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Abstract

The large volume of data generated in the recent years has created opportunities for

discoveries in various fields. In biology, next generation sequencing technologies determine

faster and cheaper the exact order of nucleotides present within a DNA or RNA fragment.

This large volume of data requires the use of automated tools to extract information and

generate knowledge. Machine learning classification algorithms provide an automated means

to annotate data but require some of these data to be manually labeled by human experts, a

process that is costly and time consuming. An alternative to labeling data is to use existing

labeled data from a related domain, the source domain, if any such data is available, to

train a classifier for the domain of interest, the target domain. However, the classification

accuracy usually decreases for the domain of interest as the distance between the source

and target domains increases. Another alternative is to label some data and complement it

with abundant unlabeled data from the same domain, and train a semi-supervised classifier,

although the unlabeled data can mislead such classifier. In this work another alternative

is considered, domain adaptation, in which the goal is to train an accurate classifier for

a domain with limited labeled data and abundant unlabeled data, the target domain, by

leveraging labeled data from a related domain, the source domain. Several domain adap-

tation classifiers are proposed, derived from a supervised discriminative classifier (logistic

regression) or a supervised generative classifier (näıve Bayes), and some of the factors that

influence their accuracy are studied: features, data used from the source domain, how to

incorporate the unlabeled data, and how to combine all available data. The proposed ap-

proaches were evaluated on two biological problems – protein localization and ab initio splice



site prediction. The former is motivated by the fact that predicting where a protein is lo-

calized provides an indication for its function, whereas the latter is an essential step in gene

prediction.
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influence their accuracy are studied: features, data used from the source domain, how to

incorporate the unlabeled data, and how to combine all available data. The proposed ap-

proaches were evaluated on two biological problems – protein localization and ab initio splice



site prediction. The former is motivated by the fact that predicting where a protein is lo-

calized provides an indication for its function, whereas the latter is an essential step in gene

prediction.



Table of Contents

Table of Contents viii

List of Figures xi

List of Tables xiv

Acknowledgements xv

1 Introduction 1

2 Background 6

2.1 Brief Introduction to Machine Learning . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Supervised Classification . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Semi-supervised Classification . . . . . . . . . . . . . . . . . . . . . . 7

2.1.4 Supervised Domain Adaptation Classification . . . . . . . . . . . . . 7

2.1.5 Semi-supervised Domain Adaptation Classification . . . . . . . . . . 8

2.2 Central Dogma of Molecular Biology . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Protein Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Related Work 11

3.1 Splice Site Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Protein Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Semi-supervised Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

viii



3.4 Domain Adaptation Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 Usage Styles for Unlabeled Data . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Supervised Classifiers 18
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from näıve Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.15 Comparison between results obtained when using the semi-supervised domain
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Chapter 1

Introduction

The widespread adoption of next generation sequencing (NGS) technologies enabled faster

and cheaper sequencing of DNA and RNA than the previously used Sanger technology,

leading to advances in the field of genomics. These technologies generate an abundance of

biological data – both raw data, and data derived from primary sequences. In addition, they

make it affordable to sequence and analyze new organisms. The analysis of a new organism

generally involves three major steps:

1. The first step is to assemble its genome from short DNA read fragments.

2. The second step is to annotate the genome, i.e., to identify the structure and location

of the genes. For eukaryotic organisms, accurate gene identification depends heavily

on correctly identifying the splice sites (Bernal et al. 2007, Rätsch et al. 2007), the

regions of DNA that separate the exons from introns, the donor splice sites, and the

introns from exons, the acceptor splice sites. Although the majority of donor and

acceptor splice sites, also known as canonical splice sites, are the GT and AG dimers,

respectively, only about 1% or less of these two dimers present in a genome are splice

sites (Sonnenburg et al. 2007). Untill now, no clear DNA pattern or set of patterns

have been identified, either before or after these dimers, that can help in correctly

identifying all splice sites, making splice site identification a very difficult task.
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3. The third step, after identifying the genes, is to determine the function of the proteins

they encode. Considering that the location where a protein localizes is an indicator

of its function, protein localization prediction is an important step in determining the

function of the proteins.

For the second step, genes identification, a common approach is to assemble short RNA

fragments into a transcriptome. The transcriptome is then used as evidence when annotating

a genome, by mapping it along that genome. Another option is to map RNA reads along

the genome. These approaches help determine the location and structure of the protein-

encoding genes. For example, TWINSCAN (Korf et al. 2001) and CONTRAST (Gross et al.

2007) model the entire transcript structure as well as the conserved regions in related species.

One of the disadvantages of aligning the transcriptome or RNA reads with the genome to

identify the genes is that RNA-Seq reads are generated only from the genes expressed at

the time of sample collection in the tissue analyzed, leaving out of the transcriptome some

of the protein-encoding genes.

In addition, NGS technologies speed up the sequencing of DNA and RNA molecules, but

do so at the expense of read length and accuracy. They generate shorter reads than previous

sequencing technologies (e.g., Sanger) with much higher error rates. The common practice

to address these issues is to trim the low quality ends of the reads, remove reads with low

scores, and require higher depth of coverage. The remaining reads are then assembled into

a genome (for DNA reads) or transcriptome (for RNA reads). These assemblies are not

100% accurate. Therefore, annotating a genome using RNA-Seq reads should be validated

by independent methods (Steijger et al. 2013).

Machine learning algorithms can be employed to classify biological sequences, especially

based on their recent success for many biological problems. Such algorithms could provide

not only a cheaper alternative to the more expensive splice site identification with RNA-Seq,

but they could potentially also predict splice sites for genes that are not expressed when

generating the RNA-Seq reads. Examples of biological problems addressed with machine
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learning are various. For instance, support vector machines (SVMs) have been used for ab

initio gene prediction (Bernal et al. 2007), translation initiation identification (Müller et al.

2001, Zien et al. 2000), protein function prediction (Brown et al. 2000), and classification of

gene expression profiles into malign and benign (Noble 2006), and hidden Markov models

(HMMs) have been used for ab initio gene prediction (Hubbard and Park 1995, Stanke and

Waack 2003), to name a few.

However, to make accurate predictions, machine learning algorithms need a large amount

of labeled data to learn a classifier in a supervised setting. Yet manually labeling enough

data for a supervised classifier is costly and time consuming. An option is to learn a

classifier from a related organism, assuming that labeled data can be plentifully available

for a different, but closely related model organism (for example, a newly sequenced organism

is generally scarce in labeled data, whereas a related, well-studied model organism is rich

in labeled data). Nevertheless, using a classifier trained on labeled data from the related

problem to classify unlabeled data for the problem of interest does not always produce

accurate predictions, as the distribution in the source domain is likely different than the

distribution in the target domain. Therefore, using supervised machine learning algorithms

is not an ideal choice. Another option is to complement the limited labeled data with

abundant unlabeled data from the same target domain and learn semi-supervised classifiers.

However, the accuracy of such a classifier can be degraded by the unlabeled data (Catal and

Diri 2009). A better alternative would be to use domain adaptation algorithms that leverage

the large corpus of labeled data from a related, well-studied organism, by combining it with

any labeled data and lots of unlabeled data from the organism of interest.

There are challenges with domain adaptation as well, such as:

• Determining what knowledge to transfer from the source domain, and how to transfer

this knowledge. Some options include filtering out domain specific features from the

target domain, using only instances from the source domain that are highly similar to

the instances from the target domain, or a combination of both.
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• Deciding whether to incorporate target unlabeled data, as adding unlabeled data could

decrease the accuracy of the classifier. In addition, if target unlabeled data is used,

how should it be added: iteratively or all at once, with hard labels, soft labels, or a

combination of both1?

• Identifying the best way to combine all available data: by training a classifier for each

dataset and combining their predictions, or by training a classifier on a combination

of all data.

In this work several domain adaptation algorithms are proposed, and how the above

mentioned factors impact the accuracy of these classifiers are explored.

Published Contributions Included in this Work

The following peer-reviewed publications are included in this work:

1. A Study of Domain Adaptation Classifiers Derived from Logistic Regression for the

Task of Splice Site Prediction, (Herndon and Caragea 2016b).

2. Ab initio Splice Site Prediction with Simple Domain Adaptation Classifiers, (Herndon

and Caragea 2016a).

3. Domain Adaptation with Logistic Regression for the Task of Splice Site Prediction,

(Herndon and Caragea 2015a).

4. Empirical Study of Domain Adaptation Algorithms on the Task of Splice Site Predic-

tion, (Herndon and Caragea 2015b).

5. Empirical Study of Domain Adaptation with Näıve Bayes on the Task of Splice Site

Prediction, (Herndon and Caragea 2014a).

1Soft and hard labels are described in Section 2.1.1
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6. Predicting Protein Localization Using a Domain Adaptation Approach, (Herndon and

Caragea 2014b).

7. Näıve Bayes Domain Adaptation for Biological Sequences, (Herndon and Caragea

2013).
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Chapter 2

Background

2.1 Brief Introduction to Machine Learning

2.1.1 Notation

Let’s assume two proteins are given, MQSARMT and MAPYSLL, and their corresponding loca-

tions cytoplasm and inner membrane, respectively1. If these proteins are represented as the

count of occurrences of each amino-acid, this training data will be:

X =

1 0 2 0 1 1 1 1 0

1 2 1 1 0 0 1 0 1

 , Y =

 cytoplasm

inner membrane


m = 2 is the number of instances, and n = 9 is the number of features. The features are

A, L, M, P, Q, R, S, T, and Y (A as feature x1, L as feature x2, . . . and T as feature

x9). Instance x1 =

[
1 0 2 0 1 1 1 1 0

]
is the representation of the first protein,

MQSARMT, as in this protein the amino acid A occurs one time (x1
1 = 1), amino acid L is not

present (x1
2 = 0), amino acid M occurs two times (x1

3 = 2), and so on. Its length, |xi| is 7

1This is a purely hypothetical example as in practice the proteins contain longer amino-acid chains, and
a machine learning algorithm would use more training instances to build a model.
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and its associated label, y1 = cytoplasm. Throughout this paper the superscript is used to

indicate the instance number and the subscript to indicate the feature number.

There are two types of labels assigned to unlabeled data:

• Soft labels means that if for an instance xi a classifier predicts that P (yi = 1 | xi) = 0.8

and P (yi = 0 | xi) = 0.2, then the instance is labeled it with yi = (0.8, 0.2).

• Hard labels means that if for an instance xi a classifier predicts P (yi = 1 | xi) = 0.8

and P (yi = 0 | xi) = 0.2, then the instance is labeled with yi = (1, 0).

2.1.2 Supervised Classification

A supervised machine learning algorithm takes a set of training instances X ∈ Rm×n, where

m is the number of instances and n is the number of features, and their corresponding labels

Y ∈ Ym to generate a model. Then, given a new instance xi, this classifier2 will predict the

label for this instance.

2.1.3 Semi-supervised Classification

A semi-supervised machine learning algorithm takes a set of training instances XL ∈ RmL×n

with their corresponding labels YL ∈ YmL , and a set of unlabeled instances XU ∈ RmU×n,

and uses them to generate a model. Then, given a new instance, this classifier will predict

the label for this instance.

2.1.4 Supervised Domain Adaptation Classification

A supervised domain adaptation machine learning algorithm takes a set of labeled instances

from a domain of interest, the target domain, XtTL ∈ RmtTL×n with their corresponding

labels YtTL ∈ YmtTL , and a set of training instances from a related domain, the source

2Throughout this paper the terms classifier and machine learning algorithm are used interchangeably.
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domain, XtSL ∈ RmtSL×n with their corresponding labels YtSL ∈ YmtSL , and uses them to

generate a model for the target domain. Then, given a new instance from the target domain,

this classifier will predict the label for this instance.

2.1.5 Semi-supervised Domain Adaptation Classification

A semi-supervised domain adaptation machine learning algorithm takes a set of labeled

instances from a domain of interest, the target domain, XtTL ∈ RmtTL×n with their cor-

responding labels YtTL ∈ YmtTL , a set of unlabeled instances from the target domain,

XtTU ∈ RmtTU×n, and a set of training instances from a related domain, the source domain,

XtSL ∈ RmtSL×n with their corresponding labels YtSL ∈ YmtSL , and uses them to generate

a model for the target domain. Then, given a new instance from the target domain, this

classifier will predict the label for this instance.

2.2 Central Dogma of Molecular Biology

The blueprint for any living organism is contained within its chromosome or chromosomes,

which are long molecules of deoxyribonucleic acid (DNA). The DNA has regions that en-

code proteins – the genes. In eukaryotic organisms – the organisms with cells containing a

nucleus and other organelles – the genes contain encoding regions, or exons, separated by

non-encoding regions, or introns, as shown in Figure 2.13. There are other regions within a

gene, such as the promoter region and untranslated regions, but these are beyond the scope

of this work.

The introns are removed, or spliced out, after which adjacent exons are concatenated and

then transcribed into messenger ribonucleic acid (mRNA). The mRNA then exits the cell

nucleus where the DNA is housed, and enters the cell’s cytoplasm, where it is translated into

3Image by BCSteve - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?

curid=30096313 downloaded on March 27, 2016
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Figure 2.1: RNA splicing.

Figure 2.2: Central dogma of molecular biology.

amino-acids that are chained and folded to form proteins. This flow of genetic information

is known as the central dogma of molecular biology and is shown in Figure 2.24.

In most cases, the transition from exon to intron occurs at GT dimer, called the donor

spice site, and the transition from intron to exon occurs at the AG dimer, called the acceptor

4Image by Adenosine at English Wikipedia, CC BY-SA 2.5, https://commons.wikimedia.org/w/

index.php?curid=32026515 downloaded on April 16, 2016
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Figure 2.3: Cell structure showing different localizations of proteins.

splice site.

2.3 Protein Localization

One of the goals of analyzing proteins is to determine their function. One indicator of a

protein’s function is the cellular localization site of the protein, such as periplasm or the

extracellular environment, as shown in Figure 2.35. Determining the localization of a protein

through experiments is time consuming and laborious, but can also be determined from the

amino acid sequence of the protein, using computational tools.

5Image by Boumphreyfr - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?
curid=6882429 downloaded on April 3, 2016
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Chapter 3

Related Work

The following sections present previous related work. Section 3.1 presents machine learning

approaches for splice site prediction, Section 3.2 presents computational tools for protein

localization, and the following sections present machine learning methods used when there is

a limited amount of labeled data: Section 3.3 presents semi-supervised classifiers, Section 3.4

presents domain adaptation classifiers, and Section 3.5 presents different ways to incorporate

unlabeled data.

3.1 Splice Site Prediction

Most of the approaches addressing splice site prediction involve supervised learning. For

example, Li et al. (2012) proposed a method that used the discriminating power of each

position in the DNA sequence around the splice site, estimated using the chi-square test.

They used a support vector machine algorithm with a radial basis function kernel that

combines the scaled component features, the nucleotide frequencies at conserved sites, and

the correlative information of two sites, to train a classifier for the human genome. Baten

et al. (2006), Sonnenburg et al. (2007), and Zhang et al. (2006), also proposed supervised

support vector machine classifiers, whereas Baten et al. (2007) proposed a method using a
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hidden Markov model, Cai et al. (2000) proposed a Bayesian network algorithm, and Arita

et al. (2002) proposed a method using Bahadur expansion truncated at the second order.

For more work on gene prediction using supervised learning, see the survey by Al-Turaiki

et al. (2011). However, one major drawback of these supervised algorithms is that they

typically require large amounts of labeled data to train a classifier. There are also evidence-

based methods, such as TWINSCAN (Korf et al. 2001), CONTRAST (Gross et al. 2007),

TrueSight (Li et al. 2013), and using single-molecule transcript sequencing (Minoche et al.

2015). It is however unfair to compare these with ab initio methods, as they use mRNA

evidence to generate their models, whereas ab initio methods do not.

3.2 Protein Localization

Numerous computational methods for predicting protein localization are available (for a

review see (Emanuelsson 2002)). PSORTb (Gardy et al. 2003) is one of the first widely used

method. It uses a Bayesian network to combine the output of several modules – homology

analysis, motif-based analysis, detection of transmembrane alpha-helices, outer membrane

protein motif analysis, signal peptide predictor, and amino acid composition analysis using

SVM – to generate protein localization predictions. Although the classification precision

was high, its predictive coverage was low and only applicable to Gram-negative bacteria.

An updated version, PSORTb v.2.0 (Gardy et al. 2005), increased the previous version’s

coverage and expanded it to include Gram-positive bacteria. It also uses a Bayesian network

to combine the output of several modules. The amino acid composition analysis module was

updated to use a new SVM-based method, the signal peptide predictor was trained with

Gram-positive and Gram-negative data, and the homology and motif modules searched

against expanded databases. Another method, TargetP (Emanuelsson et al. 2000), trains

a neural network using only the N-terminal sequence information to discriminate between

proteins.

12



3.3 Semi-supervised Classifiers

An alternative, when the amount of labeled data is not enough for learning a supervised

classifier, is to use the limited amount of labeled data in conjunction with abundant unla-

beled data to learn a semi-supervised classifier. For example, Nigam et al. (2000) showed

empirically that combining a small labeled dataset with a large unlabeled dataset from the

same or different domains can reduce the classification error of text documents by up to

30%. Their algorithm uses a combination of Expectation Maximization and the Näıve Bayes

classifier by first learning a classifier on the labeled data which is then used to classify the

unlabeled data. The combination of these datasets trains a new classifier and iterates un-

til convergence. By incorporating unlabeled data, a semi-supervised classifier requires less

labeled data than a supervised classifier, to learn an accurate model.

However, semi-supervised classifiers could be misled by the unlabeled data, especially

when there is hardly any labeled data (Catal and Diri 2009). For example, if during the

first iteration one or more instances are misclassified, the semi-supervised algorithm will

be skewed towards the mislabeled instances in subsequent iterations. Another deficiency of

semi-supervised classifiers is that their accuracy decreases as the imbalance between classes

increases. This is a major challenge for the task of splice site as the classes are highly

imbalanced, with only about one percent positive instances. Note that these two chal-

lenges affect other algorithms (e.g., domain adaptation), and the data imbalance challenge

is common to other problems as well, such as intrusion detection, medical diagnosis, risk

management, and text classification, to name a few. The proposed solutions address this

problem at the algorithmic level or at the data level through resampling. For an overview

of solutions to imbalanced data sets see (Chawla et al. 2004, He and Garcia 2009). For

splice site prediction, Stanescu and Caragea (2014a) studied the effects of imbalanced data

on semi-supervised algorithms and found that although self-training that adds only positive

instances in the semi-supervised iterations achieved the best results out of the methods eval-

uated, oversampling and ensemble learning are better options when the positive-to-negative

13



ratio is about 1:99. In their subsequent study (Stanescu and Caragea 2014b), they eval-

uated several ensemble-based semi-supervised learning approaches, out of which, again, a

self-training ensemble with only positive instances produced the best results. However, the

highest area under precision-recall curve for the best classifier was 54.78%.

3.4 Domain Adaptation Classifiers

Another option that addresses the lack of abundant labeled data needed with supervised al-

gorithms is to use domain adaptation. This approach has been successfully applied to other

problems even when the base learning algorithms used in domain adaptation make simplify-

ing assumptions. For instance, in text classification, Dai et al. (2007) proposed an iterative

algorithm derived from näıve Bayes that uses expectation-maximization for classifying text

documents into top categories. This algorithm performed better than supervised SVM and

näıve Bayes classifiers when tested on datasets from Newsgroups, SRAA and Reuters. A

similar domain adaptation algorithm derived from the Näıve Bayes classifier is the Adapted

Näıve Bayes classifier (Tan et al. 2009), which identifies and uses only the generalizable

features from the source domain, and the unlabeled data with all the features from the

target domain to build a classifier for the target domain. This algorithm was evaluated on

the task of sentiment analysis. The prediction rate was promising, with Micro F1 values

between 0.69 and 0.90, and Macro F1 values between 0.59 and 0.91. However, the classifier

did not use any labeled data from the target domain. For more work on domain adaptation

and transfer learning, see the survey by Pan and Yang (2010).

Even though domain adaptation has been used with good results in other domains, there

are only a few domain adaptation methods proposed for biological problems. In a recent

approach for splice site prediction, Giannoulis et al. (2014) proposed a modified version of

the k-means clustering algorithm that took into account the commonalities between the

source and target domains for splice site prediction. This algorithm was not very accurate
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though. Its best area under receiver operating characteristic curve (auROC) was below 70%.

The best results for the task of splice site prediction, especially when the source and target

domains were not closely related, were obtained with a dual-task learning support vector

machine classifier proposed by Schweikert et al. (2008), SVMS,T, which used a weighted

degree kernel proposed by Rätsch et al. (2007). Schweikert et al. (2008) used the kernel

to generate values between 0 and 1 by normalizing the count of identical dimers at the

same position within two DNA fragments of length 141. With this kernel, they solved both

classification problems concurrently, for the source and for the target domains, by coupling

their solutions via a regularization term. This classifier though did not utilize the abundant

unlabeled data from the target domain.

3.5 Usage Styles for Unlabeled Data

If the abundant unlabeled data from the target domain is incorporated one needs to explore

the two main methods of using unlabeled data when training a classifier: by assigning hard

labels with self-training, or by assigning soft labels with an expectation-maximization (EM)

algorithm.

The self-training algorithm (Maeireizo et al. 2004, Riloff et al. 2003, Yarowsky 1995)

is an iterative method of using the unlabeled data, that first learns a classifier from only

the labeled data. This classifier is then used on the unlabeled data to generate more hard-

labeled examples by selecting the instances most confidently classified and assigning labels

to them. These instances are then moved from the unlabeled data to the labeled data, and

this process is repeated until the classifier converges or a set number of iterations has been

reached. This approach has been effective for diverse applications, such as text classification

(Blum and Mitchell 1998), optical character recognition (Zhu and Ghahramani 2002), and

face recognition (Roli and Marcialis 2006), to name a few.

The expectation-maximization (EM) algorithm (Dempster et al. 1977) is another itera-
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tive method for using unlabeled data. In the expectation step, the likelihood is evaluated

using the current parameters, whereas in the maximization step the parameters are com-

puted by maximizing the expected likelihood evaluated in the expectation step. The label

assigned to each instance from the unlabeled data set, that maximizes this expected like-

lihood, is a soft label. Similar to the self-training algorithm, this process is repeated until

convergence or until reaching the maximum number of iterations.

The EM algorithm was implemented for diverse applications, such as text classification,

and biological sequences classification, in domain adaptation settings. For instance, in text

classification, the Näıve Bayes Transfer Classification algorithm (Dai et al. 2007), assumes

that the source and target data have different distributions. It trains a classifier on source

data and then applies the EM algorithm to fit the classifier for the target data, using the

Kullback-Liebler divergence to determine the trade-off parameters in the EM algorithm.

When tested on datasets from Newsgroups, SRAA and Reuters for the task of top-category

classification of text documents this algorithm performed better than support vector machine

and Näıve Bayes classifiers.

Another study of EM for text classification (Nigam et al. 2000) used a combination of

EM and the Näıve Bayes classifier by first learning a classifier on the labeled data which is

then used to classify the unlabeled data. The combination of these datasets trained a new

classifier and iterated until convergence. By augmenting the labeled data with unlabeled

data the classifier required less labeled data as compared to using only labeled data with a

supervised classifier. This algorithm reduced the classification error of text documents by

up to 30%.

Both of these methods make one or more of the following assumptions when using the

unlabeled data. The self-training algorithm assumes that: instances that are close to each

other in the hyperspace have the same label (the smoothness assumption), instances form

discrete clusters with instances in a cluster having the same label (the cluster assumption),

and instances can be represented in a lower dimensional space than the input space without
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significant loss of information (the manifold assumption). The expectation-maximization

algorithm makes the assumption that there are features with missing values or that a simpler

model can be learned by using additional unobserved instances.

Therefore, when it cannot be determined a priori if these assumptions are valid for the

data set used, one should evaluate both methods, and the combination of both, to determine

which one works best for the data set and the algorithm used.
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Chapter 4

Supervised Classifiers

Several domain adaptation methods were proposed, derived from the näıve Bayes, and the

regularized logistic regression supervised classifiers. Before describing the proposed methods

the supervised classifiers are presented, as these are used as baselines, and to highlight the

differences between the proposed methods and these classifiers.

4.1 Multinomial Näıve Bayes

The multinomial näıve Bayes classifier (McCallum et al. 1998) assumes that the sample

data used to train the classifier is representative of the population data on which the clas-

sifier will be used. In addition, it assumes that the frequency of the words determines the

label assigned to an instance, and that the position of a word is irrelevant (the näıve Bayes

assumption). Thus, using Bayes’ property a classifier can approximate the posterior proba-

bility, i.e., the probability of a class given an unclassified instance, as being proportional to

the product of the prior probability of the class, and the probability of the instance given

the class:

P (yi = y | xi) ∝ P (yi = y)P (xi | yi = y) (4.1)
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where the probability of the class is

P (yi = y) =

m∑
i=1

1(yi = y)

m
(4.2)

with 1(yi = y) = 1 if yi = y, and 0 otherwise.

The probability of an instance given its class is the multinomial distribution:

P (xi | yi = y) = P (|xi|)|xi|!
n∏
j=1

P (xj | yi = y)x
i
j

xij!
(4.3)

where

P (xj | yi = y) =

1 +
m∑
i=1

xij1(yi = y)

n+
n∑
k=1

m∑
i=1

xik1(yi = y)

and

P (|xi|) = P (|xi| = l) =

m∑
i=1

1(|xi| = l)

m

The document length is included in Equation (4.4) because it specifies the number of

draws from the multinomial, with the assumption that the document length is not dependent

on class.

4.2 Näıve Bayes

Similar to the multinomial näıve Bayes classifier, the multivariate Bernoulli näıve Bayes

classifier assumes that the position of a feature is irrelevant (the näıve Bayes assumption),

though, unlike the multinomial näıve Bayes classifier, it represents each instance as a vector

of binary features indicating whether the corresponding feature occurs in the instance or not.

It also uses Bayes’ property to approximate the posterior probability, using Equation (4.1).
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The probability of an instance given its class is the product of probabilities of all feature

values, including the probability of non-occurrence for features that do not occur in the

instance:

P (xi | yi = y) =
n∏
j=1

{
xijP (xj | yi = y) + (1− xij)

[
1− P (xj | yi = y)

]}
(4.4)

where

P (xj | yi = y) =

1 +
m∑
i=1

xij1(yi = y)

2 +
m∑
i=1

1(yi = y)

4.3 Regularized Logistic Regression

Given a set of training instances generated independentlyX ∈ Rm×n and their corresponding

labels Y ∈ Ym, Y = {0, 1}, with m the number of training instances and n the number of

features, logistic regression models the posterior as (Le Cessie and Van Houwelingen 1992):

P (yi = y | xi; θ) =

 g(θTxi) , if y = 1

1− g(θTxi) , if y = 0

=
[
g(θTxi)

]y · [1− g(θTxi)
]1−y

where g(·) is the logistic function g(θTxi) = 1

1+e−θT xi
.

With this model, the log likelihood can be written as a function of the parameters θ as

follows:

l(θ) = log
m∏
i=1

P (y | xi; θ)

= log
m∏
i=1

[
g(θTxi)

]y · [1− g(θTxi)
]1−y

=
m∑
i=1

[
y log g(θTxi) + (1− y) log

(
1− g(θTxi)

)]
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The parameters are estimated by maximizing the log likelihood, usually using maximum

entropy models, after a regularization term, with parameter λ, is introduced to penalize

large values of θ:

θ = arg max
θ

[
l(θ)− λ‖θ‖2

]
(4.5)

Note that xi is the ith sequence in the training data set, yi is the corresponding label of

xi, and xi0 = 1,∀i ∈ {1, 2, . . . ,m} such that θTxi = θ0 +
∑n

j=1 θjx
i
j.
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Chapter 5

Domain Adaptation Classifiers

One limitation of the supervised classifiers is that when trained on one domain and then

used on a different domain, in most cases, their classification accuracy decreases. The first

method proposed to address this issue, used the Adapted Näıve Bayes classifier proposed by

Tan et al. (2009), with two modifications: the labeled data from the target domain was used,

and the self-training technique to assign labels to instances from target unlabeled dataset

was employed. These modifications will be described in more detail shortly. The second

method proposed further modified this algorithm: normalized the counts used in computing

the prior and the likelihood, used mutual information instead of probabilities when ranking

the source domain features, and used different representation for the input data. The third

method proposed is derived from a discriminative classifier instead of generative one, namely,

regularized logistic regression. The last method proposed assigned different weights to the

labeled data from the source and target domains, then trained a supervised classifier on the

combined dataset.
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5.1 Semi-supervised Domain Adaptation Classifier De-

rived from Multinomial Näıve Bayes with Counts

of k-mer Features

The first step of this classifier is to identify in the source domain the subset of the features

that generalize well and are highly correlated with the label. Then, use the data from the

source domain with only these features and the data from the target domain with all the

features to predict the labels of the test instances in the target domain. Theoretically, the set

of features in each domain can be split into four categories, based on two selection criteria.

Based on the correlation between the feature and the label, the features can be divided into

features that are highly related to the labels, and features that are less related to the labels.

Based on the specificity of the features, the features can be divided into features that are

very specific to a domain, and features that generalize well across related domains, as shown

in Figure 5.1.

To select informative features from the source domain the features are ranked based on

their probabilities. The features that are generalizable between source and target domains

would most likely occur frequently in both domains, and should be ranked higher. In addi-

tion, the features that are correlated to the labels should also be ranked higher. Therefore,

Figure 5.1: The features of interest are generalizable and highly correlated to class, i.e., the
ones in the highlighted quadrant.
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the following measure is used to rank the features in the source domain:

f(xj) = log
PtSL(xj) · PtTL(xj)

|PtSL(xj)− PtTL(xj)|+ α
(5.1)

where PtSL and PtTL are the probability of the feature xj,∀j ∈ {1, . . . , n} in the source and

target domain, respectively. The numerator ranks higher the features that occur frequently

in both domains, since the larger both probabilities are the larger the numerator is, and

thus the higher the rank of the feature is. The denominator ranks higher the features that

have similar probabilities (i.e., the generalizable features), since the closer the probabilities

are for a feature in both domains, the smaller the denominator value is, and thus the higher

the rank. The additional value in the denominator, α, is used to prevent division by zero.

The higher its value is the more influence the numerator has in ranking the features, and

vice versa. To limit its influence on ranking the features, a small value was chosen for this

parameter, 0.0001. The probability of a feature in either domain is

P (xj) =

m∑
i=1

xij + β

m∑
i=1

n∑
j=1

xij +m · β
(5.2)

where β is a smoothing factor, which is used to prevent the probability of a feature to be 0

(which would make the numerator in Equation (5.1) equal to 0, and the logarithm function

is undefined for 0). A small value was chosen for β as well, 0.0001, to limit its influence on

the ranking of features. Note that the values for α and β do not have to be the same, but

they can be, as used by Tan et al. (2009) and in these experiments.

Once the domain specific features of the source domain are filtered out, the algorithm uses

a combination of the expectation-maximization (EM ) algorithm and a weighted multinomial

näıve Bayes algorithm. Similar to the EM algorithm, it has two steps that are iterated until

convergence. The first step, the M -step, simultaneously estimates the class probability
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and the class conditional probability of a feature. However, unlike the EM algorithm that

uses the data from one domain to calculate these values, this algorithm uses a weighted

combination of the data from the source domain and the target domain.

P (yi = y) =

(1− λ)

mtSL∑
i=1

1(yi = y) + λ

mtTL∑
i=1

1(yi = y)

(1− λ)mtSL + λmtTL

(5.3)

P (xj | yi = y) =

(1− λ)

mtSL∑
i=1

ηjx
i
j1(yi = y) + λ

mtTL∑
i=1

xij1(yi = y) + 1

(1− λ)
n∑
k=1

mtSL∑
i=1

ηkx
i
k1(yi = y) + λ

n∑
k=1

mtTL∑
i=1

xik1(yi = y) + n

(5.4)

where λ is the weight factor between the source and target domains:

λ = min{δ · τ, 1} (5.5)

and τ is the iteration number. δ ∈ (0, 1) is a constant that determines how fast the weight

shifts from the source domain to the target domain, and ηj is 1 if feature xj in the source

domain is a generalizable feature, 0 otherwise.

Unlike the algorithm proposed by Tan et al. (2009), which considers that all the instances

from the target domain are unlabeled and does not use them during the first iteration (i.e.,

λ = 0), it is reasonable to assume that there is a small number of labeled instances in the

target domain, and the proposed algorithm uses any labeled data from the target domain

in the first and subsequent iterations. In the first iteration only labeled instances from the

source and target domains are used to estimate the probability distributions for the class

conditional probabilities given the instance. In subsequent iterations the class of the instance

for the labeled data from the source and target domains and the probability distribution of

the class for the unlabeled data from the target domain are used.

The second step, the E-step, estimates the probability of the class for each instance with
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the values obtained from the M -step.

P (yi = y | xi) ∝ P (yi = y)P (|xi|)|xi|!
n∏
j=1

P (xj | yi = y)x
i
j

xij!
(5.6)

The second modification made to the classifier proposed by Tan et al. (2009), is the use

of self-training, i.e., at each iteration, the instances with the top class probability are se-

lected, proportional to the class distribution, and considered to be labeled in the subsequent

iterations. This improves the prediction accuracy of the classifier because it does not allow

the unlabeled data to alter the class distribution from the target labeled data.

The two steps, E and M , are repeated until the instance conditional probabilities values

in Equation (5.6) converge (or a given number of iterations is reached). The algorithm is

summarized in Algorithm 1, and shown in Figure 5.2.

Algorithm 1 Outline of the semi-supervised domain adaptation classifier derived from
multinomial näıve Bayes, SSh+sDAk-mers

MNB .

1: Select generalizable features from the source domain, i.e., the top ranked features using
Equation (5.1).

2: For each class simultaneously estimate the class probability and the class conditional
probability of each feature using Equations (5.3) and (5.4), respectively. For the source
domain use all labeled instances, and only the generalizable features. For the target
domain use only labeled instances, and all features.

3: Self-training: Select, proportional to the prior class distribution, the target instances
with the top class probability, and consider these to be labeled (i.e., assign them hard-
labels) in the subsequent iterations; assign soft-labels to the remaining instances.

4: while labels assigned to unlabeled data change do
5: M -step: Same as step 2 but use the class for labeled and self-trained instances from

the target domain, and the class distribution for unlabeled instances.
6: Same as step 3.
7: E -step: Estimate the class distribution for unlabeled training instances from the

target domain using Equation (5.6).
8: end while
9: Use classifier to label new target data.
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Figure 5.2: Semi-supervised domain adaptation classifier derived from multinomial näıve
Bayes.

5.1.1 Data Sets

Three data sets from two biological problems – protein localization, and splice site prediction

– were used to evaluate this and the other proposed methods.

Protein Localization

For protein localization the following two datasets were used:

• The PSORTb v2.01 dataset (Gardy et al. 2005), first introduced in (Gardy et al. 2003).

It contains proteins from two related prokaryotes, gram-negative and gram-positive

bacteria, and their primary localization: cytoplasm, inner membrane, periplasm, outer

membrane, and extracellular space. Only instances with classes that appear in both

datasets were used: 480 proteins from gram-positive bacteria (194 from cytoplasm,

103 from inner membrane, and 183 from extracellular space) and 777 proteins from

1Downloaded from http://www.psort.org/dataset/datasetv2.html
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(a) Prokaryotes (b) Eukaryotes

Figure 5.3: Number of proteins used from each dataset. From the PSORTb v2.0 dataset
194 proteins localized in cytoplasm, 103 in inner membrane, and 183 in extracellular space,
were used for gram-positive, and 278 proteins localized in cytoplasm, 309 in inner mem-
brane, and 190 in extracellular space, for gram-negative. From the TargetP dataset 368
mitochondrial, 269 secretory pathway, and 162 “other” proteins from plant were used, and
371 mitochondrial, 715 secretory pathway, and 1,652 “other” proteins from non-plant.

gram-negative bacteria (278 from cytoplasm, 309 from inner membrane, and 190 from

extracellular space), as shown in Figure 5.3a.

• The TargetP2 dataset, first introduced in (Emanuelsson et al. 2000). It contains

proteins from two distantly related organisms, plant and non-plant, and their primary

sub-cellular localization: mitochondrial, chloroplast, secretory pathway, and “other.”

Similar to the bacteria proteins, from this data set 799 plant proteins were used (368

mitochondrial, 269 secretory pathway and 162 “other”) and 2,738 non-plant proteins

(371 mitochondrial, 715 secretory pathway and 1652 “other”), as shown in Figure 5.3b.

Splice Site

For splice site prediction the dataset3 first used in (Schweikert et al. 2008) was used, which

contains sets of 141 nucleotides-long DNA sequences from five organisms. Each sequence has

2Downloaded from http://www.cbs.dtu.dk/services/TargetP/datasets/datasets.php
3Downloaded from http://ftp.raetschlab.org/user/cwidmer
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Figure 5.4: DNA fragments of 141 bp and their labels indicating whether the AG dimer at
index 61 is a splice site or not.

the AG dimer at sixty-first position and a label associated with the sequence that indicates

whether this dimer is an acceptor splice site or not, as shown in Figure 5.4. The five organ-

isms are C.elegans as source organism, and four target organisms at increasing evolutionary

distance from C.elegans: C.remanei, P.pacificus, D.melanogaster, and A.thaliana. For the

source organism there is one fold of 100,000 instances, whereas for the target organisms

there are three folds with 1,000, 2,500, 6,500, 16,000, 25,000, 40,000, and 100,000 instances

that can be used for training, and three corresponding folds of 20,000 instances that can be

used for testing. For the target organisms the datasets with 2,500, 6,500, 16,000, 40,000, and

100,000 instances were used, as shown in Figure 5.5. In each file there are about 1% positive

instances (i.e., DNA sequences in which the AG dimer at sixty-first position is an acceptor

splice site) and the remaining instances are negative. Note that although the dataset used

has only acceptor splice sites, the problem of predicting donor splice sites can be addressed

with the same approach.

5.1.2 Experimental Setup

Two types of features were used to represent the data. In one representation, a sliding

window approach was used to count the k-mer frequencies, and represent each sequence as

the count of k-mer occurrences. This representation was used with this domain adaptation

classifier for both problems: protein localization, and splice site prediction. The other type

of features – in which each sequence was converted into a set of features that represent the
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Figure 5.5: For the source organism, C.elegans, there is one fold of 100,000 instances, whereas
for the target organisms – C.remanei, P.pacificus, D.melanogaster, and A.thaliana – there
are three folds with 2,500, 6,500, 16,000, 40,000, and 100,000 instances that can be used for
training, and three corresponding folds of 20,000 instances that can be used for testing. In
each file there are about 1% positive instances and about 99% negative instances.

nucleotides present in the sequence at each position, and the 3-mer at each position – was

used only with the other domain adaptation proposed, and for the splice site prediction.

Protein Localization

Each amino-acid sequence was represented as a count of occurrences of k -mers. A sliding

window approach was used to count the k-mer frequencies. For example, a cytoplasm protein

starting with LLRSYRS. . . would be represented in WEKA ARFF format, when using 2-mers,

as:

@RELATION rel

@ATTRIBUTE 2-MER AA

...

@ATTRIBUTE 2-MER VV

@ATTRIBUTE cls {extracellular space,cytoplasm,inner membrane}
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@DATA

1,. . .,1,. . .,2,. . .,1,. . .,1,. . .,cytoplasm

which are the counts corresponding to the occurrences of features LL, LR, RS, SY, and

YR, respectively.

Splice Site Prediction

Three representations for nucleotide sequences were used. In one representation, a sliding

window approach was used to count the 8-mer frequencies, and represent each sequence as

the count of 8-mer occurrences (the other two representations are described in Section 5.2).

For example, a DNA sequence starting with AAGATTCGC... and label -1 would be repre-

sented in WEKA ARFF format as:

@RELATION rel

@ATTRIBUTE 8-MER AAAAAAAA

...

@ATTRIBUTE 8-MER AAGATTCG

...

@ATTRIBUTE 8-MER AGATTCGC

...

@ATTRIBUTE 8-MER TTTTTTTT

@ATTRIBUTE cls {1,-1}

@DATA

1,. . .,1,. . .,-1

which are the counts corresponding to the occurrences of 8-mers AAGATTCG and AGATTCGC,

respectively. This representation was used with only this semi-supervised domain adaptation

classifier.
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Data Splits and Metrics Used

Protein Localization

In order to obtain unbiased estimates for classifier performance five-fold cross validation

was used. All labeled data from the source domain for training (tSL) was used and the

target domain data was randomly split into 3 sets: up to 20% used as labeled data for

training (tTL), up to 60% used as unlabeled data for training (tTU), and 20% used as test

data (TT), and the classifier was trained on tSL + tTL + tTU and tested on TT, as shown

in Figure 5.6.

To evaluate the classifier with these data, the area under the receiver operating charac-

teristic (auROC) was used, as the class distributions are relatively balanced.

Splice Site Prediction

For the splice site prediction there are 3 folds for each target organism. To limit the number

of experiments, the following datasets were used:

• The 100,000 C.elegans instances as source labeled data used for training (tSL).

• Only the sets with 2,500, 6,500, 16,000, and 40,000 instances as labeled target data

used for training (tTL).

Figure 5.6: Experimental setup for protein localization: 3 datasets are used to train the
classifier – source domain labeled (tSL), target domain labeled (tTL), and target domain
unlabeled (tTU) – and 1 to test it – target domain labeled (TT).
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(a) First fold: auROC = 0.9331 (b) First fold: auPRC = 0.2132

Figure 5.7: auROC and auPRC values for supervised domain adaptation classifier derived
from the regularized logistic regression, described in Section 5.3.2. This classifier was trained
with one of the three folds of target labeled data from A.thaliana with 2,500 instances. The
auROC is 0.9331, suggesting a highly accurate classifier. A more accurate picture, in terms
of classifier’s performance for imbalanced datasets, is given by auPRC. Its corresponding
value is 0.2132.

• The set with 100,000 instances as unlabeled target data used for training (tTU), and

also as validation dataset.

• The corresponding folds of the 20,000 instances as target data used for testing (TT).

Then the results are averaged over the 3 folds to obtain unbiased estimates. For semi-

supervised algorithms, the classifier was trained on tSL + tTL + tTU and tested on TT,

whereas for supervised algorithms, the classifier was trained on tSL + tTL and tested on

TT.

To evaluate the classifiers with these data, the area under precision-recall curve (auPRC)

was used, a metric that is preferred over area under a receiver operating characteristic curve

when the class distribution is skewed (Davis and Goadrich 2006), as shown in Figure 5.7.

Research Questions

This experimental setup was used to answer several general questions (Q1, Q2, and Q3), and

several classifier specific questions (Q4, Q5, and Q6). Specifically, how does the performance

of the classifier vary with:

Q1 Features used?
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Q2 Variation with the amount of target labeled/unlabeled data?

Q3 The distance between the source and target domains?

Q4 Number of features used in the target domain (i.e., keep all features, remove at most

50% of the least occurring features)?

Q5 Number of features retained in the source domain after selecting the generalizable

features?

Q6 The choice of the source and target domains (for protein localization)?

Protein Localization

As baselines, this classifier was compared with the multinomial näıve Bayes classifier trained

on all source data, NBtSL, the multinomial näıve Bayes classifier trained on 5% target

data, NBtTL(5%), and the multinomial näıve Bayes classifier trained on 80% target data,

NBtTL(80%). Each classifier was tested on 20% of target data. The expectation is that the

prediction accuracy of this classifier will be lower bounded by NBtTL(5%), upper bounded by

NBtTL(80%), and better than NBtSL.

Splice Site Prediction

As baseline, this classifier was compared with the best overall algorithm in Schweikert et al.

(2008).

5.1.3 Results and Discussion

Protein Localization

Table 5.1 and Figure 5.8 show the average auROC values over the five-fold cross validation

trials for this algorithm and for the baseline algorithms. From these results the following

observations can be made:
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(a) Source: gram-positive, target: gram-negative.

(b) Source: gram-negative, target: gram-positive.

(c) Source: plant, target: non-plant.

Figure 5.8: Results of the semi-supervised domain adaptation classifier derived from multi-
nomial näıve Bayes with counts of k-mer features on protein data.
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Table 5.1: A comparison, on the protein localization task, between the domain adaptation
classifier, SSh+sDAk-mers

MNB , the multinomial näıve Bayes classifier trained on all source data,
MNBtSL, the multinomial näıve Bayes classifier trained on 5% target data MNBtTL(5%), and
the multinomial näıve Bayes classifier trained on 80% target data, MNBtTL(80%). The results
are reported as average auROC values over five-fold cross validation trials. The best values
for the domain adaptation classifier are highlighted. Note that SSh+sDAk-mers

MNB is bounded
by MNBtTL(5%) and MNBtTL(80%), and that SSh+sDAk-mers

MNB predicts more accurately as the
length of k -mers increases.

(a) PSORTb dataset: source domain is gram+ and target domain is gram−

Features Classifier Unlabeled
Labeled

5% 10% 20%

count of 1-mers

MNBtSL 92.74
MNBtTL(5%) 92.18

SSh+sDAk-mers
MNB

20% 91.42 91.70 92.08
40% 90.68 90.82 91.68
60% 89.00 90.20 91.90

MNBtTL(80%) 93.52

count of 2-mers

MNBtSL 93.30
MNBtTL(5%) 91.90

SSh+sDAk-mers
MNB

20% 93.58 93.66 93.94
40% 92.84 92.68 93.90
60% 92.92 93.58 93.50

MNBtTL(80%) 94.24

count of 3-mers

MNBtSL 91.94
MNBtTL(5%) 85.80

SSh+sDAk-mers
MNB

20% 93.80 93.80 94.24
40% 92.62 92.78 93.14
60% 91.34 92.40 93.08

MNBtTL(80%) 95.52

A1 In terms of features used, the best results were obtained when using 3-mers as features

– an example is shown in Figure 5.9. This makes sense since longer k-mers capture

more information associated with the relative position of each amino-acid. When

using 3-mers, the proposed algorithm provides between 9.84% and 34.14% better clas-

sification accuracy when compared to multinomial näıve Bayes classifier trained on

5% of the labeled data from the target domain, and between 0.37% and 28.2% when

compared to the multinomial näıve Bayes classifier trained on labeled data from the
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Table 5.1: (Cont.)

(b) PSORTb dataset: source domain is gram− and target domain is gram+

Features Classifier Unlabeled
Labeled

5% 10% 20%

count of 1-mers

MNBtSL 93.60
MNBtTL(5%) 91.42

SSh+sDAk-mers
MNB

20% 92.78 93.20 93.46
40% 89.78 93.26 91.18
60% 89.12 87.28 93.02

MNBtTL(80%) 95.56

count of 2-mers

MNBtSL 94.42
MNBtTL(5%) 88.52

SSh+sDAk-mers
MNB

20% 90.90 94.52 94.66
40% 91.80 92.06 95.02
60% 94.26 94.28 94.28

MNBtTL(80%) 96.16

count of 3-mers

MNBtSL 95.78
MNBtTL(5%) 81.18

SSh+sDAk-mers
MNB

20% 95.90 95.20 96.14
40% 92.80 94.40 94.60
60% 92.78 92.82 94.60

MNBtTL(80%) 95.44

source domain, except when the plant proteins are the target domain.

A2 For most cases, the largest auROC values for this algorithm were obtained when using

the least amount of target unlabeled data – an example is shown in Figure 5.10a.

This would suggest that even though using unlabeled data is beneficial, using too

much unlabeled data is detrimental because the unlabeled instances may act as noise

and corrupt the prediction from the target labeled data. In addition, intuitively, using

more labeled data from the target domain should lead to better prediction accuracy.

This was indeed the case with this classifier – as shown in the example in Figure 5.10b.

A3 When the source and target domains are close the classifier learned is better. For

example, the auROC is higher for the PSORTb datasets than for the TargetP datasets.
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(d) Source: non-plant, target: plant.

Figure 5.8: (Cont.)

Figure 5.9: Comparison between results obtained when using 1-mers, 2-mers, and 3-mers
as features with the semi-supervised domain adaptation classifier derived from multinomial
näıve Bayes. Best results were obtained using 3-mers.
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(a) Best results were obtained when using the least amount of target unlabeled data.

(b) Best results were obtained when using the most amount of target labeled data.

Figure 5.10: Comparison between results obtained when using different amounts of target
labeled, and target unlabeled data with the semi-supervised domain adaptation classifier
derived from multinomial näıve Bayes.
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Table 5.1: (Cont.)

(c) TargetP dataset: source domain is plant and target domain is non-plant

Features Classifier Unlabeled
Labeled

5% 10% 20%

count of 1-mers

MNBtSL 76.38
MNBtTL(5%) 79.90

SSh+sDAk-mers
MNB

20% 65.26 69.84 73.98
40% 62.90 66.24 69.16
60% 60.88 64.52 70.40

MNBtTL(80%) 81.28

count of 2-mers

MNBtSL 78.62
MNBtTL(5%) 82.60

SSh+sDAk-mers
MNB

20% 65.78 71.84 79.38
40% 62.12 67.02 69.34
60% 60.28 63.08 67.14

MNBtTL(80%) 83.96

count of 3-mers

MNBtSL 66.82
MNBtTL(5%) 63.86

SSh+sDAk-mers
MNB

20% 75.82 81.44 85.66
40% 74.04 79.72 83.46
60% 76.18 76.36 77.96

MNBtTL(80%) 88.36

Therefore, the closer the target domain is to the source domain the better the classifier

learned.

A4 When trying to establish how many features from the target domain should be used it

was determined that removing any features does not improve the performance of the

proposed algorithm.

A5 When trying to ascertain how many features from the source domain should be kept

after ranking them with Equation (5.1), it was determined that the best results were

obtained when at least 50% of the features were kept, i.e., the 50% top-ranked features

and any other features with the same rank as the last feature kept.

A6 For the PSORTb dataset, the SSh+sDAk-mers
MNB classifier had better prediction accuracy
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Table 5.1: (Cont.)

(d) TargetP dataset: source domain is non-plant and target domain is plant

Features Classifier Unlabeled
Labeled

5% 10% 20%

count of 1-mers

MNBtSL 76.18
MNBtTL(5%) 73.66

SSh+sDAk-mers
MNB

20% 72.96 71.90 77.04
40% 69.22 71.96 76.96
60% 67.16 73.40 75.48

MNBtTL(80%) 85.14

count of 2-mers

MNBtSL 78.36
MNBtTL(5%) 75.08

SSh+sDAk-mers
MNB

20% 78.24 78.10 78.68
40% 72.72 75.14 78.62
60% 73.80 73.62 75.92

MNBtTL(80%) 88.52

count of 3-mers

MNBtSL 89.68
MNBtTL(5%) 68.60

SSh+sDAk-mers
MNB

20% 82.00 80.92 85.96
40% 73.82 74.42 79.90
60% 69.04 72.56 78.48

MNBtTL(80%) 86.28

when the gram-negative proteins were used as the source domain than when the gram-

positive proteins were used as the source domain. Similarly, for the TargetP dataset,

better predictions were obtained when using non-plant proteins as the source domain

than when using plant proteins as the source domain. This is because in both cases

there were more gram-negative instances and more non-plant instances, respectively,

than gram-positive instances and plant instances, respectively.

It is interesting to note that in some instances the multinomial näıve Bayes classifier trained

on the source domain performed better than this algorithm. This occurred mainly when

this algorithm used 5% or 10% of the target labeled data and when the features were 1-mers

or 2-mers. However, this is somewhat expected, as using very little labeled data from the

target domain does not provide a representative sample for the population, and using short
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k -mers does not capture the relative position of the amino-acids.

Splice Site Prediction

Although this algorithm worked well for the protein localization task, it performed poorly

on the splice site prediction task, as shown in Table 5.2. This algorithm always gravitated

towards classifying each instance as not containing a splice site. This is due mainly because

the 8-mers indicating a splice site occur with low frequency and their relative position to

the splice site is important.

From these results the following observations can be made:

A2 The auPRC values for this algorithm were very similar regardless of the amount of

target labeled data.

A3 The classification performance of this algorithm did not decrease as the distance be-

tween the source and target domains increased, as one would have expected.

A4 Similar to protein localization task, removing any features does not improve the per-

formance of this algorithm.

A5 In terms of the number of features from the source domain to keep after ranking them

with Equation (5.1), it was determined that the best results were obtained when at

least 50% of the features were kept, i.e., the 50% top-ranked features and any other

features with the same rank as the last feature kept.

The last two observations suggest that the features need to take into consideration the

locations of the 8-mers to improve the classification accuracy of this classifier on the splice

site prediction task.
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Table 5.2: auPRC values for the 4 target organisms based on the number of labeled target
instances used for training: 2,500, 6,500, 16,000, and 40,000. For comparison with this algo-
rithm the values for the best overall supervised domain adaptation algorithm in Schweikert
et al. (2008), SVMS,T, are shown as S DASVM.

(a) C.remanei

2,500 6,500 16,000 40,000

SSh+sDAk-mers
MNB 1.13 1.13 1.13 1.10

S DASVM 77.06 77.80 77.89 79.02

(b) P.pacificus

2,500 6,500 16,000 40,000

SSh+sDAk-mers
MNB 1.00 0.97 1.07 1.10

S DASVM 64.72 66.39 68.44 71.00

(c) D.melanogaster

2,500 6,500 16,000 40,000

SSh+sDAk-mers
MNB 1.07 1.13 1.07 1.03

S DASVM 40.80 37.87 52.33 58.17

(d) A.thaliana

2,500 6,500 16,000 40,000

SSh+sDAk-mers
MNB 1.20 1.17 1.20 1.17

S DASVM 24.21 27.30 38.49 49.75

5.2 Semi-supervised Domain Adaptation Classifiers De-

rived from Näıve Bayes with Location-Aware Fea-

tures for the task of Splice Site Prediction

One major drawback of the previous algorithm is that during the first iterations it assigns

low weight to the target data, including the labeled data, through λ in (Equations (5.3)

and (5.4)). This biases the classifier towards the source domain. However, it is not effective

to only assign a different weight to the target labeled data in Equations (5.3) and (5.4).

This is because when there are much more labeled instances from the source domain, as

well as much more unlabeled instances from the target domain, i.e., mtSL � mtTL and
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mtTU � mtTL, the sums and counts for the target labeled data in these two equations

are much smaller than their counterparts for the source data and target unlabeled data,

rendering the weight assignment useless. Instead, these values need to also be normalized,

or better yet, use their probabilities. Thus, the prior is estimated as

P (yi = y) = βPtTL(yi = y) + (1− β)[(1− λ)PtSL(yi = y) + λPtTU(yi = y)] (5.7)

and the likelihood as

P (xj | yi = y) = βPtTL(xj | yi = y)

+ (1− β)[(1− λ)PtSL(xj | yi = y) + λPtTU(xj | yi = y)] (5.8)

where β ∈ (0, 1) is a constant weight, and λ is defined the same as in the previous approach.

In addition to using different formulas for prior and likelihood, a second change was

made to the previous algorithm. The measure for ranking the features, Equation (5.1), was

replaced with the following measure in Equation (5.9). This change was made because the

goal of ranking the features is to select top features in terms of their correlation with the

class, or assign them different weights: higher weights to features that are more correlated

with the class, and lower weights to the features that are less correlated with the class.

Therefore, the mutual information (Shannon 1948) of each feature is a more appropriate

measure in determining the correlation of the feature with the class rather than the marginal

probability of the feature. With this new formula, the features are ranked better based on

their generalizability between the source and target domains:

f(xj) =
ItSL(xj; y) · ItTL(xj; y)

|ItSL(xj; y)− ItTL(xj; y)|+ α
(5.9)
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Algorithm 2 Outline of the updated semi-supervised domain adaptation classifier derived
from näıve Bayes, SSh+sDAloc:filtered

NB .

1: Select the features to be used from the source domain using Equation (5.9).
2: Simultaneously compute the prior and likelihood, using Equations (5.7) and (5.8), re-

spectively. Note that for the source domain all labeled instances are used but only with
the features selected in step 1, whereas for the target domain only labeled instances are
used with all their features.

3: Assign labels to the unlabeled instances from the target domain using Equation (5.6).
Note that self-training is used, i.e., a number of instances, proportional to the class
distribution, with the highest class probability are considered to be labeled in subsequent
iterations (i.e., assign them hard-labels); assign soft-labels to the remaining instances.

4: while labels assigned to unlabeled data change do
5: M -step: Same as step 2, except that the instances in the target unlabeled dataset

are also used; for this dataset the class for the self-trained instances is used, and the
class distribution for the rest of the instances.

6: E -step: Same as step 3.
7: end while
8: Use classifier on new target instances.

where

Id(xj; y) =
∑
y∈Y

Pd(xj, y) log
Pd(xj, y)

Pd(xj)Pd(y)

is the mutual information between feature xj and class y, and d ∈ {tSL, tTL}. The nu-

merator in Equation (5.9) ranks higher the features that have higher mutual information in

their domains, whereas the denominator ranks higher the features that have closer mutual

information between the domains.

Instead of ranking the features and using the top ranked features, an alternative is to

assign different weights to the features and higher values for f(xj) computed. An updated

formula for ranking the features was proposed as most of the mutual information values are

close to zero since each feature contributes very little to the classification of an instance.

Therefore, the nominator is about one order of magnitude smaller than the denominator in

Equation (5.9), whereas in Equation (5.10), the numerator and denominator have the same

order of magnitude, resulting in higher values for f(xj).

The final change made to the previous method was the use of location-aware features
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Algorithm 3 Outline of the updated semi-supervised domain adaptation classifier derived
from näıve Bayes with weighted features, SSh+sDA

loc:weighted(5.9)
NB and SSh+sDA

loc:weighted(5.10)
NB .

1: Assign different weights to the features of the source dataset using either Equation (5.9)
or Equation (5.10).

2: Simultaneously compute the prior and likelihood, with Equations (5.7) and (5.8), respec-
tively. Note that for the source domain all labeled instances are used but the features are
assigned different weights in step 1, whereas for the target domain only labeled instances
are used with all their features.

3: Assign labels to the unlabeled instances from the target domain using Equation (5.6).
Note that self-training is used, i.e., a number of instances, proportional to the class
distribution, with the highest class probability are considered to be labeled in subsequent
iterations (i.e., assign them hard-labels); assign soft-labels to the remaining instances.

4: while labels assigned to unlabeled data change do
5: M -step: Same as step 2, except that the instances in the target unlabeled dataset

are also used; for this dataset the class for the self-trained instances is used, and the
class distribution for the rest of the instances.

6: E -step: Same as step 3.
7: end while
8: Use classifier on new target instances.

instead of counts of 8-mers. As opposed to the previous representation that leads to 48 or

65,536 sparse features that do not take into consideration the location of each nucleotide,

the other two representations (used with this proposed methods and the subsequent ones)

are “location-aware”, with less features. In one of them, each DNA sequence was converted

into a set of features that represent the nucleotides present in the sequence at each position,

and the 3-mer at each position. For example, the same DNA sequence and label -1 would

be represented as:

@RELATION rel

@ATTRIBUTE NUCLEOTIDE 1 {A,C,G,T}
...

@ATTRIBUTE NUCLEOTIDE 141 {A,C,G,T}

@ATTRIBUTE 3-MER 1 {AAA,AAC,. . .,TTT}
...

@ATTRIBUTE 3-MER 139 {AAA,AAC,. . .,TTT}
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@ATTRIBUTE cls {1,-1}

@DATA

A,A,G,A,T,T,C,G,C,. . .,AAG,AGA,GAT,. . .,-1

These features create a compact representation of a balanced combination of simple

features in each DNA sequence, i.e., the nucleotides, and more complex features – features

that capture the correlation between the nucleotides, i.e., the 3-mers.

f(xj) =
ItSL(xj; y) · ItTL(xj; y)

(ItSL(xj; y)− ItTL(xj; y))2 + α
(5.10)

With these changes, the two algorithms proposed use the source labeled data and the

target labeled and unlabeled data to train a classifier for the target domain. For the source

domain, Algorithm 2 selects generalizable features to be used, whereas Algorithm 3 assigns

different weights to the features. These differences are highlighted in steps 1 and 2 of the

algorithms by using italics text.

5.2.1 Balance Class Distribution with Ensemble Learning

Considering that the data is highly imbalanced, this method was also evaluated in an en-

semble learning setting. An approach similar to Breiman (1996) was used. The labeled data

was sampled with no replacement, from the source and target domains, and generated 99

balanced subsets, with 50% positive instances and 50% negative instances each. That is, in

each balanced subset all positive instances from the initial set were included along with 1%

negative instances sampled with no replacement from the initial set. 99 balanced subsets

were generated because the ratio of positive to negative instances is 1 to 99. Then this

algorithm was run 99 times with sampled labeled data and whole unlabeled and test data

sets from the target domain. When predicting the class for a new instance the majority

voting of the 99 algorithms was used, as shown in Figure 5.11.

47



Figure 5.11: Ensemble of semi-supervised domain adaptation classifiers derived from näıve
Bayes.

5.2.2 Experimental Setup

Two different experiments were run with a grid search for the optimal values for β ∈

{0.1, 0.2, . . . , 0.9} and δ ∈ {0.01, 0.02, . . . , 0.08, 0.09, 0.1, 0.2}. In the first one, only the

nucleotides were used as features, whereas in the second one the nucleotides and 3-mers

were used as features. In both settings, Algorithm 2 was run to select the features in the

source domain, Algorithm 3 using Equation (5.9) to weigh the features in the source domain,

and Algorithm 3 with Equation (5.10) to weigh the source domain features.

Two baselines were used to evaluate these classifiers. The first baseline, which was

expected to represent the lower bound, was the näıve Bayes classifier trained on the target
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labeled data, NBtTL. The assumption is that this will be the lower bound for these classifiers

because it is expected that adding the labeled data from a related organism, the source

domain, as well as unlabeled data from the same organism, the target domain, should

produce a better classifier. The second baseline is the näıve Bayes classifier trained on the

source labeled data, NBtSL. It is expected that the more distantly related the two organisms

are, the less accurate the classifier trained on the source data would be when tested on the

target data.

In addition, the following two sets of experiments were also performed. In one set of

experiments these algorithms were tested versus the null hypothesis, i.e., all nucleotides

in each instance were shuffled except the AG dimer at index 61, and the labels were also

shuffled, then tested these algorithms on these data sets. The intuition is that in this case

these algorithms should not learn any meaningful patterns, and thus obtain poor results

when evaluated on the test data. In another set of experiments the best-overall algorithm

was evaluated on how it performed in an ensemble setting with balanced data. For this,

the source and target labeled data were split into 99 class-balanced data sets, and used an

ensemble of Algorithm 3 classifiers to predict the labels for the test data. These experiments

were used to investigate if this approach is better suited for highly unbalanced data sets.

The experimental setup described below was used to answer several questions specific

to this classifier, in addition to the general questions listed in Section 5.1.2 – namely, how

does the performance of the classifier vary with:

Q7 Using source labeled data and target unlabeled data when training the classifier.

Q8 Using real data versus shuffled data with shuffled labels.

Q9 Using unbalanced data sets or creating balanced subsets and using an ensemble of

classifiers.

Q10 Algorithm used, i.e., Algorithm 2 which keeps only the generalizable features in the

source domain, or Algorithm 3 which assigns different weights to the features in the
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source domain.

5.2.3 Results and Discussion

Table 5.3 and Figure 5.12 list the auPRC for these classifiers, for the best overall algorithm

in Schweikert et al. (2008), SVMS,T, and for the classifier in Section 5.1.
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Table 5.3: auPRC values for four target organisms based on the number of labeled target in-
stances used for training: 2,500, 6,500, 16,000, and 40,000. The highest values for the domain
adaptation algorithms are displayed in bold font. NBtTL and NBtSL are baseline näıve Bayes
classifiers trained on target labeled and source data, respectively, for the two algorithms pro-
posed. For comparison with these algorithms, the values for the best overall algorithm in
Schweikert et al. (2008), SVMS,T, and the values from the previous classifier, SSh+sDAk-mers

MNB ,

are also shown. SSh+sDAloc:filtered+shuffled
NB and SSh+sDA

shuffled labels + loc:weighted(5.10)
NB are the re-

sults when the data and the labels were shuffled. EbalSSh+sDA
loc:weighted(5.10)
NB are the results

of the ensemble of classifiers.

(a) C.remanei

Features Classifier 2,500 6,500 16,000 40,000

1-mers

SSh+sDAloc:filtered+shuffled
NB 0.90 0.94 0.90 0.92

SSh+sDA
shuffled labels + loc:weighted(5.10)
NB 0.90 0.94 0.90 0.93

SSh+sDAk-mers
MNB 1.13 1.13 1.13 1.10

NBtTL 23.42 45.44 54.57 59.68

EbalSSh+sDA
loc:weighted(5.10)
NB 60.24 62.27 63.36 63.83

SSh+sDAloc:filtered
NB 59.18 63.10 63.95 63.80

SSh+sDA
loc:weighted(5.9)
NB 35.03 46.08 54.89 59.73

SSh+sDA
loc:weighted(5.10)
NB 48.92 60.83 63.06 63.59

NBtSL 63.77

S DASVM 77.06 77.80 77.89 79.02

1- + 3-mers

SSh+sDAloc:filtered+shuffled
NB 0.91 0.93 0.90 0.93

SSh+sDA
shuffled labels + loc:weighted(5.10)
NB 0.91 0.93 0.91 0.93

SSh+sDAk-mers
MNB 1.13 1.13 1.13 1.10

NBtTL 22.94 58.39 68.40 75.75

EbalSSh+sDA
loc:weighted(5.10)
NB 25.83 26.08 25.99 26.09

SSh+sDAloc:filtered
NB 45.29 72.00 74.83 77.07

SSh+sDA
loc:weighted(5.9)
NB 24.96 61.45 69.11 75.91

SSh+sDA
loc:weighted(5.10)
NB 49.22 70.23 75.43 78.01

NBtSL 77.67
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Table 5.3: (Cont.)

(b) P.pacificus

Features Classifier 2,500 6,500 16,000 40,000

1-mers

SSh+sDAloc:filtered+shuffled
NB 0.91 0.92 0.96 0.91

SSh+sDA
shuffled labels + loc:weighted(5.10)
NB 0.90 0.91 0.95 0.92

SSh+sDAk-mers
MNB 1.00 0.97 1.07 1.10

NBtTL 19.22 37.33 45.33 52.84

EbalSSh+sDA
loc:weighted(5.10)
NB 50.60 50.64 52.34 55.16

SSh+sDAloc:filtered
NB 45.32 49.82 52.09 54.62

SSh+sDA
loc:weighted(5.9)
NB 19.85 37.51 45.64 52.91

SSh+sDA
loc:weighted(5.10)
NB 37.20 48.71 52.31 55.62

NBtSL 49.12

S DASVM 64.72 66.39 68.44 71.00

1- + 3-mers

SSh+sDAloc:filtered+shuffled
NB 0.92 0.89 0.95 0.91

SSh+sDA
shuffled labels + loc:weighted(5.10)
NB 0.92 0.89 0.94 0.91

SSh+sDAk-mers
MNB 1.00 0.97 1.07 1.10

NBtTL 26.39 48.54 59.29 68.78

EbalSSh+sDA
loc:weighted(5.10)
NB 23.48 23.61 23.38 23.72

SSh+sDAloc:filtered
NB 20.21 53.29 62.33 69.88

SSh+sDA
loc:weighted(5.9)
NB 20.16 43.95 57.44 65.80

SSh+sDA
loc:weighted(5.10)
NB 20.19 57.21 65.99 70.94

NBtSL 67.10
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Table 5.3: (Cont.)

(c) D.melanogaster

Features Classifier 2,500 6,500 16,000 40,000

1-mers

SSh+sDAloc:filtered+shuffled
NB 0.89 0.93 0.96 0.91

SSh+sDA
shuffled labels + loc:weighted(5.10)
NB 0.89 0.91 0.96 0.90

SSh+sDAk-mers
MNB 1.07 1.13 1.07 1.03

NBtTL 14.90 26.05 35.21 39.42

EbalSSh+sDA
loc:weighted(5.10)
NB 33.57 36.87 39.35 39.62

SSh+sDAloc:filtered
NB 33.31 36.43 40.32 42.37

SSh+sDA
loc:weighted(5.9)
NB 16.27 26.21 35.12 39.16

SSh+sDA
loc:weighted(5.10)
NB 22.86 32.92 36.95 37.55

NBtSL 31.23

S DASVM 40.80 37.87 52.33 58.17

1- + 3-mers

SSh+sDAloc:filtered+shuffled
NB 0.89 0.88 0.94 0.92

SSh+sDA
shuffled labels + loc:weighted(5.10)
NB 0.89 0.89 0.94 0.89

SSh+sDAk-mers
MNB 1.07 1.13 1.07 1.03

NBtTL 13.87 25.00 35.28 45.85

EbalSSh+sDA
loc:weighted(5.10)
NB 42.12 42.71 45.85 47.42

SSh+sDAloc:filtered
NB 25.83 32.58 39.10 47.49

SSh+sDA
loc:weighted(5.9)
NB 15.03 26.45 34.73 42.90

SSh+sDA
loc:weighted(5.10)
NB 22.53 29.47 36.18 42.92

NBtSL 34.09
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Table 5.3: (Cont.)

(d) A.thaliana

Features Classifier 2,500 6,500 16,000 40,000

1-mers

SSh+sDAloc:filtered+shuffled
NB 0.97 0.91 0.96 0.91

SSh+sDA
shuffled labels + loc:weighted(5.10)
NB 0.92 0.90 0.96 0.91

SSh+sDAk-mers
MNB 1.20 1.17 1.20 1.17

NBtTL 7.20 17.90 28.10 34.82

EbalSSh+sDA
loc:weighted(5.10)
NB 28.41 30.98 33.50 36.70

SSh+sDAloc:filtered
NB 18.46 25.04 31.47 36.95

SSh+sDA
loc:weighted(5.9)
NB 8.42 18.39 28.22 34.79

SSh+sDA
loc:weighted(5.10)
NB 13.61 22.28 29.05 34.66

NBtSL 11.97

S DASVM 24.21 27.30 38.49 49.75

1- + 3-mers

SSh+sDAloc:filtered+shuffled
NB 0.91 0.90 0.97 0.90

SSh+sDA
shuffled labels + loc:weighted(5.10)
NB 0.91 0.90 0.96 0.90

SSh+sDAk-mers
MNB 1.20 1.17 1.20 1.17

NBtTL 3.10 8.76 28.11 40.92

EbalSSh+sDA
loc:weighted(5.10)
NB 39.80 42.27 43.10 45.05

SSh+sDAloc:filtered
NB 3.99 13.96 33.62 43.20

SSh+sDA
loc:weighted(5.9)
NB 2.65 8.72 29.39 40.35

SSh+sDA
loc:weighted(5.10)
NB 3.64 10.00 30.85 40.40

NBtSL 13.98

Based on these results, the following observations were made:

A1 Using a classifier with both the nucleotides and the 3-mers as features performs better

as the amount of the target labeled data increases, whereas a classifier using only
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Figure 5.12: Results of the semi-supervised domain adaptation classifier derived from näıve
Bayes with location-aware features on splice site data.
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Figure 5.12: (Cont.)

the nucleotides as features performs better with smaller target labeled datasets – an

example is shown in Figure 5.13. This is due to the fact that the 3-mer features

are sparser than the nucleotide features, and when there is little target labeled data

the classifier does not have enough data to separate the positive from the negative

instances.

A2 The general trend in all classifiers is that they perform better as more target labeled

instances are used for training – an example is shown in Figure 5.14. This conforms

with the intuition that the more target labeled data is used the more accurate the

classifier is.

A3 For the non-ensemble classifiers, as the evolutionary distance increases between the

source and target organisms, the performance of these classifiers decreases. When

the source and target organisms are closely related, as is the case with C.elegans

and C.remanei, the large volume of labeled source data significantly contributes to

generating a better classifier, compared to training a classifier on the target data alone.
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Figure 5.13: Comparison between results obtained when using 1-mers, or 1-mers and 3-mers
with the semi-supervised domain adaptation classifier derived from näıve Bayes. A classifier
with both the nucleotides and the 3-mers as features performs better as the amount of
the target labeled data increases, whereas a classifier using only the nucleotides as features
performs better with smaller target labeled datasets.
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Figure 5.14: Comparison between results obtained when using different amounts of target
labeled data with the semi-supervised domain adaptation classifier derived from näıve Bayes.
A classifier performs better as the amount of the target labeled data increases.

However, as the source and target organisms diverge, the source data contributes less

to the classifier.

A7 Using the source data and the target unlabeled data in addition to the target labeled

data improves the performance of the classifier (e.g., SSh+sDAloc:filtered
NB v. NBtTL for

A.thaliana with 2,500 instances) compared to training a classifier on just the tar-

get labeled data. The improvement occurs even with larger datasets, although less

substantial than with smaller datasets – an example is shown in Figure 5.15.

A8 When the data and the labels were shuffled the algorithms were unable to learn mean-

ingful patterns, resulting in poor classifiers with auPRC values less than one percent.

A9 When there are only a few labeled instances in the target domain (e.g., 2,500 in-

stances), splitting the data into class-balanced data sets and using an ensemble of

classifiers performs better than using the unbalanced data sets – an example is shown
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Figure 5.15: Comparison between results obtained when using the semi-supervised domain
adaptation classifier derived from näıve Bayes, or the supervised näıve Bayes trained on
target labeled data. Domain adaptation classifies better than supervised classifier trained
on target labeled data.

in Figure 5.16. In addition, when the source and target domains are distantly related,

the ensemble classifier outperforms even the S DASVM classifier (e.g., when the target

domain is D.melanogaster and there are 2,500 or 6,500 labeled instances in the target

domain, or for A.thaliana with 2,500 to 16,000 labeled instances in the target domain).

A10 The SSh+sDAloc:filtered
NB classifier, based on Algorithm 2, and the SSh+sDA

loc:weighted(5.10)
NB

classifier, based on Algorithm 3, performed better than the other classifier, SSh+sDA
loc:weighted(5.9)
NB ,

each producing the best results in two and five cases, respectively, when the data was

not balanced – an example is shown in Figure 5.17. As mentioned above, the sparsity

of the data affects the performance of the classifiers based on the features used. The

SSh+sDAloc:filtered
NB classifier, which uses only the nucleotides as features, performs better

when the amount of target labeled dataset is small, and also when the two organisms

are more distantly related, whereas the SSh+sDA
loc:weighted(5.10)
NB classifier, which uses the
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Figure 5.16: Comparison between results obtained when using the semi-supervised domain
adaptation classifier derived from näıve Bayes, or the ensemble of domain adaptation clas-
sifiers. in general, ensemble classifies better than domain adaptation.

nucleotides and 3-mers as features, performs better when the target labeled dataset is

larger and the two organisms are more closely related.

Although these results are not as good as the ones in Schweikert et al. (2008), they are

greatly improved compared to the results in Section 5.1, yet not as much as expected. Even

though they are not as good as the SVMS,T in Schweikert et al. (2008), the algorithms pro-

posed could be superior in some contexts. For example, the complexity of SVM classifiers

increases with the number of training instances and the number of features, when training

the classifier (Schweikert et al. 2008). Whereas the S DASVM classifier “required an equiv-

alent of about 1,500 days of computing time on state-of-the-art CPU cores” to tune their

parameters (Schweikert et al. 2008), and additional computing to analyze the biological fea-

tures, the proposed algorithms required the equivalent of only 300 days of computing, and

the results can be easily interpreted.
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Figure 5.17: Comparison between results obtained when using the different semi-supervised
domain adaptation classifiers proposed, derived from näıve Bayes. Better results were ob-
tained with the proposed method that filtered features from source domain.

5.3 Domain Adaptation Classifiers Derived from Reg-

ularized Logistic Regression for Splice Site Predic-

tion

After the domain adaptation algorithms derived from a generative supervised classifier (näıve

Bayes), the focus was switched on domain adaptation algorithms derived from a discrimina-

tive supervised classifier (regularized logistic regression). Two such classifiers were proposed

– a supervised domain adaptation classifier, described in Section 5.3.2, and a semi-supervised

domain adaptation algorithm, described in Section 5.3.3 – and compared them to the do-

main adaptation derived from regularized logistic regression proposed by Chelba and Acero

(2006), described in Section 5.3.1.
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5.3.1 Logistic Regression for Domain Adaptation Setting with

Modified Regularization Term

The method proposed in Chelba and Acero (2006) for maximum entropy models involves

modifying the optimization function. First, this method learns a model for the source

domain, θS, by using the training instances from the source domain, (XS, YS), where XS ∈

RmS×n and YS ∈ YmS (note that the subscripts indicate the domain, with S for the source,

and T – in the subsequent equations – for the target).

θS = arg max
θS

[
l(θS)− λ‖θS‖2

]
(5.11)

Then, using the source model to constrain the target model, learn a model of the target

domain, θT , by using the training instances from the target domain, (XT , YT ), where XT ∈

RmT×n and YT ∈ YmT , but with the following modified optimization function:

θT = arg max
θT

[
l(θT )− λ‖θT − θS‖2

]
(5.12)

5.3.2 Supervised Domain Adaptation Derived from Regularized

Logistic Regression

The first method proposed uses a convex combination of two logistic regression classifiers

– one trained on the source data, and the other trained on the target data, as shown in

Figure 5.18. First, a model for the source domain and a model for the target domain are

learned, using the training instances from the source domain, (XS, YS) and from the target

domain, (XT , YT ), respectively:

θS = arg max
θS

[
l(θS)− λ‖θS‖2

]
(5.13)

62



θT = arg max
θT

[
l(θT )− λ‖θT‖2

]
(5.14)

Then, using these models, the posterior probability for every instance x from the test set

of the target domain was approximated as a normalized convex combination of the posterior

probabilities for the source and target domains:

P (y | x;α) ∝ (1− α) · PS(y | x; θS) + α · PT (y | x; θT ) (5.15)

where α ∈ [0, 1] is a parameter that shifts the weight from source domain to target domain

depending on the distance between these domains, and the amount of target data available.

Figure 5.18: Supervised domain adaptation classifiers derived from regularized logistic re-
gression.
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5.3.3 Semi-supervised Domain Adaptation Derived from Regu-

larized Logistic Regression

The second method proposed is a modified version of the algorithm proposed in Section 5.2.

A couple of changes were made to that algorithm. First, the regularized logistic regression

was used as the supervised classifier, instead of the näıve Bayes classifier, and second, three

variants of incorporating the target unlabeled data were evaluated, as described below. To

make the results comparable to the ones of the algorithm proposed Section 5.2, no additional

changes were made (besides the two mentioned above) – i.e., features from the source domain

are filtered out, even though the same was not done with the other algorithms, as the latter

do not use target unlabeled data. Note that there are two main differences between this

classifier and the one proposed in Section 5.3.2: this is an iterative algorithm, using the

expectation-maximization approach, and, this algorithm uses the target unlabeled data

when learning a model.

In the first step, the domain specific features from the source domain are filtered out,

and only the top ranking features are kept, ranked with f(xj), that have similar mutual

information in both the source and target labeled data sets:

f(xj) =
ItSL(xj; y) · ItTL(xj; y)

|ItSL(xj; y)− ItTL(xj; y)|+ ρ
(5.16)

where I(xj; y) is the mutual information between feature xj and class y in the training source

labeled dataset, tSL, and in the training target labeled data, tTL, and ρ is a parameter

used to prevent division by zero. For these experiments ρ is set to 4.9E−324, for minimal

influence on the value of f(xj).

Once the domain specific features are filtered out from the source domain, the posterior

probabilities are estimated from the training source labeled data, ptSL, and from the training

target labeled data, ptTL, using the regularized logistic regression classifier. Then, with these
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probabilities the instances from the training target unlabeled dataset are labeled:

P = α · PtTL + (1− α) · PtSL (5.17)

where α ∈ (0, 1) is a parameter that determines how much weight is assigned to source

and target instances. Three variants are used to label the instances from training unlabeled

dataset. In one variant, soft labels are assigned to all instances. In another variant, hard

labels are assigned to a set number of instances, proportional to the prior, the ones with the

most confident predictions. Since for the splice site prediction, the datasets have a ratio of

positive to negative of 1:99, at each iteration 100 instances are hard-labeled, 1 positive and

99 negative. In the other variant, at each iteration the most confident instances are labeled

with hard labels, and the remaining ones with soft labels.

Then the instances from the training target unlabeled dataset are incorporated, a new

classifier is built, the labels for the soft-labeled instances are predicted, and loop until the

labels assigned to unlabeled data no longer change:

P = α · PtTL + (1− α) · [γ · PtTU + (1− γ) · PtSL] (5.18)

where γ = min(τ · β, 1), and τ is the iteration number, and β ∈ (0, 1) is a parameter

that splits the weight between the source and target unlabeled instances. Note that when

checking for convergence the hard labels assigned to target unlabeled instances are used

(i.e., for the purpose of checking for convergence, hard labels are temporarily assigned to

all instances from the training target unlabeled dataset, which are used for comparison

between iterations). The algorithm is shown in Figure 5.19 and its pseudo-code is listed in

Algorithm 4.
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5.3.4 Experimental Setup

To find the optimal parameters’ values the three folds of 100,000 instances from the target

domain were used as validation sets. A grid search was perfomed for λ, using the baseline,

supervised logistic classifier, with λ = 10x, x ∈ {−8,−6, . . . , 4}, trained with data from

source and target domains. For these datasets the best results were obtained when λ =

1, 000. Therefore, for the proposed algorithm λS and λT were set to 1,000, and a grid search

was performed for δ with values from {0.1, 0.2, . . . , 0.9}, whereas for the method proposed

by Chelba and Acero (2006) λS was set to 1,000 and a grid search was performed for λT

with λT = 10x, x ∈ {−8 − 7, . . . , 4}. For the method in (Chelba and Acero 2006) λT was

optimized, as λT controls the trade-off between source and target parameters, and thus it is

similar to the δ parameter for the first proposed method. For the second proposed method

a grid search was performed for α, β ∈ {0.2, 0.4, 0.6, 0.8} and {20%, 40%, 60%, 80%, 100%}

for generalizable features kept in the source domain.

For the domain adaptation setting the classifiers were trained on source and target data,

whereas for the baseline classifiers, the supervised logistic regression, in one setting the

Algorithm 4 Outline of the semi-supervised domain adaptation with logistic regression,
with hard and soft labels SSh+sDAloc

LR, with hard labels only SShDAloc
LR, and with soft labels

only SSsDAloc
LR.

1: Remove domain specific features from the source dataset, using Equation (5.16).
2: Initialize TUs = TU and TUh = ø, where TUs is the set of target unlabeled instances

with soft labels assigned, TUh is the set of target unlabeled instances with hard labels
assigned, and TU is the set of target unlabeled instances passed to the algorithm.

3: Train a classifier using Equation (5.17).
4: Assign labels to the unlabeled instances from the target domain using this classifier.

The labels assigned are either: soft and hard labels, hard labels only, or soft labels only.
Any instances assigned hard labels are removed from TUs and added to TUh.

5: while labels assigned to instances in TUs change do
6: M -step: Train a classifier using Equation (5.18)., i.e., also use the instances from

the target unlabeled dataset that were labeled in steps 3 and 6.
7: E -step: Same as step 3.
8: end while
9: Use classifier trained using Equation (5.18), on new target instances.
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Figure 5.19: Semi-supervised domain adaptation classifiers derived from regularized logistic
regression.

classifier was trained on source, and in another setting the classifier was trained on each of

the labeled target data set sizes: 2,500, 6,500, 16,000, and 40,000. To evaluate the classifiers

they were tested on the test target data from the corresponding fold. It is expected that

the results of the baseline, logistic regression classifier trained on each of the target labeled

data sets to be the lower bound for the proposed method trained on the source data and

that corresponding target labeled data, since it is believed that adding data from a related

organism should produce a better classifier.

This experimental setup was used to answer several questions specific to this classifier, in

addition to the general questions listed in Section 5.1.2 – namely, how does the performance

of the classifier vary with:

67



Q11 The influence of the following factors on the performance of the classifier:

(a) The weight assigned to the target data.

(b) Variant used to assign labels to instances from the training target unlabeled

dataset: using soft labels only, hard labels only, or a combination of both.

Q12 The performance of the domain adaptation classifiers derived from the supervised

logistic regression classifier (the method proposed in (Chelba and Acero 2006), and

these proposed methods), compared to other domain adaptation classifiers for the task

of splice site prediction, i.e., an SVM classifier (Schweikert et al. 2008) and the näıve

Bayes classifier proposed in Section 5.2.
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Table 5.4: auPRC values for the minority class for four target organisms based on the number
of labeled target instances used for training: 2,500, 6,500, 16,000, and 40,000. The LRtSL and
LRtTL are the baseline supervised logistic regression classifiers trained on source and target
labeled data, respectively. The S DAloc

LR reg is the domain adaptation classifier proposed in

(Chelba and Acero 2006). The SSh+sDAloc:filtered
NB is the best overall semi-supervised domain

adaptation proposed in the previous section. SSsDAloc
LR is the proposed semi-supervised

domain adaptation algorithm that assigns only soft labels to instances from target unlabeled
dataset, SSh+sDAloc

LR assigns at each iteration hard labels to the most confident predictions
and soft labels to the remaining instances, and SShDAloc

LR assigns at each iteration hard
labels to the most confident predictions. For comparison with these classifiers the values
for the best overall classifier in (Schweikert et al. 2008), SVMS,T , are shown (listed in these
subtables as S DASVM). The best average value for each target dataset size is shown in bold.

(a) C.remanei

Features Classifier 2,500 6,500 16,000 40,000

1-mers

LRtSL 77.63±1.37

LRtTL 31.07±8.72 54.20±3.97 65.73±2.76 72.93±1.70

S DAloc
LR 77.64±1.39 77.75±1.25 77.88±1.42 78.10±1.15

S DAloc
LR reg 16.30±7.70 40.87±3.26 49.07±0.93 58.37±2.63

SSh+sDAloc:filtered
NB 59.18±1.17 63.10±1.23 63.95±2.08 63.80±1.41

SSsDAloc
LR 77.63±1.11 77.76±0.98 77.86±1.10 78.02±0.85

SShDAloc
LR 77.39±1.03 77.58±0.88 77.80±1.07 77.89±0.81

SSh+sDAloc
LR 77.65±1.19 77.74±0.92 77.87±1.16 78.04±0.85

S DASVM 77.06±2.13 77.80±2.89 77.89±0.29 79.02±0.09

1- + 3-mers

LRtSL 81.37±2.27

LRtTL 26.93±9.91 55.26±2.21 68.30±1.91 77.33±2.78

S DAloc
LR 81.39±2.30 81.47±2.19 81.78±2.08 82.61±2.00

S DAloc
LR reg 2.30±1.05 14.50±4.68 40.10±3.72 63.53±7.10

SSh+sDAloc:filtered
NB 45.29±2.62 72.00±4.16 74.83±4.32 77.07±4.45

SSsDAloc
LR 81.05±1.82 81.04±1.39 67.95±1.53 76.97±2.26

SShDAloc
LR 80.66±1.77 79.84±1.17 67.12±1.49 77.46±2.47

SSh+sDAloc
LR 81.40±1.89 81.42±1.84 81.75±1.74 82.54±1.64
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Table 5.4: (Cont.)

(b) P.pacificus

Features Classifier 2,500 6,500 16,000 40,000

1-mers

LRtSL 64.20±1.91

LRtTL 29.87±3.58 49.03±4.90 59.93±2.74 69.10±2.25

S DAloc
LR 64.70±1.85 65.31±2.10 66.76±0.89 70.18±2.12

S DAloc
LR reg 18.00±3.83 32.73±2.69 40.73±4.30 55.73±1.62

SSh+sDAloc:filtered
NB 45.32±2.68 49.82±2.58 52.09±2.04 54.62±1.51

SSsDAloc
LR 66.11±1.50 66.36±1.60 67.32±0.72 70.19±1.70

SShDAloc
LR 63.98±1.66 64.70±1.77 66.31±0.61 69.95±1.72

SSh+sDAloc
LR 64.82±1.46 65.46±1.92 67.03±0.85 70.20±1.70

S DASVM 64.72±3.75 66.39±0.66 68.44±0.67 71.00±0.38

1- + 3-mers

LRtSL 62.37±0.84

LRtTL 28.40±4.49 49.67±2.83 62.97±3.32 74.60±2.85

S DAloc
LR 64.18±1.10 65.49±1.84 69.76±2.08 75.82±2.00

S DAloc
LR reg 4.37±1.76 14.50±4.86 38.23±6.54 63.70±5.28

SSh+sDAloc:filtered
NB 20.21±1.17 53.29±3.08 62.33±3.60 69.88±4.04

SSsDAloc
LR 64.47±1.23 65.40±1.51 62.66±2.57 74.09±2.39

SShDAloc
LR 61.16±1.33 63.13±1.92 60.66±3.53 74.64±2.60

SSh+sDAloc
LR 64.55±1.05 65.59±1.68 68.71±1.29 74.81±1.62
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Table 5.4: (Cont.)

(c) D.melanogaster

Features Classifier 2,500 6,500 16,000 40,000

1-mers

LRtSL 35.87±2.32

LRtTL 19.97±3.48 31.80±3.86 42.37±2.15 50.53±1.80

S DAloc
LR 39.70±2.82 42.19±3.41 49.72±2.01 53.43±0.89

S DAloc
LR reg 11.33±1.36 22.80±2.60 27.30±3.92 42.67±0.76

SSh+sDAloc:filtered
NB 33.31±3.71 36.43±2.18 40.32±2.04 42.37±1.51

SSsDAloc
LR 42.61±1.62 44.44±1.93 49.80±1.59 53.63±0.80

SShDAloc
LR 48.02±1.10 47.24±1.27 50.18±1.73 53.76±0.80

SSh+sDAloc
LR 41.70±2.01 44.15±2.00 49.76±1.61 53.64±0.79

S DASVM 40.80±2.18 37.87±3.77 52.33±0.91 58.17±1.50

1- + 3-mers

LRtSL 32.23±2.76

LRtTL 15.07±4.11 28.30±5.45 44.67±3.23 38.43±32.36

S DAloc
LR 37.24±2.20 40.93±3.79 50.54±3.91 45.89±22.25

S DAloc
LR reg 3.40±1.82 8.37±2.48 21.20±2.85 26.50±22.44

SSh+sDAloc:filtered
NB 25.83±2.35 32.58±5.83 39.10±1.82 47.49±3.44

SSsDAloc
LR 37.00±2.02 40.51±3.05 48.46±1.35 47.11±13.69

SShDAloc
LR 33.29±2.48 37.57±3.69 47.26±1.87 41.96±21.19

SSh+sDAloc
LR 37.15±2.03 40.80±3.03 50.82±2.70 48.35±15.26
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Table 5.4: (Cont.)

(d) A.thaliana

Features Classifier 2,500 6,500 16,000 40,000

1-mers

LRtSL 16.93±0.21

LRtTL 13.87±2.63 26.03±3.29 38.43±6.18 49.33±4.07

S DAloc
LR 20.67±0.58 27.19±1.30 40.56±3.26 49.75±2.82

S DAloc
LR reg 8.50±2.08 17.93±4.72 23.30±2.35 39.10±4.97

SSh+sDAloc:filtered
NB 18.46±1.13 25.04±0.72 31.47±3.56 36.95±3.39

SSsDAloc
LR 25.84±0.48 32.50±1.17 43.03±3.75 50.59±3.50

SShDAloc
LR 29.87±0.73 29.54±1.27 41.30±4.15 50.24±3.68

SSh+sDAloc
LR 23.43±0.28 32.18±1.28 42.65±3.74 50.61±3.52

S DASVM 24.21±3.41 27.30±1.46 38.49±1.59 49.75±1.46

1- + 3-mers

LRtSL 14.07±0.31

LRtTL 8.87±1.84 21.10±4.45 38.53±8.08 49.77±2.77

S DAloc
LR 16.42±1.20 26.44±2.49 41.35±6.49 50.83±2.28

S DAloc
LR reg 2.50±0.10 8.27±1.60 20.03±3.36 30.27±2.57

SSh+sDAloc:filtered
NB 3.99±0.43 13.96±2.42 33.62±6.31 43.20±3.78

SSsDAloc
LR 16.50±0.68 27.00±2.30 40.86±4.58 49.67±2.36

SShDAloc
LR 13.15±0.34 21.63±2.04 39.50±3.87 49.49±2.16

SSh+sDAloc
LR 16.64±1.11 27.34±2.25 41.76±5.21 50.57±2.04

5.3.5 Results and Discussion

Table 5.4 and Figure 5.21 show the average auPRC values for the minority class. Based on

these results, the following observations can be made:
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(a) Low α and high β. (b) High α and high β.

Figure 5.20: The second proposed method produced the most accurate classification with
low values for α and high values for β when the target domain was close to the source domain
(e.g., C.remanei). As the distance between the source and target domains increased (e.g.,
A.thaliana), the classifier performed best with increasing values for α and high values for β.

A1 Features: the proposed classifiers performed better with nucleotide and 3-mer fea-

tures, when the source and target domains are closely related and the classifier has

more target labeled data available. However, as the distance between the source

and target domains increases, the proposed algorithm performs better with nucleotide

features when there is little target labeled data. This conforms with the results in

Section 5.2: since 3-mers generate a sparse set of features, they lead to decreased

classification accuracy when there are a small number of target training instances.

A2 Amount of target labeled training data: the more target training data used by

the classifier the better the classifier performs. This makes sense, as more sample data

describes more closely the distribution.

A3 Distance between domains: as the distance between the source and target domains

increases the contribution of the source data decreases. It is interesting to note though

that based on these results the splice site prediction problem seems to be more difficult

for more complex organisms. For all dataset sizes and all algorithms evaluated there

is a common trend of decreasing auPRC values as the complexity of the organisms

increases, from C.remanei, P. pacificus, D.melanogaster, to A.thaliana. This is a

major reason that helps explain the decreased auPRC values for all classifiers, for
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Figure 5.21: Results of the domain adaptation classifiers derived from regularized logistic
regression.
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Figure 5.16: (Cont.)

these organisms, respectively, i.e., in general auPRC for C.remanei > P. pacificus >

. . . > A.thaliana.

A11 Factors that influence the performance of the classifier:

(a) Weight assigned to target data: intuitively, for the first proposed method

in this section, the expectation is for δ to be closer to one when the source and

target domain are more distantly related, and closer to zero otherwise. The

results conform with this intuition, with δ between 0.1 and 0.6 for C.remanei,

between 0.7 and 0.8 for P.pacificus, between 0.8 and 0.9 for D.melanogaster, and

0.9 for A.thaliana.

For the second proposed method in this section, the expectation is for α to be

small for closely related source and target domains, since there is more data

available in the source domain; as the distance between domains increases, the

expectation is that the best results are obtained with increasing values for α,

which assign more weight to the target labeled data. For β the expectation is

that the best results are obtained for high β values, as after a few iterations there
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should be enough confidently labeled data in the target domain. The results

confirm this intuition, as shown in Figure 5.20.

(b) Type of labels used for instances from target unlabeled dataset: in most

cases using a combination of hard and soft labels produced better results than

using soft labels only, which is in turn better than using hard labels only. It

is interesting to note that when using nucleotides and 3-mers as features, the

combination of hard and soft labels produced best results. On the other hand,

when using nucleotides as features (i) and there is enough target labeled data

(40,000 instances), the best results are obtained when using the combination of

labels, or (ii) when there is less target labeled data the results are best when using

soft labels only, except for the only three cases for which using hard labels only

generated best results (when using 2,500 or 6,500 instances with D.melanogaster,

and 2,500 instances with A.thaliana). These results conform with the intuition

that hard labels should only be assigned to the most confident instances and the

remaining instances should not be discarded but instead should be used with

soft labels. For the three cases of best results when using hard labels only,

one hypothesis is that the most confident predictions had probabilities close to

y = (1, 0) for positive and y = (0, 1) for negative instances and therefore assigning

the nearest hard label did not skew the classifier by much. Similarly, when the

features are nucleotides and there is not enough target labeled data, some of the

most confident predictions had probabilities that were not close to (1,0), or (0,1),

respectively, and assigning hard labels to these instances skewed the classifier

leading to worse accuracy as opposed to assigning soft labels only.

A12 In terms of performance, the method proposed by Chelba and Acero (2006) produced

worse results than the supervised logistic regression classifier trained on the target

data. These poor results are due to modified optimization function of this method,

which constrains the values of the parameters for the target domain, θT , to be close
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to the values of the parameters for the source domain, θS. In addition, this method

performed worse than the domain adaptation näıve Bayes classifier proposed in Sec-

tion 5.2, except for two cases (when using nucleotides as features, the target domains

are D.melanogaster, and A.thaliana, and the algorithms are trained on 40,000 target

instances).

The first method proposed in this section produced better average results than the

supervised logistic classifier trained on either the source or the target domain in ev-

ery case of the 16 evaluated. This confirms the hypothesis that augmenting a small

labeled dataset from the target domain with a large labeled dataset from a closely re-

lated source domain improves the accuracy of the classifier. In addition, this method

outperformed the domain adaptation näıve Bayes classifier proposed in Section 5.2,

as well as the method proposed in (Chelba and Acero 2006) in every case, and out-

performed the best overall domain adaptation SVM classifier proposed in (Schweikert

et al. 2008) in 9 out of the 16 cases.

The second method proposed in this section produced better average results with at

least one of its three labeling variants than the supervised logistic classifier trained

on either the source or the target domain in all cases evaluated. It also outperformed

the domain adaptation näıve Bayes classifier proposed in Section 5.2, as well as the

method proposed in (Chelba and Acero 2006) in every case, and outperformed the

best overall domain adaptation SVM classifier proposed in (Schweikert et al. 2008) in

7 out of the 16 cases.

Based on these results the first method proposed in this section should be used instead

of the domain adaptation S DASVM classifier when the source and target domains are

closely related, or when there is quite a bit of labeled data for the target domain,

otherwise, the second method proposed in this section should be used when there is

little labeled data, and the S DASVM algorithm proposed in (Schweikert et al. 2008) in

the remaining three cases, namely, for D.melanogaster when there’s plenty of labeled
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data (16,000 or 40,000 instances), and for P.pacificus when there’s some labeled data

(6,500 instances).

5.4 Domain Adaptation with Supervised Classifiers

Let the set of independently generated training instances be represented by X ∈ Rm×n and

their corresponding labels by Y ∈ Ym, Y = {0, 1}, where m is the number of training

instances and n is the number of features.

Given a set of training instances from the source domain, DS = (XS, YS), where XS ∈

RmS×n and YS ∈ YmS , and a set of training instances from the target domain, DT =

(XT , YT ), where XT ∈ RmT×n and YT ∈ YmT , create an empty dataset D = (X, Y ), where

X ∈ R(mS+mT )×n and Y ∈ YmS+mT . For each instance (xi, yi) ∈ DS multiply its weight by

wS, then add this instance to the new dataset, D. Similarly, for each instance (xi, yi) ∈ DT

multiply its weight by wT , then add it to the new dataset, D. Then, train a supervised

classifier on this combined dataset, D, as shown in Figure 5.17. The following two super-

vised classifiers were used: the WEKA implementations of the regularized logistic regression

(Le Cessie and Van Houwelingen 1992), and näıve Bayes (John and Langley 1995).

5.4.1 Experimental Setup

To find the optimal parameters’ values a grid search was performed for wS, wT ∈ {0.1, 0.2, . . . , 1}.

As baselines, the näıve Bayes and the logistic regression with regularized parameters

classifiers were used, trained on either 100,000 from C.elegans, or one of the three folds of

2,500, 6,500, 16,000, or 40,000 from the target organisms, and tested them on the corre-

sponding fold for that organism. It is expected that the results of the baseline classifiers

will be the lower bound for this proposed method, as adding data from a related organism

should improve the accuracy of the classifier. Note, that whenever the logistic regression

classifier was used, for baselines or for this proposed method, the ridge parameter was set
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Figure 5.17: Domain adaptation with supervised classifiers.

to 1,000, as this value led to the best results in Section 5.3.

This experimental setup was used to answer several questions specific to this classifier, in

addition to the general questions listed in Section 5.1.2 – namely, how does the performance

of the classifier vary with:

Q13 How this proposed method (when using näıve Bayes or regularized logistic regression)

compares to other domain adaptation classifiers for the task of splice site prediction,

namely, the SVM classifier proposed by Schweikert et al. (2008), the näıve Bayes

classifier proposed in Section 5.2, and the regularized logistic regression proposed in

Section 5.3.
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Table 5.5: auPRC values for the minority (i.e., positive) class for four target organisms based
on the number of labeled target instances used for training: 2,500, 6,500, 16,000, and 40,000.
The LRtSL and LRtTL are the baseline supervised logistic regression classifiers trained on
source and target labeled data, respectively. LRtSL+tTL is the proposed supervised domain
adaptation classifier using the supervised logistic regression classifier. The S DAloc

LR is the
supervised domain adaptation classifier proposed in the previous section. S DASVM is the
best overall classifier in (Schweikert et al. 2008), SVMS,T . The NBtSL and NBtTL are the
supervised näıve Bayes classifiers trained on source and target labeled data, respectively.
NBtSL+tTL is the proposed supervised domain adaptation classifier using the supervised näıve
Bayes classifier. SSh+sDAloc:filtered

NB is the best overall semi-supervised domain adaptation
classifier in Section 5.2. The best average values for each type of features used is shown in
bold font.

(a) C.remanei

Features Classifier 2,500 6,500 16,000 40,000

1-mers

LRtSL 77.63±1.37
LRtTL 31.07±8.72 54.20±3.97 65.73±2.76 72.93±1.70

LRtSL+tTL 77.65±1.34 77.88±1.16 78.32±1.29 79.00±0.97
S DAloc

LR 77.64±1.39 77.75±1.25 77.88±1.42 78.10±1.15
NBtSL 63.77±1.30
NBtTL 23.42±7.39 45.44±4.01 54.57±2.63 59.68±1.62

NBtSL+tTL 75.49±1.39 75.56±1.46 75.63±1.45 75.82±1.32
SSh+sDAloc:filtered

NB 59.18±1.17 63.10±1.23 63.95±2.08 63.80±1.41
S DASVM 77.06±2.13 77.80±2.89 77.89±0.29 79.02±0.09

1- + 3-mers

LRtSL 81.37±2.27
LRtTL 26.93±9.91 55.26±2.21 68.30±1.91 77.33±2.78

LRtSL+tTL 81.40±2.25 81.73±1.90 82.62±2.28 83.57±1.76
S DAloc

LR 81.39±2.30 81.47±2.19 81.78±2.08 82.61±2.00
NBtSL 77.67±2.24
NBtTL 22.94±4.37 58.39±3.94 68.40±3.37 75.75±1.32

NBtSL+tTL 81.11±0.73 81.38±0.34 81.51±0.87 82.73±0.52
SSh+sDAloc:filtered

NB 45.29±2.62 72.00±4.16 74.83±4.32 77.07±4.45
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Table 5.5: (Cont.)

(b) P.pacificus

Features Classifier 2,500 6,500 16,000 40,000

1-mers

LRtSL 64.20±1.91
LRtTL 29.87±3.58 49.03±4.90 59.93±2.74 69.10±2.25

LRtSL+tTL 64.72±1.85 65.63±1.82 67.09±1.29 70.76±2.08
S DAloc

LR 64.70±1.85 65.31±2.10 66.76±0.89 70.18±2.12
NBtSL 49.12±1.58
NBtTL 19.22±3.39 37.33±2.65 45.33±2.28 52.84±2.06

NBtSL+tTL 60.67±1.97 61.96±2.04 63.04±0.33 65.17±2.09
SSh+sDAloc:filtered

NB 45.32±2.68 49.82±2.58 52.09±2.04 54.62±1.51
S DASVM 64.72±3.75 66.39±0.66 68.44±0.67 71.00±0.38

1- + 3-mers

LRtSL 62.37±0.84
LRtTL 28.40±4.49 49.67±2.83 62.97±3.32 74.60±2.85

LRtSL+tTL 64.14±0.83 66.14±0.55 70.97±2.03 76.89±1.75
S DAloc

LR 64.18±1.10 65.49±1.84 69.76±2.08 75.82±2.00
NBtSL 67.10±1.94
NBtTL 26.39±3.97 48.54±3.42 59.29±2.80 68.78±1.52

NBtSL+tTL 64.51±0.70 66.32±0.71 69.29±2.00 72.54±0.42
SSh+sDAloc:filtered

NB 20.21±1.17 53.29±3.08 62.33±3.60 69.88±4.04

5.4.2 Results and Discussion

In Table 5.5 and Figure 5.18 the auPRC averages over three folds and their standard devi-

ations are shown for the four target organisms for:

• This proposed method: LRtSL+tTL when using the regularized logistic regression and

NBtSL+tTL when using the näıve Bayes classifier.

• Supervised classifiers used as baselines: LRtSL and LRtTL when using the regularized

logistic regression classifier trained on source and target data, respectively, and NBtSL

and NBtTL when using the näıve Bayes classifier trained on source and target data,

respectively.

• The domain adaptation with näıve Bayes classifier proposed in Section 5.2, SSh+sDAloc:filtered
NB .

Note that this is the only classifier, from the ones compared, that used the target un-

labeled data in addition to the source and target labeled data.
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Table 5.5: (Cont.)

(c) D.melanogaster

Features Classifier 2,500 6,500 16,000 40,000

1-mers

LRtSL 35.87±2.32
LRtTL 19.97±3.48 31.80±3.86 42.37±2.15 50.53±1.80

LRtSL+tTL 41.35±1.40 43.66±3.20 49.96±2.09 54.02±0.95
S DAloc

LR 39.70±2.82 42.19±3.41 49.72±2.01 53.43±0.89
NBtSL 31.23±1.03
NBtTL 14.90±2.80 26.05±4.79 35.21±2.43 39.42±2.90

NBtSL+tTL 45.43±0.87 47.12±3.86 51.73±1.24 52.74±2.43
SSh+sDAloc:filtered

NB 33.31±3.71 36.43±2.18 40.32±2.04 42.37±1.51
S DASVM 40.80±2.18 37.87±3.77 52.33±0.91 58.17±1.50

1- + 3-mers

LRtSL 32.23±2.76
LRtTL 15.07±4.11 28.30±5.45 44.67±3.23 38.43±32.36

LRtSL+tTL 34.97±2.59 37.22±4.30 49.16±5.11 43.03±22.03
S DAloc

LR 37.24±2.20 40.93±3.79 50.54±3.91 45.89±22.25
NBtSL 34.09±2.44
NBtTL 13.87±2.97 25.00±5.59 35.28±2.14 45.85±3.32

NBtSL+tTL 46.85±1.41 50.84±4.39 56.57±2.37 50.15±14.84
SSh+sDAloc:filtered

NB 25.83±2.35 32.58±5.83 39.10±1.82 47.49±3.44

• The domain adaptation with regularized logistic regression proposed in Section 5.3,

S DAloc
LR.

• The supervised domain adaptation with SVM classifier proposed by Schweikert et al.

(2008), S DASVM. Note that this classifier used other features to represent the DNA

sequences (i.e., it did not represent them with nucleotides and 3-mers along with their

positions).

Based on these results the following observations were made:

A1 Features: there is a similar trend for this proposed method as with previous classifiers

proposed in Sections 5.2 and 5.3, namely, using simple features (the nucleotides) leads

to more accurate classifiers when the source and target domains are distant and there is

scarce labeled data in the target domain. Using a combination of simple and complex

features (nucleotides and 3-mers) leads to more accurate classifiers when the source
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Figure 5.18: Results of the domain adaptation method using supervised classifiers.
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Table 5.5: (Cont.)

(d) A.thaliana

Features Classifier 2,500 6,500 16,000 40,000

1-mers

LRtSL 16.93±0.21
LRtTL 13.87±2.63 26.03±3.29 38.43±6.18 49.33±4.07

LRtSL+tTL 22.79±0.92 31.70±2.70 41.28±2.64 49.91±2.38
S DAloc

LR 20.67±0.58 27.19±1.30 40.56±3.26 49.75±2.82
NBtSL 11.97±0.23
NBtTL 7.21±0.90 17.90±1.93 28.10±4.68 34.82±4.77

NBtSL+tTL 23.30±1.18 30.97±2.31 39.18±2.79 44.88±3.13
SSh+sDAloc:filtered

NB 18.46±1.13 25.04±0.72 31.47±3.56 36.95±3.39
S DASVM 24.21±3.41 27.30±1.46 38.49±1.59 49.75±1.46

1- + 3-mers

LRtSL 14.07±0.31
LRtTL 8.87±1.84 21.10±4.45 38.53±8.08 49.77±2.77

LRtSL+tTL 15.87±0.36 23.65±1.49 39.97±4.39 50.60±2.11
S DAloc

LR 16.42±1.20 26.44±2.49 41.35±6.49 50.83±2.28
NBtSL 13.98±0.71
NBtTL 3.10±0.35 8.76±1.65 28.21±7.58 40.92±3.78

NBtSL+tTL 21.62±1.02 27.89±2.19 43.52±6.16 53.33±3.77
SSh+sDAloc:filtered

NB 3.99±0.43 13.96±2.42 33.62±6.31 43.20±3.78

Figure 5.18: (Cont.)
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and target domains are closed and there is enough target labeled data. This is expected

as 3-mer features are sparser than nucleotide features, and with less labeled data the

classifier performs worse with 3-mer features as it does not have enough data to learn

an accurate classifier.

A2 Amount of target labeled data: as the amount of target labeled data increases

the accuracy of this proposed method increases as well, with one exception, though.

For D.melanogaster, when using nucleotide and 3-mer features, the auPRC decreases

as the amount of target labeled data increases from 16,000 to 40,000, regardless of

the type of supervised classifier used, näıve Bayes, or regularized logistic regression.

It is interesting to note that for this combination of features used and target domain,

the auPRC for the regularized logistic regression classifier also decreases when the

amount of target labeled data increases from 16,000 to 40,000. This partially explains

this exception for this proposed method when using the logistic regression classifier.

Another factor, suggested by the large standard deviation, is that the frequency of

features is very different between training and test datasets, especially for 3-mers,

since using only nucleotide features does not exhibit this behavior.

A3 Distance between domains: as the distance between the source and target domains

increases, the contribution from the source data decreases, and the accuracy of this

method decreases, which is expected.

A11 Weight assigned to source and target data: in regards to the weight assigned to

the target labeled data, the best results are obtained when wT is set to one, or close

to one. For the weight assigned to the source labeled data, when the domains are

closely related the best results are for high values of wS, but as the distance between

domains increases the value for wS decreases. This is intuitive as it only makes sense

to decrease the weight assigned to source data when the distance between domains

increases.
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A13 In terms of performance, this proposed method produced the best results out of all do-

main adaptation classifiers compared, when the source and target domains are closely

related (for C.remanei and P.pacificus)), using logistic regression with nucleotide and

3-mer features. It also produced the best results when the domains are distant (for

D.melanogaster and A.thaliana), using näıve Bayes with nucleotide and 3-mer features,

in five out of eight cases. This is a similar behavior to the one observed in (Ng and

Jordan 2001), namely that a generative classifier performs better than a discriminative

one when there is a small amount of training labeled data. For domain adaptation,

when the domains are close the source labeled data contributes a lot to the classifier so

a discriminative classifier performs better than a generative one. When the domains

are distant, the source labeled data contributes less and a generative classifier performs

better than a discriminative one. Another case for which this method produced the

best results is for very distant domains (A.thaliana), using logistic regression with nu-

cleotide features, when there is somewhat scarce target labeled data (6,500 instances).

There are only two cases in which another domain adaptation classifier, the SVM

proposed by Schweikert et al. (2008), outperformed this proposed method.
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Chapter 6

Conclusions and Future Work

This work summarizes the results of several domain adaptation methods proposed, derived

from näıve Bayes and logistic regression. These classifiers try to address the lack of or limited

amount of labeled data for a target domain, by leveraging the large amount of labeled data

from a related domain. These methods are evaluated on two biological problems, protein

localization and splice site prediction, and compared them with the domain adaptation

classifier derived from the supervised logistic regression classifier, proposed in (Chelba and

Acero 2006), the supervised logistic regression and näıve Bayes (as baselines), the and the

SVM classifier proposed in (Schweikert et al. 2008).

Several observations were made from the experimental results, such as, in some cases

simple features are preferred over complex ones when the latter can lead to sparse representa-

tions and decreased accuracy, and vice versa; using more labeled data increases the accuracy

of the classifier; and that as the distance between the domains increases the contribution

of the source data decreases. In addition, some of the proposed methods performed better

than previously proposed methods, recommending them for ab initio splice site prediction.

For future work several ways to further increase their accuracy will be explored. For

example, balanced subsamples can be created through undersampling, and then training an

ensemble of classifiers on these subsamples. In addition, ensembles of classifiers produced
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by the different methods proposed, can be trained on balanced datasets. Another direction

for future work is to combine data from multiple organisms and train a classifier for a target

organism, i.e., use multiple source domains. Furthermore, the effectiveness of these proposed

methods will be evaluated on other problems that can be addressed in a domain adaptation

framework, e.g. text classification problems, sentiment analysis.

Published Contributions not Included in this Work

In addition to the publications included in this work, I also contributed to the following

peer-reviewed publications:

1. Inferential considerations for low-count RNA-seq transcripts: a case study on the dom-

inant prairie grass Andropogon gerardii, (Raithel et al. 2016).

Background: Differential expression (DE) analysis of RNA-seq data still poses infer-

ential challenges, such as handling of transcripts characterized by low expression levels.

In this study, we use a plasmode-based approach to assess the relative performance

of alternative inferential strategies on RNA-seq transcripts, with special emphasis on

transcripts characterized by a small number of read counts, so-called low-count tran-

scripts, as motivated by an ecological application in prairie grasses. Big bluestem

(Andropogon gerardii) is a wide-ranging dominant prairie grass of ecological and agri-

cultural importance to the US Midwest while edaphic subspecies sand bluestem (A.

gerardii ssp. Hallii) grows exclusively on sand dunes. Relative to big bluestem, sand

bluestem exhibits qualitative phenotypic divergence consistent with enhanced drought

tolerance, plausibly associated with transcripts of low expression levels. Our dataset

consists of RNA-seq read counts for 25,582 transcripts (60% of which are classified

as low-count) collected from leaf tissue of individual plants of big bluestem (n = 4)

and sand bluestem (n = 4). Focused on low-count transcripts, we compare alterna-

tive ad-hoc data filtering techniques commonly used in RNA-seq pipelines and assess
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the inferential performance of recently developed statistical methods for DE analysis,

namely DESeq2 and edgeR robust. These methods attempt to overcome the inherently

noisy behavior of low-count transcripts by either shrinkage or differential weighting of

observations, respectively.

Results: Both DE methods seemed to properly control family-wise type 1 error

on low-count transcripts, whereas edgeR robust showed greater power and DESeq2

showed greater precision and accuracy. However, specification of the degree of free-

dom parameter under edgeR robust had a non-trivial impact on inference and should

be handled carefully. When properly specified, both DE methods showed overall

promising inferential performance on low-count transcripts, suggesting that ad-hoc

data filtering steps at arbitrary expression thresholds may be unnecessary. A note of

caution is in order regarding the approximate nature of DE tests under both methods.

Conclusions: Practical recommendations for DE inference are provided when low-

count RNA-seq transcripts are of interest, as is the case in the comparison of subspecies

of bluestem grasses. Insights from this study may also be relevant to other applications

focused on transcripts of low expression levels.

2. A Comparative Analysis between k-mers and Community Detection-based Features

for the Task of Protein Classification, (Tangirala et al. 2016).

Machine learning algorithms are widely used to annotate biological sequences. Low-

dimensional informative feature vectors can be crucial for the performance of the

algorithms. In prior work, we have proposed the use of a community detection ap-

proach to construct low dimensional feature sets for nucleotide sequence classification.

Our approach used the Hamming distance between short nucleotide subsequences,

called k-mers, to construct a network, and subsequently used community detection

to identify groups of k-mers that appear frequently in a set of sequences. Whereas

this approach worked well for nucleotide sequence classification, it could not be di-

rectly used for protein sequences, as the Hamming distance is not a good measure for
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comparing short protein k-mers. To address this limitation, we extended our prior

approach by replacing the Hamming distance with substitution scores. Experimental

results in different learning scenarios show that the features generated with the new

approach are more informative than k-mers.

3. Tools and pipelines for BioNano data: molecule assembly pipeline and FASTA super

scaffolding tool, (Shelton et al. 2015).

Background: Genome assembly remains an unsolved problem. Assembly projects

face a range of hurdles that confound assembly. Thus a variety of tools and approaches

are needed to improve draft genomes.

Results: We used a custom assembly workflow to optimize consensus genome map

assembly, resulting in an assembly equal to the estimated length of the Tribolium

castaneum genome and with an N50 of more than 1 Mb. We used this map for super

scaffolding the T. castaneum sequence assembly, more than tripling its N50 with the

program Stitch.

Conclusions: In this article we present software that leverages consensus genome

maps assembled from extremely long single molecule maps to increase the contiguity

of sequence assemblies. We report the results of applying these tools to validate and

improve a 7x Sanger draft of the T. castaneum genome.

4. A Massive Expansion of Effector Genes Underlies Gall-Formation in the Wheat Pest

Mayetiola destructor, (Zhao et al. 2015).

Gall-forming arthropods are highly specialized herbivores that, in combination with

their hosts, produce extended phenotypes with unique morphologies. Many are eco-

nomically important, and others have improved our understanding of ecology and

adaptive radiation. However, the mechanisms that these arthropods use to induce

plant galls are poorly understood. We sequenced the genome of the Hessian fly

(Mayetiola destructor; Diptera: Cecidomyiidae), a plant parasitic gall midge and a

pest of wheat (Triticum spp.), with the aim of identifying genic modifications that
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contribute to its plant-parasitic lifestyle. Among several adaptive modifications, we

discovered an expansive reservoir of potential effector proteins. Nearly 5% of the

20,163 predicted gene models matched putative effector gene transcripts present in

the M. destructor larval salivary gland. Another 466 putative effectors were discov-

ered among the genes that have no sequence similarities in other organisms. The

largest known arthropod gene family (family SSGP-71) was also discovered within the

effector reservoir. SSGP-71 proteins lack sequence homologies to other proteins, but

their structures resemble both ubiquitin E3 ligases in plants and E3-ligase-mimicking

effectors in plant pathogenic bacteria. SSGP-71 proteins and wheat Skp proteins

interact in vivo. Mutations in different SSGP-71 genes avoid the effector-triggered

immunity that is directed by the wheat resistance genes H6 and H9. Results point to

effectors as the agents responsible for arthropod-induced plant gall formation.

5. Experimental Study with Real-world Data for Android App Security Analysis using

Machine Learning, (Roy et al. 2015).

Although Machine Learning (ML) based approaches have shown promise for Android

malware detection, a set of critical challenges remain unaddressed. Some of those

challenges arise in relation to proper evaluation of the detection approach while others

are related to the design decisions of the same. In this paper, we systematically study

the impact of these challenges as a set of research questions (i.e., hypotheses). We

design an experimentation framework where we can reliably vary several parameters

while evaluating ML-based Android malware detection approaches. The results from

the experiments are then used to answer the research questions. Meanwhile, we also

demonstrate the impact of some challenges on some existing ML-based approaches.

The large (market-scale) dataset (benign and malicious apps) we use in the above

experiments represents the real-world Android app security analysis scale. We envision

this study to encourage the practice of employing a better evaluation strategy and

better designs of future ML-based approaches for Android malware detection.
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6. An Evaluation of Self-training Styles for Domain Adaptation on the Task of Splice

Site Prediction, (Herndon and Caragea 2015c).

We consider the problem of adding a large unlabeled sample from the target domain

to boost the performance of a domain adaptation algorithm when only a small set

of labeled examples are available from the target domain. In particular, we consider

the problem setting motivated by the task of splice site prediction. For this task,

annotating a genome using machine learning requires a lot of labeled data, whereas for

non-model organisms, there is only some labeled data and lots of unlabeled data. With

domain adaptation one can leverage the large amount of data from a related model

organism, along with the labeled and unlabeled data from the organism of interest to

train a classifier for the latter. Our goal is to analyze the three ways of incorporating

the unlabeled data – with soft labels only (i.e., Expectation-Maximization), with hard

labels only (i.e., self-training), or with both soft and hard labels – for the splice site

prediction in particular, and more broadly for a general iterative domain adaptation

setting. We provide empirical results on splice site prediction indicating that using

soft labels only can lead to better classifier compared to the other two ways.

7. Community Detection-Based Feature Construction for Protein Sequence Classifica-

tion, (Tangirala et al. 2015).

Machine learning algorithms are widely used to annotate biological sequences. Low-

dimensional informative feature vectors can be crucial for the performance of the al-

gorithms. In prior work, we have proposed the use of a community detection approach

to construct low dimensional feature sets for nucleotide sequence classification. Our

approach uses the Hamming distance between short nucleotide subsequences, called k-

mers, to construct a network, and subsequently uses community detection to identify

groups of k-mers that appear frequently in a set of sequences. While this approach

worked well for nucleotide sequence classification, it could not be directly used for pro-

tein sequences, as the Hamming distance is not a good measure for comparing short
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protein k-mers. To address this limitation, we extend our prior approach by replac-

ing the Hamming distance with substitution scores. Experimental results in different

learning scenarios show that the features generated with the new approach are more

informative than k-mers.

8. Twitter Mining for Disaster Response: A Domain Adaptation Approach, (Li et al.

2015).

Microblogging data such as Twitter data contains valuable information that has the

potential to help improve the speed, quality, and efficiency of disaster response. Ma-

chine learning can help with this by prioritizing the tweets with respect to various

classification criteria. However, supervised learning algorithms require labeled data

to learn accurate classifiers. Unfortunately, for a new disaster, labeled tweets are not

easily available, while they are usually available for previous disasters. Furthermore,

unlabeled tweets from the current disaster are accumulating fast. We study the use-

fulness of labeled data from a prior source disaster, together with unlabeled data from

the current target disaster to learn domain adaptation classifiers for the target. Ex-

perimental results suggest that, for some tasks, source data itself can be useful for

classifying target data. However, for tasks specific to a particular disaster, domain

adaptation approaches that use target unlabeled data in addition to source labeled

data are superior.

9. Predicting Protein Localization Using a Domain Adaptation Näıve Bayes Classifier

with Burrows Wheeler Transform Features, (Herndon et al. 2014).

The reduced cost of the next generation sequencing technologies provides opportu-

nities to study non-model organisms. However, one challenge is the large volume of

data generated and, thus, the need to use automated approaches to annotate these

data. Machine learning algorithms could provide a cost-effective solution but they

need lots of labeled data and informative features to represent these data. Our pro-

posed approach addresses both these problems by using a domain adaptation classifier
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in conjunction with features generated with unsupervised techniques to annotate bio-

logical sequence data.
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splice site prediction using support vector machines. BMC Bioinformatics, 8(Supplement

10):1–16.

Stanescu, A. and Caragea, D. (2014a). Ensemble-based semi-supervised learning approaches

for imbalanced splice site datasets. In Bioinformatics and Biomedicine (BIBM), 2014

IEEE International Conference on, pages 432–437. IEEE.

Stanescu, A. and Caragea, D. (2014b). Semi-supervised self-training approaches for imbal-

anced splice site datasets. In Proceedings of the 6th International Conference on Bioin-

formatics and Computational Biology, BICoB, pages 131–136.

101



Stanke, M. and Waack, S. (2003). Gene prediction with a hidden Markov model and a new

intron submodel. Bioinformatics, 19(suppl 2):ii215–ii225.

Steijger, T., Abril, J. F., Engström, P. G., Kokocinski, F., Hubbard, T. J., Guigó, R., Har-
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