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Abstract

Imaging the interaction of molecular ion beams with ultrafast intense laser fields is a

very powerful method to understand the fragmentation dynamics of molecules. Femtosec-

ond laser pulses with different wavelengths and intensities are applied to dissociate and

ionize molecular ions, and each resulting fragmentation channel can be studied separately

by implementing a coincidence three-dimensional (3D) momentum imaging method.

The work presented in this master’s report can be separated into two parts. First, the

interaction between molecular ion beams and femtosecond laser pulses, in particular, the

dissociation of CO+ into C++O, is studied. For that purpose, measurements are conducted

at different laser intensities and wavelengths to investigate the possible pathways of dissocia-

tion into C++O. The study reveals that CO+ starts to dissociate from the quartet electronic

state at low laser intensities. Higher laser intensity measurements, in which a larger number

of photons can be absorbed by the molecule, show that the doublet electronic states with

deeper potential wells, e.g. A 2Π, contribute to the dissociation of the molecule.

In addition, the three-body fragmentation of CO+
2 into C++O++O+ is studied, and

two breakup scenarios are separated using the angle between the sum and difference of the

momentum vectors of two O+ fragments.

In the second part, improvements in experimental techniques are discussed. Development

of a reflective telescope setup intended to increase the conversion efficiency of ultraviolet

(UV) laser pulse generation is described, and the setup is used in the studies of CO+ dissoci-

ation described in this report. The other technical study presented here is the measurement

of the position dependence of timing signals picked off of a microchannel plate (MCP) sur-

face. The experimental method is presented and significant time spread over the surface of

the MCP detector is reported [1].
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Chapter 1

Introduction

Over the scope of the last century, studies on light-matter interactions have led to an

understanding of structures and properties of atoms and molecules. Advances in ultrafast

laser technology have made possible the study of atomic and molecular dynamics through

interaction with intense laser pulses [2, 3]. The key idea behind using ultrashort laser

pulses is to reach the nuclear (10−15 seconds: femtosecond) and electronic (10−18 seconds:

attosecond) motion time scales in molecules. The intensities achieved by focused laser pulses

can be comparable to electronic binding energies, and electrons in atoms and molecules can

thus be removed by such laser pulses. As compared to atoms, tracing dynamics in diatomic

and polyatomic molecules with strong laser pulses provides richer knowledge due to their

complex structure and additional degrees of freedom, e.g. vibration and rotation. By

examining the interactions of laser pulses with diatomic and polyatomic molecules, inherent

properties of the molecules can be revealed.

In addition to advances in laser technology, molecular imaging techniques are also im-

portant in studying molecules. Many imaging methods, e.g. two-dimensional momentum

imaging [4], coincidence three-dimensional (3D) momentum imaging [5, 6], cold-target recoil

ion momentum spectroscopy (COLTRIMS) [7], and velocity-map imaging (VMI) [8], have

been developed to study the interaction between untrafast intense laser pulses and molecular

targets in the gas phase and molecular ion beam targets.
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1.1 Our research focus

In our group, research is mainly focused on the interaction between femtosecond laser pulses

and molecular-ion beams. Investigations on dissociation and ionization dynamics of diatomic

molecular ion beam targets ranging from the benchmark H+
2 [5] ion to more complex systems,

such as O+
2 [9, 10], CO+ [11], N+

2 [12], and ND+ [13], have previously taken place. For

polyatomic molecules, we have studied the simplest triatomic system H+
3 and its isotopes [14–

18].

Using a previously developed 3D coincidence momentum imaging method in our group,

in this master’s work I studied the dissociation of CO+ into C++O employing intense fem-

tosecond laser pulses with wavelengths centered at 786 nm and 393 nm. The main goal

behind the study was to understand the underlying fragmentation mechanism and to find

possible dissociation pathways. In another study, preliminary results on the dissociation

of triatomic CO+
2 ions are presented, and the study is mainly focused on the C++O++O+

breakup channel. An analysis method is introduced to separate symmetric (C-O bonds break

symmetrically) and asymmetric (C-O bonds break asymmetrically) fragmentation events.

As examples of technical improvements of our experimental methods, a set of optical

reflective telescopes for increasing the conversion efficiency of ultraviolet (UV) laser pulse

generation is introduced, and the resulting high intensity laser pulses centered at 393 nm are

used in the study of CO+ dissociation. In addition, we studied the position dependence of

timing signals picked off a large, e.g. D=80 mm, MCP detector. The results show significant

time spread over the surface of the MCP, and our publication [1], which also describes the

method used in this study, is included in Section 2.5.1.

2



Chapter 2

Experimental method and setup

2.1 Introduction

In the atomic, molecular and optical (AMO) science field, imaging the fragmentation pro-

cesses of atoms and molecules is an important method for understanding laser-matter inter-

actions. Coincidence 3D momentum imaging is one of the experimental techniques used to

study molecular breakup dynamics [5, 9, 11, 12, 14, 16, 17, 19]. The experimental apparatus

used in this technique was developed previously in professor Ben-Itzhak’s group [5, 6, 20].

In the next section of this chapter, a brief review of the coincidence 3D momentum imaging

method is given. Section 2.3 introduces a home-built reflective telescope that is used to (1)

improve the conversion efficiency of 2nd and 3rd harmonic generation in non-linear processes

in crystals and (2) to expand the harmonic beam size in order to achieve tighter focusing.

Section 2.4 explains the method that is used to analyze three-body fragmentation channels.

In the final Section 2.5, we introduce our published work on the position dependence of time

signals picked off a microchannel plate detector [1].

2.2 Coincidence 3D momentum imaging

In the coincidence 3D momentum imaging technique, the major steps in an experiment are

as follows: (1) generate the ions of interest in an electron cyclotron resonance (ECR) ion

source, accelerate the ions and use ion optics to tune a collimated ion beam; (2) align a
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laser beam and characterize the laser pulses; (3) cross the ion beam with the laser beam;

(4) use the coincidence 3D momentum imaging setup shown in Figure 2.1 to measure the

fragments. Comprehensive descriptions of the coincidence 3D momentum imaging technique

and measurements can be found, for example, in references [20–23].

Figure 2.1: Schematic of the coincidence 3D momentum imaging setup used in the studies
presented in this report

2.2.1 Generating an ion beam

Generating an ion beam is the starting point of the experiment. Usually, a specific molecular

gas is continuously leaked into the ECR source which produces ions (both atomic and molec-

ular) through fast electron impact ionization. This process involves a vertical transition from

the initial neutral molecule to the molecular ion, and thus the vibrational population of the

ions approximately follows the Franck-Condon distribution [24, 25]. By applying an electric

field to accelerate the ions in the source, an ion beam with an energy range of 5-28 keV can

be produced.

Along the ion beam path, an analyzing magnet and 4-jaw slits are implemented to

select an ion beam of interest from among all the ion beams emerging from the source.

4



Faraday cups are installed at four different places along the beamline to monitor the ion

beam current. Two electrostatic quadrupole lenses are used to collimate the ion beam, and

deflectors in both horizontal and vertical directions are applied to point the ion beam in a

certain direction. The final ion beam size is about 0.8×0.8 mm2. More details of the ion

beamline can be found in the PhD theses of previous group members [11, 20–22]. Finally,

the ion beam is collected in the last Farady cup (shown in Figure 2.1) in order to protect

the detector from being damaged and to continuously monitor and record the ion current

during the measurements in order to normalize experimental data sets.

2.2.2 Laser beam alignment and characterization

Ultrafast laser pulses are supplied by laser facilities in the James R. Macdonald Laboratory.

Two laser systems, namely the Kansas Light Source (KLS) and PULSAR are used for the

work presented in this report. Both of the systems are based on a Ti:Sapphire oscillator and

a Ti:Sapphire multipass amplifier. The KLS generates linearly s-polarized 2 mJ laser pulses

with a duration of 25-30 fs at around 780 nm central wavelength and a repetition rate of

2 kHz. PULSAR generates linearly p-polarized 2 mJ laser pulses with 21 fs pulse duration

at a 10 kHz repetition rate, and the central wavelength is about 786 nm. Laser beams are

transported to different experimental stations using flat reflective mirrors.

When laser pulses travel through air, there will be about 22 fs2 group delay dispersion

introduced into the pulse per meter of air, which will result in broadening of the laser pulse

duration. In order to obtain Fourier transform limited (FTL) laser pulses at the interaction

region, the grating position in the KLS or PULSAR laser system has to be adjusted to

compensate for the additional chirp introduced through air travel as well as the chirp gained

in any optical element in the laser path to the target.

A spectrometer is used to measure the wavelength distribution of the laser pulses and

an SHG-FROG [26, 27] is used to measure the laser pulse duration. A power meter is used

to measure the average laser power, and a CCD camera is employed in order to image the
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laser focal size. By using the measured laser power, laser pulse duration and the focal spot

size, we calculated the laser peak intensity using Equation 2.4. See more details on laser

beam characterization in reference [21].

2.2.3 Crossing the ion beam with the laser beam

Figure 2.2: Schematic figure of the ion beam and laser beam crossing

In order to study laser-ion interactions, the ultrafast laser beam is focused onto the

ion beam using an f=203 mm off-axis parabolic mirror [see Figure 2.2]. The parabolic

mirror is mounted on a five-axis micrometer-driven stage where the mirror can be moved

linearly in the x and y directions and rotated about the axes as shown by the arrows a, b

and c in Figure 2.2. Then, the whole stage can be shifted in the z direction to move the

focus of the laser beam relative to the ion beam axis. A static electric field is applied by

a longitudinal spectrometer in order to separate ionic and neutral fragments by TOF. The

fragments produced in the interaction region are detected by a multi-hit detector consisting

of a multichannel plate and a delay-line anode and placed at the end of the apparatus.

6



The efficiency of detecting a fragment depends on the impact energy to some level. Hence,

it’s important to choose a proper ion beam energy together with the spectrometer voltage

in order to detect fragments efficiently. However, the choice of ion beam energy is often

a compromise between having reasonable fragment detection efficiency and obtaining high

energy resolution for fragmentation channels.

2.2.4 Measuring fragmentation channels

All the fragments resulting from the interaction are detected in coincidence by a time- and

position-sensitive detector [28]. Particular fragmentation channels are separated using a

coincidence TOF map. All measurements are done in event mode, which means that the

position and time information for each particle hitting the detector are recorded for each

laser pulse. Using the time and position information for each fragment in a particular

channel, the momentum of each fragment, the angular distributions between momentum

vectors and laser polarization as well as the kinetic energy release of the channel can be

calculated.

2.3 Reflective telescope

There are several experimental control parameters such as laser wavelength, pulse duration,

laser intensity, etc. that can be modified in the experiment to help understand the frag-

mentation dynamics of molecules in a laser field. The fundamental infrared (IR) laser with

790 nm wavelength can be converted to a second harmonic (SH) laser beam with 395 nm

and a third harmonic (TH) laser beam with 263 nm wavelength by using the sum frequency

generation process [29]. Beta Barium Borate (BBO) crystals [30] are commonly used to

generate second and third harmonic laser pulses. The details of SH and TH generation

using BBO crystals are described, for example, in Mohammed Zohrabi’s PhD thesis [21].

In this section, we focus on a method that allows us to increase the efficiency of harmonic

beam generation as well as to increase the laser intensity of the harmonics.
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Typically, the size of BBO crystals used in our lab to generate second harmonics is

smaller than the size of the laser beam, so a collimated IR beam has to be shrunk in size

in order to fully go through a BBO crystal. Another advantage of shrinking the IR beam

size is that by increasing the intensity of the IR beam on the BBO crystal surface, a higher

conversion rate of harmonic generation can be achieved. Moreover, one possible way to

achieve high laser intensity is to expand the size of the SH beam. For this purpose, we

developed two telescopes for shrinking the IR beam size as well as expanding the SH beam

[see Figure 2.3].

Figure 2.3: Schematic of reflective telescopes. M1: concave mirror f = 1000 mm (coating:
600-1000 nm); M2: convex mirror f =-500 mm (same coating as M1); B: type-I BBO
crystal; F: 1 mm separator to filter the IR beam by reflecting it to a beam block; M3:
convex mirror f =-500 mm (coating: 390-410 nm); M4: concave mirror f =1000 mm (same
coating as M3).

2.3.1 Shrinking the IR beam size

A combination of a concave and a convex lens are commonly used to shrink the size of a

laser beam. For example, a collimated input laser beam with diameter D can be shrunk to

a collimated beam with diameter d, as shown in Figure 2.4. The relation between the input

and output beam sizes is as follows,

d = D
f2

f1

. (2.1)

8



Figure 2.4: Schematic figure of a lens telescope. f1 and f2 are focal lengths of the convex
and concave lenses, respectively.

Commonly used lenses have thicknesses on the order of a few millimeters and thus

introduce considerable chirp in ultrashort laser pulses, as well as causing power loss due to

absorption in the lens. Compared to lenses, however, mirrors with high reflective coatings

can reduce power loss and will not introduce additional chirp to the laser pulses. For a

telescope, a combination of a convex and a concave reflective mirror can do the job [see

Figure 2.5].

Figure 2.5: Schematic figure of a reflective telescope used to shrink the beam size; f1 and f2
are the focal lengths of concave and convex mirrors, respectively.

In the reflective telescope shown in Figure 2.5, the relation between input and output

beam sizes is identical to the one given in Equation 2.1. However, proper incident angles

should be chosen to reduce the beam distortion caused by spherical abberation. Details of

the derivation for the proper angles of incidence are shown in reference [31], and the relation
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between the incident angle θ1 and the output angle θ2 is reported as,

θ2 ≈

√
−f1

f2

θ1

| 1− b
f1
|

(2.2)

where b is the distance between the two mirrors and θ1 and θ2 are as described in the

simplified Figure 2.6 below,

Figure 2.6: Simplified reflective telescope for shrinking beam size.

Note that the combination of a concave and a convex reflective mirror has to be used

for a reflective telescope. The coating on the surface of both concave and convex mirrors

in the telescope that is used to shrink the IR beam is highly reflective for the wavelength

range 700 – 900 nm.

2.3.2 Expanding the SH beam size

The goal of expanding the SH beam is to achieve tight focus on the target. The relation

between the beam size of the output UV beam D0 and the size of the focus d0 is

d0 =
2fλ

D0

, (2.3)

where f is the focal length of the focusing element, which in our case is the off-axis parabolic

mirror shown in Figure 2.1, and λ is the laser wavelength. From the equation, we know that

the larger the input beam size D0, the tighter the focal spot d0, thus leading to a higher

laser peak intensity

I =
P

frepA∆t
, (2.4)
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where I is the peak intensity, P is the laser average power, A is the laser focal area which, if

we assume a Gaussian beam profile for the laser beam and do not consider astigmatism, can

be written as A = π(d0/2)2 , ∆t is the laser pulse duration, and frep is the laser repetition

rate.

In order to expand the SH beam, the same principle of a reflective telescope described

in Section 2.3.1 is used, however the order of convex and concave mirrors are switched [see

Figure 2.7]. The final size of the expanded SH beam needs to fit within the size of the

laser transport mirror and the size of the parabolic mirror, and it can be calculated using

Equation 2.1. Moreover, reflective coatings on the spherical mirrors are ultraviolet (UV)

enhanced in order to reduce the laser power loss. Figure 2.8 is a picture of two reflective

Figure 2.7: Schematic figure of expanding reflective telescope; f3 and f4 are the focal lengths
of the convex and concave mirrors, respectively.

telescopes and the BBO crystal combined together in the lab to serve the purpose of both

shrinking the IR beam and expanding the SH beam.

Figure 2.8: Picture of two reflective telescopes on a breadboard.
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2.3.3 Harmonic generation performance

Table 2.1, shown below, includes the measured parameters of the IR and SH beams in our

measurements. IR beam parameters are measured before the two reflective telescopes and

the SH beam parameters are measured after the telescopes.

Beam Type IR beam SH beam
Laser power 11 W 4 W

Pulse duration 26 fs 53 fs
Laser bandwidth 36 nm 7 nm
Beam diameter 16 mm 15 mm

Table 2.1: Laser parameters: IR laser beam was measured before the two reflective telescopes
and SH laser beam was measured after the telescopes

The duration of the IR laser pulse is measured using a FROG setup, and the SH laser

pulse duration is measured with a SD-FROG setup [27]. Prior to the two reflective tele-

scopes, by using a lens telescope as shown in Figure 2.4, the typical conversion rate from

IR to SH in our old measurements was about 25% and the intensity of the SH beam could

only reach to about 1×1014 W/cm2. With the help of the reflective telescope setup shown

in Figure 2.8, the conversion rate of IR to SH beam in our measurement has increased to

36%, and by expanding the SH beam size, the peak intensity of the SH beam has increased

to 3×1015 W/cm2. The increase in intensity is partly due to the higher conversion efficiency

but mostly due to the tighter focus allowed by the beam expansion. The laser spectra of

the input IR beam and the output SH beam are shown below in Figure 2.9.

12



Figure 2.9: Spectra of IR and SH beams.

2.4 Three-body fragmentation analysis

2.4.1 Procedure for analyzing three-body fragmentation channels

Laser-induced two-body breakup of diatomic and triatomic molecular ions has been studied

extensively by our group using coincidence 3D momentum imaging techniques [5, 9, 10, 12–

14, 17, 19, 32–34]. Comprehensive explanations of the two-body fragmentation measure-

ments and our analysis method have been introduced previously [20, 22]. The results from

experiments on the three-body fragmentation of the benchmark H+
3 system and its iso-

topes [14–18] have been published by our group, and the three-body analysis method was

developed [15, 18, 22]. In this work, a few modifications are made in the analysis procedure.

First, three-body fragmentation channels are separated using a coincidence TOF map

as shown in Figure 2.10. By plotting the yield as a function of the TOF of the 1st hit and

the TOF of the center of mass (CM) of the second and third hits, the three-body channels

appear as narrow strips due to conservation of momentum along the ion beam axis direction.

The expression for TOF23 is

TOF23 =
m2 × TOF2 +m3 × TOF3

m2 +m3

, (2.5)

where TOF2 and TOF3 are the TOF of the second and third hits, respectively. Note that,

in the first step, the parameters m1, m2 and m3 are set using the masses of the C and the

O fragments, MC and MO, e.g. m1 = m2 = MO and m3 = MC .
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Figure 2.10: Coincidence TOF map of three-body fragmentation of CO+
2 induced by 26

fs linearly polarized laser pulses with 6.5×1015 W/cm2. The three-body breakup channels
appear as narrow “lines” in this map due to momentum conservation along the ion beam
direction.

The next step is selecting a channel of study in the TOF coincidence map shown in

Figure 2.10. Then, the mass parameters m1, m2 and m3 are set according to the TOF of

fragments in the selected channel in the order of short to longer TOF, e.g. for the C+ +

O+ + O+ channel, m1 = MC+ and m2 = m3 = MO+ , where MC+ and MO+ are the masses

of C+ and O+, respectively. By rotating the selected TOF coincidence stripe, e.g. the C+

+ O+ + O+ channel, vertical and horizontal time gates can be set to separate pure triple

coincidence events from random coincidences [see Figure 2.11].

Figure 2.11: Rotated coincidence TOF stripe of the C+ + O+ + O+ channel. The red dashed
box represents the time gate set on the channel in order to reduce random coincidences.
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In order to further clean the data, the x and y CM of events that passed the coincidence

TOF gate in the previous step are calculated and a position gate is applied to extract triple

coincidence events [see Figure 2.12]. The expression of CM in the x and y directions are,

XCM =
m1 × x1 +m2 × x2 +m3 × x3

m1 +m2 +m3

(2.6)

YCM =
m1 × y1 +m2 × y2 +m3 × y3

m1 +m2 +m3

, (2.7)

where x1, x2, x3 and y1, y2, y3 are the measured positions of the three fragments. Note that

in both equations above, the measured positions of the three fragments are used. Since these

hits occur at different times, an approximation is made by assuming that the positions don’t

change much between the common center of mass time and the three individual times.

In order to calculate the CM positions of the system accurately, the time dependence

of positions for each fragment needs to be included in future development of the analysis

method.

Figure 2.12: Center of mass, xcm – ycm distribution of the C+ + O+ + O+ channel. The red
dashed circle represents the CM position gate applied in order to reduce random coincidence.

Finally, using time and position information of the three fragments, the momentum

of each fragment in the molecular frame is calculated. From these momentum vectors,

we evaluate the quantities of interest, such as kinetic energy release (KER) and angular

distributions.
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2.4.2 Molecular-frame conversion

To understand molecular dynamics in both two- and three-body fragmentation requires one

to study distributions of momentum and energy in the molecular frame of reference. As

explained in the previous section, the measured momentum vectors of all fragments are

evaluated in the molecular frame. This is the i, j, k frame moving with the center of mass

velocity of the molecule, where i is parallel to the ion beam, j is the propagation direction

of the laser, and k is the laser polarization direction [see Figure 2.13]. This section explains

the conversion from the molecular frame to the molecular dissociation frame, which for

three-body breakup is two dimensional. For example, momenta of C+, O+
(1) and O+

(2) in the

molecular frame, PC+ , PO(1)
+ and PO(2)

+ , are shown as vectors in Figure 2.13. We denote

n̂ as the unit vector normal to the molecular dissociation plane.

Figure 2.13: Schematic figure of momentum vectors for the three fragments in the C+ +
O+ + O+ channel in the molecular frame. Coordinates shown in this figure are, k : laser
polarization direction, j : laser propagation direction, and i: parallel to the ion beam.

By choosing the O+
(1) fragment momentum to be along the x axis, the molecular dissoci-

ation frame can be constructed with the following three unit vectors,

n̂ :
(PC+ −PO(1)

+)× (PO(2)
+ −PO(1)

+)

|PC+ −PO(1)
+||(PO(2)

+ −PO(1)
+ |

. (2.8)
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x̂ :
PO(1)

+

|PO(1)
+ |

(2.9)

ŷ : n̂× x̂ (2.10)

The momentum vectors of the three fragments P′C+ , P′O(1)
+ and P′O(2)

+ in the molecular

dissociation frame can be calculated by projecting the P+
C , P+

O(1)
and P+

O(2)
vectors into the

x̂ŷn̂ frame,

P′C+x = PC+ · x̂ P′O(1)
+x = PO+

(1)
· x̂ P′O(2)

+x = PO+
(2)
· x̂

P′C+y = PC+ · ŷ P′O(1)
+y = PO+

(1)
· ŷ P′O(2)

+y = PO+
(2)
· ŷ

Figure 2.14: Molecular dissociation plane of the C+ + O+ + O+ channel.

Figure 2.14 presents the momentum vectors of the fragments in the xy-plane. We nor-

malize the sizes of all three vectors in Figure 2.14 by the size of P′O(1)
+ and make sure that

the C+ fragment momentum is always in the upper half of the plane (e.g. P′C+ > 0) and

the other O+ momentum is in the lower half half of the plane (P′O+ < 0). By doing so, we

can obtain a Newton diagram of the three-body fragmentation channel C+ + O+ + O+.

The Newton diagrams using the molecular dissociation frame momentum vectors de-

scribed above are not included in this report. The purpose of the section is to present the

method for future studies of the fragmentation of polyatomic molecules.
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2.5 Position dependence of time signals picked off a

microchannel plate detector

2.5.1 Introduction

The coincidence 3D momentum imaging measurements described in the next chapters are

performed using a multi-hit imaging detector that consists of a chevron stack of microchannel

plates (MCP) and a hex delay-line anode detector. This detector assembly allows us to

measure the time and position information for fragments resulting from the laser and ion

interaction. The ability to obtain time and position information of the fragments with

improved precision will lead to correspondingly higher momentum and energy resolutions

that are important for understanding the fragmentation processes. As a specific example

relating to the work in this report, namely our studies on CO+ dissociation, if we are able

to attain vibrational resolution in the KER spectrum, it may become easier to identify the

underlying mechanism causing the dissociation.

Previous efforts have been made to characterize the temporal resolution of MCP detec-

tors [35–37]. A practical question, however, is the following: for large MCPs, does the time

signal depend on the position of the particle hit? That is, does surface propagation have a

notable effect on time signals picked off an MCP? To our knowledge, this question has not

been investigated previously. As we demonstrate in the next section, the broadening caused

by the position dependence of timing signals is comparable to the temporal resolution of

our imaging detector. Hence, this phenomenon cannot be simply ignored.

In order to characterize such a dependence, however, UV pulses with a much shorter

time scale than the temporal resolution must be used to avoid convolution caused by the

contribution of laser pulse duration. Moreover, to activate the MCP detectors, a UV photon

with higher energy than the MCP surface work function is required. In the present case,

applying the reflective telescope described in Section 2.3.1, third harmonic laser pulses with

262 nm central wavelength and estimated pulse duration of 90 fs are ideal candidates for

studying the time broadening.
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2.5.2 Position dependence of time signals picked off a microchan-
nel plate detector

Note: Position dependence of time signals picked off a microchannel plate de-

tector

U. Ablikim, M. Zohrabi, Bethany Jochim, B. Berry, T. Severt, K. D. Carnes, and I. Ben-

Itzhak, Rev. Sci. Instrum. 86, 016111 (2015).
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Note: Position dependence of time signals picked off a microchannel
plate detector

U. Ablikim, M. Zohrabi, Bethany Jochim, B. Berry, T. Severt, K. D. Carnes,
and I. Ben-Itzhaka)

J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, Kansas 66506, USA

(Received 12 December 2014; accepted 8 January 2015; published online 20 January 2015)

Using an ultrafast laser and a precision mask, we demonstrate that time signals picked off directly
from a microchannel plate detector depend on the position of the hit. This causes a time spread of
about 280 ps, which can affect the quality of imaging measurements using large detectors. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4906327]

The use of multi-hit detectors that provide time and
position information for each of a few particles created in a
single event is widespread across many disciplines, ranging
from atomic, molecular, and optical (AMO) physics1–3 to
nuclear physics,4 particle physics, and space instrumentation,5

as well as other fields.6 In many of these detectors, a stack of
microchannel plates (MCPs) is used to convert the single
particle hit (including photons) into an electron “cloud”
producing a large enough signal to be detected.7 Many
decoding schemes have been used to measure the position
information of each particle in such detectors, including
resistive anodes,8 backgammon anodes,9 delay-line anodes,10

and phosphor screens coupled with a CCD (or CMOS)
camera.11,12 The time signal in most cases is directly measured
from the front or back side of the MCP stack.7,10,13

Microchannel plate detectors can achieve “ultra-high time
resolution (<100 ps).”7 However, as the diameter of these MCP
detectors used in imaging applications increases, one may
wonder if this time resolution is affected by the propagation
time on the detector surface when the timing signal is picked
off directly from the MCP surface. This time can be estimated
to be at least 100 ps for a signal originating 30 mm away from
the pickup if one assumes that the charge signal propagates at
the speed of light. Using a more realistic velocity factor14 of
0.5 will yield 200 ps for the same signal. Given that 80 and
120 mm diameter MCP detectors are commonly used suggests
time spreads of the order of 250 and 400 ps, respectively.

In this work, we are addressing exactly this question,
namely, what is the time broadening caused by hits across
the MCP surface? In other words, we determine the position
dependence of the time signals picked off directly from the
MCP back surface. To accomplish this goal, a MCP detector
with a delay-line anode was illuminated through a regular
mask by about 90 fs laser pulses—effectively instantaneous
in comparison to the signal propagation time across the
MCP. Employing a similar ultrafast laser beam technique,
the time resolution of a MCP has been determined to be
200-300 ps, depending on the voltage applied across the
MCP.15 It is important to note that in that study,15 only a
small spot was illuminated, and the time signal was picked off

a)Electronic mail: ibi@phys.ksu.edu.

from an impedance-matched anode.7,16 Therefore, the issue of
propagation of the charge signal on the MCP surface remains
to be studied. This question is important when using position-
sensitive anodes and picking off the time signal directly
from the MCP front or back surface. In the results presented
below, it is shown that time-broadening is due in large part
to the position dependence of the time signal taken directly
from the MCP. Moreover, the measured values are consistent
with the pulse-propagation estimates above. The impact of
this “time dependence on position” on reducing electronic
noise affecting the position signals of such detectors and on
lost-signal reconstruction is also briefly discussed.

As mentioned above, we have used an ultrafast laser
providing about 2 mJ pulses centered at 787 nm (with a 28 nm
bandwidth) at a repetition rate of 2 kHz. To activate the MCP
efficiently, a higher energy photon is needed7,17—in an earlier
study,15 267 nm pulses worked well. To that end, we generated
262 nm pulses through third harmonic generation using two
type-I beta-barium borate (BBO) crystals, as described in
detail by Zohrabi18 and others.19,20 This 262 nm laser beam is
directed toward the detector through a diverging lens and a flat
mirror such that it illuminates the whole detector, as shown
in Fig. 1(a). A mask with regular circular holes (0.78 mm in
diameter) spaced by 5 mm (center to center) and placed a few
mm in front of the detector defined the x,y position on the
detector surface, as shown in Fig. 1(b).

The detector used in this study consists of a pair of
80 mm diameter MCPs (chevron assembly7) coupled with a
RoentDek13 hex delay-line anode. The position information is
determined from the time difference between signals arriving
at both ends of each wire.10,13 The time information is
evaluated from a charge signal picked off directly from either
the front or back surface of the MCP stack.7,10,13 Since they
are similar, we show only back surface results here.

A photodiode exposed to a small fraction of the laser
beam provides the start signal for a multi-hit, multi-channel
time-to-digital converter (TDC, CAEN V1290N) while the
time signals from the MCP back surface are used as the
stop. The MCP signals were amplified by a pre-amplifier
(ORTEC VT-120B), and a constant-fraction discriminator
(CFD, ORTEC 935) was used to generate the standard Nuclear
Instrumentation Module (NIM) signal needed by the TDC.
The TDC resolution is about 25 ps, i.e., better than that of

0034-6748/2015/86(1)/016111/3/$30.00 86, 016111-1 © 2015 AIP Publishing LLC
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FIG. 1. Experimental schematic: (a) schematic of the setup used for testing
an 80 mm MCP with about 90 fs pulses at 262 nm, where CL—concave
lens, W—window, and M—mirror. (b) The mask used to define the position,
having a regular array of small holes 5 mm center-to-center. (c) The time-
difference spectrum of a photodiode start—photodiode stop measurement
used to determine the electronic broadening to be about 74/

√
2 ∼ 50 ps.

the MCP. Moreover, the 262 nm chirped laser pulses are
estimated to be about 90 fs long, practically instantaneous
on the response time scale of the MCP. In principle, any
sub 25 ps pulsed laser can be used to reproduce the present
detector test if it provides energetic enough photons. The time-
broadening caused by the photo-diode and timing electronics
was measured to be about 50 ps by using an identical
photodiode to generate the stop signal instead of the MCP
[see Fig. 1(c)].

The photon flux (i.e., laser intensity) was kept low enough
to keep the counting rate at about 200 Hz on average, a photon-
hit probability smaller than 0.1 per pulse, to reduce multiple-
photon hits on the detector and their effect on the time-position
correlation. The data were recorded event-by-event, enabling
offline analysis, which includes the elimination of the small
fraction of multi-hit events. Moreover, this allows the analysis
of the time signals of events originating from specific holes
or a row or column of holes, therefore mapping the position
dependence of the MCP time signal.

The main finding of our study is that the time signal
picked off a MCP back surface depends on the position of the
particle’s (photon in this case) hit on the detector. This effect
causes a time spread of about 280 ps over the whole detector,
defined as the maximum difference between the centroids of
the time distributions for all holes. In Fig. 2(a), we present the
time distributions associated with a few well-defined 0.78-mm
circular holes along the detector center, which clearly show
that the time shift from one position to another is a significant
contribution to the time broadening. This time dependence
on position is further illustrated in Figs. 2(b) and 2(c), which
show the centroid of the time distribution ⟨ti, j⟩ relative to
the shortest measured time ⟨t2,8⟩ at specific positions on the
MCP detector defined by the mask holes (i, j). This effect is
expected to become the limiting factor as other sources of
time broadening, like electronics, are improved further.

FIG. 2. Position dependence of time signals: (a) time distributions (with
scaled peak value) for a few holes along a column near the detector center (the
centroid of each, ⟨ti, j⟩, evaluated by a Gaussian fit is marked by an arrow).
Also shown is the distribution for all holes—scaled to fit. The deviation of
⟨ti, j⟩ from ⟨t2,8⟩, the shortest time, is shown in (b) along the same column
shown in (a), and (c) the whole detector—a smoothed surface plot.

The time dependence on position, t(x,y), follows the
expected trend of longer times for particles (i.e., photons)
hitting the MCP further from the connection of the pick-off
wire, which is near i, j = 7,1, as shown for the mask column
with i = 7 in Fig. 2(b). However, the complete distribution on
the detector suggests that charge signal propagation along the
MCP surface cannot be the whole story, as that would suggest
a similar time for i, j = 2,6 and 12,6, which is clearly not the
case according to Fig. 2(c). The most likely reason is signal
propagation along the conducting surface of the ceramic ring
holding the MCP stack, which can provide a faster route
for charge signals from these specific points to the pick-off
wire. The fact that this route reduces the time for i, j = 2,6
but not for i, j = 12,6 is most likely due to the better contact
of the ceramic ring on one side of the stack than the other.
Moreover, this may also explain why the lowest time is near
i, j = 2,8, where one of the stacking clips is attached, and not
next to the pick-off wire as expected. Further work is needed
to understand the complex time dependence on position, to
model t(x,y), and to try to reduce its impact by improving the
contact and conductivity of the rings holding the MCP stack
together. However, this goes beyond the scope of this work.

This time dependence on position might have significant
consequences on imaging MCP detectors as they get larger and
their resolution improves. For example, if a three-dimensional
velocity image is desired, then the time dependence on position
may distort the image by affecting the velocity component
perpendicular to the detector plane. This is particularly
important when imaging electrons, for which short time-
of-flights are typical.3 At present, the use of meshes in front
of imaging detectors typically causes larger distortions than
t(x,y).

Another example where t(x,y) may have an impact is on
the MCP detector using a delay-line anode, like the detector
used here. In a delay line, the position is determined from the

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to IP:
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FIG. 3. Time-sum distribution for one of the wires of the delay-line anode,
which is aligned 15◦ relative to the x-axis. Note that the distribution at a
specific location (i, j = 7, 7) is significantly narrower than the one including
the contributions from all holes—a broadening that limits electronic noise
suppression on the delay-line decoder (see text).

time difference between the signals arriving at the two ends,
t1 and t2. It is convenient to also define the time sum, as it is
expected to be constant

tsum= (t1− ti)+ (t2− ti)= L/vs , (1)

where ti is the time the charge cloud of the MCP hits the
delay-line wire of length L, and vs is the signal speed on that
wire.

According to Eq. (1), the time-sum spectrum, like the
one shown in Fig. 3, should exhibit a single narrow peak. In
practice, this spectrum is typically noisy, but the noise can
be greatly suppressed by accepting only t1 and t2 signal pairs
for which the time sum falls in a narrow “gate” centered
around the expected value. Figure 3 clearly indicates that
the time-sum peak associated with a specific position on the
detector is much narrower than for the whole detector. The
position dependence of ti in Eq. (1) contributes about 0.5 ns
to the width of the measured tsum distribution, shown in Fig. 3,
and clearly other sources contribute too. Reducing the width
of the tsum peak will ultimately improve the signal to noise of
delay line detectors.

More importantly, Eq. (1) is commonly used to
“reconstruct lost signals,”21 for example, one can compute
t2 = tsum− t1+2 ti (using ⟨tsum⟩ of the distribution) in cases
where a t2 signal is missing. Clearly, the computed t2 accuracy
will be reduced, by about 0.5 ns in our case, because of the
position dependence of ti. Modeling of t(x,y) may, therefore,
improve the reconstructed events in imaging measurements
using delay-line detectors.

In summary, a method for measuring the position
dependence of time signals picked off a MCP surface is

presented. A time spread of about 280 ps was measured for
an 80 mm MCP detector—large enough to affect imaging
measurements and expected to increase with MCP size.
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Chapter 3

Dissociation of CO+ ions in a strong
laser field

3.1 Introduction

Intense ultrashort laser pulses are becoming more essential in the physical and chemical

sciences as they provide opportunities to manipulate atomic and molecular dynamics [38].

We previously studied the dissociation and ionization processes of many diatomic molecular

ions, like H+
2 [33], HD+ [14], N+

2 [12], O+
2 [9, 10], CO+ [11] and ND+ [13], by applying a

coincidence 3D momentum imaging technique. In this chapter, we present our studies on

the dissociation of the CO+ ion.

Plenty of experimental studies have been conducted on the CO molecule and its cation in

a strong laser field. Kling et al. [11] studied the charge asymmetric dissociation of CO+ and

discussed the molecular dynamics responsible for the dependence of the branching ratio of

the charge asymmetric dissociation channel on laser pulse duration. Li et al. [39] obtained

high resolution kinetic energy release spectra for C+ and O+ fragments in multiphoton

ionization of the CO molecule followed by dissociation of CO+. The authors suggested the

possible pathways of dissociation from the ground doublet state X 2Σ+ and B 2Σ+ of CO+.

Furthermore, in theoretical work, Okada et al. [40] performed multireference configuration

interaction calculations of low-lying electronic states in CO+ and provided the potential

energy curves.
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In studies of molecular fragmentation in a strong field, high resolution measurements of

vibrational levels in an electronic state are challenging due to the involvement of a multitude

of electronic states and likely dissociation pathways that could lead to the same dissociation

limits. Our previous work on the dissociation of O+
2 demonstrated the vibrational-level

resolution capability of our experimental technique [9, 10].

In this work, we used a CO+ molecular-ion beam as a target to study its dissociation

in intense laser pulses produced by second harmonic generation, specifically, with a central

wavelength of 393 nm and a bandwidth of 7 nm [see Figure 2.9]. The peak intensity of the

laser pulse is up to 3× 1015 W/cm2 with pulse duration of 53 fs. In the experiment, a CO+

beam with 11 keV energy is prepared in an ECR source as discussed in Chapter 2. The

vibrational population of the electronic states follows the Franck-Condon distribution. The

shaded region in Figure 3.1 shows the internuclear range where Franck-Condon transitions

take place in the ion source.

Figure 3.1: Schematic of Franck-Condon transition region from the ground electronic state
of the CO molecule to electronic states of CO+. Potential energy curves used in this chapter
are taken from reference [40].

Due to the long flight time from the ECR ion source to the interaction region (∼18

µs), most electronic states with short life times decay [41], leaving the system mainly in

the ground X 2Σ+ state and the lowest quartet state, a 4Σ+ [42]. The only other possible
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electronic state whose population can survive until the interaction region is the A 2Π state,

which has a 3.93 µs lifetime [40]. However, only about 0.5% of measured ions from the A 2Π

state can survive and the rest will decay along the ion beam path. Our results for CO+

dissociation suggest that at low laser intensities, e.g. 3 × 1012 W/cm2, dissociation of the

quartet state a 4Σ+ contributes the most. At high laser intensities, dissociation of the deep

welled doublet A 2Π state contributes too.

3.2 Dissociation of CO+ in a strong laser field

In this work, we apply the coincidence 3D momentum imaging method that allows us to

detect and separate the charged and the neutral fragments. Moreover, all measured frag-

mentation channels are separated from each other. In an intense laser field, we observed

two dissociation channels, namely C++O and C+O+, two single ionization channels C++O+

and C2++O as well as the double ionization channel C++O2+ [see Figure 3.2(b)].

It is important to note that in this experiment we also used an electric field transverse

to the ion beam supplied by a deflector to separate fragments in position [see Figure 3.2(a)].

This setup is described in detail in Bishwanath Gaire’s PhD thesis [22]. The advantage of

using this setup is that it allows us to measure fragmentation channels with KER down to

near 0 eV.

Figure 3.2: (a) Coincidence 3D momentum imaging setup with the deflector (figure adapted
from [22]) and (b) coincidence TOF map for fragmentation of CO+ induced by 53 fs linearly
polarized laser pulses with 393 nm central wavelength at 3× 1015 W/cm2 peak intensity.
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Of the two measured dissociation channels, only the C++O channel will be discussed

in detail in this report due to the lack of potential energy curves that lead to the C+O+

channel. In the following subsections, we discuss a couple of possible dissociation pathways

that contribute to the C++O channel. Specifically, we select a few KER peaks at low,

intermediate and high laser intensities to present possible dissociation pathways.

3.2.1 Brief introduction to transition rules

In general, the peaks in the KER spectrum appearing at higher intensities may involve more

photons than those appearing at lower intensities. The angular distribution of a particular

KER peak informs us about the type of transition and number of photons involved in the

process [9, 10]. For example, Σ → Π or Π → Σ transitions, where the projection of the

total angular momentum on the molecular axis changes by ∆Λ = ±1 (Λ: projection of total

angular momentum on a molecular axis), are referred to as perpendicular transitions. The

angular distribution of such a transition follows approximately a sin2nθ function [38], where

n is the number of photons absorbed or emitted and θ is the angle between the molecular

dissociation axis and the laser polarization. Similarly, Σ → Σ or Π → Π transitions,

for which ∆Λ = 0, are called parallel transitions, and their angular distribution follows

a cos2nθ function [38]. The angular distributions of pathways that involve both parallel

and perpendicular transitions, i.e Σ → Π → Π or Σ → Σ → Π, follow a cos2nθsin2mθ

function, where the n and m are, respectively, the number of photons exchanged in parallel

and perpendicular transitions.

3.2.2 Low intensity - 3× 1012 W/cm2

In an attempt to study the dissociation dynamics of molecular ions, it is wise to start from

the lowest laser intensity that allows the molecule to dissociate [10, 20]. The reason is that,

at low intensities, the number of photons involved in the dissociation is likely to be smaller

than at higher intensities. The positions of the KER peaks in the spectrum allows us to

trace the process and find out from what electronic state the process started. The majority

26



of the vibrational population of the CO+ electronic ground state, the doublet X 2Σ+, is at

the lowest vibrational level, v=0. So, at a low intensity of 3× 1012 W/cm2, it is less likely

for the system to start from the X 2Σ+ (v=0) state and overcome the deep potential well

of 8.3 eV to dissociate, as it requires three 393-nm wavelength photons [see Figure 3.3(a)].

The same holds for the excited A 2Π electronic state, where at least two photons at 393-nm

are needed to overcome the potential well. However, if the system starts from the lowest

quartet state, namely a 4Σ+, then absorption of one photon at 393 nm or two photons at

786 nm leads to the dissociation of CO+ [see Figure 3.3(b)]. In fact, our measurements

provide experimental evidence that the dissociation of CO+ into C+ + O starts from the

lowest quartet state.

Figure 3.3: A few of the relevant potential energy curves of CO+ for (a) doublet and (b)
quartet states. Adapted from Okada et al. [40].

Figure 3.4 shows the KER and the KER-cosθ distributions of the C++O channel at the

lowest measured intensity. From the potential energy curves of the quartet states, shown in

Figure 3.3(b), we estimate that the system starts from v = 0 of the a 4Σ+ state and absorbs

one 393-nm photon to dissociate on the 14Π state, releasing a kinetic energy of 0.55 eV [see

peak β between the black dashed lines in Figure 3.4(a)].
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Figure 3.4: (a) The KER spectrum and (b) the KER-cosθ spectrum of the C++O channel
of CO+ dissociation in a 393 nm, 53 fs, 3× 1012 W/cm2 laser pulse.

In addition, the angular distribution corresponding to the peak at 0.55 eV in Fig-

ure 3.4(b) presents a strong component at cosθ =0 suggesting a perpendicular transition (e.g.

∆Λ=±1). The angular distribution for events within the KER region 0.49 eV to 0.63 eV

can be fit approximately with a sin2θ function, an indication of a one-photon perpendicular

transition [see Figure 3.5].

Figure 3.5: Angular distribution of peak β and a sin2θ fit for KER: 0.49 – 0.63 eV.

In order to further confirm the suggested pathway, we performed the experiment with

a 786 nm, 30 fs laser pulse. Figure 3.6(a) shows two neighboring peaks δ and ε in the

KER spectrum centered at 0.48 and 0.58 eV, and both peaks have perpendicular transitions

according to their angular distributions [see KER-cosθ distribution in Figure 3.6(b)].

The black dashed lines in Figure 3.6(a) are the energy gates set for peaks δ and ε. Peak

ε is closer in energy to the peak β, which was measured with 393 nm laser pulses. In the
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Figure 3.6: (a) The KER spectrum and (b) the KER-cosθ spectrum of the C++O channel
of CO+ dissociation in a 786 nm, 30 fs, 1×1013 W/cm2 laser pulse.

measurement with 786 nm laser pulses, in principle, the system can undertake a two-photon

transition from the v=0 level of the a 4Σ+ state to the 1 4Π state [see Figure 3.3(b)]. However,

with laser pulses at 786 nm wavelength, the angular distribution [see Figure 3.7(a,b)] for

the KER peaks δ and ε conform better to a sin2θ function than to a sin4θ function, which is

contradictory to the expected two-photon transition at 786 nm. This angular distribution

fit, instead, indicates a one-photon perpendicular transition. A plausible scenario could be

that, since the majority of the population is located toward the middle of the potential

well in the a 4Σ+ state, the system is more likely to absorb one photon of 786-nm at higher

vibrational levels, e.g. v=11, and dissociate on the 14Π state. However, transition dipole

moments between the a 4Σ+ and 1 4Π states are needed to confirm the proposed transition

pathways.

Figure 3.7: Angular distribution of (a) KER peak δ (KER: 0.43 – 0.52 eV) and (b) KER
peak ε (KER: 0.52 – 0.65 eV) with their fit functions.

29



3.2.3 Intermediate intensity - 6× 1013 W/cm2

In our experiment, first of all, the energy resolution was improved significantly over a pre-

vious measurement [11], which allows us to isolate and study the KER energy peak around

1.1 eV. Secondly, by measuring the C+ + O channel at low, intermediate and high laser

intensities, we study the contribution of possible pathways to a peak in the KER spectrum

at different intensities. At an intermediate intensity of 6× 1013 W/cm2, the energy peak φ

at around 1.1 eV presents a clear sign of a perpendicular transition [see Figure 3.8(b)].

Figure 3.8: (a) The KER spectrum and (b) the KER-cosθ spectrum of the C++O channel
of CO+ dissociation in a 393 nm, 53 fs, 6×1013 W/cm2 laser pulse.

A further look at the angular distribution reveals that in the measurement with 393-

nm laser pulses, a sin2θ function fits well for events within the KER peak φ (0.9 – 1.2

eV), indicating that a one-photon perpendicular transition can contribute to that peak [see

Figure 3.9(a)]. The angular distribution in the measurement with 786-nm laser pulses,

in contrast, shows that the KER peak measured around 1.1 eV has an isotropic angular

distribution [see Figure 3.9(b)], suggesting an equal amount of parallel and perpendicular

transitions.

According to the Franck-Condon principle, the majority of the population in the a 4Σ+

state is located toward the middle of the well. So, it is likely for a CO+ ion at a higher

vibrational level, e.g., v = 4 of a 4Σ+, to absorb one photon at 393 nm and dissociate on the

1 4Π state, releasing kinetic energy of 1.1 eV.
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As to the isotropic angular distribution shown in Figure 3.9(b) for the 786-nm measure-

ment, generally an equal contribution from a parallel and a perpendicular transition can lead

to an isotropic distribution, however, more investigations need to be done to understand the

possible pathways that result in such angular distribution.

Figure 3.9: Angular distribution of (a) peak φ (KER: 0.9 – 1.2 eV) (blue squares) and a
sin2θ fit (blue line) in a 393 nm, 53 fs, 6×1013 W/cm2 laser pulse and (b) the equivalent
KER peak φ′ in a 786 nm, 30 fs, 8×1013 W/cm2 laser pulse (red squares) and a fit to a
constant (red line).

Figure 3.10: (a) The KER spectrum and (b) the KER-cosθ spectrum of the C++O channel
of CO+ dissociation in a 786 nm, 30 fs, 8×1013 W/cm2 laser pulse.

Figure 3.10 shows the KER and KER-cosθ distributions of the C++O channel with laser

pulses at 786 nm, 30 fs and 8 × 1013 W/cm2. At similar intermediate laser intensities,

the KER peak at 1.1 eV is significantly smaller than the peak at 0.55 eV in the 786-nm

measurement as compared to the 393-nm measurement. Due to the limited availability of

potential energy curves as well as transition dipole moments between the relevant electronic
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states, nailing down the exact pathway remains a challenge. However, the plausible pathways

proposed in this section can be further confirmed if this information becomes available in

the future.

At both low and intermediate intensities, we chose initial vibrational levels of the a 4Σ+

state by matching KER peak values. Although the angular distribution of the energy peaks

are consistent with the type of transition and the number of photons involved, without

proper attention to the Franck-Condon population of different vibrational states as well

as the transition probabilities from vibrational levels of the a 4Σ+ to the 1 4Π state, our

pathway confirmation is questionable. Figure 3.11 shows the transition probabilities from

vibrational levels in a 4Σ+ to the 1 4Π state. The transition dipole moments between the two

states are missing in the current literature, but in our experience transition dipole moments

usually are not strongly dependent on the internuclear distance in the molecule. So, in the

results shown in Figure 3.11, the transition dipole moment was considered to be a constant.

FC is the Franck-Condon population of a vibrational state of a 4Σ+, Ψa 4Σ+(v) and Ψ1 4Π(E)

are respectively the bound state wave function for a vibrational level v of the a 4Σ+ state

and the continuum state wave function on the 1 4Π state.

Figure 3.11: The expected yield of dissociation from vibrational levels of the a 4Σ+ state to
the 1 4Π state after absorbing one 393-nm photon.

One can clearly see that the calculation result shown in Figure 3.11 is not consistent

with our interpretation of the peaks at the low and the intermediate intensities. In order
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to nail down the two specific pathways proposed in Section 3.2.3 and 3.2.4, more potential

energy curves as well as the transition dipole moments among relevant states are needed.

3.2.4 High intensity - 3× 1015 W/cm2

At high intensities, more photons are likely to be absorbed from the laser field, and the

dissociation of CO+ can be initiated from the lower electronic states with deep potential

wells, such as the X 2Σ+ and A 2Π states. However, due to the opening of many possible

pathways as the result of increased intensity, tracing a particular process becomes more

difficult. Figure 3.12 presents the KER and KER-cosθ distributions of the C++O channel

at the peak laser intensity of 3×1015 W/cm2. According to Figure 3.12(a), a peak at 1.2 eV

dominates the KER spectrum (labeled as χ), and the angular distribution shown in panel

(b) suggests that this dominant peak has a large parallel transition component and a smaller

perpendicular component.

Figure 3.12: (a) The KER spectrum and (b) the KER-cosθ spectrum of the C++O channel
of CO+ dissociation in a 393 nm, 53 fs, 3× 1015 W/cm2 laser pulse.

In the previous subsection, we discussed the energy peak φ (KER ≈ 1.1 eV) at inter-

mediate intensities and suggested that it is due to a perpendicular transition. At higher

intensities, another pathway contributes in this KER region. Figure 3.13 shows the KER-

cosθ distributions at various intensities, and from it we can see that the dominant KER

feature that appears at 3 × 1015 W/cm2 is very sensitive to intensity. So, the number

33



of photons involved in the process is likely to be more than one. This will exclude the

quartet states, because absorbing more than one photon leads to high KER values, e.g.,

a 4Σ+ + 2ω → 1 4Π yields 3.65 eV.

Figure 3.13: KER-cosθ distribution of C++O channel in (a) 3×1015 W/cm2;(b) 3×1014

W/cm2; (c) 6×1013 W/cm2 laser pulse having a duration of 53 fs and a central wavelength
of 393 nm.

In contrast, the CO+ can start from the X 2Σ+ ground vibrational level, absorb a few

photons and dissociate with the measured KER. However, the angular distribution of the

final KER peak must be consistent with the the type of transition as well as the number of

photons exchanged. In this specific case, the angular distribution of the dominant peak at

1.2 eV indicates a strong parallel transition. This will exclude any type of direct transition

starting from the X 2Σ+ ground doublet state, because the only possible parallel transition

lands on the highly excited 3 2Σ+ state and results in a KER of 2.6 eV. Figure 3.14(b)

shows the angular distribution of events in the KER peak χ (KER: 0.9 – 1.34 eV), and the

highly aligned component at cosθ = ±1 is approximately fit by a cos4θ function, suggesting

a two-photon parallel transition. The sin2θ component is most likely due to the transitions

described in Section 3.2.3 for intermediate intensities.

Although only 0.5% of the ions from the doublet A 2Π state will survive to the interaction

region, as mentioned in Section 3.1, a possible transition starting from this state can not

be excluded. In particular, a two 393-nm photon absorption in a parallel transition starting

from the lower vibrational levels of the A 2Π state to the D 2Π state will result in a KER
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of 1.2 eV, and has the measured cos4θ distribution, making it the most likely pathway for

KER peak χ [see Figure 3.14(a)].

Figure 3.14: (a) Schematic of transitions for A 2Π + 2ω → D 2Π. Blue arrow is equivalent to
a 393-nm photon and the red arrow represents the 786-nm photons. Potential energy curves
in this figure are taken from reference [40]. (b) Angular distribution of KER peak χ (KER:
0.9 – 1.34 eV). The laser pulse duration is 53 fs and the central wavelength is 393 nm with
a 3× 1015 W/cm2 peak intensity.

For the 786-nm measurement, the peak corresponding to peak χ is labeled peak γ in Fig-

ure 3.15(a). Once again, we choose events within the KER region 0.9 - 1.34 eV [the black

dashed lines in Figure 3.15(a)]. Figure 3.16 shows the angular distribution for events within

that region. The fit function to the measured data consists of a cos8θ and a constant term.

The cosine term indicates a parallel transition with an exchange of four photons at 786

nm, e.g. A 2Π + 4ω → D 2Π. This result is consistent with the two 393-nm photons tran-

sition shown in Figure 3.14(a). The isotropic term in the fit function is consistent with

the isotropic contribution from an intermediate intensity in 786 nm laser field as described

in Section 3.2.3 and a likely scenario for this isotropic distribution may come from two

independent one-photon transitions, namely a perpendicular and parallel transition.

The experiment with a high intensity 786 nm laser pulses reveals a different KER spec-

trum than that measured with 393 nm [see Figure 3.15(a)]. At an intensity of 2.8 × 1015

W/cm2, the structure in the KER spectrum is washed out compared to the measurements

with 393 nm laser pulses. The reason may be due to the significant differences in bandwidths
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Figure 3.15: (a) The KER spectrum and (b) the KER-cosθ spectrum of the C++O channel
of CO+ dissociation in a 786 nm, 30 fs, 2.8×1015 W/cm2 laser pulse.

Figure 3.16: The angular distribution fit for events in peak γ, e.g. KER: 0.9 – 1.34 eV in a
786 nm, 30 fs, 2.8×1015 W/cm2 laser pulse.

of the two laser pulses, specifically 30 nm and 7 nm in the 786-nm and 393-nm measure-

ments, respectively [see Table 2.1]. The KER-cosθ distribution shown in Figure 3.15(b)

suggests a parallel transition for a broad KER region from 0 to 3 eV.

Tackling the problem of finding dissociation pathways is a difficult and time consuming

task. To nail a transition pathway requires sufficient experimental and theoretical informa-

tion. In our measurements, conducted at two laser wavelengths, namely 393 nm and 786

nm, we obtained high quality data with rich KER structures. Furthermore, we proposed

plausible pathways at low, intermediate and high laser intensities for a few peaks in the

KER spectra. However, to further confirm the proposed pathways, one needs to obtain
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accurate transition dipole moments as well as the potential energy curves. In particular,

obtaining potential energy curves that lead to the C+O+ channel would open the door to

study the dissociation of CO+ into both channels. In addition, one can extend the mea-

surements by changing the laser pulse duration, e.g. (1) use 5 fs pulses at 786 nm produced

in a hollow-core fiber, and (2) use transform limited 393 nm laser pulses. These additional

measurements may provide more information on the dissociation dynamics.
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Chapter 4

Three-body fragmentation of CO+
2

into C++O++O+ in a strong laser
field

4.1 Introduction

Carbon dioxide, CO2, is a linear triatomic molecule that is important in our atmosphere as a

product of photochemical processes [43] as well as playing an essential role in the carbon cy-

cle [44]. In both the laser and collisions fields, numerous experimental and theoretical works

have been conducted to study this molecule. In this chapter, we focus on the fragmentation

of CO+
2 into C++O++O+.

In strong field studies, Hishikawa et al. [45] used 100 fs laser pulses at 795 nm and

measured the fragmentation of CO2 molecules. They claimed that the structural deforma-

tion of the molecule is caused by the strong laser field based on the measurements of the

C++O++O+ channel. In order to confirm that claim, Sato et al. [46] calculated the poten-

tial energy surfaces of neutral, cation and dication CO2 and concluded that the observed

structural deformation of the CO3+
2 is due to the bending motion during the propagation on

a CO2+
2 surface before the system absorbs more energy to reach the repulsive CO3+

2 surface.

The propagation on a CO2+
2 surface was reported to be on a 90 fs time scale. However,

recently, Bocharova et al. [47] and Wu et al. [48] studied the channel with shorter laser

pulses. Bocharova et al. [47] used laser pulses with various pulse durations from 7 to 200 fs
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at a laser intensity of 1014 W/cm2 and observed that the KER of the C++O++O+ channel

always peaks at 21 eV. Wu et al. [48] used a 24 fs pulse at 1×1015 W/cm2 and claimed

that the geometrical structure of CO3+
2 is very close to linear, i.e. the structure of the

CO2 molecule before laser irradiation. Furthermore, Wu et al. [48] claimed to distinguish

the sequential breakup process in the C++O++O+ channel, where a CO3+
2 ion breaks into

CO2++O+ followed by unimolecular dissociation of the rotating metastable CO2+, from the

nonsequential process, where all fragments in the C++O++O+ channel break up simulta-

neously. Wu et al. [48] used the energy correlation between the two O+ fragments in the

C++O++O+ channel, see Figure 4.1(a), to separate the nonsequential (outside red line) and

sequential breakup (within red line) events. Panels (b) and (c) show the Newton diagrams

of nonsequential and sequential breakup events, respectively. In panel (c), the area within

the circular red-dashed lines presents proof of the rotating intermediate CO2+.

Figure 4.1: (a) Correlation between the two O+ energies in the C++O++O+ channel. (b)
Newton diagrams of the C++O++O+ channel for nonsequential events and (c) for sequential
events. The reported laser profile: 800 nm, 24 fs linearly polarized laser field at an intensity
of 1× 1015 W/cm2. Adapted from reference [48].

In collision studies of the CO2 molecule, Neumann et al. [49] conducted measurements

on the fragmentation of CO3+
2 after multiple electron capture from a CO2 molecule by a 3.2

KeV/u Ar8+ ion. They claimed that the fragmentation of CO3+
2 contains sequential and

direct as well as asynchronous processes, where the bonds of the molecular ion break when

the geometry of the molecule is asymmetric.
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In this chapter, we discuss our investigations of three-body breakup of CO+
2 ions into

C++O++O+ in intense femtosecond laser pulses. Specifically, we focus on symmetric and

asymmetric breakup of the CO3+
2 ion. Initially, a CO+

2 ion beam target is ionized by a

linearly polarized 26 fs intense laser pulse centered at a wavelength of 786 nm with a peak

intensity of 6.5×1015 W/cm2. Using the coincidence 3D momentum imaging technique, all

the measured two- and three-body fragmentation channels were identified [see Figure 4.2].

Figure 4.2: Coincidence TOF map for (a) two- and (b) three-body fragmentation of CO+
2

induced by 26 fs linearly polarized laser pulses with a peak intensity of 6.5×1015 W/cm2;
Note: in panel (a) individual two-body channels are gated on the CM momentum, and in
(b) each three-body channel is gated on the TOF (see 2.11) in order to separate real events
from random coincidences.

As opposed to most studies that used neutral CO2 as an initial target [45, 47–49], we

used a CO+
2 ion beam target to study the fragmentation. Our results show that the frag-

mentation of CO3+
2 involves symmetric and asymmetric breakup. In symmetric breakup,

two O+ fragment momenta in the molecular frame are similar in size, while in asymmetric

breakup, one O+ obtains much larger momentum compared to the other O+. Furthermore,

we introduce a new method to separate the symmetric breakup events from asymmetric

breakup.
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4.2 Symmetric and asymmetric breakup of CO+
2 into

C++O++O+

Using the experimental method described in Chapter 2, three-dimensional momentum vec-

tors of the fragments in the C++O++O+ channel, namely PC+ , PO+
(1)

and PO+
(2)

, are eval-

uated. Two distinct breakup mechanisms can be introduced to understand the dissociation

of the CO3+
2 ion, namely symmetric and asymmetric breakup of the C++O++O+ channel.

In symmetric breakup, both C-O bonds stretch equally, while in asymmetric breakup,

one C-O bond stretches more than the other. In order to distinguish these two scenarios,

we use the measured momentum vectors of the three fragments, shown in Figure 4.3, and

define two new momentum vectors, namely P sum and Pdiff, as

Psum = PO+
(1)

+ PO+
(2)

(4.1)

Pdiff = PO+
(1)
−PO+

(2)
. (4.2)

Figure 4.3: (a) Symmetric breakup for which |PO+
(1)
| ≈ |PO+

(2)
| and (b) asymmetric breakup,

for which |PO+
(1)
| � |PO+

(2)
| (the choice of 1st and 2nd for the O+ fragments is arbitrary).

In Figure 4.3, the momentum vectors are in the molecular frame where,

PC+ + PO+
(1)

+ PO+
(2)

= 0 (4.3)

due to conservation of momentum.

Using the angle between momentum vectors P sum and Pdiff, α, shown in Figure 4.3, we

define symmetric breakup events as those with α close to π/2, while asymmetric breakup
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events are the ones for which α is far from π/2. The expression for cosα is

cosα =
Psum ·Pdiff

|Psum||Pdiff|
. (4.4)

Figure 4.4 presents the cosα distribution for all events, and the dominant breakup happens

when α = π/2. Figure 4.5 presents an example of separating the symmetric and asymmetric

breakup events by setting gates on the angular distribution of cosα.

Figure 4.4: The number of C++O++O+ breakup events as a function of cosα. Symmetric
breakup: events within the two red dashed lines. Asymmetric breakup: events outside the
red dashed lines. (preliminary results).

Figure 4.5(a) shows the Dalitz plot for all C++O++O+ events. By extracting events

within and outside of the gates set on Figure 4.4 (red dashed lines), we get symmetric and

asymmetric breakup events in panel (b) and (c), respectively.

Figure 4.5: Dalitz plot of the C++O++O+ channel: (a) all events, (b) symmetric breakup:
|cosα| < 0.4, and (c) asymmetric breakup: |cosα| > 0.4.
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Using the Dalitz plots generated after setting cosα gates for symmetric and asymmetric

breakup events, we can study, e.g., the kinetic energy of the C+ fragment with respect to

the total KER by projecting Figure 4.5(b) onto its vertical axis [see Figure 4.6].

Figure 4.6: The yield of C+ fragments as a function of the relative energy with respect to
the total KER of the C++O++O+ channel undergoing symmetric breakup.

One can see from Figure 4.6 that the three-body breakup happens predominantly when

EC+ ≈ 0 and the yield decreases discontinuously when the energy of C+ relative to the total

KER of the C++O++O+ channel increases. Although further investigation is needed to

understand this phenomenon, this example shows that the method of using cosα gates to

separate symmetric and asymmetric channels can be useful to provide further information

on the three-body breakup dynamics of C++O++O+.
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Chapter 5

Summary and outlook

To summarize, in this master’s report we used a coincidence 3D momentum imaging tech-

nique to study the interactions of femtosecond laser pulses with molecular ion beams, specif-

ically, CO+ and CO+
2 . The main goal in our studies is to understand the underlying frag-

mentation dynamics of ionic targets.

In the study of the dissociation of CO+ in intense ultrafast femtosecond laser pulses,

we discovered that at low laser intensities (3 × 1012 W/cm2), dissociation of the system

most likely starts from the quartet state a4Σ+ and ends on the 14Π electronic state. The

absorption of one photon at 393 nm or 786 nm from a few specific vibrational states matches

some peaks in the measured KER spectrum. However, it is unclear why other vibrational

states do not contribute. Further structure information is needed to resolve this issue. When

the laser intensity is increased to 3 × 1015 W/cm2, the system can absorb more photons,

thus the doublet electronic state A2Π, which has a deep potential well, contributes to the

dissociation process. The KER spectrum measured for the C++O channel at high laser

intensities is the convolution of processes contributed from low, medium and high laser

intensities because of intensity averaging.

We also studied the three-body breakup of CO+
2 into C++O++O+, and preliminary re-

sults are presented. The analysis method of three-body fragmentation channels is described,

and a method to separate symmetric and asymmetric breakup events is introduced. Specif-

ically, we use the angle between Psum and Pdiff momentum vectors to distinguish between
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these two breakup scenarios.

In addition, we introduced a reflective telescope setup to achieve higher intensity UV

laser pulses as a technical improvement of our experimental method. By implementing this

reflective telescope, the conversion rate of UV light generation through a BBO crystal is

increased by a factor of about 1.5. Moreover, a higher laser intensity of 3× 1015 W/cm2 is

reached at the central wavelength of 393 nm with a bandwidth of 7 nm.

In addition, we studied the position dependence of timing signals picked off of a MCP

detector. We discovered a wide time spread of 280 ps through the entire surface of our MCP

detector. This study and its findings are described in a publication from our group, which

is embedded at the end of Chapter 2.

In both the study of CO+ dissociation and three-body fragmentation of CO+
2 , there is

plenty of future work that can be conducted in order to better understand their fragmenta-

tion mechanisms. For CO+, by obtaining more complete structure calculations which include

dipole transition moments between essential electronic states, one can extend the study and

find possible pathways for KER peaks that are unknown. Furthermore, the other dissocia-

tion channel C+O+ can also be studied once the relevant potential energy curves, which are

lacking in the current literature, are computed. In the study of three-body fragmentation

of CO+
2 , using laser pulses with higher repetition rates, e.g PULSAR at 10 kHz, can provide

greatly improved statistics, thus opening the door to explore three-body breakup channels

with low dissociation rates, e.g. C++O+O.
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