation

Figure		Page
3-16.	$\hat{\alpha}$ vs. δ - Variance-Variate Data $\sigma_1 > \sigma_2$	54
3-17.	$\hat{\alpha}$ vs. δ - Dual Variation	55
3-18.	$\hat{\alpha}$ vs. n ₁ - Mean-Variate Data	56
3-19.	$\hat{\alpha}$ vs. n_1 - Variance-Variate Data $\sigma_1 < \sigma_2$	57
3-20.	$\hat{\alpha}$ vs. n_1 - Variance-Variate Data $\sigma_1 > \sigma_2$	58

LIST OF TABLES

TABLE					PAGE
2-1.	Results	of	the	Exponential Program	17
3-1.	Results	of	the	Normal Program	62

Chapter 1

Introduction

1.0 GENESIS

This study had its origin in an earlier study for the United States Nuclear Regulatory Commission concerned with diesel engine failure data obtained from several nuclear power plants throughout the United States (3). A result of this earlier study was a number of questions concerning differences between statistical distributions with the primary question being "How does one determine statistically significant differences between statistical distributions?". A subsequent study by K. Lakshminarayan (4) applied the methodology used in this study to Beta distributions.

1.1 THE PROBLEM

Statistical significance is usually concerned with comparing different sets of sample data or with making inferences about the populations being sampled. Various parametric and non-parametric techniques therefore exist for making these decisions. However, no such techniques exist for comparing the populations themselves. The problem to be investigated is: given a family of statistical distributions, how much may a pair of distributions from this family differ before they can be detected as being significantly different, or "How different is different?".

1.2 PURPOSE AND OBJECTIVE

There are primarily two reasons for studying differences between similar distributions of the same family. The first reason deals with the theoretical insights which can result from studying the effects that perturbations of distribution parameters have on the "sameness" of family members. With better understanding of the role of distribution parameters and their

relative importance in determining the characteristics of a particular distribution, hopefully more powerful estimating and comparative statistical techniques can be developed. The second and probably more important reason is the practical applications which could result from studying differences between statistical distributions. Applications could include new methods for establishing when sample data from similar sources could be pooled, parametric "goodness of fit" tests, and sample-free hypothesis testing.

With these two broad underlying reasons for studying differences in statistical distributions from the same family, the expressed objective of this study is: to develop a method of comparing differences in statistical distributions from the same family (normal distributions and exponential distributions are the families of statistical distributions studied), to use this technique to examine the effects of varying the parameters of the distributions on their "sameness", and to attempt to draw some conclusions pertaining to the usefulness of this technique in answering the question of "How different is different?".

1.3 METHOD

1.3.1. The Index of Non-Congruity - δ

The following discussion is an adaptation of material presented by Lakshminarayan (3).

Theoretically, two continuous distributions are the same only if their probability density functions are identical and for their probability density functions to be identical the two distributions must have exactly the same parameters. In practical situations however, two distributions whose probability density functions (and therefore parameters) are nearly the same, may produce random samples which are indistinguishable from one

another. It is this type of situation which indicates that merely examining the probability density functions (or the parameters) of two distributions to see if they are identical does not provide enough information to judge if the two distributions are similar enough to consider them practically as being the same, or if they are different enough that they must be considered as different.

One measure that determines differences between continuous distributions is the difference in the areas bounded by each probability density function in the region of interest or the amount of non-overlapping area bounded by the curves. If $f_1(x)$ and $f_2(x)$ are the probability density functions (Figure 1-1) of the two distributions being compared, then the amount of non-overlapping area or what we have termed "the index of noncongruity" is given by:

$$\delta = \int_{-\infty}^{\infty} |f_1(x) - f_2(x)| dx$$
⁽¹⁾

The non-overlapping area is shown by the shaded portion of Figure 1-1 and the total amount of this shaded area equals δ . To qualify as probability density functions, $f_1(x)$ and $f_2(x)$ each must satisfy the criterion:

 $\int_{0}^{\infty} f(x) dx = 1$ ⁽²⁾

Therefore the values that can be assumed by the index of non-congruity are $0 \le \delta \le 2$. If two distributions are approximately the same then δ will be close to zero and if two distributions are radically different the value of δ will approach 2.

1.3.2. The Procedure

The general procedure used in this study is to choose a particular

distribution from a family of distributions and then compare it to a similar distribution from the same family. The first distribution will be termed the "model distribution" (Distribution 1) and the similar distribution will be termed the "alternative distribution" (Distribution 2).

The procedure by which the alternative distribution is compared with the model distribution consists of a number of steps. The first step is to calculate the index of non-congruity between the two distributions as explained in Section 1.3.1.

Secondly, the model distribution is divided into ten equi-probability regions. A set of values $\{x(i)\}$ of the independent variable is calculated such that:

$$\int_{-\infty}^{x(i)} f_1(x) dx = i/10 \qquad i = 1, \dots, 10$$
(3)

The values $\{x(i)\}$ are such that the sample space of the independent variable is divided into regions which have the same area under the curve of the probability density function, as shown in Figure 1-2. After the equiprobability regions for the model distribution have been determined, a "perfect" sample is drawn from the alternative distribution by using the $\{x(i)\}$ from the model distribution as interval boundaries of the alternative distribution. A "pseudo" - χ^2 statistic is then calculated from this "perfect" sample. This pseudo- χ^2 statistic, χ^2_{PS} , is :

$$\chi^{2}_{PS} = \frac{10}{1 \times 10^{-1}} \frac{\{[F_{2}(i) - F_{2}(i-1)]M - .1(M)\}^{2}}{.1(M)}$$
(4)

where

$$F_2(i) = \int_{-\infty}^{x(i)} f_2(x) dx,$$
 (5)

M is the sample size and $F_2(0) = 0$. We are interested in small sample sizes because small sample sizes are usually encountered in practical

FIGURE 1-2 Distribution divided into Equi-probability Regions

situations, and with very large sample sizes even small differences are discernable. Therefore a value of 50 is used for M in this study. The "pseudo" χ^2 and "perfect" sample are used to reduce the effects introduced by random fluctuations and to better ascertain the basic relationship between the index of non-congruity and differences between the model and alternative distributions.

The third step in the procedure comparing the alternative distribution to the model distribution is that a genuine random sample of size M is drawn from the alternative distribution and the sample is compared to the model distribution. The comparison is made by an ordinary χ^2 goodness of fit test. The random x^2 statistic is calculated to provide a check on the $^2_{X\ ps}$ results and to provide additional insight into the question of differences between statistical distributions. Once the random χ^2 , denoted by χ^2_{R} , has been determined, the level of significance $\hat{\alpha}$ is calculated. Usually when a χ^2 statistic is calculated it is then compared to a value obtained from an appropriately chosen x^2 distribution to determine significance at a prescribed confidence level. In this situation this technique is not totally satisfactory since we are not only interested in whether a particular χ^2_{R} value is significant but also in how significant it is. The level of significance $\hat{\alpha}$ is the area to the right of the computed (observed) $\chi^2_{\ R}$ of a χ^2 distribution with 9 degrees of freedom. There are 9 degrees of freedom since the model distribution is divided into 10 equiprobability regions and the random observations are sorted into these regions for ease of computation. The level of significance gives a more intuitively comprehensible measure of difference than the $\chi^2_{\mbox{ pS}}$ and $\chi^2_{\mbox{ R}}$ values.

The final step in comparing the alternative distribution with the model distribution is the calculation of parametric indicators which

attempt to quantify the differences between the model distribution and the alternative distribution. It is hoped that a relationship can be discovered between a parametric indicator and the index of non-congruity. Using this relationship combined with knowledge about the relationship between the index of non-congruity and statistical significance it may be possible to find a measure of statistical difference between distributions based solely on the parameters of the distributions. Such a parametric indicator would be of considerable practical importance because it would be easy to calculate.

In summary, the comparison procedure given a model distribution and an alternative distribution is:

- Calculate δ, the index of non-congruity
- Calculate x²_{PS}, the "pseudo" chi-square statistic from a "perfect" sample
- 3) Calculate χ^2_{R} from a random sample from the alternative distribution
- 4) Calculate $\hat{\hat{\alpha}},$ the level of significance for $\chi^2_{\ R}$
- 5) Calculate various parametric indicators

1.3.3 The McGill Random Number Generator

This study is primarily based on the use of a computer to perform the comparison procedure outlined in Section 1.3.2. One of the major problems in the development of a program to perform this procedure is the generation of a random sample from the alternative distribution to be used in calculating χ^2_R . The McGill Random Number Generator developed by members of the School of Computer Science of McGill University seemed particularly well suited for the requirements of this study. The McGill RNG has several features which led to its selection. First, the use of the McGill RNG

is FORTRAN compatible and the rest of the program will be written in FORTRAN. Second, the McGill RNG is called as a FORTRAN function rather than as a subroutine, which is advantageous in terms of computation time. Third, the previous value returned is maintained internally by the McGill RNG which leads to easier programming. Fourth, the McGill RNG has special procedures for generating random samples from normal and exponential distributions, thereby eliminating the need to program a transformation for converting a uniform distribution to either of these distributions. Finally, the McGill RNG is included in the subroutine library of the Kansas State University computing system, eliminating the need to include an additional subprogram for the random number generator in the index of noncongruity program.

Chapter 2

THE EXPONENTIAL CASE

2.0 INTRODUCTION

This chapter describes the specific procedure for calculating the index of non-congruity for exponential distributions, the program developed to perform the comparison procedure outlined in Section 1.3.2. for exponential distributions, and the results of using this procedure to compare several pairs of exponential distributions.

2.1 DETERMINATION OF THE POINT OF INTERSECTION

Let $f_1(x)$ be the probability density function of an exponential distribution with parameter λ_1 and let $f_2(x)$ be the probability density function of an exponential distribution with parameter λ_2 . Assume that $\lambda_2 > \lambda_1$. Consider Figure 2-1 which shows two exponential distributions fulfilling these requirements. The shaded area represents the index of non-congruity for this pair of distributions. This area difference is given by Equation (1) which is repeated again for clarity.

$$\delta = \int_{-\infty}^{\infty} |f_1(x) - f_2(x)| \, dx \tag{1}$$

To facilitate calculation of δ , this integral can be divided into 2 components.

$$\delta = \mathcal{I}_{0}^{\infty} |f_{1}(x) - f_{2}(x)| dx = \mathcal{I}_{0}^{\chi} A [f_{2}(x) - f_{1}(x)] dx + \mathcal{I}_{A}^{\infty} [f_{1}(x) - f_{2}(x)] dx$$
(6)

 X_A is the point of intersection of the two probability density functions. Finally note that this expression applies for the case where $\lambda_2 > \lambda_1$ and for the case where $\lambda_1 > \lambda_2$ the limits of integration for the component integrals would have to be exchanged to insure the proper sign for δ .

FIGURE 2-1 The Index of Non-Congruity for Exponential Distributions

The following calculation demonstrates the determination of the point of intersection $\rm X_A.$ At X = $\rm X_A$

$$\lambda_{1}e^{-\lambda_{1}X}A = \lambda_{2}e^{-\lambda_{2}X}A$$
(7)

$$e^{\left(\lambda_{2}-\lambda_{1}\right)X}A = \frac{\lambda_{2}}{\lambda_{1}}$$
(8)

$$(3) \quad X_2 = \lambda_1 \frac{\lambda_2}{\lambda_1}$$

$$X_{A} = \left[\frac{1}{\lambda_{2} - \lambda_{1}}\right] \ln \frac{\lambda_{2}}{\lambda_{1}}$$
(10)

2.2 THE INDEX OF NON-CONGRUITY: EXPONENTIAL CASE

Having determined the point of intersection X_A the expression for the index of non-congruity can be modified. Substituting into Equation (6) we obtain:

$$\delta = \int_{0}^{X} \left[\lambda_{2} e^{-\lambda_{2} X} - \lambda_{1} e^{-\lambda_{1} X} \right] dx + \int_{X}^{\infty} \left[\lambda_{1} e^{-\lambda_{1} X} - \lambda_{2} e^{-\lambda_{2} X} \right] dx$$
(11)

$$= \int_{0}^{X} A_{2} e^{-\lambda} 2^{X} dx - \int_{0}^{X} A_{1} e^{-\lambda} 1^{X} dx$$
(12)

$$+ \int_{X_A}^{\infty} \lambda_1 e^{-\lambda_1 X} dx - \int_{X_A}^{\infty} \lambda_2 e^{-\lambda_2 X} dx$$
$$= -e^{-\lambda_2 X} |_{0}^{X_A} - -e^{-\lambda_1 X} |_{0}^{X_A}$$
(13)

$$+ -e^{-\lambda} \chi^{\chi} |_{\chi_{A}}^{\infty} - -e^{-\lambda} \chi^{\chi} |_{\chi_{A}}^{\infty}$$

$$= [-e^{-\lambda} 2^{X} A + 1] - [-e^{-\lambda} 1^{X} A + 1]$$
(14)

+
$$[0 + e^{-\lambda}]^{X}A] - [0 + e^{-\lambda}2^{X}A]$$

$$= 2e^{-\lambda}1^{X}A - 2e^{-\lambda}2^{X}A$$
(15)

Therefore

$$\delta = 2[e^{-\lambda}]^{X}A - e^{-\lambda}Z^{X}A]$$
(16)

This development is for the case where $\lambda_2 > \lambda_1$. For the case where

 $\lambda_1 > \lambda_2$ the index of non-congruity is:

$$\delta = 2\left[e^{-\lambda}2^{X_{A}} - e^{-\lambda}1^{X_{A}}\right]$$
(15a)

and:

$$x_{A} = \frac{1}{\lambda_{1} - \lambda_{2}} \ln \frac{\lambda_{1}}{\lambda_{2}}$$
(10a)

2.3 DESCRIPTION OF EXPONENTIAL PROGRAM FEATURES

2.3.1 Program Listing

A complete listing of the computer program to perform the comparison procedure for exponential distributions is given in Appendix 1.

2.3.2. Definition of Program Variables

AHAT: th	e level	of s	signii	ficance,	α
----------	---------	------	--------	----------	---

CADTR: function subroutine to determine $\hat{\alpha}$

DIFFL: absolute difference of λ_1 and λ_2 , $|\lambda_1 - \lambda_2|$

DELTA: the index of non-congruity, &

EI: the expected frequency in the equi-probability regions, M/10 FREO(10): the array containing the frequency counts of the random

sample sorted into the equi-probability regions

F2SUM: the sum of the components of the array FREQ squared

ISEED: one of the seeds for the McGill RNG

JSEED: the other seed for the McGill RNG

K: the index for the array FREQ. K can take on integer values from 1 to 10.

LAMDA1: the parameter of the model exponential distribution LAMDA2: the parameter of the alternative exponential distribution

M: the sample size

NU: the degrees of freedom for the χ^2 distribution which $\chi^2_{\rm PS}$ and $\chi^2_{\rm R}$ are compared with

- P2(10): the array containing the cumulative probability of the alternative distribution at the region boundries $\{x(i)\}$
- RATIO: the ratio of λ_1 and λ_2 , if $\lambda_2 > \lambda_1$

RATIO =
$$\frac{\lambda_2}{\lambda_1}$$
 and if $\lambda_1 > \lambda_2$ RATIO = $\frac{\lambda_1}{\lambda_2}$

REXP: subroutine to generate a random deviate from an exponential distribution with mean λ = 1

RSTART: subroutine to initialize the McGill Random Number Generator SAMPL(200): the array containing the random sample from the

alternative distribution

- T1: the point of intersection X_{Δ}
- X1(10): the equi-probability region boundaries {x(i)}
- X2ACT: the random χ^2 statistic, χ^2_p
- X2PS: the pseudo χ^2 statistic, χ^2_{ps}
- X2SUM: the sum of $[P2(10) X1(10)]^2$ used in the calculation of X2PS
- Z1: variable equal to the negative of the product of LAMDA1 and T1
- Z2: variable equal to the negative of the product of LAMDA2 and TI

2.3.3. Inputs to the Program

The variables required as input to the program are:

LAMDA1, LAMDA2, M, ISEED, JSEED

The input is given on two separate cards with the indicated format.

LAMDA1, LAMDA2, M	l card	(2E10.4, I5)
ISEED. JSEED	l card	(215)

Multiple runs of the program can be made by supplying additional input cards (two per replication) containing the information described above. Program completion is indicated by a blank card.

2.3.4. Outputs of the Program

The program provides two types of output. The first type is an echo check of the input. The second type is information calculated by the program. The following information is produced as output of the second type: the array X1, the array P2, the first M components of the array SAMPL, the array FREQ, DELTA, X2PS, X2ACT, and AHAT. A sample output is shown in Appendix 1.

2.3.5. Special Programming Considerations

<u>Using the McGill Random Number Generator</u> The use of the McGill RNG is accomplished by the two subroutines RSTART and REXP. RSTART initializes the RNG. The arguments of RSTART are ISEED and JSEED. The transfer from the main program to the RSTART subroutine is made by the statement Call RSTART (ISEED, JSEED). The RNG provides default values if RSTART is not used. REXP generates a random exponential deviate from an exponenetial population with parameter $\lambda = 1$. This random deviate is transformed into a random deviate from an exponential population with parameter λ_A by dividing by λ_A e.g. $z = x/\lambda_A$ where z is the random deviate from the desired distribution and x is the generated random deviate. The argument of REXP is a dummy integer constant which is ignored by the program. In other words use of REXP(10) or REXP(98765) produces the same effect i.e. the generation of an exponential random deviate. Use of the function subroutine REXP is accomplished by using REXP(1) in an arithmetic function e.g. SAMPL(I) = REXP(1)/LAMDA2.

<u>Sorting the Random Sample Observations</u> In designing a sorting procedure the objective is to minimize the expected number of sorting trials for a sample set while maintaining a level of simplicity in the programming. The sorting procedure used in the program consists of a loop containing a set of test statements which compares the random deviate with the equal probability region boundaries sequentially until the deviate is less than the boundary value. The deviate is then placed in the frequency region which has the boundary value as its upper bound. This sorting procedure would minimize the expected number of trials for the case where $\lambda_2 > \lambda_1$. However for the case where $\lambda_1 >> \lambda_2$ this procedure would result in a high expected number of trials. This was not considered a significant problem since we are primarily concerned with cases where λ_1 and λ_2 are nearly equal.

<u>Calculating $\hat{\alpha}$ </u> The level of significance, $\hat{\alpha}$, is calculated by the function subroutine CADTR which is a slightly modified version of the CDTR subroutine contained in IBM's Scientific Subroutine Package. The modifications include changing the subprogram from a subroutine subprogram to a function subprogram and modifying the inputs and outputs of the subprogram.

2.4. RESULTS OF THE EXPONENTIAL PROGRAM

Four different sets of values of random number generator seeds were used in investigating the exponential case. Values of distributions compared varied from $\lambda_2/\lambda_1 = 1/3$ to $\lambda_2/\lambda_1 = 3$. For $\lambda_1 > \lambda_2$ the value of λ_2 was set to equal 10 and for $\lambda_2 > \lambda_1$ the value of λ_1 was set equal to 10. Therefore in every pair of distributions compared the smallest parameter was equal to 10. This was done for computation convenience since only the ratio is pertinent (as seen from Equations (10) and (16)), rather than the absolute size of λ_1 and λ_2 . The sample size used in the comparison was set equal to 50 in all cases. The results of the various comparison runs are summarized in Table 2-1.

Various relationships between comparison indices are graphically presented in Figures 2-2 to 2-7. Examination of these figures indicates that there is good reason to believe that there is a strong relationship

TABLE 2-1

Results of the Exponential Program

<u>λ</u> 1	^λ 2	RATIO	RNG Seed	δ	2 *PS	²	<u> </u>
30	10	1/3	A B C D	.7698	76.80	86.00 84.40 120.40 75.20	.0000 .0000 .0000 .0000
20	10	1/2	A B C D	.5	28.67	24.40 39.20 48.80 41.60	.0037 .0000 .0000 .0000
17.5	10	4/7	A B C D	.4064	17.93	20.00 46.80 37.20 36.00	.0179 .0000 .0000 .0000
15	10	2/3	A B C D	.2963	8.88	9.20 28.80 21.60 18.40	.4190 .0007 .0102 .0508
12.5	10	4/5	A B C D	.1638	2.48	4.80 14.40 10.40 14.00	.8514 .1088 .3191 .1223
10	12.5	5/4	A B C D	.1638	2.00	10.40 12.40 10.00 9.20	.3191 .1917 .3505 .4190
10	15	3/2	A B C D	.2963	6.13	10.40 13.60 10.80 12.80	.3191 .1373 .2897 .1719
10	17.5	7/4	A B C D	.4064	11.12	17.60 20.00 18.80 18.80	.0401 .0179 .0269 .0269
10	20	2/1	A B C D	.5	16.50	19.60 23.20 18.80 26.40	.0205 .0058 .0269 .0018

Table 2-1 continued

λl	^λ 2	RATIO	RNG SEEI	<u>ð</u> (×2 ×PS	2 R	<u></u>
10	30	3/1	A B C D	.7698	39.50	48.40 40.40 43.60 47.60	.0000 .0000 .0000 .0000
M = 5	0, RNG	= A(51 C(50		62155) 11292)	B(62155, D(11292,		

ł

between all of the comparison indices plotted. It is only possible at present to make very tentative estimates of most of these relationships. The comparison variable pairs where a clear relationship exists are δ vs λ_2/λ_1 , χ^2_{PS} vs 6, and χ^2_{pc} vs $\lambda_2/\lambda_1.$ These relationships do not vary with different random samples. However, for the relationships involving variables which are affected by different random samples-namely $\chi^2_{\rm p}$ and $\hat{\alpha}$ - it is only possible to make tentative estimates of the relationships. To obtain better insight into these relationships, it would be necessary to increase the number of replications (using different random number seed values each time). Increasing the number of replications would increase the knowledge of the distribution of the values assumed by χ^2_p and $\hat{\alpha}$ at fixed values of the non-effected variables (δ , λ_2/λ_1 , and $\chi^2_{\text{PS}1}$ and would also increase the accuracy of the estimate of the mean value of the affected variables. With sufficient replications it would be possible to obtain very reliable figures of the type shown in Figure 2-8 which illustrates a possible model of the relationship of $\hat{\alpha}$ and 6. The knowledge of these tentative relationships is believed to be sufficient for the purposes of this study but it is recognized that further research should proceed in the effort to better quantify these relationships.

Examination of Figures 2-2 to 2-7 provides some valuable insights and also produces some interesting observations. First, as shown in Figure 2-2, δ changes at a faster rate for a given change in the lambda ratio for $\lambda_2/\lambda_1 \times 1$ than for $\lambda_2/\lambda_1 > 1$. This indicates that if an alternative distribution is compared to a model distribution having a smaller parameter, of size $\lambda_2 - \epsilon$ say, it is more likely that the two distributions can be considered as equivalent (because of a smaller δ value) than if the alternative distribution was compared to a model distribution having a correspondingly larger parameter of $\lambda_2 + \epsilon$.

Second, as indicated in Figures 2-3 and 2-4, $\chi^2_{P\,S}$ (and therefore

ð

presumably χ^2_R and $\hat{\alpha}$) is more sensitive to differences in the distributions being compared for $\lambda_2/\lambda_1 < 1$ than for $\lambda_2/\lambda_1 > 1$. This sensitivity is in addition to the effect on δ of the relative magnitude difference of the parameters of the distributions. This indicates that in addition to the added likelihood that an alternative distribution and a model distribution can be considered equivalent for $\lambda_2/\lambda_1 > 1$ due to the magnitude effect, there is also an additional effect caused by the reduced sensitivity to difference for $\lambda_2/\lambda_1 > 1$.

Figure 2-5 indicates that χ^2_{PS} in general tends to be smaller than χ^2_R . It also appears that there is a linear trend between χ^2_{PS} and χ^2_R if the point χ^2_{PS} = 76.8, χ^2_R = 120.40 is not considered. A least-squares line was calculated for this relationship. The equation of this line is χ^2_R =.95465 χ^2_{PS} + 9.36853.

Figure 2-5 and Table 2-1 also produce two interesting observations. First, there is a tighter grouping of $\chi^2_{\rm R}$ from cases where $\lambda_2/\lambda_1 > 1$. Second, RNG seed A seems to produce peculiar results for cases where $\lambda_2/\lambda_1 < 1$. The underlying causes of these two phenomena are not fully understood.

From Figure 2-7 it appears that δ tends to be significant at the .05 level above values of .4. At values between .3 $\leq \delta \leq$.4 the result is ambiguous if the judgment is to be based on $\hat{\alpha}$ (χ^2_R) . If χ^2_{PS} is used to judge the two distributions for equivalence the range of uncertainty for δ can be determined from Table 2-1. Significance occurs at χ^2 values around 17 at the .05 level. Therefore χ^2_{PS} would indicate significance at the .05 level above 8 since .95465(8) + 9.36853 = 17. It appears that if χ^2_{PS} is used as the judgment criterion, then for δ to indicate significance its value must be greater than .3 for $\lambda_2/\lambda_1 < 1$ and greater than .35 for $\lambda_2/\lambda_1 > 1$. Using χ^2_{PS} as the judgment criterion the uncertainty range for

δ appears to be

$$\begin{array}{ll} .2 \leq \delta \leq .3 & \lambda_2/\lambda_1 < 1 \\ .25 \leq \delta \leq .35 & \lambda_2/\lambda_1 > 1 \end{array}$$

These δ values imply that if λ_2/λ_1 is to be used to test for significance as opposed to δ then the uncertainty regions are

$$\{ \begin{array}{ccc} .57 \leq \lambda_2/\lambda_1 \leq .67 & \lambda_2/\lambda_1 \leq 1 \\ 1.5 \leq \lambda_2/\lambda_1 \leq 1.75 & \lambda_2/\lambda_1 > 1 \\ \end{array} \}_{\hat{\alpha} \text{ basis}}$$

$$\{ \begin{array}{ccc} .65 \leq \lambda_2/\lambda_1 \leq .75 & \lambda_2/\lambda_1 > 1 \\ 1.45 \leq \lambda_2/\lambda_1 \leq 1.6 & \lambda_2/\lambda_1 > 1 \end{array} \}_{\substack{x \neq x \\ p \\ S \text{ basis}}}$$

and significance is indicated for values of

 $\begin{array}{lll} \lambda_2/\lambda_1 \leq .57 & \text{or} & \lambda_2/\lambda_1 \geq 1.75 & \hat{\alpha} \text{ basis} \\ \\ \lambda_2/\lambda_1 \leq .65 & \text{or} & \lambda_2/\lambda_1 \geq 1.6 & \chi^2_{\text{PS}} \text{ basis} \end{array}$

Chapter 3

THE NORMAL CASE

3.0 INTRODUCTION

This chapter describes the specific procedure for calculating the index of non-congruity for normal distributions, the program developed to perform the comparison procedure outlined in Section 1.3.2. for normal distributions, and the results of using the procedure to compare several pairs of normal distributions.

3.1 DETERMINATION OF THE POINT OR POINTS OF INTERSECTION

Let $f_1(x)$ be the probability density function of a normal distribution with mean u_1 and standard deviation σ_1 . Let $f_2(x)$ be the probability density function of a normal distribution with mean u_2 and standard deviation σ_2 . At a point of intersection we have,

$$\frac{1}{\sqrt{2\pi}\sigma_1} e^{-1/2(\frac{x-u_1}{\sigma_1})^2} - \frac{1}{\sqrt{2\pi}\sigma_2} e^{-1/2(\frac{x-u_2}{\sigma_2})^2} = 0 , \qquad (17)$$

so that
$$e^{-1/2[(\frac{x-u_1}{\sigma_1})^2 - (\frac{x-u_2}{\sigma_2})^2]} = \frac{\sigma_1}{\sigma_2}$$
 (18)

and
$$\left[\left(\frac{x-u_1}{\sigma_1}\right)^2 - \left(\frac{x-u_2}{\sigma_2}\right)^2\right] = -2\ln\frac{\sigma_1}{\sigma_2}$$
 (19)

Then
$$(\sigma_2^2 - \sigma_1^2)x^2 - 2(\sigma_2^2u_1 - \sigma_1^2u_2) + [\sigma_2^2u_1^2 - \sigma_1^2u_2^2 + 2\sigma_1^2\sigma_2^2 \ln \frac{\sigma_1}{\sigma_2}] = 0$$
 (20)

Equation (20) is of the form

$$A \times {}^{2} + B \times + C = 0$$
 (21)

The number of roots of equations of this form can be determined from the discriminant. If (B^2 - 4AC) is

negative there are no real roots
zero one real root
$$X_A = \frac{-B}{2A}$$

positive two real roots, $X_{A1} = \frac{-B + \sqrt{B^2 - 4AC}}{2A}$
 $X_{A2} = \frac{-B - \sqrt{B^2 - 4AC}}{2A}$

Denoting the discriminant by R, we find that

$$R = 4(\sigma_2^2 u_1 - \sigma_1^2 u_2)^2 - 4(\sigma_2^2 - \sigma_1^2)[\sigma_2^2 u_1^2 - \sigma_1^2 u_2^2 + 2\sigma_1^2 \sigma_2^2 \ln \frac{\sigma_1}{\sigma_2}]$$
(22)

which reduce to the conditions

R negative yields no real roots
R zero yields one root
$$X_A = \frac{\sigma_2^2 u_1 - \sigma_1^2 u_2}{\sigma_2^2 - \sigma_1^2}$$

R positive yields two roots $X_{A1} = X_A + \frac{\sqrt{R}}{2(\sigma_2^2 - \sigma_1^2)}$

$$X_{A2} = X_A - \frac{\sqrt{R}}{2(\sigma_2^2 - \sigma_1^2)}$$

Now in the special case where $\sigma_2 = \sigma_1 = \sigma$, then Equation (17) reduces to

$$\frac{1}{\sqrt{2\pi}\sigma} e^{-1/2} \left(\frac{x-u_1}{\sigma}\right)^2 - \frac{1}{\sqrt{2\pi}\sigma} e^{-1/2} \left(\frac{x-u_2}{\sigma}\right)^2 = 0$$
(17a)

which yields $(x-u_1)^2 = (x-u_2)^2$ (24)

$$x^{2} - 2xu_{1} + u_{1}^{2} = x^{2} - 2xu_{2} + u_{2}^{2}$$
 (25)

$$2xu_2 - 2xu_1 = u_2^2 - u_1^2$$
(26)

$$X = \frac{u_2^2 - u_1^2}{2(u_2 - u_1)}$$
(27)

$$X_{A} = \frac{u_{2} + u_{1}}{2}$$
(28)

3.2 THE INDEX OF NON-CONGRUITY: NORMAL CASE

The two most common situations with normal distributions, where there are two points of intersection and $\sigma_1 = \sigma_2$, are shown in Figures 3-1 and 3-2. The shaded area in these figures equals the index of non-congruity.

The index of non-congruity is given by Equation (6).

$$\delta = \underline{f}_{\infty}^{\infty} |f_1(x) - f_2(x)| dx$$
(6)

This expression can be modified according to the number of intersection points. If there is no point of intersection then obviously $\delta = 2$. If there is one point of intersection, X_A , the integral can be decomposed into two terms. Assume that $f_1(x) > f_2(x)$ for $X < X_A$ then

$$\delta = \int_{-\infty}^{X} A \left(f_{1}(x) - f_{2}(x) \right) dx + \int_{X}^{\infty} \left(f_{2}(x) - f_{1}(x) \right) dx$$
(29)

$$\delta = \int_{\infty}^{X} A f_{1}(x) dx - \int_{\infty}^{X} A f_{2}(x) dx + \int_{X}^{\infty} f_{2}(x) dx - \int_{X}^{\infty} f_{1}(x) dx$$
(30)

$$\delta = F_1(X_A) - F_2(X_A) + [1 - F_2(X_A)] - [1 - F_1(X_A)]$$
(31)

$$\delta = 2[F_1(X_A) - F_2(X_A)]$$
(32)

where $F_i(x)$ is the cumulative probability function of $f_i(x)$. In general, for the case where there is one point of intersection

$$\delta = 2|F_1(X_A) - F_2(X_A)|$$
(33)

If there are two points of intersection (see Figure 3-2) then the index of non-congruity integral can be separated into three parts. Let C_1 and C_2 ($C_1 < C_2$) be the points of intersection.

Assume that $f_1(x) > f_2(x)$ for $X < C_1$ then

$$\delta = \underbrace{c_1}_{\infty} (f_1(x) - f_2(x)) \, dx + \int_{c_1}^{c_2} (f_2(x) - f_1(x)) \, dx + \int_{c_2}^{\infty} (f_1(x) - f_2(x)) \, dx$$
(34)

FIGURE 3-1 The Normal Case with Two Points of Intersection

$$\delta = F_1(C_1) - F_2(C_1) + [F_2(C_2) - F_2(C_1) - F_1(C_2) + F_1(C_1)] + [1 - F_1(C_2) - 1 + F_2(C_2)]$$
(35)

$$\delta = 2[(F_2(C_2) - F_2(C_1)) - (F_1(C_2) - F_1(C_1))]$$
(36)

In general for the case where there are two points of intersection

$$\delta = |2[(F_2(C_2) - F_2(C_1)) - (F_1(C_2) - F_1(C_1))]|$$
(37)

3.3 DESCRIPTION OF NORMAL PROGRAM FEATURES

3.3.2. Definition of Program Variables

3.3.1. Program Listing

This section describes the essential features of the program for comparing normal distributions. A complete listing of the program is given in Appendix 2.

3.3.2.	Definition of Program Variables
AHAT:	the level of significance, $\hat{\boldsymbol{\alpha}}$
C1:	the lower point of intersection, C_{1}
C2:	the upper point of intersection , C_2
CADTR:	function subroutine to determine $\hat{\alpha}$
D:	an output parameter of subroutine NDTR which is not used in
	the main program
DELTA:	the index of non-congruity, $\boldsymbol{\delta}$
EI:	the expected frequency in the equi-probability regions, $\ensuremath{M}\xspace{-1}\x$
F1:	the cumulative probability $F_1(X)$ at X_A
F1C1:	the cumulative probabiltiy $F_1(X)$ at C_1
F1C2:	the cumulative probability $F_1(X)$ at C_2
F1DIF:	F1C2 - F1C1
F2:	the cumulative probability $F_2(X)$ at X_A
F2C1:	the cumulative probability $F_2(X)$ at C_1
F2C2:	the cumulative probability $F_2(X)$ at C_2

F2DIF: F2C2 - F2C1

F2SUM: the sum of the components of the array FREQ squared FREQ(10): The array containing the frequency counts of the random

sample sorted into the equi-probability regions FRSFAC: $4(\sigma_2^2 u_1 - \sigma_2^2 u_2)^2$

IER: error indicator used in subroutine NDTRI

IND: indicator showing the number of intersection points

ISEED: one of the seeds for the McGill RNG

JSEED: the other seed for the McGill RNG

K: the index for the array FREQ

MU1: population mean µ1

MU2: population mean µ2

M: the sample size

NDTR: subroutine to calculate F_i(z)

NDTRI: subroutine to calculate the standard normal deviate z, given $F_{i}(z)$

P: input parameter to subroutine NDTRI containing F_i(z)

P2(10): the array containing the cumulative probability of the alternative distribution at the region boundaries {x(i)}

RAD: R of Equation (22)

RADPRT: $\sqrt{R}/2(\sigma_2^2 - \sigma_1^2)$

RATIO: the ratio of population standard deviations, σ_1/σ_2

RNOR: McGill RNG function to generate standard normal deviate

RSTART: subroutine to initialize the McGill RNG

SAMPL(200): the array containing the random sample from the alternative distribution

SIGMA1: population standard deviation, σ1

SIGMA2: population standard deviation, o2

 $4(\sigma_{2}^{2} - \sigma_{1}^{2})[\sigma_{2}^{2}u_{1}^{2} - \sigma_{1}^{2}u_{2}^{2} + 2\sigma_{1}^{2}\sigma_{2}^{2}\ln \frac{\sigma_{1}}{\sigma_{2}}]$ u_{1}^{2} u_{2}^{2} σ_{1}^{2} SNDFAC: SOMU1: SOMU2: VAR1: σ,² VAR2: VARDIF: VAR2 - VAR1 σ1²u2 VXM12: σ₂²u₁ VXM21: VXMD2: $(\sigma_2^2 u_1 - \sigma_1^2 u_2)^2$ VXMDIF: $(\sigma_2^2 u_1 - \sigma_1^2 u_2)$ VXSI2: $\sigma_1^2 u_2^2$ VXS21: 0,2²u,² X1(10): the equi-probability region boundaries {X(i)} X2ACT: the random χ^2 statistic, χ^2_R X2PS: the pseudo χ^2 statistic, χ^2_{ps} X2SUM: the sum of [P2(10) - X1(10)] used in the calculation of X2P XLNFAC: $2 \sigma_2^2 \sigma_1^2 \ln \frac{\sigma_1}{\sigma_2}$ the single point of intersection, X_A XX: one of two points of intersection, $\boldsymbol{X}_{\text{A1}}$ XX1: the other of two points of intersection, $X^{}_{\rm A2}$ XX2: a standard normal deviate used in calculating X1(10) Ζ: standard normal equivalent of X_A for distribution 1 Z1: standard normal equivalent of C_1 for distribution 1 Z1C1: standard normal equivalent of C₂ for distribution 1 Z1C2: standard normal equivalent of $\boldsymbol{X}_{\boldsymbol{A}}$ for distribution 2 Z2: standard normal equivalent of C1 for distribution 2 Z2C1: standard normal equivalent of C₂ for distribution 2 Z2C2: Z2PS(10): array containing standard normal equivalent of X1(10) for distribution 2

3.3.3. Inputs to the Program

The inputs to the program are the distribution parameters - u_1 , σ_1 , u_2 , σ_2 ; the sample size M; and the RNG seed values - ISEED, JSEED. The input is given on two separate cards with the indicated format.

MU1, SIGMA1, MU2, SIGMA2, M 1 Card (4E10.4, I5) ISEED, JSEED 1 Card (2I5)

Multiple runs are possible by supplying additional input cards (two per replication). Program completion is indicated by a blank card.

3.3.4. Outputs of the Program

The output of the normal program is almost identical with the output of the exponential program. There are two types of output of the normal program. The first type is an echo check of the inputs to the program and the second type is the set of values calculated by the program. As in the exponential program, the second type of output for the normal program consists of the values of ε , χ^2_{PS} , χ^2_R , $\hat{\alpha}$, X1(10), P2(10), the first M elements of SAMPL(200), and FREQ(10). In addition to these second type outputs, the normal program also prints the number of intersection points and their values. A sample output is contained in Appendix 2.

3.3.5. Special Programming Considerations

to 2.

Using the McGill RNG Use of the McGill RNG is accomplished in this program through the use of two subprograms - RSTART and RNOR. The use of RSTART is described in section 2.3.4. RNOR is used to generate a sample from a standard normal distribution. Its use is similar to the use of REXP described in Section 2.3.4. The sample from a standard normal distribution is transformed to a sample from a normal distribution with mean u and standard deviation σ by the equation

$$X = u + \sigma z$$
 (38)

where z is the sample from a standard normal distribution and X is the observation from the desired distribution.

<u>Sorting the Random Sample Observations</u> The normal index of noncongruity program uses a different sorting scheme than the exponential program did because of the different shapes of the two distributions. The sorting scheme is shown in the tree diagram shown in Figure 3-3. This scheme is designed to search the middle equi-probability regions first. The efficiency of this sorting scheme is dependent on the nature of the alternative distribution and, therefore, the scheme does not minimize the expected number of tests in all situations. However, the scheme does reduce the maximum number of tests to 5, as compared with 9 in the scheme used in the exponential program.

<u>Calculating the Normal Cumulative Probability of X</u> The cumulative probability for an argument X is calculated by first converting the number to standard form by the transformation,

$$z = (x - u)/\sigma$$
 (39)

The cumulative probability is then calculated by the IBM Scientific Subroutine Package subroutine NDTR which uses the following approximation taken from Hastings

FIGURE 3-3 Tree Diagram for Sorting Procedure

$$F(z) = 1 - f(z)(b_1t + b_2t^2 + b_3t^3 + b_4t^4 + b_5t^5)$$
(40)

where

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-z^{2/2}}, t = \frac{1}{1 + rz}, r = .2316419,$$

$$b_{1} = .31938153, b_{2} = -.356563782, b_{3} = 1.7181477937$$

$$b_{a} = -1.821255978, and b_{c} = 1.33027449$$

This approximation has a maximum error of 7.5 x 10^{-8} and is valid only for z > 0. For z < 0 the complement of F(-z) gives the desired value.

<u>Calculating X given a Normal Cumulative Probability</u> A value X from a $N(\nu,\sigma^2)$ population can be calculated from a given normal cumulative probability P by first calculating the value z from a standard normal distribution with cumulative probability P and then applying the transformation given in Equation (38). The value z is calculated by the IBM Scientific Subroutine Package subroutine NDTRI which uses the following approximation taken from Hastings,

$$z = w - \sum_{i=0}^{2} a_i w^i / \sum_{i=0}^{3} b_i w^i$$
 (41)

where w = $\sqrt{\ln(1/p^2)}$, $a_0 = 2.515517$, $a_1 = .802853$, $a_2 = .010328$, $b_0 = 1$, $b_1 = 1.432788$, $b_2 = .189269$, $b_3 = .001308$

This approximation has a maximum error of 4.5 x 10^{-4} and is valid only for P \leq .5. For P > .5, z of 1-P is calculated and then the sign of z is changed.

3.4 RESULTS OF THE NORMAL PROGRAM

Four different sets of values for random number generator seeds were used in investigating the normal case. The standard normal distribution was chosen as the model distribution. Three different types of alternative distributions were considered. In the first type the mean of the alternative distribution was different from zero and the standard deviation was equal to one. This set of alternative distributions is referred to as the <u>meanvariate</u> set. In the second type the mean of the alternative distribution was equal to zero and the standard deviation was different from one. This set of alternative distributions is referred to as the <u>variance-variate</u> set. In the third type of alternative distribution considered, the mean of the alternative distribution was different from zero and the standard deviation was different from one. This set is referred to as the <u>mean-variancevariate</u> set. The sample size used in the comparisons was 50 in all cases.

One of the steps in the comparison procedure outlined in Section 1.3.2 is the calculation of various parametric indicators. The parametric indicator which was chosen in the normal case was,

$$n_1 = |u_1 - u_2| + |\sigma_1 - \sigma_2| \tag{42}$$

Various relationships between comparison indices are graphically presented in Figures 3-4 to 3-20. There appears to be a strong relationship between all of the comparison indices plotted. Examination of these figures provides some valuable information. Figure 3-4 shows the relationship between χ^2_{PS} and δ . This figure indicates that for the cases of the mean-variate and variance-variate sets of alternative distributions χ^2_{PS} and δ are strongly related. The figure also indicates that two distributions with a particular δ value are more easily detected as being significantly different if their means are different than if their standard deviations are different. The figure also shows a greater difference in χ^2_{PS} for a given δ value for $\sigma_1 < \sigma_2$ than for $\sigma_1 > \sigma_2$. (Recall that in the exponential case this type of a relationship existed; χ^2_{PS} for $\lambda_2/\lambda_1 < 1$ was greater than χ^2_{PS} for $\lambda_2/\lambda_1 > 1$. This is a similar result since the standard deviation of an exponential distribution is $1/\lambda$ and therefore

FIGURE 3-9 x_{PS}^2 vs. n_1 - Dual Variation

FIGURE 3-14 $\hat{\alpha}$ vs. δ - Mean-Variate Data

FIGURE 3-18 $\hat{\alpha}$ vs. η_1 - Mean-Variate Data

the ratio of the standard deviations is $1/\lambda_2/1/\lambda_1 = \lambda_1/\lambda_2$. Hence if $\lambda_2/\lambda_1 < 1$ then $\sigma_{exp1} < \sigma_{exp2^*}$)

Figure 3-6 indicates the relationship between δ and n_1 for the meanvariate and variance-variate data. The most sensitive case is for the variance-variate case with $\sigma_1 > \sigma_2$. This sensitivity is partially offset by the relationship between χ^2_{PS} and δ for this case (which is not as sensitive as the other two cases shown) as shown in Figure 3-4. However it is not completely offset as seen in Figure 3-8 which shows that the case of variance-variate data with $\sigma_1 > \sigma_2$ produces a much higher χ^2_{PS} value for a given n_1 than the other two cases (which produce comparable values).

As in the exponential case χ^2_{PS} tends to be smaller than χ^2_R , as seen in Figures 3-10 to 3-13. There also appears to be a linear trend between χ^2_R and χ^2_{PS} in each of these figures. A least-squares line was calculated for each of these cases. The obviously outlying points of Figures 3-11 and 3-13 were omitted from the calculations. The derived lines are

Figure 3-10 Mean-Variate Data $\chi_R^2 = .90935 \chi_{PS}^2 + 6.55919$ Figure 3-11 Variance-Variate Data $\sigma_1 < \sigma_2$ $\chi_R^2 = .92777 \chi_{PS}^2 + 4.95750$ Figure 3-12 Variance-Variate Data $\sigma_1 > \sigma_2$ $\chi_R^2 = .85908 \chi_{PS}^2 + 3.29251$ Figure 3-13 Mean-Variance-Variate Data $\chi_R^2 = .580767 \chi_{PS}^2 + 5.83267$ From Figures 3-14 to 3-16 it appears that (based on α as the criterion) δ tends to be significant at the .05 level as indicated below: Figure Type Significance Range

3-14 Mean-Variate Data $\delta \ge .47$

Type		Significance Range
Mean-Variate Data		$x_{PS}^2 \ge 11.5$
Variance-Variate Data	σ ₁ < σ ₂	$x_{PS}^2 \ge 13.0$
Variance-Variate Data	σ ₁ > σ ₂	$x_{PS}^2 \ge 16.0$

Based on these values and consulting Figure 3-4, 6 would indicate significance at the .05 level as given below.

Туре	Significance Range			
Mean-Variate Data	δ <u>></u> .36			
Variance-Variate Data σ ₁ < σ ₂	6 <u>></u> .4			
Variance-Variate Data $\sigma_1 > \sigma_2$	δ <u>></u> .55			
The uncertainty regions can be estimat	ed as			
Mean-Variate Data	.38 <u><</u> 6 <u><</u> .47			
Variance-Variate Data $\sigma_1 < \sigma_2$.34 <u><</u> δ <u><</u> .39 α̂ basis			
Variance-Variate Data	.48 <u><</u> δ <u><</u> .6			
Mean-Variate Data	.32 <u><</u> 6 <u><</u> .36			
Variance-Variate Data $\sigma_1 < \sigma_2$	$.34 \leq \delta \leq .4$ χ^2_{PS} basis			
Variance-Variate Data $\sigma_1 > \sigma_2$.45 <u><</u> ĉ <u><</u> .55			
These values for δ imply that if n_{1} is	s to be used as a test for significance			
instead of $\boldsymbol{\delta},$ then the uncertainty regions can be estimated from Figure 3-6				

to be

These regions compare favorably with results which can be taken from Figures 3-18 to 3-20 for the $\hat{\alpha}$ basis and Figure 3-8 for the χ^2_{PS} basis. Significance is therefore indicated for n_1 values of

Mean-Variate Data		n ₁ ≥ .6	
Variance-Variate Data	σ ₁ < σ ₂	n ₁ ≥ .5	α̂ basis
Variance-Variate Data	σ ₁ > σ ₂	n ₁ ≥ .46	
Mean-Variate Data		n ₁ ≥ .44	
Variance-Variate Data	σ ₁ < σ ₂	n ₁ ≥ .52	χ^2_{PS} basis
Variance-Variate Data	$\sigma_1 > \sigma_2$	$v_1 \ge .42$	

Figures 3-5, 3-7, 3-9, 3-13 and 3-17 show the various relationships between indices for the mean-variance-variate data. Indications of strong relationships between the various indices are shown by these figures. However, it is believed that the knowledge of these relationships is too limited to draw any satisfactory results. Further research, in which the range of the comparison indices is expanded, is needed to better quantify these relationships.

TABLE 3-1

Results of the Normal Program

DISTRIBUTION 2 (Alternative)	RNG SEED	<u> </u>	×PS	x _R ²	â
(.1, 1)	A B C D	.0798	.48	7.60 2.80 2.40 12.00	.5749 .9717 .9835 .2133
(.2, 1)	A B C D	.1593	1.94	8.40 2.00 6.80 12.80	.4944 .9915 .6579 .1719
(.3, 1)	A B C D	.2385	4.41	13.20 10.00 8.00 12.40	.1538 .3505 .5341 .1917
(.4, 1)	A B C D	.3170	7.97	13.60 8.00 10.00 20.00	.1373 .5341 .3505 .0179
(.5, 1)	A B C D	.3948	12.70	20.00 11.60 16.00 25.20	.0179 .2368 .0669 .0028
(.6, 1)	A. B C D	.4716	18.70	30.00 19.20 18.00 33.20	.0004 .0235 .0352 .0001
(.7, 1)	A B C D	.5473	26.08	34.00 22.00 30.40 40.80	.0001 .0089 .0004 .0000
(.8, 1)	A B C D	.6217	34.94	43.20 26.40 38.00 44.00	.0000 .0018 .0000 .0000
(.9, 1)	A B C D	.6946	45.38	62.40 40.40 40.80 53.20	.0000 .0000 .0000 .0000

Table 3-1 continued

DISTRIBUTION 2 (Alternative)	RNG SEED	3	× ² PS	x _R ²	â
(1.0, 1)	A B C D	.7659	57.45	66.40 48.40 49.60 63.20	.0000 .0000 .0000 .0000
(1.1, 1)	A B C D	.8354	71.19	83.60 67.20 66.80 77.60	.0000 .0000 .0000 .0000
(1.2, 1)	A B C D	.9030	86.58	97.20 76.00 78.80 92.80	.0000 .0000 .0000 .0000
(1.3, 1)	A B C D	.9686	103.55	137.60 85.60 89.20 106.00	.0000 .0000 .0000 .0000
(1.4, 1)	A B C D	1.0321	121.99	143.20 95.60 111.60 123.60	.0000 .0000 .0000 .0000
(1.5, 1)	A B C D	1.0935	141.70	172.40 118.80 126.00 126.00	.0000 .0000 .0000 .0000
(1.6, 1)	A B C D	1.1526	162.46	184.00 147.20 141.20 156.40	.0000 .0000 .0000 .0000
(1.7, 1)	A B C D	1.2093	184.00	206.40 163.20 155.20 180.00	.0000 .0000 .0000 .0000
(1.8, 1)	A B C D	1.2638	206.00	246.40 173.60 175.60 180.80	.0000 .0000 .0000 .0000
(1.9, 1)	A B C D	1.3158	228.15	274.80 197.20 235.60 206.80	.0000 .0000 .0000 .0000

Table 3-1 continued

DISTRIBUTION 2 (Alternative)	RNG SEED	δ	× _{PS}	× ² _R	â
(2.0, 1)	A B C D	1.3654	250.11	290.80 226.80 261.20 220.80	.0000 .0000 .0000 .0000
(0, .1)	A B C D	1.5964	194.35	182.80 174.40 192.80 181.20	.0000 .0000 .0000 .0000
(0, .2)	A B C D	1.2942	117.35	95.60 125.60 113.60 88.80	.0000 .0000 .0000 .0000
(0, .3)	A B C D	1.0435	67.04	63.60 58.40 75.60 50.00	.0000 .0000 .0000 .0000
(0, .4)	A B C D	.8300	40.56	39.60 40.80 42.00 26.40	.0000 .0000 .0000 .0018
(0, .5)	A B C D	.6453	24.72	25.20 22.00 32.40 15.60	.0028 .0089 .0002 .0757
(0, .6)	A B C D	.4840	14.48	14.40 14.40 20.00 9.20	.1088 .1088 .0179 .4190
(0, .7)	A B C D	.3416	7.63	9.20 16.00 10.40 6.40	.4190 .0669 .3191 .6993
(0, .8)	A B C D	.2151	3.19	4.80 5.20 11.60 2.40	.8514 .8165 .2368 .9835
(0, .9)	A B C D	.1019	.75	6.00 2.40 8.00 4.40	.7399 .9835 .5341 .8832

Table 3-1 contined

DISTRIBUTION 2 (Alternative)	RNG SEED	ô	x ² _{PS}	x _R ²	â
(0, 1.1)	A B C D	.0922	.65	5.60 6.80 4.00 10.80	.7792 .6579 .9114 .2897
(0, 1.2)	A B C D	.1760	2.42	6.40 7.20 6.00 18.80	.6993 .6163 .7399 .0269
(0, 1.3)	A B C D	.2525	5.05	9.20 10.00 7.60 22.00	.4190 .3505 .5749 .0089
(0, 1.4)	A B C D	.3226	8.29	15.20 11.20 14.40 32.00	.0856 .2622 .1088 .0002
(0, 1.5)	A B C D	.3872	11.97	17.20 19.60 16.00 35.60	.0457 .0205 .0669 .0000
(0, 1.6)	A B C D	.4467	15.93	18.80 20.40 22.40 47.20	.0269 .0156 .0077 .0000
(0, 1.7)	A B C D	.5019	20.07	19.60 24.40 24.40 45.60	.0205 .0037 .0037 .0000
(0, 1.8)	A B C D	.5531	24.29	27.60 26.80 25.20 45.60	.0011 .0015 .0028 .0000
(0, 1.9)	A B C D	.6008	28.52	27.60 32.80 28.40 55.60	.0011 .0001 .0008 .0000
(0, 2.0)	A B C D	.6453	32.73	30.40 40.40 40.40 62.40	.0004 .0000 .0000 .0000

Table 3-1 continued

DISTRIBUTION 2 (Alternative)	RNG SEED	<u> </u>	xps xps	x _R ²	â
(.1, .8)	A B C D	. 2282	3.59	5.60 10.00 10.40 4.40	.7792 .3505 .3191 .8832
(.1, .9)	A B C D	.1262	1.19	6.40 3.60 6.00 6.00	.6693 .9357 .7399 .7399
(.1, 1.1)	A B C D	.1142	1.16	9.20 7.20 4.00 14.80	.4190 .6163 .9114 .0966
(.1, 1.2)	A B C D	.1868	2.95	9.60 8.40 9.20 17.20	.3838 .4944 .4190 .0457
(.2, .8)	A B C D	.2659	4.79	12.00 5.60 6.00 6.00	.2133 .7792 .7399 .7399
(.2, .9)	A B C D	.1876	2.52	7.60 10.80 6.00 6.00	.5749 .2897 .7399 .7399
(.2, 1.1)	A B C D	.1698	2.70	8.40 4.80 8.00 16.40	.4944 .8514 .5341 .0590
(.2, 1.2)	A B C D	.2177	4.52	12.80 4.00 8.80 23.60	.1719 .9114 .4559 .0050
(.3, .8)	A B C D	.3230	6.86	13.60 6.80 7.60 10.80	.1373 .6579 .5749 .2897
(.3, .9)	A B C D	.2639	4.81	11.60 6.00 8.00 14.00	.2368 .7399 .5341 .1223

Table 3-1 continued

DISTRIBUTION 2 (Alternative)	RNG SEED	δ	XPS XPS	x _R ²	<u> </u>
(.3, 1.1)	A B C D	.2389	5.29	13.60 7.20 7.20 21.20	.1373 .6163 .6163 .0118
(.3, 1.2)	A B C D	.2648	7.16	14.80 6.40 7.20 26.80	.0966 .6993 .6163 .0015

M = 50, RNG: A(51562, 62155) B(62155, 51562) C(50020, 11292) D(11292, 50020)

Chapter 4

CONCLUSION

In concluding this study, two questions need to be answered. The first question is "How well did this study accomplish its objective?". The second question is "What direction should future research in this area take?".

The first question can be answered by reconsidering the objective of this study which was to develop a comparison method, use this method to investigate the effects of varying distribution parameters, and to evaluate the usefulness of this technique. The first two parts of this objective have already been accomplished and the third part can be completed by a brief review of the results of the study. The technique used in this study to compare statistical distributions appears to have considerable usefulness because of the consistency of results (i.e. δ in all cases indicated significance in the range $.3 \leq \delta \leq .6$), the ability to compare distributions for statistical difference in terms of only their parameters $(\lambda_2/\lambda_1$ for exponential distributions, n_1 for most normal distributions), and the relative simplicity of the method.

The reader should recognize that in the normal case, a technique already exists to answer the question of "How different is different?" based on the classical z-test. This technique is statistically sufficient and is therefore more powerful than the method presented in this study. The use of the z-test is demonstrated below for M = 50, α = .05, and $\sigma_1 = \sigma_2 = \sigma$.

$$1.96 \leq (u_1 - u_2)/\sqrt{\sigma^2/50}$$
 (43)

$$u_1 - u_2 \ge .277 \sigma \tag{44}$$

This indicates that for our investigation (σ = 1) significance would be indicated for a n_1 value greater than or equal to .277, as compared to a n_1 value of .60 for the index of non-congruity method.

The second question concerning the direction of future research is easily answered. There are four readily apparent directions for future research. They are:

- Extension of this research in terms of additional replications and inclusion of more mean-variance-variate comparisons for the normal case as mentioned in Sections 2.4 and 3.4.
- Application of the methodology used in this study to other continuous distributions such as the Weibull, Log-Normal, or Gamma distribution.
- Development of a similar methodology which can be applied to the evaluation of statistically significant differences in discrete distributions.
- Application of the methodology used in this study to study statistical differences of similar distributions which are from different families.

SELECTED BIBLIOGRAPHY

- Hasting, Cecil, Jr., <u>Approximations for Digital Computers</u>, Princeton: Princeton University Press, 1955.
- (2) <u>IBM System/360 Scientific Subroutine Package Version III Programmer's</u> <u>Manual</u>, White Plains, New York: IBM Corporation, Technical Publications Department, 1968.
- (3) Lakshminarayan, K., "Progress Report to the U.S. Nuclear Regulatory Commission under NRC Contract No. AT(49-24)-0339 on the Analysis of Diesel Engine Failure Probability Data", (Kansas State University Document KSU-2662-1, CES-24, October, 1976).
- (4) _____, "Estimating Statistically Significant Differences Between a Pair of Beta Distributions", (Unpublished Masters Thesis, Kansas State University, 1978).

APPENDIX 1

FORTRAN	IV G LEVEL	21 MAIN	DATE = 78094	10/03/40
÷		PROGRAM TO EVALUATE "THE 'HOO' OISTRIBUTIONS. THIS INDEX II AREA BETNEEN THO DISTRIBUTION VALUES TO BE SUPPLIED TO THE SAMPLE SIZE, AND INITIAL VAL FORMAT FOR DATA CARDS: LAMOJ ISEED,JSEED I CARD (215) MULTIPLE ALWS ARE POSSIBLE BD (THO PER REPLICATION). PROG BLANK CARD.	: BASED ON THE AMOUNT OF NO IS. PROGRAM ARE DISTRIBUTION P UES FOR THE RNG 11.LANDA2.M 1 CARC (2010. SUPPLYING ACCITIONAL INPU	N-DVERLAPPING ARAMETERS, 4,15) T CAROS
0001	L	DIMENSION XI(IO), P2(10), SAMP	(200) . FREQ(10)	
0 0 0 2		REAL LAMDA1, LAMDA2, NU		
	C	INITIALIZE PROGRAM PARAMETERS		
0003	200	X2SUM≭0 F2SUM=0		
0 0 0 5		DD 11 1=1,10		
0006	11	FREQ(1)=0		
	- C	INPUT VALUES FOR THE PARAMETE	RS OF THE EXPONENTIAL DIST	RIBUTIONS
	с	AND THE SAMPLE SIZE. READ(5,99)LAMDAI.LAMDA2.M		
0007		FORMAT(2E10.4,15)		
0000	с "	CHECK FOR PROGRAM COMPLETION		
0 0 0 9	-	1F (LAMDA1.EQ.0) GD TD 201		
	C	CHECK TO DETERMINE WHICH DIS		ER
0010	c	IF(LANDA2.LT.LANDA1) GO TG 1. LAMDA2 IS GREATER THAN OR EG		DETERMINE
	č	DELTA. THE INDEX OF NON-CONG		DETERMINE
0011 .	c	RATIC=LAMDA2/LAMDA1		
0012		DIFFL=LAMDA2+LAMDA1		
0013		T1=ALOG(RATIO)/DIFFL		
0014	·	21=-LAMOA1*TI 22=-LAMDA2*TI		
0015		DELTA=2*(EXP(21)-EXP(22))		
0017		GO TO 121		
	c	LAMDA1 IS GREATER THAN LAMDA	2. EXPLICITLY DETERMINE DETERMINE DETERMINE	LTA, THE INDEX
	C	OF NCH-CONSRUITY		
0018	120	RATIC=LAMDAI/LAMDA2 DIFFL=LAMDA1-LAMDA2		
0020		TI=ALOG(RATIO)/DIFFL		
0021		Z1=-LAMDA1+11		
0022		Z2=-LAM0A2*T1		
0 0 2 3		DELTA=2*(EXP(Z2)-EXP(Z1)) DUTPUT VALUES DF M, LAMDA1,		
0024	C 121	WRITE(6.98)M.LAMDAI.LAMDA2	LAHUAZ	
0025		FORMAT(1HI ./// .11X. THE SAMP	LE SIZE EQUALS', 16, //, 11X,	LANDA1 EQUAL
		ILS*,EI2.4,//,IIX,*LAMDA2 EQU		
	c	CALCULATE THE EXPECTED VALUE	FOR CELL FREQUENCIES	
0026	с	EI=M/10. DETERMINE FOUAL PROBABILITY		AND DETERMINE
	č	THE CUMULATIVE PROBABILITY A		
	č	DISTRIBUTION 2		
0027		X1(1)=-ALOG(.9)/LAMOAI		
0028		P2(1)=1-EXP(-LAMDA2*X1(1)) X2SUM=X2SUM+(E1-M*(P2(1)-0))		
0029		00 I I=2.9		
0031		X1(1)=-ALOG(11+1)/LAMOA1		
0032		P2(1)=1-EXP(-LAMDA2*X1(1))		
0033		X2SUM=X2SUM+{EI-M+{P2{I}-P2{	1-1)))**2	

FORTRAN	IV G LEVEL	21 MAIN	DATE = 78094 10/03/40
0034	1	CONTINUE X2SUM=X2SUM+(EI-M*(1-P2(9)))*	•2
0035	с	CALCULATE THE PSEUDO CHI-SQUA	RE STATISTIC
0036		X2PS=X2SUM/EI GENERATE RANDDH SAMPLE FRCH S	ECOND DISTRIBUTION
	C C	READ RANDOM NUMBER GENERATOR	
0037	c	READ(5,97)1SEED, JSEED	
0 03 8		FDRMAT(215)	
	с	ECHO SEED VALUES	
0039		WR(TE(6,96)1SEED,JSEED	VALUES FOR THIS RUN ARE ,///,11X, "ISE
0040	80	1ED EQUALS', 112, //, 11X, 'JSEED	EQUALS', 112)
	c	INITIALIZE RANDOM NUMBER GENE	RATOR
0041	•	CALL RSTART(ISEED, JSEED)	
	с	GENERATE SAMPLE	
0042		DD 2 1=1,M SAMP1(1)=REXP(1)/LAMDA2	
0043	,	CONTINUE	
0044	- c ²	SCRT RANDON OBSERVATIONS INTO	FREQUENCY CLASSES
0045		DO 3 I=1,M	
0046		IF(SAMPL(I).LE.XI(1)) GO TD 1	
0047		1F(SAMPL(1).LE.X1(2)) GC TO 1	.02
0048		1F(SAMPL(I).LE.XI(3)) GG TO 1 IF(SAMPL(I).LE.X1(4)) GO TO 1	
0049		1F(SAMPL(1).LE.X1(5)) GC TO 1	
0 0 5 1		IF(SAMPL(I)_LE_X1(6)) GO TO 1	06
0052		IF(SAMPL(1).LE.X1(7)) GC TO 1	107
0053		IF(SAMPL(I).LE.X1(8)) GO TO 1	
0054		IF(SAMPL(11.LE.X1(9)) GD TO 1	109
0055		K=10 GD TO 110	
0 0 5 7	101	K=1	
0056		GD TO 110	
0059	102	2 K=2	
0060		GC TC 110	
0061	103	6 K=3 GD TO 110	
0062	104	60 10 110 K=4	
0064		GO TO 110	
0065 -	105	5 K=5	
0066		GO TO 110	
0 06 7	. 104	5 K=6 GD TO 110	
0068	10	50 (0 110 7 K=7	
0070	10	GO TO 110	
0071	10	8 K=8	
0072 -		GD TO 110	
0073		9 K=9	
0074		D FREQ(K)=FREC(K)+1 3 CONTINUE	
0075	c	CALCULATE THE ACTUAL CHI-SOU	ARE STATISTIC FCR RANDOM SAMPLE
0076	U U	00 4 (=1,10	
0077		F2SUM=F2SUM+FREQ(])**2	
0078		4 CONTINUE	
0079		X2ACT=F2SUH/EI-K	
0080	c	NU=9.	ALPHA HAT" FOR THE COMPUTED CH1-SQUARE
	c	VALUE	

FORTRAN IV G	LEVEL 21	HAIN	DATE = 78094	10/03/40
0081	AHAT	CAOTR(X2ACT,NU) IT VALUES OF DELTA, PSEUDO O		
	C DUTPO	IT VALUES OF DELIA, PSEUDU C	HI-SQUARE, CHI-SQUARE,	AND ALTINA INAT
0082	WR1TI	(6,95) DELTA,X2PS,X2ACT, AHA	I SOUCHURS	TV/DCIT/1 6
0083	95 FORM	TI////, 11X, THE VALUE OF T	HE INDEX OF NUN-LUNGRUI	CTUTUTE C
	1 QUALS	', F12.4, //, 11X, 'THE VALUE C	IF THE PSEUDE CHI-SQUAKE	STATISTIC
	2 E QUAI	S',F12.2,//,11X, THE VALUE	OF THE CH1-SCUARE STATI	SHIC EQUALS
	3',F1.	2.2.//,11X, THE AREA OF THE	CHI-SQUARE DISTRIBUTION	TO THE KIG
	4HT C	THE CHI-SQUARE STATISTIC	ALPHA HAT) EQUALS .F12.	4)
0.084	WR1T	(6,94)		
0.085	WP.1T	<pre>{6,92}(X1(1),1=1,10)</pre>		
0086	KR1T!	(6,91)(P2(1),1=1,10)		
0087	WB11	(6,93)(SAMPL(1),1=1,H)		
0.088		(6,90)(FKEC(1),1=1,10)		
0089	94 EDRH	T(////)		
0090	93 E08M	ATL'O', 'RANDOM SAMPLE', 10F11	. 4)	
0091.	92 FORM	ATI 'O' , REGIEN BEUNDRIES', 10	F11.4)	
0092	91 E08M	AT('0', 'CUMULATIVE PRCB', 10F	11.4)	
0093.	90 F08M	AT('O', 'CELL FREQUENCY', 10F1	11.13	
0094		200		
0095	201 STGP			
0096	ENO			

FORTRAN	IV G LE	VEL 2	1	LAOTR	0ATE = 78094	10/03/40
0 0 0 1		FU	INCTION CAOTR(X,G)			COTR0005
	c					CDTROOID
	c		PURPOSE			
	c		COMPUTES P(X)	PROBABILITY THA	T THE RANCOM VARIABLE	
	· C		DISTRIBUTED AC	CORDING TO THE CH	1-SQUARE DISTRIBUTION	
	C			EDOM, IS LESS THA	N GR EQUAL TO X. FIG	COTROO35
	c		USAGE			COTRO040
	c		PROB=CDTR(X,G)			COTROD45
	c					CDTR0050
	c		DESCRIPTION OF PA			COTRO055
	c		X - INPUT SA	CLE FOR WHICH PIX	OOM OF THE CHI-SQUAR	
	c		G - NUMBER D	F DEGREES OF FREG	TINUOUS PARAMETER.	CDTR0065
	c C			T ERRCR CODE WHEA		CD180070
	č		IER= 0			CDTR0075
	č			AN INPUT PARAMET	FP IS INVALUO. X IS	LESS COTROOBO
	c C		164-1	THAN 0.0. DE G	S LESS THEN 0.5 ER G	
	č			THAN 2*10**(+5)	P ANO D ARE SET TO	-1.E75. COTR0090
	č		158s+1	INVALUO DUTPUT.	P IS LESS THAN ZERO	
				GREATER THAN ONE	. OR SERIES FOR TI I	SEE COTRO100
	· c			MATHEMATICAL OF	CRIPTION) HAS FAILED	TD CDTR0105
	č			CONVERGE. P IS	SET TO 1.E75.	CDTR0110
	c					COTRO115
	c		SUBROUTINES AND F	UNCTION SUBPROGRA	MMS REQUIRED	CDTR0120
	с с с		OLGAN			CDTR0125
	C		NOTR	•		COTRO130
	c					CDTR0135 C0TR0140
0002		0	OUBLE PRECISION XX.	OLXX, X2, OLX2, GG	52,0LT3,THETA,THP1,	CDTR0145
		11	11,SER,CC,XI,FAC,IL	UG, IEFR, 61H, A2, A	8,C,DT2,OT3,THP1	CDTR0150
	c c		TEST FOR VALIO 11	DATA		CDTR0155
	č		TEST FOR VALID IN	IFUI DATA		C0180160
0.003	L	,	FIG-1.5-1.E-51) 590	.10.10		COTRO165
0004			FIG-2-E+5) 20.20.59			COTRO170
0005			F(X) 550,30,30	•		COTRO175
	c					CDTR0180
	č		TEST FDR X NEAR (-0		COTRO185
	c					CDTR0190
0006		30 (F(X-1.E-8) 40,40,80)		COTRO195
0007		40 P				C 0 T R0 200
0008			F1G-2.1 50,60,70			CDTR0205
0009			=1.675			COTRO210 CDTRO215
0010			0 10 610			COTROZZO
0011			=0.5			COTROZZS
0012			0 10 610			COTRO230
0013		70 0	D TO 610			COTRO235
0014	c		0 10 810			CDT 80 240
	6		TEST FOR X GREAT	ER THAN 1. E+6		COTRO245
	c c		TEST TOR X DREAT	in man reco		COTRO250
0015			F(X-1.E+6) 10C.100	90		CDTR0255
0016			=0.0			CDTR0260
0017			=1.0			CDTR0265
0018			0 TD 610			COTRO270
	c					CDTR0275
	0		SET PROGRAM PARA	METERS		COTRO280
	c					COTRO285
0019		100 >	(X=08LE[X]			CDTR0290

FDRTRAN IV G	LEVEL	21	CADTR	DATE = 78094	10/03/40
0 020 0 021 0 022 0 023 0 024	600		REATER THAN 1000-0 REATER THAN 2000-0		CDT R0 29 5 CDT R0 30 0 CDT R0 30 5 CDT R0 31 5 CDT R0 31 5 CDT R0 32 0 CDT R0 32 0 CDT R0 32 0
0025 0026 0027 0028 0029 0030 0031 0032 0033	170	1F(G-1000.) 160 IF(X-2000.) 190 P=1.0 GC TD 610 A=OLDG(XX/GG)/1 A=DEXP(A) B=2.00/(9.D0%G) C=(A-1.00*D)/0 SC=SNGL(C)	0,190,170 3.00 5) Sort(B)		C DT R0 339 C DT R0 340 C DT R0 340 C DT R0 350 C DT R0 350 C DT R0 355 C DT R0 385
0034 0035 0036	C C 190	CALL NOTR(SC,P GD TD 490 COMPUTE THE K= 1DINT(G2)	ГА		CDTR0390 CDTR0395 CDTR0400 CDTR0405 CDTR0410
0037 0038 0039 0040	210 C	THETA=G2-DFLDA IF (THETA=1.D-B THETA=0.D0 THP1=THETA+1.D	200,200,210		CDTR0415 CDTR0420 CDTR0425 CDTR0435 COTR0435 CDTR0435 CDTR0440
0041 0042 0043	CDKPU	1F(THETA)230,2 1F(XX-10.00)26 TE T1 FDR THETA 1F(X2-1.66002)	30,220 0,260,320 ECUALS 0.0		CDTR0445 CDTR0450 CDTR0455 CDTR0450 CDTR0460 CDTR0465
0044 0045 0046 0047 0047		T1=1.0 GC TD 400 T11=1.00-0E XP(T1=SNGL(T11) GD TD 400			COTR0470 COTR0475 CDTR0490 COTR0480 CDTR0480 CDTR0495
	C C C	X LESS THAN	FDR THETA GREATER T DR EQUAL TO 10.0 HP1 -X2/(THP1+1.DO)		CDTR0500 CDTR0505 CDTR0510 CDTR0515
0049 0050 0051 0052 0053 0054 0055 0056 0057 0056 0059 0059 0060		J=+1 CC=DFLDAT(J) OD 270 IT1=3.3 X1=OFLDAT(IT1) CALL OLGAM(XI, TLOG= X1*OLX2- TERM=DEXP(TLOG TERM=OSIGN(TER SER=SER+TERM CC=-CC	0 Fac,1CK) Fac-oldg(xI+Theta))		CD10035 CD100325 CD100325 CD100355 CD100355 CD100355 CD100555 CD10
0061 0062	20	GD TD 600			CDTR0580

FORTAN IV G LEVEL 21 CAOTR DATE = 7 00631 200 16 (5 KR) 400.600.290 DOBS DIG (5 KR) 400.600.290 DOBS DOBS DIG (5 KR) 400.601 (101.001.001.001.001.001.001.001.001.001	CD784555 CD18550 CD186550 CD78600 CD78
0064 200 CALL DLGAM(1MP)JGTH;10K) 0045 TLGG-THETA*0LX2+0LGGSTK1>-GTH; 0066 1F(TLGC+1.6.0D02) 300,330,310 0067 300 T1=0.0 0068 GD T0 -400 0059 301 T1=0.1 0010 T1 FGL(T1LG) 0011 TGEGL(T11) 0071 GG T6 400	CDTR0595 CDTR0505 CDTR0605 CDT
D065 TLCG-TH(ETA+OLX2+DLGG(SER)-GTH 0066 IF(TLCG+1,68022) 300,330,310 0067 300 TI=0.0 0068 GUT C4 400 0069 310 TI=0.EXP(TLGG) 0070 TI=SEL(TTI) 0071 GU TE 400 C C	C 07 R0595 C DT R0500 C DT R0600 C DT R0615 C DT R0625 C DT R0625 C DT R0625 C DT R0635 C DT R0635 C DT R0655 C DT R0555 C DT R05555 C DT R05555 C DT R05555 C DT R05555 C DT R055555 C DT
0056 1F(TLC\$*1-68002) 300,330,310 0067 300 T1=0.0 0068 GC TC 400 0059 310 T11=0ExP(TLC5) 0070 T1=5%GL(T11), 0071 GC TC 400	C DT ROSO C DT ROSO
0057 300 T1=0.0 0066 GT T 400 0069 310 T11=DEXP(TLGG) 0070 T1=SEXE(TT1) D071 G0 TG 400 C	CDTR6050 CDTR0510 CDTR0510 CDTR0525 CDTR0525 CDTR0525 CDTR0555 CDTR0555 CDTR0605 CDTR0555 CDTR0605 CDTR0655 CDTR0655 CDTR0655
0066 C0 TC 400 0069 310 T11=DEXP(TLCG) 0070 T1=SRC(TTLG) 0071 GD TC 400 C	C DTROBID CDTROBID
0050 310 T11+0EXP(TLOG) 0070 T1=SNC(T11) D071 GD TC 400 C	C DTROGIS CDTROG20 C DTROG25 C DTROG30 C DTROG30 C DTROG40 C DTROG40 C DTROG45 C DTROG45 C DTROG5 C DTROG5 C DTROG5 C DTROG5 C DTROG5
0070 T1=SNGL(T11) D071 GD TC 400 C	CDT R0525 CDTR025 CDTR025 CDTR030 CDTR050 CDTR050 CDTR050 CDTR050 CDTR050 CDTR050 CDTR050 CDTR050 CDTR050 CDTR050 CDTR050
D071 GD TC 400	CDTR025 CDTR030 CDTR030 CDTR040 CDTR040 CDTR040 CDTR040 CDTR040 CDTR065 CDTR065 CDTR065 CDTR065 CDTR065
C	CDTR0635 CDTR0645 CDTR0645 CDTR0645 CDTR0650 CDTR0655 CDTR0650 CDTR0650 CDTR0670 CDTR0670
CONDUCT IN COD THEYA CREATED THAN O O AND	CDTR05-0 CDTR0655 CDTR0655 CDTR0655 CDTR0655 CDTR0657 TH-DLDG(X1) CDTR0670 CDTR0670
	CDTR0645 CDTR0650 CDTR0650 CDTR0655 CDTR0665 CDTR0665 TH-DLDG(X1) CDTR0675
C X GREATER THAN 10.0 AND LESS THAN 2000.0	CDTR0650 CDTR0655 CDTR0650 CDTR0650 CDTR0655 TH-DL0G(X1) CDTR0675
c	CDTR0655 CDTR0660 CDTR0665 TH-DLDG(X1) CDTR0670 CDTR0675
0072 320 A2=0.D0	CDTR0660 CDTR0665 TH-DLDG(X1) CDTR0675
0073 DD 340 1=1,25	TH-DLDG(X1) CDTR0665 CDTR0670 CDTR0675
0074 X)=DFLDAT(1)	TH-DLDG(X1) CDTR0670 CDTR0675
0075 CALL DLGAM(THP1,GTH,1CK)	CDTRD675
0076 T11=-(13.D0*XX)/X1 +THP1*DLDG(13.D0*XX/X1) -G	
0077 IF(T11+1.68D02) 340,340,330	
0078 330 T11=0EXP(T11)	CDTR0680
0079 A2=A2+T11	CDTR0685 CDTR0690
0080 340 CONTINUE	CDTR0690
0081 A=1.0(282051+THETA/150.D0-XX/312.D0	CDTR0700
0082 B=DABS(A) 0083 C= -x2+THP1+DLx2+0LDG(B)-GTH-3.95124371858142	
0085 CC = 2271871002270205187-017-5275124511050142	CDTR0710
0085 350 IF (A) 360,370,380	CDTR0715
0086 360 C=-0EXP(C)	CDTR0720
0087 GD TD 390	CDTR0725
D088 370 C=0.D0	CDTR0730
0089 GD TD 390	CDTR0735
0090 380 C=DEXP(C)	CDTR0740
0091 390 C=A2+C	CDTR0745
0092 T11=1-D0-C	CDTR0750
0093 T1=SAGL(T11)	CDTR0755
c	CDTR0760
C SELECT PROPER EXPRESSION FOR P	CDTR0765
C	CDTR0770
0094 400 1F(G-2.) 420,410,41D	CDTR0775 CDTR078D
0095 410 1F(G-4.) 45C,460,460	CDTR0785
C COMPUTE P FOR G GREATER THAN ZERG AND LESS	
	CDTR0795
D096 420 CALL DLGAM(THP1,GTH, IOK)	CDTR0800
0097 0T2=THETA+0LXX-X2-THP1+.6931471805599453 -GTH	
0098 1F(DT2+1.68D02) 430,430,440	CDTR0810
0099 430 P=11	CDTROB15
01D0 GD TD 490	CDTR0820
0101 440 DT2=DEXP(DT2)	CDTRD825
D102 T2=SNGL(DT2)	C DTROB30
D103 P=T1+T2+T2	CDTR0835
0104 GD TD 490	CDTR0840
C	C DT R0845
C COMPUTE P FOR G GREATER THAN OR EQUAL TO 2 AND LESS THAN 4-0	
C AND LESS THAN 4.0	CDTR0855 CDTR0860
0105 450 P=T1	CD1R0860 CD1R0865
0105 450 P=11 0106 GD TO 490	CDTR0870
	CUTROBIO

C CLMPUTE P FOR G GREATER THAN DR EUVAL TD 4.0 CDTR0850 D107 400 D13-0.0 CDTR0850 0108 400 D13-0.0 CDTR0850 0109 TMP1-0.0.0 CDTR0850 0100 CALL DLSATINAL GR EQUAL 10 1000.0 CDTR0850 0109 TMP1-0.0.01 CDTR0850 0110 CALL DLSATINETAL CDTR0850 0110 CALL DLSATINETAL CDTR0850 0111 F101731.000740 CDTR0850 0112 F101731.000740 CDTR0850 0113 470 013-073+02FPLDI31 CDTR0850 0114 490 CONTINUE CDTR0850 0115 TS5NCL10131 CDTR0850 0116 500 F14.0540-400 CDTR0850 0117 590,520,520 CDTR0850 0118 500 F14.0540-600 CDTR0850 0119 500 F14.0540-510 CDTR0850 0111 500 F14.0540-510 CDTR0850 0111 500 F14.0540-510 CDTR0850 0111 500 F14.0540-510 CDTR0850	FORTRAN	IV G LEVE	EL 21	CADTR	DATE = 78094	10/03/40
ODG DOG DOG <thdog< th=""> <thdog< th=""> <thdog< th=""></thdog<></thdog<></thdog<>		c				CDTRO880 CDTRO885
0110 CALL 0.CAMITMP1.0TN.TOK) COTR0910 0111 CUTATMP1.0TN.TOK) COTR0910 0112 PFOLT3-1.68002) 40-400.4TO COTR0910 0113 40 COTR0910 COTR0910 0114 40 COTR0910 COTR0910 0115 40 COTR0910 COTR0910 0114 40 COTR0910 COTR0910 0115 40 COTR0910 COTR0910 0114 40 COTR0910 COTR0910 0115 FEIT-13-13 COTR0910 COTR0910 0116 SET ERRCR INDICATOR COTR0900 COTR0900 0117 400 IFF0-1500.520,520 COTR0900 COTR0900 0118 S00 FFAASCH-1.4C-1500.500 COTR0900 COTR0900 0120 S20 IFF1-1.4C-1500.500 COTR0900 COTR0900 0121 S20 IFF1-1.4C-1500.500.500 COTR0900 COTR0900 0122 S20 IFF1-1.4C-1500.500.500 COTR0900 COTR0900 0123	0108		00 48	0 13=2,K		CDTR0900
0112 1F10113-1.60021 40.400,470 CDTR0220 0113 470 013-01730 CRF DD131 CDTR0220 0114 480 CMN1FNUE CDTR0250 0115 1-50010 CMTR020 CDTR0250 0116 P+1-T3-T3 CDTR0250 0117 1-500,10031 CDTR0250 0118 S00 1F (FF1 500,520,520 CDTR0250 0117 500 1F (AS (F)-1.(-T) 510,510,500 CDTR0250 0118 S00 1F (AS (F)-1.(-T) 510,510,500 CDTR0250 0120 GOT 0 400 CDTR0250 0121 S20 1F (AS (F)-1.(-T) 50,550,500 CDTR0250 0122 S20 1F (AS (F)-1.(-F) 50,550,500 CDTR0250 0123 S40 0F -1. S40,570 CDTR0250 0124 S50 0F 1.0 CDTR0250 CDTR0250 0125 S50 0F 1.0 CDTR0250 CDTR0250 0126 S50 0F 1.0 CDTR0250 CDTR0250 0127 GO TD 610 CDTR0250 CDTR0250 0128 S50 0F 1.0 CDTR0150 CDTR0150 0129 <td< td=""><td>0110</td><td></td><td>CALL</td><td>OLGAM(THPI,GTH, IOK)</td><td></td><td>CDTR0910</td></td<>	0110		CALL	OLGAM(THPI,GTH, IOK)		CDTR0910
0114 400 CONTINUE CONTROPID 0115 Ta-SNGLI0T31 COTROPID COTROPID 0116 P+11-T3-T3 COTROPID COTROPID 0117 SET ERGET NADICATOR COTROPID COTROPID 0118 500 IFFABS(P)-1.6-T1 510,510,600 COTROPID COTROPID 0119 500 IFFABS(P)-1.6-T1 510,510,600 COTROPID COTROPID 0110 500 IFFABS(P)-1.6-T1 50,510,600 COTROPID COTROPID 0111 500 IFFABS(P)-1.6-T1 50,510,600 COTROPID COTROPID 0120 500 IFFABS(P)-1.6-T1 50,510,600 COTROPID COTROPID 0121 500 IFFABS(F)-1.6-T1 50,50,550 COTROPID COTROPID 0122 500 IFFABS(F)-1.6-T1 50,50,570 COTROPID COTROPID 0123 500 IFFP-1.6-T1 56,50,50,570 COTROPID COTROPID 0124 GO TD 610 COTROPID COTROPID 0125 500 IFF(F)-1.6-T1 580,560,610 COTROPID COTROPID 0126 570 IFF(F)-1.6-T1 580,560,610 COTROPID COTROPID 0	0112		1F(0)	13+1.68002) 480,480,470		CDT R0920
0116 P+11-T3-T3 COTROPSO C SET ERRCR INDIGATIOR COTROPSO C SET ERRCR INDIGATIOR COTROPSO 0117 400 1F(F) 500, 520, 520 COTROPSO 0118 500 1F(AS(F))-1.E-T1 510,510,600 COTROPSO 0119 500 700,600 COTROPSO COTROPSO 0120 GO TO 640 COTROPSO COTROPSO 0121 SSD 17(1-1-7) 1500,550,550 COTROPSO COTROPSO 0122 SSD 17(1-1-7) 1.E-T1 5x6,540,600 COTROPSO COTROPSO 0123 SSD 17(1-1-7) 1.E-T1 5x6,540,600 COTROPSO COTROPSO 0124 CO TO 640 COTROPSO COTROPSO 0125 SSD 17(1-0-P) -1.E-T1 5x6,540,600 COTROPSO COTROPSO 0126 SSO 017(1-0-P) -1.E-T1 5x6,540,600 COTROPSO COTROPSO 0127 SSD 017(1-0-P) -1.E-T1 5x6,540,600 COTROPSO COTROPSO 0128 SSO 017(1-0-P) -1.E-T1 5x6,540,600 COTROPSO COTROPSO 0129 SSO 017(1-0-P) -1.E-T1 5x6,540,610 COTROPSO COTROPSO	0114		80 CONTI	NUE		CDTR0930
C SET ERRCR hDLCALCR CDTR0950 CDTR0950 0117 400 IFFR1500,520 CDTR0950 0118 500 IFFR35(P1-LE-7) 510,510,500 CDTR0950 0119 510 IFFR35(P1-LE-7) 510,510,500 CDTR0950 0120 510 IFFR35(P1-LE-7) 510,510,500 CDTR0950 0121 520 IFFFR35(P1-LE-7) 550,550,500 CDTR0950 0122 520 IFFR35(L-P1-LE-7) 540,540,600 CDTR0955 0123 500 IFFR35(L-P1-LE-7) 540,540,600 CDTR0955 0124 550 0FFR35(L-P1-LE-7) 540,540,600 CDTR0955 0125 550 0FFR3 CDTR0955 0126 550 0FFR3 CDTR0950 0127 500 0FFR3 CDTR0950 0128 550 0FFR3 CDTR1050 0129 550 0FFR3 CDTR1050 0130 CD TO 400 CDTR1025 0131 500 IER+1 CDTR1025 0133 DP-1-157 CDTR1025 0134 CD TO 420 CDTR1050 0135 CD TR 4000 CDTR1050 0136 CD TO 420 CDTR1						COTR0940
0117 400 [F(P] 500; 220; 520 CDTR0960 0118 500 [F(ASC)P].1(=71) 510;510;600 CDTR0965 0119 510 PAC.0 CDTR0970 0121 520 [F(1)=71] 510;510;600 CDTR0965 0122 530 [F(ASC1)=P1.1=71] 540;550;600 CDTR0965 0123 520 [F(1)=P1.1=6-71] 5x0;550,600 CDTR0965 0124 530 [F(ASC1)=P1.1=6-71] 5x0;550,600 CDTR0965 0125 500 [F(ASC1)=P1.1=6-71] 5x0;550,600 CDTR0965 0126 550 [F(1)=1=6-8] 550;560;570 CDTR1005 0127 GO TD 610 CDTR1010 0128 500 [F(1)=0-P1.1=6-8] 580;580;610 CDTR1010 0129 500 [F(1)=0-P1.1=6-8] 580;580;610 CDTR1010 0128 500 [F(1)=0-P1.1=6-8] 580;580;610 CDTR1010 0139 500 [F(1)=0-P1.1=6-8] 580;580;610 CDTR1010 0130 500 [F(1)=0-P1.1=6-8] 580;580;610 CDTR1010 0131 500 [F(1)=0-P1.1=6-8] 580;580;610 CDTR1010 0132 D=-1=675 CDTR10105 0133 600 [F(1)=0-P1.1=6-8] 580;580;610 CDTR10105			5 E	T ERROR INDICATOR		CDTR0950
0119 510 PAC.0 COTROPIO 0120 G T O 610 CDTROPIO CDTROPIO 0121 520 If (1P1 530,550,550 CDTROPIO 0122 530 If (1P1 530,550,550 CDTROPIO 0123 540 PALO CDTROPIO 0124 550 IF (1P1 530,550,550 CDTROPIO 0125 550 IF (1P1 530,550,550 CDTROPIO 0126 550 IF (1L=1) S0,540,570 CDTRIDIO 0127 G TD 610 CDTRIDIS CDTRIDIS 0128 570 IF (1.1-P-P1-LE-8) S0,580,610 CDTRIDIS 0139 500 IF (1.1-P-P1-LE-8) S0,580,610 CDTRIDIS 0130 500 IF (1.1-P-P1-LE-8) S0,580,610 CDTRIDIS 0131 500 IF (1.1-P-P1-LE-8) S0,580,610 CDTRIDIS 0131 500 IF (1.1-P-P1-LE-8) S0,580,610 CDTRIDIS 0131 500 IF (1.1-P1-TS) CDTRIDIS CDTRIDIS 0132	0117		90 1F(P)	500, 520, 520		CDTR0960
120 CO TO 640 CD180675 0121 S20 1711-91 530,550,550 CD1806950 0122 S30 1714-91 530,550,550 CD180950 0122 S30 1714-91 530,550,550 CD180950 0123 S50 1717-91 530,560,570 CD180950 0124 S50 1747-14-81 CD180950 0125 S50 1747-14-81 CD180950 0126 S50 070 CD180950 0127 S70 0711-0-91-14-81 S80,560,570 CD180950 0128 S50 0710-0 CD180150 CD180150 0129 S50 0710-0 CD180150 CD181050 0129 S50 0710-0 CD181050 CD181050 0129 S50 0710-0 CD181050 CD181050 0130 GD 10-0 CD181050 CD181050 0131 GD 10-1 CD181050 CD181050 0131 GD 10-2 CD181050 CD181050 0131 GD 10-20 CD181040 CD181050 0133 GD 10-20 CD1810400 CD1810400						
0122 510 1F(A5511P-1.E-7) 5×0.5×0.6×0 CDTR0085 0123 5×0 PA1.0 CDTR0085 0124 5×0 PA1.0 CDTR0085 0125 5×0 PA1.0 CDTR1005 0126 5×0 PA1.0 CDTR1005 0127 GO 10 CDTR1005 CDTR1015 0128 S×0 PA1.0-0 CDTR1015 0128 S×0 PA1.0-0 CDTR1015 0128 S×0 PA1.0-0 CDTR1015 0138 S×0 FA1.0 CDTR1025 0131 S×0 FA1.1 CDTR1035 0132 D=-1.E-75 CDTR1035 CDTR1035 0133 GO TO 6/20 CDTR1035 CDTR1035 0134 GO TO 6/20 CDTR1035 CDTR1035 0135 600 IR*+1 CDTR1035 0136 P 1.1.C75 CDTR1050 CDTR1050 0135 610 GO TO 6/20 CDTR1050 0136 F 1.1	0120	5.				
0124 C0'ID 410 C0IR0995 0125 S50 [f(F).L-E) 560, 560, 570 C0IR1000 0126 S60 PA0.0 C0IR1005 0127 C0 ID 410 C0IR1005 0128 S70 [f(F).L-E) 580, 580, 610 C0IR1005 0129 S70 [f(F).L-E) 580, 580, 610 C0IR105 0130 C0 IO 410 C0IR1025 0131 S90 [fA-L] C0IR1035 0132 D-L-E75 C0IR1035 0133 P-L-E75 C0IR1045 0134 C0 00 00 00 C0 00 00 C0IR1055 0133 P-L-E75 C0IR1046 C0IR1045 0133 P-L-E75 C0IR1045 C0IR1045 0135 C0 00 640 C0IR1045 C0IR1045 0135 C0 10 640 C0IR1045 C0IR1045 0135 640 [fR+C,-PRNINT 910 C0IR1045 C0IR1045 0134 C0 11 64-0 C0IR1045 C0IR1045 0135 640 [fR+C,-PRNINT 910 C0IR1045 C0IR1045 0140 F1164-65-PRNINT 911	0122	5	30 IF(AS	S(IP)-1.E-7) 540,540,60		CDTR0990
0120 500 P+0.0 CDTR1005 0127 CD 10 P+0.1 CDTR1015 0128 570 IF(11-0-P+1-LE-8] \$80,580.610 CDTR1015 0128 580 CF1-0 CDTR1015 0128 580 CF1-0 CDTR1015 0130 580 CF1-0 CDTR1015 0131 590 IFA-1 CDTR1025 0133 D=1.175 CDTR1030 0134 GD IFA-1 CDTR1030 0133 D=1.175 CDTR1040 0134 GD IFA-1 CDTR1050 0135 GD IFA-1 CDTR1050 0136 GD IFA-175 CDTR1050 0137 GD IFA-175 CDTR1050 0138 GD IFA-175 CDTR1050 0139 GD IFA-175 CDTR1050 0131 GD IFA-175 CDTR1050 0133 GD IFA-175 CDTR1050 0134 GD IFA-175 CDTR1050 0135 GD IFA-175 CDTR1050 0136 GD IFA-10-P CDTR1050 0137 <t< td=""><td>0124</td><td>5</td><td></td><td></td><td></td><td>CD1K0AA2</td></t<>	0124	5				CD1K0AA2
0128 570 [F((1,0 ^{-p})-1,L=8) \$80,\$80,610 CDTR105 0129 580 P+10 CDTR105 0130 CD T0 (10 CDTR105 0131 CD T0 (10 CDTR105 0132 S90 16-1-675 CDTR105 0133 Pe-1-175 CDTR105 0134 CD T0 (20 CDTR105 0135 CD T0 (20 CDTR105 0136 CD T0 (20 CDTR105 0137 CD T0 (20 CDTR105 0138 CD T0 (20 CDTR105 0139 CD T0 (20 CDTR105 0131 CD T0 (20 CDTR105 0135 CD T0 (20 CDTR105 0136 CD T0 (20 CDTR105 0137 CD T0 (20 CDTR105 0138 CD T0 (20 CDTR105 0139 CD T0 (20 CDTR105 0140 TF LEFLEC, LPP (10, LPR E C CDWERSE IN X-SQ FUNCTIDN') CDTR105 0140 FETURE CDTR105 CDTR105 0141 SP1 FORMIT (10'-10, N, 'INVALID JNPUT TD X-SQ F	0126		60 P=0.0			
0130 C0 '10 410 C0 R1025 0131 S0 16A	0128		70)F(()	.0-P)-1.E-8) 580,580,610		
0132 D=-1.275 CDTR1035 0133 P=-1.1275 CDTR1040 0134 GDTC 620 CDTR1045 0135 P=1.1275 CDTR1045 0136 P=1.1275 CDTR1055 0137 GDTC 620 CDTR1055 0138 F0 LT25 CDTR1050 0139 GDTC 620 CDTR1050 CDTR1050 0139 GDTC 620 CDTR1050 CDTR1050 0140 TETELE-CLIPENINT 910 COTR1050 CDTR1050 0142 TETELE-CLIPENINT 910 COTR1050 COTR1050 0143 910 FORMAT(*0*103,*1N*41LURE TC CONVERGE IN X-SQ FUNCTIDN*1 COTR1050 0142 TETELE-CL-1PENINT 911 COTR1050 COTR1050 0143 911 FORMAT(*0*103,*1N*4101 NPUT TD X-SQ FUNCTIDN*1 COTR1050 0144 RETURN RETURN CDTR1050 CDTR1050	0130	-	GO TO	610		
0134 G TÖ 620 CDTR1045 0135 00 1ER+1 CDTR1050 0136 P* 1.F75 CDTR1050 0137 G TO 620 CDTR1050 0138 610 1ER+0 CDTR1050 0139 620 CALE-0.0-P CDTR1050 0139 620 CALE-0.0-P CDTR1050 0140 FORMATI'0'.100,'FALLURE TC CONVERGE IN X-SQ FUNCTION'I COTR1050 0142 FID FORMATI'0'.100,'FALLURE TC CONVERGE IN X-SQ FUNCTION'I COTR1050 0142 FID FORMATI'0'.103,'INVALID INPUT TD X-SQ FUNCTION'I COTR1050 0144 RETURN. COTR1050 CDTR1050 0144 RETURN. CDTR1050 CDTR1050	0132	-	D=-1.	E75		
0136 P=1.CTS CD181055 0137 CD 10 420 CD181065 0138 L00 1ER+0 CD181065 0139 C20 CADTR+CC-P CD181065 0140 CD170474-CC-P CD181065 0141 C01105,**FAILURE TC CDNVERGE IN X-SQ FUNCTION*1 COTR1095 0142 F1070441**0*1.10x,**FAILURE TC CDNVERGE IN X-SQ FUNCTION*1 COTR1095 0143 911 FORMAT**0*1.10x,*INVALID INPUT TD X-SQ FUNCTION*1 COTR1095 0144 RETURN CD181095 CD181095	0134		GO TO	620		
0158 610 [ER-0 CDTRL05 0159 620 GATR-L0-P COTRL05 0140 FLIEFL-L0-PKINT 910 COTRL05 0141 910 FGRATIFO-1057 FALURE TC CONVERSE IN X-SQ FUNCTIDN'I COTRL05 0143 911 FGRMAT(*0'-1057,*INVALUD INPUT TD X-SQ FUNCTIDN'I COTRL050 0144 RETURN COTRL05 COTRL05	0136	Ũ	P= 1.	E75		
0140 COTRID'S 0141 910 FORMATION LOR TO CONVERGE IN X-SQ FUNCTION'I COTRIDOS 0142 F191ER.EC11PRINT 911 COTRIDOS 0143 911 FORMATI'O', IOX,*INVALID INPUT TO X-SQ FUNCTION'I COTRIDOS 0144 RETURN . COTRIDOS	0138		10 IER=0			CDTR1065
0142 IF)IER.ECI/PRINT 911 COTRID65 0143 911 FORMAT('0',10X,'14-VALUD INPUT TD X-SQ FUNCTIDN') COTRID95 0144 RETURE	0140		IF (16	K.EQ. 1)PRINT 910	VERGE IN X-SO FUNCTION	COTRIO75
0144 RETURN CDTRI095	0142		1F))	ER.EC1JPRINT 911		COTR1085
	0144	4	RETUR		in vere concriment	CDTR1095

				NDTR	DATE = 78094	10/03	/40 .
FORTRAN	ΙV	G LEVEL	21	NOTE			COT R1 105
0001 0002 0003 0004 0005			SUBROUTINE N Ax=A85(X) T=1.0/(1.0+0 0=0.3989423* P=1.0-D*T*(0 \$0.3193815) 1F(X.LT.0.0) REJURN).2316419*AX) @EXP(-X*X/2.0) {{(1.330274*T-1.82125	ó]*T+1.781478]*T−0.3565	5638)*T+	CDTR1110 CDTR1115 CDTR1120 CDTR1125 CDTR1125 CDTR1135 CDTR1140 CDTR1145
0007			ENO				

THE SAMPLE SIZE EQUALS 50' LAMDAI EQUALS 0.1000E 02 LAMDAZ EQUALS 0.1250E 02

THE SEED VALUES FOR THIS RUN ARE

15EEO EQUALS 62155 JSEEO EQUALS 51562

THE AREA OF THE CHI-SQUARE DISTRIBUTION TO THE RIGHT OF THE CHI-SQUARE STATISTIC LALPHA HATI ECUALS 0.1638 2.00 12.40 THE VALUE OF THE INDEX OF NON-CONGRUITYIDELTAL EQUALS THE VALUE OF THE PSEUDO CHI-SQUARE STATISTIC EQUALS THE VALUE OF THE CHI-SQUARE STATISTIC EQUALS

1161-0

0.3412 0.0602 0.0210							0.2834	0.0736 0.1306	0.1119 0.0428
	0.0614	0.0193	0.0102	0.0275	0.0137	0. 0485	0,1358	0.4015	0.0403
	0.0008	0.0145	0.3709	0.2125	0.0620	0. 0581	0,0016	0.0265	0.1270
	0.0519	0.1323	0.1319	0.0296	0.0045	0. 0603	0,0596	0.0573	0.0428
	6.0	4.0	3.0	10.0	3.0	2. 0	6,0	2.0	7.0

APPENDIX 2

			HAIN	. DATE = 78094	10/00/33
FORTRA	N IV G LEVEL	21			100.000
	c	PROGRAM TO EVALUATE	"THE INDEX OF NO	IN-CENGRUITT" FOR	NON-OVERLAPPING
	č	PROGRAM TO EVALUATE DISTRIBUTIONS. THI	S INDEX IS BASED	UN THE ANDCHT OF	Non of Life
	с	AREA BETWEEN TWO DI VALUES TO BE SUPPLI	STRIBUTIONS.		N PARAMETERS,
	C	VALUES TO BE SUPPLI SAMPLE SIZE, AND I	EU TO THE PROGRAM	THE BNG	
	c	SAMPLE SIZE, AND I	NILIAL VALUES . D.		
	c	FORMAT FOR DATA CAR MU1.SIGMAI.MU2	.SIGHA2.M 10	ARD (4E10+4+	151
	c			LARD (2151	
	c c		OSSIBLE BY SUPPLY	YING ADDITICNAL I	NPUT CARUS
	c	(TWO PER REPLICATIO	IN). PROGRAM COM	PLETION IS INDICA	IED BI A
	č				
0001		DIMENSION XI(10),P2	(10),SAMPL(200),	FREQ1103 (22F3110)	
0002		REAL MUI, MUZ, NU	DADANE TERE		
	c	INITIALIZE PROGRAM	PARANETERS		
0003	300	D X2SUM=0.			
0004		F2SUM=0. 00 11 1=1,10			
0005					
0006	c	1 FRED(1)=0. INPUT VALUES FOR THE	IE PARAMETERS OF	THE NORMAL DISTR	BUILONS AND.
	č	THE SAMPLE SIZE			
0007	-	READ 99, NU1, SIGMA1	MUZ,SIGMA2,M		
8000		9 FORMAT(4E10.4,15)	0.00 67 100		
	c	CHECK FOR PROGRAM I IFIMUL.EQ.DAND.S	CHALETION	n 303	
0009		ECHO PARAMETER VAL	IS AND SAMPLE SI	ZE	
	c				
0010					DISTRIBUTION 1
0011		1 7617 4 11.11X. THE	AN AND STANDARD I	SEVIALIDA OF DISI	REBUTION 2', 2EL
			MPLE SIZE EQUALS	,(8)	
	c	DETERMINE IF DISTR	IBUTIONS ARE DVEN	(LAPPING	
0012		IF(MU2.LT.MUI) GD IF(MU1+5.*S)GMA1.L	10 21	GO TO 100	
0013		IF(MUI+5.*S)GMAI.L GO TO 22	1.002-0.+310//21	00 10 100	
0014		21 1F(HU2+5.*S(GMAZ+L	T. MU1-5.*S(GMA1)	GO TO 100	
0015					
0016	ς ²	DETERMINE THE NUME	ER OF INTERSECTI	ON POINTS USING 1	HE QUADRATIC
	č	ED LLET TON			
0017	-	IFISIGMAL EQ. SIGMA	2) GO TO 1010		
0018	3	VAR2=SIGMA2*SIGMA2			
0019		VAR] = S1GMA 1*S1GMA 1	12		
0020		RATIO=SIGHA1/SIGHJ SOMU1=MU1*MU1	42		
0021		S0KU2=KU2*MU2			
0 0 2 2		VXH21=VAR2*HU1			
0.024		VXM12=VAR1*MU2			
002		VXHD1F=VXH21-VXH1	2		
0.02		VXHD2=VXHD1F#VXHD	1F		
0.02		FRSFAC=4.*VXMD2			
0 0 2		VARDIF=VAR2-VAR1			
0.02		VXS21=VAR2+SQHU1 VXSI2=VAR1+SOHU2			
003		Y1 NEAC=2. *VAR(*VA	R2#ALOG(RATIO)		•
003		SNDFAC=4.*VARDIF*	IVXS21-VXS12+XLNF	AC1	
003		RAD=FRSFAC-SNOFAC			
003		IF(RAD) 100,101,1 THE DISTRIBUTIONS	02	THERE ARE A	INTERSECTION
	c		AKE NUN-DVERLAP	THO. THERE ARE N	
	с.	POINTS			
0 0 3	5 1	100 WRITE(6,900)			

FORTRAN	I۷	G LEVEL	21	MAIN		0ATE = 7809	4	10/0	0/33
0 0 3 6		900			NS ARE	NON-OVERLAPPING.	DELTA	EQUALS	2")
0037			READ 97, ISE	ED, JSEED					
0038			GO TO 300						
		c		E INTERSECTION	PCINI				
0039		1010	X X= (MU1 + MU2	1/2.					
0040			GO TO 1011	_					
0041				XM12)/VAROIF					
0042		1011	21=(XX-MU1)						
0043			22=(XX-HU2)						
0044			CALL NOTRIZ						
0045			CALL NDTRIZ						
0046			DELTA=2.*AB	S(F1-F2)					
0047			1ND=1						
0048			GO TO 103						
		с	THERE ARE T	WO INTERSECTION	PO1N	S			
0049		1 0 2	XX={VXN21-V	XM12J/VARDIF					
0050				(RAD)/(2.*VARD)	F)				
0051			XX1=XX+RA0F						
0052			XX2=XX-RADF						
0053			IF(XX1.LE.)	X2) GO TO 1021					
0054			C1=XX2						
0 0 5 5			C2=XX1						
0056			GO TO 1022						
0057		1021	C1=XX1						
0058			C2=XX2						
0 0 5 9		1022	21C1={C1-M	J1)/SIGMA1					
0060			Z2C1={C1-M	J21/SIGMA2					
0061			Z1C2=[C2-M	J1)/SIGMA1					
0062			22C2= (C2-M)						
0063			CALL NOTRE	1C1,F1C1,0)					
0064				1C2,F1C2,0)					
0065				22C1,F2C1,0)					
0066			CALL NDTR (22C2 F2C2 01					
0 0 6 7			F201F=F2C2-	- F 2C 1					
0068			F1D1F=F1C2	-F1C1					
0069			DELTA=2.*A	BS(F2DIF-F1DIF)					
0070			IN0=2						
0010		c	OETERMINE	VALUES FOR CLAS	S BOUN	ORIES FOR EQUAL P	ROBABI	.1TY REG	SIONS
		č	OF MODEL D	ISTRIBUTION (DI	STR18U	TION 1)			
0071		10	3 00 1 I=1,9						
0072			P=-1*I						
0073				(P,Z,O,IER)					
0074			1 X1(I1=MU1+	SIGMA1#Z					
		С	DETERMINE	CUMULATIVE PROB	ABILIT	1ES FOR CLASS BCU	NOR1ES	FUK AL	EKNALIV
		с		ON (DISTRIBUTIO	N 21				
0075			00 2 1=1,9						
0076			Z2PS(1)=(X	1(1)-HU2)/SIGMA	2				
0077			2 CALL NDTRI	Z2PS(1),P2(1),C	1				
		c	CALCULATE	THE EXPECTED VA	LUE FC	R CELL FRECUENCIE	5		
0 07 8			E1=M/10.						
		С		THE PSEUDO CHI-	SQUARI	STATISTIC			
0079				M#P2(1))*#2					
0080			00 3 I=2,9						
0081				M+(EI-M*(P2(I)-					
0 08 2				+{EI-M*{1P2{9	1))**;	2			
0083			X2PS=X2PS/	EI					
		C		H NUMBER GENERA	TOR S	EED VALUES			
0084			READ(5,97)	ISEED, JSEED					

FORTRAN	IV G LE	VEL	21	MAIN	DATE = 78094	10/00/33
0.085		97	FORMAT(215)			
	c		ECHO SEEO VALUES			
0086			WRITE(6,96)ISEEO	, JSEEO	THE FOR THE DURY ADDI /	// 21 Y /15 FED
0087		96	FORMATE/////.11X	, THE SEED VALU	JES FOR THIS RUN ARE',/	// 12LA 13LLO
		1	EQUALS', I12, //,	Z1X, JSEED EQU	ALS', 1121	
	c		INITIALIZE RANDO	M NUMBER GENER.	ATUK	
0088			CALL RSTARTUISEE	0, JSEE01	CONO DISTRIBUTION	
	C			SAMPLE FROM SE	COND DISTRIBUTION	
0089			00 4 I=1,H			
0090	-	4	SAMPL(1)=MU2+SIC	MAZ * KNUKIII	FREQUENCY CLASSES	
	C		00 5 1=1.H	ATR11043 1410		
0091			IF(SAMPL(I).LE.)	11511 60 10 20	1	
0.092			1F(SAMPL(1).LE.)	11611 60 TO 20	6	
0093			1F(SAMPL(I).LE.)	11711 GO TO 20	7	
0094			1F(SAMPL(I).LE.)	1(8)) GO TO 20	8	
0096			IF(SAMPL(I).LE.)	(1(9)) GC TC 20	9	
0097			K=10			
0098			GO TO 5			
0099		201	IF(SAMPL(I).GT.)	(1(4)) GO TO 20	15	
0100			1F(SAMPL(I).GT.)	(1(3)) GO TO 20	14	
0101			1F(SAMPL(I).GT.)	(1(2)) GO TO 20	13	
0102			IF(SAMPL(I).GT.)	(1(1)) GO TO 20	12	
0103			K=1			
0104			GO TO 5			
0105		202	K≈2			
0106			GO TO 5			
0107		203	K=3			
0108			GO TO 5			
0109		204	K=4 GO TO 5			
0110		205	K=5			
0111		205	GO TO 5			
0112		206	K=6			
0114		200	GO TO 5			
0115		207	K=7			
0116		201	GO TO 5			
0117		208	K=8			
0118			GO TO 5			
0119			K=9			
0120		5	FREC(K)=FREC(K)	+1.		
	C			CTUAL CHI-SQUAR	RE STATISTIC FOR RANDOM	SAULE
0121			00 6 I=1,10			
0122		6	F2SUH=F2SUH+FRE			
0123			XZACT=FZSUM/EI-	n		
0124			NU=9.	-	COMPUTED CHI-SQUARE VA	LUE
	c		AHAT=CAOTR(XZAC		CONFOTED CHI SQUARE TA	
0125	c		CUTPUT VALUES D	E DELTA. PSEUD	O CHI-SQUARE, CHI-SQUAR	E. AND ALPHA HAT
0126			WRITE(6,95) DEL	TA. X225.X2ACT.	AHAT	
0127		0	EORNATI /////.11	X. THE VALUE O	F THE INDEX OF NON-COND	RUITY(DELTA) E
0121			1011AL ST. F12.4.//	.11%. THE VALU	E OF THE PSEUDO CHI-SUL	JARE STATISTIC
			2EQUALS! .E12.2./	7.11X. THE VAL	UE OF THE CH1-SQUARE ST	ATISTIC EQUALS
			3',F12.2,//,11X,	'THE AREA OF T	HE CHI-SQUARE DISTRIBUT	IICN TO THE RIG
			4HT OF THE CHI-S	QUARE STATIST1	C (ALPHA HAT) EQUALS', F	12.41
	c	;	OUTPUT VALUES C	IF INTERSECTION	POINT OR POINTS	
0128			WR1TE(6,94)			
0129			IF(IND.EQ.1) GO	10 301		

FORTRAN	īν	G	LEVEL	21	HAIN	DATE = 78094	10/00/33
0130				WRITE	(6,920) C1,C2		PET.E10.2.5
0131			920	FORMA	T(1X, THERE ARE TWO POINTS	OF INTERSECTION. THEF IS	AC TITOTETT
					0',F10.2)		
0132				GO TO			
0133			301	WRITE	(6,910) XX	A ANTONO CONTRACTOR IT ISLE	10.7)
0134			910	FORM	TELX, THERE IS ONE POINT O	F INTERSECTIONS IN 15 IN	
			c		T VALUES DF X1, P2, SAMPL,	AND FREE	
0135			302	WRITE	(6,94]		
0136				WRITE	(6,92)(X1(11,)=1,9)		
0137				WRITE	(6,91)(P2((),l=1,9)		
0138				WRITE	(6,93)(SAMPL(I],1=1,M) (6,90)(FREQ(I),1=1,10)		
0139							
0140			94	F F G R M	T(////) T('0','RANDOM SAMPLE',10F1	1.41	
0141			93	FURM.	TI'O' , "REGION BOUNDRIES" ,9	F11.41	
0142			92	FURM.	T('O', 'CUMULATIVE PRCB', 9F	11.4)	
0143			41	FURN	TI'O', CELL FREQUENCY', 10F	11.11	
0144			95	CO T	300		
0145			303	STOP	, 500		
0146			503	ENO			
0147				2.110			

FORTRAN	IV G	LEVEL	21	NDTRI	DATE = 78094	10/00/33
0 00 1			SUBROUT I NE	NDTR1(P,X,D,1E)		
0002			IE=0			
0003			X=.99999E	74		
0003			D=X			
0005			IF(P)1.4.	,		
0005		1	IE=-I	2		
		1	GD TO 12			
0007			IF(P-1.01	7 6 7		
0008						
0009			X=999999	- * / *		
0 01 0		5	D=0.0			
0011			GO TO 12			
0012		7	D=P			
0013			IF(D-0.5)	9,9,8		
0014			D=1.0-D			
0015		9	T2=ALOG[1			
0016			T=SORT(T2)		1000/0473/
0017				5517+0.802853=T+0.010328	3*12)/(1.0+1.432/88*1*0	194504+154
			10.001308*			
0018			1F(P-0.5)	10,10,11		
0019			X = - X			
0 02 0		11	D=0.39894	23*EXP(-X*X/2.0)		
0 02 1			RETURN			
0 02 2			END			
0022						

FORTRAN	IV G LEVE	L 21	CAOTR .	DATE	≈ 78094	10/03/40
0001		FUNCT 10	IN CAOTRIX, GI			CDTR0005 CDTR0010
0001	c					CDTR0015
	č	PUR	POSE		ALVEON VARIABLE	
	ċ	(COMPUTES P(X) = PROBABILIT DISTRIBUTED ACCORDING TO T	Y THAT THE	AC DISTRIBUTION	
	. c	(DISTRIBUTED ACCORDING TO T DEGREES OF FREEDOM, IS LES	HE CHI-SOUA	ALL TO Y EL	. Y1. THECOIR0030
	c		DEGREES OF FREEDOM, IS LES	S THAN UK E	CONT TO Nº TH	COTRO035
	с	USA				COTRO040
	с	P	RO8=COTR(X,G)			COTROD45
	с.					COTRO050
	c		CRIPTION OF PARAMETERS X - INPUT SACLE FOR WHIC		CHRUTER	COT80055
	c			H PIXI IS C	THE CHI-SCIAR	F COTROO60
	c		G – NUMBER OF DEGREES OF OISTRIBUTION. G 15	A CONTINUE	IS PARAMETER.	CDTR0065
	c		IER - RESULTANT EKRCR CODE	LUNCOS	, , , , , , , , , , , , , , , , , , ,	CDTR0070
	с		IER = 0 NO ERRCR	MACAL		COTRO075
	c			RAMETER IS		LESS COTROD80
	c					REATER COTRU085
	C		THAN 281083	<pre>k(+5). P A)</pre>	10 0 ARE SET TO	-1.E12. COIKODAO
	c		LCD-LL INVALLO OUT	PUL PIS	LESS THAN ZERO	OR COTROUSS
	C C C		OPENTER TH	IN DIE OR S	SERIES FOR T1 (SEE LOIRDIDO
	č		HATHEMATIC.	AL DESCRIPT	ION) HAS FAILED	TO COTROIOS
	č		CONVERGE -	P IS SET T	0 1.E75.	COTRO110
	č					CDTR0115
	č	SUP	ROUTINES AND FUNCTION SUB	PROGRAMS RE	QUIREO	COTRO120
	č	000	OL GAH			CDTR0125
	č		NOTR			COTR0130 CDTR0135
	č					COTRO140
0002		DDUSLE	PRECISION XX,OLXX, X2,OLX	2,GG,G2,OL1	3, IHEIA, IHPI,	COTRO145
		1711,56	R,CC,XI,FAC,TLOG,TERM,GTH	, AZ, A, 8, L, L	12,013,1011	CDTR0150
	c					COTRO155
	c	T ES	T FOR VALIO INPUT DATA			C0180160
1	c					COTRO165
0003		IFLG-	(.5-1.E-5)) 590,10,10 2.E+5) 20,20,590			COTRO170
0004			590,30,30			C01R0175
0005	с	20 17173	330130130			COTRO180
	c	TE	ST FOR X NEAR 0.0			CDTR0185
	č					COTRO190
0.006	ç	30 IF(X-	1.E-8) 40,40,80			CDTR0195
0007		40 P=0.0				COTRO200 COTRO205
0008		1F (G-	2.1 50,60,70			COTRO205
0009		50 0=1.E				CDTR0215
0010		GO TO				COTRO220
0011		60 0±0.5				C01R0225
0012		GO TO				COTRO230
0013		70 D=0.0				C0180235
0014		G0 10	610			CDTR0240
	c		ST FOR X GREATER THAN I.E.	• 6		COTRO245
	c	16	SI FUR & GREATER THAN I.C.			COTRO 250
	c	00 15/X	1.6+6) 100,100,90			COTRO255
0015		90 0=0+0				COTR0260
0016		P=1.0				COTRO265
0018		60 10				COTRO270
0018	c	30 10				COTRO275
	č	SE	T PROGRAM PARAMETERS			COTRO280
	с					COTRO285 COTRO290
0019		100 XX=08	LE(X)			CUTRUZSU

FORTRAN	Iγ	G	LEVEL	21	CAOTR	OATE = 78094	10/03/40
0 020 0 021 0 022 0 023 0 024				0L XX=0L DG (XX X2=XX/2 + D0 DL X2=DL DG (XX GG=D8LE (G) G2=GG/2 + D0			COTRO295 CDTRO300 CDTRO305 COTRO310 COTRO315 COTRO315
:			c c	TEST FOR TEST FOR	G GREATER THAN 1000.0 X GREATER THAN 2000.0		C OT RO 32 5 C D T RO 33 0 C O T RO 33 5
0025 0026 0027 0028 0029			170	IF(G-1000.) IF(X-2000.) P=1.0 GC TC 610 A=DLOG(XX/G			COTRO340 COTRO345 CDTRO350 COTRO355 COTRO350 COTRO360 CDTRO365
0030 0031 0032 0033 0034				A=DEXP(A) B=2.00/(9.D C=(A=I.00+D SC=SNGL(C) CALL NOTR(S)/OSORT(B)		COTRO370 COTRO375 COTRO375 COTRO385 COTRO385 COTRO385
0035			с. с.	GO TO 490 COMPUTE			CDTR0395 COTR0400 CDTR0405 CDTR0405
0036 0037 0038 0039 0040			200	<pre>K= IOINT(G2 THETA=G2-DF IF(THETA=1.) THETA=0.DO) THP1=THETA</pre>	LOAT(K) 0-8) 200,200,210		C01R0415 C01R0425 C01R0425 C01R0425 C01R0435
			с с с		ETHOD OF COMPUTING T1		COTR0440 CDTR0445 COTR0450
0041			CORPI	JTE T1 FOR TH	10,230,220))260,260,320 16TA EQUALS 0.0)02) 250,240,240		COT R0455 COT R0460 COT R0465
0043 0044 0045 0046			24	GO TE 400 0 T1=1.0 0 TE 400 0 T11=1.00-01			C DT R0470 C DT R0475 C DT R0480
0047 0048	•		с	TI=SNGL(TI) GO TO 400	1)		' CDTR0485 COTR0490 COTR0495 CDTR0500
			c c	X LESS	T1 FOR THETA GREATER THA THAN OR EQUAL TO 10.0	N U.U ANU	CDTR0505 CDTR0510 C0TR0515
0049 0050 0051 0052 0053 0054 0055 0056 0056 0057 0058 0059 0060				J=+1 CC=OFLCAT(OC 270 ITI XI=OFLCAT(CALL OLGAM TLOG= XI*0 TERM=0EXP(TERM=DEXP(TERM=DSIGN SER=SER+TE CC=-CC	=3,30 1T1) (XI,FAC,ICK) LX2-FAC-DLOG(XI+THETA) TLOG) (TERM,CC)		COTROSO COTROSO COTROSO COTROSO COTROSO COTROSO COTROSO COTROSO COTROSO COTROSO COTROSO
0061			27	CONTINUE GC TO 600			CDTR0575 COTR0580

FORTRAN IV G LEVE	L 21	CADTR	DATE = 78094	10/03/40
C C C		GREATER THAN OR EQ EQUAL TO 1000+0	UAL TO 4.0	COTRO875 CDTRO880 CDTRO885 CDTRO890
	60 DT3=0.00			CDTR0895 CDTR0900
0108	00 480 13=2 .K			CDTR0905
0109	THPI=DFLDAT(I3)+THE	TA		CDTR0910
0110	CALL DLGAMITHPI,GIH	, 1GK)		CDTR0915
0111	DLT3=THPI*OLX2-CLXX	-x2-GTH		CDTR0920
0112	IF(DLT3+1.68D02) 48	0,480,470		CDTR0925
	70 0T3=0T3+0EXP(DLT3)			CDTR0930
	BO CONTINUE			CDTR0935
0115	T3=SNGL(DT31			CDTR0940
0116	P=T1-T3-T3			CDTR0945
ç	SET ERROR INDICA	TOP		CDTR0950
c	SEL ERROR INDICA	1 DK		CDTR0955
c	90 IF(P) 500,520,520			CDTR0960
	00 1F(A8S(P)-1-E-7) 5	0.510.600		COTRO965
	10 P=0.0	010101000		CDIR0970
0119 5	GG TC 610			CDTR0975
0120	20 IF(1,-P) 530,550,55	50		CDTR0980
0121 5	30 1F(A8S(1P)-1.E-7	540,540,600		COTRO985
	40 P=1.0			CDTR0990
0125	GD TD 610			CDTR0995
0125 5	50 1F(P-1.E-8) 560,56	0.570		CDTR1000
	60 P=0+0			CDTR1005
0127	GO TO 610			CDTR1010 CDTR1015
0128 5	70 IF((1.0-P)-1.E-8)	580,580,610		COTRIOIS
	80 P=1.0			CDTR1025
0130	GO TO 610			COTRIO25
0131	590 1ER=-1			CDTR1035
0132	0=-1.E75			CDTR1040
0133	P=-1.E75			COTR1045
0134	GO TO 620			CDTR1050
0135	500 1ER=+1			CDTR1055
0136	P= 1.675			COTR1060
0137	GD TO 620			COT 81065
	610 IER=0 .			CDT81070
	620 CAOTR=1.0-P			CDTR1075
0140	1F(1ER.EC.1)PRINT 910 FORMAT('0',10X,'FA	ATO ATO	IN X+SO FUNCTION!)	CDT R1080
	910 FURMATI '0', 10X, 'FA	ILUKE ID LUNVERGE	In A-Se Concilion 7	CDTR1085
0142	1F(IER.EC1)PRINT 911 FORMAT('0',10X,'IN	VALUE INDUCTO X=S	O FUNCTION!)	COTR1090
	911 FORMATI'O', IUX, 'I' RETURN .	TACID 14.01 10 X-3		COTR1095
0144	RETURN . END			COTR1100
0145	END			

FORTRAN	1 V	G	LEVEL	21	NDTR	DATE =	78094	10/03/	40
0001 0002 0003 0004 0005				AX=ABS[X] T=1.0/(1.0	NDTR(X,P,D) +0.2316419+AX1 3+EXP(-X*X/2.0) {[((1.330274*T-1.8212	:56]#T+1.78147	8]*T-0,3565	638)*T+	CDTR1105 CDTR1110 CDTR1115 CDTR1120 CDTR1125 CDTR1125 CDTR1130
0005 0007 0008					0) P=1.0-P				CDTR1135 CDTR1140 CDTR1145

				NDIR	DATE =	78094 1	0/03/40 .
FORTRAN	ί٧	G LEVEL					CDTR1105
0001 0002 0003 0004 0005			SUBROUTINE NDT AX=A8S(X) T=1.0/(1.0+0.2 D=0.3989423*E2 P=1.0-D*T*(((\$0.3193815) 1F(X.LT.0.0)	2316419*AX) (P(-X*X/2.0) 11.330274*T-1.8212)	i6]*T+1.78147	8)*T-0.3565638]1	CDIRI140
0005 0007 0008			RETURN ENO				CDTR1145

MEM AND STAMOARD GEVLATION OF DISTATAUTION 1 0.0 0.1000E 01 MEM AND STAMOARD DEVLATION OF DISTATAUTION 2 0.3000E 00 0.1200E 01 The SAMPLE SIZE EQUALS 50

THE SEED VALUES FOR THIS RUN ARE

ISEED EQUALS 62155 JSEED EQUALS 51562

THE AREA OF THE CHI-SQUARE DISTRIBUTION TO THE RICHT OF THE CHI-SQUARE STATISTIC (ALPHA HAT) EQUALS 0.2648 7.16 4.40 THE VALUE OF THE INDEX OF NON-CONGRUITYEDELTAI EQUALS THE VALUE OF THE PSEUDO CH1-SQUARE STATISTIC EQUALS THE VALUE OF THE CHI-SCUARE STATISTIC EQUALS

6669.0

THERE ARE TWO POINTS OF INTERSECTION. THEY ARE -2.05 AND 0.68

17	*		-0.4979		0.1151	'	8.0
1.2817	0.7934	-0.5331	0.0849	1.6426	0.0062	-2.0086	7.0
0.0415	0.6741	1.0924	0.8774	0.6124	0.9800	1.5932	6.0
0.5240	0*2140	-0.3549	-2.2633	2.4928	0.5922	-2.6222	2.0
0.2529	0.4844	6111.0-	0.1400	3.7394	0.0053	1.1252	. 0.4
0.0	0.4013	-0-2033	1:1461	3.2375	-1.0789	-0.1953	3.0
-0.2529	0.3225	0.4722	-0.6316	0.3529	-1.0840	1.6423	3.0
-0.5240	0.2461	-1.4125	-0.8850	1.5552	0.9289	-0.7807	5.0
-0.8415	0.1707	4.3540	-0.8829	-0.0376	-0.7294	0.7669	5.0
-1.2817	1260.0	0.1170	0.1506	0.2298	-1-0056	0.8669	5.0
REGION BOUNDRIES	CUMULATIVE PROG	RANDON SAMPLE	RANDON SAMPLE	RANDOH SAMPLE	RANDON SAMPLE	RANDOM SAHPLE	CELL FREQUENCY
REGI ON	CUMULA	R AN DDM	RAND ON	RANDOH	RANDON	RANDON	CELL P

NON-CONGRUENCE OF STATISTICAL DISTRIBUTIONS: HOW DIFFERENT IS DIFFERENT?

by

TERRY LEE APPLEGATE

B.S., Kansas State University, 1977

AN ABSTRACT OF A MASTER'S THESIS

Submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering KANSAS STATE UNIVERSITY

Manhattan, Kansas

This thesis studies differences between statistical distributions of the same family. In particular it studies members of the exponential and normal families of statistical distributions. In theory two distributions are the same only if their probability density functions are identical (which implies that their parameters are identical also). However, in practical situations, two distributions which have closely similar probability density functions may produce random samples of small size which are indistinguishable from one another. This thesis is concerned with studying this situation in an attempt to better understand the question of "How different is different?" in relation to differences in statistical distributions from the same family.

The methodology used to study the difference between a pair of statistical distributions from the same family consists of a number of steps. The first step in the comparison procedure consists of determining the amount of non-overlapping area bounded by the probability density functions of the two distributions being compared. The second step consists of drawing a "perfect" sample from one distribution and comparing it with the other distribution. The third step consists of drawing a random sample from one distribution and comparing it with the other distribution. The final step consists of calculating certain indices from the parameters of the distributions and relating these indices to the other comparison results.

Results of the comparison procedure for a sample size of 50 indicate that in both the exponential case and the normal case statistical significant differences at the .05 level would be indicated for amounts of nonoverlapping area in excess of a threshold value occurring somewhere in the region of .3 to .6. In addition to this there appears to be strong relationships between the indices derived from the parameters of the distributions being compared and the various other comparison indices. These strong relationships would allow the comparison of statistical distributions solely on the basis of their parameters without requiring the use of sampling.

Special topics covered in the study which might be of interest to other researchers are the use of the McGill Random Number Generator developed by members of the School of Computer Science of McGill University and the suggestions for further research in this area.