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Chapter 1

Introduction

1.0 GENESIS

This study had its origin in an earlier study for the United States

Nuclear Regulatory Commission concerned with diesel engine failure data

obtained from several nuclear power plants throughout the United States (3).

A result of this earlier study was a number of questions concerning differ-

ences between statistical distributions with the primary question being

"How does one determine statistically significant differences between

statistical distributions?". A subsequent study by K. Lakshminarayan (4)

applied the methodology used in this study to Beta distributions.

1.1 THE PROBLEM

Statistical significance is usually concerned with comparing different

sets of sample data or with making inferences about the populations being

sampled. Various parametric and non-parametric techniques therefore exist

for making these decisions. However, no such techniques exist for comparing

the populations themselves. The problem to be investigated is: given a

family of statistical distributions, how much may a pair of distributions

from this family differ before they can be detected as being significantly

different, or "How different is different?".

1.2 PURPOSE AND OBJECTTVF

There are primarily two reasons for studying differences between similar

distributions of the same family. The first reason deals with the theoretical

insights which can result from studying the effects that perturbations of

distribution parameters have on the "sameness" of family members. . With

better understanding of the role of distribution parameters and their

1



relative importance in determining the characteristics of a particular

distribution, hopefully more powerful estimating and comparative statisti-

cal techniques can be developed. The second and probably more important

reason is the practical applications which could result from studying

differences between statistical distributions. Applications could include

new methods for establishing when sample data from similar sources could

be pooled, parametric "goodness of fit" tests, and sample-free hypothesis

testing.

With these two broad underlying reasons for studying differences in

statistical distributions from the same family, the expressed objective of

this study is: to develop a method of comparing differences in statistical

distributions from the same family (normal distributions and exponential

distributions are the families of statistical distributions studied), to

use this technique to examine the effects of varying the parameters of the

distributions on their "sameness", and to attempt to draw some conclusions

pertaining to the usefulness of this technique in answering the question

of "How different is different?".

1.3 METHOD

1.3.1. The Index of Non-Conqruity - 6

The following discussion is an adaptation of material presented by

Lakshminarayan (3).

Theoretically, two continuous distributions are the same only if their

probability density functions are identical and for their probability

density functions to be identical the two distributions must have exactly

the same parameters. In practical situations however, two distributions

whose probability density functions (and therefore parameters) are nearly

the same, may produce random samples which are indistinguishable from one



an other. It is this type of situation which indicates that merely examin-

ing the probability density functions (or the parameters) of two distribu-

tions to see if they are identical does not provide enough information to

judge if the two distributions are similar enough to consider them

practically as being the same, or if they are different enough that they :

must be considered as different.

One measure that determines differences between continuous distribu-

tions is the difference in the areas bounded by each probability density

function in the region of interest or the amount of non-overlapping area

bounded by the curves. If f^x) and f
2
(x) are the probability density

functions (Figure 1-1) of the two distributions being compared, then the

amount of non-overlapping area or what we have termed "the index of non-

congruity" is given by:

5 = C |f-,(x) - f
2
(x)|dx 0)

The non-overlapping area is shown by the shaded portion of Figure 1-1

and the total amount of this shaded area equals 5. To qualify as

probability density functions, f-, (x) and f
£
(x) each must satisfy the

criterion:

/" f(x) dx = 1
(2)

Therefore the values that can be assumed by the index of non-congruity

are < 6 < 2. If two distributions are approximately the same then 6

will be close to zero and if two distributions are radically different

the value of & will approach 2.

1 .3.2. The Procedure

The general procedure used in this study is to choose a particular



f(x)

f
2
(x)

FIGURE 1-1 Illustration of the Index of Non-Congruity



distribution from a family of distributions and then compare it to a similar

distribution from the same family. The first distribution will be termed

the "model distribution" (Distribution 1) and the similar distribution will

be termed the "alternative distribution" (Distribution 2).

The procedure by which the alternative distribution is compared with

the model distribution consists of a number of steps. The first step is

to calculate the index of non-congruity between the two distributions as

explained in Section 1.3.1.

Secondly, the model distribution is divided into ten equi-probabil ity

regions. A set of values {x(i)} of the independent variable is calculated

such that:

/
x(i)

f
1
(x)dx = i/10 i = 1,...,10 (3)

-oo
I

The values (x(i)} are such that the sample space of the independent vari-

able is divided into regions which have the same area under the curve of

the probability density function, as shown in Figure 1-2. After the equi-

probabil ity regions for the model distribution have been determined, a

"perfect" sample is drawn from the alternative distribution by using the

{x(i)} from the model distribution as interval boundaries of the alterna-

tive distribution. A "pseudo" - x
2

statistic is then calculated from this

2 . . 2
"perfect" sample. This pseudo-x statistic, x ps»

1S :

X
2

ps
= I {[F

2
(i)-F

2
(i-1)]M-.1(M)}

2
(4)

1=1 nw

where

F
2
(i) = /* (i)

f
2
(x) dx, (5)

M is the sample size and F
2
(0) = 0. We are interested in small sample

sizes because small sample sizes are usually encountered in practical
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FIGURE 1-2 Distribution divided into Equi-probability Regions



situations, and with very large sample sizes even small differences are

discernable. Therefore a value of 50 is used for M in this study. The

"pseudo" x
2

and "perfect" sample are used to reduce the effects introduced

by random fluctuations and to better ascertain the basic relationship

between the index of non-congruity and differences between the model and

alternative distributions.

The third step in the procedure comparing the alternative distribution

to the model distribution is that a genuine random sample of size M is drawn

from the alternative distribution and the sample is compared to the model

distribution. The comparison is made by an ordinary x goodness of fit

test. The random x
2

statistic is calculated to provide a check on the

y
2

results and to provide additional insight into the question of differ-
x PS

ences between statistical distributions. Once the random x » denoted by

X
2
D , has been determined, the level of significance a is calculated.
K

Usually when a x
2

statistic is calculated it is then compared to a value

obtained from an appropriately chosen x distribution to determine signifi-

cance at a prescribed confidence level. In this situation this technique

is not totally satisfactory since we are not only interested in whether

a particular X
2

R
value is significant but also in how significant it is.

The level of significance a is the area to the right of the computed

(observed) X
2

D of a x
2
distribution with 9 degrees of freedom. There are

9 degrees of freedom since the model distribution is divided into 10 equi-

probability regions and the random observations are sorted into these

regions for ease of computation. The level of significance gives a more

2 2

intuitively comprehensible measure of difference than the x ps
a nd x

R

values.

The final step in comparing the alternative distribution with the

model distribution is the calculation of parametric indicators which
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attempt to quantify the differences between the model distribution and the

alternative distribution. It is hoped that a relationship can be discovered

between a parametric indicator and the index of non-congruity. Using this

relationship combined with knowledge about the relationship between the

index of non-congruity and statistical significance it may be possible to

find a measure of statistical difference between distributions based solely

on the parameters of the distributions. Such a parametric indicator would

be of considerable practical importance because it would be easy to calcu-

late.

In summary, the comparison procedure given a model distribution and

an alternative distribution is:

1) Calculate 6, the index of non-congruity

2) Calculate x
2

ps
, the "pseudo" chi-square statistic from a

"perfect" sample

3) Calculate X
2

R
from a random sample from the alternative

distribution

4) Calculate a, the level of significance for x R

5) Calculate various parametric indicators

1.3.3 The McGill Random Number Generator

This study is primarily based on the use of a computer to perform the

comparison procedure outlined in Section 1.3.2. One of the major problems

in the development of a program to perform this procedure is the genera-

tion of a random sample from the alternative distribution to be used in

calculating X
2
D . The McGill Random Number Generator developed by members
R

of the School of Computer Science of McGill University seemed particularly

well suited for the requirements of this study. The McGill RNG has several

features which led to its selection. First, the use of the McGill RNG



is FORTRAN compatible and the rest of the program will be written in

FORTRAN. Second, the McGill RNG is called as a FORTRAN function rather

than as a subroutine, which is advantageous in terms of computation time.

Third, the previous value returned is maintained internally by the McGill

RNG which leads to easier programming. Fourth, the McGill RNG has special

procedures for generating random samples from normal and exponential

distributions, thereby eliminating the need to program a transformation

for converting a uniform distribution to either of these distributions.

Finally, the McGill RNG is included in the subroutine library of the Kansas

State University computing system, eliminating the need to include an

additional subprogram for the random number generator in the index of non-

congruity program.



Chapter 2

THE EXPONENTIAL CASE

2.0 INTRODUCTION

This chapter describes the specific procedure for calculating the

index of non-congruity for exponential distributions, the program developed

to perform the comparison procedure outlined in Section 1.3.2. for exponen-

tial distributions, and the results of using this procedure to compare

several pairs of exponential distributions.

2.1 DETERMINATION OF THE POINT OF INTERSECTION

Let f-,(x) be the probability density function of an exponential distri-

bution with parameter X, and let fp(x) be the probability density function

of an exponential distribution with parameter A„. Assume that A„ > A,

.

Consider Figure 2-1 which shows two exponential distributions fulfilling

these requirements. The shaded area represents the index of non-congruity

for this pair of distributions. This area difference is given by Equation

(1) which is repeated again for clarity.

6 = C |f-,(x) - f
2
(x)| dx (1)

To facilitate calculation of 5, this integral can be divided into 2 com-

ponents.

6 = r
Q

!f
1

(x)-f
2
(x)|dx = /

o

X
A [f

2
(x)-f

1

(x)]dx + £ [f
1

(x)-f
2
(x)]dx

M

(6)

X
A

is the point of intersection of the two probability density functions.

Finally note that this expression applies for the case where A~ > A, and

for the case where A-, > A
?

the limits of integration for the component

integrals would have to be exchanged to insure the proper sign for 6.

10
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FIGURE 2-1 The Index of Non-Congruity for Exponential
Distributions
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The following calculation demonstrates the determination of the point

of intersection X«. At X = X^

A ie

" A
l

X
A = x

2
e'

X
2

X
A (7)

e(y x
i)

x
A = -^ (8)

A
l

(X
2
-X

]
)

XA= lx\^- (9)

X
A " lipj « ^

(10)

2.2 THE INDEX OF NON-CONGRUITY: EXPONENTIAL CASE

Having determined the point of intersection X. the expression for

the index of non-congruity can be modified. Substituting into Equation (6)

we obtain:

6 /Ja [x
2
e-

x
2
X
-x ie

- x
l

X
]dx + q [x ie

" A
l

X
-x

2
e-

X
2
X
]dx

(11)

= /
X
A x 9 e~

A
2
X

dx - /
X
Ax,e"

X
l
X

dx (12)
o 2 ol

+
;
y \e" X

l
X

dx ' \ 2
e 2 dx

X
A 1

X
A

-X X| A. — X t A I A.e 2 A - -e 1 I A
'o 'o

+ -e 1 L - -e 1 L
A
A

X
A

= [-e"
A
2
X
A + 1] - [-e~

X
l
X
A + 1]

+ [0 + e"
A

l

X
A] - [0 + e'

X
2
X
A]

(13)

(14)

= 2e"
A

l

X
A - 2e"

X
2
X
A (15)

Therefore

6 = 2[e"
X

l

X
A - e"

A
2
X
A] (16)

Th is development is for the case where x
2

> x, . For the case where
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X. > x
2

the index of non-congruity is:

and:

6 = 2[e"
X
2
XA e"

X
l

XA]

X-

(15a)

(10a)

2.3 DESCRIPTION OF EXPONENTIAL PROGRAM FEATURES

2.3J Program Listing

A complete listing of the computer program to perform the comparison

procedure for exponential distributions is given in Appendix 1.

2,3.2. Definition of Program Variables
A

AHAT: the level of significance, u

CADTR: function subroutine to determine a

DIFFL: absolute difference of X, and X,,, |
X

-j

- x^\

DELTA: the index of non-congruity. 6

EI: the expected frequency in the equi-probability regions, M/10

FREQ(IO): the array containing the frequency counts of the random

sample sorted into the equi-probability regions

F2SUM: the sum of the components of the array FREQ squared

ISEED: one of the seeds for the McGill RNG

JSEED: the other seed for the McGill RNG

K: the index for the array FREQ. K can take on integer values

from 1 to 10.

LAMDA1: the parameter of the model exponential distribution

LAMDA2: the parameter of the alternative exponential distribution

M: the sample size

NU: the degrees of freedom for the x distribution which

? 2
Xp S

and x R
are compared with
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P2(10): the array containing the cumulative probability of the

alternative distribution at the region boundries (x(i)}

RATIO: the ratio of A, and A«» if A~ > A,

A
2

A

RATIO = -A and if A, > A, RATIO = -1
a, 12 A~

REXP: subroutine to generate a random deviate from an exponential

distribution with mean A = 1

RSTART: subroutine to initialize the McGill Random Number Generator

SAMPL(200): the array containing the random sample from the

alternative distribution

the point of intersection X^

the equi-probability region boundaries (x(i)}

Tl:

XT (10)

2 2
X2ACT: the random x statistic, x R

2 2
the pseudo x statistic, x

P s

2

X2PS:

X2SUM:

Zl:

Z2:

the sum of [P2(10) - XI (10)] used in the calculation of X2ps

variable equal to the negative of the product of LAMDA1 and Tl

variable equal to the negative of the product of LAMDA2 and Tl

2.3.3. Inputs to the Program

The variables required as input to the program are:

LAMDA1, LAMDA2, M, ISEED, JSEED

The input is given on two separate cards with the indicated format.

LAMDA1, LAMDA2, M 1 card (2E10.4, 15)

ISEED, JSEED 1 card (215)

Multiple runs of the program can be made by supplying additional input

cards (two per replication) containing the information described above.

Program completion is indicated by a blank card.
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2.3.4. Outputs of the Program

The program provides two types of output. The first type is an echo

check of the input. The second type is information calculated by the

program. The following information is produced as output of the second

type: the array XI, the array P2, the first M components of the array

SAMPL, the array FREQ, DELTA, X2PS, X2ACT, and AHAT. A sample output is

shown in Appendix 1.

2.3.5. Special Programming Considerations

Using the McGill Random Number Generator The use of the McGill RNG

is accomplished by the two subroutines RSTART and REXP. RSTART initializes

the RNG. The arguments of RSTART are ISEED and JSEED. The transfer from

the main program to the RSTART subroutine is made by the statement Call

RSTART (ISEED, JSEED). The RNG provides default values if RSTART is not

used. REXP generates a random exponential deviate from an exponenetial

population with parameter A = l c This random deviate is transformed into

a random deviate from an exponential population with parameter A^ by

dividing by X„ e.g. z = x/\« where z is the random deviate from the desired

distribution and x is the generated random deviate,, The argument of REXP

is a dummy integer constant which is ignored by the program. In other words

use of REXP(IO) or REXP(98765) produces the same effect i.e. the generation

of an exponential random deviate. Use of the function subroutine REXP is

accomplished by using REXP(l) in an arithmetic function e.g. SAMPL(I) =

REXP(1)/LAMDA2.

Sorting the Random Sample Observations In designing a sorting proce-

dure the objective is to minimize the expected number of sorting trials

for a sample set while maintaining a level of simplicity in the programming.

The sorting procedure used in the program consists of a loop containing a
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set of test statements which compares the random deviate with the equal

probability region boundaries sequentially until the deviate is less than

the boundary value. The deviate is then placed in the frequency region

which has the boundary value as its upper bound. This sorting procedure

would minimize the expected number of trials for the case where ^ > A^.

However for the case where A, >> Ao this procedure would result in a high

expected number of trials. This was not considered a significant problem

since we are primarily concerned with cases where A, and A
?

are nearly equal.

Calculating a The level of significance, a, is calculated by the

function subroutine CADTR which is a slightly modified version of the CDTR

subroutine contained in IBM's Scientific Subroutine Package. The modifi-

cations include changing the subprogram from a subroutine subprogram to a

function subprogram and modifying the inputs and outputs of the subprogram.

2.4. RESULTS OF THE EXPONENTIAL PROGRAM

Four different sets of values of random number generator seeds were used

in investigating the exponential case. Values of distributions compared

varied from Ap/A, = 1/3 to A^/A, = 3. For A, > A~ the value of A„ was set

to equal 10 and for A
?

> A, the value of A, .was set equal to 10. Therefore

in e\/ery pair of distributions compared the smallest parameter was equal

to 10. This was done for computation convenience since only the ratio is

pertinent (as seen from Equations (10) and (16)), rather than the absolute

size of A, and A
?

. The sample size used in the comparison was set equal to

50 in all cases. The results of the various comDarison runs are summarized

in Table 2-1.

Various relationships between comparison indices are graphically

presented in Figures 2-2 to 2-7. Examination of these figures indicates

that there is good reason to believe that there is a strong relationship
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TABLE 2-1

Results of the Exponential Program

A
l

10

RATIO

1/3

RNG
Seed

A

B

C

D

6

2

*PS

76.80

2
X
R a

30 .7698 86.00
84.40
120.40
75.20

.0000

.0000

.0000

.0000

20 10 1/2 A

E

C

D

.5 28.67 24.40
39.20
48.80
41.60

.0037

.0000

.0000

.0000

17.5 10 4/7 A

B

C

D

.4064 17.93 20.00
46.80
37.20
36.00

.0179

.0000

.0000

.0000

15 10 2/3 A

B

C

D

.2963 8.88 9.20
28.80
21.60
18.40

.4190

.0007

.0102

.0508

12.5 10 4/5 A

B

C

D

.1638 2.48 4.80
14.40
10.40
14.00

.8514

.1088

.3191

.1223

1C 12.5 5/4 A
3

C

D

.1638 2.00 10.40
12.40
10.00
9.20

.3191

.1917

.3505

.4190

10 15 3/2 A

3

C

D

.2963 6.13 10.40
13.60
10.80
12.80

.3191

.1373

.2897

.1719

10 17.5 7/4 A
3

C

D

.4064 11.12 17.60
20.00
18.80
18.80

.0401

.0179

.0269

.0269

10 20 2/1 A

B

C

D

.5 16.50 19.60
23.20
18.80
26.40

.0205

.0058

.0269

.0018



18

Table 2-1 continued

A
l h

30

RNG 2

RATIO SEED 5
X
PS

2
y
R

48.40
40.40
43.60
47.60

a

10 3/1 A .7698 39.50
B

C

D

.0000

.0000

.0000

.0000

M = 50, RNG = A(51562, 62155) B(62155,
C(50020, 11292) D(11292,

51562)

50020)
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between all of the comparison indices plotted. It is only possible at present

to make very tentative estimates of most of these relationships. The compar-

2
ison variable pairs where a clear relationship exists are 6 vs x

2
/x, , x P c

vs

2
6, and Xnc vs Xp/x,. These relationships do not vary with different random

samples. However, for the relationships involving variables which are affected

2
by different random samples-namely x R

and a ™ it "> s only possible to make tent-

ative estimates of the relationships. To obtain better insight into these

relationships, it would be necessary to increase the number of replications

(using different random number seed values each time). Increasing the

number of replications would increase the knowledge of the distribution of

the values assumed by Xn and a at fixed values of the non-effected variables

2
(6, X

2
/X., and xpc\ and would also increase the accuracy of the estimate

of the mean value of the affected variables. With sufficient replications

it would be possible to obtain very reliable figures of the type shown in

Figure 2-8 which illustrates a possible model of the relationship of a and

5. The knowledge of these tentative relationships is believed to be suffi-

cient for the purposes of this study but it is recognized that further

research should proceed in the effort to better quantify these relationships.

Examination of Figures 2-2 to 2-7 provides some valuable insights and

also produces some interesting observations. First, as shown in Figure 2-2,

6 changes at a faster rate for a given change in the lambda ratio for

x
?
/x, < 1 than for x

?
/x, > 1. This indicates that if an alternative dis-

tribution is compared to a model distribution having a smaller parameter,

of size A
?

- e say, it is more likely that the two distributions can be

considered as equivalent (because of a smaller 6 value) than if the alter-

native distribution was compared to a model distribution having a correspond-

ingly larger parameter of Ap + e.

2
Second, as indicated in Figures 2-3 and 2-4, xp$ ( and therefore
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FIGURE 2-8 Possible model of the Relationship of a and 6
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presumably X n and a ) is more sensitive to differences in the distributions

being compared for A^A-j < 1 than for X^ > 1. This sensitivity is in

addition to the effect on 5 of the relative magnitude difference of the

parameters of the distributions. This indicates that in addition to the

added likelihood that an alternative distribution and a model distribution

can be considered equivalent for a^/a, > 1 due to the magnitude effect,

there is also an additional effect caused by the reduced sensitivity to

difference for x
?
/x, > 1.

2 2
Figure 2-5 indicates that x Pc

in general tends to be smaller than xR
-

2 2
It also appears that there is a linear trend between x ps

and x R
if the point

2 -, r „ 2
x 76.8, xn = 120.40 is not considered. A least-squares line was calcu-
PS '

K R

lated for this relationship. The equation of this line is Xr
= -95465 x p$

+

9.36853.

Figure 2-5 and Table 2-1 also produce two interesting observations.

2
First, there is a tighter grouping of x R

from cases where x
2
/x^ > 1.

Second, RNG seed A seems to produce peculiar results for cases where

A
?
/A, < 1. The underlying causes of these two phenomena are not fully

understood.

From Figure 2-7 it appears that 5 tends to be significant at the .05

level above values of .4. At values between .3 <_ 6 <_ .4 the result is

2 2
ambiguous if the judgment is to be based on a (xp)- ^ x P c

i s usec' to judge

the two distributions for equivalence the range of uncertainty for 5 can

2
be determined from Table 2-1. Significance occurs at x values around 17

2
at the .05 level. Therefore x P c

would indicate significance at the .05

2
level above 8 since .95465(8) + 9.36853 - 17. It appears that if xps

is

used as the judgment criterion, then for 6 to indicate significance its

value must be greater than .3 for A
?
/A. < 1 and greater than .35 for

2
Ap/A, > 1. Using x p

<- as the judgment criterion the uncertainty range for
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5 appears to be

.2 < 5 < .3 x
2
/x

1
< 1

.25 < 6 < .35 x
2
/x, > 1

These 6 values imply that if X„/X^ is to be used to test for signifi-

cance as opposed to 6 then the uncertainty regions are

.57 £ XjX, <_ .67 XjX, < 1

{
c

'

c
'

} a basis

1.5 <_ Wa, <_ 1.75 X
2
/A

1

> 1

.65 £ X
2
/X-| £ .75 A

2
/A

1

< 1

2
{ > XPS basis

1.45 <_ X
2
/X, £ 1.6 x

2
/x, > 1

and significance is indicated for values of

A
9
/A, <_ .57 or A

?
/X, ^ 1.75 a basis

X,/A, < .65 or Ao/A-. ^1.6 Xd.q basisV

2
/A

l 1
- ^PS



Chapter 3

THE NORMAL CASE

3.0 INTRODUCTION

This chapter describes the specific procedure for calculating the index

of non-congruity for normal distributions, the program developed to perform

the comparison procedure outlined in Section 1.3.2. for normal distributions,

and the results of using the procedure to compare several pairs of normal

distributions.

3.1 DETERMINATION OF THE POINT OR POINTS OF INTERSECTION

Let f-j(x) be the probability density function of a normal distribution

with mean u, and standard deviation oy Let f
2
(x) be the probability density

function of a normal distribution with mean u~ and standard deviation o^.

At a point of intersection we have,

1
X-U-i r, -I X-Up p

/ZtT O, I YC.V On C

X-U-, « X-U« «

so that e^ 2^' " h£h I 08)

x-u, r, x-u 9 a,

and [(—I) 2
- (-—£)

z
] = -2ln -L

. (19)
O-i Op °p

T , ,2 2
N

2 / 2 2 v r 2 2 2 2
Then (a« - a, )x - 2(a2 u-. - a, tu) + L°"2 u

i
" a

l
u
2

2a
2
a„

2
In -1] = (20)

Equation (20) is of the form

A x
2

+ Bx + C = (21)

The number of roots of equations of this form can be determined from the

2
discriminant. If (B - 4AC) is

29
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negative there are no real roots

-B
zero one real root X» = jr

positive two real roots, XY
- -B + /B

2
-4AC

X
A1 2A

X
A2

= -B - /B
2
-4AC

2A

Denoting the discriminant by R, we find that

R = 4(a
2

U.- a, u~) - 4(c
2

- a, )\_Or. U, ~ °i u ?
+ 2c

1 °2 ^ n —^ ^
22 ^

which reduce to the conditions

R negative yields no real roots
2 ?

R zero yields one root X* =
2 2

a
2

- a
}

/R
R positive yields two roots X*, = X. + s

2
2(a

2
- a

]
)

X no = X ^
A2

A
A ,, 2 2x

Now in the special case where g
2

= cr, = a, then Equation (17) reduces to

_L e
-V2(^l) 2

. J_ e
-l/2(^) 2

. „ {17a)

2ir a /2ir a

which yields (x-u-, )

2
= (x-u

2
)

2
(24)

x
2

- 2xu, + u^ = x
2

- 2xu
2

+ u
2

2
(25)

2xu
2

- 2xu
1

= u
2

2
- u^ (26)

x • ?f^) (27)

u
2

+ u,

X
A

- -
2

' (28)
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3.2 THE INDEX OF NON-CONGRUITY: NORMAL CASE

The two most common situations with normal distributions, where there

are two points of intersection and a
-]

= a
2

> are snown in Figures 3-1 and

3-2. The shaded area in these figures equals the index of non-congruity.

The index of non-congruity is given by Equation (6).

6 = £ |f-,(x) - f
2
(x)| dx (6)

This expression can be modified according to the number of intersection

points. If there is no point of intersection then obviously 6=2. If

there is one point of intersection, X„, the integral can be decomposed into

two terms. Assume that f-,(x) > f
2
(x) for X < X

A
then

6 = fh (f^x) - f
2
(x))dx + s\ (f

2
(x) - f-,(x)) dx (29)

6 = fh f^x) dx - fh f
2
(x) dx +

/J
f
2
(x) dx -

/J
f^x) dx (30)

6 - F^X
A

) - F
2
(X
A

) + [1 - F
2
(X
A )] - [1 - F

1

(X
A )] (31)

6 2[F
]

(X
A

) - F
2
(X
A )] (32)

where F^(x) is the cumulative probability function of f. (x). In general,

for the case where there is one point of intersection

6 2|F
1

(X
A

) - F
2
(X
A )| (33)

If there are two points of intersection (see Figure 3-2) then the index

of non-congruity integral can be separated into three parts. Let C-j and

C
2

(C, < C
2

) be the points of intersection.

Assume that f-,(x) > f
2
(x) for X < C, then

6 = L i f-\M- f2^^ dx + f
c

(f
2
(x) " f

l
(x)) dx + ;

C
( f

i(
x )- f

2
(x)

)
dx

(34)
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f(x)

FIGURE 3-1 The Normal Case with Two Points of Intersection
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f(x)

FIGURE 3-2 The Normal Case for Equal Standard Deviations
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6 = F^C,) - FgfC,) + [F
2
(C

2
) - F^) - F^Cg) + F^C,)]

+ [1 - F^Cg) - 1 + F
2
(C

2
)] (35)

5 = 2[(F
2
(C

2
) - F

2
(C

1
)) - (F^Cg) - F

1
(C

1
))] (36)

In general for the case where there are two points of intersection

6 = |2[(F
2
(C

2
)

- F
2
(C

1
)) - CF

1
(C

2
) - F

1
<C

1
>>3| (37)

3.3 DESCRIPTION OF NORMAL PROGRAM FEATURES

3.3.1. Program Listing

This section describes the essential features of the program for com-

paring normal distributions. A complete listing of the program is given

in Appendix 2.

3.3.2. Definition of Program Variables

AHAT: the level of significance, a

CI: the lower point of intersection, C,

C2: the upper point of intersection , C
2

CADTR: function subroutine to determine a

D: an output parameter of subroutine NDTR which is not used in

the main program

DELTA: the index of non-congruity, <5

EI: the expected frequency in the equi-probability regions, M/10

Fl

:

the cumulative probability F, (X) at X.

F1C1: the cumulative probabiltiy F, (X) at C,

F1C2: the cumulative probability F-,(X) at C
2

F1DIF: F1C2 - F1C1

F2: the cumulative probability F
?
(X) at X.

F2C1

:

the cumulative probability F
?
(X) at C,

F2C2: the cumulative probability F
?
(X) at C

?
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F2DIF: F2C2 - F2C1

F2SUM: the sum of the components of the array FREQ squared

FREQ(IO): The array containing the frequency counts of the random

sample sorted into the equi-probability regions

FRSFAC: 4(a
2

2
u

]

- o^Z^
IER: error indicator used in subroutine NDTRI

IND: indicator showing the number of intersection points

ISEED: one of the seeds for the McGill RNG

JSEED: the other seed for the McGill RNG

K: the index for the array FREQ

MU1 : population mean p,

population mean y~MU2:

M: the sample size

NDTR: subroutine to calculate F- (z)

NDTRI: subroutine to calculate the standard normal deviate z,

given Fj (z)

P: input parameter to subroutine NDTRI containing F^ (z)

P2(10): the array containing the cumulative probability of the alter-

native distribution at the region boundaries {x(i)}

RAD: R of Equation (22)

RADPRT: fj~/2{a
2

- a,
2

)

RATIO: the ratio of population standard deviations, o-i/a^

RNOR: McGill RNG function to generate standard normal deviate

RSTART: subroutine to initialize the McGill RNG

SAMPL(200): the array containing the random sample from the alter-

native distribution

SIGMA! : population standard deviation, a,

SIGMA2: population standard deviation, a
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SNDFAC:

SQMU1

:

SQMU2:

VAR1:

VAR2:

VARDIF:

VXM12:

VXM21

VXN1D2:

VXMDIF:

VXSI2:

VXS21:

XI (10):

X2ACT:

X2PS:

X2SUM:

XLNFAC:

XX:

XXI:

XX2:

Z:

Zl:

Z1C1:

Z1C2:

Z2:

Z2C1:

Z2C2:

Z2PS(10)

4(a,
2 2

'2 U
1

2 2

'1
u
2i OCo/u/ - a^^ L

+ 2 °i ao i n r~]
2 2.

'1
a
2

1

2

1

2

VAR2 - VAR1

°1
u
2

2

°2 U
l

/ 2 2 v2
(02 U-i - a, U2

J

2
(a

2
u

1

2 x

a-| u
2

)

2 2

°1 u
2

2 2
a
2

U]

the equi-probability region boundaries {X(i)>

2 . . 2
the random x statistic, xr

2 . . 2
the pseudo x statistic, x

ps

the sum of [P2(10) - XI (10)] used in the calculation of X2P

2 a
2

a
l

1n ~
2

the single point of intersection, X
ft

one of two points of intersection, X^

the other of two points of intersection, X
A2

a standard normal deviate used in calculating XI (10)

standard normal equivalent of X
A

for distribution 1

standard normal equivalent of C, for distribution 1

standard normal equivalent of C
2

for distribution 1

standard normal equivalent of X
A

for distribution 2

standard normal equivalent of C| for distribution 2

standard normal equivalent of C
2

for distribution 2

: array containing standard normal equivalent of XI (10)

for distribution 2
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3.3.3. Inputs to the Program

The inputs to the program are the distribution parameters - u, , aj,

u
2

, a
2

; the sample size M; and the RNG seed values - ISEED, JSEED. The

input is given on two separate cards with the indicated format.

MM, SIGMA1, MU2, SIGMA2, M 1 Card (4E10.4, 15)

ISEED, JSEED 1 Card (215)

Multiple runs are possible by supplying additional input cards (two per

replication). Program completion is indicated by a blank card.

3.3.4. Outputs of the Program

The output of the normal program is almost identical with the output

of the exponential program. There are two types of output of the normal

program. The first type is an echo check of the inputs to the program

and the second type is the set of values calculated by the program. As

in the exponential program, the second type of output for the normal pro-

2 2
A

gram consists of the values of 6, x
ps

> xR
» a. XI (10), P2(10), the first M

elements of SAMPL(200), and FREQ(IO). In addition to these second type

outputs, the normal program also prints the number of intersection points

and their values. A sample output is contained in Appendix 2.

3.3.5. Special Programming Considerations

Definition of Non-Overlapping Distributions In actuality any two

normal distributions will intersect in at least one point, since both span

the interval from -<*> to +°° and both have unit area. However, for widely

separated distributions the amount of overlapping area is small and at

some point could be considered zero. In the program, if u<. + 5a is less

than U[_ - 5c|_ (where u
s

refers to the smaller mean, u. refers to the

larger mean, and a
s

and a
L

refer to the corresponding standard deviations)

then the distributions are defined as non-overlapping and 6 is set equal
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to 2.

Using the McGill RNG Use of the McGill RNG is accomplished in this

program through the use of two subprograms - RSTART and RNOR. The use

of RSTART is described in section 2.3.4. RNOR is used to generate a sample

from a standard normal distribution. Its use is similar to the use of

REXP described in Section 2.3.4. The sample from a standard normal distri-

bution is transformed to a sample from a normal distribution with mean u

and standard deviation a by the equation

X = u + az (38)

where z is the sample from a standard normal distribution and X is the

observation from the desired distribution.

Sorting the Random Sample Observations The normal index of non-

congruity program uses a different sorting scheme than the exponential pro-

gram did because of the different shapes of the two distributions. The

sorting scheme is shown in the tree diagram shown in Figure 3-3. This

scheme is designed to search the middle equi-probability regions first.

The efficiency of this sorting scheme is dependent on the nature of the

alternative distribution and, therefore, the scheme does not minimize the

expected number of tests in all situations. However, the scheme does

reduce the maximum number of tests to 5, as compared with 9 in the scheme

used in the exponential program.

Calculating the Normal Cumulative Probability of X The cumulative

probability for an argument X is calculated by first converting the number

to standard form by the transformation,

z = (x - u)/o . (39)

The cumulative probability is then calculated by the IBM Scientific Sub-

routine Package subroutine NDTR which uses the following approximation

taken from Hastings
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FIGURE 3-3 Tree Diagram for Sorting Procedure
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F(z) = 1 - f(z)(b
]

t + b
2
t
2

+ b
3
t
3

+ b
4
t
4

+ b
5
t
5

) (40)

where

fW-jg •- .t=TTH .r=. 2316419,
1 ^2/2

b, = .31938153, b
2

= -.356563782, b
3

= 1.7181477937,

b. = -1.821255978, and b c
= 1.33027449

4 o
-8

This approximation has a maximum error of 7.5 x 10 and is valid only for

z >_ 0. For z < the complement of F(-z) gives the desired value.

Calculating X given a Normal Cumulative Probability A value X from

a N(y,o ) population can be calculated from a given normal cumulative

probability P by first calculating the value z from a standard normal distri-

bution with cumulative probability P and then applying the transformation

given in Equation (38). The value z is calculated by the IBM Scientific

Subroutine Package subroutine NDTRI which uses the following approximation

taken from Hastings,2-3.
z = w - z a- w / z b. w (41)

i=o i=o

where w = /ln(l/p
2

) , a
Q

= 2„515517, a
]

= .802853, a
2

= .010328,

b =1, b, = 1.432788, b = .189269, b QOl c 3
,001308

-4
This approximation has a maximum error of 4.5 x 10 and is valid only

for P <_ .5. For P > .5, z of 1-P is calculated and then the sign of z

is changed.

3.4 RESULTS OF THE NORMAL PROGRAM

Four different sets of values for random number generator seeds were

used in investigating the normal case. The standard normal distribution

was chosen as the model distribution. Three different types of alternative

distributions were considered. In the first type the mean of the alternative
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distribution was different from zero and the standard deviation was equal

to one. This set of alternative distributions is referred to as the mean-

variate set. In the second type the mean of the alternative distribution

was equal to zero and the standard deviation was different from one. This

set of alternative distributions is referred to as the variance-variate set.

In the third type of alternative distribution considered, the mean of the

alternative distribution was different from zero and the standard deviation

was different from one. This set is referred to as the mean-variance-

variate set. The sample size used in the comparisons was 50 in all cases.

One of the steps in the comparison procedure outlined in Section 1.3.2

is the calculation of various parametric indicators. The parametric

indicator which was chosen in the normal case was,

ni
=

|

U] - u
2

|
+ |o

1

- c
2 |

(42)

Various relationships between comparison indices are graphically

presented in Figures 3-4 to 3-20. There appears to be a strong relationship

between all of the comparison indices plotted. Examination of these

figures provides some valuable information. Figure 3-4 shows the relation-

ship between XL and 6 ° Tnis figure indicates that for the cases of the

2

mean-variate and variance-variate sets of alternative distributions xps

and 6 are strongly related. The figure also indicates that two distribu-

tions with a particular 6 value are more easily detected as being signifi-

cantly different if their means are different than if their standard

deviations are different. The figure also shows a greater difference in

xL for a given 6 value for a, < a
2

than for o
1

> a
2

. (Recall that in the

exponential case this type of a relationship existed; xps
f°r AgA-j < 1

was greater than xL for Xg/X, > 1. This is a similar result since the

standard deviation of an exponential distribution is 1/x and therefore
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the ratio of the standard deviations is l/Ap/l/A, = 1A
2

' Hence if

X
2
/X

1

< 1 then a
exp1

< a
exp2

.)

Figure 3-6 indicates the relationship between 5 and n-i for the mean-

variate and variance-variate data. The most sensitive case is for the

variance-variate case with o, > a 2< This sensitivity is partially offset

2
by the relationship between xPc

an<^ 5 f°r this case (which is not as

sensitive as the other two cases shown) as shown in Figure 3-4. However

it is not completely offset as seen in Figure 3-8 which shows that the

2
case of variance-variate data with a, > o

2
produces a much higher xps

value for a given n-i than the other two cases (which produce comparable

values).

2 2
As in the exponential case xps

tends to be smaller than x R
> as seen

in Figures 3-10 to 3-13. There also appears to be a linear trend between

2 2
xR

and x P
<- in each of these figures. A least-squares line was calculated

for each of these cases. The obviously outlying points of Figures 3-11

and 3-13 were omitted from the calculations. The derived lines are

Figure 3-10 Mean-Variate Data

Xp: = .90935 xp
s

+ 6.55919

Figure 3-11 Variance-Variate Data o, < Co

Xp; = .92777 Xps
+ 4.95750

Figure 3-12 Variance-Variate Data a, > a?

Xp;
= .85908 xp

s
+ 3.29251

Figure 3-13 Mean-Variance-Variate Data

Xr
= o580767 xps

+ 5.83267

From Figures 3-14 to 3-16 it appears that (based onaas the criterion)

5 tends to be significant at the .05 level as indicated below:

Figure Type Significance Range

3-14 Mean-Variate Data 6 > .47
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Figure Type Significance. Range

3-15 Variance-Variate Data a, < a.^ 6 1 .39

3-16 Variance-Variate Data o. > a
2

<5 > .6

If X p is used as the criterion, xps
would indicate significance at the

following values calculated from the regression equations to correspond to

2
"

a xR
value of 17 (a = .05).

Type Significance Range

2
Mean-Variate Data xps 1 N«5

2
Variance-Variate Data a < a. xps L 13 -°

Variance-Variate Data a-, > a 9 X2 1 ^ 6 «°
1 * PS

Based on these values and consulting Figure 3-4, 5 would indicate signifi-

cance at the .05 level as given below.

Type Significance Range

Mean-Variate Data 6 >_ .36

Variance-Variate Data °-\ K a
?

6 _> .4

Variance-Variate Data a, > a« 5 1 .55

The uncertainty regions can be estimated as

Mean-Variate Data .38 < 6 < .47

Variance-Variate Data a
-]

< a ? .34 <_ o <_ .39 a basis

Variance-Variate Data a-, > a? .48 <_ 6 <_ .6

Mean-Variate Data .32 <_ 8 <_ .36

2
Variance-Variate Data c, < o~ .34 <_ 6 <_ .4 Xpj basis

Variance-Variate Data a, > a^ .45 £ 6 <_ .55

These values for 6 imply that if n-j is to be used as a test for significance

instead of 5, then the uncertainty regions can be estimated from Figure 3-6

to be
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Mean- Vari ate Data .48 <_ ru < .6

Variance-Variate Data °1 < On .43 £ ti

1

< .5 a b

Variance-Variate Data B
l

> Op .4 £ n-|
< .46

Mean-Variate Data .4 < tj

1

< .44

Variance-Variate Data a
l

< Op .42 < n] < .52
2

X PS

Variance-Variate Data c
l

> Op .38 <. n-|
< .42

basis

These regions compare favorably with results which can be taken from

2
Figures 3-18 to 3-20 for the a basis and Figure 3-8 for the xPr

basis,

Mean-Variate Data

IU 1 t.t1 Lt:U 1 U n
l

n-i

V G

>

1 JCi

.5

U 1

Variance-Variate Data H
< a

2
n-i

> .5 a basis

Variance-Variate Data a
l

> °2 n-i
> .46

Mean-Variate Data n-j
> .44

Variance-Variate Data c
l

<
"2 n-i

> .52 Xp
s

basis

Variance-Variate Data °1
> c

2
V- > .42

Figures 3-5, 3-7, 3-9, 3-13 and 3-17 show the various relationships

between indices for the mean-variance-variate data. Indications of strong

relationships between the various indices are shown by these figures. How-

ever, it is believed that the knowledge of these relationships is too

limited to draw any satisfactory results. Further research, in which the

range of the comparison indices is expanded, is needed to better quantify

these relationships.
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DISTRIBUTION
2 (Alternative)

(.1, 1)

(.2, 1)

(.3, 1)

(.4, 1)

(.5, 1)

(.6, 1)

(.7, 1)

(.8, 1)

(.9, 1)

TABLE 3-1

Results of the Normal Program

RNG 2 2 x\

SEED 5
X PS

.48 7.60

a

A .0798 .5749

3 2.80 .9717

C 2.40 .9835

D 12.00 .2133

A .1593 1.94 8.40 .4944

B 2.00 .9915

C 6.80 .6579

D 12.80 .1719

A .2385 4.41 13.20 .1538

B 10.00 .3505

C 8.00 .5341

D 12.40 .1917

A .3170 7.97 13.60 .1373

3 8.00 .5341

C 10.00 .3505

D 20.00 .0179

A .3948 12.70 20.00 .0179

B 11.60 .2368

C 16.00 .0669

D 25.20 .0028

A .4716 18.70 30.00 .0004

B 19.20 .0235

C 18.00 .0352

D 33.20 .0001

A .5473 26.08 34.00 .0001

& 22.00 .0089

C 30.40 .0004

D 40.80 .0000

A .6217 34.94 43.20 .0000

B 26.40 .0018
C 38.00 .0000
D 44.00 .0000

A .6946 45.38 62.40 .0000

B 40.40 .0000
C 40.80 .0000
D 53.20 .0000
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Table 3-1 continued

DISTRIBUTION
2 (Alternative)

RNG

SEED

A

B

C

D

6

2
X
PS

57.45

2
XR

66.40
48.40
49.60
63.20

a

(1.0, 1) .7659 .0000
.0000

.0000

.0000

(1.1, 1) A

B

C

D

.8354 71.19 83.60
67.20
66.80
77.60

.0000

.0000

.0000

.0000

(1.2, 1) A

B

C

D

.9030 86.58 97.20
76.00
78.80
92.80

.0000

.0000

.0000

.0000

(1.3, 1) A

B

C

D

.9686 103.55 137.60
85.60
89.20
106.00

.0000

.0000

.0000

.0000

(1.4, 1) A

B

C

D

1.0321 121.99 143.20
95.60

111.60
123.60

.0000

.0000

.0000

.0000

(1.5, 1) A

B

C

D

1.0935 141.70 172.40
118.80
126.00
126.00

.0000

.0000

.0000

.0000

(1.6, 1) A

B

C

D

1.1526 162.46 184.00
147.20
141.20
156.40

.0000

.0000

.0000

.0000

(1.7, 1) A

B

C

D

1.2093 184.00 206.40
163.20
155.20
180.00

.0000

.0000

.0000

.0000

(1.8, 1) A

B

C

D

1.2638 206.00 246.40
173.60
175.60
180.80

.0000

.0000

.0000

.0000

(1.9, 1) A

B

C

D

1.3158 228.15 274.80
197.20
235.60
206.80

.0000

.0000

.0000

.0000
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Table 3-1 continued

DISTRIBUTION
2 (Alternative)

RNG

SEED

(2.0, 1) A
E

C

D

(0, .1) A

3

C

D

(0, .2) A

B

C

D

(0, .3) A

B

C

D

(0, -4) A

B

C

D

(0, .5) A

B

C

D

(0, .6) A

B

C

D

(0, .7) A

B

C

D

(0, .8) A

B

C

D

(0, .9) A

B

C

D

2 2
X PS XR

1.3654 250.11 290.80 .0000
226.80 .0000

261.20 .0000

220.80 .0000

1.5964 194.35 182.80 .0000

174.40 .0000

192.80 .0000
181.20 .0000

1.2942 117.35 95.60 .0000
125.60 .0000
113.60 .0000
88.80 .0000

1.0435 67.04 63.60 .0000
58.40 .0000
75.60 .0000
50.00 .0000

.8300 40.56 39.60 .0000

40.80 .0000
42.00 .0000
26.40 .0018

.6453 24.72 25.20 .0028

22.00 .0089

32.40 .0002

15.60 .0757

.4840 14.48 14.40 .1088

14.40 .1088
20.00 .0179
9.20 .4190

.3416 7.63 9.20 .4190

16.00 .0669
10.40 .3191

6.40 .6993

.2151 3.19 4.80 .8514
5.20 .8165

11.60 .2368
2.40 .9835

.1019 .75 6.00 .7399
2.40 .9835
8.00 .5341

4.40 .8832
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Table 3-1 contined

DISTRIBUTION
2 (Alternative)

(0, 1.1)

(0, 1.2)

(0, 1.3)

(0, 1.4)

(0, 1.5)

(0, 1.6)

(0, 1.7)

(0, 1.8)

(0, 1.9)

(0, 2.0)

RNG 2 2 A

SEED 6
X
PS

.65

X
R

5.60

a

A .0922 .7792

B 6.80 .6579

C 4.00 .9114

D 10.80 .2897

A .1760 2.42 6.40 .6993

B 7.20 .6163

C 6.00 .7399

D 18.80 .0269

A .2525 5.05 9.20 .4190

B 10.00 .3505

C 7.60 .5749

D 22.00 .0089

A .3226 8.29 15.20 .0856

B 11.20 .2622

C 14.40 .1088

D 32.00 .0002

A .3872 11.97 17.20 .0457

B 19.60 .0205

C 16.00 .0669

D 35.60 .0000

A .4467 15.93 18.80 .0269

B 20.40 .0156

C 22.40 .0077

D 47.20 .0000

A .5019 20.07 19.60 .0205

B 24.40 .0037

C 24.40 .0037

D 45.60 .0000

A .5531 24.29 27.60 .0011

B 26.80 .0015

C 25.20 .0028

D 45.60 .0000

A .6008 28.52 27.60 .0011

B 32.80 .0001

C 28.40 .0008
D 55.60 .0000

A .6453 32.73 30.40 .0004

B 40.40 .0000
C 40.40 .0000
D 62.40 .0000
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Table 3-1 continued

DISTRIBUTION RNG 2 2 a

2 (Alternative) SEED

A

5 XRS

3.59

XR

5.60

a

(.1, .8) .2282 .7792

3 10.00 .3505

C 10.40 .3191

D 4.40 .8832

(.1, .9) A .1262 1.19 6.40 .6693

3 3.60 .9357

C 6.00 .7399

D 6.00 .7399

(.1, 1.1) A .1142 1.16 9.20 .4190

3 7.20 .6163

C 4.00 .9114

D 14.80 .0966

(.1, 1.2) A .1868 2.95 9.60 .3838

3 8.40 .4944

C 9.20 .4190
D 17.20 .0457

(.2, .8) A .2659 4.79 12.00 .2133

B 5.60 .7792
• C 6.00 .7399

D 6.00 .7399

(.2, .9) A .1876 2.52 7.60 .5749

B 10.80 .2897

C 6.00 .7399

D 6.00 .7399

(.2, 1.1) A .1698 2.70 8.40 .4944

B 4.80 .8514

C 8.00 .5341

D 16.40 .0590

(.2, 1.2) A .2177 4.52 12.80 .1719

B 4.00 .9114

C 8.80 .4559
D 23.60 .0050

(.3, .8) A .3230 6.86 13.60 .1373

B 6.80 .6579
C 7.60 .5749
D 10.80 .2897

(.3, .9) A .2639 4.81 11.60 .2368
B 6.00 .7399
C 8.00 .5341

D 14.00 .1223
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Table 3-1 continued

DISTRIBUTION
2 (Alternative)

(.3, 1.1)

(.3, 1.2)

RNG 2 2 a

SEED 5
XPS

5.29

X
R

13.60

a

A .2389 .1373

3 7.20 .6163

C 7.20 .6163

D 21.20 .0118

A .2648 7.16 14.80 .0966

B 6.40 .6993

C 7.20 .6163

D 26.80 .0015

M = 50, RNG: A(51562, 62155) B(62155, 51562) C(50020, 11292)

D(11292, 50020)



Chapter 4

CONCLUSION

In concluding this study, two questions need to be answered. The

first question is "How well did this study accomplish its objective?".

The second question is "What direction should future research in this area

take?".

The first question can be answered by reconsidering the objective of

this study which was to develop a comparison method, use this method to

investigate the effects of varying distribution parameters, and to evaluate

the usefulness of this technique. The first two parts of this objective

have already been accomplished and the third part can be completed by a

brief review of the results of the study. The technique used in this study

to compare statistical distributions appears to have considerable usefulness

because of the consistency of results (i.e. 6 in all cases indicated

significance in the range .3 < S < .6), the ability to compare distributions

for statistical difference in terms of only their parameters (x
2
/x

1

for

exponential distributions, r* for most normal distributions), and the

relative simplicity of the method.

The reader should recognize that in the normal case, a technique

already exists to answer the question of "How different is different?"

based on the classical z-test. This technique is statistically sufficient

and is therefore more powerful than the method presented in this study.

The use of the z-test is demonstrated below for M = 50, a = .05, and

1.96 <
( U] - u

2
)//a2/50

#

(43)

u
]

- u
2

> .277 a (44)

68
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This indicates that for our investigation (a = 1) significance would be

indicated for a n-, value greater than or equal to .277, as compared to a

n, value of .60 for the index of non-congruity method.

The second question concerning the direction of future research is

easily answered. There are four readily apparent directions for future

research. They are:

1. Extension of this research in terms of additional replications

and inclusion of more mean-variance-variate comparisons for the

normal case as mentioned in Sections 2.4 and 3.4.

2. Application of the methodology used in this study to other

continuous distributions such as the Weibull, Log - Norma 1 ,
or

Gamma distribution.

3. Development of a similar methodology which can be applied to

the evaluation of statistically significant differences in

discrete distributions.

4. Application of the methodology used in this study to study

statistical differences of similar distributions which are

from different families.
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FORTRAN IV G LEVEL 21 HAIN DATE = 78094 10/03/40

0026

0027
0028
0029
0030
0031
0032
0033

DISTRIBUTION PARAMETERS,
RNG
I CARD C2E10.4.I5)

C

c

c

0001
0002

c

0003 200
0004
0005
0006

c

c

u

0007
0008

c

95

0009
c

0010
c
c

0011 .

0012
0013
0014
0015
0016
0017

c

c
ooie' 120
0019
0020
0021
0022
0023

c

0024 121
0025 93

PROGRAM TO EVALUATE "THE INDEX OF NON-CONGRUI T Y" FOR EXPONENTIAL
DISTRIBUTIONS. THIS INDEX IS BASED ON THE AMOUNT OF NON-OVERLAPPING
AREA BETWEEN TWO DISTRIBUTIONS.
VALUES TO BE SUPPLIED TO THE PROGRAM ARfc

SAMPLE SIZE, AND INITIAL VALUES FOR THE
FORMAT FOR DATA CARDS: L AMDA 1 , LAMDA2 .M

ISEED.JSEED 1 CARD (215)
MULTIPLE RUNS ARE POSSIBLE BY SUPPLYING ADDITIONAL INPUT CARDS
(TWO PER REPLICATION). PROGRAM COMPLETION IS INDICATED BY A

BLANK CARD.
DIMENSION XII 10) ,?H 10) , SAMPLI200) , FREQUO)
REAL LAMDA1,LAMDA2,NU
INITIALIZE PROGRAM PARAMETERS
X2SUM=0
F2SUM=0
DO 11 1=1,10
FREOII)=0
INPUT VALUES FOR THE PARAMETERS OF THE EXPONENTIAL DISTRIBUTIONS
AND THE SAMPLE SIZE.
READ(5,99)LAMDA1,LAKDA2,M
F0RMATI2E10.4.I5)
CHECK FOR PROGRAM COMPLETION
IFILAMDA1. EQ.O) GO TO 201
CHECK TO DETERMINE WHICH DISTRIBUTION PARAMETER IS LARGER
1FILAMDA2.LT.LAMDAI) GO TC 120
LAMDA2 IS GREATER THAN OR ECUAL TO LAMDA1. EXPLICITLY DETERMINE
DELTA, THE INDEX OF NON-CONGRUI TY
RATIC=LAM0A2/LAMDA1
DIFFL=LAMDA2-LAMDA1
T1=ALDG(RATI0)/DIFFL
Z1=-LAMDA1*T1
Z2=-LAMDA2»T1
DELTA=2*C£XPIZ1)-EXP(Z2))
GO TO 121
LAMDA1 IS GREATER THAN LAKDA2. EXPLICITLY DETERMINE DELTA, THE INDEX
CF NCN-CONGRUITY
RATIC=LAMDA1/LAMDA2
DIFFL=LAHDA1-LAMDA2
T1=AL0G(RATI0)/DIFFL
Z1=-LAMDA1»T1
Z2=-LAMDA2*T1
0ELTA=2*IEXPIZ2)-EXP(Z1 I)

OUTPUT VALUES OF M, LAMDA1, LAMDA2
WR1T£(6,98JK,LAMDA1,LAMDA2
FORMAT! 1H1 ,///,UX, 'THE SAMPLE SIZE EQU ALS' , 16 ,//, I IX, • L AM0A1 EQUAL
ILS',E12.4,//,11X,'LAKDA2 EQUALS' .E12.4)
CALCULATE THE EXPECTED VALUE FOR CELL FREQUENCIES
E1=M/10.
OETERMINE EQUAL PROBABILITY REGIONS FOR DISTRIBUTION 1 AND DETERMINE
THE CUMULATIVE PROBABILITY ASSOCIATED WITK THESE REGIONS FOR
DISTRIBUTION 2

X1(1)=-AL0G(.9)/LAMDA1
P2(1)=1-EXP(-LAMDA2«X1( 1)

)

X2SUM=X2SUM»(EI-M*IP2( 11-0) )**2
DO 1 1=2,9
XI (I )*-ALOG< l-.l*l >/LAMDAl
P2(I) = 1-EXPI-LAMDA2»XUI ) )

X2SUM=X2SUM+IEI-M»(P2(I )-P2 t 1-1 )

)

)**2



11

FORTRAN IV G LEVEL 21 MAIN DATE - 78094 10/03/40

0034 1 CONTINUE
035 X2SUM=X2SUH+IEI-M*(1-P2I9JJ 1**2

C CALCULATE THE PSEUDD CH1-SUUAKE STATISTIC

0036 X2PS=X2SUM/EI
C GENERATE RANDOM SAMPLE FRCM SECOND DISTRIBUTION

C READ RANDOM NUMBER GENERATOR SEED VALUES

0037 READl5i97) 1SEED.JSEED
0038 97 F0RMATI2I5)

C ECHO SEED VALUES
0039 WRITE16.96HSEED.JSEED
0040 96 FORMAT! IX, /////, IX, 'THE SEED VALUES FOR THIS RUN ARE « ,///,l IX, • I SE

1ED EQUALS' .I12.//.11X, • JSEED EQUALS'. 1121

C INITIALIZE RANDOM NUMBER GENERATOR
0041 CALL RSTART(ISEEO,JSEED)

C GENERATE SAMPLE
0042 DO 2 1=1.

M

0043 SAKPLt I )=REXPI1J/LA«0A2
0044 2 CONTINUE

C SORT RANDCH OBSERVATIONS INTO FREQUENCY CLASSES

0045 100 DO 3 1 = 1,

H

0046 IFlSAMPLf I 1.LE.X1 ( 1) ) GO TO 1C1

0047 1FISAHPHIJ-LE.XII2) I GO TO 102

0048 IF(SAMPL(I).LE.X1(3) J GO TO 103

0049 IFlSAMPLf I I. LE.X1I4) ) GO TO 104

0050 1FISAMPLI I I.LE.XK5) J GC TO 105
0051 • IFISAMPLU I.LE.XK6) ) GO TO 106

0052 IFISAMPLU J.LE.XK7) ) GC TO 107

0053 IFISAMPLU J. LE.X113) ) GC TO 108
0054'

.
IFISAHPL1 1 J.LE.X119) ) GC TO 109

0055 K. = 10
0056 GO TO 110
0057 101 K=l
0058 GO TO 110
0059 102 K=2
0060 GC TO 1 10

0061 103 K=3
0062 GO TO 110
0063 104 K=4
0064 GO TO 110
0065 - 105 K=5
0066 GO TO 110
067 106 K=6

0068 GO TO 110
0069 107 K=7
0070 GO TO 110
0071 108 K=3
0072 . GO TO 110
0073 109 K=9
0074 110 FRC0(K)=FRECIK)*1
0075' 3 CONTINUE

C CALCULATE THE ACTUAL CHI-SOUARE STATISTIC F CR RANDOM. SAMPLE

0076 DO 4 1 = 1 ,10
0077 F2SUM =F2SUM*FREQU)»*2
0078 4 CONTINUE
0079 X2ACT=F2SUM/E1-M
0080 NU=9.

C CALL FUNCTION TO CALCULATE "ALPHA HAT" FOR THE COMPUTED CHI-SQUARE
C VALUE
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FORTRAN IV G LEVEL 21 MAIN DATE = 76094 10/03/40

0081 AHAT=CADTR(X2ACT,NU)
C OUTPUT VALUES OF DELTA, PSEUDO CHI-SQUARE, CHI-SOUARE, AND ALPHA HAT

0082 WRITEI6.95) OCLT A, X2 PS , X2 ACT , AHAT

0083 95 FORMAT!/////, 11X, 'THE VALUE 01- THE INDEX CF NOh-CONGRUI TYt DELTA )
E

1CUALS',F12.4,//,11X, 'THE VALUE OF THE PSEUOC CHl-SUUARE STATISTIC

2ECUALS* ,F12.2,//,11X, 'THE VALUE OF THE CH1-SCUARE STATISTIC EOUALS

3',F12.2,//.11X, 'THE AREA CF THE CHI-SOUARE DISTRIBUTION TO THE RIG

4HT OF THE CH1-SCUARE STATISTIC (ALPHA HAT) EQUALS ', F12. 4)

0084 WR1TE!6,94)
0085 WP.ITE!6,92> I X 1 1 I) , 1= 1 . 1 0)

0086 KRITEI6. 91 ) I P2 ( I

)

,1=1,101
0087 WRITE (6,93) ( SAMPL! I ) , 1*1 tK)

0088 ' WRITEI6.90) IFkECl I) . 1=1. 10)

00B9 94 FORMAT!/////)
0090 93 FORMAT! '0' , "RANDOM SAMPLE ', 10F1 1 . 4)

0091. 92 FORMAT! '0'
, 'REGION BCUNOR I ES , 10F 1 1 .4

)

0092 91 FORMAT! '0'

,

'CUMULATIVE PKCB • , 10F1 1 .4

)

0093. 90 FORMAT! '0'

,

'CELL FRECUENCV t iOF 1 1 . 1)

0094 GO TO 200
0095 201 STOP
0096. END
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FORTRAN IV G LEVEL 21 CADTR DATE = 78094 10/03/40

0001 FUNCTION CADTRIX.G)

0002

0003
004

0005

0006
0007
0008
0009
0010
0011
0012
0013
0014

0015
0016
0017
0018

0019

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c
c

c

c

c

c

c

c

c

c

PURPOSE
COMPUTES PtX) = PROBABILITY THAT THE RANDOM VARIABLE U,

DISTRIBUTED ACCORDING TO THE CHI-SJUARE DISTRIBUTION WITH G

DEGREES OF FREEDOM, IS LESS THAN CR ECUAL TO X. F(G.X), TH

USAGE
PROB=CDTRIX,G>

DESCRIPTION OF PARAMETERS
X - INPUT SACLE FOR WHICH P(X) IS COMPUTED.
G - NUMBER OF DEGREES OF FREEDOM CF THE CH1-SCUARE

DISTRIBUTION. G IS A CONTINUOUS PARAMETER.

IER'- RESULTANT ERROR CODE WHERE
IER= NO ERRCR
1ER=-1 AN INPUT PARAMETER IS INVALID. X IS LESS

THAN 0.0, OR G IS LESS THEN 0.5 CR GREATER
THAN 2*10**( *5) . P AND D ARE SET TO -1.E75.

1ER-+1 INVALID OUTPUT. P IS LESS THAN ZERO OR
GREATER THAN ONE i OR SERIES FOR Tl ISEE
MATHEMATICAL DESCRIPTION) HAS FAILED TO
CONVERGE. P IS SET TO 1.E75.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIREO
DLGAH
NDTR

DOUBLE PRECISION XX , DLXX, X2 ,DLX2, GG ,G2, DLT3 .THETA ,THP1

,

lTU.SER.CCXI , FACT LOG, TE RMi GTH, A2 , A , B, C, CT 2, DT3, THPI

TEST FOR VALID INPUT DATA

lFIG-(.5-l.E-5)l 590,10,10
10 IFIG-2.E+5) 20,20,590
20 IF(X) 590,30,30

TEST FOR X NEAR 0.0

30 IF(X-l.E-8) 40,40,80
40 P=0.0

IFIG-2.) 50,60,70
50 D=l-E75

GO TO 610
60 D=0.5

GO TO 610
70 D = 0.0

GO TO 610

TEST FOR X GREATER THAN l.E*6

80 IFU-l.E + 6) 100,100,90
90 0=0.0

P=1.0
GO TO 610

SET PROGRAM PARAMETERS

100 XX=DBLEIX1

CDTR0005
CDTR0010
CDTR0015
C0TR0020
CDTR0025
ECDTR0030
CDTR0035
CDTR0040
CDTR0045
CDTR0050
CDTR0055
CDTR0060
CDTR0065
CDTR0070
CDTR0075
CDTR0080
CDTR00B5
CDTR0090
C0TR0095
CDTR0100
CDTR0105
CDTR0110
C0TR0115
CDTR0120
CDTR0125
CDTR0I30
CDTR0135
CDTR0140
CDTR0145
CDTR0150
CDTR0155
C0TR0160
CDTR0165
CDTR0170
CDTR0175
CDTR0180
CDTR0185
CDTR0190
CDTR0195
CDTR0200
CDIR0205
CDTR0210
CDTR0215
CDTR0220
CDTR0225
CDTR0230
C0TR0235
CDTR0240
CDTR0245
CDTR0250
CDTR0255
CDTR0260
C0TR0265
CDTR0270
CDTR0275
CDTR0280
CDTR0285
CDTR0290
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0020
0021
0022
0023
0024

0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035

0036
0037
oo3e
0039
0040

0041
0042

0043
0044
0045
0046
0047
004e

0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062

DLXX=DLOG(XX)
X2=XX/2.D0
DLX2=DLOG(X2»
GG=DBLE(G)
G2=GG/2.D0

TEST FOR
TEST FOR

GREATER THAN 1000.0
GREATER ThAN 2000.0

1F(G-1000.) 160,160,180
IF1X-20DC.) 190,190,170160

170 P=1.0
GO TO 610

180 A=DL0G(XX/GG)/3.D0
A=DEXPI A)
B=2.D0/(9.C0*GG)
C=(A-1.D0*B)/DSQRT(B)
SC=SNGL(C)
CALL NDTR(SC,P, DUMMY)
GO TO 490

C

c

c

COMPUTE THETA

190 K= 1DINTIG2)
THETA=G2-DFL0ATIK)
IF(THETA-l.D-6> 200,200,210

200 7HETA=0.D0
210 THP1=THETA+1.D0

SELECT METHOD OF COMPUTING Tl

IF(THETA)230,230,220
220 IFIXX-10. 00)260, 260, 320

COMPUTE Tl FOR THETA ESUALS 0.0
230 IFIX2-1.66D02) 250,240,240
240 Tl=1.0

GO TO 400
250 Tll=l.D0-DEXP(-X2)

Tl=SNGL(Tll)
GO TO 400

COMPUTE Tl FOR THETA GREATER THAN 0.0 AND
X LESS THAN OR EQUAL TO 10.0

260 SER=X2*C1.C0/THP1 -X2/ I THPl +1 .DO I

)

J = *l
CC=DFLOATU)
DO 270 IT1=3.30
XI^DFLOATt IT1)
CALL DLGAMIXI ,FAC,IOK)
TLOG= X1*DLX2-FAC-DL0G(XI-»THETA)
TERM=DEXP(TLOG)
TERM=DSIGN(TERM,CC)
SER=SER+TERM
CC— CC
IFlDAES{TERK)-l.D-9) 280,270,270

270 CONTINUE
GO TO 600

CDTR0295
CDTR0300
CDTR0305
CDTR0310
CDTR0315
CDTR0320
CDTR0325
CDTR0330
CDTR0335
CDTR0340
CDTR0 345
CDTR0350
CDTR0355
CDTR0360
CDTR0365
CDTR0370
CDTR0375
CDTR0380
CDTR0385
COTR0390
CDTR0395
CDTR0400
CDTR0405
CDTR0410
CDTR0415
CDTR0420
CDTR0425
CDTR0430
CDTR0435
CDTR0440
CDTR0445
CDTR0450
CDTR0455
CDTR0460
CDTR0465
CDTR0470
CDTR0475
CDTR0480
CDTR0485
CDTR0490
CDTR0495
CDTR0500
C0TR0505
CDTR0510
CDTR0515
CDTR0520
CDTR0525
C0TR0530
CDTR0535
CDTR0540
CDTR0545
CDTR055O
COTR0555
CDTR0560
CDTR0565
CDTR0S70
CDTR0575
CDTR0580
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0063
006<i

0065
0066
0067
0066
0069
0070
0071

0072
0073
0074
0075
0076
0077
0076
0079
0080
081

0032
0083
0084
0085
0086
0087
008S
0089
0090
0091
0092
0093

0094
0095

0096
0097
0098
0099
0100
0101
0102
0103
0104

0105
0106

280 IFtSER) 600,600,290
290 CALL DLGAHI THP1 ,G1H, IOKI

TLCG=IHETA*DLX2*DLGG<StR)-GIH
IF(TLCGU.68D02> 300,300,310

300 T1=0.0
GO TC 4 00

310 T11=0EXP(TL0G]
T1=SNGL(T11)
GO TC 400

COMPUTE Tl FOR THETA GREATER THAN 0.0 AND
X GREATER THAN 10.0 AND LESS THAN 2000.0

320 A2=0.D0
DO 340 1=1 t 25
XI = DFLOATl I )

CALL DLGAM(THP1,GTH,ICK>
T11 =-U3.D0*XX)/X1 + THP1*DL0GU3.D0*XX/X1> -GT h-DLOG ( XI )

IFITll+1.6eD02) 340,340,330
330 T11=DEXP<T11)

A2=A2+T11
340 CONT INUE

A=l.O12820 51*THETA/l5O.D0-XX/312.DO
B=DABSIA1
C= -X2+THPl*DLX2*DL0G(B)-GTH-3. 95 1243718581427
IFIC+1.68D02) 370,370,350

350 IF IA) 360,370,380
360 C=-DEXPtC)

GO TO 390
370 C=O.DO

GO TO 390
3B0 C=DEXPIC)
390 C=A2*C

T11=1.D0-C
T1=SNGLIT11)

SELECT PROPER EXPRESSION FOR P

400 IF(G-2. ) 420,410,410
410 IFIG-4.) 450,460,460

C

c
c

COMPUTE P FOR G GREATER THAN 2ERC AND LESS THAN 2.0

420 CALL CLGAMtTHPl ,GTH, IOK)
DT2= THE T A* DLXX-X2-T HP 1*. 693 1471 8055 99453 -GTH
IF(DT2+1.68D021 430,430,440

430 P=T1
GO TO 490

440 DT2=CEXP(DT2)
T2=SNGL(DT2)
P=T1*T2+T2
GO TO 490

COMPUTE P FOR G GREATER THAN OR EQUAL TO 2.0
AND LESS THAN 4.0

450 P=Tl
GO TO 490

CDTR0585
CDTR0590
CDTR0595
CDTR06CO
CDTR0605
CDTR0610
CDTR0615
CDTR0620
CDTR0625
CDTR0630
CDTR0635
CDTR0640
CDTR0645
CDTR0650
CDTR0655
CDTR0660
CDTR0665
CDTR0670
CDTR0675
CDTR0680
C0TR0685
CDTR0690
CDTR0695
CDTR0700
CDTR0705
CDTR0710
CDTR0715
CDTR0720
CDTR0725
CDTR0730
CDTR0735
CDTR0740
CDTR0745
CDTR0750
CDIR0755
CDTR0760
CDTR0765
CDTR0770
CDTR0775
CDTR0780
CDTR0785
CDTR0790
CDTR0795
CDTR0800
CDTR0805
CDTR0810
CDTR0815
CDTR0820
CDTR0825
CDTR0830
CDTR0835
CDTR0840
CDTR0845
CDTRO850
CDTR0855
CDTR0860
CDTR0865
CDTR0870
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c CDTR0875
C COMPUTE P FOR G GREATER THAN OR EQUAL TO 4.C CDTR0880
C AND LESS THAN GR ECUAL TC 1000.0 CDTR0685
C CDTR0890

0107 460 DT3=0.D0 C0TR0895
0108 00 480 13 = 2. K. CDTP.0900

0109 THPI=0FL0ATU3)»ThCTA COIRO905

0110 CALL DLGAMITHPI.GTH, IOK) COTR0910
Dili 0LT3=THPI»DLX2-DLXX-X2-GTH C0TR0915
0112 IFIDLT3*1.6BD02) 4SC,480,470 CDTR0920
0113 170 DT3=0T3OEXP!DLT3) CDTR0925
114 480 CONTINUE CDTR0930

0115 T3=SNGLiDT3) CDTR0935
0116 P=ll-T3-T3 CDTR0940

C CDTR0945
C SET ERROR INDICATOR CDTR09S0
C CDTR0955

0117 490 IF(P) 500,520,520 C0TR0960
0118 500 IFIABS! PI-l.E-7) 510,510,600 CUTR0965

0119 510 P=C.O COTR0970
0120 GO TO 610 CDTR0975

0121 520 IFII.-P1 530,550,550 C0TRO980
0122 530 IFIABSI 1.-PJ-I.E-7) 540,540,600 CDTR0985
0123 540 P"=1.0 C0TR0990
0124 GC TO 610 CDTR099S
0125 550 IF(P-l.E-e) 560,560,570 CDTR1000
0126 560 P*0.0 COTR1005
0127 GC TO 610 CDTR1010
0128 570 IFKl.O-Pl-l.E-8! 580,580.610 C0TR1015
0129 580 P«1.0 C0TR1320
0130 GO TO 610 C0TR1025
0131 590 IER—

1

COTR1030
0132 0=-l.E7S CDTR1035
0133 P=-1.E75 C0TR1040
0134

'

GO TC 620 COTR1045
0135 600 !ER=+1 CDTR1050
0136 P= 1.E75 CDTR1055
0137 GO TO 620 C0TR1060
0138 610 IER=0 CDTR1065
0139 620 CADTR=1.0-P CDTR1070
0140 IF11ER.EG. 11PRINT 910 CDTR1075
0141 910 FORMAT! '0' , 10X, 'FAILURE TC CONVERGE IN X-SO FUNCTION") CDTR1080
0142 1FI IER.EC.-l IPR1NT 911 CDTR1085
0143 911 FORMAT! ' 0<

, 10X,» INVALID INPUT TO X-SQ FUNCTION') CDTR1090
0144 RETURN .

C0TR1095
0145 END CDTR110D
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nnn . SUBROUTINE NDTRIX.PiD) CDTR1110

0002 AX=ABStX> ,
CDTR1U5

°°°, 1=1. 0/(1. 0«0.2316M9»AX> CDTR1120

°°° ^•oT."uUi!3302

X
7,
2
;Til.82125*»-T.l-T8M76J .T-0.356563B»*T* CDTR1125

0005
to.31938151 CDTR1135

nnn . IF(X.LT.O.O) P=L0-P C0TR1140
°°07 «TURN CDTR1145

0008 END
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hain " DATE »= 7B094 10/00/33
FORTRAN IV G LEVEL 21 KMN

\ VALUE^^E i:%l\lir
U
V»rl*0^ ARE DISTRIBUTION PARAMETERS.

C SAMPLE SIZE, AND INITIAL VALUES FOR THE RNG

r FORMAT FOR DATA CARDS: ..««» , m
C KJI.SIGKA1.MU2.S.GHA2.M 1 CARD 4E10.4.I51

r KlllTIPLE RUNS ARE POSSIBLE BY SUPPLYING ADDITIONAL INPUT CARDS

C (TWO PER REPLICATION). PROGRAM COMPLETION IS INDICATED BY A

0001
°

DIMENSION
D
il(10).P2(10..SAMPL 1 2O0).FP.EQ.10).22PS(10)

0002 REAL MU1.MU2.NU

C INITIALIZE PROGRAM PARAMETERS

0003
" 300 X2SUM=0.

0004 F2SOM = 0.

0005 DO ll I^l' 10

0006
C

" INPUt'vALUES FOR THE PARAMETERS OF THE NORMAL DISTRIBUTIONS AND-

C THE SAMPLE SUE
0007 READ 99,HU1,S)GMA1,MU2,SIGMA2 ,M

0008 99 FCRHATI4E10.4, 15)

C CHECK FOR PROGRAM COMPLETION

OOQO IF !MU1.EQ.0..AND.S1GMA1.EC.0.) GO TO 303

c ECHO PARAMETER VALUES AND SAMPLE SIZE

SB rORMA!nH 1 \//:ilx:"M EirAND
I

STANDARD DEVIATE OF DISTRIBUTION f
0011 "/^ "./J'.UX.'hIan AND STANDARD DEVIATION OF DISTRIBUTION 2 . 2E

1

22.4,//, 11X, -THE SAMPLE SIZE EQUALS'. 18)

C DETERMINE IF DISTRIBUTIONS ARE OVERLAPPING

0012 IFIHU2.LT. MUD GO TO 21

llll IF ( MU 1*5.»SJGHA1.LT.MU2-5.*S1&MA2) GO TO 100

0014 GO TO 22

0015 21 1F1MU2+5.»SICMA2.LT.MU1-5.*SIGMA1) GO TO 100

0016
C
" DEURMNE THE NUMBER OF INTERSECTION POINTS USING THE QUADRATIC

C EOUATION

0017 1FIS1GMA1.ES. S1GMA2) GO TO 1010

00J8 VAR2=SIGMA2*SIGMA2
0019 VAR]=SIGMA1»SIGHA1

0020 RATI0=SIGKA1/SIGKA2
0021 SQMU1=MU1*MU1

0022 S0KU2=MU2*MU2
0023 VXM21=VAR2»HU1
0024 VXM12=VAR1*MU2
025 VXMDIF=VXM21-VXM12

0026 VXMD2=VXMDIF*VXMDIF
0027 FRSFAC=4.*VXMD2
0028 VARDIF = VAR2-VAP.l

0029 VXS21=VAR2*SQMU1
0030 VXS12=VAR1*SQMU2
0Q31 XLNFAC-2.*VARl*VAR2»ALOGtRATIO)

0032 SNDFAC=4.*VARD1F*( VXS21-VXS 12*XLNFAC)

0033 RAD=FRSFAC-SNDFAC
0034

c THE
R
D?STR?BUT?ONS°ARE NON-OVERLAPPING. THERE ARE NO INTERSECTION

C POINTS
0035 100 WRITEI6.900)
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0036 900 FORMAT!//, 11X. 'DISTRIBUTIONS ARE NON-OVERLAPPING. OELTA EQUALS 2'J

0037 READ 97 , IS EED, JSEfcD

0038 GO TO 300
C THERE IS ONE INTERSECTION PCINT

0039 1010 XX=IKUl+MU2)/2.
0040 GO TO 1011

00<.l 101 XX=(VXM2l-VXM12l/VARDIF
0042 1011 Z1=!XX-MU1)/S1GMAI
0043 Z2=(XX-MU2) /SIGHA2
0044 CALL NDTRIZ1,F1, D>

0045 CALL NDTR(Z2,F2,D)
0046 DELTA=2.»AQSIF1-F2J
0047 IND=1
0048 GO TO 103

C THERE ARE TWO INTERSECTION POINTS

0049 102 XX=( VXM21-VXM12I/VARDIF
0050 RADPRT=SCRT(RAO) /I2.*VARDIF)

0051 XX1=XX+RADPRT
0052 XX2=XX-RADPRT
0053 IFIXX1.LE.XX2) GO TO 1021

0054 C1»=XX2

0055 C2=XX1
0056 GO TO 1022
0057 1021 C1=XX1
0058 C2=XX2
0059 1022 Z1C1=(C1-MUU/SIGMA1
0060 Z2C1=IC1-MU2)/S1GHA2
0061 Z1C2=IC2-KU1)/SIGMA1
0062 Z2C2=tC2-MU2)/SIGMA2
0063 CALL NDTRI Z1C1 ,FIC1 ,D)

0064 CALL NDTRIZ1C2,F1C2,D)
0065 CALL NDTR(Z2C1,F2C1,D)
0066 CALL NDTR!Z2C2,F2C2,D>
0067 F2DIF=F2C2-F2C1
0068 F1D1F=F1C2-F1C1
0069 DELTA=2.*ABS(F2DIF-F1DIF)

C DETERMINE VALUES FOR CLASS EOUNDRIES FOR EQUAL PROBABILITY REGIONS

C OF MODEL DISTRIBUTION (DISTRIBUTION 1)

0071 103 DO 1 I=lr9
0072 P=.1*I
0073 CALL NDTRI(P,Z,D,IER)
0074 1 XI t I )=MU1*S IGMA1*Z

C DETERMINE CUMULATIVE PROBABILITIES FOR CLASS BCUNDRIES FOR ALTERNATIVE

C DISTRIBUTION (DISTRIBUTION 2)

0075 DO 2 I=li9
0076 Z2PS{ I)=(Xlll I-MU2I/SIGMA2
0077 2 CALL NDTR ( Z2PS ( I ) . P2 ( I > .D

J

C CALCULATE THE EXPECTED VALUE FOR CELL FRECUENCIES

0078 EI = M/10.
C CALCULATE THE PSEUDO CHI-SQUARE STATISTIC

0079 X2SUM=(EI-M*P2ll)l**2
0080 DO 3 1=2,9
O0B1 3 X2SUM=X2SUMMEI-H*(P2(1 )- P2 ( 1-1 ) ) )**2

0082 X2PS=X2SUM+(EI-M*(1.-P2(9)> )**2

0083 X2PS=X2PS/EI
C READ RANDOM NUMBER GENERATOR SEED VALUES

0084 READ(5,97) ISEED.JSEED
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0085

0086
0087

OC88

0089
0090

0091
0092
0093
0094
095

0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120

0121
0122
0123
0124

0125

0126
0127

0128
0129

97 F0RMATI2I5)
C ECHO SEED VALUES

KRITE16, 961 ISEED.JSEED ,„..„
96 FORMATl/////.llX,'THE SEED VALUES FUR THIS RUN ARE • ,/// , 21 X, ' I SEED

1 EQUALS' .112,//. 21X,'JSEED EQUALS'. 112)

C INITIALIZE RANDOM NUMBER GENERATOR
CALL RSTARTt ISEED.JSEED)

C GENERATE RANDOM SAMPLE FROM SECOND DISTRIBUTION

DO 4 1=1. H
4 SAKPLU )=KU2*SIGMA2*RN0R( II

C SORT RANDOM OBSERVATIONS INTO FREQUENCY CLASSES

DO 5 1=1,

M

IF1SAMPLII ) .LE.XK51 ) GO TO 201

IFISAMPLll I .LE.X1I6) ) GO TO 206
IFISAMPLll I .LE.XU71) GO TO 207
IF(SAMPL( I) .LE.X1I8)) GC TO 208
1FISAKPLU1.LE.X119)) GO TC 209
K=10
GO TO 5

201 IFISAHPLU 1.GT.XU4) ) GO TO 205
IFtSAHPLl I 1 .GT.X1 (3) 1 GO TO 204
IF1SAMPLI I 1.GT.X112) ) GO TO 203
IFISAMPLll ) .GT.XK1 ) 1 GO 70 202
K=l
GC TO 5

202 K=2
GO TO 5

203 K=3
GO TO 5

204 K=4
GO TO 5

205 K=5
GO TO 5

206 K=6
GO TO 5

207 K=7
GO TO 5

208 K=8
GO TO 5

209 K=9
5 FREQ(K)=FRECIK)+1.

C CALCULATE THE ACTUAL CHI-SQUARE STATISTIC FOR RANDOM SAMPLE

DO 6 1=1,10
6 F2SUM=F2SUM + FRE01T)**2

X2ACT=F2SUM/EI-M
NU=9.

C CALCULATE "ALPHA HAT" FOR THE COMPUTED CHI-SQUARE VALUE

AHAT=CADTR(X2ACT,NU)
C OUTPUT VALUES OF DELTA, PSEUOO CHI-SCUARE, CHI-SQUARE, AND ALPHA HAT

WRIT EI 6, 95) DELTA.X2PS.X2ACT.AHAT
FORMAT! /////, 11X. 'THE VALUE OF THE INDEX CF NCN-CCNGRUI T Y ( DELTA) E

10UALS',F12.4,//,UX, 'THE VALUE OF THE PSEUOO Chl-SJUARE STATISTIC

2EQUALS' ,F12.2,//.11X,'THE VALUE OF THE CHI-SCUARE STATISTIC EQUALS
3',F12.2,//,11X.'THE AREA OF THE CHI-SQUARE DISTRIBUTION TO THE RIG

4HT OF THE CHI-SQUARE STATISTIC (ALPHA HAT) EQUALS '. F 12. 4)

OUTPUT VALUES Or INTERSECTION POINT OR PCINTS
WRITEI6.94)
IF(IND.EO.l) GO TO 301

95
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0130
0131

0132
0133
0134

0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147

IV G LEVEL 21 MMN DATE «= 78094 10/00/33

920 FORMATUX^THERe'aRE TWO POINTS OF I NTERSECT I ON. THEY ARE',F10.2.5

IX, 'AND' .F10.2)
GO TO 302

9^0 FCRMATU
9
x!°THERE IS ONE PO!NT OF I NT ERS EOT I ON. IT 1S-.F10.2)

OUTPUT VALUES OF XI. P2 , SAKPL, AND FREQ

302 WRITEI6.94)
KRITE16.92) I XI ( I ) . I = 1 .9)

WRITE(6,91)IP2< 11,1 = 1.9)

WRITE {6 ,931 ISAMPLII) , 1=1. K)

WRITE (6, 90) I FREQ I I) ,1 = 1.10)

94 FCRMATt/////)
93 FORHATI '0'

,

'RANDOM SAMPLE ', 10F1 1 .4

1

92 FORMAT I '0'
, 'REGION BCUN3R IE S

' ,9F 1 1 . 4)

91 FORMAT I '0' ,'CUMULAT 1VE PRC3 • , 9F 11 . 4

)

90 FORMAT! '0' .'CELL FREQUENCY- . 10F 11 . I )

GO TO 300
303 STOP

END
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0001 SUBROUTINE NOTR I ( P , X . D . IE

)

0002 IE=0
0003 X=.99999E*74
0004 D=X
0005 IF(P>1,4,2
0C06 1 IE=-1
0007 GO TO 12

0008 2 IFIP-1.0I 7,5,1
0009 4 X=-.99999E+74
0010 5 0=0.0
0011 GO TO 12

0012 7 D=P
0013 IFID-0.5) 9,9,8
0014 6 D=1.0-D
0015 9 T2=AL0G( 1.0/10*01

1

0017 X=T-I2. 515 517+0.802 353*T*0.010328*T2)/( 1 .0+ 1.4 327 83*T *0 . 1B9269*T2 +

10.001300*7»T2I
0018 1FIP-0.5) 10,10,11
0019 10 X=-X
0020 11 D=0.3989423*EXPt-X*X/2.0)
0021 12 RETURN
0022 END
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0002

0003
004

0005

0006
0007
0008
0009
0010
0011
0012
0013
0014

0015
0016
0017
0018

0019

C

c

c

c

c
c

c

c •

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c
c

c

c

c
c

FUNCTION CADTRIX.G)

PURPOSE
COMPUTES PtX) PROBABILITY THAT THE RANCCM VARIABLE U.

C0TR0005
CDTR001O
CDTR001S
COTR0020

ACCORDING TO THE CHI-SJUARE DISTRIBUTION WITH G CDTRO025

DEGREES"OF FREeSSm! IS LESS THAN CR ECUAL TO X. F.G.X). THECOTROMO

USAGE
PRCB=CDTRIX,GI

IER=*1

DESCRIPTION OF PARAMETERS
X - INPUT SACLE FOP. WHICH PtX) IS COMPUTED.

G - NUMBER OF DEGREES OF FREEDOM CF THE CHI-SCJARE

DISTRIBUTION. G IS A CONTINUOUS PARAMETER.

IER'- RESULTANT ERROR CODE WHERE

IER= NO EP.RCR

IER=-1 AN INPUT PARAMETER IS INVALID. X IS LESS

THAN 0.0, OR G IS LESS THEN 0.5 CR GREATER

THAN 2»10**l+5). P AND D ARE SET TC -1.E75.

INVALID OUTPUT. P IS LESS THAN ZERO OR

GREATER THAN ONE, OR SERIES FOR Tl ISEE

MATHEMATICAL DESCRIPTION) HAS FAILED TO

CONVERGE. P IS SET TO 1.E75.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED

DLGAM
NDTR

DOUBLE PRECISION XX , DLXX, X2 , DLX2.GG ,G2 , DLT3 .THETA ,THP1

,

1T11,SER,CC,XI,FAC,TL0G,TERM,GTH,A2,A,B,C,CT2,DT3,THPI

TEST FOR VALID INPUT DATA

IF(G-(.5-l.E-5)) 590,10,10
10 IF(G-2.E+5) 20,20,590
20 1F1X) 590,30,30

TEST FOR X NEAR 0.0

30 IFCX-l.E-8) 40,40,80
40 P = 0.0

IFIG-2.) 50,60,70
50 0=1. E75

GO TO 610
60 D=0.5

GO TO 610
70 D=0.0

GO TO 610

TEST FOR X GREATER THAN l.E+6

80 1F(X-1.E*6) 100,100,90
90 0=0.0

P-1.0
GO TO 610

SET PROGRAM PARAMETERS

100 XX=DBLEIX)

CDTR0040
CDTR0045
CDTR0050
CDTR0055
CDTR0060
CDTR0065
CDTR0070
CDTR0075
CDTR0080
CDTR0085
CDTR0090
CDTR0095
CDTR0100
CDTR0105
CDTR0110
CDTR0115
CDTR0I20
CDTR0125
CDTR0130
COTR0135
CDTR0140
CDTR0145
CDTR0150
CDTR0155
CDTR0160
CDTR0165
CDTR0170
CDTR0175
CDTR0180
CDTR0185
CDTR0190
CDTR0195
CDTR0200
CDTR0205
C0TR0210
CDTR0215
CDTR0220
CDTR0225
CDTR0230
CDTR0235
CDTR0240
CDTR0245
COTR0250
CDTR0255
CDTR0260
CDTR0265
CDTR0270
CDTR0275
CDTR0280
CDTR0285
CDTR0290
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0020
0021
0022
0023
002*.

0025
0026
0027
002B
0029
0030
0031
0032
0033
0034
0035

0036
0037
0038
0039
0040

0041
0042

0043
044

0045
0046
0047
0048

0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062

C

c

c

c

DLXX=DLOGlXX>
X2=XX/2.D0
DLX2=DLCG(X2>
GG=DBLE(G)
G2=GG/2.D0

TEST FOR G GREATER THAN 1000.0

TEST FOR X GREATER ThAN 2000.0

IF<G-1000.) 160.160,180
160 IFIX-2000.) 190,190.170
170 P=1.0

GO TO 610
180 A=DL0G<XX/GG)/3.D0

A=DEXPIA)
B=2.D0/(9.C0*GG)
C=IA-1.D0«-D)/DSQRT(B)
SC=SNGL(C)
CALL NDTR(SC,P, DUMMY)
GO TO 490

COMPUTE THETA

190 K= IDINTIG2)
THETA=G2-DFL0AT(K)
IFITHETA-l.D-8) 200,200,210

200 THETA=0.D0
210 THP1=THETA+1.D0

SELECT METHOD OF COMPUTING Tl

IF(THETAJ23C,230,220
IFUX-1 0.00)260, 260, 320

E Tl FOR THETA EOUALS 0.0
IFIX2-1.68D02) 250,240,240
Tl=1.0
GO TC 400
Tll=l.D0-DEXPt-X2)
Tl=SNGUTll)
GO TO 400

COMPUTE Tl FOR THETA GREATER THAN 0.0 AND

X LESS THAN OR EQUAL TO 10.0

260 SER=X2*(1.D0/THP1 -X2/( THP1 *1 .DO)

)

J = +l
CC=DFLOAT( J)
DO 270 IT1=3,30
XI=DFLOATC 1T1)
CALL DLGAM(XI,FAC,ICK)
TLOG= XI»0LX2-FAC-DL0G(XI*THETA)
TERM=DEXP(TLOG)
TERM=DSIGN(TERM,CC)
SER=SER+TERM
CC=-CC
IFlDAES(TERM)-I.D-9) 28 0,270,270

270 CONTINUE
GO TO 600

C

c

c

220
COKPUT

230
240

250

CDTR0295
CDTR0300
CDTR0305
CDTR0310
CDTR0315
C0TR0320
CDTR0325
CDTR0330
C0TR0335
CDTR0340
CDTR0 345
CDTRO350
CDTR0355
CDTR0360
CDTR0365
CDTR0370
CDTR0375
CDTR0380
CDTR0385
COTR0390
CDTR0395
CDTR0400
CDTR0405
CDTR0410
CDTR0415
CD7R0420
CDTR0425
CDTR0430
CDTR0435
CDTR0440
C0TR0445
CDTR0450
CDTR0455
CDTR0460
CDTR0465
CDTR0470
CDTR0475
CDTR0480
CDTR0485
CDTR0490
CD7R0495
CDTR0500
CDTR0505
CDTR0510
C0TR0515
CDTR0520
CDTR0525
CDTR0530
CDTR0535
CDTR0540
C0TR0545
CDTR0550
CDTR0555
CDTR0560
CDTR0565
CDTR0570
CDTR0575
CDTR0580
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C
C
C
c

CADTR DATE 78094 10/03/40

0107
oioe
0109
0110
0111
0112
0112
Oil*
0115
0116

0117
one
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145

COMPUTE P FOR G GREATER THAN OR EUUAL TO 4.C

ANO LESS THAN OR ECUAL TO 1000.0

460 DT3=0.D0
00 480 13=2,

K

THP1=DFL0ATI 13>*THETA
CALL DLGAMtTHPI.GTH, 1CK)
DLT3=THPI»0LX2-CLXX-X2-GTH
1F(DLT3*1. 68002) 460i460,47C

470 DT3=DT3 + DEXP(DLT3)
480 CONTINUE

T3=SNGL(DT3!
P=T1-T3-T3

SET ERROR INDICATOR

490 IFCP) 500, 520, 520

500 IFUBSIP1-I-E-7) 510,510,600

510 P=0.0
GO TC 610

520 lFtl.-P) 530,550,550
530 1FIABS! 1.-PJ-1-E-71 540,540,600
540 P=1.0

GO TO 610
550 IFlP-l.E-e) 560,560,570
560 P=0.0

GO TO 610
570 IFK1.0-PI-1.E-6! 580,580,610
560 P=1.0

GO TO 610
590 IER=-1

D=-1.E75
P=-1.E75
GO TO 620

600 1ER=+1
P= 1.E75
GO TO 620

610 IER=0
620 CADTR=1.0-P

IF ( I ER. EC. DPR INT 910
910 FORMAT! '0' ,10X, 'FAILURE TO CONVERGE IN X-SO FUNCTION')

IFIIER.EC.-1 1PR1NT 911

911 FORMAT! '0' ,10X, 'INVALID INPUT TO X-SQ FUNCTION')

RETURN .

END

CDTR0875
CDTR0880
CDTR0885
CDTR0890
CDTR0895
CDTR0900
COTR0905
CDTR0910
CDTR0915
COTR0920
CDTR0925
CDTR0930
CDTR0935
CDTR0940
CDTR0945
CDTR0950
CDTR0955
CDTR0960
CDTR0965
CDTR0970
CDTR0975
CDTR0980
CDTR0985
CDTR0990
CDTR0995
CDTR1000
CDTR1005
CDTR1010
CDTR1015
CDTR1020
CDTR1025
CDTR1030
CDTR1035
CDTR1040
CDTR1045
C0TR1O50
CDTR1055
CDTR1060
CDTR1065
CDTR1070
CDTR1075
CDTR1080
CDTR1085
CDTR1090
CDTR1095
CDTR1100
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FORTRAN IV G LEVEL 21 NDTR DATE = 78094 10/03/40

0001 SUBROUTINE NDTRCX.P.D) ££!5H?5!
0002 AX=ABSIX) ""
0003 T=l. 0/(1. 0*0. 2316419*AX) 1=,,,
0004 D=0.3989423*EXP(-X*X/2.0) CDTR1120

0005 p=l. 0-0*1 »( UU.330274*r-l. 821256 1 •1*1.781478 ) »T-0. 3S6563BJ *T* CDTR112 5

JO. 3193815) CDTR1130

0006 lFiX.LT.0.01 P=1.0-P \ PJR1
135

0007 RETURN ""
0008 END CDTR1145



90

OATE=7809< I0/O3MO

FORTRAN IV G LEVEL Z\ CDTR1105

SUOROUTINE NOTR(X.P.D) CDTR1110
OOOl *x-AeS X) CDTR1115
° 002 "J o/(U 0*0. 2316<.19*AX) CDTR1120

SK ni-^un-"H;?- 1 .a 2i»-w.mua ) ,-o.35^33 1 M. gmi»
0005

io! 31938151 CDTR1135

IFtX.Ll.O.OJ P=1.0-P COTRH'-O
0006

RETURN CDTRU45
ooov ,E;
0008 END
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This thesis studies differences between statistical distributions of

the same family. In particular it studies members of the exponential and

normal families of statistical distributions. In theory two distributions

are the same only if their probability density functions are identical

(which implies that their parameters are identical also). However, in

practical situations, two distributions which have closely similar probabil-

ity density functions may produce random samples of small size which are

indistinguishable from one another. This thesis is concerned with studying

this situation in an attempt to better understand the question of "How

different is different?" in relation to differences in statistical distri-

butions from the same family.

The methodology used to study the difference between a pair of statists

cal distributions from the same family consists of a number of steps. The

first step in the comparison procedure consists of determining the amount

of non-overlapping area bounded by the probability density functions of the

two distributions being compared. The second step consists of drawing a

"perfect" sample from one distribution and comparing it with the other

distribution. The third step consists of drawing a random sample from one

distribution and comparing it with the other distribution. The final step

consists of calculating certain indices from the parameters of the distri-

butions and relating these indices to the other comparison results.

Results of the comparison procedure for a sample size of 50 indicate

that in both the exponential case and the normal case statistical signifi-

cant differences at the .05 level would be indicated for amounts of non-

overlapping area in excess of a threshhold value occurring somewhere in the

region of .3 to .6. In addition to this there appears to be strong

relationships between the indices derived from the parameters of the

distributions being compared and the various other comparison indices.



These strong relationships would allow the comparison of statistical

distributions solely on the basis of their parameters without requiring

the use of sampling.

Special topics covered in the study which might be of interest to

other researchers are the use of the McGill Random Number Generator devel-

oped by members of the School of Computer Science of McGill University and

the suggestions for further research in this area.


