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Abstract

Spanning trees have been studied as combinatorial objects for a long time. However,

they have found great use in other disciplines recently. Disjoint spanning trees are important

in fault-tolerant broadcasting or load-balancing communication systems in interconnection

networks. For instance, providing completely independent spanning trees (pairwise edge-

disjoint and internally disjoint spanning trees) guarantees uninterrupted service. Completely

independent spanning trees were introduced by T. Hasunuma and then have been studied

on different classes of graphs. The problem to determine whether there exist two completely

independent spanning trees in a graph G is NP-hard. In this context, one may aim to

construct spanning trees that collide as little as possible. This problem has been studied

by Albin, Poggi-Corradini, et al.. Here we think of spanning trees of a graph as random

variables and we aim to find a probability mass function (pmf) that minimizes the expected

overlap of two random spanning trees.

We study the minimum expected overlap problem for a special class of graphs. We

provide a necessary and sufficient condition for a homogeneous graph to admit optimal

weights. Given an unweighted graph G, this entails obtaining a weighted graph on the

same vertex-set so that the weighted uniform spanning tree pmf is optimal for the minimum

expected overlap problem. We use the maximum entropy problem to show this result and

apply gradient descent method for the dual objective function to find the optimal weights.

In addition, we show that the objective function of the minimum expected overlap prob-

lem is quasiconvex in each coordinate. Essentially, we show that there is a unique minimizer

which allows us to introduce convergent algorithms to compute the optimal weights.
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Chapter 1

Introduction

Given a graph G, we consider a minimization problem over the set of probability distri-

butions defined on the family of spanning trees of G, where the objective function is the

expected pairwise overlap of identically distributed independent spanning trees. As we know

the optimal solution for the minimum expected overlap problem exists and can be computed

by using the hierarchical structure of non-homogeneous graphs. This entails decomposing

any non-homogeneous graph into its homogeneous components. Then, to compute the op-

timal pmf for the original graph, one may couple the optimal pmfs for the homogeneous

components. Moreover, the spanning tree modulus algorithm can be applied to find the

optimal pmfs. In this dissertation we discuss the minimum expected overlap problem for

homogeneous graphs. This, in a way, is the next step to constructing an optimal pmf for

any non-homogeneous graph, as, essentially, homogeneous graphs are the building blocks

for constructing an optimal pmf for any graph. We will provide the precise definition of

homogeneity of graphs in this context, in the section below.

It is known that any finite multigraph with no self loops has a vertex-induced proper

subgraph with the property that every spanning tree of the original graph that is in the

support of an optimal pmf restricts to a spanning tree on that subgraph [1]. This special

subgraph is called a homogeneous core of a graph. Homogeneous cores are the densest

subgraphs of the graph. Graphs that are at least as dense as all their subgraphs are called
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homogeneous. Given a non-homogeneous graph, one can identify its densest subgraph fairly

cheaply, and then perform a process called deflation, which entails shrinking the homogeneous

core into a single vertex. The resulting graph is called a quotient graph. One may apply

this technique repeatedly to extract the densest subgraphs from each quotient graph arising

at each step of deflation. Iterating this process yields a deflation sequence which allows us

to decompose any non-homogeneous graph into its homogeneous components. It is known

that to construct an optimal pmf for a non-homogeneous graph one may couple the optimal

pmfs for the homogeneous components. Therefore, understanding the construction of the

optimal pmfs on homogeneous graphs is essential. As the densest subgraph problem can be

solved in polynomial time, the core decomposition allows us to obtain a more efficient way

of constructing optimal pmfs for the minimum expected overlap problem.

We categorize homogeneous graphs according to denseness. If a homogeneous graph

contains a subgraph with the same denseness, then we call such a graph reducible, otherwise

it is called irreducible. This setting allows us to expand the definition of the deflation process

to homogeneous reducible graphs. As a result, one may split a homogeneous reducible graph

into its homogeneous irreducible components. Similarly, in this case the optimal measure on

a homogeneous graph can be constructed by coupling the optimal measures on its irreducible

components. Thus, to find an optimal measure for a homogeneous graph, one may couple

the optimal measures on irreducible components. This statement leads to the question - how

do we construct an optimal pmf for a homogeneous irreducible graph?

We classify spanning trees based on the criterion if they are supported by an optimal

pmf or not. The trees that are in the support of an optimal measure are called fair trees.

Naturally, we are interested in generating all such trees. There are various fast algorithms

that generate uniform spanning trees. We aim to discuss conditions on graphs which would

allow us to generate fair trees by using these algorithms.

Precisely our contributions are as follows:

Contributions

• Given a homogeneous graph, we provide a necessary and sufficient condition for the
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existence of a weighted uniform spanning tree (WUST) that is optimal for MEO prob-

lem.

– Our proof relies on solving the maximum entropy problem over the set of optimal

pmfs for the MEO problem.

– This allows us to represent our problem as a convex optimization problem.

– We can compute the optimal weights by applying gradient descent method for

the dual problem of the maximum entropy problem.

• We show that the objective function of MEO problem is quasiconvex in each coordinate

for homogeneous irreducible graphs.

– We use Kirchhoff’s classical result about the weighted uniform spanning trees and

the edge-usage probabilities to translate the MEO problem into the language of

effective resistances.

– This transition allows us to represent the objective function via the pseudo-inverse

of the Laplacian of the graph. Finally, we provide algorithms that generate the

optimal weights.

1.1 Minimum expected overlap problem

Let G = (V,E) be a finite, connected multigraph with no self-loops, with vertex set V and

edge set E. Let µ be a probability mass function (pmf) defined on the family of spanning

trees of G, which we denote by ΓG. The optimal choice of µ allows us to construct spanning

trees that on average collide as little as possible. Let T ∈ ΓG be a spanning tree of G and let

N be a |ΓG| × |E| matrix with entries N (T, e) = 1{e∈T}. In this context, we introduce the

edge-usage probability which measures how likely it is that a µ-random tree uses a particular

edge e ∈ E :

η(e) = Pµ(e ∈ T ) =
∑
T∈ΓG

N (T, e)µ(T ).

3



The expected overlap of two iid random spanning trees can be computed as follows (see

3.1.1):

Eµ(T ∩ T ′) =
∑
e∈E

Pµ(e ∈ T )2.

As we will see in Section 3.1, the minimization problem of the expected overlap of two

random independent identically distributed spanning trees can be reduced to the problem of

minimizing the variance of the edge-usage probabilities for a given graph G = (V,E). Since

the number of edges is always the same for all spanning trees of G, and is equal to |V | − 1,

one may use this fact to show that solving the MEO problem is equivalent to solving the

following fairest edge-usage (FEU) problem

minimize Var(η)

subject to Pµ(e ∈ T ) = η(e) e ∈ E.

Therefore, if there is no discrepancy in utilization of edges between any pairs of µ-random

trees, then µ minimizes their collision on average as well. That being said, we introduce

a class of graphs for which it is possible to select trees so that they all use the edges of

the graph fairly. We call such graphs homogeneous graphs. It is known that every graph

can be partitioned into homogeneous components. Moreover, the optimal measure can be

decomposed into the optimal measures on homogeneous components. In a way, homogeneous

graphs are building blocks for constructing an optimal measure. If G is homogeneous, then

the edge-usage probabilities are the reciprocal of the denseness of the graph which is the

following quantity:

θ(G) =
|E|
|V | − 1

.

Essentially, it tells us how dense or sparse the graph is. If a homogeneous graph has a

vertex-induced, connected subgraph with the same denseness (homogeneous graphs with
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such property are called reducible, if there is no such subgraph, then we call the graph

irreducible), then we partition it until we are left with irreducible components. The optimal

measure on a homogeneous graph can be decomposed into the optimal measures on its

irreducible components. Thus, to find an optimal measure for a homogeneous graph, one

may couple the optimal measures on irreducible components (see Theorem 3.4.2). We desire

to generate spanning trees that are in the support of an optimal measure (we call such trees

fair trees since they use the edges of the graph fairly).

1.2 Weighted uniform spanning trees

The theory of random walks lies behind many algorithms that generate uniform spanning

trees (UST). A weighted uniform spanning tree is a random spanning tree arising, as a union

of first-visited edges, from a weighted random walk on a weighted graph G = (V,E, σ), where

σ ∈ RE≥0, or equivalently, a random tree T with probability µσ(T ) proportional to its weight:

∏
e∈T

σ(e).

Wilson’s algorithm (1996) [40] gives rise to a random spanning tree that has distribution

µσ. It uses the notion of loop erasure of a path which had been studied by Lawler in the 1980’s.

We would like to use Wilson’s algorithm to generate fair trees for a weighted homogeneous

irreducible graph. Having in mind this option, we consider the following MEO problem for

a weighted graph:

minimize
∑
e∈E

Pµσ(e ∈ T )2

subject to σ ∈ RE≥0, µσ ∈ P(Γ)

In Chapter 4 (see Theorem 4.4.8), we will show the following.

Theorem 1.2.1. A homogeneous graph G is irreducible if and only if there exists σ such

that the WUST µσ is optimal for the MEO problem.
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In Chapter 2, we recall Kirchhoff’s result which establishes a connection between the

edge-usage probabilities and the effective resistances on edges for electrical networks with

edge-conductances given by σ, i.e., if e = {x, y} ∈ E, then

Pµσ(e ∈ T ) = σ(x, y)Reffσ(x, y).

Therefore, we are concerned with the following objective function in σ.

E(µσ) =
∑
e∈E

Pµσ(e ∈ T )2 =
∑
e∈E

σ(x, y)2Reffσ(x, y)2,

where we refer to E(µσ) as the energy of µσ.

We compute the effective resistance between s and t by the following formula :

Reff(s, t) = (δt − δs)TL+(δt − δs),

where L+ is the pseudo inverse of the Laplacian of the graph and δi is the i-th unit vector.

To solve the optimization problem we apply rank-one update for the Laplacian.

1.3 Algorithms

In Chapter 5 we discuss algorithms that generate optimal weights for the weighted MEO

problem. Both of the algorithms update the weights on edges based on theoretical analysis

done for the optimal α (see section 5.5). The first algorithm is based on a coordinate descent

method. We start out with initial weights, then update the weight on each edge optimally

one at a time until the change in energy is sufficiently small.

The second algorithm is based on the argument of equalizing per-edge effective resis-

tances. This entails selecting the edge with the smallest per edge effective resistance and

updating it optimally. Finally, we record the change in energy and stop the process when it

is sufficiently small.

6



Chapter 2

Uniform spanning trees

A tree is a connected graph without cycles. Given a connected graph, a spanning tree is

a subgraph that is also a tree and contains every vertex of the given graph. We will be

discussing random spanning trees of finite connected graphs in this chapter. A given graph

may have a large number of spanning trees. How do we select one uniformly at random ?

In section 2.2 we will discuss algorithms that generate uniform spanning trees. But first in

section 2.1 we give a more formal definition of a uniform spanning tree as a special case of

a weighted uniform spanning tree which, too, will be discussed in section 2.1.

2.1 Weighted uniform spanning trees (WUST)

Let G = (V,E, ω) be a finite connected graph with weights ω. We consider the family of

spanning trees on G. We think of spanning trees as random variables with distribution µ.

Definition 2.1.1. We say that T is a weighted uniform spanning tree (WUST) if it is a

random tree with distribution proportional to its weight, i.e.,
∏
e∈T

ω(e). More formally,

µω(T ) =

∏
e∈T

ω(e)∑
T ′∈ΓG

∏
e∈T ′

ω(e)
.

7



Remark 2.1.2. In case when ω(e) = 1 for all e ∈ E, T is a uniform spanning tree.

In other words, we are considering the set of spanning trees of a given graph G. Then

we choose one of them at random with probability equal to the reciprocal of the size of that

set. This random choice of T makes it a uniform random spanning tree.

2.2 Generating uniform spanning trees (UST)

We can classify the algorithms generating Uniform Spanning Trees into two main categories

- random walk-based algorithms and determinant-based algorithms. The earliest algorithms

are based on Kirchhoff’s well-known Matrix-Tree theorem, which allows us to compute the

number of spanning trees of a given graph by computing the determinant of a submatrix

of the Laplacian of that graph. The running time of the first such algorithm is O(mn3).

Even though this result had been improved over the years, random walk-based algorithms

are known to generate uniform spanning trees faster. Therefore, we will discuss them in

more detail in this section. More details about the algorithms can be found in [24].

2.2.1 Aldous-Broder algorithm

The expected running time for Aldous-Broder (1989) algorithm is O(nlogn) for each gen-

erated tree for almost all graphs, and O(n3) for the worst graphs. The simulation of the

simple random walk on a connected undirected graph allows us to generate a spanning tree

uniformly at random. Here is how the algorithm works.

Aldous-Broder Algorithm

1. Simulate a simple random walk on a graph G = (V,E) starting at an arbitrary vertex

v0 until we visit all vertices. For every vertex vi ∈ V \v0 keep record of the edge (vj, vi)

which allows us to visit vi for the first time.

2. Output the resulting collection of edges.

Aldous and Broder showed independently that this method gives rise to a uniform span-

ning tree. The expected running time of this algorithm is the cover time of the simple
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random walk. It is known that for any connected graph the expected cover time is O(n3) [4].

However it was shown that if the second eigenvalue (algebraic connectivity of the graph) of

the adjacency matrix (transition probability matrix for the simple random walk) is bounded

above by 1, then the cover time is O(n log n) [10]. This condition is true for almost every

graph (Erdös-Rényi Gn,p with p > c log n/n) [19], and for almost all d−regular graphs [9],

[18].

2.2.2 Wilson’s algorithm

Wilson’s algorithm (1996) is the fastest method known for generating uniform spanning

trees. The expected running time of this algorithm is proportional to the mean hitting time

of the simple random walk. At the heart of this algorithm lies the idea of a loop erasure of

a path coined and developed by Lawler in 1980.

Let P be a finite path < x0, x1, ..., xl > in G. We obtain a loop erasure of P : LE(P) =<

u0, u1, ..., um > by erasing cycles in P in the order they appear. More formally, let u0 = x0.

If xl = u0, we set m = 0 and terminate the process. Otherwise, we set u1 be the fist vertex

in P after we visit x0, i.e., u1 = xi+1, where i = max{j : xj = x0}. If xl = u1, we set m = 1

and we terminate the process. Otherwise, we let u2 be the first vertex in P after the last

visit to u1, and so on. Wilson’s algorithm creates a sequence of trees by loop-erasing the

paths until we uncover a spanning tree. Wilson has shown that this method gives rise to

a uniform spanning tree [40]. Let r be any vertex from V. We enumerate the vertices from

V \{r}. Let T (0) := {r}, then we obtain T (1) by picking a vertex vj at random from V \{r}

and run a loop-erased random walk until we hit T (0), i.e., we append the loop-erasure of the

path arising from a simple random walk starting at vj till we hit T (0), to T (0). Now assume

T (i) is known. Then T (i + 1) = T (i) ∪ LE(path from vi+1 to T (i)). More formally, we will

have

1. T (0) := {r}, < v1, ..., vn−1 >= V \ {r}.

2. Suppose T (i) has been generated.
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Figure 2.1: Wilson’s Algorithm applied to a 3 by 3 grid

3. Start a random walk at vi+1 and stop when it hits T (i).

4. T (i+ 1) = T (i) ∪ LE(path from vi+1 to T (i))

2.2.3 Wilson’s algorithm for grids

In this section we illustrate Wilson’s algorithm on an example for a 3 by 3 grid as in Figure

2.1. First, we enumerate the vertices of the grid. We start a random walk from a randomly

selected vertex colored red until we hit the vertex colored blue and we loop erase it to form

T (1). Essentially, T (1) = LE path (red→ blue). Similarly, we run a random walk from the

next selected vertex until we hit T (1), then we loop erase the walk and append the resulting

path to T (1). Thus forming a new loop-erased path T (2). We continue this process till we

uncover a tree. As we have discussed in the previous section this method gives rise to a

uniform spanning tree.

2.3 Electrical networks and WUST

In this section we will briefly discuss electrical circuit theory. Given a resistor network we

can present it as a graph with current sources as vertices and conductances as edge-weights.

In section 2.3.1 we define flows and effective resistance on graphs. Then we discuss the

connection between the effective resistance of the graph and the Laplacian in section 2.3.3.

Finally, we discuss Kirchhoff’s theorem which establishes a connection between uniform

spanning trees and effective resistances of graphs.
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2.3.1 Electrical current flows and effective resistance

Let G = (V,E) be a finite simple graph with vertex-set V and edge-set E. Choose an

orientation on each edge, and call the oriented edge-set ~E. Also let Ê = ~E ∪ ~ER, where ~ER

is the set of edges with the opposite orientation of ~E.

Definition 2.3.1. Let s and t be two different nodes on G so that s is the source and t is

the sink. A flow from s to t is a function f : Ê → R such that

(i) f is antisymmetric : f(x, y) = −f(y, x).

(ii) f satisfies the node law: For every x ∈ V \ {s, t}

Divf (x) :=
∑
y∼x

f(x, y) = 0.

Definition 2.3.2. The value of a flow from s to t is

Val(f) := Divf (s)

Given a flow from s to t and some edge-resistances r(e) > 0 for e ∈ E, let the energy of

the flow be

E(f) =
∑
e∈E

r(e)|f(e)|2.

We denote the minimum energy among all flows from s to t of value 1 by E∗. It is known

that if f is a unit current flow from s to t with potential h ,then

E∗ =
∑
e∈E

r(e)|f(e)|2 = h(t)− h(s).

If we replace the whole network by a single edge ê with resistance R between s and t , but

we keep the unit flow and the potential difference as before ,then R would have to satisfy :

R(ê)|f(ê)|2 = R(ê) = h(t)− h(s).
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R1

R3

R2

R4

Figure 2.2: Square: Electrical Circuit Interpretation

We call R the effective resistance of the network from s to t and write Reff(s, t).

Here we discuss an example of a square as an electrical circuit as in Figure 2.2. We

assume R1 = R2 = R3 = R4 = 1. Then the parallel and serial rules imply

Reff(e1) =
R1R2 +R1R3 +R1R4

R1 +R2 +R3 +R4

=
3

4
.

2.3.2 Potential function and electrical circuits

Alternatively, one may approach the electrical circuit theory by starting out from defining a

potential function. In this section we will adopt this method.

Let G = (V,E) be a finite graph with no loops or multiple edges. Let c : E → (0,∞) be

a weight function on the edges. G is an electrical network with the edge conductances given

by function c.

Definition 2.3.3. Given a source s and a sink t in an electrical network, the voltage h

between s and t is a harmonic function on V \ {s, t}, i.e., for any x ∈ V \ {s, t}

h(x) =
∑

y∈V \{x}

h(y)p(x, y),

Moreover, we define h(s) = 0 and h(t) = 1.

To continue evolving the story we want to share, we would like to present the connection

between finite Markov chains and electrical networks, first.

12



Definition 2.3.4. A sequence of random variables (X0, X1, ...) is a Markov chain with state

space Ω and transition matrix P if for all x, y ∈ Ω, all t ≥ 1, and all events Ht−1 = ∩t−1
s=0{Xs =

xs} satisfying P (Ht−1 ∩ {Xt = x}) > 0, we have the following Markov property

P{Xt+1 = y | Ht−1 ∩ {Xt = x}} = P{Xt+1 = y | Xt = x} = P (x, y).

Electrical networks provide an alternative language for reversible Markov chains. We will

consider a weighted random walk on the nodes of the network.

Definition 2.3.5. Given a graph G = (V, c(E)), simple random walk on G is the Markov

chain with state space V and transition matrix

P (x, y) =


c(x,y)∑

z∼x
c(x,z)

if y ∼ x

0 otherwise

In addition, in this section, we will be referring to irreducible Markov chains.

Definition 2.3.6. A chain P is called irreducible if for any two states x, y ∈ Ω there exists

integer t such that

P t(x, y) > 0.

To show the existence and uniqueness of the potential function we will refer to the

following theorem.

Theorem 2.3.7. Let (Xt) be a Markov chain with irreducible transition matrix P, let B ∈ Ω,

and let hB : B → R be a function defined on B. The function h : Ω → R defined by

h(x) = Ex(hB(XτB)) is the unique extension h : Ω → R of hB such that h(x) = hB(x) for

all x ∈ B and h is harmonic for P at all x ∈ Ω \B.

Below we provide the formal definition of a hitting time .

Definition 2.3.8. Given a Markov chain with state space Ω, the hitting time τB of a subset

B ∈ Ω is the first time the chain visited one of the nodes in B. If (Xt) is a random walk, the
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hitting time of B is given by

τB := min{t ≥ 0 : Xt ∈ B}.

2.3.3 Laplacian of a graph

In the previous section we discussed the transition matrix of a weighted random walk. In

this section we discuss a different matrix associated with any graph G = (V, c(E)). Here, we

provide definitions for the Laplacian matrix and the pseudo-inverse of the Laplacian.

Let c : E → R>0 be edge-conductances for G. The Laplacian L : V × V → R is defined

as follows:

L(x, y) =


C(x) =

∑
z∼x c(x, z) x = y

−c(x, y) x 6= y

Let h : V → R be a vector in RN . Then we can apply Laplacian operator to h which yields

the following formula for Lh(x) for x ∈ V :

(Lh)(x) =
∑
y∈V

L(x, y)h(y) = C(x)h(x)−
∑
y∼x

c(x, y)h(y).

The spectrum of the Laplacian matrix of a graph plays a vital role in analysis of its topo-

logical characteristics such as minimal cuts, clustering and the number of spanning trees [6].

Moreover, the pseudo-inverse of the Laplacian has found great use in many fields such as

probability and mathematical chemistry, collaborative recommendation systems and social

networks, epidemiology and infrastructure planning [17, 25, 27, 29, 33, 35, 42].

Despite its theoretical high importance, in practice the computation of the pseudo-inverse

of a Laplacian is costly. Typically, it takes O(n3) computational time to compute it by apply-

ing standard matrix factorization and inversion based methods. For instance, for dynamic

time-evolving graphs with many vertices, such as online social networks, this computational

complexity is undesirable. However, there has been an improvement for this time if one

inherits a divide-and-conquer algorithm based approach introduced in [36]. The divide oper-
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ation in this case requires determining an arbitrary bi-partition of a graph - a cut of a graph

that consists of exactly two connected components resulting from a deletion of k edges. The

computational complexity is O(k · n2) in this case.

It is known that the Laplacian is a symmetric and positive semi-definite matrix. Partic-

ularly, it has real and non-negative eigenvalues, hence they can be ordered as 0 ≤ λ1 ≤ ... ≤

λN . Let uj be the orthonormal basis for L. Then we can write L as follows:

L =
N∑
j=2

λjujuj
T .

The pseudo-inverse of L can be defined as follows when λ2 > 0:

L+ =
N∑
j=2

1

λj
ujuj

T .

Theoretically, one may compute L+ through a straight-forward approach by an inversion

of its non-zero eigenvalues. In practice, one may use singular value decomposition (SVD)

based method, which is fairly expansive as it generates the pseudo-inverse in O(n3) computa-

tional time. Alternatively, one may use a rank-one perturbation of L for a simple, connected,

undirected graph, which makes it invertible, hence allows us to compute L+ as in [36].

2.3.4 Pseudo-inverse of the Laplacian and the effective resistance

There is an interesting analogy between graphs and resistive electrical circuits [17, 29, 16].

For instance, the effective resistance distance has many rich applications [17, 29]. In addition,

it determines the expected length of random commutes between node pairs in the graph

[11, 39]. Particularly, below we provide the formula connecting the effective resistance of a

graph with the pseudo-inverse of a Laplacian.

Let L+ = {l+ij}ni,j=1, then the effective resistance of the graph G can be computed as

follows:

Reff(x, y) = l+xx + l+yy − 2l+xy. (2.3.1)
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In other words, we may often write this statement as follows. Let δi be the i-th unit vector.

Let u = δy−δx for some x, y ∈ V. Then the effective resistance from x to y can be represented

as :

Reff = uTL+u.

2.3.5 Kirchhoff’s theorem

Finally, we discuss Kirchhoff’s theorem [26] (1847) in this section.

Theorem 2.3.9. Let G = (V,E, ω) be a graph where we think of the edge-weights ω as

edge-conductances c. Then for a given edge e ∈ E the weighted uniform spanning trees are

connected with effective resistances by the following formula:

Pµω(e ∈ T ) = c(e)Reff(e),

where the left hand side represents the edge-usage probability which measures the likelihood

of e appearing in a weighted uniform spanning tree. Particularly, we can define it as follows

Pµω(e ∈ T ) =
∑
T∈ΓG

µω(T )N (T, e),

where N (T, e) = 1T (e) is the indicator function.

More detailed explanation for this result can be found in [31] and [15]. Particularly, if

we compute the edge-usage probabilities in the case of the square as in Figure 2.2, we would

have the following for every e ∈ E

Pµσ(e ∈ T ) =
# of spanning trees that contain e

# of spanning trees
=

3

4
.

Theorem 2.3.10. Let T be a spanning tree chosen uniformly at random from the set of

spanning trees of G. Then the unique solution of the Kirchhoff’s laws with source s and sink
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t, and size 1 is given by

i(x, y) = P(T has the property that the unique path s/t passes along the edge {x, y})

− P(T has the property that the unique path s/t passes along the edge {y, x}).

2.4 Counting spanning trees

In this section we will be discussing various methods to compute the number of spanning trees

of a given graph. In section 2.4.1 we discuss Kirchhoff’s well known Matrix-Tree theorem.

In section 2.4.2 we discuss deletion and contraction of graphs where these operations allow

us to reduce the graph into smaller graphs. Often this leads to obtaining a recursion formula

for the number of spanning trees for the original graph.

2.4.1 Matrix-Tree theorem

In this section we discuss the well-known Matrix-tree theorem. One may find the proofs of

these results in the lecture notes by N. Srivastava [38].

Let A[i] be the matrix A with its i-th column and row removed.

Theorem 2.4.1. For a given graph G with Laplacian LG, the number of spanning trees can

be computed by finding the determinant of a submatrix of the Laplacian.

τ(G) = det(LG[i]).

However, often in literature matrix-tree theorem is associated with spectral representa-

tion of the determinant of the Laplacian via its eigenvalues. Hence, we will discuss this

formulation here as well.

Theorem 2.4.2 ([7]). Let 0 = λ1 ≤ λ2 ≤ ... ≤ λn be the eigenvalues of LG. Then

τ(G) =
1

n

∞∏
i=2

λi.
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Here we consider the example of square with diagonal.

1

2

4

3

The associated Laplacian with this graph would be:

LG =



3 −1 −1 −1

−1 2 −1 0

−1 −1 3 −1

−1 0 −1 2


If we remove the fourth row and column, we will get the following matrix:

LG[4] =


3 −1 −1

−1 2 −1

−1 −1 3


Calculations yield that det(LG[4]) = 8. By Matrix-Tree theorem we conclude that τ(G) = 8,

which could be easily verified by counting.

2.4.2 Deletion-Contraction theorem

We will introduce a few concepts related to counting the number of spanning trees τ(G) for

any graph G. Deletion and contraction are basic graph operations defined as follows.

Definition 2.4.3. Let G be a graph and e ∈ E(G) an edge. The deletion G− e is the graph

obtained by erasing e, leaving its endpoints and everything else intact. The contraction G/e

is obtained by erasing e and merging its endpoints into a single vertex.
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It turns out that deletion and contraction can be used to compute the number of spanning

trees for a graph by removing one edge at a time.

Theorem 2.4.4. If e ∈ E(G) is not a self-loop, then τ(G) = τ(G− e) + τ(G/e).

We desire to compute the number of spanning trees for the N -story House. An N -story

House is formed from an (N − 1)-story House by adding a pavement floor and two vertical

walls at the bottom. In general a floor will be comprised of an horizontal edge and the two

walls standing on top of it on each side. Finally, the triangle at the top is called the roof.

We denote the resulting graph as HN .

Figure 2.3: 3-storey House

We apply Theorem 2.4.4 to the N -story House to compute τ(HN). First we delete and

contract the pavement edge p on the bottom floor. Note that

τ(HN − p) = τ(HN−1),

because the two walls that where connected to the pavement will have to belong to any

spanning tree of HN − p.

On the other hand (HN)/p is a double-roofed graph with N − 1 floors which we denote

by ĤN . It will be useful to keep track of both τN := τ(HN) and δN := τ(ĤN). We have just

shown that

τN = τN−1 + δN . (2.4.1)

19



We now study the double-roofed House ĤN and δN . Again, we apply Theorem 2.4.4 to

an edge e on the bottom roof. As before,

τ(ĤN − e) = τ(HN−1) = τN−1.

However, (ĤN)/e is an (N − 1)-story House H̃N−1 with a double pavement, meaning that

the bottom edge is a multi-edge of multiplicity 2. Therefore, we apply Theorem 2.4.4 one

more time to one of the two bottom edges of H̃N−1 that we call f . On one hand,

τ(H̃N−1 − f) = τN−1.

On the other hand, contracting f gives rise to a double-roofed house ĤN−1 with a self-loop

at the tip of the bottom roof. This self-loop can be removed because it won’t appear in any

spanning tree. Summarizing we have found that

δN = 2τN−1 + δN−1. (2.4.2)

Combining (2.4.3) and (2.4.2) we get the following recurrence:

τN
δN

 =

3 1

2 1


τN−1

δN−1


Note that H1 is the regular House graph, so τ1 = 11, while Ĥ1 is the square with one diagonal,

so δ1 = 8. Iterating N − 1 times we obtain the following equation.

τN
δN

 =

3 1

2 1


N−1 τ1

δ1
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Set

A =

3 1

2 1

 .
We will diagonalize A to compute its powers. We want to write

A = SΛS−1,

where Λ is the diagonal matrix with the eigenvalues of A as diagonal entries. Then, we will

have

AN−1 = SΛN−1S−1.

A computation shows that

S =

1+
√

3
2

1−
√

3
2

1 1

 S−1 =

 1
√

3−1
2

−1 1+
√

3
2

 Λ =

2 +
√

3 0

0 2−
√

3


Therefore AN−1 equals

1√
3

1+
√

3
2

(2 +
√

3)
N−1 − 1−

√
3

2
(2−

√
3)
N−1

(2 +
√

3)
N−1 − (2−

√
3)
N−1

(2 +
√

3)
N−1 − (2−

√
3)
N−1

(1 +
√

3)(2 +
√

3)
N−1 − (1−

√
3)(2−

√
3)
N−1


In particular, τN equals

11
1 +
√

3

2
√

3
(2 +

√
3)
N−1
−11

1−
√

3

2
√

3
(2−

√
3)
N−1

+
8√
3

(2 +
√

3)
N−1
− 8√

3
(2−

√
3)
N−1

(2.4.3)

and when N = 2 we get that τ2 = 41.
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Chapter 3

MEO and FEU problems

In section 3.1 we introduce the MEO and FEU problems. Then we provide a brief summary

of results from [1] in sections 3.2 and 3.3. First we define a new class of graphs where every

edge has equal probability to appear in a random spanning tree chosen with distribution

minimizing the pairwise expected overlap. Then we see that every non-homogeneous graph

has a homogeneous core which solves the densest subgraph problem. In addition, we discuss

a core decomposition called deflation to find the optimal distributions for each homogeneous

core and then couple them to construct an optimal measure for the original MEO problem.

3.1 MEO and FEU problems

Let G = (V,E) be a finite connected graph. Let ΓG denote the family of spanning trees on G,

and T, T ′ be spanning trees in ΓG. The overlap of two spanning trees is |T∩T ′| =
∑
e∈E
N (T, e),

where N (T, e) is the indicator function of e in T. Let P(ΓG) be the set of probability mass

functions defined on ΓG.We say that a random spanning tree is µ-random if it has distribution

µ ∈ P(ΓG), i.e., Pµ(T = T ) = µ(T ). The expected overlap of two µ-random independent
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spanning trees T and T ′ can be computed as follows:

Eµ|T ∩ T ′| =
∑

T,T ′∈ΓG

|T ∩ T ′|µ(T )µ(T ′)

=
∑
e∈E

( ∑
T∈ΓG

µ(T )N (T, e)
)2

= µTNN Tµ

.

(3.1.1)

We desire to find a probability mass function (pmf) that minimizes this overlap. In other

words we aim to solve the following Minimum expected overlap (MEO) problem :

minimize Eµ|T ∩ T ′|

subject to µ ∈ P(ΓG).

This allows us to rewrite the expected overlap in terms of the edge-usage probabilities.

Eµ(T ∩ T ′) =
∑
e∈E

Pµ(e ∈ T )2. (3.1.2)

Let η(e) = Pµ(e ∈ T ). Then

Var(η) = E(η2)− (E(η))2 =
1

|E|
∑
e∈E

(
Pµ(e ∈ T )

)2 −

(
1

|E|
∑
e∈E

∑
T∈ΓG

N (T, e)µ(T )

)2

=
1

|E|
Eµ(T ∩ T ′)−

(
1

|E|
∑
T∈ΓG

µ(T )
∑
e∈E

N (T, e)

)2

=
1

|E|
Eµ(T ∩ T ′)−

(
|V | − 1

|E|

)2

.
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To solve the MEO problem for a given graph it is enough to find η for the FEU problem.

minimize Var(η)

subject to Pµ(e ∈ T ) =
∑
γ∈ΓG

µ(γ)N (γ, e) = η(e) (∀e ∈ E).
(3.1.3)

The set of solutions for MEO problem is non-empty in P(ΓG), since we are minimizing

a quadratic form over a compact set. How do we construct such optimal pmfs? In the

next section we discuss the necessary tools provided in [1] to find such pmfs. As we have

established the existence of such optimal pmfs it would be natural to classify the spanning

trees based on the fact whether they are in the support of an optimal measure or not.

Definition 3.1.1. Spanning trees are called fair if they are in the support of an optimal

measure.

ΓfG = {T ∈ ΓG | ∃ µ∗ ∈ P(ΓG) such that µ∗(T ) > 0}.

If T ∈ ΓG \ ΓfG, then T is called forbidden.

3.2 Homogeneous graphs and denseness ratio

As a result of introducing the FEU problem, it is natural to ask a question how easy would it

be to find graphs where edge-usage probabilities are the same for all edges of a given graph.

This gives rise to studying a new class of graphs where µ-random spanning trees utilize the

edges of the graph fairly.

Definition 3.2.1. A graph G is called homogeneous if there exists optimal µ for the FEU

problem such that Pµ(e ∈ T ) is the same for every edge e. Moreover,

Pµ(e ∈ T ) =
|V | − 1

|E|
.

We call the reciprocal of the ratio above denseness ratio. There are various notions of

density known in the literature. The denseness ratio we define here and will be working with
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in the next sections resembles the average-degree density. More formally, the denseness of a

graph G = (V,E) is the following quantity:

θ(G) =
|E|
|V | − 1

.

For instance, spanning trees have denseness ratio equal to 1, while complete graphs have

denseness ratio equal to |V |/2.

3.2.1 Densest subgraph problem and homogeneous cores

Let H be the family of vertex-induced proper subgraphs of G. We say that H is the densest

subgraph of G, if it solves the following optimization problem:

θ(H) = max
K∈H

θ(K).

It is known that one can detect densest subgraphs for a given graph in polynomial time [22].

There is a linear-programming based approach as well as a linear 2-approximation al-

gorithm that solves the densest subgraph problem [12]. More recently, Bahmani et al. [5]

provided a near-optimal algorithm in MapReduce model of computation. In this paper new

algorithms for finding the densest subgraph in the streaming model have been presented.

For any ε > 0, the algorithms make O((log n)/ log(1 + ε)) passes over the input and find a

subgraph whose density is guaranteed to be within a factor 2(1 + ε) of the optimum.

Due to the usefulness of dense components, it is generally accepted that their existence

is a rule rather than the exception [34]. Below we consider a dense subgraph with a special

property defined as follows.

Definition 3.2.2. Let H ⊂ E be a subgraph of G, we say H has restriction property if

every fair tree T ∈ ΓfG restricts to a spanning tree of H.

Definition 3.2.3. Let H ∈ H be a homogeneous subgraph of G with restriction property.

We call H a homogeneous core of G.
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The homogeneous core of a given graph is the densest subgraph of that graph. Theorem

5.9[1] in conjunction with Corollary 5.10 [1] provide a proof for this. In addition, it is known

that every graph contains a homogeneous core (Theorem 5.2[1]).

3.3 Deflation and serial rule

In this section we discuss a core decomposition process called deflation, which allows us to

decompose a nonhomogeneous graph into homogeneous components. In addition, we will see

that we can construct an optimal pmf for such graphs by coupling the optimal pmfs for each

homogeneous component. The deflation process for a graph G turns its densest subgraph H

into a single vertex. The resulting graph G/H is called a quotient graph . The vertices of

G/H are obtained by identifying all vertices of H in G as a single vertex vH . More formally,

V (G/H) = (V (G) \ V (H)) ∪ {vH}.

The edges in E \H are sent to EG/H , while the edges in H get pruned. To specify the edge

set of G/H we define φ : V (G)→ V (G/H) to be the following map:

φ(x) :=


x x ∈ V (G) \ V (H)

vH x ∈ V (H)

We define the edge set of G/H to be the following set:

E(G/H) = {{φ(x), φ(y)} : {x, y} ∈ E \H}.

Theorem 3.3.1 (Theorem 5.7 [1]). If G is a non-homogeneous graph with homogeneous

core H and G/H is the graph resulting from shrinking H to a one node and eliminating any
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self-loops. Then, a serial rule holds

MEO(ΓG) = MEO(ΓH) + MEO(ΓG/H).

Moreover, an optimal pmf for MEO(ΓG) can be constructed by coupling any two optimal

pmfs for MEO(ΓH) and MEO(ΓG/H) respectively.

One may deflate the resulting quotient graph as well so as to decompose it into a ho-

mogeneous core and a quotient graph. Iterating this process allows us to split the graph

into homogeneous components until we are left with a single vertex. The resulting deflation

sequence gives rise to a more general serial rule, where one can couple the measures on each

homogeneous core to construct an optimal measure for the original graph.

3.4 Homogeneous reducible graphs

As we have seen in section 3.3, homogeneous graphs are the building blocks for constructing

an optimal measure for any non-homogeneous graph. Therefore, it would be natural to

investigate the construction of an optimal measure for homogeneous graphs. To accomplish

this goal, we classify homogeneous graphs based on the denseness of their subgraphs. Let

G = (V,E) be a homogeneous graph. Then for every H ∈ H , θ(G) ≥ θ(H).

Definition 3.4.1. We say that a homogeneous graph G is reducible if there exists a proper

vertex-induced subgraph H of G such that θ(H) = θ(G). Otherwise, we call G irreducible.

Here we show that the deflation process extends to the case of homogeneous reducible

graphs.

Theorem 3.4.2. Let ΓG be the family of spanning trees on a homogeneous graph G = (V,E)

that is reducible with respect to a proper subgraph H. Let G/H be the corresponding shrunk

graph, and let ΓH and ΓG/H be the families of spanning trees on H and G/H respectively.

Finally, let ϕ be the bijection between ψ2(Γ∗) and ΓG/H as in [1, Lemma 5.6]. Then
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1. the following serial rule holds

MEO(ΓG) = MEO(ΓH) + MEO(ΓG/H);

2. a pmf µ ∈ P(ΓG) is optimal for MEO(ΓG) if and only if µ ∈ P(Γ∗) and its marginals

µH and µG/H , are optimal for MEO(ΓH) and MEO(ΓG/H) respectively;

3. conversely, given µH ∈ P(ΓH) and µG/H ∈ P(ΓG/H) that are optimal for their respec-

tive MEO problems, µH ⊕ (ϕ−1
∗ µG/H) is an optimal pmf in P(ΓG) for MEO(ΓG);

4. finally, for any pmf µ ∈ P(Γ∗) with marginals µH and µG/H ,

Pµ(e ∈ γ) =


PµH (e ∈ γH) if e ∈ EH

PµG/H (e ∈ γG/H) if e ∈ EG \ EH

Note that the quotient graph G/H is again homogeneous by Theorem 5.8 [1], so the

deflation process stops once the quotient graph is irreducible.

The main conclusion of this paper is that homogeneous irreducible graphs are building

blocks for the MEO problem on arbitrary graphs and that the MEO probelm on homogeneous

irreducible graphs is solved by WUST.

3.4.1 Examples

Here we describe some examples of small homogeneous graphs. We begin with an irreducible

example.

Example 3.4.3. Consider a square-with-diagonal graph, as in Figure 3.1. As was shown in

[1, Example 2.2], this graph is homogeneous and the uniform pmf is not optimal. Note that

it is also irreducible, since its denseness is 5/3, which is strictly greater than the denseness

of any of its proper vertex-induced subgraphs, e.g. triangles have denseness 3/2 and trees

have denseness 1.
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In particular, the square-with-diagonal graph admits a unique set of weights that yield an

optimal WUST. These weights can be computed by hand using Kirchhoff’s theorem. Indeed,

due to the symmetry, the weights on the four sides of the square will be the same, say a.

Hence, the only other weight is on the diagonal, call it b. Let µσ be the σ-uniform measure

induced by the edge-weights a and b, as in the left-side of Figure 3.1. By Kirchhoff’s theorem

for any edge e:

Pµσ(e ∈ T ) = σ(e)Reff,σ(e).

Thus, we can compute the optimal weights by equalizing the “per edge” effective resistances

for the side edges of the square, with the one for the diagonal. Using the usual serial and

parallel rule, we get that
b

b+ a
=

a

a+ 1
1
a

+ 1
b+a

2

Or, in terms of r := a/b,
1

1 + r
=

1

1 + 1
1+ 1

1
r+ 1

2

Solving for r, we find that r = 2/3. Since µtσ = µσ for any t > 0, we can choose to set a = 2

and b = 3. This computation yields the weighted square with diagonal on the right-side of

Figure 3.1.

a
b

a

a

a

2
3

2

2

2

Figure 3.1: Square with Diagonal and Optimally Weighted Square with Diagonal

Next, we show that the House graph is homogeneous and reducible.
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Example 3.4.4. Let H be the house graph as in left-side of Figure 3.2. The triangle R at

the top of the House graph is called the roof. The two vertical walls in conjunction with the

horizontal pavement form a floor. We consider the set of all spanning trees of H that use

exactly two edges from the roof

Γ̄H = {T ⊂ ΓH | |T ∩R| = 2}.

We observe that, for any T ∈ Γ̄H , we also have |T ∩(H \R)| = 2, since E(T ) = V (H)−1 = 4.

Conversely, note that, picking two edges at random from the roof and two edges at random

from the floor, will always result in a spanning tree for H. Based on this observation, we

conclude that |Γ̄H | = 9. Moreover, this procedure gives rise to the uniform pmf conditioned

on Γ̄H :

µ̄(T ) =


1
9

T ∈ Γ̄H

0 otherwise.

We claim that µ̄ is optimal for H and H is homogeneous. Moreover, H is reducible and Γ̄H

is the family of all fair trees.

Figure 3.2: House, Fair and Forbidden Trees from left to right

Observe that the denseness of H is

θ(H) =
|E(H)|
|V (H)| − 1

=
6

4
=

3

2
.
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Moreover, θ(K) ≤ θ(H) for any vertex-induced subgraph K of H (note that the square

has denseness 4/3). Therefore, H is homogeneous with edge probabilities equal to 2/3.

Furthermore, the roof R also has denseness 3/2, so H is reducible with respect to R.

Homogeneity can also be deduced by computing the edge probabilities of the pmf µ̄

defined above using the deflation method. Indeed, a µ̄-random tree can be constructed

by picking two edges out of three from the roof, then deflating the roof and considering

the quotient graph G/R which happens to be a triangle as well, and picking two edges at

random from there. Since the edges of G/R are in one-to-one correspondence with the edges

of the floor in H, we see that every e ∈ E(H) belongs to exactly 6 out of 9 equally probable

spanning trees.

In particular, this shows that Γ̄H ⊂ ΓfH . To see the other inclusion, assume T ∈ ΓH \ Γ̄H .

Then |T ∩ R| ∈ {0, 1, 3}, however, 0 implies that one vertex is isolated in T , and 3 would

yield a cycle in T . So, we must have |T ∩ R| = 1. In particular, T ∩ (H \ R)| = 3 and

letting T ∗ be the projection of T onto the quotient graph H/R, we see that T ∗ is no longer

a spanning tree. This means that T is forbidden, which proves that Γ̄H = ΓfH .

Next we generalize the House graph and show that there are infinite families of homoge-

neous reducible graphs.

Example 3.4.5. Let HN be the N -story house, which can be constructed inductively as

follows. Let H1 = H, the House graph, and assume we have constructed HN−1, then HN

can be obtained from HN−1 by appending another floor at the bottom. For convenience we

number the floors in reverse order than customary in regular houses, so that the N -th floor

is the last one added, namely the bottom floor. One can check that

θ(HN) =
|E(HN−1)|+ 3

V (HN−1)− 1 + 2
=

3N

2N
=

3

2
.

So HN is also homogeneous and reducible with respect to the roof. Moreover, HN/R = HN−1.

So the deflation process consists of a sequence of N reductions and the fair trees consist

exactly of those that at each stage of the deflation process use exactly 2 edges from the roof.
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As an aside, in this example one can compute |ΓH | and ΓfH exactly and notice that as N

tends to infinite the number of forbidden trees grows much faster than the number of fair

trees.

We modify this example to create an infinite family of 3-regular homogeneous reducible

graphs {GN}∞N=1. Let DN be the double-roofed N -story house, i.e., the N -story house in

conjunction with a extra vertex that is connected with the two vertices on the pavement of

the bottom (N -th) floor of HN . We construct GN by gluing DN to D2N+1 by matching the

tips of their two roofs, see Figure 3.3. One may observe by inspection that GN is 3-regular.

N

N

N

Figure 3.3: Infinite family of reducible 3-regular graphs

We claim that GN is reducible with respect to DN . Indeed,

θ(GN) =
3|E(HN)|+ 6

3|V (HN)|
=
|E(HN)|+ 2

|V (HN)|
= θ(DN)

=
3N + 5

2N + 3
=

3

2
+

1

4N + 6
>

3

2
.

Moreover, any connected vertex-induced proper subgraph K of GN , other than DN , must

have θ(K) < θ(GN), so that GN is homogeneous. To see this, think of V (K) as a cut and

let S := ∂V (K) ⊂ E be its boundary. Since K is vertex-induced, |S| > 1, and since K is

proper, |V (GN) \ V (K)| > 0. Since GN is planar, we can think of S as a union of cycles in

the dual graph (which is obtained by putting a node in each complementary tile and adding
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a link whenever two tiles share an edge). Note that there is only one pair of tiles that share

more than one edge, namely the unbounded tile and the tile between DN and D2N+1. Thus,

there is only one cycle of length 2 in the dual and in this case K = D2N+1 (since K 6= DN).

However, one can compute the denseness of D2N+1 as

θ(D2N+1) =
6N + 8

4N + 5
=

3

2
+

1

8N + 10
<

3

2
+

1

4N + 6
= θ(GN).

In other words, unless S consists of exactly the two edges connecting DN to D2N+1, we

necessarily have |S| ≥ 3. Also, since every edge in S reduces the degree of some vertex in K

by one, we have

2|E(K)| ≤ 3|V (K)| − |S| ≤ 3(|V (K)| − 1).

Thus,

θ(K) ≤ 3

2
< θ(GN).

This shows that GN is homogeneous.

Next we show how to generalize the square-with-diagonal example and get an infinite

family of homogeneous irreducible graphs.

Example 3.4.6. Let TN be N triangles sharing an edge as in Figure 3.4. In particular,

T2 is the square with diagonal. There are 2N spanning trees that contain the shared edge

e′ and there are N2N−1 spanning trees that do not contain the shared edge. Indeed, if we

pick a spanning tree that contains e′, then we must select only one edge from each of the N

triangles to avoid cycles, and to cover all vertices. On the contrary, if we choose a spanning

tree that does not contain e′, then we must select two edges from one of the N triangles. As

a result we have N2N−1 options in this case. Therefore, TN has (N + 2)2N−1 spanning trees

in total.
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e′ N+1

2 2

Figure 3.4: N triangles sharing an edge

Based on Example 3.4.3 it is natural to consider the following set of spanning trees:

Γ̄TN = {T ∈ ΓTN | e′ /∈ T}.

We will see that the following pmf is optimal for TN ,

µ̄(T ) =


1

2N−1(2N+1)
T ∈ Γ̄TN

N+1
2N (2N+1)

otherwise.

Let e ∈ E(TN) \ {e′}, then

∑
T∈Γ̄TN

N (T, e) = (N + 1)2N−2 and
∑

T∈ΓTN \Γ̄TN

N (T, e) = 2N−1.

Hence, for e 6= e′:

Pµ̄(e ∈ T ) =
∑

T∈Γ̄TN

µ̄(T )N (T, e) +
∑

T∈ΓTN \Γ̄TN

µ̄(T )N (T, e) =
N + 1

2N + 1
.

Since the number of trees that use the diagonal is 2N , we have the following edge-usage

probability for the diagonal:

Pµ̄(e′ ∈ T ) =
∑

T∈ΓTN \Γ̄TN

µ̄(T )N (T, e′) = 2N
N + 1

2N(2N + 1)
=

N + 1

2N + 1
.
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Figure 3.5: Modified Grids

In particular, this shows that TN is homogeneous.

In addition, since every tree is fair, TN is irreducible. To find the optimal weights, we

equalize the per edge effective resistances for any e ∈ E(T ) \ {e′} and e′. The computations

yield the optimal weights as in the right of Figure 3.4.

The graphs TN are far from being regular. Are there infinitely many homogeneous irre-

ducible graphs that are also 3-regular? The answer is yes, because if G = (V,E) is 3-regular,

and |V | = 6n+ 2, for some n ≥ 1, then |E| = 9n+ 3. In particular,

gcd(|E|, |V | − 1) = gcd(9n+ 3, 6n+ 1) = gcd(3n+ 2, 6n+ 1)

= gcd(3n+ 2, 3n− 1) = gcd(3, 3n− 1) = 1.

Therefore, the denseness ratio cannot be simplified and thus G is irreducible.

3.4.2 Example: modified grids

Consider a modified grid G as in Figure 3.5. It consists of a standard m-by-n grid G0 and

an extra node v0 connected with one edge to each node on the bottom and the right hand-

side of G0. In particular, the bottom-right corner of G0 is connected with two edges to v0.

Alternatively, G is the graph obtained from an (m+ 1)-by-(n+ 1) by identifying every node

on the bottom and right hand-sides. Note that G has mn + 1 vertices and 2mn edges. In

particular, it has denseness θ(G) = 2.

We associate to every vertex v ∈ V (G0) in the grid an edge set Ev ⊂ E(G), consisting of
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the edge to the right of v and the one below v. Consider the collection of all subgraphs of G

that use exactly one edge from each Ev:

Γ̄G := {T ⊂ E | |T ∩ Ev| = 1, for all v ∈ V (G0)}.

Notice that every such subgraph must be a spanning tree of G, so that Γ̄G ⊂ ΓG. To see

this, observe first that every T ∈ Γ̄G is connected and spans V (G). Indeed, starting from

any node v ∈ V (G0), one can follow an edge and either move to the right or down, until

eventually reaching v0. Also, any such T satisfies

|E(T )| =
∑

v∈V (G0)

|Ev ∩ T | =
∑

v∈V (G0)

1 = |V (T )| − 1. (3.4.1)

Let µ̄ be the uniform pmf conditioned on Γ̄G:

µ̄(T ) :=


1
|Γ̄G|

if T ∈ Γ̄G

0 otherwise.

In other words, Γ̄G or µ̄ can be thought as the random spanning trees generated by tossing

independently a fair coin at each node of the standard grid and either moving to the right

or downward. In particular, notice that every tree T ∈ Γ̄G has a partner tree, i.e., the tree

that can be obtained by substituting every edge in T ∩ Ev with the edge Ev \ T .

We claim that ΓG this gives rise to the family of all fair trees for the modified grid, i.e.,

ΓfG = Γ̄G, and that µ̄ is optimal for MEO(ΓG).

Moreover, we will see that Γ̄ consists exactly of all the trees γ ∈ ΓG that have the partner

tree property, i.e., that the complement E \ γ is also a tree.

To see that Γ̄ ⊂ ΓfG, it is enough to show that µ̄ is optimal for MEO(ΓG). Notice that

every edge e ∈ E(T ) lies in T ∩Ev for some vertex v ∈ V (G0). Since only half of the trees of
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Figure 3.6: Fair tree on the left and Forbidden tree on the right

Γ̄G use e by construction, we will have the following result for the edge-usage probabilities

Pµ̄(e ∈ T ) =
∑
T∈Γ̄G

µ̄(T )N (T, e) =
1

|Γ̄G|
∑
T∈Γ̄G

N (T, e) =
1

2
,

Coincidentally, this also proves that G is homogeneous.

Before proving the other inclusion, we examine the reducibility of G. Let H be the

subgraph of G induced by the special vertex v0 and the corner of the standard grid, which

thus has a double edge. Then G is reducible with respect to H, because H also has denseness

equal to 2. If we deflate G with respect to H, the resulting quotient graph G/H is a standard

grid such that the bottom right corner has additional edges connecting to each node to its

left and each node above it. In particular, since we the edge count decreased by 2 and the

node count by 1, G/H still has denseness equal to 2. Also, we created additional 2-vertices

and 2-edges subgraphs, and we can thus repeat the deflation process. We can, for instance,

continue applying the deflation process going from right to left, row by row, until we are left

with a 2-vertices and 2-edges graph. Moreover, observe that at each step the two edges that

get removed are exactly the pairs of edges in one of the sets Ev for v ∈ G(V0) defined above.

Now assume that T ∈ ΓG \ Γ̄G. Then, by definition of Γ̄, and the Pigeonhole principle,

there exists vertices v∗, v∗ ∈ V (T ), such that |T ∩ Ev∗ | = 2 and |T ∩ Ev∗| = 0. Indeed, T

must choose mn edges from E, which is partitioned into mn pairs of edges Ev. See Figure

3.6. However, this means that in the deflation process described above, we are guaranteed

to get to a point where the two edges in, say, Ev∗ connect v∗ to a single other node u∗, so

as to form a subgraph H∗ of denseness two in a larger homogeneous graph G∗ of the same
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Figure 3.7: Grid

denseness. Let T∗ be the tree obtained from T by removing all the pairs Ev that have been

involved in the deflation thus far. Then, T∗ does not restrict to a spanning tree of H∗, and

thus T ∗ is forbidden.

3.4.3 Example: grids

Let Gm,n be the m-by-n planar grid graph, in the sense that

V =
{

(i, j) ∈ Z2 : 0 ≤ i < m and 0 ≤ j < n
}

and for 0 ≤ i < m and 0 ≤ j < n,

• {(i, j), (i, j + 1)} ∈ E iff j + 1 < n

• {(i, j), (i, j − 1)} ∈ E iff j − 1 ≥ 0

• {(i, j), (i+ 1, j)} ∈ E iff i+ 1 < m

• {(i, j), (i− 1, j)} ∈ E iff i− 1 ≥ 0

Recall that for a graph G = (V,E) with no self-loops, the denseness of G is

θ(G) :=
|E|
|V | − 1
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Moreover, if the denseness of G is strictly greater than the denseness of any of its proper

vertex-induced subgraphs H, then we say that G is irreducible.

Lemma 3.4.7. The planar grid Gm,n is irreducible.

Proof. First note that:

|V (Gm,n)| = mn and |E(Gm,n)| = (m− 1)n+m(n− 1) = 2mn−m− n

So

θ(Gm,n) =
2mn−m− n

mn− 1
= 2− m+ n+ 2

mn− 1

In particular,

∂θ(Gm,n)

∂m
= −(mn− 1)− n(m+ n+ 2)

(mn− 1)2
=

(n+ 1)2

(mn− 1)2
> 0,

and by symmetry the same holds for the derivative in n, meaning that the denseness of

rectangular grids is strictly increasing with the size of the grid, is always less than 2, and in

fact tends to 2 as m,n→∞.

Now let H be a connected vertex-induced subgraph of Gm,n. We first consider the smallest

rectangular grid containing H. Namely, let

imin := min{i : ∃j, (i, j) ∈ V (H)}

and similarly define imax, jmin, and jmax. Then, define the translated grid

G̃ := (imin, jmin) +Gimax−imin,jmax−jmin .

If H = G̃, then θ(H) = θ(G̃) < θ(G) and we are done. If H is a proper subgraph of G̃, then

since θ(G̃) ≤ θ(G), it will be enough to show that θ(H) < θ(G̃). In particular, without loss

of generality we can assume that G̃ = Gm,n.

As an embedded planar graph Gm,n has (m− 1)(n− 1) bounded faces. Whenever such a
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face has all four vertices in V (H) we fill it in so that H becomes a connected compact set in

the plane Ĥ. In particular, the complement of Ĥ is an open set consisting of finitely many

bounded components Ωj, j = 1, . . . , k, and one unbounded component Ω0. The boundary of

each one of these components can be parametrized by a curve Γj, j = 0, . . . , k. This can be

seen by thickening Ĥ a little bit, for instance by defining

Ĥε :=
⋃
z∈Ĥ

{w ∈ C : |w − z| ≤ ε}.

For each ε, the boundary of Ĥε consists of C1-smooth Jordan curves Γj,ε, j = 0, . . . , k. If

we parametrize each Γj,ε with its arc-length parametrization, then, as ε tends to 0, they

converge uniformly to the curves Γj.

We begin by looking at the boundary of the unbounded component Ω0 and think of it as

being parametrized counter-clockwise. In particular, Γ0 can be taken to be piecewise linear

so that the derivative Γ′0 is well defined away from the nodes of Z2. Since Γ0,ε bounds the

simply connected domain Ω0,ε∪{∞}, by the argument principle, the change in argument for

the derivative Γ′0,ε, as the curve completes one full loop, is 2π. As ε tends to 0, this property

is inherited by Γ0, as long as the argument of the derivative Γ′0 is properly defined. At any

moment when Γ0 is not at a node of Z2, the right hand of a walker traveling along with Γ0

will always be touching Ω0. In particular, the only changes in the argument of Γ′0 that are

allowed when Γ0 passes through a node of Z2 are

0,
π

2
, π, and, − π

2
.

In words, either the walker goes straight, turns 90◦ left, does a 180◦ turn in the positive

direction, or turns 90◦ right. This can be verified by looking at the unbounded component

Ω0,ε of the thickened Ĥε. Indeed, if Γ0 were to do a 180◦ turn in the negative direction, then

while walking along Γ0,ε the right hand would be touching the thickened neighborhood of

an edge, and this neighborhood would disappear as ε tends to 0, so that edge would not be

part of the boundary of Ω0, which leads to a contradiction.
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Now assume v ∈ Z2 is a node where Γ0 makes a right turn, and let u ∈ Z2 be the node

visited by Γ0 just before v, and w ∈ Z2 the one visited just after v. Then, u, v, w bound

a face f of Gm,n and the fourth corner t does not belong to H. To see why, assume by

contradiction that all four corners are in V (H), then the face would be contained in Ĥ. But

then the right hand would not be touching the unbounded component Ω0 in this case. Also,

note that since H is vertex-induced the two sides of f incident at t also do not belong to

E(H).

Now, if we add t to V (H), to get a new vertex-induced graph H ′. Since one of the

coordinates of t is equal to one of the coordinates of either u or w, we see that H ′ is still a

subgraph of Gm,n. Moreover, we are guaranteed that

E(H ′) ≥ E(H) + 2.

In particular,

θ(H ′) =
E(H ′)

V (H ′)− 1
≥ E(H) + 2

V (H)

and

E(H) + 2

V (H)
>

E(H)

V (H)− 1
⇐⇒ (E(H) + 2)(V (H)− 1) > E(H)V (H)

⇐⇒ 2V (H) > E(H)

⇐⇒ 4V (H) > 2E(H) =
∑

x∈V (H)

degH(x)

where the last equality follows from the Handshake Lemma. However, since H is a subgraph

of the grid Gm,n, we always have degH(x) ≤ 4, and moreover, at least one vertex of H has

degH(x) < 4. This proves that θ(H ′) > θ(H).

If H ′ = Gm,n, we are done. Otherwise, we can repeat the same argument with H replaced

by H ′. This process has to end, so without loss of generality, we can assume that Γ0 never

makes any right turns. In particular, the argument of Γ′0 can only change by 0, π/2, or π.

So since there have to be an even number of argument changes that are positive, and the
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sum must be 2π, we either get two changes by π or four changes by π/2. In either case, we

see that Γ0 describes the boundary of a rectangular grid, and by assumption this grid has

to be Gm,n.

Finally, consider a bounded component Ωj with j ≥ 1. Assume that the boundary of

Ωj is described in the clockwise direction by a curve Γj, constructed as Γ0 above, using the

thickened set Ĥε. Once again the allowed argument changes at a grid node are 0, π/2, π, and

−π/2. Also, when walking along Γj the right-hand touches Ωj and the total argument change

must equal −2π. In particular, there must always be at least four right turns with argument

change −π/2. By repeating the argument above we see that each right turn identifies a

vertex in Ωj that can be added to H in a way to increase the denseness, and therefore after

finitely many steps we get that the component Ωj has been filled in. Hence, after finitely

many steps, H = Gm,n. This proves the lemma.
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Chapter 4

Modulus and maximum entropy

In this chapter we introduce the notion of modulus of families of objects. Then we provide a

summary of results connecting modulus problem with MEO problem. In addition, we briefly

discuss a spanning tree modulus algorithm introduced in [1]. In fact, spanning tree modulus

is the key ingredient for solving the MEO problem. It turns out, to solve the MEO problem,

it is enough to consider the maximum entropy problem over the set of optimal pmfs for

modulus problem.

Finally, we present results from [2], which prove that every homogeneous irreducible

graph admits a weighted uniform spanning tree pmf.

4.1 Modulus of families of objects

Assume G = (V,E, σ) is a weighted graph with edge weights σ ∈ RE>0. Let Γ be a countable

index set. For instance, Γ can be a family of spanning trees, paths or cuts on G. Let

N ∈ RΓ×E
≥0 be the usage matrix for Γ, i.e., each object γ ∈ Γ is in correspondence with a

usage vector N (γ, .)T ∈ RE≥0, where N (γ, e)= the usage of e by γ. Let ρ : E → R≥0, i.e.,

ρ(e) = the cost of using edge e, for every e ∈ E. The total usage cost for a given ρ, for an
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object γ, is the following quantity:

`ρ(γ) :=
∑
e∈E

N (γ, e)ρ(e) = (Nρ)(e).

We say that a density is admissible for a family Γ if `ρ(γ) ≥ 1 for every γ ∈ Γ. In other

words, ρ is admissible for Γ, if ”everyone pays at least a dollar”. In the future we will be

using the usage matrix notation while referring to admissibility, namely,

Nρ ≥ 1,

where 1 is the vector of all ones in RΓ. Let Adm Γ be the set of all admissible densities in

ρ−space:

Adm Γ := {ρ ∈ RE≥0 : Nρ ≥ 1}.

This set is convex, closed and has the property that adding a non-negative vector z to an

admissible density ρ does not affect admissibility. More formally,

Adm Γ + RE≥0 = Adm Γ.

We define the Fulkerson dual of Γ is the following set:

Γ̂ := ext(Adm Γ) ⊂ RE≥0,

where ext(A) denotes the set of extreme points of A. Since Γ̂ is a set of points in ρ-space,

we can interpret it as a dual family of objects Γ, which, too, has its own dual family. It is

known that the objects in Γ̂ are identical with their usage vectors.

For fixed 1 ≤ p <∞, the p−modulus of a family of objects Γ is:

Modp,σ(Γ) = inf
Nρ≥1

∑
e∈E

σ(e)ρ(e)p.
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We define the energy of the density ρ to be the following quantity:

Ep,σ(ρ) :=
∑
e∈E

σ(e)ρ(e)p.

One may interpret the modulus problem geometrically as computing the p−norm distance

from the convex set Adm Γ to the origin in RE. As a result, strict convexity of the p−norm

guarantees the existence of a unique optimal density ρ∗, for 1 < p < ∞. In the special case

when p = 2 Fulkerson duality for modulus implies the following:

Mod2,σ(Γ)Mod2,σ−1(Γ̂) = 1.

Moreover, the extremal density η∗ for Mod2,σ−1(Γ̂) and the extremal density ρ∗ for Mod2,σ(Γ)

are connected by the following formula:

η∗(e) =
σ(e)

Mod2,σ(Γ)
ρ∗(e).

Let G = (V,E) be a graph and let Γ = ΓG be the family of all spanning trees of G. In this

case, the Fulkerson dual family Γ̂ is the set of the (weighted) feasible partitions [13].

Definition 4.1.1. A feasible partition P of a graph G = (V,E) is a partition of the vertex

set V into two or more subsets, {V1, ..., VkP }, such that each of the induced subgraphs G(Vi)

is connected. The corresponding edge set, EP , is defined to be the set of edges in G that

connect vertices belonging to different Vi’s.

The Fulkerson dual of ΓG is the set of all vectors

1

kP − 1
1EP ,

with P ranging over all feasible partitions. Also, by Fulkerson duality the extreme points

of Adm(Γ̂) are spanning trees. Convexity implies that any µ ∈ P(Γ) induces an admissible

density η = N Tµ ∈ Adm Γ̂. In particular, the unique optimal density η∗ for Mod2(Γ̂) belongs
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to the convex hull of Γ. More formally, there exists an optimal pmf µ∗ ∈ P(Γ) such that

η∗(e) =
∑
γ∈Γ

µ∗(γ)N (γ, e) = (N Tµ∗)(e) = Eµ∗(N (γ, e)) ∀e ∈ E.

In Appendix A we introduce KKT conditions and Lagrangian duality which give rise to the

following theorem.

Theorem 4.1.2 ([3]). Let G = (V,E) be an unweighted graph and Γ = ΓG be the family

of spanning trees of G, and let Γ̂ be its Fulkerson dual family. Then ρ ∈ RE≥0, η ∈ RE≥0 and

µ ∈ P(Γ) are optimal respectively for Mod2(Γ),Mod2(Γ̂), and MEO(Γ) if and only if the

following conditions are satisfied

ρ ∈ Adm(Γ), η = N Tµ,

η(e) =
ρ(e)

Mod2(Γ)
∀e ∈ E

µ(γ)(1− lρ(γ)) = 0 ∀γ ∈ Γ.

Moreover,

MEO(Γ) = Mod2(Γ̂) = Mod2(Γ)−1.

4.1.1 Spanning tree modulus algorithm

As we have already discussed in chapter 2, ΓG can be very large. In this context, since every

spanning tree of G gives rise to a constraint in the modulus problem, it would be compu-

tationally challenging to work with so many constraints. However, the following algorithm

has been introduced in [1] which allows one to solve the problem to within a given tolerance

by iteratively ”growing” a subfamily Γ′ ⊂ ΓG with approximately the same modulus.

Remark 4.1.3. The basic Algorithm 4.1.1 has been shown to converge [1] and can compute

spanning tree modulus on graphs with hundreds thousands of edges in a reasonable amount

of time (minutes). However, there is no known estimate for the rate of convergence. There

is a different algorithm, called the Plus One algorithm [14], that can be shown to compute
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Algorithm 1 Basic p -modulus algorithm with tolerance εtol ≥ 0

1: given Γ′ = ∅ and ρ ≡ 0.
2: repeat
3: Find γ ∈ ΓG \ Γ′ such that lρ(γ) < 1− εtol. Stop if none found.
4: Add γ to Γ′.
5: Optimize ρ so that εp(ρ) = Modp(Γ

′).
6: until stopping criterion is satisfied.

modulus in polynomial time.

4.2 Maximum entropy for optimal MEO pmfs

In this chapter we will see that homogeneous irreducible graphs admit optimal weights σ

such that µσ is optimal for MEO problem. As we aim to generate the optimal weights nu-

merically, we would like to rely on conventional optimization techniques that would enable

fast computation of weights. First we inherited the potential theory approach (this entails

representing the energy as a sum of squares of the product of effective resistances and edge-

weights) to solving the optimization problem, but we concluded that the objective function

of MEO problem is non-convex. To resolve this issue, in section 4.2.1 we introduce the max-

imum entropy problem over the set of optimal pmfs for the modulus problem. We consider

the dual of the objective function of this problem. This allows us to use the advantage of

convex optimization machinery.

The development of the idea of entropy of random variables and processes by Claude

Shannon lies in the foundations of the information theory and of the modern ergodic theory.

Entropy allows us to describe the long term behavior of random processes. More information

about information theoretic entropy can be found in [23].
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4.2.1 Maximizing entropy

Given a graph G = (V,E) we define the entropy of µ ∈ P(Γ) to be the following:

H(µ) = −
∑
γ∈Γ

µ(γ)log µ(γ).

Here we think of 0 log 0 as 0.

Let η∗ be the expected optimal edge usage for the FEU problem. We would like to discuss

the following maximum entropy pmf problem:

maximize
µ∈RΓ

H(µ)

subject to N Tµ = η∗

µ ≥ 0,

µT1 = 1.

(4.2.1)

We notice that this problem has a unique solution. The existence of the solution follows from

the fact that we are maximizing a continuous function over a compact set, while uniqueness

is a consequence of H being strictly concave. Indeed, −x log(x) is strictly concave since its

derivative −1− log(x) is strictly decreasing. The sum of strictly concave functions is strictly

concave, hence H(µ) is strictly concave.

Additionally, we may define H(µ) = −∞ for µ � 0. This allows us to remove the

constraint µ ≥ 0 in (4.2.1). In the sequel, we will omit this constraint, with the understanding

that H is defined globally this way.

The constraint N Tµ = η∗ implies that µ is optimal for the MEO and modulus problem,

see for instance (3.1.3). Recall that ΓF , the family of fair trees of G, consists of trees that

are in the support of optimal pmfs.

Lemma 4.2.1. The support of the optimal pmf that attains the maximum entropy is all of

ΓF .

Proof. Let µ∗ be an optimal pmf for modulus such that supp µ∗ = ΓF . Then we assume
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there exists an optimal pmf µ for the modulus problem whose support strictly lies inside of

ΓF . Then we consider the convex combination of µ∗ and µ : µε = (1− ε)µ+ εµ∗ for ε ∈ [0, 1].

By convexity of H, µε is optimal for modulus and supp µε = ΓF for all ε > 0. The goal is

to show that H(µε) > H(µ) for sufficiently small ε.

H(µε) = −
∑
γ∈ΓF

µ(γ) log µ(γ).

We investigate two distinct cases conditioning on γ. For any tree γ ∈ ΓF such that µ(γ) > 0

−µε(γ) log µε(γ) = −µ(γ)log µ(γ) +O(ε).

If γ ∈ ΓF such that µ(γ) = 0, then

−µε(γ) log µε(γ) = −εµ∗(γ)log ε+O(ε),

which implies that H(µε) > H(µ) when ε goes to 0.

In other words, any µ whose support is strictly inside of ΓF cannot be optimal for the

maximum entropy problem.

Based on all these considerations, we can rewrite the maximum entropy problem as follow:

maximize
µ̃∈RΓF

H(µ̃)

subject to NF T µ̃ = η∗

µ̃T1 = 1,

(4.2.2)

where NF is the usage matrix for ΓF .
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4.3 When all trees are fair

In this section we discuss the maximum entropy problem with the intention to restrict to

the case when all trees are fair.

4.3.1 Finding weights

The main idea is that the optimal MEO pmf that maximizes entropy should be a WUST.

As we will see this is false in general, but it is true if all trees are fair. To begin, we modify

the definition of WUST, see Definition 2.1.1.

Definition 4.3.1. We say that µ is a WURST (weighted uniform restricted spanning tree),

if it is the restriction of a WUST to the set of fair trees. Namely, there is a set of positive

edge weights σ : E → R>0 such that µ(γ) is proportional to
∏

e∈γ σ(e) whenever γ is a fair

tree in ΓF , and is 0 otherwise.

Theorem 4.3.2. If µ∗ is the maximum entropy optimal pmf, then it is a WURST, i.e., there

exists a set of positive edge weights σ : E → R>0 such that

µ∗(γ) =

∏
e∈γ σ(e)∑

γ′∈ΓF

∏
e∈γ′ σ(e)

for all γ ∈ ΓF . (4.3.1)

Proof. Let µ̃∗ ∈ RΓF be the restriction of µ∗ to ΓF . Then µ̃∗ is the unique minimizer for

problem (4.2.2). By Lemma 4.2.1, µ̃∗(γ) > 0 for all γ ∈ ΓF . Since the objective function

H(µ̃) is smooth near the minimizer, the minimizer is characterized by the KKT conditions.

To find the optimal µ̃ we work with the Lagrangian of problem (4.2.2),

L(µ̃, u, ω) = H(µ̃) + uT (N T
F µ̃− η∗) + ω(µ̃T1− 1),

where u ∈ RE and ω ∈ R.
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Then we may apply the stationarity condition to L :

∂L
∂µ̃(γ)

= − log µ̃∗(γ)− 1 +
∑
e∈γ

u∗ + ω∗ = 0 for all γ ∈ ΓF .

By solving the equation for µ̃∗(γ) we get that

µ̃∗(γ) = eω
∗−1
∏
e∈γ

eu
∗(e) = C

∏
e∈γ

σ(e),

where C = eω
∗−1 and we define σ(e) := eu

∗(e). Taking into consideration that µ̃∗ is a

probability vector, we get that

C =
∑
γ′∈ΓF

∏
e∈γ′

σ(e).

Lemma 4.2.1 in conjunction with Theorem 4.3.2 yield the following result.

Corollary 4.3.3. All trees of G are fair if and only if there exists a weighted uniform pmf

µσ that is optimal for modulus.

Proof. If all trees are fair, then Theorem 4.3.2 yields a WURST pmf µ∗ whose support is all

of Γ.

Conversely, if there exists a weighted uniform pmf µσ that is optimal for modulus, then

all trees are fair because the weights σ(e) are positive.

4.3.2 Dual problem

Here we consider the dual problem to (4.2.1). To begin we assume that all trees are fair, so

that ΓF = Γ. We would like to find the optimal weights σ in (4.3.1). To do so we discuss

the following characterization for the dual objective for the maximum entropy problem.

51



Theorem 4.3.4. The optimal weights σ in (4.3.1) minimize the following energy

g(σ) = log

(∑
γ∈Γ

∏
e∈E

σ(e)N (γ,e)

)
−
∑
e∈E

η∗(e) log σ(e) = log

(∑
γ∈Γ

∏
e∈E

σ(e)N (γ,e)−η∗(e)

)
.

Proof. To find the dual objective we maximize the Lagrangian for the maximum entropy

problem over µ. Recall that the Lagrangian L can be computed as follows

L(µ, u, ω) = H(µ) + uT (Nµ− η∗) + ω(µT1− 1).

As before, by maximizing over µ, we get that

µ(γ) = C
∏
e∈E

σ(e)N (γ,e), where C = eω−1 and σ(e) = eu(e).

Now we will use these formulas to substitute µ in the Lagrangian and we will also change

the dual variables from u and ω to C > 0 and σ(e) > 0, respectively.

H(µ) =−
∑
γ∈Γ

µ(γ) log µ(γ) = −C
∑
γ∈Γ

∏
e∈E

σ(e)N (γ,e)

(
logC +

∑
e′∈E

N (γ, e′) log σ(e′)

)

= −C logC
∑
γ∈Γ

∏
e∈E

σ(e)N (γ,e) − C
∑
γ∈Γ

[(∑
e′∈E

N (γ, e′) log σ(e′)

)(∏
e∈E

σ(e)N (γ,e)

)]

Also, we compute uTNµ and ωµT1.

uTN Tµ =
∑
γ∈Γ

∑
e∈E

log σ(e)N (γ, e)µ(γ) = C
∑
γ∈Γ

[(∑
e′∈E

N (γ, e′) log σ(e′)

)(∏
e∈E

σ(e)N (γ,e)

)]
,

and

ωµT1 = (1 + logC)C
∑
γ∈Γ

∏
e∈E

σ(e)N (γ,e)
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Lastly, we plug in all the summands back into L to obtain the dual objective

g(σ,C) = C
∑
γ∈Γ

∏
e∈E

σ(e)N (γ,e) −
∑
e∈E

η∗(e) log σ(e)− logC − 1. (4.3.2)

Since we want to minimize g, we can first minimize this function over C and substitute the

optimal value of C

C =
1∑

γ∈Γ

∏
e∈E

σ(e)N (γ,e)
.

As a result, we get the desired dual objective depending on σ only.

4.3.3 A numerical algorithm

In view of Theorem 4.3.4, the goal is to find weights σ such that g(σ) is minimized. By the

matrix-tree theorem ∑
γ∈Γ

∏
e∈E

σN (γ,e) =
1

n
det

(
Lσ +

1

n
11T

)
,

where Lσ is the weighted Laplacian. So this is akin to minimizing the logdet of the Laplacian,

which is a known problem in the literature, [41], the difference being the extra term involving

η∗. In particular, this determinant can be computed by taking the product of all non-zero

eigenvalues of the weighted Laplacian.

For a fixed e ∈ E we have the following for the derivative of g with respect to σ(e)

∂g

∂σ(e)
=

∑
γ∈Γ

N (γ, e)σ(e)N (γ,e)−1
∏
e′ 6=e

σ(e′)N (γ,e′)∑
γ∈Γ

∏
e′∈E

σ(e′)N (γ,e′)
− η∗(e)

σ(e)

=
1

σ(e)

∑
γ∈Γ

N (γ, e)
∏
e′∈E

σ(e′)N (γ,e′)∑
γ∈Γ

∏
e′∈E

σ(e′)N (γ,e′)
− η∗(e)

σ(e)

=
ησ(e)− η∗(e)

σ(e)
,

where ησ is the usage with weights σ. By Kirchhoff’s Theorem, one may derive ησ by com-

puting effective resistances. Also, the stationarity conditions yield that ησ = η∗.
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Figure 4.1: modified grid with an extra edge

We illustrate this with a numerical example, see Figure 4.1.

Example 4.3.5. Here we revisit Example 3.4.3 and apply the method described above to

find the optimal weights for the square with diagonal. This gives an alternative way to

compute these optimal weights.

First, we use the fact that all trees are fair for this graph, as we have seen in Example

3.4.3. By symmetry, we have two distinct weights on the edges of the graph. Let the weights

on the sides of the square be β > 0 and the weight on the diagonal be α > 0. Therefore,

recalling that η∗ ≡ 3/5, g(σ) can be computed as follows

g(σ) = log(4αβ2 + 4β3)− 3

5
(logα + 4 log β).

A simple calculation shows that the minimum is attained at α, β such that β = 2
3
α. For

instance, α = 3, β = 2 minimizes g.
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4.4 When not all trees are fair

We have seen in Section 4.3 that when all trees are fair there exists σ(e) > 0 for all e ∈ E such

that WURST is optimal for the maximum entropy problem. In this section we investigate

the case when not all trees are fair.

4.4.1 Approximation on homogeneous graphs

In more generality, when not all trees are fair, there is no WURST that optimizes the

maximum entropy problem. As we know homogeneous graphs are the building blocks for

constructing an optimal pmf for any non-homogeneous graph. In this section we will provide

necessary and sufficient conditions for a homogeneous graph to admit WURST. Hence, we

would like to discuss the maximum entropy problem for homogeneous graphs described in

Section 3.2.

Let G be a homogeneous graph. Then by definition of homogeneity every edge has the

same edge-usage probability. Let κ be the reciprocal of the denseness ratio.

η∗ = k :=
|V | − 1

|E|
.

As before, we desire to solve the following dual problem with one difference only. Namely,

we substituted η∗(e) by κ for all e ∈ E.

minimize g(σ) = log

( ∑
γ∈ΓF

∏
e∈E

σ(e)N (γ,e)

)
− κ

∑
e∈E

log σ(e)

subject to σ > 0.

(4.4.1)

First, we study some properties of g(σ) as a function defined on σ ∈ RE
>0.

Lemma 4.4.1. We claim that g(σ) is one-homogeneous and is bounded from below g(σ) ≥ 0.

Proof. To show that g is one-homogeneous, we let t > 0 and σ(e) > 0 for all e ∈ E. Then,
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we show that g(tσ) = g(σ). First, we compute g(tσ)

g(tσ) = log

( ∑
γ∈ΓF

∏
e∈E

tN (γ,e)σ(e)N (γ,e)

)
− κ

∑
e∈E

log σ(e)− κ|E| log t.

We may simplify the expression above by using the fact that every spanning tree contains

exactly |V | − 1 edges.

g(tσ) = log

(
t|V |−1

∑
γ∈ΓF

∏
e∈E

σ(e)N (γ,e)

)
− κ

∑
e∈E

log σ(e)− κ|E| log t

= log

( ∑
γ∈ΓF

∏
e∈E

σ(e)N (γ,e)

)
− κ

∑
e∈E

log σ(e) + (|V | − 1− κ|E|) log t

= log

( ∑
γ∈ΓF

∏
e∈E

σ(e)N (γ,e)

)
− κ

∑
e∈E

log σ(e) = g(σ).

In order to show that g(σ) ≥ 0, we represent u(e) in terms of σ, i.e., u(e) = log σ(e) as we

have defined σ(e) to be expu(e). As a result we can rewrite g(σ) as follows:

g(σ) = log

( ∑
γ∈ΓF

∏
e∈E

(exp(u(e)N (γ, e))

)
− log exp

(∑
e∈E

κu(e)

)
.

After applying further simplifications we get the following:

g(σ) = log

( ∑
γ∈ΓF

∏
e∈E

(exp(u(e)N (γ, e))

)
− log

∏
e∈E

exp

(
κu(e)

)

Finally, we can represent g(σ) as follows:

g(σ) = log

( ∑
γ∈ΓF

∏
e∈E

exp{(N (γ, e)− κ)u(e)}

)
= log

( ∑
γ∈ΓF

exp

{∑
e∈E

(N (γ, e)− κ)u(e)

})
.

Let µ∗ be an optimal pmf for the MEO problem. Since G is homogeneous, we have that the
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following sum is κ
∑
e∈E

u(e) on average:

Eµ∗
[∑
e∈E

N (γ, e)u(e)

]
=
∑
γ∈ΓF

µ∗(γ)
∑
e∈E

N (γ, e)u(e) =
∑
e∈E

u(e)
∑
γ∈ΓF

N(γ, e)µ∗(γ) = κ
∑
e∈E

u(e).

Therefore, at least one of the trees makes the sum on the left hand side larger then the sum

on the right hand side, i.e., there exists γ ∈ ΓF such that

∑
e∈E

(N (γ, e)− κ)u(e) ≥ 0,

which allows us to conclude that

g(σ) ≥ log(1) = 0.

Since here we have assumed that not all trees are fair, by Corollary 4.3.3, the minimizer

for this problem does not exist. Hence it is natural to consider a minimizing sequence σk as

g is bounded from below. In the lemma below we show that σk solves a modified version of

problem (4.4.1), converges and can be normalized to 1.

Lemma 4.4.2. The minimizing sequence has the following properties.

1. For all k, ‖σk‖∞ = 1,

2. For all k, σk is a minimizer for the problem

minimize
σ∈RE>0

g(σ)

subject to min
e∈E

σk(e) ≤ σ ≤ 1,

(4.4.2)

3. lim
k→∞

σk = σ∞ ∈ [0, 1]E.
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Proof. As we know g is one-homogeneous and positive, hence we may normalize σk by

replacing it by σk/ ‖σk‖∞ . Thus, 1. can be taken care of. Fix k and replace σk with the

minimizer of the bound- constrained problem. First, we notice that such a replacement does

not affect the fact that σk is a minimizing sequence. To make sure that this change does not

affect (1) as well, we consider the partial derivatives of g. As we know ησk is not equal to

κ. However, the average of ησk is κ. This fact allows us to conclude that there exists e ∈ E

such that ησk(e) < κ. For that edge e ∈ E, we have that σk(e) ≤ 1.

Finally, by the compactness of the unit ball in RE we can extract a convergent subse-

quence, which guarantees (3).

Now when we have established the existence of the limit of the minimizing sequence, we

would like to study its bounds.

Lemma 4.4.3. The limit of the minimizing sequence satisfies the following conditions

max
e∈E

σ∞(e) = 1, min
e∈E

σ∞(e) = 0.

Proof. To see the maximum property, it is enough to use continuity

max
e∈E

σ∞(e) = lim
k→∞
‖σk‖∞ = 1.

For the minimum, we assume min
e∈E

σ∞(e) > 0. Therefore, σ∞ would minimize g(σ) over all

positive σ. By stationarity µσ∞ would be optimal for the MEO problem. However, since not

all trees are fair, there is no such optimizer which leads us to contradiction.

We introduce the sets of edges with limit edge weights 0 and with positive limiting edge

weights, i.e.,

E0 := {e ∈ E : σ∞(e) = 0} and E+ := {e ∈ E : σ∞(e) > 0}.
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In addition, we introduce the following family of spanning trees

Γ+ := {γ ∈ Γ : |γ ∩ E+| = max
γ′∈Γ
|γ′ ∩ E+|}. (4.4.3)

In other words, Γ+ is the subfamily of spanning trees that restrict as spanning trees on each

nontrivial connected component of E+.

Example 4.4.4. Let G be the House graph as in Figure 3.2. Let σk(e) = 1 if e belongs to

the roof, and σk(e) = 1
k

otherwise. One may easily observe that

σ∞(e) =


1, e ∈ roof

0, otherwise.

Basically, E+ is the set of edges on the roof, and E0 consists of edges on the walls and the

pavement of the House.

In addition, we notice that max
γ′∈Γ
|γ′ ∩ E+| = 2. Therefore, Γ+ is the family of spanning

trees that contain two edges from the roof of the House. Recall that these are the fair trees

for the House. Hence, Γ+ is the family of fair trees for the House.

Next, we show that the pmf induced by this minimizing sequence allows us to concentrate

the weights on trees in Γ+.

Lemma 4.4.5. Trees that do not restrict as spanning trees on each nontrivial connected

component of E+ for a minimizing sequence σk, have the following behavior in limit

lim
k→∞

µσk(Γ \ Γ+) = 0.

Proof. Let τ be the minimum value that the limiting edge weight vector attains on E+

τ := min
e∈E+

σ∞(e) > 0.

Let γ ∈ ΓG\Γ+. Then γ restricts to a forest on some connected component of E+. To connect
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the trees of the forest, we can add an edge e+ ∈ E+, and to remove the cycle created in γ

we should remove an edge e0 ∈ E0 so that the resulting graph is a tree. We denote it by γ′.

Then the edge-usage of γ′ can be written in terms of the edge-usage of γ

N (γ′, e) = N (γ, e) + 1e+ − 1e− .

As we have seen in Lemma 4.4.2, the minimizing sequence σk converges to σ∞. More formally,

for every ε > 0 there exists k0 such that for k > k0, ‖σk − σ∞‖∞ < ε. We will use this

estimate to compare the weights of γ and γ′.

∏
e∈E

σ(e)N (γ′,e) =
σk(e+)

σk(e−)

∏
e∈E

σ(e)N (γ,e) ≥ τ − ε
τ

∏
e∈E

σ(e)N (γ,e).

The last inequity allows us to write the WURST for γ and γ′ as follows.

µσk(γ) ≤ τ

τ − ε
µσk(γ

′) ≤ τ

τ − ε
.

Therefore, we get the desired result:

lim
k→∞

µσk(γ) = 0.

4.4.2 Existence criterion for WURST

Lastly, in this section we connect the property of irreduciblity of a graph with the existence

of WURST that solves the maximum entropy problem for that graph.

Let E ′ be a nontrivial connected component of E+ and let VH be the vertex set of this

component. Let H = (VH , EH) be the subgraph of G induced by the vertices VH , i.e., VH is

the unique vertex-induced subgraph of G with the property that EH ∩ E+ = E ′.

Lemma 4.4.6. Let H be the subgraph of G described as above. Then the following hold true
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1. If e ∈ EH ∩ E0, then

lim
k→∞

ησk(e) = 0.

2. If e ∈ E+, then for sufficiently large k

ησk(e) ≤ κ.

Proof. Let e ∈ EH ∩ E0. Then

ησk(e) =
∑

γ∈Γ\Γ+

µσk(γ)N (γ, e) +
∑
γ∈Γ+

µσk(γ)N (γ, e) = 0, in limit

where the first sum goes to zero as k becomes large enough by Lemma 4.4.5 while the second

sum is zero since N (γ, e) = 0 for γ ∈ Γ+ and for e ∈ EH ∩ E0.

Now let e ∈ E+. Let τ = min
e∈E+

σ∞(e) and let 0 < ε << τ. As we have seen in Lemma

4.4.2 the limit of the minimizing sequence exists and ‖σk − σ∞‖∞ < ε for k > 0. Therefore,

for any e ∈ E+

σk(e) ≥ τ − ε > ε > min
e′∈E

σk(e
′).

By Lemma 4.4.2 we see that the lower bound is inactive on e, therefore ησk(e) < κ.

This lemma yields the following important result.

Theorem 4.4.7. Let H be the vertex-induced subgraph described above. Then

|EH |
|VH | − 1

≥ |EG|
|VG| − 1

.

Proof. We consider the following sum of ησk

∑
e∈EH

ησk(e) =
∑
e∈EH

∑
γ∈Γ

µσk(γ)N (γ, e) ≥
∑
e∈EH

∑
γ∈Γ+

µσk(γ)N (γ, e) = (|VH | − 1)µσk(Γ
+).
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By Lemma 4.4.6 ∑
e∈EH

ησk(e) ≤ κ|EH |.

Combining last two inequalities yields the following result.

|EH |
|VH | − 1

≥ µσk(Γ
+)

κ
=
|EG|
|VG| − 1

µσk(Γ
+). (4.4.4)

Taking the limit as k approaches infinity in 4.4.4, allows us to obtain the desirable inequality.

Finally, we are ready to introduce the main result of this chapter.

Theorem 4.4.8. Every homogeneous graph either admits a WURST or is reducible.

Proof. The argument of the proof is based on the fact that either all spanning trees of G are

fair or not.

If all spanning trees of G are fair, then by Corollary 4.3.3 WURST is optimal for the

MEO problem.

If not all spanning trees of G are fair, then by Theorem 4.4.7 there exists a vertex-induced

subgraph of G that is at least as dense as G. However, since G is homogeneous, the denisty

of its subgraphs canont exceed the density of its own. Hence, G must be reducible.

Corollary 4.4.9. A homogeneous graph is irreducible if and only if it admits WURST.

4.4.3 Density of WUST

Let µ ∈ P(ΓG) be a probability mass function defined on the family of spanning trees of the

graph G. Let Γ′ ∈ ΓG and let µ be uniform on Γ′. The edge-usage probabilities for every

edge e ∈ E are

η(e) = Pµ(e ∈ T ) =
|{γ ∈ Γ′ : e ∈ γ}|

|Γ′|
:=

n(e)

|Γ′|
.

Let σε = ε|Γ
′|−n(e).

Question 4.4.10. What can we tell about the convergence of µσε as ε→ 0 ?
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First we were hopeful that µσε → µ as ε→ 0, which would allow us to have an indication

that the weighted uniform pmf is dense in the set of pmfs.

Example 4.4.11. We consider the House graph and Γ′ = {γ1, γ2} - the subfamily of spanning

trees γ1 and γ2 as in Figure 4.2. We notice that in this case both γ1 and γ2 are fair trees.

If e ∈ γ for every γ ∈ Γ′, then η(e) = 1 and σ(e) = ε0 = 1. If e /∈ γ for all γ ∈ Γ′, then

σ(e) = ε2. For e ∈ γi, e /∈ γj ,where γi, γJ ∈ Γ′, σ(e) = ε.

1 ε

ε

ε2

1 1

1

ε

11

1 ε

11

Figure 4.2: House, γ1 and γ2 from left to right

First we notice that γ1 and γ2 are distributed as follows

µσε(γ1) = µσε(γ2) =
ε

Z
.

We can compute Z by adding all the weights of spanning trees of ΓG :

Z = 2ε4 + 4ε3 + 3ε2 + 2ε. (4.4.5)

Therefore, for any γ ∈ ΓG \ Γ′

µσε(γ) =
εk

2ε4 + 4ε3 + 3ε2 + 2ε
,

where k = 2, 3, 4. Therefore,

µσε(γ) =
εk−1

2ε3 + 4ε2 + 3ε+ 2
→ 0 as ε→ 0.
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Also, the conjecture holds true in this case as

µσε(γ1) = µσε(γ2) =
ε

2ε4 + 4ε3 + 3ε2 + 2ε
→ 1

2
as ε→ 0.

However, next we consider the subfamily that consists of spanning trees γ1 and γ2 as in 4.3.

We notice that γ1 is forbidden while γ2 is fair. In this case we do not have the desired limit

for µσε .

ε 1

1

ε

ε ε

ε

1

1

ε

ε

1

1

ε

Figure 4.3: House, γ1 and γ2 from left to right

We notice that in this case the special trees are distributed as follows

µσε(γ1) = µσε(γ2) =
ε2

6ε3 + 5ε2
=

1

5 + 6ε
→ 1

5
as ε→ 0.

For γ ∈ Γ \ Γ′ such that the weight of γ is proportional to ε3 (there are 6 of them), we have

the following distribution

µσε(γ) =
ε3

5ε2 + 6ε3
→ 0 as ε→ 0.

For those trees that are not in Γ′ and have weights proportional to ε2 (there are 3 of them)

we have the following distribution

µσε(γ) =
ε2

5ε2 + 6ε3
→ 1

5
as ε→ 0.
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Chapter 5

Minimization of energy

This chapter focuses on finding the optimal weights for the MEO problem for homogeneous

irreducible graphs. We have seen in chapter 4 that WUST exists for this special class of

graphs. In addition, we discussed the potential theory for electrical networks and provided a

connection between edge-usage probabilities and effective-resistances in chapter 2. Moreover,

we saw that the effective resistances can be computed via the pseudo-inverse of the Laplacian

associated with a given graph.

If we assemble the information provided in previous sections, we gain an optimization

problem, where the objective function is the sum of the squares of the products of effective

resistances and edge-weights, over the set of all edges of the graph. This problem is non-

convex. However, we show that the objective function is quasi-convex in each edge-weight.

We apply rank-one update for the Laplacian of the graph to compute the optimal weights.

We show that there is a unique minimizer in this case. In addition, we show that the

edge-weights can be normalized to be integer-valued, which allows us to interpret them as

the multiplicties of edges, thus, we are able to represent the weighted simple graph as a

multigraph.

65



5.1 Energy of WUST

Let G = (V,E, σ) be a weighted graph, let µσ ∈WUST. In chapter 3 we discussed the MEO

problem over the pmfs defined on the set of spanning trees of G. What happens if we require

the optimal pmf for the MEO problem to be a WUST? In other words, we would like to

solve the following minimization problem

minimize Eµσ |T ∩ T ′|

subject to µσ ∈WUST.

One can simplify the objective function here in the same fashion is in chapter 3.

Eµσ |T ∩ T ′| =
∑
e∈E

Pµσ(e ∈ T )2.

Definition 5.1.1. We say that Eµσ is the energy of µσ ,if

Eµσ :=
∑
e∈E

Reff
2
σ(e)σ2(e).

The energy defined above is the objective function of the optimization problem of our

interest. In addition, we can apply the potential theory introduced in chapter 2 to express the

edge-usage probabilities in terms of effective resistances. Essentially, this transition allows

us to express the objective function in terms of the pseudo-inverse of the Laplacian of the

graph G. This gives us an opportunity to take advantage of some well-known optimization

algorithms to find the optimal weights. Therefore, it makes the recovery of the corresponding

WUST possible in a reasonably fast computational time. To enable the implementation of

this promising road map of computations, first we use Kirchhoff’s theorem, which states that

Pµσ(e ∈ T ) = Reff
2
σ(e)σ2(e)

for any edge e ∈ E.
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Ultimately, we desire to find σ that minimizes E(µσ). For this purpose, we study the

energy as a function of weights. First we substitute the effective resistance with uTL+
σ u (

see chapter 2).

E(µσ) =
∑
e∈E

σ2(e)(uTL+
σ u)2,

where u = δy − δx for any {x, y} ∈ E.

Below we show that the energy is homogeneous in weights.

Lemma 5.1.2. The energy is homogeneous in σ, i.e., for t > 0,

E(µσ) = E(µtσ).

Proof. We rewrite the energy in terms of the pseduo-inverse of the Laplacian L+
σ .

E(µσ) =
∑
{x,y}∈E

σ(x, y)2[(δy − δx)TL+
σ (δy − δx)]2

Now observe that Ltσ = tLσ, so that L+
tσ = t−1L+

σ . This allows us to compute E(µtσ).

E(µtσ) =
∑
{x,y}∈E

t2σ(x, y)2[(δy − δx)TL+
tσ(δy − δx)]2

=
∑
{x,y}∈E

t2σ(x, y)2[(δy − δx)T t−1L+
σ (δy − δx)]2 = E(µσ).

We would like to investigate convexity of the energy as a function of weights. However,

rather than working with the energy function right away, we choose to take a detour so as to

explore another problem that resembles our problem remotely. Then we move forward with

the convexity exploration of our objective function.
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5.2 Convexity of the total effective resistance of a graph

The total effective resistance of a graph is defined as follows

Rtot :=
∑
{x,y}∈E

Reffσ(x, y).

In [20], Boyd et al., addressed the problem of allocating a fixed total conductance among

the edges so as to minimize the total effective resistance of the graph. Assume without loss

of generality that the total conductance to be allocated is 1. The following optimization

problem has been studied, also known as the effective resistance minimization problem

minimize Rtot

subject to 1Tσ = 1, σ ≥ 0,

here the inequality σ ≥ 0 can be understood as a component-wise inequality.

Below we share several interpretations of the problem. In the context of electrical net-

works, the goal is to distribute the conductances to the branches of a circuit so as to achieve

low resistance between the nodes. In the context of a Markov chain, this problem aims to

select the weights on the edges so as to minimize the average hitting time between nodes.

While if we think of the effective resistance between two nodes as a distance , then we can

think of this as a desire to assign conductance to the graph as an attempt to make the graph

small, in the sense of average distance between nodes.

It has been shown that the total effective resistance is a strictly convex function in

weights. In addition, it has been provided that among all graphs with n nodes, the path has

the largest value of optimal total effective resistance and the complete graph has the least.

Given a graph G, one may solve the convex optimization problem introduced above to

find the optimal conductances. The total effective resistance obtained after allocating the

optimal conductances, is often referred to as the absolute total effective resistance of the

graph.
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The connection between the effective resistances and the Laplacian of a graph, allows us

to represent the total effective resistance problem as follows

minimize nTr

(
Lσ +

11T

n

)−1

− n

subject to 1Tσ = 1, σ ≥ 0.

The Lagrange dual problem is

maximize h(Z, ν, λ)

subject to λ ≥ 0,

where we have the following dual variables- Z = ZT ∈ Rn×n, ν ∈ R with the equality

constraints, and λ ∈ Rm with the nonnegativity constraint σ ≥ 0. The dual objective h is

given by

h(Z, λ, ν) = −ν − (1/n)1TZ1 + 2 Tr (nZ)1/2 − n,

with the following constraints

aTi Zai ≤ ν for i = 1, 2, ...,m, and Z < 0.

5.3 Quasiconvex optimization

It is known that the effective resistance is convex in weights [20]. However, despite our hope

that the energy might be convex as well, it is a non-convex function. In fact, we will see in

this chapter that it is quasi-convex (for definition see Appendix B) in each coordinate.

Quasi-convex optimization problems arise in various fields such as microeconomics and

computer vision. It is known that quasi-convex problems can be solved by a series of convex

feasibility problems [8]. In more generality solving such feasibility problems may be very

costly [21]. In 1984, Nesterov [32] introduced the first efficient algorithm, namely Normalized

Gradient Descent, and proved that the algorithm attains ε-optimal solution within O(1/ε2)

iterations given a differentiable quasi-convex objective function. Later, in 2001, it was shown
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by Kiwiel [28] that the same result holds true in case when the objective function is upper

semi-continuous and quasi-convex. In addition, Konnov has shown how to attain faster rates

for quasi-convex optimization [30] though it assumes that the optimal value of the objective

function is known which is not the case in more generality.

5.3.1 Rank-one update approach

In this section we discuss a rank-one update approach that shows the existence of the unique

minimizer for the energy. We fix an orientation on the edges. Let e = (x, y) and ue := δy−δx,

where δi is the i-th unit vector. Let σ1 := σ(e1). We move along the line σt

σt = σ + tσ11e1 , Lσ =
∑
e∈E

σ(e)ueu
T
e and Lσt = Lσ + tσ1ue1u

T
e1
.

As we have seen in chapter 2, the effective resistance of an edge {x, y} can be computed

by the formula 2.3.1, which allows us to compute certain entrees of the pseudo-inverse of

the Laplacian associated with the weighted graph G. As a consequence, we can work with

matrices instead of effective resistances. In order to make mathematical expressions succinct,

we will use the following notation for effective resistances in this section:

R1 := (Reff)σ(e1) = uTe1L
+
σ ue1 and R(e) := (Reff)σ(e) = uTe L

+
σ ue.

One may check via direct computations that the updated pseudo-inverse of the Laplacian

can be computed by the following formula:

L+
σt = L+

σ −
tσ1

1 + tσ1R1

L+
σ ue1u

T
e1
L+
σ ,

which basically can also be deduced by applying Sherman-Morison formula [37].

Claim 5.3.1. Suppose we pick an edge ab and add a weight α to it. Then the new Laplacian

is

L+ αuuT .
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where u = δb − δa We claim that new pseudo-inverse is given by the formula

L+ − α

1 + αR1

L+uuTL+.

Proof. To check this it is enough to multiply the two expressions and get

LL+ + αuuTL+ − αLL+uuTL+

1 + αR1

− α2u(uTL+u)uTL+

1 + αR1

Note that in the last term u(uTL+u)uTL+ = R1uu
TL+. So factoring out uuTL+ on the right

we get

LL+ +
α

1 + αR1

[
I + αR1I − LL+ − αR1I

]
uuTL+

Now notice that (I − LL+)u = 0.

Claim 5.3.2. The energy can be computed by the following formula:

Et =
(1 + t)2R2

1

(1 + tR1)2
− 2t

1 + tR1

B +
t2

(1 + tR1)2
A+ C,

where

A =
∑
e6=e1

σ(e)2(uTe L
+
σ ue1)4, B =

∑
e6=e1

σ(e)2R(e)(uTe L
+
σ ue1)2, C =

∑
e6=e1

σ(e)2
(
uTe L

+
σ ue
)2
.

Claim 5.3.3. The map t 7→ Et is quasiconvex.

The proof of these results can be found in Appendix C.

5.4 Integer valued weights

In this section, we examine the question whether the optimal weights σ can be chosen as

integers, which would allow the interpretation of σ(e) as the multiplicity of edge e. As we

will be discussing iterative algorithms that converge to the minimum when the change in
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energy is small enough, we would like to see whether the weights we will be updating can

be normalized to be integer-valued.

Claim 5.4.1. Let G = (V,E) be a finite connected graph. Let α be the optimal weight-vector

on edges. Then α = m
n
, where m,n ∈ Z. Moreover, we can update the Laplacian as follows

nL+muuT ∈ N.

Proof. We update an edge e1 by adding α to it. Then we can compute the change in energy.

The resulting function depends on α and is given by

∆E =
(A− 2Bc+ c2)α2 − 2(B − c2σ(a, b))α

(1 + cα)2
,

where A,B and c are the following quantities

A =
∑
{x,y}∈E

σ(x, y)2 (hab(y)− hab(x))4 ,

B =
∑
{x,y}∈E

σ(x, y)2Reff(x, y) (hab(y)− hab(x))2

c = Reff(a, b).

As a result we can compute the optimal α expressed in terms of those quantities

αopt =
B − c2σ(a, b)

A−Bc+ c2 − c3σ(a, b)
.

We desire to show that the weights are integer-valued. However, since we begin with integer

weights, it is enough to show that αopt is a rational number. To attain this result, we want

to show that both the numerator and denominator are non-zero integers.

Let {uj}Nj=1 be the orthonormal basis of eigenvectors corresponding to the eigenvalues λi,

i = 1, 2, ..., N for the Laplacian of G. Then, as we have seen in chapter 2, we can represent
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the Laplacian of G as the following sum

L =
N∑
j=2

λjuju
T
j ,

Notice that λ1 = 0, since G is connected and u1 ∈< 1 >= KerL. Again, as we have seen in

chapter 2, we can write the pseudo-inverse of the Laplacian as follows

L+ =
N∑
j=2

1

λj
uju

T
j .

In addition, it is known that the pseudo-inverse of the Laplacian can be presented as follows

L+ =
(
L+

J

N

)−1

− J

N
=

1

N

[
N2(NL+ J)−1 − J

]
,

where J is an N ×N matrix with 1s as entries. Recall that the inverse of a given matrix A,

if it is invertible, can be computed by the following formula

A−1 =
Adj(A)

detA
.

As a result we can represent L+ as follows

L+ =
1

N

[ N2

det(NL+ J)
Adj(NL+ J)− J

]
=

N

det(NL+ J)
Adj(NL+ J)− 1

N
J.

In order to compute thne psuedoinverse of the Laplacian we need to compute the determinant

of (NL+ J). We notice that

Ju1 =
N√
N

1 = Nu1,

(NL+ J)u1 = NLu1 +Nu1 = Nu1,

(NL+ J)uj = Nλjuj, for j > 1.
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Now we see that the eigenvalues of (NL+ J) are the following

N,Nλ2, ..., NλN

and u1, u2, ..., uN are the eigenvectors correspondingly. Therefore,

det(NL+ J) = NNλ2...λN = NN+1|τ |.

Particularly, the representation of the effective resistance at (a, b) in terms of the pseudo-

inverse of the Laplacian allows us to conclude that

c = Reff(a, b) = (δb − δa)TL+(δb − δa) ∈ Q.

The denominator of this expression is N det(NL+ J) = Z. Therefore,

c ∈ N
Z
.

Next quantity we would like to show to be rational is the potential function.

Let σ ∈ NE be the weights for G.

hab = L+(δb − δa) ∈
N

N det(NL+ J)
, A ∈ N

Z4
, B ∈ N

Z
.

Finally, we can show that the optimal weights are rational

αopt =
B − c2σ

A−Bc+ c2 − c3σ
=

Z4(B − c2σ)

Z4A− Z4Bc+ Z4c2(1− cσ)
=
m

n
,

where m,n ∈ N.

Now we can let the new Laplacian to be nL+muuT ∈ N, instead of L+ αuuT .
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5.5 Minimization algorithms for the energy

As we have seen in the previous section, the optimal update on a given edge α can be chosen

to be integer-valued.

Coordinate descent algorithms solve optimization problems by successively performing

approximate minimization along coordinate directions or coordinate hyperplanes. Particu-

larly, minimization of a multivariate function can be achieved by minimizing it along one

direction at a time.

Algorithm 2 General descent method

1: given a starting point x ∈ dom f
2: repeat
3: Determine a descent direction ∆x
4: Line search. Choose a step size t > 0
5: Update x := x+ t∆x
6: until stopping criterion is satisfied.

In the previous section we have introduced the computations for the optimal α. We will

use this update for the algorithms below.

In the algorithm below we start with initial weights. We circle through every edge and

update the weights optimally by increasing the weight on each edge one at a time. We

compute the resulting energy and check if it is small enough.

Algorithm 3 Coordinate descent method.

1: given initial edge-weights σ ≡ 1
2: repeat
3: σ(e) = σ(e) + αopt
4: update the energy
5: until stopping criterion is satisfied. ∆E ≤ ε

Finally, we discuss an algorithm that searches for the best edge and updates that edge.

Then we check the drop in the energy. We repeat this process of the best edge selection

until the energy converges to the minimum. Here we consider the edge to be the best if it

has the smallest per-edge effective resistance so as to be able to equalize per-edge effective
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resistances. This choice can be justified by the following representation of αopt

αopt =
B − c2σ(a, b)

A−Bc+ c2 − c3σ(a, b)
,

where the numerator can be written as follows

B − c2σ(a, b) =
∑
{x,y}∈E

σ(x, y)(hab(y)− hab(x))2

(
Reff(x, y)

r(x, y)
− Reff(a, b)

r(a, b)

)
.

Algorithm 4 Alternative Algorithm

1: given initial edge-weights σ ≡ 1
2: repeat
3: detect the edge with min

e
Reff(e)/r(e)

4: σ(e) = σ(e) + αopt
5: update the energy
6: until stopping criterion is satisfied.∆E ≤ ε

Since the energy can be graphed as in Figure 5.1 for the triangle, the coordinate descent

and gradient descent algorithms converge in this case unlike in case of quasiconvex functions

with multiple local minima.

1 2 3 4 5

−4

−3

−2

−1

Figure 5.1: Change in energy for the triangle
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Chapter 6

Open Problems

Alongside the questions discussed in this dissertation we would like to introduce several open

questions that are currently of our interest.

6.1 The invariance of homogeneity under edge addition

Question 6.1.1. Given a homogeneous graph G = (V,E) which is not a complete graph. Is

there a way to add edges to it one at a time so as to maintain the homogeneity of the graph

at each stage of edge addition till we recover the complete graph on |V | vertices?

We consider an example of a homogeneous graph that does not preserve homogeneity

with respect to edge addition if we do not choose the correct order for edge addition.

Example 6.1.2. Let G = (V,E) be the modified grid as on the left in Fig.6.1 and let

G′ = (V,E + e′) be the graph obtained from G after adding a diagonal e′ to the square in G

as in Fig.6.1. We claim that G′ is a non-homogeneous graph.

Indeed, consider the subgraph H ′ ( G′ as on the right in Fig.6.1. We notice that H ′ is

more dense than G′:

θ(H ′) =
|E(H ′)|
|V (H ′)| − 1

=
7

3
>

9

4
= θ(G′).

However, if we choose to add the other diagonal to the square, we will be able to complete
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Figure 6.1: Modified grid G, G′ and its homogeneous core H ′ from left to right

this graph by maintaining homogeneity. One may check this fact by computing the denseness

of all vertex-induced subgraphs of this graph.

Let G = (V,E) be a homogeneous graph and G′ = G + e′ be the graph obtained from

G by adding an edge e′ to its edge set while leaving the vertex set intact. In other words,

G′ = (V,E + e′). Since G is homogeneous, then for every vertex-induced H ( G

θ(H) ≤ θ(G).

Conjecture 6.1.3. Let G = (V,E) be a homogeneous graph. Then there exists e′ ∈ E(K|V |)

such that G′ = (V,E + e′) is homogeneous.

Assume G′ is a non-homogeneous graph. Therefore, there exists H ′ ( G′ homogeneous

core, which solves the following densest subgraph problem

max
K∈H

θ(K) = θ(H ′),

which in conjunction with the assumption that G′ is non-homogeneous implies that

θ(H ′) > θ(G′).

First we notice that H ′ is not a subgraph of G. Indeed, if H ′ ( G, then

θ(H ′) > θ(G′) =
E + 1

V − 1
>

E

V − 1
= θ(G),

which contradicts to G being a homogeneous graph. This argument allows us to conclude
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that e′ ∈ E(H ′). As a result, we can present H ′ in terms of a proper subgraph of G ,i.e.,

E(H ′) = E(H) + e′ for some H ( G where V (H) = V (H ′).

Lemma 6.1.4. If E(H ′) = E(H) + e′, then H is vertex-induced in G.

Proof. If there exist v1, v2 ∈ V (H) such that (v1, v2) ∈ E(G) \ E(H), then (v1, v2) ∈ E(H ′)

as before since H ′ is vertex-induced. Therefore, (v1, v2) = e′ /∈ E(G).

If we compare the denseness of G and H then we get:

θ(H) = θ(H ′)− 1

V (H)− 1
> θ(G′)− 1

V (H)− 1
= θ(G) +

1

V (G)− 1
− 1

V (H)− 1
.

To achieve a contradiction, it would be enough to show that there exists H ( G such that

V (H) = V (H ′) where H ′ is the homogeneous core of G′.

θ(G)− θ(H) ≥ 1

V (H)− 1
− 1

V (G)− 1
, (6.1.1)

for a homogeneous graph G.

This argument leads us to the following theorem.

Theorem 6.1.5. If G is homogeneous and reducible and H ( G is a core. Then adding and

edge to H so that H ′ = H + e′ is vertex-induced, will make G′ = G+ e′ heterogeneous.

Additionally, this argument raises a question whether the existence of a vertex-induced

subgraph of G that satisfies the inequality 6.1.1 guarantees that G′ is homogeneous.

Conjecture 6.1.6. If G is a homogeneous graph that is not complete, then there exists

H ( G vertex-induced non-complete subgraph such that

θ(G)− θ(H) ≥ 1

V (H)− 1
− 1

V (G)− 1
.

In the example below we apply the inequality in the conjecture to show that the modified

grid admits an edge so that the resulting graph from edge addition is homogeneous.
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Example 6.1.7. We consider the same example as before - the modified grid. Let G,G′

and H be the graphs as in Figure 6.2.

Figure 6.2: Modified grid G, G′ and H from left to right

We see that G′ is homogeneous in this case, as G satisfies the inequality 6.1.1

θ(G)− θ(H) = 2− 5

3
=

1

3
>

1

12
=

1

3
− 1

4
=

1

|VH | − 1
− 1

|VG| − 1
.

Claim 6.1.8. Let G = (V,E) be an n-cycle (n = |V |). Then there exists e′ ∈ E(Kn) \ E

such that G′ = (V,E + e′) is homogeneous.

Proof. Let e′ be the edge from the edge-set of the complete graph on n vertices that splits

G into two subgraphs so that they share e′. We choose e′ so that the size of the vertex-set

of the smallest subgraph of the graph is equal to (n+ 1)/2 if n is odd and to (n+ 2)/2 when

n is even. We claim that this choice of e′ guarantees homogeneity of G′.

Computations show that

θ(G′) =
n+ 1

n− 1
.

Let H ′1 be the subgraph of G′ that has the required number of vertices and let H ′2 be the

other subgraph. Notice that both of these subgraphs are cycles. Hence when n is odd we

have the following

θ(H ′1) =
(n+ 1)/2

(n+ 1)/2− 1
=
n+ 1

n− 1
,

which indicates that if G′ is homogeneous, then in this case it must be reducible. To convince

ourselves that it is homogeneous, we also present the computations for the density of H ′2.
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First, we notice that the number of vertices of H ′2 is

|V (H ′2)| = 2 + n− (n+ 1)/2 =
n+ 3

2
.

Plugging this back into the density formula we get the following

θ(H ′2) =
(n+ 3)/2

(n+ 3)/2− 1
=
n+ 3

n+ 1
<
n+ 1

n− 1
.

Similarly, if n is even we get that

θ(H ′1) = θ(H ′2) =
(n+ 2)/2

(n+ 2)/2− 1
=
n+ 2

n
<
n+ 1

n− 1
,

which illustrates that G′ is homogeneous, irreducible in this case.

Example 6.1.9. In this example we start out with the 6-cycle graph as in figure 6.3.

Figure 6.3: Homogeneous completion for 6-cycle
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We would like to add edges to the 6-cycle until we obtain the complete graph on 6 vertices

so that at each stage of edge addition the resulting graph is homogeneous. To complete the

cycle, first we create a 3-regular graph from a cycle by constructing all (|V |/2+1) = 4-cycles.

There are |V |/2 = 3 such cycles. Notice that this graph is homogeneous as it is regular.

Then we create a 5-regular graph by constructing all 3-cycles. There are |V | = 6 such cycles.

6.2 Irreducible random regular graphs

In the Erdös-Rényi random graph Gn,p, each pair of vertices is connected by an edge with

probability p. More commonly, behind the study of random graphs lies a desire to understand

the properties of ’typical’ graphs. Particularly, in this section we will be concerned with

random regular graphs. In the context of homogeneity of a graph, it is known that almost

every d-regular graph is homogeneous. The question that we would like to address here is

precisely the following

Question 6.2.1. What portion of d-regular graphs on |V | verices are irreducible?

We recall that irreducibility is a property of a homogeneous graph that prevents it from

having subgraphs that are as dense as the graph itself. Moreover, we have the following

proposition which allows us to be certain about the graphs that are irreducible if they

satisfy a certain criterion.

Proposition 6.2.2. Let G = (V,E) be a homogeneous graph. If |V | − 1 and |E| are relatively

prime, then G is irreducible/

Example 6.2.3. Here we discuss an example of a graph, where the condition (|V |−1, |E|) =

1 is violated, yet the graph turns out to be irreducible. Let G = (10, 15) be the Peterson

graph as in Figure 6.4. Notice that the density for the Petersen graph is 5/3,

θ(G) =
|E|
|V | − 1

=
15

9
=

5

3
.
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Figure 6.4: Petersen graph

One may check via direct computation of the density of subgraphs of the Peterson graph,

that no subgraph is as dense as Peterson graph itself which proves that it must be irreducible.

Now, we assume G = (V,E) is d-regular. Notice that |E| = 1
2
d|V | in this case.

Claim 6.2.4. Let G be a d-regular graph on |V | = 2k vertices. If 2k− 1 and d are relatively

prime, then G is irreducible.

Proof. Indeed, since the condition in Proposition 6.2.2 can be translated in this case as

follows - if dk and (2k−1) are relatively prime, then G is irreducible. Since k and 2k−1 are

relatively prime for any k, then the statement about dk and (2k − 1) being relatively prime

is true iff d and (2k − 1) are relatively prime.

This gives rise to the following question.

Question 6.2.5. What is the likelihood of the event that d(≤ 2k−1) and 2k−1 are relatively

prime for any positive integer k?

For simplicity, first we investigate the case when d = 3 and k ≥ 2. The probability that

(2k − 1) is divisible by 3 is equal 1/3. This observation yields the following claim.

Claim 6.2.6. Given a family of 3-regular graphs G on 2k vertices (k ≥ 2), at least 2/3 of

them are irreducible.

83



Now moving forward we will study two distinct cases - when d is even and when d is odd.

If d is even, then we can represent it as

d = 2m1pm2
2 ...pmss ,

where pi 6= 2 for i = 2, .., s, are distinct prime numbers withmi multiplicities correspondingly.

In other words we represent d via its prime factorization.

Claim 6.2.7. Let G be a d-regular graph on 2k vertices. Let d be an even number with the

following prime factorization

d = 2m1pm2
2 ...pmss .

Then the likelihood that G is irreducible is bounded from below by the following number

1−

(
s∑
i=2

1

pi
−

s∑
i<j

1

pipj
−

s∑
i<j<k

1

pipjpk
− ...− 1

p2...ps

)
.

Remark 6.2.8. Notice that in case when d is odd, then the likelihood that G is irreducible,

is bounded below by

1−

(
s∑
i=1

1

pi
−

s∑
i<j

1

pipj
−

s∑
i<j<k

1

pipjpk
− ...− 1

p1...ps

)
,

where we assume the following prime factorization for d

d = pm1
1 pm2

2 ...pmss .

Proof. The likelihood that (2k − 1) is divisible by d is the same as saying it is divisible by

either of the prime factors subtracted all the cases when j for j = 2, ...s of them divide

(2k − 1).
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Appendix A

Convex Optimization

In this section we discuss convex optimization problems of the form

minimize f0(x)

subject to fi(x) ≤ 0 i = 1, ...,m,

hi(x) = 0 i = 1, ..., p,

where the functions f0, ..., fm : Rn → R are convex ,i.e.,

fi(αx+ βy) ≤ αfi(x) + βfi(y)

for all x, y ∈ Rn and for all α, β ∈ R with α+β = 1, α ≥ 0, β ≥ 0. We define the Lagrangian

of this problem to be the following:

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x).

We define the Lagrange dual function to be the following:

g(λ, ν) = inf
x∈Rn

L(x, λ, ν) = inf
x∈Rn

(
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

)
.

89



Now we are ready to define the Lagrange dual problem:

maximize g(λ, ν)

subject to λ ≥ 0.

In this context we refer to the original problem as the primal problem. Particularly, for the

modulus problem we will have the following Lagrangian function:

L(ρ, λ) :=
∑
e∈E

σ(e)|ρ(e)|p +
∑
γ∈Γ

λ(γ)

(
1−

∑
e∈E

N (γ, e)ρ(e)

)
.

In addition, we have the following dual function for the modulus problem:

g(λ) =
∑
γ∈Γ

λ(γ)− (p− 1)
∑
e∈E

σ(e)

(
1

pσ(e)

∑
γ∈Γ

λ(γ)N (γ, e)

) p
p−1

.

Below we discuss the KKT conditions for convex optimization problems. Let x̃, λ̃ and ñu be

any points that satisfy the following KKT conditions:

∇f0(x̃) +
m∑
i=1

λ̃i∇fi(x̃)+

p∑
i=1

ν̃i∇hi(x̃) = 0

fi(x̃) ≤ 0, i = 1, ...,m

hi(x̃) = 0, i = 1, ..., p

λ̃i ≥ 0, i = 1, ...,m

λ̃ifi(x̃) = 0, i = 1, ...,m,

then x̃ and (λ̃, ν̃) are primal and dual optimal.

Remark A.0.1. In order for a minimum x̃ to satisfy the KKT conditions, the convex problem

should satisfy the following regularity conditions: there exists a point x such that h(x) = 0

and fi < 0.
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Appendix B

Quasiconvex Functions

A function f : Rn → R is called quasiconvex if its domain and all its sublevel sets

Sα = {x ∈ dom f | f(x) ≤ α},

for α ∈ R, are convex. A function f is quasiconcave if−f is quasiconvex, i.e., every superlevel

set {x | f(x) ≥ α} is convex.

Example B.0.1. We consider the linear-fractional transformation

f(x) =
aTx+ b

cTx+ d

with dom f = {x | cTx + d > 0}. We notice that its α-sublevel set is convex since it is the

intersection of an open halfspace and a closed halfspace.

Sα = {x | cTx+ d > 0, (aTx+ b)/(cTx+ d) ≤ α}

= {x | cTx+ d > 0, aTx+ b ≤ α(cTx+ d)}

However, the most commonly used characteristics for quasionvex functions is the property

analogous to Jensen’s inequality for convex functions. A function f is quasiconvex if and
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only if dom f is convex and for any x, y ∈ dom f and 0 ≤ θ ≤ 1,

f(θx+ (1− θ)y) ≤ max{f(x), f(y)},

i.e., the value of the function on a segment does not exceed the maximum of its values at

the endpoints.

Now, we introduce the first order conditions for quasiconvexity of a differentiable function.

Suppose f : Rn → R is differentiable. Then f is quasiconvex if and only if textdomf is convex

and for all x, y ∈ dom f

f(y) ≤ f(x)⇒ ∇f(x)T (y − x) ≤ 0.

This condition has the following geometric interpretation when ∇f(x) 6= 0. It states that

∇f(x) defines a supporting hyperplane to the sublevel set {y | f(y) ≤ f(x)}, at the point x.

Remark B.0.2. From the optimization point of you the main difference between convex and

quasiconvex functions is that∇f(x) = 0 condition does not imply that x is a global optimizer

for f if f is quasiconvex unlike the case if it were convex.

Now suppose f is twice differentiable. If f is quasiconvex, then for all x ∈ dom f, and

all y ∈ mathbbmRn, we have

yT∇f(x) = 0⇒ yT∇2f(x)y ≥ 0.

Remark B.0.3. If we consider a quasiconvex function defined on R, then this condition

translates to the following

f ′(x) = 0⇒ f ′′(x) ≥ 0,

which can be interpreted as the second derivative being nonnegative at any point with zero

slope.
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Appendix C

Quasi-convexity of the energy

Claim C.0.1. The energy can be computed by the following formula:

Et =
(1 + t)2R2

1

(1 + tR1)2
− 2t

1 + tR1

B +
t2

(1 + tR1)2
A+ C.

Proof. We break the updated energy into two distinct pieces.

Et =σ2
1(1 + t)2(uTe1L

+
σtue1)2 +

∑
e6=e1

σ(e)2(uTe L
+
σtue)

2

Next we express L+
σt in terms of L+

σ as discussed above.

Et =σ2
1(1 + t)2

(
uTe1

(
L+
σ −

tσ1

1 + tσ1R1

L+
σ ue1u

T
e1
L+
σ

)
ue1

)2

+
∑
e6=e1

σ(e)2

(
uTe

(
L+
σ −

tσ1

1 + tσ1R1

L+
σ ue1u

T
e1
L+
σ

)
ue

)2
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Here we use the formula for the effective resistance on the edge e1:

Et =σ2
1(1 + t)2

(
R1

1 + tσ1R1

)2

+
∑
e6=e1

σ(e)2

(
uTe L

+
σ ue −

tσ1

1 + tσ1R1

(uTe1L
+
σ ue)

2

)2

=σ2
1(1 + t)2 R2

1

(1 + tσ1R1)2
+
∑
e6=e1

σ(e)2
(
uTe L

+
σ ue
)2

− 2tσ1

1 + tσ1R1

∑
e6=e1

σ(e)2(uTe L
+
σ ue)(u

T
e1
L+
σ ue)

2 +
t2σ2

1

(1 + tσ1R1)2

∑
e6=e1

σ(e)2(uTe1L
+
σ ue)

4

Finally, we use the notations introduced above to make further use of this formula more

convenient.

Et =
σ2

1(1 + t)2R2
1

(1 + tσ1R1)2
− 2tσ1

1 + tσ1R1

B +
t2σ2

1

(1 + tσ1R1)2
A+ C

=
(1 + t)2R2

1

(σ−1
1 + tR1)2

− 2t

σ−1
1 + tR1

B +
t2

(σ−1
1 + tR1)2

A+ C

Note that if we multiply all the weights by the same factor λ, as in σ 7→ λσ, then by Lemma

5.1.2, Et remains constant. So we can assume that σ1 = 1, and thus R1 ≤ 1. This argument

allows us to attain the desirable conclusion about the energy.

Moving forward, we would like to compute the derivative of the energy, as our goal is

to show the existence of the unique minimizer for the energy. The computations yield the

following result.

dEt
dt

=2R2
1

(1 + t)(1−R1)

(1 + tR1)3
− 2B

(1 + tR1)2
+

2tA

(1 + tR1)3

=2
(R2

1(1−R1) + A−R1B)t+R2
1(1−R1)−B

(1 + tR1)3

Note that the numerator of dEt/dt is a linear function and the denominator is always positive

since t ≥ −1 and R1 ≤ 1. We claim that the slope of that linear function is positive, so that
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dEt/dt changes sign only once and goes from being negative to being positive.

Claim C.0.2. The map t 7→ Et is quasiconvex.

Proof. The slope of the numerator is A + R1(R1(1 − R1) − B). We will use the fact that

(since σ1 = 1)

R1 =
∑
e∈E

σ(e)(ueL
+
σ u

T
e1

)2 = (ue1L
+
σ u

T
e1

)2 +
∑
e6=e1

σ(e)(ue1L
+
σ u

T
e1

)2

=R2
1 +

∑
e 6=e1

σ(e)(ue1L
+
σ u

T
e1

)2

Hence by the definition of B,

R1(1−R1)−B =R1 −R2
1 −B

=
∑
e 6=e1

σ(e)(1− σ(e)R(e))(ueL
+
σ ue1)2 ≥ 0,

because σ(e)R(e) ≤ 1 for every e.

Moreover, the minimum is attained for

t∗ = − R2
1(1−R1)−B

R2
1(1−R1) + A−R1B

Since Et is only defined on [−1,∞), we want to check whether t∗ > 1. This can be seen either

by direct computation or by plugging t = −1 in and seeing that the numerator of dEt/dt is

negative there:

−R2
1(1−R1)− A+R1B +R2

1(1−R1)−B = −A−B(1−R1) ≤ 0.

Now we fix two edges e1 and e2 and the corresponding vectors u1 and u2. Let U = [u1u2]

and let C = Diag(σ1a, σ2b) for constants a, b > 0. Then the edge-conductances are perturbed
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as follow, for t ≥ min{−1/a,−1/b}:

σt = σ + t(σ1a1e1 + σ2b1e2),

and the Laplacian becomes,

Lσt = Lσ + tσ1au1u
T
1 + tσ2bu2u

T
2 = Lσ + U(tC)UT .

Here, first we use the representation of the pseudo-inverse of the Laplacian in terms of the

inverse of rank-one updated Laplacian. Then we apply Woodbury identity for the inverse.

Here is what we get as a result.

(L+ UCV )+ =

(
L+ UCV +

J

N

)−1

− J

N

=
(
L+

J

N

)−1

−
(
L+

J

N

)−1

U
(
C−1 + V

(
L+

J

N

)−1

U
)−1

V
(
L+

L

J

)−1

− J

N

= L+ −
(
L+ +

J

N

)
U
(
C−1 + V

(
L+ +

J

N

)
U
)−1

V
(
L+ +

J

N

)
= L+ −

(
L+ +

J

N

)
U
(
C−1 + V L+U + V

J

N
U
)−1

V
(
L+ +

J

N

)
= L+ − L+U

(
C−1 + V L+U

)−1

V
(
L+ +

J

N

)
− J

N
U
(
C−1 + V L+U

)−1

V
(
L+ +

J

N

)
= L+ − L+U

(
C−1 + V L+U

)−1

V L+ − L+U
(
C−1 + V L+U

)−1

V L
J

N

= L+ − L+U
(
C−1 + V L+U

)−1

V L+

Therefore, we can use the following formula for  L+
σt

L+
σt = L+

σ − L+
σU
[
(tC)−1 + UTLσU

]−1
UTL+

σ

96



As a result, we can write the energy as follows

E(t) =
∑
e∈E

σt(e)
2(uTe L

+
σtue)

2.

In order to simplify notation we write A := σ1at and B = σ2bt. Note that

(tC)−1 + UTLσU = Diag(A−1, B−1) +

 R1 ∇h1(e2)

∇h1(e2) R2

 .

So
[
(tC)−1 + UTLσU

]−1
is equal to

1

(A−1 +R1)(B−1 +R2)− |∇h1|2(e2)

 B−1 +R2 −∇h1(e2)

−∇h1(e2) A−1 +R1



which we write as d−1M . Note that the denominator d is non-negative because R1R2 ≥

|∇h1|2(e2) by the Cauchy-Schwarz inequality.

The part of the energy corresponding to e1 is (σ1 + A)2 times the square of

uT1

(
L+
σ − L+

σU
[
(tC)−1 + UTLσU

]−1
UTL+

σ

)
u1 = R1 − uT1L+

σUd
−1MUTL+

σ u1

Note that uT1L
+
σU =

[
R1 ∇h1(e2)

]
. So the second term is d−1 times

R2
1B
−1 + |∇h1|2(e2)A−1 +R1(R1R2 − |∇h1|2(e2))

After finding common denominators, we get d−1 times

R1A
−1B−1 + (R1R2 − |∇h1|2(e2))A−1
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So setting δ = R1R2 − |∇h1|2(e2), this part of the energy is

(σ1 + A)2

(
R1 + δB

1 +R1A+R2B + δAB

)2

(
σ1R1 +R1A+ σ1δB + δAB

1 +R1A+R2B + δAB

)2

which again tends to 1 as t→∞.
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Appendix D

One edge perturbation

Here we provide several different approaches to perturbing one edge, with the intention to

generalize one of them to the case of perturbing several edges simultaneously, which would

allow to take oblique directions.

D.0.1 Probabilistic approach

In this section we discuss a probabilistic approach to describe the change in energy while

updating the weight on a single edge of the graph. We enumerate the edges e1, . . . . Write

σ1 for the weight of e1. For e 6= e1, write σ(e). We increase the weight on edge e1 from σ1

to σ1 + k.

Remark D.0.1. If σ1 and k are integer, we can think of e1 as having σ1 multi-edges and

adding k new ones. However, when computing edge probabilities we still think of simple

graphs. Namely, adding multi-edges increases the number of trees that use the simple edge

e1, where all the multi-edges are collapsed.

99



We write σ for the old weights and σ′ for the new weights. Then

p := P(e1 ∈ T | σ) =

∑
T3e1

∏
e∈T σ(e)∑

T

∏
e∈T σ(e)

=
σ1

∑
T3e1

∏
e1 6=e∈T σ(e)

σ1

∑
T3e1

∏
e1 6=e∈T σ(e) +

∑
T 63e1

∏
e∈T σ(e)

=
σ1A

σ1A+B

As a result we can express B in terms of A, σ1 and p.

B = σ1A(p−1 − 1).

On the other hand, if we consider the edge-usage probabilities for the updated edge after

the update, we will have the following

P(e1 ∈ T | σ′) =

∑
T3e1

∏
e∈T σ

′(e)∑
T

∏
e∈T σ

′(e)

=
(σ1 + k)

∑
T3e1

∏
e1 6=e∈T σ(e)

(σ1 + k)
∑

T3e1
∏

e1 6=e∈T σ(e) +
∑

T 63e1
∏

e∈T σ(e)

=
(σ1 + k)A

(σ1 + k)A+B

=
σ1 + k

σ1p−1 + k

Assuming σ1 = 1 and writing E1(k) = P(e1 ∈ T | σ′)2, we get

E1(k) =

(
p

1 + k

1 + pk

)2

=

(
1− 1− p

1 + pk

)2

.

Note E1(−1) = 0 and limk→∞ E1(k) = 1.
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Now, we discuss the case when e 6= e1.

p(e) := P(e ∈ T | σ) =

∑
T3e
∏

e′∈T σ(e′)∑
T

∏
e′∈T σ(e′)

The numerator of this expression can be simplified to

σ(e)σ1

∑
e1∈T3e

∏
e′ 6=e,e1∈T

σ(e′) + σ(e)
∑

e1 6∈T3e

∏
e′ 6=e∈T

σ(e′)

and the denominator is of the following form

σ(e)σ1

∑
e1∈T3e

∏
e′ 6=e,e1∈T

σ(e′) + σ(e)
∑

e1 6∈T3e

∏
e′ 6=e∈T

σ(e′)

+σ1

∑
e1∈T 63e

∏
e1 6=e′∈T

σ(e′) +
∑

e1 6∈T 63e

∏
e′∈T

σ(e′)

Eventually, we combine them to obtain the following ratio

p(e) =
A(e1, e) + A(e1, e)

A(e1, e) + A(e1, e) + A(e1, e) + A(e1, e)
(D.0.1)

where the notation A(e, e′, . . . , f , f ′, . . . ) represents the weight of all the trees that include

edges e, e′, . . . but not f, f ′ . . . .

To simplify further, let a := A(e1, e), b := A(e1, e), c := A(e1, e), and d := A(e1, e). Then

(D.0.1) can be written as

a+ b+ c+ d = p(e)−1(a+ c). (D.0.2)

Also, when passing from σ to σ′, a changes to (1 + k/σ1)a and b changes to (1 + k/σ1)b.
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Therefore,

P(e ∈ T | σ′) =
(1 + k/σ1)A(e1, e) + A(e1, e)

(1 + k/σ1)A(e1, e) + A(e1, e) + (1 + k/σ1)A(e1, e) + A(e1, e)

=
ka/σ1 + a+ c

ka/σ1 + kb/σ1 + a+ b+ c+ d

Assuming without loss of generality that σ1 = 1 and using (D.0.2)

P(e ∈ T | σ′) =
ka+ a+ c

k(a+ b) + p(e)−1(a+ c)

=
a

a+ b

[
1 +

a+b
a

(a+ c)− p(e)−1(a+ c)

k(a+ b) + p(e)−1(a+ c)

]

=
a

a+ b
+

p(e)− a(a+ b)−1

k(a+ b) + p(e)−1(a+ c)
p(e)−1(a+ c)

We claim that p(e) − a(a + b)−1 ≥ 0, so that, as k → ∞, P(e ∈ T | σ′) is convex and

decreases, with horizontal asymptote a/(a+ b). To see this recall that p(e) = Pσ(e ∈ T ) and

note that
a

a+ b
=

A(e1, e)

A(e1, e) + A(e1, e)
= Pσ (e ∈ T | e1 ∈ T ) .

However,

Pσ(e ∈ T ) ≥ Pσ (e ∈ T | e1 ∈ T )

because random trees are negative correlated, see (cite grimmett) Intuitively, if one already

knows that e1 ∈ T , then it’s less likely that e ∈ T .

D.0.2 Effective resistance version

In this section we will be working with the updated effective resistances on the edges of the

graph as we update the weight on one of the edges while keeping the weights on the remaining

edges the same. Enumerate the edges e1, . . . . Write R1 and σ1 for the effective resistance and

the conductance of e1. For e 6= e1, write R(e) and σ(e). Recall that R1 equals the voltage
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drop across e1 necessary to pass a unit of current across the network. Let h1 : V → R be

this voltage potential and for every edge e = {x, y}, write |∇h1|(e) = |h(x)− h(y)|. Then

R1 = |∇h1|(e1). (D.0.3)

Moreover, R1 is also the dissipated power in the system,

R1 =
∑
e∈E

σ(e)|∇h1|2(e). (D.0.4)

One way to see this is to note that h1/R1 is a unit potential drop, so its energy is effective

conductance, i.e.,
1

R1

=
∑
e∈E

σ(e)
|∇h1|2(e)

R2
1

,

which can be seen to be equivalent to (D.0.4).

We now let t ∈ [−1,∞) and write σt = σ + tσ11e1 . This gives rise to the energy as a

function of t:

E(t) =
∑
e∈E

σt(e)
2Rt(e)

2.

where Rt is effective resistance with respect to σt. To understand this sum we need to

compute Rt(e).

For e1, think of edge e1 as being in parallel with the rest of the network. Let R̃ be the

effective resistance of the rest of the network. Then, by the parallel rule

Rt(e1)−1 = R̃−1 + σ1(1 + t).

and when t = 0, we have R−1
1 = R̃−1 + σ1, so

Rt(e1)−1 = R−1
1 + tσ1,
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i.e.

Rt(e1) =
1

R−1
1 + tσ1

(D.0.5)

Now assume that e 6= e1.

Fix an orientation on the edges. If e = (x, y), write ue = δy − δx Recall the Laplacian is:

Lσ =
∑
e∈E

σ(e)ueu
T
e

so that

Lσt = Lσ + tσ1ue1u
T
e1
.

By Shermann-Morrison:

L+
σt = L+

σ −
1

(tσ1)−1 +R1

L+
σ ue1u

T
e1
L+
σ

Therefore, for e 6= e1 we have

Rt(e) = uTe L
+
σtue = uTe L

+
σ ue −

1

(tσ1)−1 +R1

uTe L
+
σ ue1u

T
e1
L+
σ ue

= R(e)− 1

(tσ1)−1 +R1

(uTe L
+
σ ue1)2.

= R(e)− 1

(tσ1)−1 +R1

|∇h1|2(e).

E(t) = (1 + t)2σ2
1Rt(e1)2 +

∑
e 6=e1

σ(e)2Rt(e)
2

=
(1 + t)2σ2

1

(R−1
1 + tσ1)2

+
∑
e6=e1

σ(e)2

(
R(e)− 1

(tσ1)−1 +R1

|∇h1|2(e)

)2

=
(1 + t)2σ2

1

(R−1
1 + tσ1)2

+
∑
e6=e1

σ(e)2

(
R(e)− tσ1R

−1
1

R−1
1 + tσ1

|∇h1|2(e)

)2

We make the change variables s = R−1
1 + tσ1. Note that t = σ−1

1

[
s−R−1

1

]
. In particular,

t ≥ −1 if and only if s ≥ R−1
1 (1 − σ1R1) ≥ 0. So if φ(s) := E(t(s)), then φ′(s) = E ′(t(s)) dt

ds
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and
dt

ds
= σ−1

1 ≥ 0.

Since we are only interested in the sign of E ′, we can without loss of generality, study the

sign of φ′ instead. Note that

φ(s) =s−2(σ1 −R−1
1 + s)2 +

∑
e6=e1

σ(e)2
(
R(e)− s−1(s−R−1

1 )R−1
1 |∇h1|2(e)

)2

=R−2
1 (R1 − s−1(1− σ1R1))2 +

∑
e 6=e1

σ(e)2
(
R(e)− (1− s−1R−1

1 )R−1
1 |∇h1|2(e)

)2

Here we take the derivative in s and simplify it to a linear function in s with slope:

dφ(s)

ds
=2R−2

1 (R1 − (1− σ1R1)s−1)(1− σ1R1)s−2

− 2
∑
e6=e1

σ(e)2
(
R(e)− (1− s−1R−1

1 )R−1
1 |∇h1|2(e)

)
R−2

1 |∇h1|2(e)s−2

s3

2

dφ(s)

ds
=R−2

1 (sR1 − (1− σ1R1))(1− σ1R1)

−
∑
e6=e1

σ(e)2
(
sR(e)− (s−R−1

1 )R−1
1 |∇h1|2(e)

)
R−2

1 |∇h1|2(e)

m :=R−1
1 (1− σ1R1)−R−2

1

∑
e6=e1

σ(e)2R(e)|∇h1|2(e)

+R−3
1

∑
e6=e1

σ(e)2|∇h1|4(e)

≥R−1
1 (1− σ1R1)−R−2

1

∑
e6=e1

σ(e)|∇h1|2(e) (since σ(e)R(e) ≤ 1 )

=R−1
1 (1− σ1R1)−R−2

1 (R1 − σ1R
2
1)

=R−2
1 [R1(1− σ1R1)− (R1 − σ1R

2
1)] = 0.
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D.0.3 Calculus version

In this section, we apply calculus version analysis of the energy as we increase the weight on

one edge of the graph only. As before, we have

E(t) =
∑
e∈E

(σt(e)Rt(e))
2

= (σt(e1)Rt(e1))2 +
∑
e6=e1

(σ(e)Rt(e))
2 = f(t) + g(t)

Let f(t) be the part of the energy contributed by e1 and let g(t) be the remaining part. The

conductance on edge e1 increases linearly σt(e1) = σ1(1 + t), for t ≥ −1. This causes every

effective resistance Rt(E) to decrease. Indeed,

0 ≤ Rt(e) = R(e)− |∇h1(e)|2
1
σ1t

+R1

≤ R(e) (D.0.6)

and

R′t(e) = − σ1|∇h1(e)|2

(1 + σ1R1t)2
≤ 0 and lim

t→∞
R′t(e) = 0. (D.0.7)

Note that the pole is at t0 = −(σ1R1)−1 which is less than −1 since σ1R1 ≤ 1. Also,

R−1(e) = R(e) +
σ1|∇h1(e)|2

1− σ1R1

and

lim
t→∞

Rt(e) = R(e)− |∇h1(e)|2

R1

≥ 0.

where the latter is non-negative because R(e)R1 ≥ |∇h1(e)|2, by the Cauchy-Schwarz in-

equality.

Also we have,

lim
t→∞

R′t(e) = 0 and R′−1(e) = −σ1|∇h1(e)|2

(1− σ1R1)2
(D.0.8)

Finally,

R′′t (e) =
2σ1R1|∇h1(e)|2

(1 + σ1R1t)3
≥ 0. (D.0.9)
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So for every edge, Rt(e) is a convex decreasing function with a horizontal asymptote at +∞.

When e = e1, from (D.0.6), we have

Rt(e1) = R1 −
R2

1
1
σ1t

+R1

=
R1

1 + σ1R1t
(D.0.10)

In particular,

R−1(e1) =
R1

1− σ1R1

and lim
t→∞

Rt(e1) = R1 −
R2

1

R1

= 0,

which makes sense because the edge-conductance of e1 tends to infinity.

In fact,

lim
t→∞

σt(e1)Rt(e1) = 1. (D.0.11)

Also,

R′t(e1) = − σ1R
2
1

(1 + σ1R1t)2
= −σ1Rt(e1)2 (D.0.12)

As a result we see below that the derivative of the per-edge effective resistance is non-negative.

(σt(e1)Rt(e1))′ = σ1Rt(e1) (1− σt(e1)Rt(e1)) ≥ 0, (D.0.13)

meaning that σt(e1)Rt(e1) monotonically increases to 1. Finally,

R′′t (e1) =
2σ2

1R
3
1

(1 + σ1R1t)3
= 2σ2

1Rt(e1)3 (D.0.14)

We want to show that

E ′(t) = f ′(t) + g′(t)

has exactly one zero in [−1,∞) and goes from being negative to being positive.

Note that

g′(t) = 2
∑
e6=e1

σ(e)2Rt(e)R
′
t(e) ≤ 0,
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and by (D.0.9),

g′′(t) = 2
∑
e 6=e1

σ(e)2
(
R′t(e)

2 +Rt(e)R
′′
t (e)

)
≥ 0.

So g′(t) is negative and increasing, and by (D.0.7) has a horizontal asymptote at y = 0 .

On the other hand, by (D.0.7) and (D.0.12),

f ′(t) = 2σt(e1)Rt(e1) (σ′t(e1)Rt(e1) + σt(e1)R′t(e1))

= 2σt(e1)Rt(e1)
(
σ1Rt(e1)− σ1σt(e1)Rt(e1)2

)
= 2σ1σt(e1)Rt(e1)2 (1− σt(e1)Rt(e1)) ≥ 0.

So by (D.0.11) and (D.0.10),

lim
t→∞

f ′(t) = 0. (D.0.15)

Also,

f ′′(t) = 2 (σ1Rt(e1) + σt(e1)R′t(e1))
2

+ 2σt(e1)Rt(e1) (2σ1R
′
t(e1) + σt(e1)R′′t (e1))

= 2σ2
1Rt(e1)2 (1− σt(e1)Rt(e1)) (1− 3σt(e1)Rt(e1))

Note that f ′′(−1) > 0. Also, by (D.0.11) and (D.0.13), σt(e1)Rt(e1) monotonically in-

creases to 1. So, as t→∞, f ′′(t) goes from positive to negative. Since g′′ is always positive,

we have that either E ′′ is always positive, or it changes sign only once and goes from positive

to negative. Moreover, by (D.0.7) and (D.0.15), E ′(t) has horizontal asymptote y = 0 as

well. Moreover, since g′(−1) ≤ 0 and f ′(−1) = 0, we have E ′(−1) ≤ 0.

This means that E does have an inflection point, and the derivative there must be positive.

So we find that E has a unique minimum and the function is quasiconvex.

108


	Title Page
	Abstract
	Table of Contents
	List of Figures
	Acknowledgements
	Introduction
	Minimum expected overlap problem
	Weighted uniform spanning trees
	Algorithms

	Uniform spanning trees
	Weighted uniform spanning trees (WUST)
	Generating uniform spanning trees (UST)
	Aldous-Broder algorithm
	Wilson's algorithm
	Wilson's algorithm for grids

	Electrical networks and WUST
	Electrical current flows and effective resistance
	Potential function and electrical circuits
	Laplacian of a graph
	Pseudo-inverse of the Laplacian and the effective resistance
	Kirchhoff's theorem

	Counting spanning trees
	Matrix-Tree theorem
	Deletion-Contraction theorem


	MEO and FEU problems
	MEO and FEU problems
	Homogeneous graphs and denseness ratio
	Densest subgraph problem and homogeneous cores

	Deflation and serial rule
	Homogeneous reducible graphs
	Examples
	Example: modified grids
	Example: grids


	Modulus and maximum entropy
	Modulus of families of objects
	 Spanning tree modulus algorithm

	Maximum entropy for optimal MEO pmfs
	Maximizing entropy

	 When all trees are fair
	Finding weights
	Dual problem
	A numerical algorithm

	When not all trees are fair
	Approximation on homogeneous graphs
	Existence criterion for WURST
	Density of WUST


	Minimization of energy
	Energy of WUST
	Convexity of the total effective resistance of a graph
	Quasiconvex optimization
	Rank-one update approach

	Integer valued weights
	Minimization algorithms for the energy

	Open Problems
	The invariance of homogeneity under edge addition
	Irreducible random regular graphs 

	Bibliography
	Convex Optimization
	Quasiconvex Functions
	Quasi-convexity of the energy
	One edge perturbation
	Probabilistic approach
	Effective resistance version
	Calculus version



