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Abstract 

 Gap junctional intercellular channels allow the cells to communicate with each other. A 

breach in gap junctional intercellular communication (GJIC) affects cell growth and 

proliferation. In addition, many neoplastic cells exhibit a decrease in GJIC. Many factors that 

decrease GJIC have been shown to potentiate cancer formation. 2,3,7,8 tetrachlorodibenzo-p-

dioxin (TCDD), an environmental pollutant, is a carcinogen; however, its mechanism of 

carcinogenicity is unclear. Therefore, we examined the effect of TCDD on GJIC in MCF-7, a 

human breast cell line and normal mammary epithelial cells (HMEC). TCDD showed a decrease 

in GJIC in MCF-7 cells caused by increased phosphorylation of gap junctional protein, Cx43. 

PKCα-mediated phosphorylation of Cx43 was confirmed by inhibitor studies using calphostin C. 

Interestingly, TCDD affected GJIC in HMEC through a novel pathway involving redistribution 

of Cx43 to the perinuclear membrane. Our studies suggest that TCDD causes decrease in GJIC 

which could potentially lead to cancer. This also indicates that if GJIC is restored it could 

decrease cell growth and proliferation. Therefore, we investigated the role of substituted 

quinolines (PQ1), shown to bind with gap junctional proteins by computational docking. The 

results showed that indeed PQ1 significantly increases GJIC and exerts anti-tumor effect in 

human breast cancer cells compared to control without treatment or HMEC. We found an 

increase in GJIC, growth attenutation and increased apoptosis in T47D human breast cancer cell 

line. Our studies suggest that PQ1 is a novel gap junctional activator causing a decrease in tumor 

growth. Since PQ1 alone is effective in decreasing tumor growth in breast tumors, we proposed 

to test its efficacy with the current drug of choice for breast cancer, tamoxifen. The 

combinational treatment of tamoxifen and PQ1 showed a significant decrease in cell viability, 

increase in BAX (Bcl2-associated X), and, increase in caspase 3 activation compared to 

individual treatments. Hence, combinational treatment of PQ1 and tamoxifen can potentiate 

decrease in tumor growth. In conclusion, downregulation of gap junctions can potentiate tumor 

growth while restoration of GJIC can induce apoptosis and decrease tumor growth. 
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Abstract 

Gap junctional intercellular channels allow the cells to communicate with each other. A 

breach in gap junctional intercellular communication (GJIC) affects cell growth and 

proliferation. In addition, many neoplastic cells exhibit a decrease in GJIC. Many factors that 

decrease GJIC have been shown to potentiate cancer formation. 2,3,7,8 tetrachlorodibenzo-p-

dioxin (TCDD), an environmental pollutant, is a carcinogen; however, its mechanism of 

carcinogenicity is unclear. Therefore, we examined the effect of TCDD on GJIC in MCF-7, a 

human breast cell line and normal mammary epithelial cells (HMEC). TCDD showed a decrease 

in GJIC in MCF-7 cells caused by increased phosphorylation of gap junctional protein, Cx43. 

PKCα-mediated phosphorylation of Cx43 was confirmed by inhibitor studies using calphostin C. 

Interestingly, TCDD affected GJIC in HMEC through a novel pathway involving redistribution 

of Cx43 to the perinuclear membrane. Our studies suggest that TCDD causes decrease in GJIC 

which could potentially lead to cancer. This also indicates that if GJIC is restored it could 

decrease cell growth and proliferation. Therefore, we investigated the role of substituted 

quinolines (PQ1), shown to bind with gap junctional proteins by computational docking. The 

results showed that indeed PQ1 significantly increases GJIC and exerts anti-tumor effect in 

human breast cancer cells compared to control without treatment or HMEC. We found an 

increase in GJIC, growth attenuation and increased apoptosis in T47D human breast cancer cell 

line. Our studies suggest that PQ1 is a novel gap junctional activator causing a decrease in tumor 

growth. Since PQ1 alone is effective in decreasing tumor growth in breast tumors, we proposed 

to test its efficacy with the current drug of choice for breast cancer, tamoxifen. The 

combinational treatment of tamoxifen and PQ1 showed a significant decrease in cell viability, 

increase in BAX (Bcl2-associated X), and, increase in caspase 3 activation compared to 

individual treatments. Hence, combinational treatment of PQ1 and tamoxifen can potentiate 

decrease in tumor growth. In conclusion, downregulation of gap junctions can potentiate tumor 

growth while restoration of GJIC can induce apoptosis and decrease tumor growth. 
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Chapter 1 -  Review of Literature 

1.1.1 Introduction 

Human body is a complex network of cells forming tissues/organs and performing 

specific functions desired at a specific time. The coordinated movements in the body are a 

balancing act to achieve homeostasis. In a multi-cellular organism, homeostasis is 

mechanistically governed by three major communication processes – extracellular-

communication via hormones, growth factors, neurotransmitters and cytokines which trigger 

intracellular-communication via alterations in second messages (e.g., Ca2+, diacylgycerol, pH, 

ceramides, nitric oxide, c-AMP, reactive oxygen species) and activated signal transduction 

systems to modulate intercellular-communication governed by gap junction channels (Figure 

1.1). Cell adhesion and cell-matrix interactions are considered a subclass of intercellular 

communication molecules (Trosko and Ruch, 1998).  
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Figure 1.1  Scheme of the postulated link between extracellular communication and gap 

junctional intercellular communication via various intracellular signal transducing 

mechanisms (second message) mechanisms.  

Diagram illustrates how exogenous nongenotoxic agents can either interfere with, or mimic, 

endogenous extracellular signals. TPA= 12-O-tetradecanoyl-phorbol-13-acetate, DG= 

Diacylglycerol, DDT= Dichlorodiphenyltrichloroethane, P3= Phosphate, c-AMP= Cyclic- 

adenosine monophosphate. 

 

All of these communication processes in a multicellular organism are intimately 

interconnected to maintain its normal development and health. In effect, these communication 

processes must control a cell’s ability to proliferate, differentiate, apoptose and respond 

adaptively. Disruption of any one of these three forms of communication could lead to increased 

or decreased proliferation, abnormal differentiation, increased or decreased apoptosis and 

abnormal adaptive responses of differentiated cells. 

 

1.2 Intercellular communication 

Intercellular communication is governed by linking cells together via intercellular 

junctions (tight, desmosomes, adherens and gap junctions). These junctions are mostly present in 

epithelial cells. Desmosomes and adherens both belong to one class of junctions called anchoring 

junctions.  

 

1.2.1 Tight Junctions  

Cells such as epithelial adhere tightly to each other via junctions present on the cell 

membranes forming a tight seal to provide compartmentalization in the body. Tight junctions are 

one type of specialized intercellular junctional complex which provides a selectively permeable 

barrier to diffusion through intercellular space (Figure 1.2). These junctions tightly regulate the 

diffusion of proteins and macromolecules between the apical and the basolateral surface of the 

cell. Therefore, tight junctions regulate cell polarity, proliferation, and differentiation. The 

junctions consist of transmembrane proteins that mediate direct contact between cells, peripheral 
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membrane proteins that anchor transmembrane proteins to the cytoplasmic proteins (Shin et al., 

2006). The three major transmembrane proteins are occludins, claudins and junctional adhesion 

molecules. Transmembrane proteins associate with peripheral membrane proteins such as zonula 

occludens which anchor to the cytoplasmic proteins such as actin. Tight junctions are mostly 

impermeable to macromolecules but allowing the passage of small molecules such as inorganic 

ions, Ca2+, Na+. However, the permeability to various small molecules varies greatly in different 

tissues. Tight junctions in the epithelium lining the small intestine, for example, are 10,000 times 

more permeable to inorganic ions, such as Na+, than the tight junctions in the epithelium lining 

the urinary bladder. These differences reflect differences in tight junction proteins that form the 

junctions (Alberts, 2002). 

 

A.                                                     B.                                 

 

 

Figure 1.2  Tight junctions. 

A) Tight junctions do not have space in between them thereby allowing selective permeability. 

B) An electron micrograph of tight junctions in T47D human breast cancer cells. 

 

1.2.2 Desmosomes 

Desmosomes are buttonlike junctional complexes which join cell adhesion proteins such 

as cadherins with the intracellular intermediate filaments. Inside the cell, they serve as anchoring 

sites for ropelike intermediate filaments, which form a structural framework of great tensile 
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strength. The particular type of intermediate filaments attached to the desmosomes depends on 

the cell type such as keratin filaments in most epithelial cells and desmin filaments in heart 

muscle cells. The junction has a dense cytoplasmic plaque composed of a complex of 

intracellular anchor proteins (plakoglobin and desmoplakin) that are responsible for connecting 

the cytoskeleton to the transmembrane adhesion proteins (desmoglein and desmocollin) (Alberts, 

2002). Figure 1.3A is a diagram showing the different proteins involved in desmosomes and 

Figure 1.3B shows an electron micrograph of desmosomes in the heart tissue of a mouse.   
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Figure 1.3  Desmosomes. 

A) Diagram showing different proteins involved in forming a desmosome. B) An electron 

micrograph of desmosomes in the heart tissue of a mouse. The main function of desmosomes is 

to hold the plasma membrane of two cells together. 

 

1.2.3 Adherens Junctions 

 Adherens junction is a type of anchoring junctions which anchor cells together through 

their cytoplasmic actin filaments. It occurs in various forms such as small punctate or streak-like 

attachments. But the prototypical examples of adherens junctions occur in epithelia, where they 

often form a continuous adhesion belt (or zonula adherens) just below the tight junctions, 

encircling each of the interacting cells in the sheet. Figure 1.4A shows a diagrammatic view of 

adherens junctions while Figure 1.4B is an electron micrograph of adherens junctions in a heart 

muscle of a mouse. The transmembrane proteins are composed of cadherins, E-cadherins, N-

cadherins, and integrins.  Cadherins, E-cadherins, and N-cadherins are proteins that anchor to 

other cells while integrins function as anchor to extracellular matrix. It plays an important role in 

the morphogenesis of organs, mediating the folding of epithelial cell sheets into tubes and other 

related structures.  
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Figure 1.4  Adherens junctions. 

A) Diagram showing the proteins involved in forming adherens junctions. B) An electron 

micrograph showing adherens junctions in the heart tissue of a mouse. 

 

1.2.4 Gap junctions  

 A gap junction is the only intercellular communication which provides a direct 

connection between the cytoplasmic spaces of the two neighboring cells. It forms a bridge 

between the cells allowing the passage of molecules from one cell to another. Gap junctions play 

an important role in cell growth, differentiation and maintaining homeostasis. My dissertation 

will focus on gap junctions and their significance in our body. 

 

1.3 Gap junctions 
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Gap junctions are transmembrane hydrophilic channels allowing the passage of 

molecules less than 1200 Daltons (Da) between the cells through the intracytoplasmic space.  

 

 

                  

Figure 1.5  Structure of a gap junction.  

The figure shows that two connexons (in blue and red) on different plasma cell membrane 

appose together to form a channel of 1.5 nm diameter. Each connexon is composed of six 

connexin proteins. 

 

Gap junctions are formed when one connexon (a hemichannel consisting of hexameric 

subunits of connexins) of one cell docks with a connexon of an adjacent cell as shown in Figure 

1.5 (Steel, 1998). The passage of small molecules through gap junctions suggests that the 

maximal functional pore size for the channel is about 1.5 nm in diameter in mammalian cells 

(Oyamada, 1998). Small molecules such as cAMP, inositol triphosphate, glucose, and calcium 

ions can pass while large molecules such as proteins or complex sugars cannot pass through the 

gap junctions (Figure 1.6) (Alexander and Goldberg, 2003). Gap junctions are the only 

specialization of the cell membranes which allows the communication between the adjacent cells 

(Dagli and Hernandez-Blazquez, 2007).  

Several hundreds of gap junction channels in the contact regions of the adjacent cells 

forms an aggregation known as gap junctional plaques (Werner, 1998a). Each gap junctional 

plaque consists of a large number of connexons. Bukauskas et al. showed that the formation of 

gap junctional plaques is a prerequisite for the functional gap junctions (Bukauskas et al., 2000). 
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They found that coupling was absent in small plaques but present in larger plaques. Extensive 

analysis of the exchange of a range of small fluorescent dyes injected into cells has become a 

popular technique to establish whether cells are functionally coupled by gap junctions. These 

studies have uncovered charge and size discrimination of the channel within a 0.2 ± 1.0 KDa 

envelope, mainly in HeLa cells expressing recombinant gap junction channels constructed of 

various connexin isoforms (Elfgang et al., 1995; Cao et al., 1998; Nicholson et al., 2000). 

 

1.3.1 Structure of connexin  

Intercellular junctions between the cells have been given different names as nexus, 

macula communicans, and gap junction. But the term gap junctions by Revel and Karnovsky got 

the scientific acceptance despite the contradiction between the function and the morphological 

characteristics it denotes (Revel and Karnovsky, 1967). The name could be justified by the 

revelation of the gap observed between the adjacent plasma membranes by electron microscopy 

(Ogawa, 1993). 
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Figure 1.6  Schematic diagram illustrating the selective trans-junctional properties of gap 

junctions in intercellular communication. 

Gap junction channels can be permeable to – (A) small molecules (B) small molecules with 

elongated shapes or (C) combinations of both molecular shapes. It is also important to note that 

the charge of the trans-junctional molecule also governs permeability characteristics. Gap 

junctions are typically not permeable to molecules exceeding 1 KDa (purple) (Laird, 2006). 

 

In 1967, Revel and Karnovsky identified that the cross-sectional profile of gap junctions 

is displayed as two plasma membranes separated by an intercellular gap, observed by infiltration 

of lanthanum or horseradish peroxidase between the gap (Revel and Karnovsky, 1967). Freeze- 

fracture replication and negative staining further showed that gap junctions are patchy arrays of 

closely packed membrane channels in a hexagonal or polygonal matrix forms. An exact analysis 

of the structure of gap junction channels was identified through in vitro isolation from the liver 

by sucrose gradient centrifugation and subsequent detergent treatment (Dermietzel et al., 1990). 

X-ray diffraction experiments performed on the isolated gap junctions suggest that the portion of 

gap junction channel contributed by each connexon is composed of six subunits, connexins (Cx), 

together possessing a hexameric structure (Goodenough, 1976). The amino acids derived from 

the cloned cDNAs helped in predicting the structure of connexins (Hertzberg, 2000). Each 

connexin consists of four hydrophobic transmembranes and two extracellular and three 

cytoplasmic loops (Figure 1.7). The N and C termini face the cytoplasmic side of the cell while 

the extracellular side contains two extracelluar loops (Sosinsky, 1996). The most conserved 

regions in the connexin are localized to the extracellular loops followed by less conserved region 

of four membrane-spanning domains and carboxy-terminus, amino-terminus and cytoplasmic 

loops exhibit variable region. Connexins differ markedly from each other in sequence and length 

mainly based on their carboxy termini and the cytoplasmic loop (Hertzberg, 2000). 
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Figure 1.7  Connexin structure.  

The cylinders represent transmembrane domains (M1-M4). The loops between the first and 

second, as well as the third and fourth, transmembrane domains are predicted to be extracellular 

(E1 and E2, respectively). The carboxy-terminus has many phosphorylation sites (Korkiamaki, 

2002). 

 

1.3.2 Nomenclature of connexins  

The diverse and ubiquitous distribution of gap junctions is possible due to the fact that 

the connexin family consists of 20 members in the mouse and 21 members in humans (Laird, 

2006). However, connexins are highly related (50-80%) to each other, differing in the 

cytoplasmic portion sequences (Goodenough et al., 1996). They have molecular masses between 

25 and 62 KDa; thus the size of each connexin is used for the nomenclature of the proteins 

(Evans et al., 2006). In some instances, a prefix including the species name is added while 

describing the protein. For example, the most abundant and prominent connexin in rat heart is a 

43,036 Da protein, hence called rat Cx43. The finding that two or more connexins have the same 

molecular mass has lead to a decimal point to distinguish them, for example mouse Cx30.3 or 

mouse Cx31.1 (Saez et al., 2003). Another nomenclature is also used to describe connexins also; 

however, less commonly used. This nomenclature is based on the degree of relatedness of 

different connexins. The analysis for the sequence relation and phylogeny of connexin 
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polypeptide sequences categorize connexins into two groups: α and, β. The α group includes 

Cx33, Cx37, Cx38, Cx40, Cx43, Cx45, Cx46, Cx50, and Cx56 while β comprises Cx26, Cx30, 

Cx30.3, Cx31.1, and Cx32 (Kumar and Gilula, 1992; Hertzberg, 2000).  
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Figure 1.8  (A) Immunofluorescence of Cx46 in a mouse heart tissue. (B) DAB staining of 

Cx43 in a mouse heart tissue (C) Electron Microscopic view of gap junctions in a mouse 

heart tissue. (D) Immunogold labeling of Cx43 in a mouse heart tissue (70,000 X). 

 

The function of gap junctions in cell is of utmost importance because of their presence in 

nearly every mammalian cell type. Gap junctions appear as plaques of varying size, as these unit 

channels accrete laterally in the plasma membrane and have been studied by electron microscopy 

of immunogold labelled freeze-fracture replicas (Rash and Yasumura, 1999), by 

immunocytochemistry (Dupont et al., 2001) and by fluorescently tagged connexins (Bukauskas 

et al., 2000; Falk, 2000; Rutz and Hulser, 2001). Figure 1.8 shows the expression of Cx46 and 

Cx43 in mouse heart tissue by different methods.  

 

1.3.3 Tissue specific expression of connexins  

Gap junctions are found in very primitive invertebrates like hydra, jellyfish and similar 

structures known as plasmodesmata are found in plants (Trosko and Ruch, 1998). In vertebrates, 

gap junctions are found in all cell types except red blood cells, platelets, spermatozoa, and 

skeletal muscle fibres. Nevertheless, gap junctions are present in the progenitors of these cell 

types (Rosendaal et al., 1994; Constantin et al., 1997; Proulx et al., 1997; Mok et al., 1999). 

Moreover, it has been observed that different connexins are present in different tissues. Most 

cells express two or more connexins (Saez et al., 2003). Presence of different connexins in 

different tissues suggests specific roles of different connexins. For example, keratinocytes 

express at least Cx26, Cx30, Cx30.3, Cx31, Cx31.1, and Cx43. Cardiomyocytes express Cx43, 

Cx40, and Cx45 and hepatocytes express Cx26 and Cx32 (Table 1.1) (Laird, 2006). Collectively, 

co-expression of multiple connexin family members within the same cell type allows for possible 

compensatory mechanisms to overcome the loss or mutation of one connexin family member 

(Laird, 2006). Different connexins do show selective permeability. Cx26 has been shown to form 

smaller pore size gap junction channels than Cx32. Cx43 gap junctions were shown to readily 

pass lucifer yellow dye than Cx45 gap junctions (Steinberg et al., 1994). Cx43 appears to be the 

most predominant connexin in terms of the number of tissues expressing it and the concentration 
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present in tissues (Hertzberg, 2000). Cx43 mRNA is particularly abundant in heart, relatively 

lower in mammary gland, ovary, lens epithelium, kidney, and uterus (Hertzberg, 2000).  

 

1.3.4 Factors regulating gap junctions  

Gap junctional intercellular communication (GJIC) is regulated at many levels, ranging 

from gene regulation, gap junction assembly formation, gating at the plasma membrane and gap 

junction degradation. Two major kinetic courses of GJIC control have been discussed − fast 

control (millisecond range) and the long term control (hour range).  
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Table 1.1  Representative tissues and cell types where mouse connexin family members are found. 
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The half life of connexins is very short ranging from 1.5-2 hours. The fast control is 

referred to as gating which is affected by many factors like H+, Ca2+, pH, and phosphorylation. 

Among these actions, phosphorylation at the carboxy termini has been widely studied. 

Phosphorylation of the N-terminal region of connexins that is cytoplasmically located is not 

reported (Lampe and Lau, 2000). Most connexin family members are phosphoproteins, except 

Cx26. Several kinases are known to target connexin proteins, including MAPK (Mitogen-

activated protein kinase), PKC (Protein kinase C), PKA (Protein kinase A), and CK1 (Casein 

kinase 1). Connexin phosphorylation has been implicated in the regulation of intercellular 

communication through a number of mechanisms, including connexin biosynthesis, trafficking, 

assembly, membrane insertion, channel gating, internalization and degradation. Cx43 has been 

the most studied connexin in terms of modification by many kinases (Saez et al., 2003). The 

different phosphorylation sites identified on the carboxyl terminus are: Ser-368 and Ser-372 

phosphorylated by PKC; and Ser-255, Ser-279, and Ser-282 phosphorylated by MAPK (Figure 

1.9). Many studies describe the changes in the state of phosphorylation of Cx43 by PKC-

dependent pathways. Ser-368 of Cx43 appears to be an important site since mutation of Ser-368 

partially prevents the cellular uncoupling induced by phosphorylation caused by PKC in the 

presence of phorbol ester (TPA) (Liu and Johnson, 1999; Lampe et al., 2000). The closure of gap 

junctions is either induced by cell trauma (sudden drop in pH, increase in Ca2+ level or decrease 

in the voltage) or physiological regulators like phosphorylation (Werner, 1998b).  
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Figure 1.9  Cx43 binding proteins. 

Protein kinases known to phosphorylate Cx43 are shown along the top of a schematic diagram of 

gap junction plaque. A number of scaffolding proteins and proteins of unknown function that 

have been shown to bind directly or indirectly to Cx43 are shown along the bottom of the gap 

junction plaque. It is important to note that it is not necessarily expected that all proteins shown 

here bind to Cx43 while it is a resident of the gap junction plaque. MAPK; CIP85, Cx43-

interacting protein of 85 KDa (Laird, 2006). 
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1.3.5 Functional assays to measure gap junctions 

Studies to assess the functionality of gap junctions can be divided into two groups: 

A) Measurement of dye transfer 

B) Measurement of metabolic cooperation and electrical conductance 

 

A) Measurement of dye transfer  

 

Dye transfer involves measuring the movement of nontoxic dyes from one cell to another. 

Molecules should be small enough in the range of < 1 KDa to cross through the gap junctions. 

The techniques to measure dye transfer are: 

 

Microinjection: Microinjection of non-permeable, nontoxic tracers has been the first technique 

used to identify cell-cell communication (Abbaci et al., 2008). Individual cells are injected with 

a fluorescent dye in a micropipette having a diameter of 0.2 µ, using appropriate pressure. Since 

the onset and duration of the tracer is well controlled, kinetic studies can be performed showing 

the rate of transfer of the tracer from one cell to another (Bruzzone, 1999). Lucifer yellow is the 

most widely used fluorescent dye for this technique, after replacing fluoroscein as it was shown 

to cross nonjunctional membranes.  

Advantages: It allows selective loading of tracer molecule which permits correlation of 

the morphological and functional data from an individual cell. The onset and the duration of the 

tracer injection can be accurately controlled, allowing the measurement of dye transfer from one 

cell to another.  

Limitations: It requires a special instrument to inject the tracer in an individual cell 

without damaging the cell. Also, this technique is not useful if the tracer is going to be injected in 

many cells at one time. Results obtained by this method vary with the investigator’s experience 

in impaling cells without causing too much damage and discriminating stained from unstained 

(autofluorescent) cells. 

 

Scrape Load/Dye Transfer (SL/DT): Scrape load dye transfer is a very simple technique in 

which monolayers of adherent cells are scraped in the presence of a membrane-permeable dye, 

which becomes incorporated into the cells at the line of cut by mechanical perturbation of the 
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cell membrane. The distance at which the fluorescent dye diffuses during a certain period away 

from the scrape line is indicative of GJIC. Lucifer yellow (MW=443 Da), diameter of 0.5-0.7 nm 

is the most commonly used dye for SL/DT. Rhodamine dextran with a molecular weight of 

10,000 Da is used as a control. 

Advantages: This technique does not require any special equipment. It allows the 

measurement of GJIC in a large number of cells. It is a fast and a simple technique, relatively 

short period from the time of preparation to obtaining the results. 

Limitations: The technique is hardly adequate to investigate small cells or cell assemblies 

(such as pairs), as well as low density cultures. It is also complicated when the extent of 

junctional coupling is small or when selected cells have to be individually screened for coupling. 

This technique is not well suited to three-dimensional systems because this invasive method may 

introduce uncertainities in quantifying dye transfer rates due to variations in cell-staining 

intensity after scrape loading (Dakin et al., 2005).  

 

Electroporation: This technique was introduced by Raptis et al. proposing the introduction of a 

non-permeable dye into the adherent cells on a partly conductive slide (Raptis et al., 1994). Cells 

are grown on a glass slide, half of which is coated with electrically conductive, optically 

transparent, indium-tin oxide. An electric current which opens the pores is applied on the 

conductive side of the slide in the presence of Lucifer yellow. The transfer of the dye to the cells 

on the non-conductive side is measured. 

Advantages: The gap junctional permeable dye, Lucifer yellow, can enter into large 

number of cells with minimal disturbance to the cellular metabolism. It is a satisfactory method 

for loading a narrow longitudinal strip of cells for subsequent studies on the temporal and spatial 

spread of fluorescent dyes via gap junctions. 

Limitations: This technique cannot be used for non-adherent cells. If cells are grown to 

high confluency, chances of cells getting detached from the slide when electrode is removed are 

higher.  

 

Gap-FRAP (Fluorescence recovery after photobleaching): Fluorescent molecules in a small 

region of the cell are irreversibly photobleached using a high-powered laser beam, and 

subsequent movement of surrounding nonbleached fluorescent molecules into the photobleached 
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area is recorded at low power laser over time (Lippincott-Schwartz et al., 2001). FRAP data 

requires that the bleach event is much shorter than the recovery time and preferably as short as 

possible (Lippincott-Schwartz et al., 2003).  

 Advantages: It is a non-invasive technique compared to microinjection and SL/DT. 

Therefore, the risk of cell injury is minimal to negligible. It enables to quantify and compare 

GJIC capacity between characterized cell types. Kinetic curves can be established to precisely 

measure the functionality of GJIC (Abbaci et al., 2008).  

 Limitations: The gap-FRAP technique requires a laser beam coupled with an 

epifluorescence microscope or, commonly, a confocal laser-scanning microscope, all of which 

are sophisticated and expensive instruments. To avoid photochemical and/or thermal cell injury, 

a highly sensitive light detector should be used; the minimization of illumination thereby reduces 

the amount of energy absorbed by the specimen (Abbaci et al., 2008). 

 

Preload assay or Parachute assay: This method consists of preloading cells with a gap 

junctional-permeable dye, such as calcein-AM (green dye), and then letting suspended loaded 

and unloaded cells form a confluent monolayer together. As suspended loaded cells are added to 

the monolayer, the parachute assay requires formation of gap junction channels in order to 

measure subsequent intercellular communication. Depending on the cells and the technique used, 

the loaded cells/donor cells form gap junctions in 15 min-3 hr with the recipient cells (Goldberg 

et al., 1995; Ziambaras et al., 1998). To distinguish recipient cells from the donor cells after the 

passage of calcein-AM, the recipient cells can be labeled with other non-gap junctional dye 

(Vybrant-DiD, red dye). Therefore, the recipient cells will be having both green and red dye. 

 Advantages: The parachute technique is a non-invasive method since the integrity of the 

cells is maintained. Flow cytometry enables simultaneous analysis of a large number of cells (at 

least 104 cells) (Jongen et al., 1991). It ensures objectivity and statistically reliable data. 

 Limitations: This method is not applicable to the vast majority of adherent cell types in 

culture (Meda, 2001). By flow cytometry, nonspecific dye transfer of calcein has been observed 

in many studies (Koval et al., 1995; Fonseca et al., 2004). The preloading assay is also a time-

consuming method that is influenced by the section studied (cells in different areas of the dish 

can behave differently), the resolution, and sensitivity of the microscope equipment (Czyz et al., 

2000). 
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B) Measurement of metabolic cooperation and electrical conductance 

 

Many molecules, exchanging in vivo by coupled cells, have various dimensions and 

charges and hence may be restricted or facilitated in their passage through gap junction channels, 

depending on the type of connexins (Koval et al., 1995; Meda, 2001). Some investigators have 

examined the transfer of endogenous compounds by metabolic cooperation (Larson and 

Sheridan, 1985; Saez et al., 1989; Charles et al., 1992). 

 

Metabolic cooperation by radiolabel nucleotides: A population of donor cells is incubated in 

the presence of an excess of a radiolabeled precursor (typically uridine) and then co-cultured 

with unlabeled recipient cells. Under such conditions, quantitative autoradiography enables 

evaluation of the transfer of the resulting metabolites from loaded to unloaded cells as a function 

of time. In this type of experiment, coupling is demonstrated by the autoradiographic labeling of 

the cytoplasm of recipient cells due to the incorporation in their ribonucleic acid of radiolabeled 

nucleotide synthesized within donor cells and transferred across gap junction channels (Meda, 

2001).  

Advantages: Direct transfer of radioactive nucleotides allows the evaluation of the 

permeability of gap junction channels in a highly sensitive way. Contrary to the synthetic dyes, 

radioactive nucleotides can better represent the transfer of biological molecules across the cell 

membrane.  

Limitations: The measurement of labeled nucleotides and nucleic acids from a damaged 

donor cell to the recipient cell could be possible. Safety must be rigorously practiced especially 

dealing with aerosol particles produced during cell sorting procedures, incubation and metabolic 

labeling. 

 

Measuring electrical conductance by dual patch clamp technique: The dual patch clamp 

technique is a powerful method for quantitative determination of junctional conductance (Van 

Rijen, 2001). A freshly made glass pipette with a tip diameter of only a few µm is pressed gently 

on the cell membrane to form a gigaseal. The membrane breaks when the suction is applied 

leading to the mixing of the cytoplasm and pipette solution. Currently, the most widely used 
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dual-voltage clamp method is the double whole-cell voltage clamp with one suction pipette on 

each cell of a cell pair (Wilders and Jongsma, 1992). The method consists of separately 

controlling the membrane potential of each cell and measuring the corresponding currents.  

Advantages: This method is the most sensitive technique to detect functional gap 

junctions: a single gap junction channel can be recorded, in contrast to dye transfer. This is the 

most common method to assay the electrical properties of gap junctions. The technique has been 

used to study ionic permeability and selectivity of gap junction channels. Measurements of 

electrical conductance between cells can be used to determine the number of gap junction 

channels that are open within a given period of time (Alexander and Goldberg, 2003).  

Limitations: Analysis of electrical conductance is a slow, labor-intensive, and expensive 

technique. Obtaining reliable and reproducible measurements of junctional ionic permeability 

can be difficult since the integrity of coupled cells can be disrupted due to the change of internal 

ionic environment.  

 

1.4 Breast Cancer 

 

1.4.1 Breast cancer and factors affecting breast cancer  

More than 80-95% cases of breast cancer are ductal whereas 8% cases are lobular. Both 

these types of breast cancers are invasive. Invasive or infiltrating breast cancer also includes 

another type of breast cancer – inflammatory breast cancer. For 2007, the estimates by American 

Cancer Society are that 178,480 women in the United States will be diagnosed of invasive breast 

cancer while an additional 62,030 women will be diagnosed with ductal carcinoma in situ 

(DCIS). For 2008, the estimated US breast cancer cases by American Cancer Society was 

179,920 while deaths caused by breast cancer was 40,729. 

The three most significant risk factors for breast cancer are – being a woman (male breast 

cancer occurs at 1% the rate of female breast cancers), age and hereditary susceptibility. 

Hormonal stimulation (estrogen and progesterone) of the breast tissue co-relates with being a 

woman, long exposure to exogenous carcinogens co-relates with living, and mutations in the 

genes corresponds to the hereditary susceptibility. These three risk factors are integrated in life 
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process that cannot be controlled. The other risk factors include – early menarche, late 

menopause, nulliparity, postmenopausal obesity, environmental pollutants and hormone 

replacement therapy. Protective factors are the factors which help in reducing the risk of getting 

breast cancer. These include – decreasing the lifetime exposure to estrogen (prolonged lactation, 

ovariectomy, and exercise), maintaining a healthy lifestyle by avoiding intake of alcohol, eating 

a low-fat diet. Hereditary factors include mutations in the two breast cancer genes – BRCA1 and 

BRCA2, accounting for less than 10% of the breast cancer cases (Gray, 2009). Women with an 

inherited mutation in BRCA1 and BRCA2 have 60-82% chance in getting breast cancer in the 

lifetime (King et al., 2003). This suggests that even beyond the identified mutations, there are 

other factors like lifestyle and environment which affect the development of breast cancer. For 

example, female BRCA1 carriers born after 1940 have nearly twice as much breast cancer by 

ages 40 and 50 as those born earlier (King et al., 2003). In a large twin study conducted, 

inherited genes were found to contribute 27%, shared environmental factors 6%, and non-shared 

environmental factors 67% of the breast cancer risk (Lichtenstein et al., 2000).  

Hormonal factors accounts for a quarter of breast cancer cases (Seidman et al., 1982). 

Clearly, being a woman as one of the risk factors points to the steroid hormones circulating in a 

female body. Estrogen and progesterone are the two major steroid hormones in a female 

endocrine system. These hormones are required for the normal development of the female body; 

however, the action of estrogen in breast tissue is quite varied. The most studied mode of action 

is mediated through the interaction with the estrogen receptor α (ERα). ERα is a nuclear receptor 

localized inside the nucleus of certain type of cells (endometrial, breast). Upon binding of 

estradiol or estradiol-like molecules, there is a change in the structure of ERα leading to either 

homo or hetero- dimerization of the receptor. The ER-complex binds to estrogen-responsive 

elements in the regions of DNA which regulate the expression of a range of proteins that 

collectively promote the growth of mammary epithelium. Among the downstream mediators of 

estrogen action are epidermal growth factor (EGF), its ligand amphiregulin, transforming growth 

factor α and β (TGF-α and β), platelet derived growth factor (PDGF), and the insulin-like growth 

factors (IGF-I and IGF-II).  
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1.4.2 Role of environmental pollutants in breast cancer 

One of the risk factors for breast cancer is exposure to environmental chemicals with 

endocrine property. An estimated 80,000 synthetic chemicals are used today in the United States, 

and another 1,000 or more are added each year (Seidman et al., 1982). Yet complete 

toxicological screening data are available for just 7% of these chemicals and more than 90% 

have never been tested for their effects on human health (Devesa et al., 1995). Mammary gland 

is largely composed of adipose tissue; therefore, lipophilic compounds are under frequent 

investigation as these can get accumulated in the breast tissue for years (Warshawsky, 2006). A 

list of chemicals has been registered by the International Agency for Research on Cancer (IARC) 

as carcinogens and has also received ratings by regulatory agencies regarding induction of 

human breast and animal mammary tumors. Some of the chemicals included in the list are 

bisphenol A, polyaromatic hydrocarbons, tobacco smoke, dioxins, alkylphenols, metals, 

phthalates, parabens, pesticides such as dieldrin, aldrin, atrazine, benzene, polyvinyl chloride, 

1,3-butadiene, ethylene oxide and aromatic amines (Gray, 2008). Some of these chemicals are 

found in maternal blood, placental tissue, breast milk samples from pregnant women, and 

mothers who have recently given birth, indicating that maternal burdens of environmental 

contaminants are being passed on to their young during pregnancy and breastfeeding (Van der 

Ven et al., 1992; Anderson and Wolff, 2000; Chen et al., 2006; Shen et al., 2007). 

A wide variety of chemicals including plastic additives, industrial solvents, pesticides, 

herbicides, and chemical byproducts of combustion or industrial manufacturing processes, can 

mimic or alter the activities of the natural hormones, especially the estrogens. The xenoestrogens 

are members of a larger class of synthetic chemicals known as endocrine disruptors. Endocrine 

disruptors mimic or disturb the activity of a much wider group of hormones, including the 

androgens, adrenal hormones, and thyroid hormones. The term “endocrine disruptor” is used to 

reflect compounds that affect the endocrine system (Gray, 2009). Few examples of endocrine 

disruptors are dioxin and dioxin like compounds, organochlorine compounds such as DDT, 

diethylstilbesterol (DES), polychlorinated biphenyl (PCBs), and some other pesticides. Some 

chemicals, particularly pesticides and plasticizers, such as Bisphenol A are suspected endocrine 

disruptors based on animal studies (Sciences, 2007). 
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1.4.3 TCDD and cancer  

2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD, also known as dioxin) is an aryl 

hydrocarbon receptor agonist. TCDD was first listed in the Second Annual Report on 

Carcinogens as reasonably anticipated to be a human carcinogen in 1981 which later on in 2001 

was supported by both epidemiological and mechanistic studies indicating causal relationship 

between TCDD and human cancer. TCDD is very persistent in the environment, but it can be 

slowly degraded by sunlight (ATSDR, 1998; HSDB, 2003). It has a half-life of 5.8 to 11.3 years 

in humans (Olson, 1994); therefore, TCDD accumulates in human tissue at a higher rate when 

compared to most experimental animals following chronic low-dose exposure. Polychlorinated 

dibenzo-p-dioxins (CDDs), including TCDD, are inadvertently produced by paper and pulp 

bleaching, by incineration of municipal, toxic, and hospital wastes, in PCB-filled electrical 

transformer fires, in smelters, and during production of chlorophenoxy herbicides (Silkworth, 

1996; Schecter, 1997; Schecter et al., 1997). The greatest unintentional production of CDDs 

occurs from waste incineration, metal production, and fossil fuel and wood combustion 

(ATSDR, 1998). World Health Organization (WHO), National Institute for Occupational Safety 

and Health (NIOSH), and the U.S. Environmental Protection Agency (EPA) concluded that 

dioxin increases the risk for all cancers (ATSDR, 1998). However, the mechanism by which 

TCDD can promote cancer is unclear.  

 

1.4.4 TCDD and gap junctions  

The abilities to stimulate cellular proliferation and inhibit GJIC and apoptosis are thought 

to be essential properties of promoters (Koblyakov, 1998). The ability of the initial non-

metabolized polyaromatic hydrocarbon molecule to stimulate cell proliferation and to inhibit 

GJIC provides evidence to consider that polyaromatic hydrocarbon mediate the promotion stage 

in the initial form during carcinogenesis induced by this group of compounds (Sharovskaja et al., 

2004). In the present study, we examined the effect of TCDD on gap junctions in human breast 

cancer cells (MCF-7) and human mammary epithelial cells (HMEC). Our research sheds light on 

the mechanism of action of TCDD on GJIC in human breast tissue via cell model system. 
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1.5 Cancer and Gap Junctions 

 

1.5.1 Gap junction in human mammary gland  

Gap junctions are present in all cell types of vertebrates, except few dynamic cells  

(spermatozoa, red blood cells, platelets) and mature skeletal muscle fibers (Abrams et al., 2003). 

Out of the various organs, heart and mammary gland, have been studied in greater depth for gap 

junctions. Cx43 has been shown to be widely present in heart and mammary gland. The 

mammary gland undergoes growth, development and differentiation at many stages of life. 

Therefore, it requires a precise intercellular communication for its proper development and 

differentiation. One such communication is gap junction. So far, the human mammary gland has 

been shown to express only Cx43 and Cx26. The basal myoepithelial cells are consisted of Cx43 

while luminal epithelial cells express Cx26 and Cx43 (McLachlan et al., 2007). Studies have 

speculated that in the resting human mammary gland Cx43 is required to maintain myoepithelial 

differentiation and more variable Cx26 presence could have a dynamic role in luminal cell 

proliferation (Lee et al., 1992).  

 

1.5.2 Aberrant gap junctions and cancer  

Pioneering studies by Lowenstein and Kanno in 1966 suggested that cancer cells have 

decreased cellular communication than normal cell confirmed by junctional membrane resistance 

(Loewenstein, 1966). The lack of gap junctional intercellular communication in cancer could be 

due to two main reasons – the lack of expression of connexin genes or the aberrant localization 

of connexin proteins. The lack of expression of genes could be due to lack of transcription 

caused by hypermethylation of the CpG islands. The downregulation of Cx32 gene expression by 

hypermethylation of the CpG island of the Cx32 gene has been observed in human renal 

carcinoma cell line and human renal carcinomas (Yano et al., 2004). 

 

1.5.3 Gap junctions in breast tumors  

Cancer is a complex and evolving disease with the formation of defects at multiple 

genetic steps in a cell. Cancer was the first pathology associated with the defects in gap 
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junctions. In 1966, Lowenstein and Kanno associated GJIC with cell growth control 

(Loewenstein, 1966). They observed a decrease in electrical coupling in rat hepatomas compared 

to normal liver cells. A series of molecular mechanism showed that cancer phenotype is related 

to loss of coupling (Cronier et al., 2009). Since the most obvious observation in tumor cells 

phenotype is deregulated growth, the assumption of all the studies is that gap junctions are 

involved in cell growth control (Mesnil, 2002). Recently, gap junction deficiency has been 

defined from either lack of gap junctional plaques observed by ultrastructure approaches 

(electron microscopy and freeze-fracture) or by decrease in GJIC (Mesnil et al., 2005). It is a 

debatable question that how far connexins are from the primary insult and whether they play a 

key role in carcinogenesis or simply is it a secondary effect to cancer (McLachlan et al., 2007). 

 Deficiency of Cx43 gap junction can be used as an independent marker for breast tumors 

(Laird et al., 1999). Early studies showed downregulation of Cx26 and Cx43 in the primary cells 

derived from human breast tumor (Lee et al., 1992), rat mammary tumors (Laird et al., 1999), 

and breast cancer cell lines ((Laird et al., 1999; Singal et al., 2000). Since, the promoter of Cx26 

is located within a CpG island, it is speculated that the methylation of these sites could lead to 

the repression of the gene (McLachlan et al., 2007). Investigational studies by Singal et al. found 

hypermethylation of Cx26; however, inhibition of a DNA methyltransferase did not induce the 

expression of the gene (Singal et al., 2000). On the contrary, Tan et al. found that only one in 

eight breast cancer cell lines tested was hypermethylated in the Cx26 promoter region but that, in 

this case, it correlated with a complete loss of mRNA that was recovered after treatment with a 

DNA methyltransferase inhibitor (Tan et al., 2002). Furthermore, the Cx26 promoter was found 

to be methylated in >50% of patient tissue samples tested, albeit heterogeneously. These 

conflicting results suggest that Cx26 may indeed be a tumor suppressor that is inactivated by 

methylation, but this is likely not the only mechanism to downregulate expression (McLachlan et 

al., 2007). Upregulation of phosphorylated forms of Cx43 was observed in both myoepithelial 

cells and transformed luminal cells of in situ carcinomas and all cells of invasive breast 

carcinomas (Gould et al., 2005). Connexins are mostly present on the cell membrane but in some 

tumors despite an increase in connexins, they are typically retained in the intracellular 

compartments. Kanczuga-Koda et al. report that the level of Cx43 expression, which was 

cytoplasmic in 90% of the tumors, was positively correlated with advanced histological grade of 

the tumor (Kanczuga-Koda et al., 2005). 
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1.5.4 Effect of restoration of gap junctions on cancer  

Connexins were described as class II tumor suppressor because the genes encoding 

connexin protein is not mutated but the protein expression is affected (Lee et al., 1992). 

Specifically, Cx26 was first deemed as a tumor suppressor in 1991. Mehta et al. showed that the 

transfection of a gene for Cx43 protein in mouse transformed 10T1/2 cells having low GJIC 

leads to a decrease in the cell growth, reduced saturation density and focus formation 

suppression (Mehta et al., 1991). Transformed dog kidney epithelial cells after transfection with 

Cx43 showed restored GJIC, became flatter in cell morphological appearance, decreased 

expression of cell cycle-regulatory genes such as cyclin A, D1, D2, and cyclin D kinase 5 and 6 

(Chen et al., 1995). Transfection of C6 glioma cells with Cx43 (Zhu et al., 1991) and of human 

hepatoma cell line SKHep1 with Cx32 (Eghbali et al., 1991) provides preliminary evidence that 

the growth of transfectants and tumors in nude mice decreases. HUVEC endothelial cells were 

transfected with Cx37 showed increased GJIC and increase in apoptosis measured by caspase 

assay and DNA fragmentation. Many studies have also shown a decrease in cell or tumor growth 

in the presence of Cx43 despite forming GJIC (Koffler et al., 2000; Qin et al., 2002). 

Transfection of Cx26 and not Cx32 in HepG2 cells caused an increase in dye transfer, decrease 

in the saturation density and tumor growth. HepG2 cells also showed a change in the 

morphological appearance of the cells from multilayer to monolayer formation (Yano et al., 

2001). In another study, transfection of MDA-435C cell line with either hCx43 or hCx26 gene 

caused a restoration in GJIC, decrease cell growth and smaller size tumor formation in mice 

(Hirschi et al., 1996). All these studies suggest a potential role of connexin genes as tumor 

suppressors.  

 

1.5.5 Design and synthesis of quinolines  

In search of new activators that enhance GJIC, we collaborated with Dr. Duy H. Hua in 

the Department of Chemistry at Kansas State University who examined the potential interactions 

of a number of substituted quinolines (code name PQs) with the partial crystal structure of 

connexon (Makowski et al., 1977; Foote et al., 1998; Fleishman et al., 2006) using Autodock 
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computational docking software (Goodsell and Olson, 1990; Morris et al., 1996; Morris, 1998). 

Scientists in Dr. Hua’s lab observed binding of PQs to the inert pore of the hexameric 

hemichannel of gap junctions. The connexon structure was constructed by using electron 

cryomicroscopy to derive a three dimensional density map at 5.7 Å in plane and 19.8 Å vertical 

resolution, and analysis of evolutionary conservation and compensatory mutations in connexin 

evolution to identify the packing interfaces between the helices (Fleishman et al., 2006). In one 

of the minimum energy (-0.7 kcal/mol) bound structures, interactions (closed contact) between 

CF3 group of PQ1 and NH of Leu144 of connexin (2.5 Å), OCH3 group of PQ1 and CH2 of 

Phe81 of connexin (2.0 Å), and NH3 + of PQ1 and –O2CGlu146 of connexin are found. 

Consequently, they synthesized this class of quinolines and studied their GJIC and anticancer 

activities (Gakhar, 2008). Since PQ1 (one of the substituted quinolines) is predicted to have a 

high binding affinity for connexin via computational docking (Figure 1.10), we tested PQ1 and 

its synthetic precursors effect on the GJIC in T47D breast cancer cells. 

 

 

Figure 1.10  Docking of PQ1 with connexin. 

Six connexins form a connexon. The figure illustrates docking of PQ1 (pink) with the connexin 

protein. The computational docking software docks the PQ1 based on the lowest energy levels. 

The diagram hypothetically depicts one PQ1 molecule binding to the connexin protein; however, 
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it is not feasible to know how many PQ1 molecules can bind to the connexin protein based on 

the docking software. 

1.6 Treatment 

 

1.6.1 Tamoxifen treatment studies for breast cancer 

Tamoxifen is a nonsteroidal triphenylethylene derivative which competitively blocks the 

binding of estrogen to the estrogen receptor, thus considered to be an antiestrogen. Studies were 

conducted to test the efficacy of tamoxifen against breast cancer. A small randomized clinical 

trial of 3 years of tamoxifen versus no treatment demonstrated a survival advantage for ER+ 

patients who received tamoxifen (Delozier et al., 1986). In 1977, a pilot study was conducted to 

determine whether patients could tolerate 5 years of adjuvant therapy and whether metabolic 

tolerance would occur during long-term use of tamoxifen. No unusual side effects were observed 

and blood levels of tamoxifen and its metabolites remained stable (Tormey, 1984; Tormey, 

1987). In 1987, a Scottish trial showed an increase in survival rate of recurrent patients for breast 

cancer receiving tamoxifen treatment compared to controls. A 10-year study conducted by 

Nolvadex Adujvant Trial Organization (NATO) found a significant effect of 2 years of 

tamoxifen treatment on the disease free survival rate in patients with early breast cancer (Jordan, 

1994). From 1992-1997, the National Breast and Bowel Project (NSABP) randomized 13,388 

women into the Breast Cancer Prevention Trial (NSABP BCPT; P-1) who were at increased risk 

of breast cancer to either tamoxifen or placebo. The study showed a 49% reduction in overall 

invasive breast cancer risk and a 50% reduction in non-invasive breast cancer risk in women who 

received tamoxifen (Rashid, 2006). In 1998, tamoxifen was approved as a chemoprevention drug 

for breast cancer by the Food and Drug Administration (FDA), after NCI released the results of 

the Breast Cancer Prevention Trial (BCPT), a 6-year study of the drug. In BCPT, tamoxifen was 

found to reduce the incidence of breast cancer by 49 percent. Based on that study, FDA approved 

the drug for women at high risk of developing invasive breast cancer. High risk was defined as 

women of age 35 and older who have a 5-year risk of at least 1.67% (NCI, 2003).  

Tamoxifen was introduced as an antiestrogen and hence, it was used against breast cancer 

as estrogen potentiates breast cancer. But later studies were conducted to find if tamoxifen 
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affects pathways other than mediated through prevention of estrogen binding with estrogen-

responsive elements. Clinical response in breast cancer patients receiving tamoxifen daily for at 

least 3 months showed increased apoptosis and decreased proliferation using surrogate markers 

of apoptosis (Bcl-2) and mitosis (Ki-S1) (Keen et al., 1997; Cameron et al., 2000) Zhang and 

Shapiro found that tamoxifen induces apoptosis in MCF-7 cells by regulating p38 mitogen 

activated protein kinase (MAPK) (Zhang and Shapiro, 2000). These studies suggest that 

tamoxifen might be exerting effect on many proapoptotic pathways besides being an 

antiestrogen. 

 

1.6.2 Side effects of Tamoxifen  

In the breast, the antitumor effects of tamoxifen are due to ER antagonist activity, 

competitively blocking the binding of estrogen to ERs. Estrogen deprivation due to tamoxifen 

can also lead to unwanted side effects (Perez, 2007). Endometrial cancer risk was associated with 

tamoxifen therapy for breast cancer (odds ratio = 1.52; 95% confidence interval [CI] = 1.07-

2.17). Women with more than 5 years of exposure to tamoxifen had 4.06-fold greater odds of 

developing endometrial cancer than nonusers (95% CI = 1.74-9.47). Risk associated with 

tamoxifen use was stronger among heavier women than among thinner women, although trends 

did not differ statistically (P = .10) (Bernstein et al., 1999). A case-control study done at 

Netherlands found that the median time between the diagnoses of breast cancer and endometrial 

cancer was 34 (5-201) months and the relative risk of endometrial cancer for women who had 

ever been treated with tamoxifen compared with those who had not was 1.3 (Van Leeuwen et al., 

1994). Patients treated with tamoxifen experience hot flashes, night sweats, vaginal discharge, 

vaginal bleeding, gall stone formation (Day R, 1999; Day, 2001; Day et al., 2001; Vogel et al., 

2006). In premenopausal women, tamoxifen may result in bone loss. In a British study of 

tamoxifen on bone mineral density (BMD), it was found that BMD of premenopausal women 

decreased progressively in lumbar spine (p< .001) and in hip (p< .05) for women on tamoxifen 

compared to the placebo group (O'Regan et al., 2002). These more severe side effects contribute 

to the adverse risk: benefit profile associated with longer-term tamoxifen use, which limits 

adjuvant tamoxifen to 5 years (Fisher et al., 1996). 
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1.6.3 Combinational studies of tamoxifen for breast cancer  

Tamoxifen acts by inhibiting the binding of estrogen with the estrogen receptor, whereas 

aromatase inhibitors block the conversion of androgens to estrogen by aromatase enzyme, 

thereby causing estrogen deprivation. The third-generation aromatase inhibitors (AIs), letrozole, 

anastrozole and exemestane, have demonstrated superior efficacy to tamoxifen in large, 

randomized clinical trials in postmenopausal women with HR+ (hormone receptor positive) early 

breast cancer (Coombes et al., 2004; Boccardo et al., 2005; Howell A, 2005; Jakesz et al., 2005; 

Thurlimann et al., 2005). Analysis of the ATAC trial at a median follow-up time of 47 months 

demonstrated that after an additional follow-up period, anastrozole continued to exhibit superior 

efficacy than tamoxifen alone and in combination with anastrozole. This demonstrated by 

disease free survival (DFS), time to recurrence (TTR), and reduction in the incidence of 

contralateral breast cancer (CLBC) (Baum et al., 2003). The 5 year disease-free survival was 

significantly greater in the letrozole group (77.9%) than in the tamoxifen group (71.4%, hazard 

ratio for the primary end point, 0.81; 95% confidence interval), especially reducing recurrence at 

distant sites (hazard ratio, 0.73; 95% confidence interval). The 5-year estimates of disease-free 

survival were 84.0% in the letrozole group and 81.4% in the tamoxifen group (Thurlimann et al., 

2005). In another study the outcome showed that switching patients to adjuvant treatment with 

exemestane after 2 to 3 years of tamoxifen therapy was associated with a statistically and 

clinically significant improvement in disease-free survival, which included a reduction in the 

incidence of metastatic disease. DFS after 3 years of randomization was 91.5% (95% confidence 

interval, 90.0 to 92.7) in the exemestane group and 86.8% (95% confidence interval, 85.1 to 

88.3) in the tamoxifen group (Coombes et al., 2004). Overall, many studies indicate that 

aromatase inhibitors might gradually displace tamoxifen as the gold standard for adjuvant 

endocrine therapy (Perez, 2007).  

Raloxifene hydrochloride is a selective estrogen receptor modulator like tamoxifen that 

has antiestrogenic effects on breast and endometrial tissue and estrogenic effects on bone, lipid 

metabolism, and blood clotting (Cummings et al., 1999). Trials of tamoxifen and raloxifen were 

done separately and a 33% and 59% reduction, respectively, in the relative risk of breast cancer 

was found; however, both the treatments cannot be compared because the participants in the 

tamoxifen and raloxifen study were pre-menopausal women and post-menopausal women, 

respectively (Cummings et al., 2009). A study of tamoxifene and raloxifene (STAR) program 
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was conducted to estimate the efficacy of raloxifene compared to tamoxifen. The study showed 

that both the drugs reduced the risk of developing invasive breast cancer by about 50% and 

women who took raloxifene and followed for 4 years showed 36% fewer uterine cancers and 

29% fewer blood clots (NCI, 2007). 

All these studies suggest that tamoxifen, despite being a drug of choice for the treatment 

of endocrine-responsive breast cancers, has some serious side effects. The treatment of 

tamoxifen depends on the risk:benefit ratio in an individual. However, combination of tamoxifen 

with another drug causing an increase in apoptosis of the cancer cells could be a potential 

therapy for the breast cancer. The combinational therapy could either decrease the 5-year 

treatment with tamoxifen or could help in negating the effects of tamoxifen. In the present study, 

we combined PQ1, a gap junctional activator with tamoxifen. Studies conducted with PQ1 alone 

showed an increase in GJIC, decrease in cell proliferation and colony growth assay in breast 

cancer cells. Furthermore, PQ1 also showed a 70% decrease in tumor growth in nude mice. 

Therefore, we investigated the effect of combinational treatment of tamoxifen and PQ1.  
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Chapter 2 -  Hypothesis and Objectives 

2.1 Hypothesis 

 

1. A decrease or loss in gap junctional intercellular communication can potentiate cancer 
formation 

2. Restoration of gap junctional intercellular communication can decrease tumor growth 

 

 

2.2 Objectives 

 

1. To determine the effect of an environmental pollutant, TCDD, on gap junctional 
intercellular communication in human mammary epithelial cells (HMEC) and MCF-7 
cells 

2. To screen for gap junctional activators 

3. To investigate the role of substituted quinolines, PQ1, on human breast cancer cell lines 
(in vitro) and nude mice (in vivo) 

4. To evaluate the combinational effect of PQ1 and tamoxifen  
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Figure 2.1  Schematic representation of the rationale and the questions being asked. 

Dark green boxes represent rationale and the three circles represent objectives. 
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Chapter 3 -  Regulation of gap junctional intercellular 

communication by TCDD in HMEC and MCF-7 breast 

cancer cells 

3.1 Abstract  

Previous studies suggest that many neoplastic tissues exhibit a decrease in gap junctional 

intercellular communication (GJIC). Many hydrocarbons and organochlorine compounds are 

environmental pollutants known to be carcinogenic. The effect of an organochlorine compound, 

TCDD, on GJIC in human breast cell lines has not been established. In the present study, we 

showed that TCDD causes an inhibition in the gap junctional activity in MCF-7 (breast cancer 

cells). In MCF-7 cells, an increase in the phosphorylated form of gap junctional protein, 

connexin 43 (Cx43), and PKC α was seen in the presence of TCDD. Gap junctional plaque 

formation was significantly decreased in MCF-7 cells in the presence of TCDD. 

Immunoprecipitation studies of PKC α showed that TCDD caused a significant 40% increase in 

the phosphorylated Cx43 in MCF-7 cells. TCDD also modulated the translocation of PKC α 

from the cytosol to the membrane and caused a 2-fold increase in the PKC α activity at 50 nM 

TCDD in MCF-7 cells. Calphostin C, an inhibitor of PKC α, showed a significant inhibition of 

PKC α activity in the presence of TCDD. Furthermore, TCDD also caused a decrease in the gap 

junctional activity and Cx43 protein in human mammary epithelial cells (HMEC). However, we 

observed a shift in the Cx43 plaques towards the perinuclear membrane in the presence of TCDD 

by confocal microscopy and Western blot. Overall, these results conclude that TCDD decreases 

GJIC by phosphorylating Cx43 via PKC α signaling pathway in MCF- 7 cells; however, TCDD 

decreases the GJIC by affecting the localization of Cx43 in HMEC. These new findings elucidate 

the differential mode of effect of TCDD in the downregulation of GJIC in HMEC and MCF-7 

cells. 
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3.2 Introduction  

Polycyclic aromatic hydrocarbons are ubiquitous environmental and food contaminants 

formed mainly during the incomplete combustion of organic materials (Blaha et al., 2002). 

Among these, 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), is a highly persistent 

environmental pollutant and a known human carcinogen (Safe, 1990, 1995). More than 2-fold 

increase in the incidence of breast cancer was found in female workers working in TCDD-

exposed chemical plant (Manz et al., 1991). TCDD was shown to alter mammary gland 

differentiation and increased susceptibility for mammary cancer in a carcinogen induced rat 

mammary cancer model (Jenkins et al., 2006). Many studies indicate the potential role of TCDD 

in regulating the activity of GJIC (Baker et al., 1995; Chipman et al., 2003; Sharovskaja et al. 

2004). But the effect of TCDD on the GJIC in human breast cells has not been studied.  

Gap junctional intercellular communication (GJIC) is formed by gap junctions (GJ), 

dynamic intercellular plasma membrane channels allowing the passage of small molecules (<1 

kD) between adjacent cells (Mesnil, 2002; Carystinos et al., 2002; Vine and Bertram, 2002). Gap 

junctions are formed by the interaction of two hemichannels (connexon) in the adjacent cells, 

which, in turn are made of six subunits of connexin (Cx) proteins (Carystinos et al., 2002). The 

structure of connexins includes four hydrophobic membrane-spanning domains, two extracellular 

loops, one cytoplasmic loop, and an amino and carboxyl terminus in the cytoplasm (Goodenough 

et al., 1988; Hertzberg et al., 1988; Yeager and Gilula, 1992; Knudsen and Wheelock, 1992). In 

a cell, GJIC is mainly regulated by the phosphorylation of the C-terminus of connexin proteins 

(Carystinos et al., 2002). The ability of TPA to inhibit GJIC has been associated with the 

activation of PKC (Lampe, 1994; Rivedal and Opsahl, 2001; Zampighi et al., 2005). Evidence 

demonstrated that PKC may inhibit gap junction channels by inhibiting gap junction assembly 

and channel gating (Tomasetto et al., 1993). PKC α overexpression has been shown to cause 

tumor growth, and tumor resistance to cytotoxic chemotherapy. In a study conducted on breast 

cancer patients, PKC activity was found significantly higher in breast tumor tissue compared to 

normal tissue from the same patient (O'Brian et al., 1989). Studies have shown that many 

neoplastic cells show fewer or dysfunctional gap junctions and have reduced GJIC (Trosko and 

Ruch, 1998). Many studies also suggest that the alteration in connexin expression is important, 

as their forced expression, following cDNA transfection, can promote cell density inhibition and 

reverse the tumor phenotype (Mesnil, 2002). Tumor growth of communication-deficient human 
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tumor cells, SKHep1, was significantly higher than cells transfected with cDNA encoding Cx32 

in athymic nude mice (Eghbali et al., 1991). Re-expression of hCx26 and hCx43 exhibited a 

classical tumor-suppressive behavior restoring growth-regulatory properties to metastatic 

mammary carcinoma cells and inducing differentiation (Hirschi et al., 1996). Consistently, these 

studies strongly suggest that the altered expression of connexins leads to loss of growth control 

and restoration of GJIC causes inhibition of cell proliferation thereby exhibiting tumor 

suppressive effect. Given the importance of GJIC in cancer, we used breast cancer as the model 

to test the effect of TCDD on GJIC. Cx43 is the most predominant form in breast epithelium and 

detected mostly in myoepithelial cells. Therefore, in our present study we observed the effect of 

TCDD on GJIC by measuring Cx43 expression. The strategy for the prevention and treatment of 

cancers is based on understanding the underlying mechanisms of carcinogenesis. Environmental 

pollutants have been shown to affect the GJIC but the mechanism still remains elusive. The aim 

of our study was to investigate how TCDD can affect the activity of GJIC in human breast cells. 

We directly examined the effect of TCDD on human breast cancer cells, MCF-7, and primary 

mammary epithelial cells, HMEC. Our study provides evidence showing that TCDD inhibits the 

GJIC through traditional and non-traditional pathways in cancerous and non-cancerous breast 

cells respectively. 

 

3.3 Material and Methods  

 

3.3.1 Cell lines and cell culture  

MCF-7 human breast cancer cell line was purchased from American Type Culture 

Collection (Manassas, VA) and HMEC from Cambrex (Rockland, MA). MCF-7 cells were 

grown in Minimal Essential Media (MEM) supplemented with Earl's salts, glutamine, 1 mM 

sodium pyruvate, 0.01 mM nonessential amino acids, antibiotic/antimycotic, and 1.5 g/L sodium 

bicarbonate. MCF-7 cells were enriched with 10% fetal bovine serum (Atlanta biologicals, 

Lawrenceville, GA). HMEC were grown in mammary epithelial growth medium supplemented 

with bovine pituitary extract from Cambrex (Rockland, MA). Calphostin C, an inhibitor of PKC 

α, was purchased from Calbiochem (NJ, USA) and dissolved in dimethyl sulfoxide (DMSO).  
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3.3.2 Gap junctional activity - scrape load/dye transfer (SL/DT) assay  

Cells were grown to 90% confluency on coverslips, dosed with 10, 50, 100 and 200 nM 

of TCDD and DMSO for an hour. Similarly, MCF-7 cells were dosed with calphostin C (100 

nM) for 30 min and media were aspirated and cells were treated with varying concentrations of 

TCDD for an hour. TPA was used as a positive control for the phosphorylation of PKC α. Cells 

were washed three times with PBS. The 2.5 µl mixture of 1% (w/v) Lucifer yellow and 0.75% 

(w/v) of Rhodamine-dextran was added in the center of the coverslip. Two cuts crossing each 

other in the center of the coverslip were made. This cut allows the transfer of the Lucifer yellow 

dye as well as rhodamine-dextran in the cells at the line of cut. However, the passage of the 

Lucifer yellow dye from the injured cells to the membrane-intact cells is through gap junctions. 

After 3 min, cells were washed three times with PBS and incubated at 37°C in tissue culture 

media for 20 min. The cells were then washed with PBS and fixed in 2.5% paraformaldehyde for 

10 min. Cells were mounted on a slide, sealed and visualized under a fluorescence microscope at 

10Χ objective.  

 

3.3.3 Western blot analysis 

After reaching 90% confluency, MCF-7 cells and HMEC were harvested from a 75 cm2 

flask and 25 cm2 flask respectively. Cells were grown in a phenol red-free DMEM with 5% 

charcoal dextran stripped serum, overnight. Cells were dosed with 0, 10, 50, 100, and 200 nM of 

TCDD and DMSO for an hour. DMSO was used as a solvent to dissolve TCDD. Cells were 

harvested in lysis buffer containing appropriate protease inhibitors. 30 µg of whole cell extract 

was resolved by 10% SDS-polyacrylamide gel electrophoresis (PAGE) and transferred to 

nitrocellulose membrane (Midwest Scientific, Saint Louis, MO). Nitrocellulose membrane was 

blocked in 5% milk for an hour at room temperature and then incubated with monoclonal mouse 

anti-PKC α antibody at 1:500 dilution (Santa Cruz Biotechnologies, Santa Cruz, CA), 

monoclonal mouse anti-Cx43 at 1:500 dilution (Fred Hutchinson, Seattle, WA), anti-phospho-

Ser 368 Cx43 antibody at 1:500 dilution (Cell signaling technology, MA, USA ) and rabbit anti-

actin antibody at 1:1000 dilution (Sigma-Aldrich, Saint Louis, MO). The signal was detected by 
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enhanced chemiluminescence system (Pierce, Rockford, IL, USA). Lamin B1 antibody was used 

(ZL-5, Abcam, MA, USA) at 1:500 dilution to confirm the pure extraction of nuclear and 

cytoplasmic fraction. 

 

3.3.4 Immunoprecipitation and translocation studies 

  MCF-7 cells were dosed with 10, 50, 100, and 200 nM TCDD and DMSO for an hour. 

Cells were harvested and 1 mg of whole cell extract was precleared with protein A/G-agarose 

beads (Santa Cruz Biotechnology, CA, USA) for 30 min. Then, samples were centrifuged at 

2000 rpm for 5 min. Supernatant was collected and incubated with the anti-PKC α antibody at 

1:2000 dilution overnight at 4°C. Samples were centrifuged at 2000 rpm for 5 min and pellet was 

washed three times with lysis buffer. Samples were run on 10% SDS-PAGE and immunoblotted 

with anti-Cx43 (Chemicon International Inc., Temecula, CA), anti-phospho-Ser 368 Cx43 and 

anti-PKC α antibodies. For translocation studies, MCF-7 cells were dosed with 10, 50, 100, and 

200 nM TCDD. Cells were lysed with MgCl2 and centrifuged at 35,000 rpm for 60 min at 4°C. 

Pellet was separated from the supernatant and resuspended in lysis buffer. Samples were 

sonicated and whole cell extracts were subjected to Western blot analysis. Nitrocellulose 

membranes were immunoblotted with anti-Cx43 and anti-actin antibodies. In HMEC, 

cytoplasmic and nuclear fractions were separated by using NE-PER kit (Cat # 78833, Pierce, 

Rockford, IL, USA).  

 

3.3.5 Measuring kinase activity 

  The whole cell extract was obtained as described for Western blotting. PKC α activity 

was measured using Promega kinase activity assay kit (Promega, Madison, WI). The procedure 

was followed as recommended by the manufacturer. Results were visualized under UV light. 

 

3.3.6 Immunofluorescent labeling and confocal microscopy 

  Cells were grown on coverslips in 6-well plates in phenol red-free DMEM media plus 5% 

charcoal dextran stripped serum overnight. Cells were treated with 10, 50, 100, 200 nM of 

TCDD and DMSO for 1 hr. Cells were first fixed with 2.5% paraformaldehyde for 10 min and 
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then neutralized with 50 mM glycine for 5 min. The cells were lysed with 0.15% Triton X-100 

for additional 20 min. After washing with PBS, cells were blocked with 3% BSA in PBS for 2 hr 

and then incubated with primary antibodies, mouse anti-PKC α and rabbit anti-Cx43 antibodies 

(Chemicon International Inc, Temecula, CA), for 15 hr at 4°C. Following this step, cells were 

incubated with anti-mouse and anti-rabbit Alexa fluor 488 and 568 (Molecular probes, Eugene, 

OR, USA) for 2 hr at room temperature respectively. Samples were sealed and analyzed by a 

confocal microscope (Carl Zeiss LSM 510 META, Narashige, MN). 

 

3.4 Results  

 

3.4.1 Effect of TCDD on gap junctional activity 

We examined the effect of TCDD on the GJIC in MCF-7 cells. By using scrape load/dye 

transfer (SL/DT) assay, the transfer of Lucifer yellow dye from one cell to another indicates 

GJIC and rhodamine-dextran is often used as a control as it cannot pass through intact plasma 

membrane. We observed a dose-dependent decrease in GJIC in presence of TCDD (Figure 3.1). 

10 and 100 nM TCDD can inhibit Lucifer yellow dye transfer in MCF-7 cells (Figure 3.1A). 

MCF-7 cells treated with calphostin C and TCDD showed restoration of gap junctional activity 

at 10, 50, 100 nM of TCDD. At 200 nM TCDD, inhibition in GJIC was observed even in the 

presence of calphostin C (Figure 3.1B).  
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Figure 3.1  Scrape load/dye transfer assay (SL/DT) 

A) MCF-7 breast cancer cells were seeded on coverslips in a 6-well plate until 90% confluency. 

Cells were then dosed with TCDD at various concentrations for an hour, loaded with dye, 

scraped, fixed in paraformaldehyde and viewed under fluorescence microscope. The cuts were 

made with a sharp blade in an X- fashion on the coverslip after the addition of the dye. Green 

fluorescence indicates Lucifer yellow, transferring from cell to cell only through gap junctions. 

Arrows indicate the line of cut. At 100 nM TCDD, there was a decrease in the transfer of Lucifer 

yellow dye away from the line of cut. Note: the difference in the Lucifer yellow dye transfer 

between the control and 100 nM TCDD. DMSO is a solvent used to dissolve TCDD. B) MCF-7 

cells were treated with calphostin C, PKC α inhibitor, for 30 min and later with TCDD for 1 hr. 
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MCF-7 cells were prepared for the SL/DT assay as described above. Note: the increase in 

Lucifer dye transfer in 10, 50, and 100 nM TCDD pre-treated with calphostin C as compared to 

10 and 100 nM TCDD alone without calphostin C. However, at 200 nM TCDD Lucifer yellow 

dye transfer is inhibited. 

 

Furthermore, we examined the structural GJIC formation. Figure 3.2A shows the effect 

of TCDD on the Cx43 plaque formation in MCF-7 cells. 10-200 nM TCDD inhibited Cx43 

plaque formation compared to control without TCDD or DMSO treatment in MCF-7 cells. On 

the other hand, in the presence of calphostin C, Cx43 plaque formation was seen at 10, 50, 100 

nM TCDD but not at 200 nM TCDD (Figure 3.2B). 
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Figure 3.2  Confocal microscopy showing the effect of TCDD on the Cx43 plaque 

formation. 

 A) MCF-7 cells were dosed with 0, 10, 50, 100 and 200 nM TCDD for an hour. B) MCF-7 cells 

were treated with calphostin C (100 nM) for 30 min prior to the dosing of TCDD for an hour. 

Note: the presence of Cx43 plaques in 50 and 100 nM TCDD. However, at 200 nM TCDD 

Cx43 plaque formation was completely inhibited. 
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3.4.2 Effect of TCDD on the expression of Cx43 and PKC α 

Cx43 is phosphorylated at multiple serine residues. One of the serine residues, serine 368, 

of Cx43 has been shown to be phosphorylated by PKC (Lampe and Lau, 2000). Therefore, the 

expression of both phospho-Ser 368 Cx43 and PKC proteins in the presence of TCDD was 

examined. We found that 10-200 nM TCDD caused an increase in phospho-Ser 368 Cx43 

(Figure 3.3A). Similarly, a significant 40% increase in PKC α expression at 200 nM TCDD 

treatment compared to control or DMSO was seen (Figure 3.3B). However, 10 nM TCDD for 1 

hr was not significant to cause an increase in PKC α expression. 

 

A. 

                   

 

 

 

 B. 
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Figure 3.3  Expression profile of phospho-Ser 368 Cx43 and PKC α in presence of TCDD in 

MCF-7 cells. 

A) Western analysis of phospho-Ser 368 Cx43 in MCF-7 cells dosed with different 

concentrations of TCDD. Actin is used as a loading control. A histogram representing three 

independent experiments is provided showing the increase in phospho-Ser 368 as a relative 

percentage of control, *p < 0.01. pCx43 is phosphorylated serine 368 Cx43. B) The effect of 

TCDD on the PKC α expression in MCF-7 cells. Graphical presentation of three independent 

experiments with the standard deviation is shown. DMSO is the vehicle used to dissolve TCDD. 

C = Control, DM = DMSO, *p < 0.05. 

 

3.4.3 Translocation studies of PKC α in MCF-7 cells 

Activation of PKC isoforms results in changes in their subcellular location. We found 

that TCDD increases the translocation of PKC α from the cytosol to the membrane. 10 nM 

TCDD was sufficient to translocate PKC α from the cytosol to the membrane (Figure 3.4A, lane 
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3), and 100 nM TCDD completely translocates PKC α to the membrane (Figure 3.4A, lane 5). 

This means that TCDD is involved in the activation of PKC α. The results were also confirmed 

by immunofluorescence studies (Figure 3.4B). Immunofluorescent PKC α was localized around 

the plasma membrane in TCDD treatment compared to control or DMSO. In HMEC, PKC α was 

not observed. Other classical PKCs (PKC β and PKC γ) were not affected by TCDD in both cell 

types (Appendix A, Figure S1). 

 

 

                           

B. 
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C.                                                                                        D. 
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Figure 3.4  Localization of PKC α and the interaction of PKC α and Cx43. 

 A) Western blots showing the effect of TCDD on translocation of PKC α from the cytosol to the 

membrane in MCF-7 cells. Separation of cytosolic and membrane fractions was performed as 

described in Materials and Methods. 100 nM TCDD-treated cells caused a significant 

translocation of PKC α from the cytosolic fraction to the membrane fraction. Graphical 

representation of three independent experiments with ±SD, *p < 0.05. B) Immunofluorescence 

showing the localization of PKC α in the presence of TCDD in MCF-7 cells. Cells were treated 

with 10, 50, 100 and 200 nM TCDD for 1 hr. Immunofluorescent labeling was performed as 

described in Materials and Methods. PKC α was labeled with Alexa fluor 488 for 2 hr and then 

the cells were washed, sealed and observed under 40X oil objective confocal microscope, pin 

hole = 0.65 µm. Green fluorescence was seen around the cell membrane as the concentration of 

TCDD was increased. C) Interaction of PKC α and Cx43 in MCF-7 cells. Immunoprecipitated 

PKC α was subjected to Western blot analysis. The nitrocellulose membrane was immunoblotted 

against Cx43. P0 and P2 forms of Cx43 are shown separately. Graphical presentation of three 

experiments with standard deviation and statistical significance, *p < 0.05. D) Interaction of PKC 

α and pCx43 in MCF-7 cells. Immunoprecipitated PKC α was transferred to nitrocellulose 

membrane and immunoblotted with pCx43. A histogram representing three independent 

experiments, *p < 0.01. 

 

3.4.4 Immunoprecipitation studies showing interaction of phosphorylated Cx43 with 

PKC α 

PKC α was immunoprecipitated from MCF-7 cells using Protein A/G-agarose beads and 

anti-PKC α antibodies (Figures 3.4C, D). The nitrocellulose membrane was probed with anti-

Cx43 antibodies. The results showed a significant 40% increase in P2 form of Cx43 upon 

activation by 10 and 50 nM of TCDD in MCF-7 cells (Figure 3.4C). However, treatments of 100 

and 200 nM TCDD only have a slight interaction of PKC α and Cx43 (Figure 3.4C lane 5, 6). 

This experiment was repeated using anti-phospho-Ser 368 Cx43 antibody (Figure 3.4D). 

Similarly, we found an increase in phospho-Ser 368 Cx43 at 10 and 50 nM TCDD. This suggests 

that in the presence of TCDD, PKC α phosphorylates Cx43 in MCF-7 cells.  
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3.4.5 Effect of TCDD on the PKC enzyme activity  

PKC enzyme activity assay was performed with samples treated with calphostin C in the 

presence of TCDD and, TCDD alone. Promega PKC peptide substrate system was used to 

measure the PKC activity (Figure 3.5A). Fluorescence peptides separate according to charges. 

Phosphorylated peptides migrate towards anode. The results demonstrated that treatment of 50 

nM TCDD significantly increased PKC enzyme activity by 2-fold in TCDD alone treated MCF-7 

cells (Figure 3.5B). In the presence of calphostin C, PKC activity was significantly reduced at 

10, 50, 100 nM TCDD compared to the control. However, at 200 nM TCDD, PKC enzyme 

activity was 20% more than the control. 

                A. 
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B. 

 

 

Figure 3.5  The effect of TCDD on PKC enzyme activity in MCF-7 cells. 

 A) Cells were dosed with 10, 50, 100 and 200 nM of TCDD. Whole cell extract was used. PKC 

enzyme activity was performed according to the manufacturer's recommendation. Reaction 

mixtures were separated on agarose gel according to the charges of the substrate. Excision of the 

phosphorylated bands was measured using photospectrometer at 570 nm. Graphical 

representation of three experiments with ±SD and statistical significance, *p < 0.05. B) Cells 

were dosed with calphostin C for 30 min prior to 10, 50, 100 and 200 nM TCDD treatment for 1 

hr. PKC enzyme activity was performed. Note: the significant decrease in the PKC activity in the 

presence of calphostin C treated with 10, 50 and 100 nM TCDD. However, at 200 nM TCDD, 

the PKC activity restored back indicating that the effect of 200 nM TCDD on PKC activity 

cannot be inhibited with 100 nM calphostin C. TPA was used as a positive control for PKC 

activity. Positive indicates the positive control provided by the manufacturer, which includes 

using purified PKC enzyme. Negative control includes the reaction mixture excluding any 
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sample/PKC enzyme. Graphical representation of three experiments with ±SD and statistical 

significance, *p < 0.01. 

 

3.4.6 Effect of TCDD on primary mammary epithelial cells 

Previous studies have indicated that the expression of Cx43 or gap junctional activity of 

normal cells is higher than neoplastic cells (Hirschi et al. 1996; Trosko and Ruch 1998). Since 

breast cancer cells have a lower level of Cx43 and gap junctional activity, we examined the 

effect of TCDD on normal breast cells, HMEC. Interestingly, higher concentration of TCDD is 

required to inhibit dye transfer. 200 nM TCDD caused a significant decrease in GJIC compared 

to control in HMEC (Figure 3.6A). Furthermore, 200 nM TCDD can cause a decrease in Cx43 

(Figure 3.6B). Surprisingly, confocal microscopy showed the presence of Cx43 aggregates in the 

perinuclear area in the presence of 10-200 nM of TCDD (Figure 3.7A) compared to the Cx43 

plaques on the membrane in the controls. Further evidence was provided by nuclear extraction of 

HMEC. 10 nM TCDD can cause an increase of Cx43 expression in the nuclear fraction 

compared to control (Figure 3.7B). However, at 200 nM TCDD, Cx43 expression was 

completely reduced in both cytoplasmic and nuclear fractions. Blots were stripped and Lamin B1 

expression was observed only in the nuclear fraction and not in the cytoplasmic fraction (Figure 

3.7B). Thus, these findings show for the first time that TCDD affects gap junctional activity in 

HMEC through different mechanism than MCF-7 cells. 
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Figure 3.6  Scrape load dye transfer assay (SL/DT) and expression of Cx43 in HMEC. 

A) HMEC were seeded in a 6-well plate and dosed with different concentrations of TCDD for an 

hour. SL/DT assay was performed as described in Figure 3.1A. Pictures depict three independent 

experiments. B) Effect of TCDD on Cx43 expression. Cells were treated with DMSO and 10, 50, 

100, 200 nM TCDD for 1 hr. A significant decrease in Cx43 at 200 nM TCDD compared to the 

control was observed, *p < 0.05. 

 

A. 

 

 

 

 

 

 

B. 
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Figure 3.7  Confocal microscopy showing the effect of TCDD on Cx43 plaque formation 

and the localization of Cx43 in HMEC. 
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A) Cx43 plaque formation in the presence of 0, 10, 50, 100 and 200 nM TCDD. Cells were 

stained with DAPI (blue nuclear stain) and anti-Cx43 mouse antibody (red). Images were seen 

under 40X oil objective lens, pin hole = 0.76 µm and arrows indicate the plaque formation. 

Pictures represent three different experiments. B) Cx43 expression in nuclear and cytoplasmic 

fraction dosed with different concentrations of TCDD. All the Western blots are a representative 

of three individual experiments. Lamin B1 was used as a nuclear marker showing the separation 

of the nuclear and cytoplasmic fraction. Graphical representation of three experiments with ±SD 

and statistical significance, *p < 0.01 is shown. 

 

3.5 Discussion  

TCDD is a human carcinogen. It has been implicated as a reproductive toxin in humans, 

including its potential for breast cancer (Adami et al., 1995). Studies have been conducted to 

understand the risk of cancer in the presence of TCDD. TCDD is not a genotoxic, therefore, its 

exposure can affect many downstream pathways. We showed for the first time that TCDD has a 

differential effect on GJIC in primary mammary epithelial cells, HMEC and breast cancer cells, 

MCF-7. Baker et al. (1995) demonstrated that TCDD inhibits GJIC in the in vivo target of its 

tumor promoting effect and this effect may, in part, be directed through Ah receptor in primary 

culture of rat hepatocytes. In the present study, SL/DT was used to measure the activity of GJIC. 

Lucifer yellow dye (MW 457.2) passes from one cell to another through gap junctions whereas 

rhodamine-dextran (MW 10,000) passes only through injured plasma membrane. We found a 

decrease in the Lucifer dye transfer between the cells even in the presence of 10 and 100 nM of 

TCDD in MCF-7 cells (Figure 3.1A). This suggests that the gap junctional activity between the 

MCF-7 cells is decreased in the presence of TCDD. Plaques are the functional aggregations of 

many gap junctions on the plasma membrane. Clustering of gap junction channels into plaques is 

required for functional cell coupling. Since Cx43 is the most predominant form of connexin in 

breast epithelium, the effect of TCDD on Cx43 plaque formation was observed. Cx43 plaques 

were decreased in the presence of 10-200 nM TCDD in MCF-7 cells (Figure 3.2A). A complete 

loss in the Cx43 plaque formation was seen from 50-200 nM TCDD in MCF-7 cells. This 

suggests that TCDD affects the GJIC by affecting the formation or degradation of Cx43 plaques 

in MCF-7 cells.  
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Various tumor-promoting agents (Ruch et al., 2001) decrease GJIC, either by suppressing 

Cx expression or by inducing post-translational modifications such as phosphorylation, a process 

that is closely related to cellular processes such as trafficking, assembly/disassembly, gating of 

gap junction channels, and altered susceptibility to degradation (Lampe and Lau, 2000). The 

carboxy-terminus of Cx43 contains several serine and tyrosine phosphorylation sites, suggesting 

that this region of the molecule contains a complex array of potential regulatory sites (Lampe 

and Lau, 2000). Therefore, to understand the decrease in the gap junction activity by TCDD in 

MCF-7 cells, we investigated the phosphorylation of Cx43. Phospho-Ser 368 Cx43 antibody was 

specifically used to detect the phosphorylation of Cx43. PKC has been shown to phosphorylate 

Cx43 at serine 368 carboxyl terminal in vitro (Lampe et al., 2000; Saez et al., 1997; Shah et al., 

2002). We found an increase in phospho-Ser 368 Cx43 in the presence of 10-200 nM TCDD in 

MCF-7 cells (Figure 3.3A). Since an increase was seen in the phosphorylated form of Cx43 in 

MCF-7 cells, we examined the expression of kinases in the presence of TCDD. PKC α was 

found to be significantly increased in the presence of TCDD in MCF-7 cells (Figure 3.3B). It 

could be due to the effect on the transcriptional, post-transcriptional, or translational level. Early 

observations that PKC isozymes are activated by tumor promoting phorbol esters (Castagna et 

al., 1982) suggested a key role for PKC in tumor promotion and progression (Mackay and 

Twelves, 2003). Increased levels of PKC have been associated with malignant transformation in 

a number of cell lines including breast (O'Brian et al., 1989), lung (Takenaga and Takahashi, 

1996) and gastric carcinomas (Schwartz et al., 1993). In vitro studies suggest a positive 

correlation between elevated PKC levels and both the invasive and chemotactic potential of 

human breast cancer cell lines (Blobe et al., 1994). 

To confirm the phosphorylation of Cx43 by PKC α, we examined the effect of TCDD on 

the activation and interaction of PKC α with Cx43. Among others, diacylglycerol and Ca2+ are 

known to activate PKC by translocating it from the cytoplasm to the membrane and this report 

showed that TCDD is an activator of PKC α in MCF-7 cells. We found an increase in the 

translocation of PKC α from the cytosol to the membrane under the effect of TCDD in MCF-7 

cells (Figure 3.4A). The translocation of PKC α promotes the interaction of PKC α and Cx43 and 

subsequently the phosphorylation of Cx43. Translocation studies were further confirmed by 

confocal microscopy showing the localization of PKC α on the membrane in the presence of 

TCDD (Figure 3.4B). Immunoprecipitation studies showed an increase in the phosphorylated 
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form of Cx43 with an equal amount of PKC α being pulled out (Figures 3.4C, D). Interaction 

between PKC α and the phosphorylated form of Cx43 was increased significantly at 10 and 50 

nM TCDD; however, interaction was decreased at 100 and 200 nM TCDD. Our study supports 

previous studies that other potential PKCs sites might be involved in regulating assembly or 

degradation of gap junctions and channel behavior (Lampe and Lau, 2004). PKC has received 

considerable attention because PKC activators, which promote tumorigenesis, both increase 

Cx43 phosphorylation and decrease GJIC in a number of different cell types (Berthoud et al., 

1992; Brissette et al., 1991; Lampe, 1994; Reynhout et al., 1992). 

To confirm the functionality of PKC α, an enzyme activity assay was performed. We 

observed an increase in the enzymatic activity of PKC α in the presence of TCDD (Figure 3.5A). 

Cells treated with 100 nM TCDD did not show further increased PKC enzyme activity. This 

suggests that TCDD may activate other GJIC-mediated pathways that are also involved in the 

inhibition of GJIC. Calphostin C, an inhibitor of PKC α, was used to provide further evidence 

that TCDD mediated inhibition of gap junctional activity involves PKC α pathway. SL/DT assay 

showed the restoration of Lucifer dye transfer in MCF-7 cells in the presence of calphostin (100 

nM) followed by TCDD (Figure 3.1B). Confocal microscopy also showed the presence of Cx43 

plaques in the presence of TCDD in MCF-7 cells pre-treated with 100 nM calphostin C (Figure 

3.2B). A significant decrease in the PKC enzyme activity was observed in the presence of 

calphostin C (100 nM) in TCDD-treated MCF-7 cells (Figure 3.5B). All the experiments 

performed with calphostin C showed the restoration of the effect of TCDD at 200 nM in MCF-7 

cells. It can be concluded that when TCDD is double the concentration of calphostin C, the 

inhibitory effect of calphostin C on TCDD-mediated PKC α pathway is lost. However, 

calphostin C (100 nM) was sufficient enough to block the effect of 10, 50 and 100 nM TCDD 

confirming that the TCDD-mediated inhibition of GJIC involves PKC α pathway. 

To determine the effect of TCDD on non-cancerous human breast cells, primary human 

mammary epithelial cells were used. The dye transfer was tremendously reduced at 200 nM 

TCDD in HMEC (Figure 3.6A). Higher dose of TCDD caused a decrease in GJIC in HMEC 

compared to MCF-7 cells could be due to the fact that control HMEC exhibited more GJIC than 

control MCF-7 cells. This confirms the earlier studies suggesting a decrease in GJIC in 

cancerous cells compared to normal primary cells of the same tissue (Hirschi et al., 1996). 

Exposure of TCDD inhibits GJIC in both cell types, cancerous and non-cancerous cells. 200 nM 
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TCDD caused a decrease in the Cx43 expression (Figure 3.6B). This exhibits two different ways 

of regulation of GJIC by TCDD by phosphorylation of Cx43 in MCF-7 cells and by decrease in 

the expression of Cx43 in HMEC. Interestingly, PKCs expressions are not upregulated in control 

HMEC as in MCF-7 cells. In HMEC, a different effect of TCDD compared to MCF-7 cells was 

observed on the Cx43 plaque localization. In the presence of 10-200 nM TCDD, Cx43 plaques 

were redistributed from the plasma membrane to the perinuclear area in HMEC (Figure 3.7A). 

This effect could be due to the effect on the trafficking of Cx43 in HMEC. This suggests that 

TCDD causes the movement of Cx43 from the membrane to the perinuclear region or prevents 

the movement of Cx43 to the membrane. The pathways involved in the trafficking of Cx43 are 

not fully understood. Even though Cx43 plaques shifted to the perinuclear area supported by the 

appearance of Cx43 in the nuclear fraction at 10 nM TCDD, we still observed GJIC activity in 

HMEC by SL/DT. This could be explained by the presence of other connexin proteins, Cx26 and 

Cx32 in HMEC which can form homomeric or heteromeric GJs. To further provide evidence for 

the redistribution of Cx43 to the perinuclear area, we isolated nuclear and cytoplasmic fractions. 

Interestingly, Cx43 appears in the nuclear fraction and diminishes completely in the cytoplasmic 

fraction in the presence of 100 and 200 nM TCDD (Figure 3.7B). The expression of a nuclear 

protein, Lamin B1, was measured in the nuclear and the cytoplasmic fraction. Lamin B1 was 

detected only in the nuclear fraction confirming that there was no leakage of the nuclear proteins 

in the cytoplasmic fraction during the extraction procedure (Figure 3.7B). The differences in the 

level of Cx43 expression (Figure 3.6B) and nuclear and cytoplasmic fraction could be explained 

in part by HMEC are slow growing cells, being the primary cells, which can be grown to four 

passages without change in morphology. Therefore, minimal number of cells was used for 

nuclear extraction and the level of protein for both nuclear and cytoplasmic fractions was low, 

and another explanation is that the process of extraction might have led to the further loss of 

proteins. 

In conclusion, TCDD is an environmental pollutant which affects GJIC in human breast 

cells. This report adds to the previous information that GJIC plays a vital role in breast cancer. 

The results provide evidence that TCDD inhibits GJIC through traditional and non-traditional 

pathways. The summary of the results observed in MCF-7 cells has been shown in Figure 3.8. In 

cancer cells, PKC α is upregulated and thus TCDD inhibits GJ through PKC α translocation and 

phosphorylation of Cx43. However, in non-cancerous cells such as primary mammary epithelial 
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cells, TCDD also inhibits GJ through a novel pathway, redistribution of Cx43 to the perinuclear 

fraction. In the absence of the changes in protein kinases, TCDD mediates the localization of 

Cx43 in normal mammary cells. This study provides the molecular mechanism showing how 

TCDD affects gap junctions. The findings reveal the potential risk of exposure to environmental 

pollutants like TCDD on the normal breast epithelium and cancerous breast tissue using breast 

cells. 

 

Figure 3.8 Proposed pathway showing the effect of TCDD on GJIC in MCF-7 cells. 

TCDD increases the expression and activates PKC α, causing its translocation from cytosol to 

the membrane. Activation of PKC α causes phosphorylation of Cx43 on the plasma membrane, 

thereby decreasing the gap junctional activity. 
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Chapter 4 -  Antitumor effect of substituted quinolines in 

breast cancer cells 

4.1 Abstract  

Cancer in part is caused by the disruption in cell homeostasis, affecting the ability to 

respond to extracellular signals, triggering some intracellular events which affect the gap 

junctional intercellular communication (GJIC). Cancer cells have reduced or altered GJIC 

capacity. One feasible approach to reduce growth of cancer cells is to enhance/alter GJIC. The 

capability of cells to communicate through gap junction is negatively related to their growth 

activity. A computational docking study showed that a new class of substituted quinolines (code 

name: PQs) has a relatively high binding to gap junction protein, connexin 43. Thus, PQs were 

used in this study to find their effect on human breast cancer cells.  Scrape load/dye transfer  and 

colony growth assay were  performed to measure GJIC and determine the effect of the PQ 

compounds on the colony formation in human normal mammary epithelial cells (HMEC) and 

breast cancer cells, respectively. The results showed that PQs have a significant antitumor effect 

in human breast cancer cells compared to control without treatment or normal mammary 

epithelial cells. 200 nM PQ1 showed a 30% increase in the GJIC in T47D cells; however, there 

is no effect of PQ treatment on GJIC in normal mammary epithelial cells. In addition to an 

increase in GJIC, 80-95% growth attenuation was observed by PQ1 in colony growth assay. 

Moreover, an increase in caspase 3 with PQ-treated cells was observed, suggesting possible 

involvement in apoptosis. The results show that PQ1 compound have a promising role in 

exerting antitumor activity in human breast cancer cells. The treatment with PQ1 in T47D cells 

causes an increase in GJIC activity and active caspase 3, and a decrease in colony growth and 

cell viability. Substituted quinolines have demonstrated to activate gap junction activity and 

subsequently decrease colony and tumor growth. 
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4.2 Introduction  

 Breast cancer is the most common cancer in women worldwide and mortality from 

breast cancer is consistently due to tumor metastasis (Jemal et al. 2007). Progress in 

understanding the etiology of this disease and developing therapies has been slow due to multiple 

deregulations of various genes. The additive effects against mammary tumor cells might be 

achieved by combining anti-tumor agents directed against one or more altered mechanisms in 

cancer.   

Cancer cells exhibit many defects in cell communication that contribute to the loss of 

tissue homeostasis (excess cell proliferation, invasion, and metastasis) (Loewenstein 1979; 

Loewenstein and Kanno 1966; Trosko et al. 1990; Wilgenbus et al. 1992; Yamasaki and Naus 

1996). Intercellular communication in many organs is maintained via intercellular gap junction 

channels (GJIC). Gap junctions are the only communicating junctions found in animal tissues, in 

all species, which are responsible for the direct traffic of ions and molecules with molecular 

weights less than 1,200 Da (Martin and Evans 2004; Musil et al. 2000). These traffic ways are 

formed by the interaction between two hemichannels on the surface of opposing cells. 

Hemichannels are formed by the association of six proteins, the connexins. Because of the 

importance of intercellular junctions in the maintenance of the cellular homeostasis, the 

modulation of intercellular junctions and expression of connexin seems to be involved in 

carcinogenesis (Dubina et al. 2002; Holder et al. 1993; Ruch 1994). 

 Electrophysiological measurement and dye-transfer studies in vivo have shown that 

signal transmission through GJIC can be altered by a number of molecules (Bruzzone et al. 

1996). Electron crystallography studies demonstrate that the dimension of the pore of gap 

junction channel varies from 40 Å in the cytoplasm to 15 Å at the membrane boundary with the 

extracellular gap (Foote et al. 1998). The reported low density structure (Makowski et al. 1977) 

only provides a general shape of the channel proteins. A recombinant gap junction was 

constructed, (Unger et al. 1999) which allows the computational docking studies of the channel 

proteins with small molecules.   

Several small organic molecules, such as caffeic acid phenethyl ester (CAPE) (Na et al. 

2000), sodium 4-phenylbutyrate (Ammerpohl et al. 2004), Liarozole (Acevedo and Bertram 

1995), lycopene (Livny et al. 2002), and lovastatin (Ruch et al. 1993), have been reported for up-

regulation or restoration of GJIC. CAPE is an active ingredient in honeybee propolis and has 
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antiviral, anti-inflammatory and anticancer properties (Bhimani et al. 1993). The effective 

concentration of CAPE is 17 µM in restoring GJIC and phosphorylation of Cx43 in WB-ras2 

cells (Na et al. 2000). 4-Phenylbutyrate enhances GJIC in glioblastoma cells and consequently 

increases the efficiency of the bystander killing effect of HSV-tk suicide gene/ganciclovir 

technology (Ammerpohl et al. 2004). Phase I/II dose-escalating trial of lycopene in biochemical 

relapsed prostate cancer patients did not result in any discernible response in serum PSA (Clark 

et al. 2006). A phase II study of liarozole in advanced non-small cell lung cancer showed that it 

is ineffective as single agent therapy (O'Byrne et al. 1998). Lovastatin, an inhibitor of cellular 

cholesterol synthesis, has an IC50 value of ~8 µM over 72 hours against MCF-7 mammary cancer 

cells (Wei et al. 2007). Hence, new GJIC enhancers are needed, and the study of the mechanism 

of restoring GJIC would provide information for the design of selective GJIC enhancers. The 

restoration of GJIC mechanism may provide potential targets for anticancer therapy. 

In search of new activators that enhance GJIC, potential interactions of a number of 

substituted quinolines (code name PQs) with the partial crystal structure of gap junction 

(Fleishman et al. 2006; Makowski et al. 1977; Veenstra 2003) using Autodock computational 

docking software (Goodsell and Olson 1990; Morris et al. 1996; Morris 1998), was examined. 

Dr. Duy H. Hua’s lab observed bindings of PQs to the inert core of the hexameric hemichannel 

of gap junctions. In one of the minimum energy (-0.7 kcal/mol) bound structures, interactions 

(closed contact) between CF3 group of PQ1 and H-N of Leu144 of connexin (2.5 Å), and OCH3 

group of PQ1 and CH2 of Phe81 of connexin (2.0 Å) are found. Consequently, Dr. Hua 

synthesized this class of quinolines and studied their GJIC and anticancer activities. PQ analogs 

were synthesized via a modification of the reported protocol (LaMontagne et al. 1982a; 

LaMontagne et al. 1982b; Lauer 1946) starting from 4-acetaminoanisole (compound 6), and the 

synthetic sequence is depicted in Scheme 1.   

Tumor cells have reduced or altered GJIC capacity (Eghbali et al. 1991). It has been 

shown that the drug sensitivity was enhanced in Cx 43 overexpressing tumor cells (Huang et al. 

2001). Cancer cells are characterized by the lack of growth control, by the inability to terminally 

differentiate and by resistance to apoptosis. Various oncogenes (e.g. ras, raf, neu, src, mos) 

down-regulate GJIC while several tumor suppressor genes can up-regulate GJIC (Na et al. 2000; 

Ruch et al. 1993; Zhang et al. 1994). Transfection of gap junction genes, connexins, into GJIC-

deficient tumor cells can restore GJIC, growth control and reduce tumorigenicity (Na et al. 
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2000). Previous studies from Trosko and Chang clearly suggest that dietary factors can modulate 

GJIC by inducing various signal transducing systems (Trosko and Chang 2001). The modulation 

can either down-regulate GJIC leading to tumor promotion or it can up-regulate GJIC and lead to 

suppression of the initiated cells. Hence, increasing gap junction activity or enhancing GJIC in 

tumor cells provides the means to enhance anti-neoplastic therapies. The goal of our studies is to 

examine PQs that specifically activate GJIC activity and inhibit cancer cell growth. The results 

demonstrated that these small molecules may be the potential combinational therapeutic drugs 

for breast cancer. 

 

4.3 Materials and Methods 

 

4.3.1 Cell line and cell culture 

T47D human breast cancer cell line was purchased from American Type Culture 

Collection (Manassas, VA). Cells were grown in RPMI medium supplemented with 10% fetal 

bovine serum (Atlanta Biologicals, Lawrenceville, GA), 10% antibiotic-actinomycotic at 37°C 

with 5% CO2 in 75cm2 flasks. 

 

4.3.2 Western Blot Analysis  

  Cells were grown in serum supplemented RPMI media until they were 90% confluent in 

75 cm2 flasks. Cells were kept in starving media containing phenol red-free DMEM with 5% 

charcoal dextran stripped serum, overnight. Cells were dosed with 0, 10, 100, 200 and 500 nM of 

PQ1 for 24 hr. Cells were washed three times with cold PBS and then were harvested using lysis 

buffer (20 mM Tris pH 7.5, 0.5 mM EDTA, 0.5 mM EGTA, 0.5% Triton X-100) with 1:1000 

dilution of protease inhibitors (Sigma-Aldrich, Saint Louis, MO). Cell lysate was sonicated and 

centrifuged at 13,000 rpm for 30 min at 4ºC. Twenty-five µg of whole cell extract was resolved 

by 10% SDS-polyacrylamide gel electrophoresis (PAGE) and transferred to nitrocellulose 

membrane (Midwest Scientific, Saint Louis, MO). Nitrocellulose membrane was blocked in 5% 

milk for 1 hr at room temperature and then incubated with monoclonal mouse PKC α, 1:500 

(Santa Cruz Biotechnologies, Santa Cruz, CA), mouse Cx43, 1:500 (Fred Hutchinson, Seattle, 
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Washington), rabbit actin, 1:1,000 (Sigma-Aldrich, Saint Louis, MO). Western blots were 

detected by enhanced chemiluminescence detection reagents (Pierce, Rockford, Illinois, USA).   

 

4.3.3 Gap Junction Activity 

   For scrape load/ dye transfer (SL/DT) assay, cells were grown to 90% confluency on 

cover slips, dosed with 10, 100, 200 and 500 nM of PQ 1 for 40 min. After that cells were 

washed three times with PBS. The 2.5 µl of 1% (w/v) Lucifer yellow and 0.75% (w/v) of 

Rhodamine dextran was mixed and added in the center of the coverslip. Two cuts crossing each 

other in the center of the coverslip were made. After 3 min, cells were washed three times with 

PBS and incubated at 37°C in tissue culture media for additional 20 min. The cells were then 

washed with PBS three times and fixed in 2.5% paraformaldehyde for 10 min. Cells were 

mounted on a slide, sealed and visualized under a fluorescence microscope at 10X objective.  

 

4.3.4 Measurement of transepithelial electrical resistance 

  Cells were grown to 100% confluency on a 12-well transwell (BD Biosciences, San Jose, 

CA) and treated with 0, 100, 200, and 500 nM PQ1 for 48 hr. Transepithelial electrical resistance 

(TEER) of the T47D monolayers was measured by a high-precision. Resulting voltages were 

recorded with the aid of a differential amplifier with a high input resistance. Data were corrected 

for well area (given in Ω• cm2).  

 

4.3.5 Colony Growth Using Soft Agar 

   Cells were treated with 0, 10, 100, 200 and 500 nM PQ1 for 7 days. Base agar plates 

were prepared containing 0.8% agar and 0.4% agar in Ham’s F12. Cells (5 × 104 cells/33 mm2 

well) were suspended in 100 µl of Ham’s F12 with 0.4% agar and plated. These plates were 

maintained at 37°C for 7 days and examined for the presence of colonies. Individual colonies of 

50 µm or greater were examined.   
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4.3.6 MTT assay 

   MTT (3-(4, 5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay was 

performed with adherent cell cultures in a 96-well plate dosed with 0, 10, 100, 200, and 500 nM 

PQ 1 for 24 hr. Solution containing MTT was metabolized by the cells (incubation period 1 ½ 

hr). MTT is a tetrazolium salt (yellowish) cleaved to formazan crystals by succinate 

dehydrogenase enzyme, active in viable cells. The more viable cells in a well, the more formazan 

dye will be produced. After solubilization of the MTT crystals with the 0.35 N HCl 

solubilization solution, the amount of dye will be measured spectrophotometrically at 540 nm.  

 

4.3.7 General Methods for Organic Synthesis- Dr Hua’s Lab 

 NMR spectra were obtained at 400 MHz for 1H and 100 MHz for 13C in CDCl3, and 

reported in ppm. High-resolution mass spectra were obtained from ESI spectrometers. ESI 

spectra were acquired on a LCT Premier (Waters Corp., Milford, MA) time of flight mass 

spectrometer. Satisfactory 1H and 13C NMR spectra and high-resolution mass spectra of 

compounds PQ1, PQ2, PQ3, PQ4, PQ5, and 10 were obtained. Compounds PQ2–PQ5 have been 

reported in the literature (LaMontagne et al. 1982a; LaMontagne et al. 1982b; Lauer 1946).   

Compound PQ3 (LaMontagne et al. 1982b) was treated with 1 equivalent of 3-

iodopropylphthalimide (compound 9) and 1 equivalent of sodium bicarbonate in DMF at 80°C 

for 48 hr. After aqueous work-up and silica gel column chromatographic separation, a 72% yield 

(based on reacted PQ3) of compound 10 was obtained along with 77% recovery of PQ3. 

Compound 10 was heated under reflux (85°C) with an excess of hydrazine (65%) in ethanol for 3 

hours. After aqueous work-up (dilution with 10% aqueous KOH solution and extraction with 

dichloromethane) and silica gel column chromatographic separation, an 80% yield of PQ1 was 

obtained. 

 

4.3.8 Statistical analysis 

 The level of significance (see * in figure legends) was considered at p < 0.05 using 

Student's t-test analysis. All data are presented as mean ± S.D. of at least three independent 

experiments from different batches of cultures. 
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4.4 Results  

4.4.1 Synthesis of PQ1 

Intercellular communication in many organs is maintained via GJIC. Several GJIC 

enhancers have been reported; however, an effective clinical drug targeting gap junction is not 

available at this time. Our goal was to collaborate with Dr. Hua to synthesize small molecules 

that specifically activate GJIC activity and inhibit cancer cell growth. Dr. Hua’s lab designed 

novel substituted quinolines using computational docking studies, and demonstrated their 

enhancement of GJs activities and growth inhibitory effect on human breast cancer cells. The 

structures of substituted quinolines are shown in Figure 4.1 and the syntheses of PQs are 

described in Materials and Methods. PQ1 is predicted to have a high binding affinity for 

connexin via computational docking.  

 

 

 

 

Figure 4.1  Syntheses of PQ analogs.   
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PQs were synthesized via a modified procedure from 4-acetaminoanisole (compound 6). Results 

of the isolation of PQ1 are described in Materials and Methods. 

 

4.4.2 Effect of PQ1 on GJIC 

 

We tested the efficacy of compounds PQ1-PQ5 on GJIC by parachute assay in different 

cell lines – MDA-453, MCF-7, ZR75, MDA-231, and T47D cells (Appendix A.2, Figures S2-

S7). We found a significant increase in GJIC by PQ1 in T47D cells. Therefore, we chose to study 

the efficacy of PQ1 in T47D cells. We further tested the effect of PQ1 on the GJIC activity by 

another dye transfer method, SL/DT in T47D breast cancer cells. The results demonstrated that 

100, 200 and 500 nM of PQ1 show a significant increase in gap junction activity in T47D cells 

compared to controls, without PQ1 treatment and succinic acid, using scrape load/dye transfer 

assay (Figure 4.2A, top panel). Conversely, PQ1 has no effect on GJIC activity of human 

primary epithelial cells (HMEC, normal cells) compared to its controls (Figure 4.2A, bottom 

panel). The distance of dye transfer from section cut to the farthest cells with dye was measured. 

A graphical representation of three experiments indicates that 200 nM PQ1 causes an 8.5-fold 

increase in distance of dye transfer compared to control (Figure 4.2B). HMECs have uniform 

uptake of Lucifer yellow. This is due to the existing high level of gap junction activity in these 

normal cells.   
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Figure 4.2  Gap Junction Activity.  

A) T47D (Top panel), and A) HMEC cells (Bottom panel) were treated with 0, 100, 200, and 

500 nM PQ1 for 1 hr. Controls are media alone and succinic acid. Scrape load/dye transfer assay 

was performed as described in Materials and Methods. White dash lines indicate a cross section 

cut of initial dye. Lucifer yellow was used as a gap junctional dye and rhodamine-dextran was 

used to mark the cutting site. Fluorescence green indicates the passages of dye from the cutting 

site, showing increase of GJIC. B) Graphical presentation of three experiments shows the 

distance of dye transfer of T47D cells.   

 

4.4.3 Effect of PQ1 on tight junctions, colony growth assay and cell viability 

Furthermore, 100, 200, or 500 nM of PQ1 has no significant effect on tight junction ion 

permeability by using transepithelial electric resistance (TEER) compared to control (Figure 

4.3). This suggests that PQ1 enhances only affected gap junctional activity without having an 

effect on tight junction. These results demonstrated that PQ1 is sufficient to cause an increase in 

GJIC activity in SL/DT assay.   

 



85 

 

          

 

Figure 4.3  Effect of PQ1 on transepithelial electrical resistance (TEER).   

T47D cells were treated with 0, 100, 200, and 500 nM PQ1 for 48 hr. TEER assay was 

performed as described in Materials and Methods. TEER values of each treatment in KΩ/cm2 

were converted to relative percent of control.  

 

Various oncogenes (e.g. ras, raf, neu, src, mos) down-regulate GJIC while several tumor 

suppressor genes can up-regulate GJIC. Thus, we examined the effect of PQ1-upregulated gap 

junction activity in T47D colony growth formation. Cells were grown in soft agar to assess their 

capacity for anchorage-independent growth, which is a key feature of cell transformation. HMEC 

and T47D cells were treated with 10, 100, 1000, and 10,000 nM PQ1 for 7 days. A graphical 

presentation of three experiment results is presented in log scale of PQ1 concentration. The 

effect of PQ1 on T47D cells showed a significant inhibition of T47D cell colony growth 

compared to control (Figure 4.4). A 100 nM PQ1 inhibits 66% of colony growth compared to 

controls, without PQ1 treatment or 100 nM succinic acid. Interestingly, the same concentration 

(100 nM PQ1) has no effect on HMECs (data not shown). This suggests that 100 nM PQ1 can 

cause an increase in GJIC activity and subsequently can decrease colony growth of T47D cells.  
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Figure 4.4  Effect of Substituted Quinolines on T47D Cells.   

Base agar plates were prepared containing 0.8% agar and 0.4% agar in Ham’s F12. Cells (5 × 104 

cells/33 mm2 well) were suspended in 100 µl of Ham’s F12 with 0.4% agar and plated. These 

plates were maintained at 37°C for 7 days and examined for the presence of colonies. Individual 

colonies of 50 µm or greater were examined. T47D cells were treated with 1, 10 and 100 nM 

PQ1 and SA (succinic acid) as a solvent control. Individual colonies of 50 µm or greater were 

examined. Statistical significance, *p<0.05, of at least three experiments. 

 

We also determined the cytotoxicity of PQ1 in HMEC and T47D cells using MTT assay. 

Cells were treated with 10, 100, 200, 500, 1000 nM PQ1 for 24 hr. MTT assay was performed 

according to the manufacturer’s recommendations. A 200 nM PQ1 has 67% cell viability 

compared to controls (Figure 4.5). 1 µM PQ1 can further decrease cell viability to 50% in T47D 

cells. However, treatments of 100 and 200 nM PQ1 have 95% and 103% HMEC cell viability 

compared to control (data not shown). Thus, PQ1 has no cytotoxic effect to HMECs. 
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Figure 4.5  Effect of PQ1 on Cell Viability.   

T47D breast cancer cells were treated with various concentrations of PQ1 for 24 hr. MTT assay 

was performed with adherent cell cultures using a culture medium free of phenol red and of 

serum. Solution containing MTT was metabolized by the cells (incubation period 3 hr). After 

solubilization of the MTT crystals with the solubilization solution MTT, the amount of dye was 

measured spectrophotometrically at 570 nm. 

 

4.4.4 Effect of PQ1 on the expression of different connexins 

Furthermore, whole cell extract of PQ1 treatment was analyzed for the changes in gap 

junctional proteins, connexins. Cells were treated with 10, 100, 200, and 500 nM PQ1 for 24 hr. 

Western blot analysis was performed against Cx26, Cx32, and Cx43 (Figure 4.6). The results 

show that PQ1 has no effect on Cx26, Cx32, and Cx43 expression. Interestingly, a decrease in 

phosphorylated Cx43 was observed in 500 nM PQ1 treatment of T47D cells. Anti-tubulin was 

used as a loading control. These results suggest that PQ1 does not affect the expression of 

connexins but directly causes a decrease in phosphorylation of connexin.  
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Figure 4.6  Effect of PQ1 on the expression of different connexins in T47D cells.  

T47D cells were dosed with PQ1 for 24 hr. The Western blot analysis was performed as 

described in Materials and Methods. Whole cell extract was analysed for Cx43, Cx32, and Cx26.  

Experiment was performed at least three times.   

 

4.4.5 PQ1 causing apoptosis 

Mitochondrial damage in treatment of PQ1 was observed using electron microscopy (data 

not shown), suggesting that these cells are under stress and apoptotic conditions. We further 

examined the effect of PQ1 on apoptosis by detecting the active form of caspase 3. T47D cells 

were treated with 100, 500, and 1000 nM PQ1 for 24 hr. Western blot analysis was performed 

using active form of caspase 3 antibodies. A 200 nM PQ1 causes 1.5-fold increase of active 

caspase 3 compared to control (Figure 4.7). However, a decrease of caspase is observed at higher 

concentrations, a common effect in apoptotic protein expression. This is due to the cytotoxic 

response of the cells. A small pilot study was conducted to study the effect of PQ1 on T47D 

xenograft tumor growth in nude mice. However, statistical significance was not achieved as only 

three animals per group (control, PQ1-treated, and tamoxifen-treated) were included in the study. 

(A2, S 8-12) 
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Figure 4.7  Effect of PQ1 on Active Caspase 3.   

T47D cells were treated with 0, 200 nM, 500 nM and 1 µM PQ1 for 24 hr. Treatment with 

succinic acid was used as control. Western blot analysis was performed. Nitrocellulose 

membrane was blotted with the active form of caspase 3 antibodies (16 KDa). Actin acts as 

loading control. Graphical presentation of three experiments are presented with statistical 

significance, p<0.05. 

 

4.5 Conclusions  

Since an effective clinical drug targeting gap junction is not available presently, Dr. Hua 

used computational docking method to search for chemicals that bind to connexon. After 

screening several classes of molecules, substituted quinolines were focused on based on their 

relative binding constants and bioactivities. Quinolines are known for their anti-malarial 

[Wiesner 2003], antibacterial (Veyssier 2005) and anticancer (Boyle 2006; Cnubben 2005; 

Kawase 2003; Levitt 1999) activities. Recently, quinolines were examined in ATP-binding 

cassette drug transporter inhibition (Cnubben 2005), targeting tumor hypoxia (Boyle 2006), 

modulation of multidrug resistance (Kawase 2003), and tyrosine kinase inhibition (Levitt 1999). 

Beside activation of GJIC, quinolines may provide additional beneficial effects. 

Over forty years, the loss of GJIC has been described in cancer cells and led to a 

hypothesis that defects in GJIC is involved in the carcinogenesis process (Loewenstein and 
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Kanno 1966). Numerous reports have been confirmed that gap junctions are frequently decreased 

or absent in cancer cells. Co-culture of tumor cells with normal cells, or with connexin-

overexpressing cells, results in growth retardation of neoplastic component by the establishment 

of functional communication as observed with dye transfer (Zhu et al. 1992). This retardation of 

tumor growth could be prevented by co-culturing transformed cells with junctional competent 

normal cells transfected with a connexin-specific antisense reagent (Goldberg et al. 1994). Thus, 

these results indicate that signals from adjacent normal cells can reverse a malignant phenotype 

and that their failure to accomplish this is due to a lack of GJIC.   

The relationship between cell communication and cell growth has been established that 

the capability of cells to communicate through gap junction is negatively related to their growth 

activity. We have demonstrated that increased GJIC activity in T47D cells can cause a decrease 

in cell growth (Figures 4.2 and 4.3). These results were also observed by Saez et al. (Saez et al. 

2003) that an increase in GJIC is directly related to the anti-tumor effect in human mammary 

cancer cell line. Interestingly, PQ1 only affects T47D breast cancer cells and not normal 

mammary epithelial cells. In normal tissues, gap junctions are active and well-regulated between 

the cytoplasm of contacting cells (Loewenstein 1979; Loewenstein 1981; Yamasaki and Naus 

1996). Through the passage of signaling molecules, GJIC contributes to the regulation of cell 

proliferation, differentiation, cell death, and homeostatic maintenance. Numerous studies clearly 

show that altered GJIC is involved in cell cycle progression. In most cell types, GJIC is reduced 

in the late G1, S and M phases (Ruch 1994). The specific cell cycle state in which GJIC and/or 

connexin expression are modified, however, depends on both the cell type and the nature of the 

connexin species being investigated. We found that PQ1 has no effect on connexin expression; 

however, it causes a decrease in phosphorylation of connexin (Figure 4.6). Upregulation of GJIC 

activity is dependent on the unphosphorylated connexins. Thus the observation is consistent with 

the increase of GJIC activity (Figure 4.2) and a decrease of phosphorylation of Cx43 (Figure 

4.6). 

In summary, PQ1 specifically enhances GJIC activity and does not affect the 

transepithelial electrical resistance of T47D cells. An increase of PQ1-induced GJIC activity 

causes a significant decrease of colony cell growth; however, PQ1 has no effect on primary 

mammary epithelial cells. Since normal epithelial cells have well-regulated gap junction 

channels, the change of GJIC activity in these cells was not observed. The decrease of cell 
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viability and colony cell growth is subsequently of PQ1-induced apoptosis as the result of 

upregulation of active caspase 3. Thus, PQ1 is the first known compound to enhance GJIC 

activity in T47D breast cancer cells. 
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Chapter 5 -  Combinational treatment of PQ1 and tamoxifen 

induces increased apoptosis in T47D breast cancer cells 

5.1 Abstract  

Tamoxifen is a drug of choice for endocrine-responsive breast tumor patients. However, 

tamoxifen resistance has become a major concern for the treatment of breast cancer. 

Combinational therapies of tamoxifen and different drugs are being frequently studied. In the 

current study, we tested the efficacy of PQ1 (code name) in combination with tamoxifen in T47D 

cells. Colony growth assay was performed using soft agar to measure the colony growth while 

cell proliferation was measured by MTT assay in T47D cells. Confocal microscopy was used to 

measure Ki67, survivin and BAX expression along with western blot. APO-BrdU labeling 

indicated the apoptosis induced by the treatment in T47D cells. We observed a 55% decrease in 

the colony growth in the presence of combination of PQ1 and tamoxifen; while tamoxifen alone 

has little effects. Combination of 10 µM tamoxifen and PQ1 200 nM or 500 nM resulted in only 

16% cell viability compared to controls at 48 hr in T47D cells by MTT assay. We found a 

significant increase in BAX protein at 1 hr in the presence of 500 nM PQ1 alone, 10 µM 

tamoxifen alone and combination of PQ1 and tamoxifen. A 2-fold increase was observed in 

active caspase 3 in the presence of combinational treatment of 10 µM tamoxifen and 200 or 500 

nM PQ1. Also, flow cytometric analysis showed a 50% increase in the number of apoptotic cells 

in the presence of combination of tamoxifen and PQ1 compared to the control.  Furthermore, the 

results show that the expression of survivin is not affected by PQ1 (200 or 500 nM) whereas 

tamoxifen alone or in combination with PQ1 significantly reduces survival of T47D cells. We 

observed a significant increase in BAX expression, caspase 3 activation and DNA fragmentation 

in combinational treatment of tamoxifen and PQ1 as compared to their individual treatments.  

Tamoxifen alone and combination with PQ1 showed a decrease in the survivin expression while 

PQ1 alone shows to be independent of survivin-mediated pathway. The combinational treatment 

of tamoxifen and PQ1 showed a significant decrease in cell viability compared to tamoxifen 

treatment alone. The present study demonstrates for the first time that combinational treatment of 
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tamoxifen and PQ1 (gap junctional activator) can be used to potentiate apoptosis of T47D human 

breast cancer cells. This could alter either the length or dose of tamoxifen clinically used for 

breast cancer patients. 

 

5.2 Introduction  

Tamoxifen is one of the most commonly and successfully used chemotherapeutic agent 

for the treatment of endocrine responsive breast cancers (Clarke et al., 2001). Tamoxifen is 

better known as a selective estrogen receptor modulator (SERM) because of its multiple 

activities (Osborne, 1998). Clinical experience with this drug likely now exceeds 10 million 

patient years. Unfortunately, in most patients, cancers that initially respond to tamoxifen 

gradually acquire resistance to the treatment and require alternative systemic therapies (Berstein 

et al., 2003). Despite extensive experience with this drug, the precise mechanisms that confer 

resistance remain unknown. A number of mechanisms have been proposed to control 

antiestrogen resistance in ER+ breast cancer (Riggins et al., 2007), but many details of these 

mechanisms continue to be unclear (Riggins et al., 2008). These include changes in the host 

immunity, host endocrinology, or antiestrogen pharmacokinetics (Clarke et al., 2001). Under 

host endocrinology, some tumors spontaneously become hormone-independent despite the 

presence of estrogen receptors; in others, tumors that are initially ER + become ER- over time 

(Hull et al., 1983; Encarnacion et al., 1993). Numerous trials have been conducted using the 

combinational treatment of chemotherapy plus tamoxifen but the results have been controversial 

(Mouridsen et al., 1988; Goldhirsch A, 1989; Fisher et al., 1990; Rivkin et al., 1994; group, 

1997; Pritchard et al., 1997).  

Gap junctions are the intercellular plasma membrane channels which allow the passage of 

small molecules from one cell to other. The flux of molecules through the channels is called the 

gap junctional intercellular communication (GJIC) (Vinken et al., 2006). GJIC exists in most of 

the mammalian cells and is involved in cell growth, differentiation, and homeostasis. Since 

decades it has been shown that the mitotic cells in the cell cycle show decreased GJIC (PO 

Lague, 1970; Goodall and Maro, 1986; Stein et al., 1992). Therefore, it leads to a state that the 

cell-cell communication is negatively related to the capability of the cell to grow. Due to its 

effect on the cell growth, many studies were conducted to find a co-relation between the GJIC 
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and cancer. Many in vitro studies showed that tumor-promoting agents lead to a decrease in 

GJIC (Murray and Fitzgerald, 1979; Yotti et al., 1979; Enomoto et al., 1981; Trosko, 1983) 

while in vivo studies supported the in vitro data (Sugie et al., 1987; Mesnil et al., 1988). Protein 

and mRNA analysis showed a decrease in connexin expression in preneoplastic lesions as well as 

hepatocellular carcinomas (Fitzgerald et al., 1989; Neveu MJ, 1989).  

In our previous study we found a gap junctional activator, substituted quinolines (PQ1). 

We showed that PQ1 (200 nM) showed a 30% increase in the GJIC in T47D cells; however, 

there was no effect of PQ1 treatment on GJIC in normal mammary epithelial cells. In addition to 

an increase in GJIC, 80-95% growth attenuation was observed by PQ1 in colony growth assay. 

Moreover, an increase in caspase 3 with PQ-treated cells was observed, suggesting a possible 

involvement in apoptosis ( Gakhar et al., 2008).  

The antitumor effects of tamoxifen are thought to be due to its antiestrogenic activity, 

mediated by competitive inhibition of estrogen binding to estrogen receptors (Osborne, 1996). 

The inhibition of expression of estrogen-regulated genes causes decrease in cell growth and 

proliferation (Langan Fahey SM, 1994). Tamoxifen may also directly affect the programmed-cell 

death (Ellis et al., 1997). Our previous studies conducted on PQ1 have also shown an increase in 

caspase-3 and a decrease in breast tumor growth. Therefore, we examined the effect of 

combinational treatment of tamoxifen and the gap junctional activator, PQ1 on breast cancer 

cells. In the present study, we found an increase in T47D human breast cancer cell death 

observed by different mechanisms in the presence of combinational therapy of PQ1 and 

tamoxifen. A significant increase in BAX and caspase 3 followed by an increased apoptosis by 

APO-BrdU incorporation at different dosing time in the presence of both tamoxifen and PQ1 was 

observed. Furthermore, a decrease in the colony growth, MTT assay and an increased DNA 

fragmentation were observed in the combinational treatment of PQ1 and tamoxifen. 

 

5.3 Materials and Methods 
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5.3.1 Cell Lines and Culture 

 The T47D human breast cancer cell line was purchased from American Type Cell 

Culture (ATCC, Manassas, VA). Cells were grown in RPMI medium supplemented with 10% 

fetal bovine serum (Atlanta Biologicals, Lawrenceville, GA), 10% antibiotic-antimycotic at 37°C 

with 5% CO2 in 75 cm2 flasks. Tamoxifen citrate was purchased from Sigma (Saint Louis, MO). 

 

5.3.2 Cell Morphology 

 Cells (5,000 cells/ml) were seeded in a 6-well plate and dosed with 200 nM PQ1 alone, 

10 µM tamoxifen alone, combination of tamoxifen and PQ1, and combination of tamoxifen and 

estrogen (10 nM) for 24, 48 and 72 hr. Cells were observed under a microscope at 40X objective.  

 

5.3.3 Colony Growth Using Soft Agar Assay 

Cells were treated with ethanol, 200 nM PQ1, 10 µM tamoxifen, and combination of 200 

nM PQ1 and 10 µM tamoxifen for 7 days. Base agar plates were prepared containing 0.8% agar 

and 0.4% agar in RPMI. Cells (5 × 104 cells/33 mm2 well) were suspended in 100 µl of RPMI 

with 0.4% agar and plated. These plates were maintained at 37°C for 7 days and examined for 

the presence of colonies. Individual colonies of 50 µm or greater were examined. 

 

5.3.4 MTT Assay 

The MTT [3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay was 

performed with cell cultures in a 96-well plate incubated with 200 and 500 nM PQ1, 10 µM 

tamoxifen alone, and combination of 10 µM tamoxifen and 200 or 500 nM PQ1 for 1, 48 and 72 

hr. The MTT solution was metabolized by the cells (incubation period 1 hr) at 37°C. MTT is a 

tetrazolium salt (yellowish) cleaved to formazan crystals by succinate dehydrogenase. In viable 

cells, more formazan dye will be produced. After solubilization of MTT crystals with the 0.35 N 

HCl solubilization solution, dye was measured spectrophotometrically at 570 nm with the 

background subtraction at 650 nm. 
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5.3.5 Western Blot Analysis 

Cells were grown in serum-supplemented RPMI media until they were 90% confluent in 

25-cm2 flasks. Cells were incubated with PQ1 alone, 10 µM tamoxifen alone, and combination 

of tamoxifen and PQ1 for 1, 48 and 72 hr. Cells were washed 3 times with cold PBS and 

harvested using cell lysis buffer (20 mM Tris pH 7.5, 0.5 mM EDTA, 0.5 mM EGTA, 0.5% 

Triton X-100) with 1:1,000 dilution of protease inhibitors (Sigma-Aldrich, St. Louis, MO) for 10 

min followed by rotation on a shaker for 30 min at 4°C. Cells were vortexed and centrifuged at 

13,000 rpm for 30 min at 4°C. Forty µg of whole cell extract was resolved by 10% SDS-

polyacrylamide gel electrophoresis (PAGE) and transferred to nitrocellulose membrane 

(Midwest Scientific, St. Louis, MO). Nitrocellulose membrane was blocked in 5% milk for 1 hr 

at room temperature and incubated with polyclonal rabbit Bcl2, (1:200), mouse BAX (1:200, 

Santa Cruz Biotechnologies, Santa Cruz, CA), polyclonal rabbit caspase 3 (1:500, BD 

Pharmingen, San Diego, CA), polyclonal rabbit survivin (1:1,000, Novus Biologicals, CO, USA) 

and  polyclonal rabbit actin (1:1,000, Sigma-Aldrich, Saint Louis, MO). Western blots were 

detected by enhanced chemiluminescence (ECL) detection (Amersham, Pittsburg, PA). 

 

5.3.6 Immunofluorescence and Confocal Microscopy 

Cells were grown on coverslips in 6-well plates in RPMI media. Cells were treated with 

PQ1 alone, tamoxifen alone, and combination of tamoxifen and PQ1 for 1, 48 and 72 hr. Cells 

were fixed with 2% paraformaldehyde for 20 min and then neutralized with 50 mM glycine for 5 

min. The cells were lysed with 0.1% Triton X-100 for additional 10 min. After washing with 

PBS, cells were blocked with 2.5% BSA in PBS for 2 hr and then incubated with primary 

antibodies,  rabbit Ki67 (1:250, Santa Cruz Biotechnologies, Santa Cruz, CA) and  mouse BAX 

(1: 50, Santa Cruz, CA), rabbit survivin (1:250, Novus Biologicals, CO, USA) for 15 hr at 4°C. 

Following this step, cells were incubated in DAPI for a minute and then incubated with anti-

mouse and anti-rabbit Alexa fluor 488 and 568 (Molecular probes, Eugene, OR, USA) for 4 hr at 

4°C, respectively. Cells were analyzed for nuclear morphology by staining with DAPI. Samples 

were sealed and analyzed by a confocal microscope (Carl Zeiss LSM 510 META, Narashige, 

MN). 
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5.3.7 Apoptosis Assay by Flow Cytometry 

Cells were grown in a 35 mm2 dish and then dosed with PQ1 alone, tamoxifen alone, and 

combination of tamoxifen and PQ1 for 1, 48 and 72 hr. Cells were trypsinized and stained with 

APO-BrdU TUNEL Assay kit (Molecular Probes # A23210, Carlsbad, CA) according to the 

manufacturer’s protocol. APO-BrdU binding was analyzed by flow cytometry using a BD 

FACSCalibur system and the data obtained was analyzed using the CellQuest software. 

5.4 Results and Discussion  

 

5.4.1 Current  treatment with tamoxifen 

Breast cancer is the second leading cause of cancer deaths in North American women. 

Tamoxifen has been the single agent of choice in treating hormone responsive breast cancer 

cases since 1971. Even though tamoxifen has been shown to be 50% more effective than placebo 

in preventing the occurrence of breast cancer in high-risk population, the risk of developing 

uterine cancer has increased by more than 40% (Mandlekar and Kong, 2001). The line of 

treatment with tamoxifen includes the usage of the drug for at least 5 years in most of the 

patients. Long-term treatment with tamoxifen induces tamoxifen resistance; however, the 

mechanism of which is still being elucidated (Osborne, 1998). Therefore, it is necessary to 

develop effective modalities to enhance the efficacy of tamoxifen. In our present study we 

propose to observe the combinational effect of PQ1 and tamoxifen. PQ1 has been shown to be a 

gap junctional activator and induced cell death in both in vitro and in vivo treatments ( Gakhar et 

al., 2008). Tamoxifen has also shown to induce apoptotic cell death both in vitro and in vivo 

(Perry et al., 1995; Gelmann, 1996; Martin et al., 1996). This effect was concentration-

dependent. At nanomolar (nM) concentrations of tamoxifen, only growth arrest occurs whereas 

at micromolar (µM) concentrations induction of cell death was observed in cell cultures. We 

observed the effect of both PQ1 and 10 µM tamoxifen on T47D human breast cancer cell line. 

Our previous study suggested a tremendous increase in GJIC in the presence of PQ1 in T47D 

cells compared to other breast cancer cell lines (MCF7, MDA231, MDA453 and ZR75) ( Gakhar 

et al., 2008).  
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5.4.2 PQ1 and tamoxifen affects cell morphology, proliferation and colony growth in 

T47D cells 

Cell morphology was tremendously affected in the presence of 200 nM PQ1 for 24, 48 

and 72 hr in which cells were being detached from the plate. In the presence of 10 µM tamoxifen 

for 24, 48, and 72 hr, cells showed a marked change in the morphology, including shrinkage, 

irregular shape and some cells were floating in the media (Figure 5.1 A, B, C). The combination 

of PQ1 and tamoxifen showed the complete loss of structure of cells as well. Cells partially 

regained back their structure in the presence of 10 µM tamoxifen and 10 nM 17β-estradiol. 

These results suggest that the combinational treatment of tamoxifen and PQ1 can potentiate the 

effect of tamoxifen.  
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Figure 5.1  Effect of PQ1 and tamoxifen on cell morphology in T47D cells. 
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A) T47D cells were seeded in a 6-well plate for 24 hr in the presence of 200 nM PQ1, 10 µM 

tamoxifen, combination of tamoxifen and PQ1, and the combination of tamoxifen and 10 nM 

17β-estradiol (an antagonist for tamoxifen action). B) Cells were dosed for 48 hrs with the same 

treatment as above. C) T47D cells were treated with the same treatment as in (A) for 72 hr. 

Ethanol was used as a solvent control for tamoxifen at different time intervals. In the presence of 

PQ1 and tamoxifen alone and in combination, the cell structure was seen to be lost significantly 

at 48 and 72 hrs. At 10 nM 17β-estradiol and tamoxifen, a partial restoration in the cell structure 

was observed at 48 and 72 hr compared to full restoration at 24 hr. Tam=tamoxifen 

 

Colony growth assay measures the colony formation in soft agar. Soft agar is used to 

measure the anchorage-independence (feature of cancerous cells) of the cells. We observed a 

55% decrease in the colony growth in the presence of combination of PQ1 and tamoxifen (Figure 

5.2). This suggests that the combinational treatment of tamoxifen and PQ1 is sufficient to cause a 

significant decrease of colony growth at 7-day incubation compared to tamoxifen or PQ1 

treatment alone. Ethanol treatment, a solvent control, shows no effect in colony growth of T47D 

cells.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2  Combination of 200 nM PQ1 and tamoxifen decreases the colony growth in 

T47D cells. 

Cells were dosed with 200 nM PQ1, 10 µM tamoxifen and combination of both for 7 days in a 

soft agar. After 7 days, colonies > 50 µm were counted. Combination of PQ1 and tamoxifen 
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resulted in a 55% decrease in the colony growth compared to 20% and 10% decrease in the 

presence of 200 nM PQ1 and tamoxifen alone, respectively. Graphical representation of three 

experiments with ± SD and statistical significance *p < 0.05. Note that the significance *p< 0.05 

was found in all the treatments compared to control at 48 and 72 hr. 

 

In MTT assay, 200 and 500 nM PQ1 showed a 60% and 50% cell viability at 48 hr, 

respectively (Figure 5.3). Tamoxifen (10 µM) showed 30% cell viability whereas combination of 

tamoxifen and PQ1 resulted in only 16% cell viability at 48 hr compared to controls at 48 hr in 

T47D cells. Both tamoxifen (10 µM) and PQ1 (200 and 500 nM) resulted in a decrease in cell 

growth by 50% compared to tamoxifen treatment alone at 48 hr. At 72 hr, combinational 

treatment of tamoxifen and PQ1 (200 and 500 nM) resulted in 20% and 13% cell viability, 

respectively. Thus, 48 hr is sufficient to cause a significant decrease with combinational 

treatment of tamoxifen and PQ1. Interestingly, cell viability was not affected by either 200 or 

500 nM PQ1 at 1 hr; however, tamoxifen treatment alone resulted in 28% decrease in cell 

growth. The cell viability was greatly affected by MTT assay at 48 hr compared to 72 hr in the 

presence of PQ1 alone or tamoxifen alone or their combinations. 

 

 

 

Figure 5.3  MTT assay to measure the T47D cell proliferation in the presence of tamoxifen 

and PQ1. 
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Cells were treated with 200 and 500 nM PQ1 and 10 µM tamoxifen and combination of 

tamoxifen and either 200 or 500 nM PQ1 for 1, 48 and 72 hr. At 1 hr, 50 % decrease in cell 

growth was observed in the presence of tamoxifen and 500 nM PQ1. At 48 hr, PQ1 200 and 500 

nM alone, tamoxifen alone, combination of tamoxifen and 200 nM PQ1, and combination of 

tamoxifen and 500 nM PQ1 showed a cell viability of 60, 50, 30, 16, and 16 %, respectively. At 

72 hr the combination of both tamoxifen and either PQ1 200 or 500 nM resulted in 20% and 13% 

cell viability, showing no further decrease compared to 48 hr. Graphical representation of three 

experiments with ± SD and statistical significance *p < 0.005 for 48 hr and **p < 0.05 for 72 hr . 

Note the *p values indicate the significance between the tamoxifen treatment alone or with PQ1 

combination. 

 

5.4.3 Tamoxifen and PQ1 affecting Ki67 expression 

The expression of proteins in some instances is measured in symptomatic breast cancer to 

identify the prognostic factors which are associated with the biological behavior of individual 

tumors. Ki67 is a nuclear protein widely used as a marker for cell proliferation. Tamoxifen has 

been shown to decrease the expression of Ki67 in breast cancer patients and in breast cancer cell 

lines (Clarke et al. 1993). Therefore, the effect of combinational treatment of tamoxifen and PQ1 

on Ki67 staining in T47D cells was measured. Ki67 staining was decreased in the presence of 

200 nM PQ1 at 24, 48 and 72 hr (Figure 5.4). In the presence of tamoxifen alone, no Ki67 

staining was observed at 24, 48, and 72 hr. Combinational treatment of tamoxifen and PQ1 also 

showed no Ki67 staining whereas combinational treatment of estrogen and tamoxifen showed an 

expression of Ki67 suggesting that estrogen can partially antagonize the effect of tamoxifen. 

These results suggest that PQ1 has an effect on Ki67 staining and it does not antagonize the 

effect of tamoxifen when used in combination while estrogen can reverse the effect of tamoxifen. 

Furthermore, PQ1 clearly has an effect on proliferation of T47D cells. 
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Figure 5.4  Confocal Microscopy showing the effect of PQ1 and tamoxifen on Ki67 

expression. 

Cells were treated with 200 nM PQ1, 10 µM tamoxifen, combination of 200nM PQ1 and 

tamoxifen, and combination of 10 nM 17β-estradiol for 24, 48 and 72 hr. Ethanol was used as a 

solvent control for tamoxifen. Cells treated with 200 nM PQ1, tamoxifen or combination of 

tamoxifen and PQ1 showed a tremendous decrease in Ki67 expression. 17β-estradiol and 

tamoxifen partially restored the expression of Ki67. 

 

5.4.4 Effect of PQ1 and tamoxifen on apoptotic proteins 

Programmed cell death, or apoptosis occurs either by activation of the death receptors or 

by a breach in the mitochondrial membrane integrity. Cytochrome C, a key player in induction of 

apoptosis cascade, is released from the inside of the mitochondria into the cytosol of the cell by 

the interaction of two important proteins involved in apoptosis, BAX and Bcl2. Upon apoptotic 

signals, proapoptotic protein, BAX gets activated while antiapoptotic proteins like Bcl2 prevent 

apoptosis by heterodimerization with BAX (Otter et al., 1998; Broker et al., 2005). Overall, the 

ratio of BAX and Bcl2 determines the integrity of the mitochondrial membrane.  In the present 

study, we conducted a time-dependent study by treating cells with PQ1 and tamoxifen in 

combination and alone for 1, 48 and 72 hr. We found a significant increase in BAX protein at 1 

hr in the presence of 500 nM PQ1 alone, tamoxifen alone and combination of PQ1 and 

tamoxifen (Figure 5.5A). We also observed a decrease in Bcl2 in the presence of tamoxifen 

alone and in combination of tamoxifen and PQ1 at 1 hr. At 48 hr, a significant decrease was seen 

in Bcl2 expression at 500 nM PQ1 and combination of tamoxifen and PQ1. Also, there was a 

significant increase in BAX in combinational treatment at 48 hr. Zhang et al. showed a decrease 

in Bcl2 but no effect on BAX in MCF-7 cells in the presence of 10 µM tamoxifen at 72 hr 

(Zhang et al., 1999). We found that at 72 hr, BAX and Bcl2 were significantly increased and 

decreased in the presence of tamoxifen and combination of tamoxifen and either PQ1 200 or 500 

nM, respectively. These results implicate that the combinational treatment not only significantly 

increases BAX but also decreases Bcl2. The ratio of Bcl2 and BAX is decreased significantly at 

1 hr in the presence of PQ1 alone and tamoxifen alone or in combination. Therefore, it indicates 
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that PQ1 has a rapid action on BAX activation. The effect on reduction of Bcl2 expression is 

relatively slow, staying constant at 48 hr before increasing again at 72 hr. 

A.                                                                                    B. 

 

 

Figure 5.5  Expression of proteins involved in apoptosis pathway- BAX, caspase 3, Bcl2 and 

survivin. 

A) Bcl2 and BAX levels were measured in cells were treated with 200 and 500 nM PQ1 and 

10µM tamoxifen and combination of tamoxifen with 200 or 500 nM PQ1 for 1, 48 and 72 hr. A 

significant increase in BAX was observed at all the treatments compared to control. Survivin 

measured for the same treatments at 1, 48 and 72 hr. A significant decrease in survivin was 



110 

 

observed in the presence of tamoxifen alone and in combination with both 200 and 500 nM PQ1 

at 48 hr. However, no effect on survivin was seen in the presence of 200 and 500 nM PQ1 alone. 

B) Caspase 3 expression was measured for the same treatments at 1, 48 and 72 hr. Histogram 

showing the changes observed in active caspase 3 at 1, 48 and 72 hr with different treatments. A 

2-fold increase was seen at 48 and 72 hr in the presence of combination of tamoxifen with 200 

and 500 nM PQ1. A histogram of three experiments with ± SD and statistical significance *p< 

0.05 for 48 hr and **p< 0.05 for 72 hr. Actin was used as a loading control for all the proteins. 

 

After BAX activation, a cascade of events driven primarily by the activation of 

proteolytic caspases results in the processing of intracellular structural proteins and regulatory 

enzymes that culminates in apoptotic cell death (Zhang A, 2004). Caspase 3 activation, an 

executioner caspase, is considered to be one of the last steps involved in the apoptosis cascade 

pathway (Mandlekar et al., 2000). Therefore, we examined the effect of combination of 

tamoxifen and PQ1 on caspase 3 activation. Interestingly, we did not find activation of caspase 3 

at 1 hr (Figure 5.5B). However, there was a significant increase in caspase 3 at 48 and 72 hr in 

the presence of PQ1 alone, tamoxifen alone and in combination of tamoxifen and PQ1 indicating 

caspase 3 activation takes time and stays at least through 72 hr. A 50% increase in active caspase 

3 was observed at 200 and 500 nM PQ1 at 72 hr. A 2-fold increase was observed in active 

caspase 3 both in the presence of combinational treatment of tamoxifen and 200 nM PQ1 and 

tamoxifen and 500 nM PQ1. This suggests that combination of both PQ1 and tamoxifen results 

in increased T47D cell death.  

In the present study, we also observed the effect of PQ1 and tamoxifen on the inhibition 

of apoptosis (IAP) protein, survivin (a group of proteins involved in inhibition of caspase 3, 7, 

and 9) (Altieri, 2003; Gazzaniga et al., 2003). Increase in expression of surviving is believed to 

protect cells against a possible default induction of apoptosis in the case of aberrant mitosis (Li et 

al., 1998). Many studies on clinical specimen have shown that survivin expression is invariably 

upregulated in human cancers and is associated with resistance to chemotherapy linked to poor 

prognosis, suggesting that surviving modulates the survival of cancer cells (Yamamoto et al., 

2008). Gazzaniga et al. found that survivin cannot be used as a prognostic factor for the relapse 

of superficial bladder cancer (Gazzaniga et al., 2003). However, in pre-clinical bladder tumor 

models, inhibition of survivin expression and/or function has been shown to impede tumor cell 
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proliferation, and markedly induce spontaneous or chemotherapy induced apoptosis (Margulis et 

al., 2008). We found no effect on survivin at 1 hr (Figure 5.5A); however, at 48 and 72 hr we 

found a tremendous decrease in survivin expression in the treatment of tamoxifen alone and 

combinational treatment of tamoxifen and PQ1 (200 or 500 nM). This suggests that tamoxifen 

decreases the survivin expression whereas PQ1 alone has no effect on survivin expression in 

T47D cells up to 72 hrs.  

We also observed survivin and BAX in T47D cells at 1, 48 and 72 hr by confocal 

microscopy. We found a nuclear localization of survivin and cytoplasmic as well as nuclear 

localization of BAX (Figure 5.6A, B). The confocal microscopy results showed the absence of 

survivin in tamoxifen treated cells at 48 and 72 hr. 

 

5.4.5 Measurement of Apoptosis by Nuclear Morphology and Flow Cytometry 

The effect of tamoxifen and PQ1 on the nuclear staining by using DAPI was measured. 

Apoptosis is characterized by morphologic changes such as shrinkage of the cell, condensation 

of chromatin, and disintegration of the cell into small fragments, apoptotic bodies (Kerr et al., 

1972). In the present study, we found more cells undergoing the process of apoptosis exhibited 

by blebbing, and fragmentation in the presence of PQ1 and tamoxifen alone and in combination 

(data not shown). APO-BrdU TUNEL assay kit was used to detect the DNA fragmentation of 

apoptotic cells. In apoptosis, DNA fragmentation exposes 3’-OH groups at which 

deoxynucleotidyl transferase (TdT) can add deoxyribonucleotides. 5-bromo-2’-deoxyuridine 5’-

triphosphate (BrdUTP) is an analog of deoxythymidine which gets incorporated at the 3’-OH 

group. We found an increase in the BrdUTP incorporation in the presence of PQ1 and tamoxifen 

alone and in combination at 48 and 72 hr (Figure 5.7). A 50% increase in apoptotic cells was 

observed at 48 and 72 hr in the presence of combinational treatment of tamoxifen and PQ1. 

There was no effect on the apoptosis in the presence of PQ1 or tamoxifen at 1 hr. Even though 

the apoptosis cascade starts in an hour shown by an increase in BAX and a decrease in Bcl2, it 

requires > 1 hr for the activation of caspases and DNA damage. 
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Figure 5.6  Confocal microscopy showing the expression of survivin and BAX proteins. 

A) Cells were treated with 200 and 500 nM PQ1 and 10 µM tamoxifen and combination of 

tamoxifen and either 200 or 500 nM PQ1 for 1, 48 and 72 hr. Tamoxifen treatment resulted in a 

decrease in survivin expression. Cells were stained with antirabbit Alexa fluor 568. B) Cells 
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were treated the same way as in (A); however; expression of BAX protein was observed using 

mouse secondary Alexa fluor 488 antibody. Cells were visualized by a confocal microscope 

(Carl Zeiss LSM 510 META). An increase in BAX was observed in the presence of tamoxifen.  

 

The results imply that the combination of PQ1 (200 and 500 nM) and tamoxifen (10 µM) 

results in an increase in apoptosis compared to the individual treatments. 

 

 

Figure 5.7  Flow cytometric analysis of apoptotic cells by APO-BrdU labeling. 

Cells were treated with 200 and 500 nM PQ1 and 10µM tamoxifen and combination of 

tamoxifen and 200 or 500 nM PQ1 for 48 and 72 hr. A 50% increase in apoptotic cell number 

was seen at both 48 and 72 hr in the presence of both tamoxifen and 200 nM or 500 nM PQ1. 

5.5 Conclusion 

Tamoxifen has been the drug of choice for the treatment of endocrine responsive breast 

tumors, but tamoxifen resistance has been an issue for very long time. We demonstrate for the 

first time that the combinational effect of PQ1, a gap junction activator, with tamoxifen has a 

potential use for treatment against breast cancer. We found a decrease in cell proliferation by 

MTT assay and significant decrease in the colony growth assay. We observed a significant 

increase in BAX, caspase 3 activation and DNA fragmentation in the presence of combinational 

treatment of PQ1 and tamoxifen as compared to their individual treatment. We also found that 
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survivin is significantly decreased in the presence of tamoxifen alone and combination of 

tamoxifen with either 200 or 500 nM PQ1. However, PQ1 alone does not affect survivin 

expression in T47D cells as observed at 1, 48 and 72 hr. The possibility of PQ1 affecting other 

caspases in inducing apoptosis has not been covered by the current study; therefore, we cannot 

rule out the involvement of other caspases. We propose that PQ1 might allow tamoxifen (MW= 

371.51) to pass through gap junctions between the cells, causing a rapid action of tamoxifen. In 

support of our data, Jensen and Glazer showed that forced expression of Cx43 in MCF-7 cells 

resulted in increased cell sensitivity to cisplatin at high density (Jensen and Glazer, 2004). Our 

work is based on the same concept as Jensen and Glazer demonstrating that the combinational 

therapy of tamoxifen and PQ1 shows more promising role in inducing apoptosis by caspase 3 

activation. But in our studies we did not overexpress the connexins, we used a gap junctional 

activator which can be easily administered with tamoxifen. However, more studies needs to be 

done to observe the combinational effect of PQ1 and tamoxifen in vivo. 

5.6 Significance  

Our study suggests that the combinational treatment may allow a decrease in tamoxifen 

concentration (lower than 10µM) in clinical use. This will have a strong implication that 

combinational treatment with gap junctional activators can lower the concentration of 

chemotherapeutic agent and thus may reduce side effect of these drugs. In future we would be 

conducting combinational studies of PQ1 and tamoxifen (dose reduced from µM to nM) and 

observe its effect on cell-based systems. Also, much of the work presented has focused in breast 

cancer cells; however, the role of gap junctional activators (PQ1) in drug sensitivity need not be 

limited to breast cancer. A variety of other cancers may take advantage of very similar 

mechanism and as a result other diseases may benefit from gap junction modulating pathway. 

 

Abbreviations: Substituted quinolines (code name PQ), Tamoxifen (TAM), MTT (3-(4,5-

Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)  
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Chapter 6 -  Hydronephrosis and Urine retention in Estrogen-

Implanted Athymic Nude Mice 

6.1 Abstract  

Subcutaneous estrogen pellet implantation is commonly practiced to induce tumor 

promotion in nude (Nu-FOXn1nu) mice for xenograft tumor modeling. Twelve out of twenty-

three, 18-week old nude mice, developed dysuria after estrogen pellet implantation. Physical 

examination revealed variably distended abdomen with palpable distended bladder. All mice 

were euthanized and necropsied. Blood samples of the mice were collected and serum estrogen 

concentration was measured. Necropsy revealed variable dilation of the urinary bladder and 

unilateral or bilateral dilations of ureters and kidneys. Microscopically, 12/23 mice and 13/23 

mice showed dilated urinary bladder and hydronephrosis, respectively. In conclusion, 

hydronephrosis and urine retention were observed in estrogen-implanted nude mice. 

 

6.2 Background  

Estrogens have been associated with tumor development in many experimental animals 

and humans. Estrogen acts as a tumor promoter in rat liver carcinogenesis (Shirai et al., 1987), 

spontaneous human endometrial and mammary carcinomas (Nenci et al., 1988). Therefore, 

estrogen pellets are frequently used as a tumor promoter in animal models of human neoplasia. 

Besides being a tumor promoter, estrogen has been shown to increase urethral tone in mice 

(Game et al., 2008). 

Urogenital infections have been shown to flare up in elderly women. In post-menopausal 

women, estrogen therapy reduces vaginal atrophy (Rozenberg et al., 2004), which normalizes 

vaginal flora thereby effective in reducing urinary tract infections (Robinson and Cardozo, 

2003).  On the contrary, hydronephrotic effect of high dose estrogen was observed in DDD 

(deutsche Maus at Denken) strain male mice (Mannen et al., 1993). In another study conducted 

by Buhl et al., estrogen-treated adult male CF1 (Carworth Farms 1) mice showed an increase in 
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urine volume. In both male and female gonadectomized DS (mutation disorganization) strain 

mice exposed to 17β-estradiol, significant urine retention and 100% hydronephrosis were 

observed (Kuroda et al., 1985). An additional study found that 17β-estradiol treatment 

administered via subcutaneous pellets caused hydronephrosis and urine retention in female 

C57BL/6J mice (Levin-Allerhand et al., 2003). The results observed in lab animals seem to be 

contradictory to the studies conducted in humans. It could be due to different dose regimen of 

estrogen in lab animals and also post-menopausal women are deprived of estrogen for a very 

long time which could trigger many pathways. 

Estrogen implantation is commonly practiced to promote tumor growth in nude (Nu-

FOXn1nu) mice. After 1 week of estrogen implantation, 1x107 T47D human breast cancer cells 

were injected at the right inguinal region. Multiple mice developed dermatitis and/or bloated 

abdomens after four weeks of estrogen implantation. The tumor growth study was terminated 

and mice received supportive care prior to euthanasia. 

This case report describes similar clinical and pathologic conditions in estrogen-

implanted nude mice as observed in the above mice studies; however, it reports for the first time 

that estrogen implantation is linked to urine retention and hydronephrosis in nude mice. 

 

6.3 History, Gross findings and laboratory results  

Twenty-five 4 week old female Nu-FOXn1nu were obtained from Charles River 

Laboratories (Wilmington, MA, USA). A 1.7 mg 17β-estradiol pellet (Innovative Research of 

America, Sarasota, Florida), was subcutaneously implanted with a trochar in the subscapular 

region at 43 days of age. No inflammation/redness around the implantation area was observed 

after 2-3 days. Three weeks after estrogen implantation, pruritus and ulcerative dermatitis were 

observed in the perineum in some mice. The lesions then spread to the hindlegs, over the dorsum 

of the tail head, and in one mouse to the forelegs. After 4 weeks of estrogen implantation, mice 

looked bloated but otherwise healthy. On physical examination, in living mice, the urinary 

bladder appeared distended and was easily palpable.  

The mice were euthanized by CO2 asphyxiation and necropsy was performed. Necropsy 

revealed a variably enlarged urinary bladder filled with clear yellow urine, mild to moderate 

hydroureter and unilateral or bilateral hydronephrosis (Figure 6.1). The majority of the mice had 
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variable dilation of the uterus. After euthanasia, blood was collected via cardiocentesis from 14 

mice and tested for serum estrogen level (A.3, Figure S13). In the rest of the mice, blood was not 

collected. 2/14 mice had no estrogen pellet, and were found to be healthy (Figure 6.2) having 

normal (3-9 pg/ml) serum estrogen level. 6/14 mice had increased estrogen level (36-260 pg/ml). 
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Figure 6.1  Urogenital tract of an affected nude mouse.   

Bilateral hydronephrosis and enlarged bladder filled with urine in a nude mouse. 

Figure 6.2  Urogenital tract of an unaffected nude mouse.   

Grossly, kidneys and bladder look normal. 

Figure 6.3  HE stain of kidney of an affected nude mouse.   

There is a dilation of the renal pelvis. The ureter is moderately dilated. Note: flattened renal papillae. 

Figure 6.4  HE stain of the urinary bladder. 

The urinary bladder is dilated with flattened mucosal epithelium and muscular layers. The lumen is free of inflammatory cells or 

hemorrhage. The inset reveals multifocal infiltrates with low to moderate numbers of plasma cells within the muscular layer. 
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6.4 Differential Diagnosis  

Differential diagnosis for hydronephrosis in animals includes anything that obstructs the 

urinary tract at the level of the urethra, urinary bladder or ureters. Urinary calculi and severe 

cystitis are two of the common causes of urinary tract obstruction in domestic animals. Masses in 

the caudal abdomen or pelvis such as abscesses may cause external pressure to the urinary tract 

and cause a functional obstruction. In addition, displacement of the bladder through perineal 

hernias and acquired urethral or ureteral strictures can block the flow of urine.  

 Perineal ulcerative dermatitis preceded the clinical signs, therefore, an acquired stricture 

due to scarring around the perineum as sequelae to dermatitis or a blockage due to cystitis could 

not be ruled out with initial clinical presentation. There was no evidence of blockage due to 

scarring, cystitis, urinary calculi or pressure from adjacent masses in any of the mice. Therefore, 

the most likely cause for the clinical findings was urine retention associated with estrogen 

administration. 

 

6.5 Microscopic Findings  

Microscopically, the distended urinary bladders had flattened epithelium and decreased 

thickness of the muscular layer (Figure 6.4). All mice (12) that had distended abdomens had 

microscopically variable degrees of dilation of the urinary bladder, unilateral or bilateral dilation 

of the kidneys, and mild to moderate hydroureters. Six of the histologically affected mice had 

multifocal infiltrates with low to moderate numbers of plasma cells within the tunica muscularis 

(Figure 6.4, inset). There was no evidence of hemorrhage or inflammatory cells within the 

bladder lumen in any of the mice examined. The mice with ulcerative dermatitis of the perineum 

had no histologic evidence of bacterial infection, however lesions were not cultured.  

Microscopically, 10/23 mice having gross lesions of kidneys showed hydronephrosis. In 

addition, three mice with no gross lesions had similar histologic lesions. Five histologically 

affected mice that had hydronephrosis also had unilateral mild to marked dilation of the renal 

pelvis with flattening of the renal papillae (Figure 6.3). The remaining (eight) mice had mild to 

marked bilateral renal pelvis dilation. The proximal ureters were moderately to markedly dilated 

in all mice that had histologic evidence of hydronephrosis.  
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Two mice had unilateral suppurative nephritis. One of these had multifocal infiltration of 

large numbers of neutrophils within the tubules. The other mouse had multifocal randomly 

distributed infiltrates of neutrophils within the cortex and medulla with intralesional colonies of 

Gram-positive cocci, which was confirmed by Gram’s stain. 

 

6.6 Discussion  

The current report demonstrates that the subcutaneous implantation of 1.7 mg 17β-

estradiol pellet resulted in severe urine retention in the bladder with uni- or bi-lateral 

hydronephrosis in Nu-FOXn1nu. Hydronephrosis is distention of the kidney with urine, caused by 

the increased pressure in the renal pelvis when the flow of urine is obstructed. It can be due to 

any type of urinary obstruction that occurs at any level of the urinary tract, from the urethra to 

the renal pelvis. This obstruction may be complete or partial and can be acquired, inherited or 

congenital. Certain inbred strains of mice, such as the C3H, C57L, and DDD mice, have been 

described to have an higher incidence of hydronephrosis, which are presumed to be inherited 

(HH, 1988). An autosomal recessive, progressive hydronephrosis has also been described in 

C57BL/6J mice (Horton et al., 1988). Also, various transgenic mouse strains develop 

hydronephrosis due to their genetic alterations.  In our study, we could not determine the cause 

of urine retention. However, bacterial infection was not evident in all histological examinations 

of kidney and bladder except in one kidney of a mouse which had intralesional colonies of 

Gram-positive cocci. Struvite uroliathiasis in estrogen-treated ovariectomized female nude mice 

with Staphylococcus intermedius-induced cystitis was observed (Gibbs et al., 2007). However, 

in our study we did not observe any significant bacterial infection which could have been 

associated with urine retention. Ascending infections of the urinary tract was documented in 

female nude mice housed on nonautoclaved corncob bedding and implanted with 0.36 mg 

estrogen pellets for 9 wk (Simpson JE, 2002). In the present study, there was no effect on 

changing the corn cob bedding to autoclaved paper bedding. The initial study was to generate 

tumor growth in Nu-FOXn1nu; however, due to the adverse side effects of estrogen implantation, 

the study had to be terminated for the physical well being of the mice. 

In all, twenty-three mice were assessed grossly or microscopically for urine retention and 

hydronephrosis. Two mice were not assessed due to untimely death. In 14/23 mice, blood was 
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collected and serum estrogen level was measured. Normal serum estrogen level is 2-5 pg/ml in 

mice. 2/14 mice had no estrogen pellet, and were found to have normal serum estrogen level (3-9 

pg/ml) and healthy until euthanasia with no gross or microscopic lesions in the kidney or bladder 

(Figure 6.2). This suggests that estrogen implantation might have caused the urogenital effects 

observed in estrogen-implanted nude mice. 6/14 mice had increased estrogen level (36-260 

pg/ml) and increased bladder volume either grossly or microscopically (Figure 6.5) and 4 mice 

also had hydronephrosis. 

 

                                   

 

Figure 6.5  Pie chart showing hydronephrosis, urine retention in mice in which estrogen 

level was measured.   

Urine retention was seen in 6 mice, out of which 4 also exhibited hydronephrosis.  Six mice were 

unaffected but high serum estrogen level was observed. Two control animals with normal 

estrogen level were also found unaffected. Blood serum from 14 mice was sent for the estrogen 

level measurement. The parenthesis depicts the number of mice in each group followed by the 

serum estrogen levels.  The unit for the serum estrogen levels is pg/ml. Total mice in the group = 

14. 

 

Out of these 6 mice, only one had 36 pg/ml; whereas, others had 123-260 pg/ml serum 

estrogen levels. None of the mice with elevated estrogen levels developed hydronephrosis alone 

without urine retention in the bladder. This suggests that urine retention preceded 
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hydronephrosis. 6/14 mice were unaffected with high estrogen level ranging from 43-220 pg/ml, 

however, only one animal had 220 pg/ml whereas others had 43-102 pg/ml serum estrogen 

levels. A table showing the estrogen levels in each mouse is provided in Appendix A.3 (Table 

S12). It should be noted that the estrogen pellet was a 60-day release pellet. According to the 

manufacturer, estrogen levels should not be high after 60 days. But the estrogen levels were 

found high in the serum even after 105 days of the estrogen implantation. Out of total 23 mice, 

12 were grossly found to have increased urine retention and 10 were grossly found to have either 

uni- or bi-lateral hydronephrosis (Figure 6.6). Microscopically, 12/23 and 13/23 mice showed 

dilated bladder and hydronephrosis, respectively. In some mice, hydronephrosis was observed on 

microscopic examination.  

 

  

 

Figure 6.6  Pie chart showing hydronephrosis and urine retention in all 23 mice.   

The pie chart is based on the gross examination. Urine retention was observed in 12 mice, out of 

which 10 mice also showed hydronephrosis. Eleven mice were unaffected and were healthy. The 

parenthesis depict the number of mice in each group. Total mice in the group = 23. 

 

In conclusion, estrogen implantation can cause urine retention with uni- or bi-lateral 

hydronephrosis in nude mice. Further studies need to be done to fully understand the relationship 
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of estrogen implantation to urine retention. An effective safer dose regimen of estrogen needs to 

be established in nude mice. 
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Chapter 7 -  General Discussion  

In all normal cells, DNA repair mechanisms to some extent can repair the DNA damage 

caused by carcinogens. If the damage is substantial, it overpowers the cell’s repair mechanism 

capability leading to tumor growth. Therefore, an initiator along with one or multiple promoters 

facilitates the tumor progression. Promoters, for example, phorbol esters have been shown to 

exert many cellular effects including cell membrane changes, alteration of growth factor 

responses and even mutations. Interestingly, an initiated cell despite having mutations in growth 

regulatory genes still require promoters to cause tumor formation indicating that cellular controls 

are vital in the body. Therefore, during the cascade of phenotypic changes occurring at the 

promoter stage, alteration in cellular controls might be rendering an initiated cell towards 

forming a tumor. Cell-cell (intercellular) and cell-matrix interactions are the key players in 

achieving cellular control. Considerable evidence suggests that the inhibition of cell-cell 

communication is one of the critical actions performed by promoters. The inhibition or blockage 

of transmission between the cells could allow proliferation and emergence of neoplastic cells. 

A positive correlation has been found between the restoration of cell-cell communication 

and decrease in cell proliferation and growth. This suggests that intercellular communication 

could be transmitting regulatory molecules from one cell to another. Despite having considerable 

evidence that cell-cell communication affects cell growth, specific growth regulatory molecules 

passing through gap junction channels have not been established yet. However, small molecules 

such as ATP, AMP, ADP, Ca2+, inositol triphosphate, and glucose have been shown to pass 

through gap junctions. The scientific evidence showing decrease in gap junctions and cell-cell 

communication in tumor cells and tissues led to restoration studies of gap junctions in vitro and 

in vivo. So far, studies include transfection of connexin genes in many tumor cell lines and 

rodent studies. These approaches are informative; however, not feasible to apply in a clinical 

setting. Currently very few compounds have shown to increase gap junctional activity such as 

retinoids, lycopene and carotenoids. Thus, there is a great need of gap junctional activators 

which can open up the gap junction channels and increase cell-cell communication. In my study, 

I found PQ1, a novel gap junctional activator which also decreases tumor growth. 
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In the current study, I first examined the gap junctional intercellular communication 

(GJIC) in breast cancer. Breast cancer is the second leading cause of cancer deaths in North 

American women. The risk of developing breast cancer in a lifetime of women is one in seven. 

Breast cancer is caused by many factors: some of them are like hereditary, age, diet, lifestyle, 

and environment. Hereditary constitutes only about 5-10% of the total breast cancer cases. 

Therefore, other factors play a critical role in the formation of breast cancer. The effect of 2, 3, 7, 

8-tetrachlorodibenzo-p-dioxin (TCDD) on the GJIC in breast cancer cells and normal mammary 

epithelial cells (HMEC) was observed. HMEC exhibit extensive GJIC and the most predominant 

Cx present in HMEC is Cx43. A significant amount of Cx43 in HMEC compared to different 

human breast cancer cells- MCF-7, T47D, ZR-75, MDA-MB-231 and MDA-MB-453 cells was 

found. Phosphorylation of Cx proteins have been shown to decrease the GJIC. Interestingly, I 

found an increase in the phosphorylated form of Cx43 in MCF-7 cells while only one 

unphosphorylated form of Cx43 was seen in the whole cell extract of HMEC.  

MCF-7 cells were chosen to conduct the experiments with TCDD because MCF-7 is a 

well-established human breast cancer cell line used as a representative of breast cancer. GJIC can 

be measured by using scrape load/dye transfer (SL/DT) assay. Lucifer yellow is a dye which 

passes through gap junctions; therefore, more the transfer of the green dye from the line of cut, 

the more is the GJIC. HMEC showed a significant increase in the dye transfer compared to 

MCF-7 cells. In the presence of 10 and 100 nM TCDD, lucifer yellow dye transfer in MCF-7 

cells was decreased while 200 nM caused a tremendous decrease in dye transfer in HMEC. 

Confocal microscopy showed a decrease in Cx43 plaque formation in MCF-7 cells in the 

presence of TCDD. Interestingly, confocal microscopy showed a redistribution of Cx43 plaques 

in HMEC from the membrane to the perinuclear region in the presence of TCDD, also confirmed 

by protein measurement of nuclear and cytoplasmic extract of Cx43. In the presence of TCDD, 

MCF-7 cells showed an increase in the phosphorylated form of Cx43. Many kinases are involved 

in the phosphorylation of Cx43 proteins. Expression of different classical forms of PKC- α, β, 

and, γ was observed but no effect of TCDD on PKC β and γ was observed. However, an increase 

and activation in PKC α in the presence of TCDD in MCF-7 cells was seen. Further, 

immunoprecipitation studies showed a strong interaction between phosphorylated form of Cx43 

and PKC α. Calphostin C, an inhibitor of PKC showed to ameliorate the TCDD caused effects on 

GJIC in a dose-dependent manner.  
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Restoration of gap junctions has been shown to decrease tumor growth both in vitro and 

in vivo. In the present study, we collaborated with Dr. Duy H. Hua, a distinguished chemist at 

Kansas State University. Dr. Hua’s lab synthesized a new class of substituted quinolines (PQs). 

A computational docking study showed that PQs has a relatively high binding to gap junction 

protein, Cx43. Thus, PQs were used in this study to find their effect on human breast cancer 

cells. Screening of PQ1-PQ5 was performed at different doses to observe their effect on GJIC by 

flow cytometry in different human breast cancer cell lines. The data suggested that compound 

PQ1 (200 and 500 nM) is a strong candidate to increase GJIC in T47D cells. Furthermore, 

SL/DT and colony growth assay were performed to measure GJIC and determine the effect of 

the PQ1 on the colony formation in HMEC and breast cancer cells, respectively. The results 

showed that PQ1 have a significant antitumor effect in human breast cancer cells compared to 

control without treatment or HMEC. 200 nM PQ1 showed a 30% increase in the GJIC in T47D 

cells; however, there was no effect of PQ1 treatment on GJIC in HMEC. In addition to an 

increase in GJIC, 80-95% growth attenuation was observed by PQ1 in colony growth assay. 

Since an increase in GJIC has been shown to increase cell death, I investigated the effect of PQ1 

on active caspase 3. Indeed, a significant increase in caspase 3 in the presence of PQ1 was seen. 

The in vitro effect was simulated in vivo in nude mice. The PQ1-treated animals showed a 

significant decrease in xenograft tumor growth of T47D cells in nu/nu mice compared to control 

or tamoxifen-treated animals. The results showed that PQ1 compound have a promising role in 

exerting antitumor activity in human breast cancer cells.  

Combinational effect of PQ1 and tamoxifen was tested in T47D human breast cancer cell 

line. The outcome of my previous work led to a hypothesis that PQ1, a novel gap junctional 

activator, might reduce the side effects of tamoxifen by potentiating apoptotic signal and 

increasing cell communication in breast cancer cells.  

A significant increase in BAX expression, caspase 3 activation and DNA fragmentation 

in combinational treatment of tamoxifen and PQ1 as compared to their individual treatments was 

observed. Tamoxifen alone and combination with PQ1 showed a decrease in the survivin 

expression while PQ1 alone shows to be independent of survivin-mediated pathway. The 

combinational treatment of tamoxifen and PQ1 showed a significant decrease in cell viability 

compared to tamoxifen treatment alone.   
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Besides the three objectives, an interesting observation was made while conducting 

experiments on nude mice. Nude mice were implanted with 17β-estradiol in the subscapular 

region. After a month of implantation, bloating in some of the animals was seen. At euthanasia, 

in one of the mice we detected hydronephrosis and urine retention. Further investigation was 

conducted to establish the source of the enlarged kidneys and bladder by measuring plasma 

estrogen levels in the nude mice. I reported that 17β-estradiol might be the initiating factor for 

hydronephrosis and urine retention in nude mice. This was the first study to relate estrogen with 

hydronephrosis and urine retention in nude mice. 

Overall, I have established that an environmental pollutant, TCDD decreases gap 

junctional intercellular communication (GJIC) in breast cancer cells and also affects GJIC in 

normal mammary epithelial cells. Further, I found a gap junctional activator, PQ1 and tested its 

efficacy in breast cancer cells and nude mice. The results obtained in PQ1 study supported the 

hypothesis that restoration of gap junctions decreases tumor cell growth. In addition, I found an 

increase in active caspase 3 suggesting the induction of apoptosis. Currently, tamoxifen is a drug 

of choice for endocrine-responsive breast cancer patients. Patients over time have been shown to 

develop resistance to tamoxifen. Also, tamoxifen has many side effects, including the risk of 

endometrial cancer. Tamoxifen is an antiestrogen shown to inhibit estrogen-mediated 

upregulation of various gene products and induces apoptosis. Therefore, if we combine 

tamoxifen and PQ1, does it increase the cell death leading to increased apoptosis? The present 

study demonstrates for the first time that combinational treatment of tamoxifen and PQ1 (gap 

junctional activator) can be used to potentiate apoptosis of T47D human breast cancer cells. This 

could either lead to a decrease in the dose or decrease the length of time patients are given 

tamoxifen, thereby, might reduce the side effects caused by tamoxifen. 

Therefore, my dissertation has provided information that GJIC plays an important role in 

breast carcinogenesis.  
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Appendix A - Supplemental data  

 

A.1.  Supplemental Data for Chapter 3 
 

 

 

 

Figure S 1  Effect of TCDD on PKC isoforms.  

The figure shows no significant effect of TCDD on PKC β and γ in MCF-7 cells.  

 



135 

 

 

A.2.  Supplemental data for Chapter 4 
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Figure S 2  Effect of PQ1-PQ5 on GJIC in MDA-453 human breast cancer cells. 

Materials and Methods for parachute assay: Seed the cells in a six-well plate on the first day. 

Simultaneously, seed another population of same type of cells in a 25 cm2 flask. Allow the cells 

in the six-well plate to reach 85% confluency. Add 4 µl of vibrant-DiD stain in 1 ml DMEM F-

12 media in a conical tube. Add the prepared media into each well for 20 min. After 20 min, 

aspirate out the media and rinse the cells 3X in DMEM F-12 media. Incubate the cells in the 

media overnight at 37°C. Next day, add 2 µl of calcein-AM (acetoxy-methyl ester) in 1 ml of 

DMEM-F12 in 25 cm2 flasks containing the same type of cells as in the six-well plates. Incubate 

for 30 min at 37°C. Rinse the flasks 3X with PBS. After rinsing, trypsinize the cells and 

centrifuge at 2,000 rpm for 5 min. Resuspend the cells in DMEM F-12 and add on the top of 

cells labeled with vibrant DiD (recipient cells) in six-well plate. Dose the cells with appropriate 

PQ compound and allow the cells labeled with calcein-AM (donor cells) to adhere onto the 

recipient cells. After 2 hr, trypsinize the cells and after centrifugation rinse the cells in PBS. 

Aspirate the media and resuspend the cells in PBS at the last wash. Prepare control cells: 

unstained, calcein-labeled, vybrant DiD-labeled cells and both calcein-AM and vybrant DiD 

labeled cells. Measure the cells by flow cytometry. Calcein-AM is measured at 488 nm and 

vibrant DiD at 568 nm. 
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Figure S 3  Effect of PQ1-PQ5 on GJIC in MCF-7 cells.  

Parachute assay was performed as described in Figure S2. We did not see any increase in GJIC in MCF-7 cells with compounds PQ1-

PQ5. 
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Figure S 4  Effect of PQ1-PQ on GJIC in ZR75 cells. 

Parachute assay was performed as described in Figure S2. There was no significant increase found in GJIC in ZR75 cells in the 

presence of PQ1-PQ5. 
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Figure S 5  Effect of PQ1-PQ5 on GJIC in MDA 231 cells. 

Parachute assay was performed as described in Figure S2. The graph shows no significant increase in GJIC in MDA 231 cells. 
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A. 

 

 

B. 

        

 

Figure S 6  Effect of PQ1 on GJIC in T47D cells.  

A) T47D cells were incubated with PQ1 and gap junctional activity was measured by flow 

cytometry. Succinic acid (SA) was used as a control. We found a 35-40% increase in GJIC by 

parachute assay. B) Histogram showing a significant increase in GJIC by PQ1 in T47D cells by 

parachute assay. 
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Figure S 7  Chart showing effect of PQ1-PQ5 in different human breast cancer cell lines. 
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A.                                                     B. 

 

Figure S 8  Xenograft tumor formation in nude mice. 

The picture depicts the formation of xenograft T47D tumors in the inguinal region of nude mice. 

A) Shows the tumor formation in a control nude mouse B) Shows the tumor formation in a PQ-

treated nude mouse. 

 

 

 

Figure S 9  Xenograft Tumor Growth of T47D Cells in Nu/Nu Mice.   

Mice were implanted with 17 β-estradiol pellets (1.7 mg/pellet) subcutaneously into the inguinal 

region before the injection of 1 x 107 T47D cells. Animals received treatment at 1 µM PQ1 or 10 

µM tamoxifen. The results after 6 days of injection show a decrease in tumor growth of PQ1-

treated animals compared to control or tamoxifen.   
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Figure S 10  Effect of PQ1 on Ki67 expression in Xenograft T47D tumor formation in nude 

mice. 

Tumors were harvested from the inguinal region of nude mice after euthanasia at the end of the 

study. Harvested tumors were fixed in 10% neutral buffered formalin for minimum 24 hr. After 

fixation, immunohistochemistry (IHC) was performed. We did not find any difference in Ki67 

expression in control versus PQ1-treated tumor tissues harvested from nude mice. This could be 

due to increased tumor growth. The tumor size became so huge before the first injection of PQ1 

(1 µM). We believe that the increased tumor size in the beginning did not allow PQ1 to either 

reach effectively to all the cells or the dose of PQ1 was not sufficient enough for such a big size 

tumor. Ear notching was performed to distinguish between the animals. R= Right notch, L= Left 

notch, N= No notch. The numbering denotes the cage number. A denotes the tumor, as I was 

interested in collecting brain also; therefore, I used A= tumor, B= brain. Three mice were housed 

per cage. R1A, R2A, L2A= tamoxifen-treated animals. L1A, R3A, N3A= PQ1-treated animals. 

N1A, L3A, R4A, L4A= control animals. L4A was euthanized at an early stage of the study 

because of humane reasons.  N2A, N4A did not show any tumor formation. Tamoxifen (1 µM) 

was used as a positive control for tumor attenuation. Materials and Methods for IHC: 

Formalin fixed tumor tissue was cut into 5 µ size before paraffin-embedding them onto the 
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slides. Slides were baked for 25 min at 55°C. Slides were put in the xylene wash three times for 

5 min each followed by graded alcohol baths- in 100% ethanol 2 times for 5 min each, 95% 

ethanol one time for 5 min, 80% ethanol one time for 5 min, distilled water for 5 min. Slides 

were pretreated with sodium citrate, pH 6.0 for the antigen retrieval method in a steamer for 20 

min followed by cooling of the slides for 15 min. Blocking was done for one hr in 3% BSA in 

PBS at room temperature. Slides were incubated with Ki67 antibody (Santa Cruz, CA) for two hr 

at room temperature. Slides were washed in 0.1% PBS/T for 15 min. Secondary biotin labeled 

anti-rabbit antibody (1:200) was used for 15 min at room temperature. Slides were again washed 

in 0.1% PBS/T for 15 min. ABC elite enzyme reagent (Vector Lab) was applied for 15 min at 

room temperature. Slides were washed for 15 min in 0.1% PBST. Slides were immersed in 

distilled water for 5 min prior to the addition of substrate-chromogen (3, 3 diaminobenzidine- 

DAB). Slides were observed under the microscope and when color development was observed, 

slides were immediately transferred to distilled water for 5 min. Counter-staining was done with 

hematoxylin. Slides were rehydrated again in xylene and ethanol before mounting them with the 

mounting media. 
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Figure S 11  Effect of PQ1 on Cx43 in xenograft T47D tumors harvested from nude mice. 

We did not find any significant differences in the expression of Cx43 in the control versus PQ1-

treated nude mice. Ear notching was performed to distinguish between the animals. R= Right 

notch, L= Left notch, N= No notch. The numbering denotes the cage number. A denotes the 

tumor, as I was interested in collecting brain also; therefore, I used A= tumor, B= brain. Three 

mice were housed per cage. R1A, R2A, L2A= tamoxifen-treated animals. L1A, R3A, N3A= 

PQ1-treated animals. N1A, L3A, R4A, L4A= control animals. L4A was euthanized at an early 

stage of the study because of humane reasons.  N2A, N4A did not show any tumor formation. 

Tamoxifen (1 µM) was used as a positive control for tumor attenuation. Materials and Methods 

for confocal microscopy: Formalin fixed human breast tissue was cut into 5 µm size before 

paraffin-embedding them onto the slides. Slides were baked for 25 min at 55°C. Slides were put 

in the xylene wash three times for 5 min each followed by graded alcohol baths- in 100% ethanol 

2 times for 5 min each, 95% ethanol one time for 5 min, 80% ethanol one time for 5 min, 

distilled water for 5 min. Slides were pretreated with sodium citrate, ph 6.0 for the antigen 

retrieval method in a steamer for 20 min followed by cooling of the slides for 15 min. Blocking 
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was done for one hour in 3% BSA in PBS at room temperature. Slides were incubated with anti-

mouse Cx43 (1:300) overnight at 4°C. After washing three times in PBS, slides were incubated 

with Alexa Fluor 568 nm for 3 hr at 4°C. Slides were stained with DAPI (nuclear stain) for 1 min 

and washed 3X with PBS. Slides were coversliped and observed under confocal microscope 

(Carl Zeiss LSM 510 META, Narashige, MN). 
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Figure S 12  Effect of PQ1 on gap junctions observed by Electron Microscopy. 

T47D cells were dosed with PQ1 for 1 hr and ultrastructural study was performed to examine the 

effect of PQ1 on gap junctions. We found an increase in number of gap junctions in PQ1-treated 

cells compared to control cells. Materials and Methods for Electron microscopy: T47D cells 

were grown in a monlolayer in a trans-well plate, incubated with 10, 100, 200, and 500 nM PQ1. 

Cells were fixed in Karnosvsky’s-cacodylate fixative (a 50/50 solution of 2.0% 
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paraformaldehyde and 2.5% gluteraldehyde in 0.1M cacodylate buffer) at 4°C for approximately 

2 hr. Fixative was replaced with fresh cold modified Karnosvsky’s-cacodylate fixative, for 

approximately 2 hr. The cells were rinsed three times in chilled 0.1M cacodylate buffer and post-

fixed in cold 1% osmium tetroxide-0.1Mcacodylate buffered fixative solution for 30 and 60 min, 

respectively. After three 5 min washes in cold doubled distilled water, the samples were then 

dehydrated in a series of increasing strength ethyl alcohol solutions (50%, 70%/ uranyl-acetate, 

70%, 70%, 95%, 100%, 100%). The cells were stained for 60 min with uranyl acetate added to 

the first 70% alcohol solution. Dehydration was completed with two 20-minute rinses in 100% 

acetone. The specimens were then infiltrated with three increasing concentrations of resin in 

acetone ending in 100% resin for periods of 2-12, 2-12, 8-12 hours respectively. All samples 

were then embedded in Epon LX112 embedding medium then polymerized at 45°C for 24 hr 

then 60°C for another 24 hr. Embedded tissues were trimmed and sectioned on an Ultracut E-

Reichert-Jung ultramicrotome (C. Reichert Optische Werke AG, 219, A-1171 Wien, Austria). 

Thick sections (0.5 microns) were cut initially from blocks, stained with Toluidine Blue, and 

examined with light microscopy. Silver and gold thin sections (approx 90 nm thickness) were 

taken from each specimen, retrieved to copper grids, allowed to dry, and then stained with uranyl 

acetate and lead citrate. The sections were then examined and viewed with a Hitachi H-300 

electron microscope utilizing Kodak 4489 electron microscope film. Standard dark room 

procedures were used to print all micrograph film.  
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A.3.  Supplemental data for Chapter 6 
 

Animal 

Number

Estrogen 

level 

(pg/ml)

                          Gross findings              Microscopic findings

C1-RLN 173 Bladder  and uterus distended Marked bladder, one kidney ok, other with dilated 

ureter

C1-RTN 220 OK, only uterus distended Ok

C1-LLN 123 Bladder ok, uterus distended Ok

C1-LTN Bladder and uterus distended, 

kidneys distended 

moderate to marked hydronephrosis X2

C1-NN Uterus distended, kidneys looked 

normal

1 ok other marked dilate ureter and mild pelvis- 

kidney, moderate with m/f plasma cell  infiltrate

C2-RLN 91 Bladder ok, uterus distended Ok, mild dilation of bladder

C2-RTN 36 Hydronephrosis, uterus and 

bladder moderately distended 

mod X2 , mild with plasma cells

C2-LTN Big Kidney, bladder and uterus 

distended

C2-LLN Bladder was normal, Kidneys 

looked normal

1 is mild, other OK- kidney, bladder mod with plasma 

cell in muscle

C2-NN Severe hydronephrosis seen, 

bladder and uterus distended

Unilateral hydronephrosis, 3 m/f suppurative 

nephritis

C3-RLN Kidneys hydronephrosed, bladder 

distended

3 kdneys, PM change and moderate hydronephrosis 

of 1

C3-RTN Animal was grossly bloated 

bladder was enlarged, uterus 

highly distended

Mild-mod kidney, bladder dilated w mucin

C3-NN 161 everything ok, uterus distended OK, mild dilation of bladder

C3-LLN 0 no pellet seen, uterus was swollen Normal, no bladder

C3-LTN 102 everything normal,  uterus 

distended

Ok

C4-NN 260 lesions around anus, kidneys 

normal

Bladder moderately dilated

C4-RTN 202 Kidneys enlarged,  bladder 

distended

1 marked enalarged other OK- kidney, mod. Bladder 

w plasma cell in muscle

C4-RLTN 43 pellet was little out,  kidneys were 

normal, uterus distended

Both kidneys mod. dilated, bladder ok

C4-LLN Left kidney hydronephrosed, 

uterus and bladder distended

Kidneys -1 mod. dilated, other supp nephritis w

bacteria

C4-LTN Animal died, no sample taken

C5-NN 9 no pellet seen, uterus normal Ok 

C5-RLN 222 Hydronephrosis, Uterus and 

bladder distended

1 moderate other enlarged ureter, marked bladder

C5-LLN 427 submandibular growth  was seen 

on left side

Ok

C5-RTN Kidneys highly enlarged, uterus 

and   bladder distended

Marked hydronephrosis with hem. and infarct

C5-LTN Kidneys hydronephrosed, uterus 

and bladder distended

Marked X2, bladder marked 
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Table S13  Gross and microscopic findings in individual mice associated with 

hydronephrosis and urine retention. 

Mice were housed five per cage. Ear notching was performed to distinguish between the animals. 

C5= Cage and number of the cage. RTN= Right top notch, LTN= Left top notch, RLN= Right 

low notch, LLN= Left low notch, NN= No notch, Hem= haemorrhage, Mod= moderate, PM= 

post-mortem. Gross findings were observed at the time of euthanasia and were mostly described 

based on the appearance of kidney and bladder. Cardiocentesis was performed immediately after 

animal was euthanized. Estrogen levels were measured in pg/ml. Microscopic findings were 

investigated by a pathologist.  

 

 

 

                        

 

Figure S 14  Cardiocentesis in a nude mouse. 

In mice, cardiocentesis should be performed immediately within 1 min after euthanasia. 

 


