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INTRODUCTION

In many fields of engineering, various types of messages need to be

transferred from place to place. This is don. by different types of trans-

mission. The messages may be dots or dashes as in Morse code or sound wave pat-

tern as in radio transmission or waves containing Images as in telephoto or tele-

vision. The message to be transmitted is developed into a tine series by means

of different operations such as coding, scanning, etc. In communication engineer-

ing the messages are converted i to electrical voltages or currents. The time

series is transmitted from one end to other end by means of a transmission device.

The time series passes through a number of stages in transmission. At every stage

an operation is performed on the time series transforming it to another time series.

Also the time series is distorted due to therral noise, tracking errors and pcor

characteristics of transmitting or receiving equipments.

It is important that the information received at the receiving end of the

transmission line should yield the same information as was transmitted. The de-

tection problem is to obtain the original time series from the received time series.

In some cases a future estimate of the time series is required, from the knowledge

of the past values of the time series. The two problems may be combined, as to

separate the original time series and then to estimate a future value of the time

series.



TOPICS ON GENERAL DELATIONS

TJLme Scries* A time series is a sequence of quantitative data assigned

to specific points in time domain. A time series may represent the ceouences of

voltages or currents, or it may be some d*ta such as stock prices,

weather reports, etc. Usually the sequences are ar ' over the certan in-

terval of time and the time series can be assumed to bf sjecified over tine vary-

ing from -«> to +«?.

The sequences may be discrete or continuous. If the quantitative data ia

assigned over discrete values of time, the time series if? known as a Discrete

Time Series. Similarly if the quantitative data is assigned over every value of

ti e, the time series is known as a Continuous ?:' ~ier.

Prediction. Won is also known as extrapolation. In general, pre-

diction can be said to be an estimation of the futon • of a time series when

its past values or characteristics are known. An operator is a device which oper-

ates on the time series and converts it into another ttee series. First an oper-

ator is assured tfl pive a time series} then the error, which is the difference be-

tween the desired outiut and the obt-ined out-rut, if Lzed ttftlag a part lev"

error criterion and a suitable operator is found. If s(t) is a time series, tbta

the prediction is an estimate of the most probable value of s(t<*.T), vie re T 0,

obtained from the rast characteristics of s(t).

Filtering . The received time series has been altered from the transmitted

time series due to the different stages of the J -n of the time series and

the noise in the transmitting and receiving equipment. Dm received tire series

can be represented as a sum of s(t) and n(t), where e(t) is transmitted time series

and n(t) is another time series resulting due to noise and the different operations

during traneriEsion. The separation of s(t) from |s(t)*-n(t)j is kr.own as filtering.



Many tines the problems of filtering and prediction are combined. Sonatimti

it is necessary to obtain s(t+T) from [s(t)+n(t)]. If T is positive, the problem

is a combi ed problem of filtering and predicting and the operator is known a • a

filter with lead characteristics. If T is negative, then the operator is known

as a filter with lag characteristics.

Autocorrelation function . The autocorrelation function for a discrete time

series

*-2, *-l, *0, *1, % x
3,

iB giTOn *
l.m _ ' -«ir * , »

0**1, *2' = rt-^a> 2.N+I
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where x is conjugate of x.

For a continuous tine series s(t), the autocorrelation function is given

by -t-7

The mean value M of a discrete time series is given by

M, =
,,m — 5. ««

1 M-vcr> 2M+-I *TI|j

whereas that of a continuous time series is

(2)

T-*op
-L [ s(t) dt
2T J

Stationarity. If, for a particular tie series, the autocorrelation function

0(t, t2 ) is a function of the difference between t
2
and tj and the wean value M^

is a constant, then the time series is known as 'stationary in wide sense 1 (Taglom,

19^2). In this report such a time series shall be referr-d to simply as a 'station-

ary time series'. The autocorrelation of a stationary time scries can be written as

tfitj t
2>

) * ^tg-t-L) - 0(T) where XL* t^t^

or

$( "C ) =
'm

]> Xt+C xt for discrete time series (3)
7-V CD 2.T*" I i a _-]-

and



0(X ) -
Um ^ J «(WC) /(t) dt
T->oo -'-•7

for contiguous tin* series (4)

If the above requirements are not satisfied by a tine series, then the tir* aeries

is known aa a non-stationary ti-se series.

Cross-correlation Pun-tion. let x(t) and y(t) be any two Us* series. Iten

the crcaa-correlatlon function ia defined aa

and +H
Km l

/ «
(t.T) r~: I x(t+T) y (t) dt for continuous time

scries (O

If the cross-correlation etween the two series ia aero then the tv© time aeriea

are known aa statiatically lnderendent of each other.

Pgwej Spectral pensjty ffiC &S Syattownr 2te£ 3B£j4A. 'or a stationary tim

aeriea the auto correlation function and the power apeetml density are the Fourier

transformations of each other. Let pf(T) he the autocorrelation function of the

stationary tii?e series and Q(w) bf its power spectral density function; then

Q(v) m J 0(T) e^wT dT (7)

-CD
and by inverse Fourier transformation

#T) * ~ / G(v) e
jvT

dw (8)
-CD

general Discussion. Physical prediction or filtering dependa basically on

the past values and is supposed to represent moat probable value in the future.

Although this argument cannot be supported by rigor -ue mathematics, yet like the

laws of physics, the prediction and filtering, alt> ouf?h on arch weaker taaia, are

based on statistical results,

tihjtf £jjjt. When the autocorrelation function of a time series ia an ia-

pulae function, and therefore Its power epectral density is a constant, the time



series is known as a white noise. In practice, it is not possible to generate

such a stationary time series, as this will require infinite power. Certain tir*

series can be approximated by time series having white noise ever the range of

frequencies of interest.

yejghting Function . In frequency domain an operator is represented by the

transfer function of the operator. Similarly in the time domain the operator is

represented by its weighting function. A weighting function w(t,T) is defined as

the output at time T after a unit impulse function is applied to the operator at

time t. The system is assumed at rest prior to the time when the impulse is

applied. For the linear operator W(t,T) the weighting function is the function

of (t-T), and ean be written as

W(t,T) « W(t-T)

If tte input to the operator having weighting function W(t-T) is x(t), then the

outwit y(t) is given by
ft

y(t) m J V(t-T)x(I)dT (9)

-CO

or
ao

y(t) « J W(f)x(t-T)dT (10)
o

Shaping Fjlter . Let s(t) be a stationary tine series vith power spectral

density G(v), then the output of the shaping filter for the time series s(t) is

the itself when its input is white noise.

If G^w) is the power spectral density of tie input time series to an

operator vith transfer function I(jw) and the output is v{t) with power spectral

density as G (v), then

Gyy(v) .|t (JV^G^W) (11)

The spectral density G^w), for a shaping filter, is unity, and therefore the

above equation becomes

|K*r)|
2 .G <v) (12)



If G (v) satisfies the expression
yy

f
tco i

/ Hog HWv)!! dw ^ao (13)

then G (v) can be written as G
yy

(v) 8
|

H^v)! , where H^w) has no singularities

in the lower half plane or belov the real axis of w-plane, and hence

Y(jv) = tyw)

If T(jw) is the shaping filter for the tin* series s(t), the irverse cf

shaping filter is given ar Y^Ov). The out-ut of an inverse SbJ filter is

white noise when its input is the tire series s^t).

DIFFERENT KH>DS OP THE EKRCR CRITERIA

In order to obtain satisfactory performance of a system, it is conventional

to minimise the system output error. For a tine series, it is physically unrealiz-

able to minimise the error corresponding to all the values of ti;;e. An error wei

ing function is defined in order to measure the system performance with reference

to its optimum pei-fcmance. The average error function is minimised, then the

optimal system is defined.

The average error may seer, to be a useful criterion, but it has a serious

disadvantage that the positive ar-d negative values cancels e- r in the aver-

aging process. Hence another appropriate error function of the magnitude of the

error is required to be minimized in order to obtain optimum performance of the

system. Some of those error criteria are discussed >elow.

laning and Battin 095*0 show that s simple error function may be defined as

F(e) *[0 if e <a

1 if e^.a

where an error below a particular value a is neglected while errors greater than*

a are treated equal while tie average is taken.

Wiener (1949) used the mean ftquare error criterion using the error function

F(e) « e
2
(t)



If C,(t) Is the desired output and C
a
(t) is the actual output, then the error

is e(t) C.(t)-C (t), and the mean value of F(e) is riven as

Wiener's work has been followed by investigation of a number of different

error functions, sons of which are discussed below. Sense criteria are primarily

valid for deterministic inputs, or the value of the error function is zero for

negative values of t. These can be applied to the time series with proper mod-

ifications. For instance Graham and Lanthrop (19 '3) proposed the use of the "time

multiplied absolute error"function as given below

F(e) » t|e(t)|

The average error E is then

E = J°°t|e(t)| dt (15)

Niras (1951) used the time multiplied error to obtain the mean error
,00

E «JT e(T) dT UO
o

Schulta and Rideout (1957) discussed a general case

F(e) *W(t-T) A(e(t,T))

where A(e(t,T)) is an arbitrary function of e(t,T), W(t) is taken as a suitable

function of t, and e(t) is made function of t and T by using input function as the

function of t and T, resulting in

Esyw(t-T) A(e(t,T)) dT (17)

o
Spooner and Rideout (1956) considered a special case of above by taking W(t)

2
as 1, and A(e(t,T)) ae (e(t,T)) . Murphy and Bold (19'c) analyzed a case proposed

by Schulta and Rideout by taking T*0 and A(e(t,T)) ae e (t)» This yflilds the mean

error as

E - / W(t) e*(t) dt (IS)

and for estimation of E from a truncated (-T,T) portion of the time series it is

modified to



E s
'.«, I f ..... 2

6

T

* T 1T W(t) e
2
(t) dt (19)

This is known as 'Integral of the Weighted Square Error 1 (IWSE Criterion).

STATIONARY TIME SERIES

Prediction and Filtering for Stationary Time Series

For a stationary time series the statistical characteristics are invari-

ant for all the sections of the time series. This characteristic of a stationary

time series is used to obtain ar; operator to improve accuracy. The autocorrela-

tion function J^tpt-j) of a stationary time series is a function of t^-tj only,

and it is sufficient to characterise the time series.

Wiener's Method

The following assumptions are used by Wiener in his worki

(i) Both signal and noise time series are assumed to be stationary time

MffSftl*

(2) The operation being performed on the tire series is assumed to be a

linear operation on the jnst history of the given signal and noise series.

(3) The linear operator is physically realizable by employing mechanical

or electrical circuits,

U) The mean-square-error criterion is used*

The first assumption about stationarity of the time ssries is usually valid

in practice and hence the knowledge of the autocorrelation function is sufficient.

Bode and Sha non (1950) show that a linear operator is usually encountered

although a non-linear operator nay be preferable to a linear one, but the advan-

tages of simplicity and realisabil ity favor the latter.

Physical realisability is one of the necessary conditions to be met by an

operator and the mean square error is preferable as it is an even function of the



error, and is proportional to the power, if the time aeries represents voltage.

Prediction

For a given stationary tire series s(t), free from noise, prediction im-

plies finding an operator having a weighting function W(t) such that the result-

ing operating on s(t), yields a prediction after a positive tlT»<*. The error is

e(t) = s(t**)- J s(t-^) W(l) dt (20)

Taking mean-square value of the error yields

.T co

E
T -*<P IT |s(t+«)- Js(t--C) W(T )dl|

2
dt (21)

After expansion and by the definition of autocorrelation function, the equation

(21) may be written as

E • 0(o)-2Be(J
o

0(*+t)V*U) dX) jwCOdt-t V(O0Cc-*)dtf (22)

o

where T

J*U)= T ^co It J_
T

a(tft) s (t) dt (23)

and Re represents the real part of the expression following it. In order to

minimize E, W(r ) is changed to[w(T. )+£(<£ W(t ))], and differentiating it with

respect to 6 and equating this derivative to zero the following integral equation

is obtained

r°°
0<°<+T)-J 0{X-s)V(s) d6= (24)

o

This is the wiener-Hopf equation of the first kind. Wiener (1949) shows that this

represents a true minimum value of the error. Wiener's solution of this integral

equation is discussed below.

Let G(v) be the power spectral density function of the time series s(t) and

if it satisfies the condition
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l«f|G(v)|| ^^ (2J)

-a>
>"^~

then G(v) can be expressed as the rrcduet of the factors as G(w) « %(w). H
2
(w) t

where lUw) Is free trm singularities In lower half-plane of w-r7*n*, and JL^v)

is free from singularities in upper half-plane and further wore G(w) »|l}(*)| 2
»

If I(jw) is the Fourier transform of the weighting function V(t), the solu-

tion of the integral equation (24) ie given as

CD

S(jw) = ^(^) «~
JVt

at— (20
H
l

<v >

where ^(t) is Ike inverse Fourier transform of \M* Therefore t e transfer

function Y(Jw) of the operator Is given et

cx>
+-«*>

Y(jw) • 1
/

-1vt dt / B,(w) •Jw(t^) ay (27)

t^lj (w) £ -i

If K.(w) ie written as

(2?)

then equation (2)
m-l-k

Jw* UN U"<>
en ^>

A
^~ k*l

^ B»n k: ° (m-l-k)/ (w-w
n)

m ; n

l(jw) m (2r )

A

m.i,n (w-w_)
n'

Since the poles of Y(jw) lie above the real axis in w-plane, the predictor is said

to be physically real sable*
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Filtering

Let the time series be a ixture of signal e(t) and noise n(t), where both

of these time aeriee ai« stationary* let W(t) be the operator which, when oper-

ating on these two series, gives the approximation to s(t- )• Then the mean

•quare error is given as

tT IP .o

i
"*

irrj is(t^)-/[3(t--c) +n(t-t)] w<t) atf a (30)

-7 t>

This is expanded to give

r <*>

£•^..(0) -2R«

y.VCtltC-1% (t-tr) ^ Cr-tf) ^ ltd *^U-r)) (31)

"11'

where ff^it) and 0^A x,) are autocorrelation functions of a(t) and »(t) respec-

tively, while ft ( t) is the cross-correlation function between s(t) and n(t),

Ails expression is aininised by Wiener to obtain

«**•-- J -^dt/nfu) e*(tf0<)
du. (32)

•»* °l
(w) * G

ss
(w) *U(w)

-
lQ
bn<

w
>
40

nn
(v)

where QM(«) and GL-te) are power spectral density of s(t) and n(t) respectively,

while GgjjCw) and ^(v) are cross-spectral densities of s(t) and n(t)« Hjtw) is

free from singularities in lower half plane of w-plane and

Mv) ' %M
3 H^wT (33)

Mean Square Error when the Operator is Known

If the input to an operator having transfer function l(jw), has a spectral

density as (w) and if the output has a spectral density as G (v). then
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i i 2
QyyU) S |I(JV)| G^CW)

Laning and Battln (195*) how that if the input to the oper tor vith transfer

function I(Ju), contain* signal a(t) and noise n(t), vhic'- haw power spectral

densities Q__(v) and G_(w) respectively, the spectral density of the error CL»(v)

is given as

(3/)

where T^(jv) is the ideal operator which when 6per*ting on only s(t) gives the

desired output. A table of such oper tcrs is given below. Ij(jw) is the differ-

ence between the transfer function of the operator and the ideal oper itor Y.(

The total aean square error is obtained by integrating of the spectral density

over the positive values of w, as

*-o©

E « e
2
(t) « /ow (v) dw = +[%*(») dw (35)

O —00

fkble 1. Table for ideil operator ^(Jw). (laning and Battin, 1950.

Estimtion of the v^ Corresponding

Present value of s(t) 1

Future vnlue of s(t) • s(ta-T) e^
Past nine of e(t) a S(t-T) e*JwT

Derlvitive_of s(t) a s» (t) iw

Sit)

<5(t+T)

<S(t-T)

Sit)

Approximation of Wiener's Method

l*vinson (1947) *ave an approximate procedure for solving the seen filter
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problem considered by Wiener, This method approximates the aolution of Wiener's

integral equation by replacing Integral by a finite wan and minimising the result-

ing error. A new measure stellar to the weighting function ie introduced. Thle

new measure A(t) is the output at tic* t corresponding to a^ in nfl of a unit step

function u(t) defined as

u( u(t) » 1 for t>0

• Ofort<0 CW

Por such an o erator operating on an inrut function x(t) yields the output y(t)

as

y<t) » / A»( I ) x(t-Odt+A(0) x(t) (37)

where A<0) is the limit of A(t) as t apprcaches sere from the positive wines, and

A»(t) ie derivative of A(t) with respect to t.

The integral on the right hand in equation (37) can be approximated by

waning the areas over smell interval of h, such that the area of the nth inter-

val is given as hA»(nh) x(t-rh), flamming over all «*!• s of n from toa>, y(t)

can be written as

CO

y(t) = h 2 A»(nh)x(t-*h) + *<°> *<0 (3*>

Writing A(0) as A , and hA'(nh) as A
Q

in the equation (38) yields

CD

y(t) * 2 * x(t-nh) (39)

The right hand 3lde of the equation represents an infinite summation* In such

an approximation this son my be terminated at n«*f if lues of A xtt-oh)

does not increase significantly in the summation, the determination c? a suitabls

M is considered later In the text. Such an approxlmtlon is vilid in case of the

time series, and equation (3") cm be written as



u

rit) * 2 A
a ^ t-nj3 ) (4D)

ruo

Then the value of y(t) at t**h is given as

M
y{}±) « 5 A x«k-n)h) UD

and on writing y
fc

for y(kh) and x,^ for xi(k-n)h), it becones

M

'k ^ nl«

Calculation of a filtering oper tor

let A(t) be the r< spouse of the operator at tix® t to a unit step function,

f(t) be a tine series containing both the signal s(t) and noise n(t) ind the prob-

lem is to serrate the eignal froa signal and noise • If ak and b^, rer»«*nt the

values of s(t) and f(t) respectively at tic* trth, and when the cut-t h(t) whsn

Input Is f(t) is given ae c
k, then

where A is defined previously, the error *t ti*a t*fcb is therefore

- \

• •ak-cjt -ak - £ A
n
bjM| W>)

lbs mean square error is obtained by averaging the square of tha error over all

the valine of k frem - <*> to * <*> . Hence, the mean square error E la

i

M 2

M-*od 2M + I
,

R ^ n '••*

lei -hJ n^o

Let the autoeorrelati n function of f(') be

4 (n) »
' io1 — *Z W*+ (^>?bb

ln; ^oo^ti ^ t t-o

and the autocorrelation function of s(t) be
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l ' wl «= (47)M / \
l,vy

i —L ^

and J2f. (n) be the cross-correlation function br.tveen f(t) and s(t). After ex«-

ba

pawling and substituting the values of correlation functions equation (45) be-

comes (levirson, 1947)

E«^«a(0)-a S A^tn) + ^ £ Vi^bb(,DH,) U8)

In order to minimize the total mean square error, the equation (48) is partially

differentiated with respect to A
k
,k«0,l,2, , and equated to zero as

Hence, the condition for maximum or minimum of E becomes (Ievinsor,, 1947)

M

^ ^bb
(lc-n) * ^(k) k = 0,l, M (50)

n = o

The condition yields M*l equations for K+l unknowns, A^. Substitution of this

condition in equation (48) results in the minimum En as

E
a «j2M0) - £ A^n) (51)

Dividing equation (51) by (0), which is non-zero, writing E is V and the ratio
Aft

of ft-U) to 0aa^ ^ r
n»

eclua
'tion ^ 51 ^ become*

M
f » 1 • "> A r « 1 -H (52)x _ n n m

where
M

K y- A r (53)
tb ^_ n n

The value of E lies between aero and #aa(0)»



u

The vali* of % depends on the value of M, For large wise of K, ^ in-

i&a and approaches unity, and consequently the value of E decreases* it a

particular value of H, any further increase in M dors not significantly effect

the value of H
M>

and as M -> °* % will tend to a limit H,

The equation (90) can he written as

At

mImuv

/k«f^ba(lc)

ToT

for k * 0,1,2,.....,M

(54)

(55)

levinson (1947) developed an iterative process to solve these equations for K^ %

For sash index M, an equation is obtained, giving a value of A^ e e, Ak
*M',

for k=0, 1.......M represents the values of A^s at a particular M. Its values

are given in the following equations.

. (o) mJ*-

V:
I *U

M

ro-
(M)

*--*
.4

-•

(50
M

(JTj

sal
(Mrl) ( ) (K+D

• ^k *m*1 * or" ^*0,2, N

The v..lues of ii^s are given as

(»M)r m (m)

where C^ k » ,1,2, N are given as

"]

(59)

(tt)
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/Mxr 5;' (m-i) l w
(M-1 j

C
!c

(M)
- C

k-1
^ -°

(M) Vk
(M_1) fork. 0,1,2, M (63)

As the value of M increases, the operator bc< ore com llcited and

difficult to realize in practice, although better accuracy is obtained at M in-

creases. Therefore a compromise is necessary for selecting the v.lues of M, In

practice different values of M are chosen and 1^*8 and A^s as given by (57, 59,

60 ) are calculated. After comparing successive results similarly, a suitable

operator is selected.

Levinscn also considered the case of filters witl lead or lag character-

istics. In theee cases, the error expression becomes

(IrO

where a^^ is the v lue of signal s(t) at tiir* t ar (kfs)h. Hence, if s is posi-

tive, it is a filter with lead characteristics and if s ie negative, it is a filter

with lag characteristics. A solution similar is obtained by Levinscn for this

case and as follows. The equations (5*, 58, 59, 61, '2, ^3) remain unchanged and

equations (57, 61) are modified to

and

Bode-Shannon Method

In Wiener's work the condition of physical realizability ie a b^sic condition

for obtaining prediction and filtering operators. Bode and Shannon (.1950) solved

the same problem, but did not introduce the condition of physical realizability at

the start. First an operator which minimized the mean of the error function, is
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obtained and then realizability condition ia imposed on it, as discussed,

let Y(jv) be transfer function of a filter which can also be represented

as I(jw) « A(w) exp [jB(w)], where A(w) and B(w) are the real valued rolynominals

in w. After substitutive ^(jw) as e*
vT

, where T may be positive, negative or

zero depending on the output, in equation (35) one obtains

c
2
=/[!?< V) -eJ*T|2 l^v) ft-JiO-e-^YCjv) Gro(w)

*
tJY(jw) -«JwTJY<-jw) G

ns
(w) +|Kjw)(

2 G^w) ]dw (*7)

where Gaa(v) *nd G
nn

(w) are power spectral densities of signal s(t) and noise

n(t) respectively, while Ggn(w) and GM(w) are cross-power sprct- 1 densities.

Substituting T(jw) A(w) e*
B*w', equation (ft) becorasi

•2 «/7a
2

(w) [g88(v) • GM (w) ^Gsn(v) f ^Mj^sM -A(")[GS8(w)

* -^(vjJe^T-BCw)) -A(w)[G
S8

(w) -G^vJ ."J («"*»>>]*, (68)

Bode and Shannon (1950) show that minimum of equation (68) is obtained when

Y(jv) satisfies

«*> *
G
es<

w
> *Ww)

e^T (*9)

<WV
> *<W«> *°

8„<
v

> +*&
If Y(jv) is physically realisable, it will represent a filter for |s(t) *n(t)jwith

lead or lag characteristics. A realizable operator with weighting function Vf(t)

must satisfy,

W(t) for t<0
. bounded for t?0 (70)

If Y(jw) in equation (65) is physically unrealisVcle a modified procedure

must be used. Let T-(Jv) be the shaping filter for[stt) +n(t)J and if ^M
rf^v) ^(w))

2
, (71)
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where IT^v) is free from slngalarlt' the lower hilf v plane then

Y-^v) m ?,
1

(- (72)

Yn Mi-) Js obtained frcra Y2(jv) = JAjv) Y(Jw). (73)

The weighting r m W
2 (t) corresponding to Y

2
(j") is obtained by taking

inverse Fourier trsaaforcaation as

CD

W5 (t) = JL / I
2 (jw) e

jvt
dw (74)

* 2TT /«

Then. W„(t) is found such th t

W-(t) W
2
(t) for t^o

« for t <o (75)

and the corresponding transfer function Y«(jw) is obtained by taking Fourier

transfers of W (t). Finally the transfer function of the required operator is

given as

3l<Jv) * tj(jwj ^ (jv) (7<)

This is physically realizable as it satisfies the c ndition given in eouatlon

(70). The final results obtained by Wiener's method, and by this procedure yields

MM result*

Prediction by Bode-Shannon Method

The Bode-Shannon prMftdMM discussed above can also be used in -redaction.

A special case of n(t) : is discussed here. The e Tilt r Y.^ jv) is given

by Y]_(jv) s H-(w), where G(u) «JH (w)p and BU(w) is free from rities In

lower half w-plane. The corresponding weighting function V,'

2
(t) is obtained by

inverse Fourier transformation. Then W (t) is constructed such %]

UJt) »W^(t+T) for t>0

for t<0 (7")

where T is time after which prediction is r quired. Then the transfer function
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^(jv) is obtained by Fourier tr ion of W^t), and the finaD yrodietor

I/(jv) is obtiined as

V**)
s y jv) \

x
(jv) (7?)

Mean V,ei-htcd Square Error Crite ion

Hurphy and Bold (l°^0) used the following method to minimize the weighted

square error expression as

E Jin
f V.(t) e

2
(t) dt CD

wliere Vi(-) is function of t alor.e and is selected according to the re sired systsa

'-crforrar.ee. It is for this reason that this rrccedure ie known as Mean Weighted

Square error criterion.

Let the time series consist of stationary ti^e series having si -rial s(t)

and stationary noise n(t). The desired outrut fit) nay be written as an ideal

onerntor fa(t) orer -tin ignal s(t). Let Wj't) be the weighting function

of an orerator which o-erates on r(t), vfeSTC r(t) = £{) 4-n(t)J, t c wtprt h(t) is

given as
-t-00

h(t) = f W (r;r(t-T) drr (»)
Jot •*

The '" "•"'—e-ce between cesired outrut nnd actual output is given as

e (t) = fit) -n't) I)

The mean wei-.:
x
.cd square error is given by

E =i
iM £ I W(t) [y (t) -2y(t)/w_ (tt) r(t-T) dCffe, (r)

r(t-T) /W, (*/) r(t-A) d^drtit (??)
-op 1 -»

A new tvpe of weighted correlation functions iro defined as

$ JC,4) J* ^ f W(t) y(UT) 7(M) dt (83)
wyy t^> co *

' ^
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^ (t,A) •
**"

Tr J "(t) y«*-0 r(t^ dt (84)

and

/ (x,a-) « J'
-

r i «(*) r(t*x) r(t+ ^-) dt r
>)

These are referred by Murphy and Bold as correlation functions in two-space, and

if W(t) is unity, these correlation functions ire reduced to auto- and cress-

correlation functions. A substitution of t ece f actio quation (82) results

in

E - ( I ,A-) -J\i*) ^< t , A-x)cX-> r( /%! -x)dx

tj W(x)
J

V(z) ^(X-x,/^:) dz dx fort=A= o m)
-00 -OP

Murphy and Bold minimised E by calculus of variations methods. The condition for

minimi i tion

cr

J Wlzjr^lA-x^-z^^dl-x^z)] ds-^X^-x)
— a>

-/. ,^.( /*-, I -x) dO for x>0 and X - >-« o ("7)

Two dimensional Poiirier transformations are made assuming that the i r 1 is

absolutely convergent, t 1 e result is

[gC^v'JY^JvJW) -^.(jw', jw)] e"^ ^ [G(jv)tVfrr(jv',jv)

-^ r̂ (.iv,U/')]r
"3v 'x =0 forX«A- 0. («)

where G(jw) is the Fourier transformat of W^t) and hence, it is the transfer

function of the open tor. The function <^ v^Uv^*') is double For.rier trans-

formation of wrr
(",c ,^'), and simil.rly other such functions in equation (88)

are obtained.

A solution of equation (88) yields tie operator tr-nefer function as
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An idetl operator g^CO oper .tin/: on signal only gives this output

CP

y(t) -/g.(x) ={t-L) dH (*>)

If the inrut consists of uncorrelated signal s(t) and noise n(t),

TuyrUvvV) « G
i(.iv)y w8a

(jw,>«) (91)

where Ogtjv} is Fourier transforation of g^L ) and ^vss^**^'
1
* ii double

Forrier trar:sfcarnation of vsg(v^> arK
"

- orj ("r ) Oconee

o( j») . yj")'i
,

«.s'j^'' (92)

f vs3(?V,jV)4-«J' UT,n(.1«,.1«')

This gives an oper -tor which minimizes the weighted mean rquare error F, If this

operator is not physically realizable, then a procedure similar to that of Bode

and on Hay be used to obtain physical realizable ity»

NOR-STATlCRAT.y TBT H3UM

autocon-eJation ^(t2,t ) of a time series is not a function of (t^tj),

the: ime series is non-st itionary. The problem of filtering and prediction

for such a time series is solved in a modified way depending on Aire of time

•eries and the type of performance required. rJumerous appro/ een re»

ported in the liter '.txvre and only two of those approaches will be discussed here.

An Approach by Ragaazini and 7adeh

A specific problem of a non-station-.ry tine aeries is considered by Zadeh

xzeini (1950). The prob3en ir to serarate a non-stationary tine series

from the same time series with additive stationary noise* It is further assured
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that the signal tine series e(t) can he divided Into a »»Bsation of tvo series,

one of which is a stationary ti- e e rles K(t) and the other a tine series P(t)

vhieh is a polynominal in t of degree n.

The deeired output can he obtained by an ideal operator, with weighting

function Vf(t) operating on the inrut signal tfcae series*

let W.(t) he the weighting function of an orentor through w ieh the total

series f(t) is passed, and its output y(t) is given as

y(t) * Jw^tl) f(t-r) dr. (93)

In practice it is usually found necessary to restrict the duration of sampling

of the input time series to a finite duration T, which inrlies that Wj(t) must

he scro outside the interval G<t<T. Therefore equation (93) can he written as

1
y(t) ) W,( "*-) f(t-U d 0< t$ T (94)

A

The polyneminal P(t~ ) can be expanded into Taylor* s series such as

F(t- ) = P(t)JCP(1> <t) +£ f
<2)

(t) - +(-l)
n L i

(r)

(t) (95)

i\ "I
w

where
p'k

'(t) is the k th derivative of P(t) with respect to t. Its derivative

Pw (t) of order higher than a are aero because P(t) is p©3yromiral of n th order,

Rev f(t) »[*(%) +P(t) +K(t)], where »(t) is additive noise. Substituting in ecua«

tion (94) glvee

y(t) *J [n(t--c) «r(Wi) «Ki»i)] »j(iM^ (9*)

A substitution of P(t- ) in equation (9 ) in equation (9f

)

y(t) ej w
x
(x) [(u-c) r (t-i)jdvj [r(t) -tP

(1)
(t)

]

Wj (u) dt {"7)
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-J *U)[*vt) t»(wt)J x* AoP(t) -/Jr^(t)

+(.l)
n
/-P

(n)
(t) (98)

n
n

\

where A. represents k th meaner t of \'(t)

I order to find values of ^ it la ) and N(t) are normalized to

have sero mean value, v
er<cp, the average value of y(t) ie given by

r^av^1 '^ -^v(l)
(t) + *(-D

n _P ( :) (t) (99)

B|

If 7l(t) is the desired output, the average value of y^(t) is ~iven aa

r "^
t

yl (t)av
S
[i "l

(t) H*"* } ,HWI
^
dI
iav

j/vMt) :-(t-l) del + [/w
1
(t) P(t-i) d^

v
(100)

d

(t) is st'tiomry, it follows tV enseiubjbB neana of y,(t) depend only

on the nor,-randcsa component of the signal, hence equation (100 ) becomea

*l
(t)

av "
f
/ W

l ( L )r(t~L )dI1
Iav < 101 >

Equating equation (9C ) and (101) yields

r ,&

i Mi)Kk) <hL =/;?(t)-A
1
p(1) (t)+ ....f(-i)

,

?iP
(n)

(t) (io2)

The integral on the left hand side can be expanded into Taylor's expansion of

P(t). Equating the co-efficfents of P(t) on both t" e sides the values of A^'s

are obtained.

Now the mean squire error is given by

* "JW Sty 4r.<l3-t 2 ) dX
1
dt

2 •^JJ\(l 1
) W(C

2
)

o

*.<w a^ $ +/V! »w w
<v [eft -v
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4£VVl*^, (ra)

v.' ere (t) and (t) are the autocorrelation functiona of M(t) <tnd K(t).
nm nn

The prcblen is nov reduced to mini izlng the equation (103), with the con*.

straints of the A"
k
's. As the first term of equation (1°?) is irderendent of

«(t ), and hence il is not taken into account in finding a minimum. And the ex-

pression to be minimized is given as

i=/ <t1i «J| «a
2)[^BB(tr i

2
)Vim

(t
1
-t

2
)]dL

2

n n]

where *> , "> > are larjra<*ian's multipliers. fh« equatic ) is12 n

mix I ^ v«n W_(t) satisfies

T

J Hx.) [^(t-T.) ^(Wt)] dt=>o +>
xv *>/ *

V(t) (t-T) dt $ ^T (105)
v 1 'rim
-op x

This Integral can be solved by various raetheds including rnethods.

One such method is i3iven by a-azz'ni and Zadeh {'

A General Problem of Non-Stationary Tii^e Series

R. C. Bcoton, Jr (l~52) mild a tine-vsiriant system having -editing function

W(t,"C). If x(t) is the inrut to the rystein h v' alighting f m h(t,I ),

the t y(t) if given by

y(t) =J h(Vt) x(t--C) dt (10O

Let the tir« series f(t) v" ich is to be filtered, be a su .mtion of non-
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station \ry tine series with 3(t) and n(t). Let y(t) be the desired output w-

is obtained with an ideal o r with weighting function g^t,! ), c erating

on rial e(t) alone, hence

CO

(107)y(t) =_/ g (t,t) s(t-t) d^
-oo

For t c Um r.tor g (t,"C ), the lcwir Tir.1t of the irtcnration is taken as

The autocorrelation function is -~iren as

W =<3(V ^ > (lOS)

where <•> represents the time average.

The autocorrelation and cross-correlation are known. The t»1 lation of

f(t) is girsn by

4f (V *2 } " < (s(t
l ) iW* (fl(t

2 } ^ (t
2
))> (109)

= JUV2
> +*sn<VV Vns

(tl,t2 ) 4/^t,, t2 ) (110)

If I (t,t ) is the weighting function of an or*r*tor, its out- ) 's =dven

M

; (t) = /.(t,t) f(t-i) d ftia)

a

and the error Is

e(t) =
y ( .) -/w(t,T) f(t-T) dT (112)

o

The asas ::qu;re error is then obtained as

E«<e2(t)> = <[(y(t)-/
a>

W(t
>L) f-t-l) dr) 2

J>
a
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= # (t,t)-2 j v(t,r) #v (t-"c,t)dc

.00

+ f J
Ut.l^lt.t^^t.tjM^dtj dT; 2 (113)

o s

To minimizing I for V(t,T. ), let W(t,0 be increased ty B(t,"C), the nev error

is given by

e
1
«/

yy
(t,t)-?: J »<t,T) ^(vt^)**-*] J U#c1

) «(*,t j)

jzf

ff
(t--c

1
,t--c

2
)d^

]
dt

2

+J/'(t,I 1
) B(t,I 2 ) {^(t-^t-t,,) dTl

1
dTl

2
-2jB(t,t)

t-X,t) dX

+
J

06

j1><t,L
1

) B(t.x 2 ) yt-c^t-y *^i*^a
(1U)

The last term in equation (1H) is non-negative. Nov for mininar. F, E^E

[E, -E>2 J BitptJ (Jw(t,T: a ) J2fff(t-tp t-U d TI2 -^
c>

(t»y)l dx
x

(115)

Equation (115) should be zero for minimum for all vilues cf B^tj) or

yt-t1( t) =/ v(t,x:
2

)
ff
(t-t

lf
t-c

2
) dc

2
("*)

©

Which is the condition for minimum E. The solution of equation (ll£) yields tv *

value of W(t,"C),

There can te more than one eolution vhich satisfy s the equation (11/) •

All such solutions will give the same mean square error. Bootcn (1952) stated
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that rorfc of ileal syet n, although he d v not derive

rr. It was also etated that a number of aprroxlmatlens and

methods can be applied to ?olve this equation for V(t
t T,)» If the oper-

ator obtained frcr. tl
'"""

' is re' ""•
, then

a proc Her to that of Bode-Shannon can 1 i to assur. ; cal realis-

ability.

The operators obta: rent methods are pi ft I I izable

by employing a finite number of lumped resinianees, capacitances and inductances,

levinson ( 19/.7) offered a met? od for obtaining a filter aprrcximatinr; to the values

of A 's obtained in equations (5*, 57, 58, 65).
n

CONCLUSION

Various error criteria for time series are discussed In this paper* Such

errore in control systems are minimised and an optima performance is obtained.

For- statistical inrutr, such technique s which e the m d mean

square error and (tee obtaining optimum filtering ar "?ticn Slept**

sable. Noise .jitter observed in automatic radar and wind gust disturbances in

aircraft are 3 fe- emaplei c tens, A
j

the

fut Ition of p Bering target is another Important problem,

t of the work iv the liter 'tare stresses least-square method. Further

laveetlgatlon i<: necessary to niniriae different functions of err^r eapleying

different function similar to work done by Murphy and Dold,
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Theories of filtering and prediction of stationary and non- tionary time

cries ate reviewed, A tir* series is a sequence of quantitative data assigned

to specific points in tine domain* 4 time series nay be station- ry or nan-etetion-

ary depending upon the statistical characteristics of the autocorrelation func-

tion*

4 distorted time series is composed of two tine series, newly the original

tlae stlitf and the nolss tiae series. Filtering is used to serarate the original

tine series fron the Mixture of two scries, whereas prediction is employed to de-

teraine a future value of the original tiiae series*

The error of e system is the difference between desired output and the actual

response of the system. The error function F(e) is the weighted error e(t). The

mean weighted error is minimised to obtain a suitable operator. The weighting

fumetlon or transfer function of the operator is modified to make it physically

realisable*

For the stationary time series, the original work of leasWman-equare error

by Wiener is discussed briefly* An integral equation is solved to obtain the orti-

sun t< suit. The Levinson*s method of usin*T a finite sum in place of integral

equation to linear equations and Bode-Sha non derivation of the above results with

a concept of shaping filter are discussed* Murpky and Bold'e method of minimising

mean weighted square error is also included*

For non-etatlonary tine series, the following two cases are discussed*

Hfairclrr* and Zadeh considered a special case when the signal can be separated in-

to a stationary tins series and polynomlnal in t, whereas the noise tine series

is stationary, Booton derived an intef^ral equation for a general ease of non-

stationary tirae series*


