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Abstract

Artificial intelligence (AI)—including the sub-fields of machine learning and deep learning
has advanced considerably in recent years. In tandem with these performance improvements,
understanding how Al systems make decisions has become increasingly difficult due to many
nonlinear transformations of input data and the complex nature of the algorithms involved.

Explainable AI (XAI) are the techniques to examine these decision processes. A main
desideratum of XAI is user understandability, while explanations should take into account
the context and domain knowledge of the problem. Humans understand and reason mostly
in terms of concepts and combinations thereof. A knowledge graph (KG) embodies such
understanding in links between concepts; such a natural conceptual network creates a path-
way to use knowledge graphs in XAl applications to improve overall understandability of
complex AT algorithms.

Over the course of this dissertation, we outline a number of contributions towards ex-
plaining the Al decision in a human friendly way. We show a proof-of-concept on how
domain knowledge can be used to analyze the input and output data of Al algorithms. We
materialize the domain knowledge into knowledge graph (more technically ontology) and
by using concept induction algorithm find the pattern between input and output. After
demonstrating this, we start to experiment on a large scale, as we found that the current
state of the art concept induction algorithm does not scale well with large amounts of data.
To solve this runtime issue, we develop a new algorithm efficient concept induction (ECII),
which improves the runtime significantly.

During this process, we also find that current tools are not adequate to create and edit
the knowledge graphs, as well as that there is scarcity to quality knowledge graph. We make

the creation and editing process easier, by creating OWLAx and ROWLTab plugin for the



industry-standard ontology editor, Protégé. We also develop a large knowledge graph from
the Wikipedia category hierarchy.

Overall, these research contributions improved the software support to create knowledge
graph, developed a better knowledge graph, and showed a new direction on how Al decision

making can be explained by using a contextual knowledge graph.
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Chapter 1

Introduction

Artificial intelligence (AI) is creating a revolution by improving the performance of auto-
mated decisions in nearly all scientific fields. This revolutionary performance is coming
through the advancement of its sub-fields, particularly machine learning and deep learning.
These successes are more concretely using neural networks [47, 82, 26], where billions and
billions of parameter hold the weight to make an automated decision. Besides this exception-
ally high number of parameters, and those algorithms do many non-linear transformations
of the input data. However, as a result of these complex transformations with a tremendous
amount of parameters, the decision process cannot be interpreted by a human user [33, 57].

It is important to be able to interpret the Al decision or obtain an explanation from the
Al model for a decision, as sometimes a very accurate Al system fails embarrassingly. In
image classification, a best-performing state of the art Al model may make a wrong decision
just by changing a single pixel on the input image; this happens in almost all domains.
The fragility of these high performing systems [81, 60, 3, 17] make it justified to seek the
explanation, interpretation from these systems. This is especially important in many safety-
critical domains, such as medical, law, military, and autonomous vehicles.

There exists a significant amount of work to interpret/explain the AI decision. Those

work can be categorized in many ways, such as: in terms of explanation representation, in



terms of explanation generation, in terms of explaining the decision, in terms of explaining
the internal structure, and others. An overview of the recent work can be found here [1, 32,
89, 68, 29, 4].

Although there is no consensus on which attributes an explanation should have, being
humanly understandable is one of the essential attributes [24, 19, 38, 39, 29]. Humans use
concepts to explain their decision [40]. These concepts come from the knowledge human
have. It is easier for a human to understand the interpretation if that is represented in terms
of concepts. Structured knowledge such as knowledge graph or ontology represents these
concepts by connecting one concept with another [10, 54].

In this thesis, I propose a novel way to show explanations in terms of concepts, in addition
to the direct input feature. My explanation model maps the input data with a description
logic knowledge base: to show explanation in human understandable concepts. This is
especially important when the Al model’s input is numeric, however, we want to get expla-
nation in terms of concept. To give an example, when music is being used to heal autistic
child [44, 14], the system needs to be interpretable. If the explanation system consists of just
numeric value of the music, the user (doctor, parents, etc.) would not understand it easily;
however, if the explanation consists of concepts like pitch, mfcc, then the system would be
easy to understand. My proposed explanation framework is similar with, propositional rule
extraction from trained neural network [65, 67] in characteristics. In my work, I go beyond
the propositional rule extraction to show the explanation using Description Logic, which is
more expressive than propositional logic.

The proposed explanation framework uses a knowledge graph as an input and concept
induction (also known as concept learning) as the engine. I find its application in many
fields including Semantic Web [53], Psycholog [64, 42, 9] and in many others. Large scale
empirical evaluation using the proposed framework proved the necessity to improve the
runtime of concept induction and use of comprehensive knowledge graph. As such, it becomes
important to concentrate on exploring ways to improve the concept induction and developing
a better knowledge graph. I propose a novel algorithm that exceeds the existing runtime in

2-3 orders of magnitude.



Developing a knowledge graph requires significant effort from domain experts and on-
tologists and time-consuming. To create a knowledge graph, domain experts discuss with
the ontologists to generate the schema. First, the domain expert draws the schema with
feedback from ontologists. Then, ontologists convert the schema into axioms to be machine-
processable. This is somewhat a complicated procedure. In this case, one of the most used
software tools is Protégé [63, 85], which supports the building process from 2000. To make
the development process faster, I develop methods and also software tools. After that work,
I contribute to creating a large scale knowledge graph. And perform an empirical evaluation
showing how different knowledge graph impacts the generated explanation from the same

AT model.

1.1 Concepts, Semantics, Ontology, Reasoning and

Knowledge Graph

Concepts [59, 16] are the abstract ideas or general notions that occur in the mind, in speech,
or in thought!. They are the fundamental building blocks of thoughts, beliefs and commu-
nication.

The semantics of concepts [8] is represented using an ontology. I focus on Description
Logic (DL) [6] as a formal knowledge representation language to define ontologies since
it offers reasoning support for most of its expressive families and compatibility to W3C
standards e.g.,OWL 2.

A DL ontology O = (T, A) is composed of a TBox T and an ABox A. A TBox is a set of
concept and role axioms while an ABox is a set of concept assertion axioms, e.g., C(a), role
assertion axioms, e.g., R(a,b), and individual in equality axioms e.g., a # b, a = b. Triple
(Ne, Nr,N7), as signature for O, consists of 3 disjoint sets of (i) atomic concepts N, (ii)

atomic roles Ny, and (iii) individuals N7.

Example 1. (TBoxz and ABox Concept Assertion Axioms)

Thttps://en.wikipedia.org/wiki/Concept



Figure 1.1 presents (i) a TBox T where (1.1) denotes the concept of “ComputerMemory
is part of Computer”, (ii) concept assertions (1.5-1.6) states that “Individual Macbook is

»

computer and YankeeStadium is BaseballStadium

dpartsO f.Computer Memory T Computer (1.1)
dpartsO f.ComputerCases = Computer (1.2)
JLC DM onitor M Computer T Computer Monitor (1.3)
AUSBMouse N Computer C Computer Mouse — (1.4)
Computer(MacBook) (1.5)

(1.6)

Baseball Stadium(Y ankeeStadium)

—_ =

Figure 1.1: O = (T, A). Sample of TBox 7 and ABox A related with Computer and
Baseball.

DL supports reasoning such as (i) subsumption, denoted C, for elaborating sub/super-
concept (is-a) relationships, (ii) instance for determining instance relationships or (iii) con-

sistency to identify contradictory knowledge.

Example 2. (Ontology Reasoning)
Subsumption X and instance Y can be inferred from axioms in figure 1.1 using relevant DL
completion rules e.g., [5] for ELTT. For instance, from the axioms in figure 1.1 we can

reason that, LCDMonitor = ComputerMonitor.

Knowledge Graph, the term first coined by Google in 2012 ? and from then, many re-
searchers begin to use the term interchangeably with ontology. Technically, knowledge graph
is a way of organizing information using a graph structure, by means of the node-edge-node
relation. Currently, knowledge graphs are being used in many domains to improve the perfor-
mance of many downstream tasks of natural language processing [62]. A detailed description
of knowledge graph, completeness, embedding, etc., can be found in [25, 66, 87]. Use of on-
tology or knowledge graph in the context of explanation is pretty recent and an overview of

some current discussion is provided in [46, 36].

Zhttps://blog.google/products/search/introducing-knowledge-graph-things-not,/
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1.2 Outline

This thesis is a cumulative dissertation that shows a new direction to explain the Al system
in a human friendly way. This work can be divided into four concrete research topics that
incrementally build towards this goal. The remainder of this dissertation is outlined as
follows:

Chapter 2 presents the first research topic: explaining the black-box artificial intelligence
decision. It put forward the key research question, how we can explain black-box Al decision

in a human friendly way. The primary contribution rerefenced in this section are
e FEzplaining Trained Neural Networks with Semantic Web Technologies: First Steps [75]

Chapter 3 discusses the concept induction algorithm, how they play a key role on the
proposed explainable model. Then it shows, the state of the art, their lackings and the

contribution I made. Contributions regarding the concept induction is as follows:
e FEfficient Concept Induction for Description Logics [70]

Chapter 4 bring forth the need of software tools to build knowledge graph efficiently,
then ask the research question, how we can visually create knowledge graph, and use of rules
to create the knowledge graph. Contributions, referenced in this chapter to address these

questions:

e OWLAz: A Protege Plugin to Support Ontology Axiomatization through Diagram-

ming [73]
e Modeling OWL with Rules: The ROWL Protege Plugin [69]
e Rule-Based OWL Modeling with ROWLTab Protégé [72]

Chapter 5 discusses the importance of comprehensive knowledge graph for explainability
task. Then it shows a way to break cycle from the Wikipedia Knowledge graph to make
it usable for the explainability. It also provides an evaluation between multiple knowledge

graphs to show the impact of knowledge graph on explainability.
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e Wikipedia Knowledge Graph for Ezplainable AT [70]

Chapter 6 presents concluding remarks through a brief summary that highlights the
overall contributions and how they fit together, especially with respect to the state of the

art. Additionally, I provide an outlook on future work.



Chapter 2

Towards Knowledge Graph Based
XAI

2.1 Overview

One of the main goals of this thesis is to produce human-understandable explanations. Hu-
man frequently understands an idea in terms of the concept better than the numeric value.
When a human is a consumer, explaining the deep learning system in terms of concepts is
important for properly understanding the system.

Concepts and the connection between the concepts thereof make the knowledge graph.
These knowledge graphs capture the real-world information, and we can run deductive rea-
soner over the knowledge graph. The benefit of running deductive reasoner is that we can
find inferred concepts that were not asserted, along with being able to trace back all the
steps, making it fully explainable.

Authors [43, 90] proposed methods to generate human understandable concepts from the
deep learning model. Author [12] demonstrates the added value of using semantic anno-
tations to label objects in the hidden layers of popular CNN architectures. However, this

utilizes only very shallow annotations and is by design, not able to produce more in-depth



explanations by using a more expressive knowledge graph. Nevertheless, these lines of re-
search indicate that even some shallow domain knowledge is already helpful. This motivates
me to use domain knowledge in the form of knowldge graph to enhance the explanation of

Al system. Following these, I formulate the research question.

Q1 . How we can generate human friendly explanation from artificial intelligence system
by relating the explanation with human understandable concepts, such as knowledge

graph?

2.2 Related Work

Recently researchers are investigating ways to incorporate knowledge graph in the form of
domain knowledge or background knowledge to enhance the explanation. Using shallow
background knowledge, authors in [23] show; how using simple knowledge graphs (as RDF
triples) helped to explain the decisions of a stock market prediction system. The authors
showed that an abruptly changing stock price could be explained more human-friendly, using
background information from Freebase and WikiData.One of the limitations of [23] is the
limited expressiveness of RDF, which prevents using more complex background knowledge.
Authors in [77] proposed to map human-understandable concepts to the hidden neurons for
zero-shot learning. However, the human-understandable concepts used are attributes of the
input, and there is no direct relation between the concepts, i.e., background information is
shallow in expressiveness.

There is a small amount of work, to the best of my knowledge, which uses a knowledge
graph with high expressiveness (such as description logic). In [2], authors indicate the
use of more expressive domain knowledge or ontologies to explain the decision of image
classification. Author in [20] extended the TREPAN [21] algorithm, where a decision tree
is generated from a trained neural network, to explain the decision. When building the
tree, it assigns more weight to those more general features in the ontology, so more generic

concepts/features are formed at the top of the tree, and more specific concepts/features are



used on the bottom (lower /leaves) of the tree. One of the limitations of this approach is that
the generated decision tree may become huge and hard to understand. For visual question
answering, [86] proposes methods to explain why an answer is being selected. Authors in [18]
showed the use of expressive background knowledge for transfer learning. Along similar lines,
authors in [28] used expressive background knowledge to explain feature transferability from
one model to another. These publications demonstrate the added value of rich background
information for providing explanations in a human-friendly way.

Some related work along the lines of propositional rule extraction from trained Al systems

are [7, 22, 50].

2.3 Proposed Framework

Before describing the framework, an example of propositional rule extraction which is taken
from [45] is presented below, to get a clearer idea of the proposed framework. Assume that
the input-output mapping P of the neural network without background knowledge could be
extracted as

mANg—T P2 NG —T.

Now assume furthermore that we also have background knowledge K in form of the rules

pP1— D D2 — D-

The background knowledge then makes it possible to obtain the simplified input-output
mapping Pk, as

pANGg—T.

The simplification through the background knowledge is caused by p acting as a “gen-
eralization” of both p; and p,. We can think of p, p; and py as classes or concepts, which

are hierarchically related, e.g., p; being “oak,” py being “maple,” and p being “tree.” This



example is confined to propositional logic.!

The way, I design the explanation framework (EF) is for the global interpretation of the
network, instead of a local or individual explanation. We train the network with the training
data. After that, to generate a global explanation, the EF takes a couple of training instances
as positive individuals and a couple of other training instances as negative individuals. EF
also requires a knowledge graph as input, where the training instances need to be mapped.
After that, the EF runs the inductive logic programming (ILP) tools (such as DL-Learner[48],
ECII3) on the input knowledge graph and the positive and negative instances to generate
an explanation. An illustrative example is shown below.

Let us assume we are training an image classifier to classify objects. We train the network,
and then, we want to know why the network identifies an image as a mountain. To get an ex-
planation from this framework, we need to map the training objects with a knowledge graph
(such as DBpedia, Wikipedia knowledge graph5). Suppose we mapped the training images
using some mapping algorithm, where mountain objects contain Largelandform, Peakofland
etc. After mapping those, we take some mountain images and some other random images
from the training set and run the explanation model. The explanation framework may come

up with explanations such as:

JimageContains.((GeographicArea) M (Object M = Device))

This means, the system is classifying any images as mountain, which has GeographicArea
and not any device, based on this training data. Here, GeographicArea is a generalization of
the concept Largelandform. We see that, the explanation not only contains the objects of

the images but also generalizes the objects description according to the knowledge graph.

'How to go beyond the propositional paradigm in neural-symbolic integration is one of the major chal-
lenges in the field [27].
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2.4 Contribution

[75] Md. Kamruzzaman Sarker, Ning Xie, Derek Doran, Michael Raymer, and Pascal Hit-
zler. Explaining trained neural networks with semantic web technologies: First steps.

In Tarek R. Besold, Artur S. d’Avila Garcez, and Isaac Noble, editors, Proceedings of

the Twelfth International Workshop on Neural-Symbolic Learning and Reasoning, NeSy

2017, London, UK, July 17-18, 2017, volume 2003 of CEUR Workshop Proceedings.

CEUR-WS.org, 2017

In this publication [75], T showed a conceptual proof to extend the propositional rule
extraction using the Semantic Web technologies (knowledge graph, concept induction) to
make the explanation more human friendly. This fully addresses the research question Q1.
Although this shows a new direction to explain the Al system, this approach also has limi-
tations. It does not take into account what is going on inside the model. So it is susceptible
to adversarial attack[31] and sometimes may generate non-sensical explanation. However,
this limitation can be used to explore the internal activity of the model too. For example,
for trained deep neural network, we can try to identify what a single neuron or a group of
neurons is representing. For a set of neuron/s, we can take all the instances of the training
data, which activates the neuron/s, as positive instances and some other instances which do
not activate that neuron as negative and run the explanation framework. It will come up
with some concepts (possibly complex), which may indicate what that neuron is represent-
ing. To get insights of these types, we need to perform large scale experiments ( in the range
of millions if we just want to consider 20 different subsets of neurons).

For evaluating the proposed explanation framework, I experimented on ADE20K [91]
dataset, which has around 20,000 images of different scene categories. This dataset also
provides attributes of the images, which I have mapped with the SUMO [61] ontology. At
the time of empirical evaluation of the proposed framework, I found DL-Learner is the most
mature ILP system, which I used to perform the evaluation. DL-Learner took, on average

more than an hour to carry out a single experiment. Taking an hour for a single experiment
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is a direct hindrance to perform large scale experiments. As such, we need to use efficient ILP
system that can scale well with large scale knowledge graphs and execute within minutes
rather than in hours. We also need to use more complex and comprehensive background
knowledge. In the next chapters, I show how to improve ILP system runtime, tools to

support the building of knowledge graph, and building a large scale knowledge graph.
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Chapter 3

Concept Induction

3.1 Overview

Since the rise of the Semantic Web, ontology or knowledge graph becomes the main ingredient
to structure, publish, integrate, and share the data. There exist many commercial and openly
available ontology, containing billions of facts. Even though, there exists many and also
increasing exponentially, it is nearly impossible to make the ontology complete, as the real
world information is also increasing constantly. Adding new facts to the knowledge graph is
an ongoing process. As such, acquiring new facts from external data and the existing ontology
itself is an ongoing research and commonly termed as ontology learning. Among the many
existing methods to solve this knowledge acquisition problem, some notables are [58, 55, 88,
30].

One of the sub-task of ontology learning is concept learning or concept induction. Concept
induction can be described as one of generating complex description logic class expressions
S from a given description logic knowledge base (or ontology) O and sets P and N of
instances, understood as positive and negative examples, such that O |= S(a) for all @ € P,
and O [~ S(b) for all b € N. In a practical ontology engineering process, solutions sought

are often approximate, i.e., they will not satisfy O |= S(a) for all a € P, but for as many as

13



possible, and will not satisfy O = S(b) for all b € N, but for as many as possible.

As discussed in the previous chapter 2, concept induction is found to be useful for gen-
erating concept based explanation from neural networks. Along with this use case, concept
induction has been employed for ontology engineering, in particular in the context of ontology
and knowledge graph refinement, see e.g. [51, 66] and the use case descriptions in [15].

Concept Induction is traditionally studied with methods derived from Inductive Logic
Programming (ILP). One of the preliminary work on concept induction in the context of
Semantic Web isSOWL Class Expression Learner (OCEL) and Class Expression Learning
for Ontology Engineering (CELOE) [53]. These algorithms use a refinement operator to
find concepts. Another concept induction algorithm is EL Tree Learner (ELTL) [35], which
creates tree hierarchy at first and then find the concepts. Based on these algorithms, the
Agile Knowledge Engineering and Semantic Web (AKSW) group produced a tool called DL-
Learner [15]. Researchers later developed some improvements to these algorithms. Parallel
Class Expression Learning for Ontology Engineering (PCELOE) [83], and Two way Parallel
Class Expression Learning (PARCEL) [84] are the parallel execution of the original CELOE
algorithm. Another algorithm is Restricted CELOE [41], where only individuals can reference
concepts, and each individual can reference only one concept. Algorithm, Fast Instance
Check (FIC) [35], do the materialization once and find concepts subsequently. An overview
of the concept induction system can be found in [52].

The most mature and recent system for this type of Concept Induction we found is
DL-Learner, as presented in [15] and based on the algorithms from [53, 49]. However,
while DL-Learner is an excellent and very useful system, its algorithm — which comes with
theoretical correctness results [53] — has significant performance issues in some scenarios,
such as the one described in previous chapter 2. In fact, the application need for scalability
was exposed through our experiments in the explainability scenario, which prompted us to
investigate the runtime issue more thoroughly. The key problem is that in a single execution,
the DL-Learner system will make a significant number of external calls to a description logic
reasoner. While the latter has become rather efficient in recent years, the accumulated time

needed, particularly if the input ontologies are large, can be prohibitive for the use of the

14



approach. For example, for the scenario described in [76], a single run of DL-Learner can
easily take over two hours, while the scenario easily necessitates thousands of such runs. To

overcome this problem, we formulate the research question.

Q2 . How can we improve the runtime of concept induction?

3.2 Contribution

[70] Md. Kamruzzaman Sarker and Pascal Hitzler. Efficient concept induction for description
logics. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019,
The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI
2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages 3036-3043. AAAI
Press, 2019
In the publication, Efficient Concept Induction for Description Logics [70], we developed

a concept induction algorithm named ECII, which improved the runtime at least 2 to 3

orders of magnitude while reducing some accuracy. ECII algorithm does not use refinement

operators; rather, it combines the atomic concepts to create complex concepts. We experi-
mented with all the dataset mentioned on the original DL-Learner paper and also used the

ADE20K [91] dataset to create a large scale ontology. On the small, medium, and large scale

ontology (large scale ontology has around 50,000 axioms), ECII performed better in terms

of runtime while producing comparable results in terms of accuracy.

This improvement of runtime comes at the cost of some accuracy. We calculated two
types of accuracy, approximate accuracy and exact accuracy (accuracy by reasoner). We use
the closed world assumption for approximate accuracy instead of the open-world assumption
of OWL 2 ontology. For OWL 2 semantics, so this accuracy diverges from the correct
accuracy. ECII performed similarly for approximate accuracy and decreased performance
for exact accuracy compared to DL-Learner. This approximate calculation is necessary for

some domains such as machine learning, knowledge graph instance checking. Especially for

15



explainability, as we described earlier, it is crucial to run the experiment within 1 minute
rather than 2 hours. This system is not a better choice when accuracy is needed in terms of
open-world assumption.

Further, experiments with the ECII system, using multiple large scale data (axioms
size is more than 500,00), such as Wikipedia ontology5, proved ECII is highly efficient
in terms of runtime. Empirical evaluation shows that ECII consistently takes less than 2
minutes to produce the results while using the large Wikipedia knowledge graph. Overall this
publication addresses the research question Q1. ECII software is open source and publicly

available! with MIT License, promoting reproducible research.

thttps://github.com/md-k-sarker /ecii
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Chapter 4

Making Ontology Editing Easier

4.1 Overview

Developing a knowledge graph or ontology requires a conceptualization of the ideas, and
once the conceptualization is done, it needs to be converted into ontology axioms. When
converting the conceptualizations into ontology axioms, developers and ontologists frequently
find it easier to express the conceptualizations in terms of rules rather than the direct ontology

axioms. To give just a simple example: The exact semantics behind a logical axiom such as
Journal C VpublishedBy.Organization

in our experience often remains somewhat unclear even for people with significant exposure

to ontologies and ontology modeling. On the other hand, a rule such as
Journal(z) A publishedBy(z, y) — Organization(y)

is rather intuitive for most in its meaning and can be both produced and processed much

more readily.
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< > @ test (http://www.daselab.org/test) < Search...

Active ontology x | Entities x | Individuals by class x DL Query x CoModIDE x OWLAx x ROWLTab x
ROWL | SWRL

EXAMPLE
Given sentence to model: If a person has a baby then that person is a parent.

The above sentence modeled as rule: Person(?x) A hasBaby(?x,?y) -> Parent(?x)

Now, model your own sentence as a rule. Put the rule name in the Rule Name text field and the rule itself in the Rule Text box.
When you are done writing your rule in ROWL Tab, click Convert to OWL Axiom button. Then confirm by clicking Integrate on the pop-up window.

Rule Name (Mandatory). Rule Will be saved using this name.

[R2
Comment (Optional) [ XoX ) Integrate with active ontology
[ Generated Axioms
Status Axioms
ok Mice freshObjectPropertyl
Rule Text Elephant freshObjectProperty2
Mice(?x) A Elephant(?y) -> smallerThan(?x,?y) freshObjectPropertyl o owl:topObjectProperty o freshObjectProperty2 SubPropertyOf: smallerThan
Click Integrate to combine the axioms with active ontology. Integrate Cancel
Clear Convert to OWL Axiom
Name Rule Comment
R1 (7X) A iteProgram(?x,2y) -> (%)

Edit Delete

To use the reasoner click Reasoner > Start reasoner /| Show Inferences.

Figure 4.1: ROWLTab UI: SWRL rule and the corresponding axioms, bottom parts showing
previously written rules, which are editable.

The axiom and the rule just given are, of course, logically equivalent.! In fact, manyOWL
axioms can be expressed equivalently as rules, which are, arguably, easier to understand and

to produce. Because of this, we ask the following research question.
Q3 . Can we make automated tools to convert SWRL rule into OWL azxioms?

As a consequence of this, we have developed a Protégé plugin ROWLTab, which accepts rules
as input, and adds them as OWL axioms to an ontology, provided the rule is expressible
by an equivalent set of such axioms. Figure 4.1 shows the user interface of the ROWLTab
plugin.

After developing the tools, we perform an user evaluation to check, whether creating
ontology by inserting rule boosts user experience or not. For this, we ask the following

research question.

Q4 . Does the ROWLTab plugin improve user experience for developing ontology?
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New Diagram* - OWLAx

< > @ onto (http://www.example.org/onto) < Search...

Active Ontology x| Entities x| Classes x| Object Properties x | Data Properties x| OWLAx x|

File Ontology Edit View Format Diagram About

BRI Weewca < lept - B 7| 2008 <) xsiswing v GenerateAxiom |
.

Shapes

@® Select Axioms

Generated Axioms

°
hasDisease Select All
v i .
Q , hasName | @ onto:Dermatopythosis SubClassOf onto:Disease

Literal  Object... Data

rdf:type| rdfs:s...

v @ Disjoint Classes Axioms

onto:Dermatopythosis DisjointWith onto:ICD10Code
" onto:Dermatopythosis DisjointWith onto:Person
onto:Disease DisjointWith onto:ICD10Code

onto:Disease DisjointWith onto:Person
~ onto:ICD10Code DisjointWith onto:Person
v Domain-Range Axioms
rdfitype 1 ontothasDisease some onto:Disease SubClassOf onto:Person
| onto:hasDisease some owl:Thing SubClassOf onto:Person
ontothasICD10Code some owl:Thing SubClassOf onto:Dermatopythosis
ontothasICD10Code value icd10:B35 SubClassOf onto:Dermatopythosis
ontothasName some rdfs:Literal SubClassOf onto:Person
onto:hasName some xsd:string SubClassOf onto:Person
onto:Person SubClassOf onto:hasDisease only onto:Disease
onto:Person SubClassOf ontothasName only xsd:string
owl:Thing SubClassOf ontozhasDisease only onto:Disease
owl:Thing SubClassOf onto:hasName only xsd:string
| v Existential Axioms
| onto:Dermatopythosis SubClassOf onto:haslCD10Code value icd10:835
onto:Disease SubClassOf inverse (ontohasDisease) some onto:Person
onto:Person SubClassOf onto:hasDisease some onto:Disease
onto:Person SubClassOf onto:hasName some xsd:string
{icd10:B35} SubClassOf inverse (ontohasICD10Code) some onto:Dermatopythosis
| » [ cardinality Axioms
v Class (Type) Assertion Axioms
icd10:B35 Type onto:ICD10Code

rdfs:subClassOf

xsd:string

-_ hasico10code w0835 ) |

Select axioms which you want to integrate. Integrate Cancel

|
Creating axioms from icd 10:B35 rdf:type ICD10Code

To use the reasoner click Reasoner > Start reasoner v Show Inferences

Figure 4.2: OWLAx UI: class diagram and corresponding axioms

In addition to writing OWL axioms in the form of SWRL rule, after drawing the class
diagram, it is more convenient to directly draw the diagram and let the software tools take
care of creating the axioms directly. Having such kind of tools would significantly decrease
the time to convert the manual figure into OWL axioms, furthermore reduce the human

error during the conversion process. Because of this, we ask the following research question.
Q5 . Can we develop visual editor which will generate OWL axioms directly from drawing?

This research effort led to the development of a tool OWLAx, which is a plugin for Protégé .
Figure 4.2 shows the screenshot version 1.2.0 of the tool. Features and implementation details

of it were presented in [73].

"When we interpret the rule in the sense of first-order predicate logic
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4.2 Contribution

[69] Md. Kamruzzaman Sarker, David Carral, Adila Alfa Krisnadhi, and Pascal Hitzler.
Modeling OWL with rules: The ROWL protege plugin. In Takahiro Kawamura and
Heiko Paulheim, editors, Proceedings of the ISWC' 2016 Posters € Demonstrations Track
co-located with 15th International Semantic Web Conference (ISWC 2016), Kobe, Japan,
October 19, 2016, volume 1690 of CEUR Workshop Proceedings. CEUR-WS.org, 2016

[72] Md. Kamruzzaman Sarker, Adila Krisnadhi, David Carral, and Pascal Hitzler. Rule-
based OWL modeling with rowltab protégé plugin. In Eva Blomqvist, Diana Maynard,
Aldo Gangemi, Rinke Hoekstra, Pascal Hitzler, and Olaf Hartig, editors, The Semantic
Web - 14th International Conference, ESWC 2017, Portoroz, Slovenia, May 28 - June
1, 2017, Proceedings, Part I, volume 10249 of Lecture Notes in Computer Science, pages
419-433, 2017

[73] Md. Kamruzzaman Sarker, Adila Alfa Krisnadhi, and Pascal Hitzler. Owlax: A protege
plugin to support ontology axiomatization through diagramming. In Takahiro Kawamura
and Heiko Paulheim, editors, Proceedings of the ISWC 2016 Posters & Demonstrations
Track co-located with 15th International Semantic Web Conference (ISWC 2016), Kobe,
Japan, October 19, 2016, volume 1690 of CEUR Workshop Proceedings. CEUR-WS.org,
2016
In the first publication Modeling OWL with Rules: The ROWL Protégé Plugin [69], Md

Kamruzzaman Sarker and David Carral developed the ROWTab plugin to convert the SWRL

rule into OWL DL axioms. In case such a conversion is not possible, the plugin notifies the

user. Previously entered rules can be edited later, giving the user options to modify the
rules in case of error. David Carral developed the conversion engine, and Md Kamruzzaman

Sarker developed the user interface and did the integration of ROWLTab with Protégé . The

development of this plugin and the publication addresses the research question Q3.

Second publication Rule-Based OWL Modeling with ROWLTab Protégé Plugin [72], de-

scribes how the ROWLTab plugin improves user experience to develop ontology through an
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user evaluation. Adila Krisnadhi and Pascal Hitzler provided significant feedback towards
the evaluation. Expert ontologists and graduate students without any prior knowledge of
ontology developments took part in the user evaluation. Evaluators were asked to create
ontology with and without the ROWLTab plugin. There were three different types of ques-
tions in terms of difficulty: easy, medium, and hard. Results were analyzed with respect
to time, correctness, and the number of clicks (mouse click+keyboard click) required to an-
swer the questions. The evaluation showed that ROWLTab required fewer clicks and less
time for all types of questions. For correctness: with and without using ROWLTab, eval-
uators performed the same for easy questions but produced better results for medium and
hard questions using ROWLTab. This evaluation and the publication addresses the research
question Q4.

In the third publication OWLAz: A Protege Plugin to Support Ontology Azxiomatization
through Diagramming [73] Md Kamruzzaman Sarker, with significant feedback from Adila
Krisnadhi, showed the initial way of creating ontology visually. This software tool allows
users to draw the conceptual diagram of the ontology and converts to OWL axioms (OWL
DL). It supports the drawing in terms of nodes and edges reminiscent of the triple of an
axiom. It does not support advanced axioms. However, it shows a research direction to
follow. Further publications from other authors [37, 78], shows it is being used in their
research and has been found to be adaptable, extensible, and reusable. This contribution

addresses research question Q5.

21



Chapter 5

Knowledge Graph

In this chapter, which is based on [74], T provide an evaluation of the knowledge graphs in
the context of explainable Al and also introduce the cycle free Wikipedia category hierarchy

knowledge graph (WKG).

5.1 Motivation

One frequently explored approach to explaining the Al decision regarding domain knowledge
involves using human understandable concepts. These concepts and their relation in the
real-world make the knowledge graph. There exists many knowledge graphs, some promi-
nent are: DBpedia [11], Suggested Upper Merged Ontology (SUMO) [61], Freebase [13],
ConceptNet [79], Yago [80]. As there are many knowledge graphs, it is important to know
which knowledge graph will be better suited to enhance the explainability. This problem

creates the following research question.

Q6 . How can we evaluate the performance of different knowledge graphs in the context of

XAI?

When explaining the decision using a knowledge graph, the Al model’s input data are

mapped with the knowledge graph using some mapping algorithm (such as string similar-
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ity [56] or deep learning-based entity mapping). After the mapping, concept induction takes
positive and negative instances (optional), which comes from the Al model. Concept induc-
tion also takes the knowledge graph as input and tries to explain the model Al by keeping
the positive instances’ attributes while discarding the negative instances. The explana-
tion comes in the form of an atomic concept or complex concept. The concepts’ hierarchy
helps to describe the explanation by generalizing the concept or specifying the concept. For
this generalization and narrowing-down purpose, concept hierarchy and the relation (binary
predication in First-Order Logic, role in Description Logic) hierarchy is used. As we need
to generalize or specifies the concept, for this purpose cycle from the knowledge graph needs
to be removed. In many knowledge graphs, this concept hierarchy is often cyclic and this

hinders the use of knowledge graph in the context of XAIL

5.2 Contribution

[74] Md Kamruzzaman Sarker, Joshua Schwartz, Pascal Hitzler, Lu Zhou, Srikanth Nadella,
Brandon Minnery, Ion Juvina, Michael L. Raymer, and William R. Aue. Wikipedia
knowledge graph for explainable ai. In Boris Villazon-Terrazas, Fernando Ortiz-Rodriguez,
Sanju Mishra Tiwari, and Shishir K Shandilya, editors, Knowledge Graph and Semantic
Web Conference (KGSWC), 2020
In the publication, Wikipedia Knowledge Graph for Explainable AI [74], 1 show a di-

rection to evaluate the explanation performance based on different knowledge graphs and

also developed the non-cyclic Wikipedia category hierarchy Knowledge Graph (WKG). For

WKG’s development, I use only the Wikipedia article title, article category, and hierarchy

of the categories to keep it simple and easily usable in the context of XAI. In the knowl-

edge graph, articles title become the entities (named individuals in OWL 2), their categories
become the concepts (classes in OWL 2), and the concepts hierarchy form the hyponym-
hypernym relation. To encode these informations I use rdf:type and rdfs:subClassOf relation.

Developing this non-cyclic knowledge graph makes it easy to use in the XAI applications.

Non-cyclic version was developed by breaking cycle (details is in [74]). By breaking the
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cycles, we lost some subclass-superclass relation, consequently some concepts and individ-
uals also. As such, it becomes necessary to evaluate how much information is lost. It’s
easy to measure how much information is lost overall; however, it is hard to measure how
this will affect the explanation’s quality extracted from the Al system. As the XAl applica-
tion use the hyponym-hypernym relation from the knowledge graph, it’s worth to measure
how many subclass-superclass relations we missed during this process. We lost substantial
amount (total 1,988,618 out of 5,962,463, which is 0.33%) of subclass-superclass relation.
Following that, we do a qualitative evaluation on how the semantics of the overall hierarchy
is lost. We take the matching concepts from SUMO, Wikipedia, and DBpedia knowledge
graphs and manually compare the subclass-superclass relation, finding the semantics remain
almost the same. To give an example, axioms: Aircraft © Vehicles in SUMO, Aircraft C
MeansOfTransportation in DBpedia, Aircraft C Vehicles_by_types in Wikipedia Knowledge
graph shows the semantics are almost similar. One reason may be behind this, that the
Wikipedia category hierarchy contains much redundant information.

Evaluation of the knowledge graph in the context of XAI is essential. When we have
multiple knowledge graphs, we need to know which knowledge graph will produce a bet-
ter explanation. Qualitative evaluation for explanation requires human participants, and
explanation varies from human to human. To make it bias-free, I provide a quantitative
evaluation to compare the performance of different knowledge graphs. For the quantitative
evaluation, following [76], I compare the Wikipedia Knowledge graph with SUMO ontology
on the ADE20K dataset [91]. I convert the ADE20k images annotations into an OWL ontol-
ogy. After that, I aligned it with SUMO and with WKG, as in [76]. I use all five experiments
mentioned in [76], but expanded the scope of the experiments. Previously because of the
concepts induction’s slow execution, it was impossible to do a large-scale experiment. De-
velopment of ECII [70], make it possible to do a large scale experiment. Previously I used
only 3-10 images for each experiment; now, I took all the training images (around 100) of
the relevant categories from the ADE20K dataset. Explanation was sought from pre-trained
ResNet-50 [34]. The quantitative evaluation uses the average coverage score, and experi-

ments show that WKG has a better average coverage score than the SUMO ontology. This
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evaluation address the research question Q6.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, I showed a new direction to explain the Al decision; in terms of concepts, so
humans can easily understand the explanation. This technique maps the training data with
a contextual knowledge graph. It goes beyond the propositional rule extraction and extends
this technique to allow description logic inside the rule. The concept induction algorithm
is the primary tool to extract the explanation (in the forms of rules) from the trained Al
model. The concept induction algorithm uses the trained AI model and contextual knowledge
graph as input. Concepts that people understand form the domain knowledge, which needs
to be converted into a standard knowledge base (e.g., description logic based ontology or
knowledge graph). Training instances are mapped (any mapping algorithm will work, such
as string similarity and others) with the knowledge base.

Following the proposed directions, empirical evaluation with larges knowledge bases
proved that existing concept induction is slower for this task; thus, I had to investigate
new ways to perform the rigorous experiment. Subsequently, I have developed ECII [71],
which improved the concept induction algorithm. This algorithm trades little amount of ac-

curacy to gain significant runtime improvement. ECII achieves several orders of magnitude
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improvement in runtime than existing ones.

Explanation generated from this method also depends on the knowledge base, which
should comprehensively cover the problem’s domain. Developing such a knowledge base is a
complex and time-consuming task. I have developed tools to facilitate the building process
of the knowledge base. This was accomplished through the development of relevant tools [73,
69, 72]. I have also developed a large scale knowledge graph to facilitate the explanation
research by creating a cycle free Wikipedia category hierarchy knowledge graph [74] and also
performed an empirical evaluation to show how the performance of explanation is changing
based on the Knowledge bases.

Altogether, these research contributions showed a new direction to generate explanations
in a human-friendly way by mapping the training instances with the knowledge base. It
improved concept induction runtime and also improved tooling support to build a large

scale knowledge graph.

6.2 Future Work

The direction to explain Al decision, introduced in this thesis, provides a novel ground for
further exploration. The models presented in this thesis, while delivering encouraging results,
are not yet deployable in the real world, and more work is needed to advance this promising
direction. I envision investigating thoroughly to find a trustable, fair, easily understandable
explanation from the AI model.

Further large scale experiment should include different domains. It should use different
types of Al models, such as multimodal, deep and wide neural networks, and many variants of
the neural network, including but not limited to RNN, CNN to validate the proposed method.
Alongside finding the input-output pattern, finding the internal node’s representation in a
human-understandable way is an important direction to pursue.

Besides the explainability, improving concept induction is worth investigating. Not only
for its use in explainability, but there are also many tasks the concept induction algorithm is

indeed essential, such as finding a semantic cluster of the data, learning new concepts from
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the knowledge base, identifying whether training data is biased or not, and many others.
Acquiring and converting real-world knowledge into machine-processable form to support

automated reasoning while still maintaining the actions’ transparency is of great importance.

Developing such methods and software tools are one of the critical components to support

the explainability research.
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Explaining Trained Neural Networks with
Semantic Web Technologies: First Steps

Md Kamruzzaman Sarker, Ning Xie, Derek Doran, Michael Raymer, and
Pascal Hitzler

Data Science and Security Cluster, Wright State University, Dayton, OH, USA

Abstract. The ever increasing prevalence of publicly available struc-
tured data on the World Wide Web enables new applications in a variety
of domains. In this paper, we provide a conceptual approach that lever-
ages such data in order to explain the input-output behavior of trained
artificial neural networks. We apply existing Semantic Web technologies
in order to provide an experimental proof of concept.

1 Introduction

Trained neural networks are usually imagined as black boxes, in that they do
not give any direct indications why an output (e.g., a prediction) was made by
the network. The reason for this lies in the distributed nature of the information
encoded in the weighted connections of the network. Of course, for applications,
e.g., safety-critical ones, this is an unsatisfactory situation. Methods are therefore
sought to explain how the output of trained neural networks are reached.

This topic of explaining trained neural networks is not a new one, in fact there
is already quite a bit of tradition and literature on the topic of rule extraction
from such networks (see, e.g., [2,9,16]), which pursued very similar goals. Rule
extraction, however, utilized propositional rules as target logic for generating
explanations, and as such remained very limited in terms of explanations which
are human-understandable. Novel deep learning architectures attempt to retrieve
explanations as well, but often the use-case is only for computer vision tasks
like object or scene recognition. Moreover, explanations in this context actually
encode greater details about the images provided as input, rather than explaining
why or how the neural network was able to recognize a particular object or scene.

Semantic Web [4,12] is concerned with data sharing, discovery, integration,
and reuse. As field, it does not only target data on the World Wide Web, but its
methods are also applicable to knowledge management and other tasks off the
Web. Central to the field is the use of knowledge graphs (usually expressed using
the W3C standard Resource Description Framework RDF [3]) and type logics
attached to these graphs, which are called ontologies and are usually expressed
using the W3C standard Web Ontology Language OWL [11].

This paper introduces a new paradigm for explaining neural network be-
havior. It goes beyond the limited propositional paradigm, and directly targets
the problem of explaining neural network activity rather than the qualities of
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the input. The paradigm leverages advances in knowledge representation on the
World Wide Web, more precisely from the field of Semantic Web technologies. It
in particular utilizes the fact that methods, tool, and structured data in the men-
tioned formats are now widely available, and that the amount of such structured
data on the Web is in fact constantly growing [5,18]. Prominent examples of
large-scale datasets include Wikidata [22] and data coming from the schema.org
[10] effort which is driven by major Web search engine providers. We will utilize
this available data as background knowledge, on the hypothesis that background
knowledge will make it possible to obtain more concise explanations. This ad-
dresses the issue in propositional rule extraction that extracted rulesets are often
large and complex, and due to their sizes difficult to understand for humans.
While the paper only attempts to explain input-output behavior, the authors
are actively exploring ways to also explain internal node activations.

An illustrative example

Let us consider the following very simple example which is taken from [14].
Assume that the input-output mapping P of the neural network without back-
ground knowledge could be extracted as

pL1ANg—T P2 Nqg—T.

Now assume furthermore that we also have background knowledge K in form of
the rules

pL—D P2 — Dp.

The background knowledge then makes it possible to obtain the simplified input-
output mapping Pk, as
pANqg—T.

The simplification through the background knowledge is caused by p acting
as a “generalization” of both p; and ps. For the rest of the paper it may be
beneficial to think of p, p1 and p, as classes or concepts, which are hierarchically
related, e.g., p; being “oak,” ps being “maple,” and p being “tree.”

Yet this example is confined to propositional logic.! In the following, we show
how we can bring structured (non-propositional) Semantic Web background
knowledge to bear on the problem of explanation generation for trained neu-
ral networks, and how we can utilize Semantic Web technologies in order to
generate non-propositional explanations. This work is at a very early stage, i.e.,
we will only present the conceptual architecture of the approach and minimal
experimental results which are encouraging for continuing the effort.

The rest of the paper is structured as follows. In Section 2 we introduce nota-
tion as needed, in particular regarding description logics which underly the OWL
standard, and briefly introduce the DL-Learner tool which features prominently
in our approach. In Section 3 we present the conceptual and experimental setup

! How to go beyond the propositional paradigm in neural-symbolic integration is one
of the major challenges in the field [8].
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for our approach, and report on some first experiments. In Section 4 we conclude
and discuss avenues for future work.

2 Preliminaries

We describe a minimum of preliminary notions and information needed in order
to keep this paper relatively self-contained. Description logics [1,12] are a major
paradigm in knowledge representation as a subfield of artificial intelligence. At
the same time, they play a very prominent role in the Semantic Web field since
they are the foundation for one of the central Semantic Web standards, namely
the W3C Web Ontology Language OWL [11,12].

Technically speaking, a description logic is a decidable fragment of first-order
predicate logic (sometimes with equality or other extensions) using only unary
and binary predicates. The unary predicates are called atomic classes,? while the
binary ones are refered to as roles,® and constants are refered to as individuals.
In the following, we formally define the fundamental description logic known as
ALC, which will suffice for this paper. OWL is a proper superset of ALC.

Desciption logics allow for a simplified syntax (compared to first-order pred-
icate logic), and we will introduce ALC in this simplified syntax. A translation
into first-order predicate logic will be provided further below.

Let C be a finite set of atomic classes, R be a finite set of roles, and N be a
finite set of individuals. Then class expressions (or simply, classes) are defined
recursively using the following grammar, where A denotes atomic classes from
A and R denotes roles from R. The symbols M and U denote conjunction and
disjunction, respectively.

C,D:=A|~C|CND|CUD|VYR.C|3R.C

A TBox is a set of statements, called (general class inclusion) azioms, of
the form C' C D, where C and D are class expressions — the symbol C can be
understood as a type of subset inclusion, or alternatively, as a logical implication.
An ABozx is a set of statements of the forms A(a) or R(a,b), where A is an
atomic class, R is a role, and a, b are individuals. A description logic knowledge
base consists of a TBox and an ABox. The notion of ontology is used in different
ways in the literature; sometimes it is used as equivalent to TBox, sometimes as
equivalent to knowledge base. We will adopt the latter usage.

We characterize the semantics of ALC knowledge bases by giving a transla-
tion into first-order predicate logic. If « is a TBox axiom of the form C' C D,
then 7(«) is defined inductively as in Figure 1, where A is a class name. ABox
axioms remain unchanged.

DL-Learner [6,17] is a machine learning system inspired by inductive logic
programming [20]. Given a knowledge base and two sets of individuals from the
knowledge base — called positive respectively negative examples — DL-Learner

2 or atomic concepts
3 or properties
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m(C E D) = (Vo) (mzo (C) = 70 (D))
7oy (4) = A(s)
T, (_‘C) = Ty (C)
Tz, (C M D) =14, (C) A 7a, (D)
Tz, (CUD) =1y, (C)V ma, (D)
Tz, (VR.C) = (Vrig1) (R(zi, Tit1) = Tay (C))
7z, (GR.C) = (Fzip1)(R(wi, Tiv1) A Tayyy (C))

Fig. 1. Translating TBox axioms into first-order predicate logic. We use auxiliary func-
tions 7y, , where the z; are variables. The axiom A C 3R.35.B, for example, would be
translated to (Vao)((A(zo)) — (Fz1)(R(xo,z1) A (3z2)(S(z1,22) A B(22)))).

i

AT N e B [ o M HII)
gl o/

Fig. 2. Michalski’s trains, picture from [15]. Positive examples on the left, negative
ones on the right.

attempts to construct class expressions such that all the positive examples are
contained in each of the class expressions, while none of the negative examples
is. DL-Learner gives preference to shorter solutions, and in the standard setting
returns approximate solutions if no fully correct solution is found. The inner
workings of DL-Learner will not matter for this paper, and we refer to [6,17] for
details. However, we exemplify its functionality by looking at Michalski’s trains
as an example, which is a symbolic machine learning task from [15], and which
was presented also in [17].

For purposes of illustrating DL-Learner, Figure 2 shows two sets of trains, the
positive examples are on the left, the negative ones are on the right. Following
[17], we use a simple encoding of the trains as a knowledge base: Each train is an
individual, and has cars attached to it using the hasCar property, and each car
then falls into different categories, e.g., the top leftmost car would fall into the
classes Open, Rectangular and Short, and would also have information attached
to it regarding symbol carried (in this case, square), and how many of them (in
this case, one). Given these examples and knowledge base, DL-Learner comes
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Connectionist System

Knowledge Base —
— Th
3 £
TBox (KB Schema) e %9
= A
Man = Human M Male O E.. 2
Father = Man M JhasChild.Human S -§'
= -~
A—
ABox (Instances)
David : Father - X
(David, Susan) : hasChild DL-Learner L A -
1 Explanation
b e, Positive and negative
examples

Fig. 3. Conceptual architecture — see text for explanations.

up with the class
JhasCar.(Closed M Short)

which indeed is a simple class expression such that all positive examples fall
under it, while no negative example does.

3 Approach and Experiments

In this paper, we follow the lead of the propositional rule extraction work men-
tioned in the introduction, with the intent of improving on it in several ways.

1. We generalize the approach by going significantly beyond the propositional
rule paradigm, by utilizing description logics.

2. We include significantly sized and publicly available background knowledge
in our approach in order to arrive at explanations which are more concise.

More concretely, we use DL-Learner as the key tool to arrive at the ex-
planations. Figure 3 depicts our conceptual architecture: The trained artificial
neural network (connectionist system) acts as a classifier. Its inputs are mapped
to a background knowledge base and according to the networks’ classification,
positive and negative examples are distinguished. DL-Learner is then run on
the example sets and provides explanations for the classifications based on the
background knowledge.

In the following, we report on preliminary experiments we have conducted
using our approach. Their sole purpose is to provide first and very preliminary
insights into the feasibility of the proposed method. All experimental data is
available from http://daselab.org/projects/human-centered-big-data.

We utilize the ADE20K dataset [23,24]. It contains 20,000 images of scenes
which have been pre-classified regarding scenes depicted, i.e., we assume that the
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S

B2z | b P g R il

Fig. 4. Test images. Positive examples p1, p2, ps on the left (from top), negative ex-
amples n1, n2, ns on the right (from top).

classification is done by a trained neural network.? For our initial test, we used
six images, three of which have been classified as “outdoor warehouse” scenes
(our positive examples), and three of which have not been classified as such (our
negative examples). In fact, for simplicity, we took the negative examples from
among the images which had been classified as “indoor warehouse” scenes. The
images are shown in Figure 4.

The ADE20K dataset furthermore provides annotations for each image which
identify information about objects which have been identified in the image. The
annotations are in fact richer than that and also talk about the number of
objects, whether they are occluded, and some more, but for our initial experiment
we only used presence or absence of an object. To keep the initial experiment
simple, we furthermore only used those detected objects which could easily be
mapped to our chosen background knowledge, the Suggested Upper Merged
Ontology (SUMO).?> Table 1 shows, for each image, the objects we kept. The
Suggested Upper Merged Ontology was chosen because it contains many, namely
about 25,000 common terms which cover a wide range of domains. At the same

4 Strictly speaking, this is not true for the training subset of the ADE20K dataset,
but that doesn’t really matter for our demonstration.
® http://www.adampease.org/0P/
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image p1: road, window, door, wheel, sidewalk, truck, box, building
image pa2: tree, road, window, timber, building, lumber

image ps: hand, sidewalk, clock, steps, door, face, building, window, road
image n1: shelf, ceiling, floor

image no: box, floor, wall, ceiling, product

image ngs: ceiling, wall, shelf, floor, product

Table 1. Objects recorded for each image.

time, the ontology arguably structures the terms in a relatively straightforward
manner which seemed to simplify matters for our initial experiment.

In order to connect the annotations to SUMO, we used a single role called
“contains.” Each image was made an individual in the knowledge base. Further-
more, for each of the object identifying terms in Table 1, we either identified
a corresponding matching SUMO class, or created one and added it to SUMO
by inserting it at an appropriate place within SUMO’s class hierarchy. We fur-
thermore created individuals for each of the object identifying terms, including
duplicates, in Table 1, and added them to the knowledge base by typing them
with the corresponding class. Finally, we related each image individual to each
corresponding object individual via the “contains” role.

To exemplify — for the image p; we added individuals roadl, windowl,
doorl, wheell, sidewalkl, truckl, box1, buildingl, declared Road(roadl), Win-
dow(windowl), etc., and finally added the ABox statements contains(p;,roadl),
contains(py, windowl), etc., to the knowledge base. For the image p2, we added
contains(ps, tree2), contains(ps,road2), etc. as well as the corresponding type
declarations Tree(tree2), Road(road2), etc.

The mapping of the image annotations to SUMO is of course very simple,
and this was done deliberately in order to show that a straightforward approach
already yields interesting results. As our work progresses, we do of course an-
ticipate that we will utilize more complex knowledge bases and will need to
generate more complex mappings from picture annotations (or features) to the
background knowledge.

Finally, we ran DL-Learner on the knowledge base, with the positive and
negative examples as indicated. DL-Learner returns 10 solutions, which are listed
in Figure 5. Of these, some are straightforward from the image annotations,
such as (1), (5), (8 (9) and (10). Others, such as (2), (4), (6), (7) are much
more interesting as they provide solutions in terms of the background knowledge
without using any of the terms from the original annotation. Solution (3) looks
odd at first sight, but is meaningful in the context of the SUMO ontology:
SelfConnectedObject is an abstract class which is a direct child of the class
Object in SUMO’s class hierarchy. Its natural language definition is given as
“A SelfConnectedObject is any Object that does not consist of two or more
disconnected parts.” As such, the class is a superclass of the class Road, which
explains why (3) is indeed a solution in terms of the SUMO ontology.
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dcontains. Window (1) Jcontains.Land Transitway  (6)
Jcontains. Transitway (2) Jcontains.LandArea (7)
Jeontains.SelfConnectedObject  (3) Jcontains.Building (8)
Jcontains.Roadway (4) Vcontains.—Floor (9)
Jeontains.Road (5) Vcontains.—Ceiling (10)

Fig. 5. Solutions produced by DIL-Learner for the warehouse test.

We have conducted four additional experiments along the same lines as de-
scribed above. We briefly describe them below — the full raw data and results
are available from http://daselab.org/projects/human-centered-big-data.

In the second experiment, we chose four workroom pictures as positive exam-
ples, and eight warehouse pictures (indoors and outdoors) as negative examples.
An example explanation DL-Learner came up with is

Jeontains.(DurableGood M —ForestProduct).

On of the outdoor warehouse pictures indeed shows timber. DurableGoods in
SUMO include furniture, machinery, and appliances.

In the third experiment, we chose the same four workroom pictures as neg-
ative examples, and the same eight warehouse pictures (indoors and outdoors)
as positve examples. An example explanation DL-Learner came up with is

Veontains. (—Furniture M —IndustrialSupply),

i.e., “contains neither furniture nor industrial supply”. IndustrialSupply in SUMO
includes machinery. Indeed it turns out that furniture alone is insufficient for
distingushing between the positive and negative exaples, because “shelf” is not
classified as funiture in SUMO. This shows the dependency of the explanations
on the conceptualizations encoded in the background knowledge.

In the fourth experiment, we chose eight market pictures (indoors and out-
doors) as positive examples, and eight warehouse pictures (indoors and outdoors)
as well as four workroom pictures as negative examples. An example explanation
DL-Learner came up with is

Jcontains.Sentient Agent,

And indeed it turns out that people are shown on all the market pictures. There
is actually also a man shown on one of the warehouse pictures, driving a forklift,
however “man” or “person” was not among the annotations used for the picture.
This example indicates how our approach could be utilized: A human monitor
inquiring with an interactive system about the reasons for a certain classification
may notice that the man was missed by the software on that particular picture,
and can opt to interfere with the decision and attempt to correct it.

In the fifth experiment, we chose four mountain pictures as positive examples,
and eight warehouse pictures (indoors and outdoors) as well as four workroom
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pictures as negative examples. An example explanation DL-Learner came up
with is

Jecontains.BodyOfWater.
Indeed, it turns out that all mountain pictures in the example set show either a
river or a lake. Similar to the previous example, a human monitor may be able
to catch that some misclassifications may occur because presence of a body of
water is not always indicative of presence of a mountain.

4 Conclusions and Further Work

We have laid out a conceptual sketch how to approach the issue of explaining
artificial neural networks’ classification behaviour using Semantic Web back-
ground knowledge and technologies, in a non-propositional setting. We have
also reported on some very preliminary experiments to support our concepts.

The sketch already indicates where to go from here: We will need to in-
corporate more complex and more comprehensive background knowledge, and
if readily available structured knowledge turns out to be insufficient, then we
foresee using state of the art knowledge graph generation and ontology learn-
ing methods [13,19] to obtain suitable background knowledge. We will need to
use automatic methods for mapping network input features to the background
knowledge [7,21], while the features to be mapped may have to be generated
from the input in the first place, e.g. using object recognition software in the
case of images. And finally, we also intend to apply the approach to sets of hidden
neurons in order to understand what their activations indicate.

Acknowledgements. This work was supported by the Ohio Federal Research Net-
work project Human-Centered Big Data.
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Abstract

Concept Induction refers to the problem of creating complex
Description Logic class descriptions (i.e., TBox axioms) from
instance examples (i.e., ABox data). In this paper we look
particularly at the case where both a set of positive and a set of
negative instances are given, and complex class expressions
are sought under which the positive but not the negative ex-
amples fall. Concept induction has found applications in on-
tology engineering, but existing algorithms have fundamen-
tal performance issues in some scenarios, mainly because a
high number of invokations of an external Description Logic
reasoner is usually required. In this paper we present a new
algorithm for this problem which drastically reduces the num-
ber of reasoner invokations needed. While this comes at the
expense of a more limited traversal of the search space, we
show that our approach improves execution times by up to
several orders of magnitude, while output correctness, mea-
sured in the amount of correct coverage of the input instances,
remains reasonably high in many cases. Our approach thus
should provide a strong alternative to existing systems, in par-
ticular in settings where other systems are prohibitively slow.

Introduction

With the rise of the Web Ontology Language OWL (Hit-
zler et al. 11 December 2012), description logics have be-
come the leading paradigm for the representation of ontolo-
gies (Hitzler, Krotzsch, and Rudolph 2010). The knowledge
acquisition bottleneck, in the form of acquisition of descrip-
tion logic knowledge bases, thus becomes an issue also for
the field of ontology engineering and applications. Ontology
Learning is a term often used for this in the Semantic Web
context, and a relatively recent overview of the many facets
of this subfield can be found in (Lehmann and Volker 2014).

In this paper, we study one of the subproblems of on-
tology learning, commonly known as Concept Induction or
Concept Learning. Generally speaking, this problem can be
described as one of generating complex description logic
class expressions S from a given description logic knowl-
edge base (or ontology) O and sets P and N of instances,
understood as positive and negative examples, such that
O = S(a)foralla € P,and O [~ S(b) forallb € N.Ina
practical ontology engineering process, solutions sought are

Copyright © 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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often approximate, i.e., they will not satisfy O = S(a) for
all @ € P, but for as many as possible, and will not satisfy
O £ S(b) for all b € N, but for as many as possible.

Concept Induction is traditionally studied with meth-
ods derived from Inductive Logic Programming, and an
overview of corresponding results and systems can be found
in (Lehmann et al. 2014). The most mature and recent sys-
tem for this type of Concept Induction we are aware of
is DL-Learner, as presented in (Biihmann, Lehmann, and
Westphal 2016) and based on the algorithms from (Lehmann
and Hitzler 2010; Lehmann et al. 2011). Concept Induction
has been employed for ontology engineering, in particular
in the context of ontology and knowledge graph refinement,
see e.g. (Lehmann and Biihmann 2010; Paulheim 2017) and
the use case descriptions in (Bithmann, Lehmann, and West-
phal 2016). Another recent use case in the context of ex-
plaining deep learning systems was described in (Sarker et
al. 2017).

However, while DL-Learner is an excellent and very use-
ful system, its algorithm — which comes with theoretical cor-
rectness results (Lehmann and Hitzler 2010) — has major
performance issues in some scenarios, such as the one de-
scribed in (Sarker et al. 2017). In fact, it was the application
need for scalability exposed through our experiments in the
scenario from (Sarker et al. 2017) which primarily prompted
the investigations which we report herein. The key problem
is that in a single execution, the DL-Learner system will
make a significant number of external calls to a description
logic reasoner. While the latter have become rather efficient
in recent years, the accumulated time needed, in particular
if the input ontologies are large, can be prohibitive for the
use of the approach. For example, as we will report in the
evaluation section, for the scenario described in (Sarker et
al. 2017) a single run of DL-Learner can easily take over
two hours, while the scenario easily necessitates thousands
of such runs.

In this paper, we follow the idea that in some scenarios
such as the one mentioned, it may be prudent to give up
some completeness guarantees, and to instead focus on exe-
cution speed. In the approach which we describe herein, we
do in fact invoke a description logic reasoner only once for
each run of our algorithm. The reasoner computes a materi-
alization of facts in term of class memberships of individuals
to atomic classes, and this materialization is used through-



out the rest of the algorithm. Furthermore, we depart from
the established tradition in Concept Induction in that we
do not use a refinement-operator-based approach to produce
candidate solutions. As a consequence, our approach saves
up to several orders of magnitude on large input ontologies,
as compared to DL-Learner. At the same time, accuracy of
the solutions provided by our approach remains reasonably
high, which indicates a favorable trade-off between accuracy
and efficiency, for application scenarios where such a trade-
off is desired.

The rest of the paper is organized as follows. We first de-
scribe a high-level perspective of our approach and algo-
rithm.Then we describe the concrete algorithm which we
have implemented, together with some formal results. Af-
ter that, we present our experimental evaluation in terms of
a comparison with DL-Learner, and finally we conclude.

The General Algorithm

In terms of terminology, we generally follow (Lehmann and

Hitzler 2010) where appropriate. The general learning prob-

lem we address is concept induction as described in the fol-

lowing, where we assume that some description logic £ has
been fixed: Given an ontology O (consisting of an ABox and

a TBox) over £ and two sets P and N of individuals called

positive respectively negative examples, we seek a (possibly

complex) class expression S over £ such that O = S(a) for
all @ € P (we say that C covers a), and O = S(b) for all

b € N.We call S a solution for this.

The most prominent refinement-operator based approach
to concept induction, as provided in the DL-Learner system
(Biihmann, Lehmann, and Westphal 2016), essentially fol-
lows a generate-and-test paradigm: Based on a so-called re-
finement operator, an idea borrowed from Inductive Logic
Programming (Nienhuys-Cheng and de Wolf 1997), subse-
quent candidate concepts are generated and tested as to the
degree to which they come close to a solution, and following
some strategy the next candidate concepts are generated un-
til eventually, a full solution is found or some approximate
solution has been created. The testing and assessment steps
involve the calling of an external description logic reasoner,
while the number of generated potential candidates can be
very large. Since description logic reasoners generally have
to run rather complex algorithms,! the repeated testing nec-
essary amounts for the majority of the runtime used.

In some application scenarios for DL-Learner such as the
one presented in (Sarker et al. 2017), however, it turns out
that due to the sheer amount of tests required this approach
takes a very long time so that the data space cannot be suffi-
ciently explored — we provide runtime data in the evaluation
section below. Some aspects of the scenario are as follows.
(a) Itrequires many runs with changing example sets, while

the ontology remains unchanged.

(b) The positive and negative examples do not include en-
tities with complex property relationships. Rather, for
each example a the corresponding ABox statements are
only of the form R(a,b), with R some role and b some

"Worst-case computational complexities for these algorithms
are typically rather high (Hitzler, Krotzsch, and Rudolph 2010).
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(other) individual, together with statements of the form
A(a) and B(b), where A and B are atomic classes. We
call such examples star-shaped.

It is more important to quickly arrive at relatively simple

solutions, if such simple solutions exist, rather than to

comprehensively explore the space of possible complex
solutions. I.e., it seems favorable to trade some com-
pleteness for higher efficiency.

In this paper, we are going to show how the performance
issue can be addressed in such scenarios. We will now first
describe our approach in a general way, and in the next sec-
tion we will describe the concrete algorithm.

Our new approach consists of the following three steps:
1. Select a finite set {CY, ..., C}, } of complex class expres-

sionsover £, andset O’ = OU{A; =C; |i=1,...,n},

where the A; are atomic classes not yet occurring in O.
2. Use a reasoner to compute membership in atomic classes

from O’ of all individuals occuring in examples. Note that

this includes the newly added atomic classes from step 1.
3. Generate candidate class expressions (possibly, itera-

tively) using only the constructors 1, LI and — and atomic

classes, and test using the results from step 2 to what ex-
tent they constitute approximate solutions, using the as-
sessment to guide iterative generation of candidates.

Let us briefly consider the pros and cons of this approach.
e Steps 1 and 2 need to be performed only once for each set

of examples, provided O does not change. L.e., they can

be considered pre-processing steps.

e Depending on the underlying logic £, step 2 can take con-
siderable time, but this preprocessing overhead would be
outweighed by time saved in step 3, as it will not be nec-
essary to invoke a reasoner for each candidate solution.

o Testing in step 3 is in general not equivalent to using a full
reasoner. Our algorithm is approximate one in the sense
that we trade some completeness for improved efficiency.

e We could also allow some use of existential and universal
quantification, but for ease of comprehensibility of solu-
tions we chose not to, currently. Quantifiers can of course
be included in the complex classes generated in step 1.

e Our approach will necessarily miss solutions also because
there are infinitely many possible complex class expres-
sions involving quantifiers, while in step 1 we generate
only a finite number of class expressions involving quan-
tifiers. We implemented our approach based on the hy-
pothesis that the benefit of significantly improved runtime
will outweigh this drawback in many relevant scenarios.

e In our approach, preprocessing runtime can effectively
be controlled by selecting more or fewer complex class
expressions in step 1. Selecting more will mean that we
include the exploration of more possible solutions but
increase pre-processing time, while selecting fewer will
have the opposite effect.

The scenarios we have in mind and which prompted
this work are those regarding data exploration under back-
ground knowledge: The ontology O constitutes the back-
ground knowledge, and the exploration mechanism suggests
clusters of data points for which it would be desirable to ob-
tain a meaningful label or an explanation. E.g., data clusters
could be explored visually, while labels are generated based

(©



on fixed background knowledge, and displayed next to clus-
ters. Another scenario in the context of explainable artificial
intelligence is about exploring the space of activation pat-
terns of hidden layer neurons in deep learning systems as
in the already mentioned (Sarker et al. 2017), and we will
include corresponding evaluation data below.

Let us now revisit the properties (a) through (c) of our
setting mentioned above.

Regarding property (a), a key difference between our ap-
proach and the algorithms employed in DL-Learner is that
we only have to use a reasoner once for computing Step 2,
while the DL-Learner algorithm would have to invoke a rea-
soner for every candidate solution.

Regarding property (b), we understand that this seems to
be a severe restriction. However, some settings can be com-
piled into the star-shaped format which we require, by mak-
ing some minor additions to the ontology, e.g. by means of
role chain expressions. Practically speaking, many of the
known scenarios where concept learning has been applied
seem to fit our requirement, and we will further elucidate
this in the evaluation section.

Regarding property (c), this trade-off will not be a good
one for all scenarios, but it will when time is of the essence.

Efficient Concept Induction from Instances

We now provide a concrete instance of the algorithm de-
scribed in generic terms in the previous section. We call it
the “Efficient Concept Induction from Instances” algorithm,
ECII (pronounced like “easy”’). We consider again the same
three steps, and we assume O to be an OWL DL ontology
(Hitzler et al. 11 December 2012), i.e., essentially a knowl-
edge base expressed in the description logic SROZQ.? In
the description we will use some parameters, which are nat-
ural numbers n; and k;, and we will refer to them in our
exhibition.

In step 1 of the algorithm, we select as additional complex
class expressions all class expressions C' which are formed
by the grammar C' == B | C; N Cy | 3R.C where B is
atomic, R is a role, and which contain at most n; occur-
rences of the M symbol and at most ny occurrences of the
3 symbol (in our system, both n; and ny default to 3, but
can be set differently). The rationale behind this choice is
simply that we wanted to remain within the ££** language
which allows for very efficient (and polynomial time) rea-
soning.(Hitzler et al. 11 December 2012) However, if O is
not in OWL EL, which is the case for most of our evaluation
data on which we will report later, then this does not neces-
sarily lead to any advantage, and we could also allow other
complex classes from OWL DL which are not in OWL EL —
that does not fundamentally modify the approach.

In step 2 of the algorithm we compute the materializa-
tion for all relevant individuals, i.e., the membership of all
individuals from the examples in all atomic classes from
O'. There are several good algorithms and systems for this,
which can be used off-the-shelf. If the ontology O is already

%For background on description logics, see (Baader, Brandt, and
Lutz 2005; Hitzler, Krotzsch, and Rudolph 2010)
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in OWL EL, then this reasoning task is in fact worst-case
polynomial in the size of the input.

In order to explain what we do in step 3 of the algorithm,
we need a bit of preparation. First, some definitions.

A negated disjunct is a class expression of the form
—(Dy U --- U Dg), where the D; are atomic classes from
O. A conjunctive Horn clause is a class expression of the
form B M D, where B is an atomic class from @’ and D is a
negated disjunct. A candidate class is a class expression of
the form |_|;11 ‘H;, with conjunctive Horn clauses H,;.

As the term suggests, step 3 of the algorithm will gener-
ate solution candidates which involve candidate classes, and
will check whether they are solutions. The candidate classes
are not the solution candidates; the latter will be defined be-
low. We restrict ourselves to candidate classes of the men-
tioned form because we think that conjunctive Horn clauses
can easily be understood by humans, and our intention was
to provide solutions in such an easily ingestible form. We
will return to this issue in the evaluation section.

We narrow the concept induction problem to the follow-
ing, which fits our scenarios of interest, as described earlier.

Given an ontology O (consisting of an ABox and a TBox)
over L, an example is an individual a together with a set
A(a) of ABox statements (not necessarily contained in O)
of the forms A(a), R(a, b) or B(b), for any roles R, individ-
uals b and atomic classes B. We call two sets P and N of
examples the set of positive respectively negative examples
and set A = J,c pun A(a). We now seek to find a (possi-
bly complex) class expression S over £ such that O = S(a)
for all @ € P (and in this case we say that C' covers a), and
also that O [~ S(b) forall b € N. We call S a solution for
this learning problem.

Now let Ry, ..., R; be all roles occurring in all (positive
and negative) examples. A solution candidate is a class ex-

pression of the form A 1 |_|é:1 dR;.C; or

! m
AN[ 3R || |(Bj,n=~(DyuU...uDj, )
i=1

6]

=1

where the C; are candidate classes and where A and all the
B; and D; are atomic classes in (0.

In order to now spell out step 3 of the algorithm, we have
to present how the solution candidates are generated, and
how they are checked whether they are solutions.

Let us first turn to the algorithm for checking whether
a solution candidate is a solution. What we in fact do, is
to determine the individuals which fall under the candidate
classes which are part of a solution candidate.

Let

C=| |(B;n=(DyU...uDj,))

T

1

J

be such a candidate class. We now require some definitions.
If R is a role occuring in A(a) for a (positive or negative)
example a, then we define the set of all R-fillers of a to
be the set R(a) = {b | R(a,b) € A(a)}, and if X is a
set of individuals then we define the set of all inverse R-
fillers of X to be the set R~ (X) = {a | there is some b €



X with R(a,b) € A(a)}. We also set
R'=JR@w R =J RGO

a€P a€EN

R=R UR

for each role R. The extension | B of an atomic class B is
defined as |.B = {b | B(b) € A}. The extension of the class
candidate C given above is then defined as

m

c= U(wj A\(DyU...ULD;,)).

Now if l

S=An |_| IR;.C;
i=1

is a solution candidate, then let

!
18 =1AN(R; (IC).

i=1

We now call a solution candidate S an approximate solu-
tion if and only if both of the following hold.
1. a € |S for all positive examples a in P.
2. a ¢ ]S for all negative examples a in V.

Note that checking whether a solution candidate is an ap-
proximate solution can be done simply by means of a num-
ber of straightforward set-theoretic operations, which is eas-
ily implemented. In the general case, approximate solutions
will of course not be (full) solutions, and whether or not this
is a reasonable thing to do depends on the use case, and in
particular on the question whether the runtime improvments
for the use case outweigh the severity of the reasoning mis-
takes we get in return. We will better understand this trade-
off when we discuss our evaluation results.

Let us now turn to the generation of solution candidates.
Essentially, the set of all possible solution candiates can be
understood as a search space, within which we want to locate
solutions or at least approximate solutions which are highly
accurate in terms of coverage or not of the examples.

The DL-Learner system, which is our primary compar-
ison, is based on traversing the search space by means of
a so-called refinement operator, an idea borrowed from In-
ductive Logic Programming (Nienhuys-Cheng and de Wolf
1997): Given a solution candidate, the refinement operator
produces a set of new solution candidates. These are all as-
sessed as to their accuracy in terms of coverage or not of the
examples, and the best are kept and the process is iterated.
The DL-Learner system calls an external reasoner each time
the accuracy of a candidate solution is to be assessed.

Our approach, however, dispenses of the need to call
an external reasoner as discussed above. We could now of
course use a refinement-operator approach to iteratively cre-
ate solution candidates and check them. However since ac-
curacy assessment in our setting is very quick, and since our
solutions are of very specific forms, we instead opted for a
direct assembly of solution candidates from its parts, as de-
scribed in the following.

Recall that our solution candidates are of the form (1). Our
algorithm for constructing solution candidates consists of
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three consecutive steps: (I) Select a set of conjunctive Horn
clauses. (I) Select a set of candidate classes constructed
from the selection in step (I). (II) Select a set of candidate
solutions constructed from the selection in step (II).

These three steps, each of which we are going to describe
in detail shortly, depend on five user-defined parameters
ki,...,ks which are natural numbers. Their default values
are k1 = ko = k3 = 3 and ky = ks = 50, but they can be
changed by the user. There is another user-defined parame-
ters keepCommonTypes, which defines whether to keep or
delete the commonTypes (which are the set of atomic con-
cepts which appear both in positive and negative instances).
Default value for it is false.

(I) For every role R occuring in the examples, set N =
{B | B is an atomic class in O and there is b € R with b €
iB}. Then, for each role R, construct the set Hy r of
all conjunctive Horn clauses, each of which contains only
atomic classes from Ng, and at most k1 of such classes each.

Then, for each H € Hy g, calculate the accuracy of H as

_IRTnUH| 4[RO\ LH|
|B]

Finally, let Hr be the set of the k4 conjunctive Horn
clauses from Hy r which have the highest accuracy; if two
clauses are of the same accuracy, then we use those of
shorter length, where length is measured in the number of
atomic classes occuring in the conjunctive Horn clause. Hp
is the set of conjunctive Horn clauses selected in this step.

(II) For every role R occuring in the examples, set Cp g
to be the set of candidate classes assembled as disjunctions
of maximally ko conjunctive Horn clauses from H  each.

Then, as before, we select the set C'r of the kg candidate
classes from Cy r which have the highest accuracy, and if
two candidate classes are of the same accuracy, then we use
those of shorter length.

(IIT) Construct the set of candidate solutions Sy =

{A M |_|:€;1 3R;.C; ’Ci € Cpg,, A an atomic class in O’} .

Our output set S consists of the best candidate solutions
from Sy again selected by means of highest accuracy and
shortest length, where the accuracy for each C' € S is

_ [PICI+ N\ IC]
|[PUN|

Let us make some remarks. In (I), we essentially brute-
force the search for good conjunctive Horn clauses for each
set of R-fillers, and Ny are all the classes relevant for these
R-fillers. Accuracy is simply measured by coverage of R-
fillers from the positive examples and non-coverage of the
R-fillers from the negative examples, as a quotient with
the number of all R-fillers. Length as a tie-breaker makes
sense because we retain our intention to produce human-
interpretable solutions, i.e., simple solutions are preferred.
The size of Hy g is of course exponential in &y, but this
simply reflects the nature of the search space. Likewise, step
(IT) is exponential in k2, and step (III) is exponential in k3.
The accuracy measure in step (III) is essentially the same
as the one in steps (I) and (II), just that now we are look-
ing at the examples, instead of the R-fillers. The required

Oél(H)

OéQ(C)



computations in all steps are straightforward arithmetic or
set operations.

Due to the already mentioned deliberate decision to trade
completeness for runtime improvements, our approach will
of course not necessarily find all solutions or best solutions.
It is to be understood as a heuristics which delivers a favor-
able trade-off between accuracy and speed, as we argue in
the evaluation section below.

Experimental Evaluation

The goal of our experimental evaluation was to test the hy-
pothesis that the ECII algorithm leads to a favorable trade-
off between runtime improvements and loss in accuracy,
compared to DL-Learner. We expected to see runtime im-
provements of 2 or more orders of magnitude for large in-
put ontologies, while we expected that accuracy would only
moderately decrease in many test cases.

To evaluate our approach, we implemented the ECII sys-
tem in Java (version 1.8) which makes it platform indepen-
dent. We made use of the OWL API (Horridge and Bech-
hofer 2011) (version 4.5), which is an open source imple-
mentation for manipulating OWL 2 ontologies. As external
reasoner for step 1 of the algorithm we used Pellet (Sirin
et al. ) In principle, ECII can also use other reasoners. We
used Apache Maven as build system. The ECII system and
all experimental data and results, including ontologies and
configuration files are available online.>

All experiments were conducted on a 2.2. GHz core 17
machine with 16GB RAM.

For DL-Learner we used the CELOE (Lehmann et al.
2011) algorithm and the fast instance check (DL FIC) vari-
ation of it, which is another approximation approach which
trades time for correctness. We terminated DL-Learner at
the first occurance of a solution with accuracy 1.0, mak-
ing use of the stopOnFirstDefinition parameter. For some
large ontologies DL-Learner could not produce a solution
with accuracy 1.0 within 4,500 seconds (i.e., 75 minutes);
in these cases we terminated the algorithm after 4,500 sec-
onds, using the maxExecutionTimeInSeconds parameter. For
the FIC mode of DL-Learner, the time limit was set to be
the execution time of the ECII system. For ECII we used
the default settings, for K i.e., by = ko = k3 = 3 and
k4 = ks = 50 and varied the keepCommonTypes as true
and false, as mentioned earlier. We use ECII to denote the
ECII system with default parameters, and DL-Learner to de-
note DL-Learner with full reasoner (CELOE setting) unless
otherwise mentioned. Note that a runtime comparison for the
cases where DL-Learner does not produce a solution with
accuracy 1.0 is difficult to do, since DL-Learner would sim-
ply keep producing candidate solutions for a very long time,
while ECII by design tests only a limited number of candi-
date solutions. Our 75-minute cap on DL-Learner runtime is
unavoidably somewhat arbitrary.

As evaluation scenarios we used all evaluation scenar-
ios (except Carcinogesis) from the original DL-Learner
algorithm paper (Lehmann and Hitzler 2010), as well
as the scenario from (Sarker et al. 2017) which makes

*https://github.com/md-k-sarker/ecii-expr.
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use of the ADE20k (Zhou et al. 2017) dataset. We
cannot describe all these scenarios in detail, and the
reader is asked to refer to (Lehmann and Hitzler 2010;
Sarker et al. 2017) for details. The evaluation scenar-
ios from (Lehmann and Hitzler 2010) were Michalski’s
trains (Michalski 1980), Forte Family (Richards and
Mooney 1995), Poker (http://www.ics.uci.edu/
~mlearn/MLRepository.html), Moral Reasoner
(http://mlearn.ics.uci.edu/databases/
moral-reasoner/), and Yinyang family relation-
ship (Iannone, Palmisano, and Fanizzi 2007), which are
benchmark scenarios from Inductive Logic Programming.
Carcinogesis was excluded because according to (Lehmann
and Hitzler 2010) it did not work with a full reasoner under
DL-Learner, and we encountered the same problem.

We will now briefly discuss each of the scenarios in turn,
before we summarize; Table 1 provides an overview of the
results. Runtimes were averaged over 3 runs. Accuracy of a
solution .S was assessed as

B |Ps| + | Ns|

()= TpUNT
Ps={aecP|OUA}= S(a)} and
Ns={be N|OUAE SO},

, where

using a full reasoner. DL-Learner fast instance check (DL
FIC) is compared with the ag accuracy score (see above)
of ECII system with default (ECII DF) and keeping com-
mon types (ECII KCT). In Table 1, the accuracy value for
DL-Learner is always the one with the best solution. The a3
accuracy score for DL-Learner is the score of the result re-
turned by DL-Learner with the highest such score. The as
score for ECII is the average score over three runs, where
for each run the solution with the best ais score is used for
the average. The a3 accuracy score for ECII has been com-
puted by taking all (or if more than five, a random section of
five) of the results returned by ECII which score maximally
in terms of «. For each of these, the a3 score has been cal-
culated using a full reasoner (in fact, Pellet), and averaging
over these results.

The Yinyang family relationship problem is about creat-
ing descriptions for family relationship types from instance
data. This dataset includes a small ontology with 157 logi-
cal axioms. We notice that ECII with default parametes per-
forms worse than DL-Learner in this task both in terms of
runtime and in terms of a;g accuracy, but ECII KCT obtains
same «y score as DL FIC when keeping the common types.

The Michalski’s train dataset ontology has 273 axioms.
On this task, ECII is significantly outperformed by DL-
Learner in terms of runtime, while both find perfect solu-
tions. The reason that DL-Learner is quicker lies in the fact
that it quickly comes up with solution by making a good
choice in the refinement operator steps, thus leading to a
quick termination. This is not necessarily an indication that
DL-Learner runtime will always be significantly quicker for
problems of this input size — see e.g. the next paragraph.

The Forte family dataset is also of small size, the ontol-
ogy has 341 axioms. The problem defined for this was to de-
scribe the uncle (Richards and Mooney 1995; Lehmann and



Experiment Name Number of Runtime (sec) Accuracy (a3) Accuracy ap
Logical Axioms | DL? | DL FIC(1)°] DL FIC(2)°| ECII DFY| ECII KCT®| DL? | ECII DF?| DL FIC(1)°| DL FIC(2)°| ECII DFY] ECII KCT®

Yinyang_examples 157 0.065 0.0131 0.019 0.089 0.143 1.000 | 0.610 1.000 1.000 0.799 1.000
Trains 273 0.01 0.020 0.047 0.05 0.095 1.000 1.000 1.000 1.000 1.000 1.000
Forte 341 2.5 1.169 6.145 0.95 0.331 0.965 0.642 0.875 0.875 0.733 1.000
Poker 1,368 0.066 0.714 0.817 1 0.281 1.000 1.000 0.981 0.984 1.000 1.000
Moral Reasoner 4,666 0.1 3.106 4.154 547 6.873 1.000 | 0.785 1.000 1.000 1.000 1.000
ADE20k I 4,714 577.37 4.268 31.887 1.966 23.775 0.926 0.416 0.263 0.814 0.744 1.000
ADE20k IT 7,300 98347 16.187 307.65 20.8 293.44 1.000 | 0.673 0.413 0413 0.846 0.900
ADE20k IIT 12,193 4,500¢| 13.202 263.217 51 238.8 0.375 0.937 0.375 0.375 0.930 0.937
ADE20k IV 47,468 4,5008| 93.658 523.673 116 423349 | 0.375 NA 0.608 0.608 0.660 0.608

DL : DL-Learner

Y DL FIC (1) : DL-Learner fast instance check with runtime capped at execution time of ECII DF
¢ DL FIC (2) : DL-Learner fast instance check with runtime capped at execution time of ECII KCT

4 ECII DF : ECII default parameters

¢ ECII KCT : ECII keep common types and other default parameters
Runtimes for DL-Learner were capped at 600 seconds.

¢ Runtimes for DL-Learner were capped at 4,500 seconds.

Table 1: Runtime and accuracy comparison of DL-Learner and ECII. Some figures are averages as described in the text.

Hitzler 2010) relationship. Two problems (large and small)
were taken from this dataset by varying the numbers of posi-
tive and negative individuals, and the score is averaged. ECII
outperforms DL-Learner in terms of runtime but dips in ac-
curacy. For approximation accuracy ECII (a2 = 1.00) out-
performs DL-Learner fast instance check (a; = 0.87) ver-
sion by setting keepCommonTypes to true.

The Poker dataset has 1,368 axioms and thus a slightly
larger ontology. (Lehmann and Hitzler 2010) defined two
problems using this dataset namely learning the definition
of a pair and of a straight. With the same (1.0) accuracy,
DL-Learner is significantly quicker, presumably for similar
reasons as for the Trains dataset.

The Moral Reasoner dataset has 4,666 axioms and is of
medium size as part of our set of scenarios. In (Lehmann
and Hitzler 2010), several versions of this scenario were ex-
plored, and we chose the one using all instances and which
did not modify the original set of atomic classes which can
be used to construct solutions. For this problem one of the
solutions with accuracy 1.0 found by DL-Learner consists
of the single atomic class “guilty,” while ECII average ac-
curacy is only 0.785. One of the solutions found by ECII,
with accuracy 0.91, is —plan_knownL|—~careful Ll guilty. DL-
Learner was significantly quicker. We see that DL-Learner
outperforms ECII on this task, and the runtime performance
of DL-Learner can be explained as in the Trains example.
Regarding accuracy, ECII did not come up with “guilty” as
candidate solution, presumably because its aiy score is not
high enough. Indeed, the ontology for this dataset contains
a significant numer of class disjunctions, which causes diffi-
culties for our approximate reasoning procedure. This seems
to explain both why ECII does not produce “guilty” as a so-
lution and also why it would construct a complicated solu-
tion using disjunctions which scores well with respect to ao
but not well with respect to aiz-accuracy.

The ADE20k dataset contains over 20,000 images of
scenes which are preclassified in terms of scene type. Each
image may have several annotations of objects which have
been provided by humans. For our evaluation we used the
dataset from (Sarker et al. 2017) where the ADE20k dataset,
with annotations, was cast into an OWL ontology and
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aligned with the Standard Upper Merged Ontology SUMO*.
In (Sarker et al. 2017), sets of positive and negative exmples
were selected from the images, and DL-Learner was used to
generate corresponding class expressions. Only a handful of
such experiments was reported in (Sarker et al. 2017): As we
see below and in Table 1, the scenario yields to prohibitively
long runtimes for DL-Learner, which makes a thorough in-
vestigation along the lines of (Sarker et al. 2017) impossible.

In order to compare performances, we used this scenario
to create four problem classes with varying input sizes, as
listed in Table 1.

For the smallest problem class, ontology size 4,714 ax-
ioms, ECII took on average 1.966 seconds to terminate and
come up with solutions having average accuracy of 0.416.
DL-Learner took 300 seconds to produce solutions with av-
erage accuracy of 0.926. As DL-Learner did not find solu-
tions with accuracy 1.0 within a reasonable time span we
capped execution at 10 minutes or 600 seconds. DL-Learner
then took on average 577.3 seconds and the average accu-
racy obtained within this time was 0.926 which is the same
as of 300 seconds. For one representative problem, a solu-
tion found by ECII had an accuracy of 1.0. The highest ac-
curacy obtained by DL-Learner within this time limit on that
same problem was 0.88. We notice that accuracy of ECII
lags behind that of DL-Learner on average, but with this in-
put size we already see significant runtime improvements,
and sometimes even higher accuracy. ECII outperforms DL
FIC interms of a score.

For the medium size setting — ontology with 7,300 ax-
ioms, we used exactly the settings reported in (Sarker et
al. 2017). DL-Learner was able to come up with solutions
with accuracy 1.0, but the time required to produce these
solutions was 983 seconds average. The runtime for ECII
was 20.8 seconds on average, and the average accuracy was
0.673. Accuracy of ECII on these is less than DL-Learner
but runtime is very significantly improved. Approximate ac-
curacy is better for ECII compared to DL FIC.

Our largest test ontologies were created using attributes
from all images, from the types with names starting with the

“http://www.adampease.orqg/OP/



letter “R” from the ADE20k dataset. In this case we cre-
ated 2 different ontologies, in one version from the valida-
tion data — ontology size 12,193 axioms — and in the other
version from the training data — ontology size 47,468 ax-
ioms.

For the validation data ontology, DL-Learner was not able
to find a solution with accuracy 1.0, and we terminated DL-
Learner after 4,500 seconds (i.e., 75 minutes). DL-Learner
produced a solution with accuracy of 0.375. ECII took 51
seconds to run and produced soultions with an average ac-
curacy of 0.937. In fact, it turns out that DL-Learner did
produce JimageContains. T as solution, which essentially
means that it did not manage to take even a few refine-
ment steps. One solution found by ECII had an accuracy of
0.90. ECII system also outperforms DL Fast instance check
(DL FIC), in terms of ay score. DL FIC was able to achive
aq score as 0.375 while ECII system achives significantly
higher score.

For the training data ontology, DL-Learner was also ter-
minated after 4,500 seconds. It procuded the same solution
as before with accuracy of 0.375. ECII took 116 seconds
producing an average ag-score of 0.66. Due to the size of
the ontology, we were not able to run a reasoner to compute
the a3 accuracy value for the solutions provided by ECII.

From the last two tasks, we see that ECII provides a very
significant runtime improvement over DL-Learner, and is in
fact able to produce approximate solutions in cases where
DL-Learner can only return a trivial guess such as T.

Let us summarize the results using some charts. Figure 1
displays a runtime comparison over all experiments; the
experiments are sorted from left to right in increasing in-
put size. The DL-Learner curve has much higher variance,
which presumably is because runtime is capped whenever a
1.0 accuracy solution is found, while runtime is significantly
higher for comparable sizes if this is not the case. ECII has
an algorithm which is quicker in those test cases where DL-
Learner did not find a 1.0 accuracy solution, i.e., for Forte
and all ADE20k experiments, and is several orders of mag-
nitudes quicker for the large input ontologies.

Figure 2 visualizes the accuracy («g) comparison results.
While ECII achieves 1.0 accuracy, as does DL-Learner, in
some cases (Train, Poker), it usually achieves only a lower
accuracy for all cases where DL-Learner is able to pro-
duce non-trivial solutions. When DL-Learner produces only
a trivial result, as in ADE20k III, ECII in fact is able to do
better than DL-Learner. It is reasonable to assume that this
would indeed happen in many cases where DL-Learner is
simply not able to process a large input size.

Figure 3 shows the approximate accuracy () compar-
ison results. We can see that ECII always outperforms DL
FIC system.

Conclusions and Future Work

When we initially set out to develop the ECII algorithm and
system, our goal was to provide an alternative to DL-Learner
which trades some accuracy for speed. We anticipated that
our approach would only be slightly less accurate but with
one or two orders of magnitude in runtime improvements.

59

1 bl

Moral ADE20k | ADE20k ADE20k ADE20k

W

Yinyang Trains Forte  Poker

mtime Dl-Learner  Otime EC

Figure 1: Runtime comparison between DL-Learner and
ECII. The vertical scale is logarithmic in hundredths of sec-
onds, and note that DL-Learner runtime has been capped at
4,500 seconds for ADE20k IIT and I'V. For ADE20k I it was
capped at each run at 600 seconds.
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Figure 2: Accuracy («a3) comparison between DL-Learner
and ECII. For ADE20k IV it was not possible to compute an
accuracy score within 3 hours for ECII as the input ontology
was too large.

In a sense, our experiments show that we were not bold
enough in our assumptions regarding runtime improvme-
ments for large input ontologies, while for smaller ones there
aren’t any, unless in the cases where DL-Learner cannot pro-
vide an accuracy 1.0 solution. At the same time, our exper-
iments also show that we were too optimistic regarding ac-
curacy results for the smaller ontologies, while at the same
time we see much better results in the cases where DL-
Learner has to resort to trivial solution attempts.

So overall, based on the evaluation, ECII indeed seems
to provide a reasonable alternative to DL-Learner in some
cases, and in fact provides reasonable solutions even in cases
where DL-Learner is unable to do so. From this perspective,
we have achieved what we set out to do.

Our analysis of course also raises rather obvious points
for further investigations and improvements. Further exper-
iments in fact should shed further light on the strengths and
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Figure 3: Approximation accuracy (a2) comparison between
DL-Learner fast instance check and ECIIL.

weaknesses of ECII, and this needs to be explored. We have
not varied the ECII default parameters, but we conjecture
that we can move the time-accuracy trade-off in both direc-
tions by changing them. We have also not yet made full use
of the theoretical results for OWL EL, but only looked at the
obvious evaluation datasets for a fair comparison.

As discussed in the evaluation section, it also turns out
that the solutions with the highest aa-score are not always
the best ones with respect to the correct ag-accuracy. Of
course, calculating the ag-accuracy requires a full reasoner,
and thus significant time, but by doing a few such checks one
may be able to improve accuracy at the expense of some of
the runtime gains. As a further alternative, a post-processing
step could be added to the ECII algorithm which takes a
somewhat larger number of the solution candidates which
perform high with respect to aws-score, and returns only
those among them which also score high on a3-accuracy.
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Abstract. In our experience, some ontology users find it much easier to convey
logical statements using rules rather than OWL (or description logic) axioms.
Based on recent theoretical developments on transformations between rules and
description logics, we develop ROWL, a Protégé plugin that allows users to enter
OWL axioms by way of rules; the plugin then automatically converts these rules
into OWL DL axioms if possible, and prompts the user in case such a conversion
is not possible without weakening the semantics of the rule.

1 Motivation

It has long been argued, that rules are much more intuitive and easier to master than
description logics, in terms of what their intended meaning is. We find this substanti-
ated throughout our experiences as teachers and as ontology modelers which frequently
work with domain experts.

To give just a simple example: The exact semantics behind a logical axiom such as

Journal C VpublishedBy.Organization

in our experience often remains somewhat unclear even for people with significant ex-
posure to ontologies and ontology modeling. On the other hand, a rule such as

Journal(x) A publishedBy(x,y) — Organization(y)

is rather intuitive for most in its meaning, and can be both produced and processed much
more readily.

The axiom and the rule just given are of course logically equivalent.? In fact many
OWL axioms can be expressed equivalently as rules, which are, arguably, easier to
understand and to produce.

As a consequence of these observations, we have produced a Protégé plugin which
accepts rules as input, and adds them as OWL axioms to a given ontology, provided
the rule is expressible by an equivalent set of such axioms. In case the rule is not read-
ily transferable, the user is prompted and asked how to translate the rule, as there are
different options how to do it in such cases. More information about the plugin can be
found at http://daselab.org/content/modeling-owl-rules.

3 When we interpret the rule in the sense of first-order predicate logic, i.e., according to the open
world semantics.
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2 Rules-to-OWL Transformation

In this section, we provide some examples of translations of rules into OWL axioms
in an attempt to convey an intuitive understanding of our transformation. For a formal
and complete of such procedure we refer the reader to [2]. Note that, as opposed to
[2], we do not consider rules in our implementation that would require the use of role
conjunction, as this is a logical constructor not currently allowed in OWL.

The following rule can be used to characterize all individuals taking courses and
working for a department as student workers.

attends(x,y) A Course(y) A worksFor(x,z) A Dept(z) — StudentWorker(x) (1)

We transform this rule into a DL axiom via a series of equivalence preserving trans-
formations. First, we detect that both y and z are variables that can be “rolled up,” as
they only occur in a single object property. Thus, these variables can be sequentially
removed from the rule, resulting in the following:

Jattends.Course(x) A worksFor(x,z) A Dept(z) — StudentWorker(x)
Jattends.Course(x) A worksFor.Dept(x) — StudentWorker(x)

Furthermore, we can unify all unary atoms of the form C(x), i.e., sharing the same
variable x, yielding:

(Jattends.Course M 3worksFor.Dept)(x) — StudentWorker(x)
The previous rule can then be directly translated into OWL as the following axiom:
Jattends.Course M dworksFor.Dept C StudentWorker

For the next example, we have the following rule, which specifies that “all mice are
smaller than all elephants.”

Mouse(x) A Elephant(y) — smallerThan(x,y)

Translating such a rule into OWL requires us to first connect the variables in the
body. We do so by adding atoms of the form U (¢,u) with U the universal property, i.e.,
owl:topObjectProperty.

Mouse(x) AU (x,y) A Elephant(y) — smallerThan(x,y)

The previous rule can be directly translated into OWL resulting in the following
three axioms where Ryouse and Rejephant are fresh object properties not previously oc-
curring in the ontology:

Mouse T IRMouse-Self
Elephant T 3REjephant - Self

RMouse © U 0 REjephant T smallerThan
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@ examplel (http:/ /www.semanticweb.org/examplel) < Search...
Active Ontology = | Entities x| Individuals by class x | DL Query x SWRLTab x| OWLAx x OntoGraf x| ROWLTab =
ROWL | SWRL
Name LYo ) Select Axioms e

s2

Comment
‘ Select All —

(attends Course) (worksFor Dept) StudentWorker

Generated Axioms

Status
jok

attends(?x, ?y) » Course(?y) » worksFor(?x,72) # Dept(?z) -> StudentWorker(?x)

Select axioms which you want to integrate. Integrate Cancel

Clear Convert to OWL Axiom |

Name Body Commen t
s1 Mouse(?x) A Elephant(?y) -> smallerThan(?x, 7y)

No Reasoner set. Select a reasoner from the Reasoner menu /| Show Inferences

Fig. 1. The ROWL interface. The pop-up window appears after clicking “Convert to OWL Ax-
iom” button and the transformation is successful.

Certain rules cannot be expressed in OWL employing our approach. For example,
the following rule, which characterizes the set of individuals taught by their own uncle,
cannot be translated by our approach.

hasFather(x,y) A hasBrother(y,z) AtaughtBy(x,z) — TaughtByUncle(x)

Note that, such a rule cannot be reduced in the same way as rule , since every variable
occurs in at least two atoms with object properties as predicates.

In cases, such as the previous one, in which a rule cannot be translated into OWL
using a set of DL axioms, our implementation will suggest several options to translate
such rule using nominal schemas [1]. The chosen option by the user will be recorded
in an annotation which will be added to the rule. As of right now, there is no syntax for
nominal schemas in OWL and thus, we have decided that an annotation is the best way
to convey such information.

3 Plugin Description and Features

Figure 1 depicts the user interface of the ROWL plugin. This plugin is implemented on
top of Protégé’s SWRLTab plugin implementation and thus, it borrows the pretty much
SWRLTab user interface for entering rules as input. As seen in the figure, the plugin
consists of two tabs: ROWL and SWRL. The latter is really SWRLTab input interface,
while the former is a modification of the latter where we add “Convert to OWL Axioms”
button. A user can enter a rule in ROWL tab using the standard SWRL syntax, e.g.:

attends(?x, ?y) "~ Course(?y) ~ worksFor(?x, ?z) * Dept(?z) -> StudentWorker(?x)
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When the “Convert to OWL Axiom” button is clicked, ROWL will attempt to apply
the rules-to-OWL transformation described in the previous section to the given rule. If
successful, a pop-up will appear displaying one or more OWL axioms resulted from the
transformation, presented in Manchester syntax. These axioms can then be integrated
into the active ontology.

If the given rule cannot be transformed into OWL axiom, ROWL will prompt the
user if they still want to insert the rule into the ontology as an SWRL rule with annota-
tion. If the user agrees, ROWL will switch to its SWRL tab and proceeds in the same
way as adding a rule via the original SWRLTab. Note that ROWL is separate from the
original SWRLTab, hence any SWRL rule added via ROWL will not affect rules added
through the original SWRLTab.

Note that once the axioms generated from rules are added into the ontology, the
plugin does not provide a way to undo it and recover the original rule from which
the axioms were generated. That is, when a user enters a rule through this plugin and
converts it to OWL axioms, the active ontology is either augmented with the generated
OWL axioms or SWRL rules. To have this feature, we need a way to record which
axioms were generated from which rules. This will be considered as part of future
development of this plugin.

Finally, a feature of ROWL not found in SWRLTab is the possibility to automati-
cally add declarations for classes and properties if the inserted rule contain classes or
properties not yet defined in the ontology. For example, in the rule above, the original
SWRLTab requires that attends and worksFor to be already defined as object property,
while Course, Dept, and StudentWorker as class in the ontology. This would add a little
bit more freedom for the user to enter any rule (s)he wishes during modeling because
(s)he does not need to first exit the plugin and declare the classes and properties directly
in Protégé.

Acknowledgements. This work was supported by the National Science Foundation under
award 1017225 III: Small: TROn — Tractable Reasoning with Ontologies.
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Abstract. It has been argued that it is much easier to convey logi-
cal statements using rules rather than OWL (or description logic (DL))
axioms. Based on recent theoretical developments on transformations
between rules and DLs, we have developed ROWLTab, a Protégé plugin
that allows users to enter OWL axioms by way of rules; the plugin then
automatically converts these rules into OWL 2 DL axioms if possible,
and prompts the user in case such a conversion is not possible without
weakening the semantics of the rule. In this paper, we present ROWLTab,
together with a user evaluation of its effectiveness compared to entering
axioms using the standard Protégé interface. Our evaluation shows that
modeling with ROWLTab is much quicker than the standard interface,
while at the same time, also less prone to errors for hard modeling tasks.

1 Introduction

About a decade ago, not long after description logics [1] had been chosen as
the basis for the then-forthcoming W3C Recommmendation for the Web On-
tology Language OWL [6], a rather agressively voiced discussion as to whether
a rule-based paradigm might have been a better choice emerged in the Seman-
tic Web community [7,19,23]. On the one hand, this eventually led to a new
W3C Recommendation on the Rule Interchange Format RIF [9], based on the
rules paradigm, while an alternative approach which layered rules on top of the
existing OWL standard, known as SWRL [8], remained a mere W3C member
submission. However, SWRL has proven significantly more popular than RIF.
To see this, it may suffice to compare the Google Scholar citation numbers for
SWRL — over 2500 since 2004 — and RIF — just over 50 since 2009.

At the same time, researchers kept investigating more elaborate ways to
bridge between the two paradigms [10,12,13,16,20], and in particular how to
convert rules into OWL [2,11,14,15]. These results regarding conversion now
make it possible to express axioms first as rules, and only then to convert them
into OWL. We have consistently used this approach to model complex OWL
axioms throughout the last few years, as rules are, arguably, easier to understand
and produce than OWL (or description logic) axioms in whichever syntax.
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Consider the sentence: “If a person has a parent who is female, then this
parent is a mother”, which we consider to be of medium difficulty in terms of
modeling it in OWL. As a first-order logic rule, this can be expressed as

Person(z) A hasParent(z,y) A Female(y) — Mother(y).
This can be expressed in OWL using description logic syntax as follows:
Female M JhasParent™ .Person T Mother

Based on anecdotal evidence, many people find it easier to come up with the
rule than directly with the OWL axiom. Following this lead, we have produced
a Protégé [18] plugin, called ROWLTab, which accepts rules as input, and adds
them as OWL axioms to a given ontology, provided the rule is expressible by
an equivalent set of such axioms. In case the rule is not readily convertible, the
user is prompted and asked whether the rule shall be saved as SWRL rule.

In order to assess the usefulness of the ROWLTab, we have furthermore
conducted a user experiment in which we compare the ROWLTab interface for
adding axioms to the standard Protégé interface. Our hypotheses for the user
evaluation were that given complex relationships expressed as natural language
sentences as above, users will be quicker to add them to an ontology using the
ROWLTab than with the standard Protégé interface, and that they will also
make less mistakes in doing so. The first hypothesis has been fully confirmed by
our experiment, the second has been partially confirmed.

The rest of the paper will be structured as follows. In Section 2 we explain in
more detail the rule-to-OWL conversion algorithm used. In Section 3 we present
the ROWLTab Protégé plugin. In Section 4 we present our user evaluation and
results, and in Section 5 we conclude. More information about the plugin can be
found at http://daselab.org/content/modeling-owl-rules. A preliminary report
on the plugin, without evaluation and with much fewer details, was presented as
a software demonstration at the ISWC2016 conference [21].

2 SWRL Rules to OWL Axioms Transformation

In this section we introduce theoretical notions employed across the paper. Note
that, due to space constraints, some of the definitions below are simplified and
may not exactly correspond with existing definitions from different sources.

Let C, R, I and V be pairwise disjoint, countably infinite sets of classes,
properties, individuals and variables, respectively, where T, 1 € C, the universal
property U € R (i.e., owl:topObjectProperty) and, for every R € R, R~ € R
and R~ = R. A class expression is an element of the grammar E ::= (EMNE) |
JR.E | dR.Self | C | {a} where C € C, R € R and a € I. Furthermore, let
T = T UV be the set of terms. An atom is a formula of the form C(t) or
R(t,u) where C € E, R € R and t,u € T. For the remainder of the paper,
we identify pairs of atoms of the form R(t,u) and R~ (u,t). Furthermore, we
identify a conjunction of formulas with the set containing all the formulas in the
conjunction and vice-versa.
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An axiom is a formula of the form C' C D or Rjo...0R, E Rwith C,D € E
and R(;) € R. A rule is a first-order logic formula of the form Va(8(x) — n(z))
with 8 and 7 are conjunctions of atoms, & and z are non-empty sets of terms
where z C x. As customary, we often omit the universal quantifier from rules.
Axioms and rules are also referred to as logical formulas. Axioms as defined above
essentially correspond to OWL 2 EL axioms [4] plus inverse property expression,
while rules correspond to SWRL rules minus (in)equality and built-in atoms.

Consider some terms ¢t and u and a conjunction of atoms 3. We say that ¢
and u are directly connected in (8 if both terms occur in the same atom in 5. We
say t and u are connected in 3 if there is some sequence of terms t1,...,t, with
ty =t, t, = u, and t;_; and t; are directly connected in 3 for every i = 2,...,n.

The notions of interpretation and of an interpretation entailing an axiom
follow the standard definitions for description logics [5]. For rules p of the form
B — n we say that an interpretation Z entails p if, for every substitution o
we have that Z,0 = § implies Z,0 = 7, i.e., the semantics of rules follows
the standard semantics of first-order predicate logic. We say that two sets of
logical formulas S and S8’ are equivalent if and only if every interpretation Z
that entails S also entails S’ and vice-versa. Furthermore, we say that S’ is a
conservative extension of S if and only if (i) every interpretation that entails S’
also entails S and (ii) every interpretation that entails S and is only defined for
the symbols in S can be extended to an interpretation entailing S’ by adding
suitable interpretations for additional signature symbols. It is well-known that
a set of logical formulas can be replaced by another set without affecting the
outcome of reasoning tasks if the latter set is a conservative extension of the
former.

We now formally discuss the transformation of rules into axioms. We do not
include a comprehensive description of this transformation, which was introduced
in [15], but only present a simplified version in an attempt to make this pub-
lication more self-contained. Specifically, our presentation makes the following
assumptions about rules, all without loss of generality.

1. Rules do not contain constants. Note that, an atom of the form R(a, b) (resp.
A(a)) with a,b € T in the body of a rule may be replaced by an equivalent
atom 3U.({a} M3IR.{b})(z) (resp. FU.({a}MA)(z)) where z is any arbitrarily
chosen variable occurring in the body of the rule. Furthermore, atoms of the
form R(z,a) with x € V and a € I occurring in the body may be replaced
by 3R.{a}(z). Similar transformations may be applied to the head of a rule
in order to remove all occurrences of constants.

2. The head of a rule is of the form C(z) or S(z,y) with C € E, § € R and
x,y € V. Note that, a rule of the form 3 — 7 is equivalent to a set of rules
{B—=m,....,08 — nn} provided that n =, U...Un,.

3. All of the variables in the body of a rule are connected. If two variables x
and y are not connected in the body of a rule, we may simply add the atom
U(z,y) to the body of the rule resulting in a semantically equivalent rule.

The preprocessing implied by the aforementioned assumptions has been im-
plemented in the ROWLTab plugin and thus, such constraints need not be con-
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sidered by the end users. Moreover, such preprocessing is carefully implemented
in an attempt to minimize the number of necessary modifications for a rule to
satisfy assumptions (1-3). We now proceed with the definition of our translation.

Definition 1. Given some rule p = 3 — n, let 6(8 — n) be the rule that results
from exhaustively applying transformations (1-3) where (1) and (2) should be
applied with higher priority than (3).

1. Replace every atom of the form R(x,z) in B or in n with IR.Self(x).
2. Replace every mazximal subset of the form {C1(y)...,Cn(y)} C B with the
atom C1M...MCL(Yy).
3. For every variable y not occurring in n that occurs in exactly one binary
atom in (B of the form R(z,y), do the following:
— If there is some atom of the form C(y) € B, then replace the atoms
R(z,y) and C(y) in  with the atom IR.C(z).
— Otherwise, replace the atom R(z,y) in 8 with IR.T(z).

Ezxample 1. Consider the rule p = Person(x) A hasParent(x,y) A Female(y) —
Mother(y). Then, the transformation presented in the previous definition would
sequentially produce the following sequence of rules

(dhasParent ™ .Person)(y) A Female(y) — Mother(y)
(JhasParent ™ .Person M Female)(y) — Mother(y)

Rule §(p) from the previous example can be directly transformed into an
axiom as indicated in the following lemma.

Lemma 1. Consider some rule p. If 6(p) is of the form C(x) — D(x), then p
1s equivalent to the axiom C C D.

Proof. Let v and v" be some rules such that v results by applying some of the
transformations (1-3) introduced in Definition 1 to v. Note that, by definition,
we can conclude equivalency between v and v’. Thus, we can show via induction
that p is equivalent to 6(p). Furthermore, if §(8 — p) is of the form C(z) — D(x),
then, by the definition of the semantics of rules and axioms, C' C D is equivalent
to §(8 — p). Since the equivalence relation is transitive, we can conclude that p
is equivalent to C C D.

As indicated by Lemma 1, rule p from Example 1 is equivalent to the axiom
JhasParent™ .Person M Female C Mother.

Lemma 2. Consider some rule p. If the rule §(p) is of the form N\;_,(Ci(z;—1)A
Ri(xi—1,;)) N Cp(zn) — S(x1,2,), then the set of azioms {C; C IR¢,.Self |
i=1,...,ntU{Rg,oR10...0Rc, _, 0oR,0Rc, TS} where all R, are fresh
properties unique for every class C; is a conservative extension of the rule p.

Proof. As shown in proof of Lemma 1, rules p and §(p) are indeed equivalent.
Thus, the lemma follows from the fact that the set of rules presented in the
statement of the lemma is a conservative extension of §(p).
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@ testOnto (http:/ /www.dase.cs.wright.edu/testOnto) < Search...
Active Ontology x | Entities x | Individuals by class x| OWLViz x| OWLAx x| ROWLTab x| OntoGraf x | exampleTab x | viewAshManchester x | viewAsFunctional x
ROWL | SWRL
EXAMPLE
Given sentence to madel: If a person has a baby then that person is a parent.

The above sentence modeled as rule: Person(?x) A hasBaby(?x,?y) -> Parent(?x)

Now, model your own sentence as a rule. Put the rule name in the Rule Name text field and the rule itself in the Rule Text box.
When you are done writing your rule in ROWL Tab, click Convert to OWL Axiom button. Then confirm by clicking Integrate on the pop-up window.

[ NN ] Integrate with active ontology

Rule Name (Mandatory). Rule Will be saved using this name.
Generated Axioms

|r7

Comment (Optional) Axioms
testonto:freshObjectProperty7 o testonto:hasBrother o testonto:hasSon testonto:hasNephew |
Statie testonto:Persan testonto:freshObjectProperty7
ok
Rule Text
Person(7x) A hasBrother(?x,?y) » hasSon(y,7z) -> hasNephew(?x,72)
Click Integrate to combine the axioms with active ontology. Integrate Cancel
Clear Convert to OWL Axiom
Name Rule Comment
R1 Man(7x) -> Mortal(?x)
R2 Person(?x) A canWriteProgram(?x,?y) -> Programmer(?x)
R3 Mice(?x) A Elephanti?y) -> smallerThan(?x,7y)
R4 Forest{(?x) A Desert(?y) -> moreBioDiverse Than(?x,?y)
RS hasParent(?x1,7x2) A hasBrother(7x2,7x3) -> hasUncle(?x1,7x3)
RE parent(?x,7y) » brother(?y,7z) -> uncle(?x,7z)

To use the reasoner click Reasoner > Start reasoner (/| Show Inferences

Fig. 1. The ROWLTab interface with generated axioms.

We finalize the section with some brief comments about the presented trans-
formation. First, the transformation is sound, but has not been proven to be
complete. That is, there may be some rules which are actually expressible as ax-
ioms, but cannot be handled by our translation algorithm. Moreover, the trans-
formation of a given rule may in some cases produce axioms that violate some
of the global syntactic restrictions of OWL 2 DL, such as regularity restriction
on property inclusion/hierarchy, when added to an ontology.

3 Plugin Description and Features

Figure 1 shows the user interface of the ROWLTab plugin with generated axioms
from a rule and also shows previously saved rules in the bottom part of the user
interface. As seen in the figure, the plugin consists of two tabs: ROWL and
SWRL. The latter is really the SWRLTab input interface, while the former is
our implementation of rule-to-OWL conversion functionality. We have in fact
reused the source code of the SWRLTab, kept its functionality intact and added
extra functionality by means of the ROWL tab. The upper part of the interface
is for rule insertion and the bottom part is for rule modification. At the top a
modeling example is also shown.

A user can enter a rule in the “Rule Text” input box using the standard
SWRL syntax, e.g.

Person(?x) ~ hasChild(?x,?7y) ~ Female(?y) -> hasDaughter(7x,?y)

Every rule needs a distinct name to be eligible to be saved for later modification.
A suggested rule name is automatically generated but the user also has the option
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to change the rule name; this can be done in the “Rule Name” input box. The
user can also give annotations to a rule in the “Comment” input box. The plugin
does syntax checking of the rule, but nothing more sophisticated, e.g. tautologies
can also be entered, and checks for global constraints like RBox regularity, which
are required for the ontology to stay within OWL 2 DL, are not performed. Since
rule-to-OWL conversion often results in the use of property chains, extra care is
needed by the modeler to ensure compliance, if compliance is desired; this can
also be checked by using a reasoner such as HermiT [17] from within Protégé.
When the user is writing a rule it checks whether a predicate is already declared
or not. If not declared it will show that the predicate is invalid and the user
needs to declare it before the rule can be converted to OWL. Auto completion of
predicate names is also supported. The user can use tab-key for auto-completion
to existing class, object properties, data properties and individual names.

Figure 1 also shows a button “Convert to OWL Axiom” below the “Rule
Text” input box. This button is initially deactivated and if the inserted rule
is syntactically correct then this button becomes clickable. When the “Convert
to OWL Axiom” button is clicked, ROWLTab will attempt to apply the rule-
to-OWL transformation described in the previous section to the given rule. If
successful, a pop-up will appear displaying one or more OWL axioms resulting
from the transformation, presented in Manchester syntax. These axioms can
then be integrated into the active ontology by clicking the “Integrate” button of
the pop-up interface. If the given rule cannot be transformed into OWL axioms,
ROWLTab will prompt the user if (s)he still want to insert the rule into the
ontology as a SWRL rule. If the user agrees, ROWLTab will switch to its SWRL
tab and proceed in the same way as adding a rule via the original SWRLTab.

As described in Section 2, the translation of a rule into OWL axioms may
sometimes require the introduction of fresh object properties, which will be au-
tomatically created by the plugin when necessary. The namespace for these fresh
object properties is taken from the default namespace. To create a unique fresh
object property, the plugin counts the number of existing fresh object proper-
ties in the active ontology (including imports) then increments the counter by 1
and creates the new object property with the incremented counter as part of its
identifier.

Once the axioms generated from a rule are added to the ontology, the rule
will be saved with the ontology for later modification; the rule is in fact added as
an annotation to every OWL axiom generated by the rule. Figure 1 shows saved
rules displayed on the bottom left of the ROWLTab plugin. A user can modify
or delete rules at any time. If a rule is modified or deleted, the axioms generated
by that rule will be affected. That means if a rule is deleted then the axioms
generated by the rule will also be deleted. To edit a rule which was previously
used to generate axioms the user needs to select the rule first and then click
the “Edit” button at the bottom right part of the interface. The rule will then
appear in the “Rule Text” input box for modification. The user can also double
click on the rule to edit that rule. To delete a rule, the user needs to select that
rule and then click the “Delete” button on the bottom right of the interface.
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A feature of ROWLTab not found in the SWRLTab is the possibility to
automatically add declarations for classes and properties if the inserted rule
contains classes or properties not yet defined in the ontology. For example, in
the rule above, the original SWRLTab requires that hasChild and hasDaughter
be already defined as object properties, and Person and Female as classes in the
ontology. This means that the user does not need to first exit the plugin and
declare the classes and properties outside the ROWLTab.

Another feature of the ROWLTab plugin is that it actually works as a super-
set of SWRLTab plugin. So if a user need to work with the SWRLTab plugin, the
user does not need to install the SWRLTab plugin separately, as the ROWLTab
contains a full instance of the SWRLTab plugin. If the ROWLTab plugin is in-
stalled the user only need to switch the tab from ROWL to SWRL to get the full
SWRLTab functionality. This also creates a limitation that when a new version
of SWRLTab is available the developer of ROWLTab has to embed the newer
version of SWRLTab explicitly.

To manage the source code and to be able to modify the source code efficiently
in the future we have separated the view module from the control module. The
view module consist of the user interface and the control module implements
the rule-to-OWL transformation. Besides those two modules we have a separate
listener module, which acts as a bridge between the view and controller module.
We have used Maven as our build system to easily manage the dependency of
various APIs. This plugin is open source and the source code is available at the
DaseLab website (http://dase.cs.wright.edu/content/modeling-owl-rules).

4 Evaluation

For the evaluation of the ROWLTab plugin, we conducted a user evaluation to
answer the following three questions:

— Is writing OWL axioms into Protégé via the ROWLTab plugin quicker than
writing them directly through the standard Protégé interface?

— Is writing OWL axioms into Protégé via ROWLTab plugin less error-prone
than writing them directly through the standard Protégé interface?

— Do users view modeling OWL axioms via ROWLTab plugin to be an easier
task than directly through the standard Protégé interface?

The evaluation was conducted by asking the participants to model a set of
natural language sentences as rules using the ROWLTab or as OWL axioms
using the standard Protégé interface. We recorded time and number of keyboard
and mouse clicks required for each question (see Section 4.1) and also recorded
the responses which we subsequently assessed for correctness (see Section 4.2).
Finally, the participants answered a brief questionnaire (see Section 4.3).

Before describing the experiment in detail, we would like to encourage the
readers to do it themselves; it should take less than an hour, the software can
be obtained from the ROWLTab website already indicated.
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Table 1. Evaluation Questions

Group A Group B Difficulty
1. Every father is a parent. 7. Every parent is a human.
2. Every university is an educational|8. Every educational institution is an| easy
institution. organization.
3. If a person has a mother then that|9. If a person has a parent who is fe-
mother is a parent. male, then this parent is a mother. .
4. Any educational institution that|10. Any university that is funded by a medium
awards a medical degree is a medi- state government is a public uni-
cal school. versity.
5. If a person’s brother has a son,|11. If a person has a female child, then
then that son is the first person’s that person would have that fe-
nephew. male child as her daughter. hard
6. All forests are more biodiverse than|12. All teenagers are younger than all
any desert. twens.

For the experiment we recruited 12 volunteers from among the graduate
students at Wright State University. Our sole selection criterion was that the
participants had at least some basic knowledge of OWL, and had at least minimal
exposure to Protégé. All participants were then given a half-hour briefing in
which we explained, by means of examples, how to model natural language
sentences with and without the ROWLTab in Protégé.

Each participant was given the same twelve natural language sentences to
model. The sentences are listed in Table 1 where group A consists of sentence
1 to 6 and group B consists of sentence 7 to 12. As indicated in the table, each
group contains two easy, two medium, and two hard sentences to model. Each
participant modeled one of the sets of sentences using the ROWLTab and the
other group without using the ROWLTab, and we randomly assigned whether
the participant will model Group A using the ROWLTab or Group B using the
ROWLTab. In order to minimize learning effects which may come from different
sentences, we made sure that for each sentence in Group A there is a very
similar sentence in Group B, and vice-versa: Each sentence number n in Group
A corresponds to sentence number n+6 in Group B. We furthermore randomized
whether the participant will first model using ROWLTab, and then without the
ROWLTab, or vice-versa, also to control for a possible learning effect during the
course of the experiment. There was no time limit for the modeling; participants
were informed that it should usually take no longer than an hour to model all
twelve sentences. Participants were also informed that they cannot go back to
earlier sentences during the course of the experiment.

Our categorization into easy, medium, and hard sentences was done as fol-
lows: Easy sentences expressed simple subclass relationships. Medium sentences
required the use of property restrictions to model them in OWL; the medium sen-
tence 9 was discussed in Section 1. Hard sentences could only be expressed using
two or three OWL axioms, together with a technique called rolification [11,14].
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Table 2. Average and standard deviation of time (in seconds), number of clicks (key-
board and mouse), and correctness score per difficulty category of sentences.

Sentence Time (in secs) # clicks Correctness
Category | Protégé  ROWL  Protégé ROWL  Protégé ROWL
avg/std  avg/std avg/std avg/std avg/std avg/std
easy 79/ 41 47/ 9 44/ 38 59/ 19 2.9/0.3 2.9/0.3
medium 312/181 116/61 216/131 141/ 91 2.2/0.5 2.5/0.8
hard 346/218 160/66 351/318  228/168 0.9/0.7 2.5/0.7

For example, sentence 5 when expressed as a rule becomes
Person(z) A hasBrother(z, y) A hasSon(y, z) — hasNephew(z, z).

In order to express this sentence as OWL axioms, one first has to rolify the class
Person by adding the axiom Person T dRpeyson.Self, where Rpeson is a fresh
property name, and to then add the property chain axiom

Rperson © hasBrother o hasSon C hasNephew.

We informed all the participants regarding the total number of easy, medium,
and hard sentences the participants would face. With each sentence, we also
displayed the suitable class and property-names which had been pre-defined by
us, i.e. the participants did not have to declare them in Protégé, and directed
participants to use the displayed class and property names to the maximum
extent possible. For example, the pre-defined classes and properties for sentence
9 were Person, hasParent, Female, Mother, while for sentence 5 they were Person,
hasBrother, hasSon, hasNephew. An exception to this is when modeling the
hard sentences (5, 6, 11, and 12) via standard Protégé. Those sentences contain
class names that need to be rolified, which necessitates one to declare one or
more fresh object properties. In this case, we informed the participants that the
hard sentences may require them to declare additional object properties without
disclosing that this is due to rolification.

4.1 Time Used For Modeling

Our hypothesis was that, on medium and hard sentences, participants would be
able to model quicker with the ROWLTab than without it. Cumulated data is
given in Table 2.

For the statistical analysis, our null hypothesis was that there is no difference
between the time taken with ROWLTab versus Protégé. Since each participant
had modeled sentences from each difficulty class, we could perform a paired
(two-tailed) t-test — note that assuming normal distributions appears to be per-
fectly reasonable for this data. For the medium sentences the null hypothesis
was rejected with p ~ 0.002 < 0.01. For the hard questions the null hypothesis
was rejected with p ~ 0.020 < 0.05. Both results are statistically significant with
p < 0.05, thus confirming our hypotheses.
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Interestingly, if we run the same t-test also on the easy sentences, the same
null hypothesis is also rejected with p ~ 0.019 < 0.05. We will reflect on this
further below.

In order to aid us in interpreting the results, we also recorded the number
of clicks (keyboard plus mouse) required for modeling each sentence; cumulative
data is provided also in Table 2. If we run the number of clicks through the same
t-test as before, the null hypothesis being that there is no difference between
the two interfaces. The corresponding p-values are 0.092 (easy), 0.030 (medium)
and 0.173 (hard), i.e. we have p < 0.05 only for the medium sentences. The click
analysis may provide us with a partial answer to the better performance of the
ROWLTab regarding time used: Fewer clicks may in this case simply translate
into less time required. However, this observation does not explain the data for
easy and hard questions. We will return to this discussion at the end of Section
4.2, after we have looked at answer correctness.

4.2 Correctness of Modeled Axioms

Our hypothesis was that for medium and hard questions, participants would
provide more correct answers with the ROWLTab than without it. To see if we
can confirm this hypothesis, we verify the correctness of the axioms in the OWL
files obtained from the participants. The correct set of axioms for each modeling
question is given in Table 3. Since the sentences are short and the resulting
OWL axioms are relatively simple, the verification was done manually. Also,
for modeling tasks where the participants were asked to model the sentence via
ROWLTab, we check the correctness of the rules by examining the OWL axioms
obtained after translation, which are annotated with information regarding the
actual rule input given to ROWLTab. We then assign a score of 0, 1, 2, or 3 to
each answer from the participants as follows:

— Modeling a sentence via ROWLTab, the score is:
e 3 if the participant’s rule is fully correct (equivalent to the answer key),
e 2 if the participant’s mistakes are only in the incorrect use of variables
(wrong placement, missing/spurious variables), i.e., the rule still em-
ploys the correct predicates in the rule body and head and no spurious
predicates are used,
e 1 if there’s a missing predicate in the participant’s rule or spurious pred-
icates are used that makes the rule not equivalent to the correct answer,
e ( if the participant provides no answer.
— Modeling a sentence via the standard Protégé interface, the score is:
e 3 if the participant’s OWL axioms are fully correct,
e 2 if the participant’s OWL axioms employ the correct set of class and
property names, but there is a mistake in the use of logical constructs,
e 1 if there is a missing or spurious class names or property names, or even
missing some necessary OWL axioms,
e ( if the participant provides no answer.
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Table 3. Answers to Evaluation Questions — Ru¢ and Axi are answers for question ¢ in
the form of rule and OWL axioms, resp. where Ry, ..., R; are fresh (object) properties
generated due to rolification

Rul: Father(z) — Parent(z) Ax1: Father C Parent
Ru2: University(z) — Educationallnstitution(x)

Ax2: University C Educationallnstitution
Ru3: Person(z) A hasMother(z,y) — Parent(y)
Ax3: JhasMother™ .Person C Parent
Ru4: Educationallnstitution(x) A awards(z,y) A MedicalDegree(y)

— MedicalSchool(x)
Ax4: Educationallnstitution M Jawards.MedicalDegree C MedicalSchool
Rub: Person(z) A hasBrother(z,y) A hasSon(y, z) — hasNephew(z, z)
Axb: Person C dR;.Self, R; o hasBrother o hasSon C hasNephew
Ru6: Forest(x) A Desert(y) — moreBiodiverseThan(z, y)
Ax6: Forest T dR5.Self, Desert C dR3.Self, Rs o U o R3 C moreBiodiverseThan
Ru7: Parent(z) — Human(x) Ax7: Parent C Human

Ru8: Educationallnstitution(x) — Organization(z)

Ax8: Educationallnstitution C Organization

Ru9: Person(x) A hasParent(z, y) A Female(y) — Mother(x)

Ax9: Person M JhasParent.Female T Mother

Rul0: University(x) A fundedBy(z, y) A StateGovernment(y) — PublicUniversity(x)
Ax10: University M FfundedBy.StateGovernment = PublicUniversity

Rull: Person(z) A hasChild(z,y) A Female(y) — hasDaughter(z, y)

Ax11: Person C dR4.Self, Female C dR5.Self, R4 o hasChild o Rs C hasDaughter
Rul2: Teenager(x) A Twen(y) — youngerThan(z,y)

Ax12: Teenager C dR¢.Self, Twen C dR7.Self, Rg o U o R7 C youngerThan

The average and standard deviation of the correctness score for easy, medium,
and hard questions can be found in Table 2. Here, our null hypothesis was
that there is no difference in correctness of the answers given with ROWLTab
versus Protégé. For the same reasons as before, we thus performed a paired (two-
tailed) t-test, the null hypothesis being that there be no difference whether using
ROWLTab or not. For the medium sentences we obtained p ~ 0.18 > 0.05, so
the null hypothesis could not be rejected. But for the hard questions the null
hypothesis was rejected with p ~ 0.0001 < 0.01. The latter result is statistically
significant with p < 0.01. If we run the same t-test also on the easy sentences,
the same null hypothesis cannot be rejected; we in fact obtain p &~ 1.0000.

We thus confirm our hypothesis that ROWLTab helps users in modeling hard
sentences correctly; however we could not confirm this for medium sentences on
this population of participants. It could be hypothesized that the participants
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were sufficiently familiar with Protégé to perform well on medium difficulty, thus
use of the ROWLTab only had an effect on time used, as shown in Section 4.1.

At the same time, the correctness analysis also sheds further light on the hard
questions: While participants used less time for these on the ROWLTab, they did
not use significantly fewer clicks; however answer correctness was much higher
on the ROWLTab. This seems to indicate that the additional time using Protégé
was spent thinking (and indeed, rather unsuccessfully) about the problem, while
this additional thinking was not required when using the ROWLTab.

4.3 Participant Survey

We finally used a questionnaire with four questions to assess the subjective value
which the use of the ROWLTab had to the participants. For this, we asked all
participants to indicate to what extent they agree with each of the following
statements.

1. ROWLTab is a useful tool to help with ontology modeling.

2. Modeling rules with ROWLTab was easier for me than modeling without it.

3. Given some practice, I think I will find modeling rules with the ROWLTab
easier than modeling without it.

4. The ROWLTab is better for ontology modeling than the SWRLTab.

Participants were asked to click, on screen whether they agree with each
statement, on a scale from -3 (strongly disagree) to +3 (strongly agree). It turns
out that participants agreed highly with all three statements:

Question Number mean [standard deviation
1 (ROWL is a useful tool.) 2.83 0.39
2 (ROWL makes modeling easier.) 3.00 0.00
3 (Modeling with ROWL easier with some practice.)| 2.75 0.45
4 (ROWLTab better than SWRLTab) 1.75 1.22

In assessing these responses, we need to be aware that the pool of participants
came from the investigators’ institution, and many of them were either associated
with the investigators’ lab or had attended classes by one of the investigators.
Hence the scores should be interpreted with caution. Nevertheless, the scores
for the first three questions indicate strong agreement with the usefulness of the
ROWLTab.

Regarding the fourth question, it should be noted that our briefing did not in-
clude a briefing on the SWRLTab. As discussed in Section 3, the user interaction
of the ROWLTab is very similar to that of the SWRLTab, so the only substan-
tial difference would be in the fact that the ROWLTab produces OWL axioms,
while the SWRLTab produces SWRL axioms with a different semantics. We do
not know to what extent the participants were aware of this difference. A quar-
ter of the participants answered this question with “0” (neutral). Results of the
experiment can be found at http://dase.cs.wright.edu/content/rowl and raw
result can be found at https://github.com/md-k-sarker/ROWLPluginEvaluation/
tree/master/results .
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Table 4. Summary of evaluation results. Entries indicate whether the difference be-
tween using the ROWLTab and not using it were statistically significant.

category | time | clicks | correctness |
easy |[significant (p < 0.05) not significant not significant

medium |significant (p < 0.01)|significant (p < 0.05) not significant
hard |significant (p < 0.05) not significant significant (p < 0.01)

5 Conclusions and Further Work

We have presented the Protégé ROWLTab plugin for rule-based OWL modeling in
Protégé, and its underlying algorithms. We have furthermore reported on a user eval-
uation for assessing the improvements arising from the use of ROWLTab.

The evaluation results are summarized in Table 4: We have a significant time im-
provement in all three categories (it was hypothesized by us only for medium and hard
sentences). In the medium category, where answer correctness was not significantly
different, the ROWLTab required significantly less clicks. In the hard category, the
difference in answer correctness was also significant.

The evaluation results are rather encouraging, and we also already received direct
feedback from users that the ROWLTab is considered very useful. But while basic
functionality is already in place, we already see further improvements that can be
made to the plugin:

— When rolification is used for the transformation of a rule to OWL, the ROWLTab
currently invents an artificial property name for the fresh object property. It may
be helpful to more directly support a renaming of these properties, or to come
up with a standard naming scheme for properties arising out of rolification. Note,
however, that it is not sufficient to have one fresh property for each defined atomic
class, as in some cases complex classes need to be rolified [11].

— The translation of rules into OWL often leads to the use of property chains, which
may result in a non-regular property hierarchy, thus violating a global syntactic
restriction of OWL 2 DL. While standard tools such as reasoners, which can be
called from within Protégé, can detect this issue, it may be helpful to catch this
earlier, e.g. directly at the time when a rule is translated.

— Currently, if a rule is input which cannot be translated to OWL, it is simply saved
as a SWRL rule, i.e., with a significantly modified (and, in a sense, restricted)
semantics. However, through the use of so-called nominal schemas [14] it is possible
to recover more of the first-order semantics of the input rules, and it has even been
shown that the use of such nominal schemas can lead to performance improvements
of reasoners compared to SWRL [22].

More substantial possible future work would carry the ROWLTab theme beyond
the basic rule paradigm currently supported:

— The rule syntax could be extended to allow for capturing OWL features which
cannot be expressed by means of the basic rules currently supported. In particu-
lar, these would be right-hand side (head) disjunctions and existentials as well as
cardinality restrictions, as well as left-hand side universal quantifiers. It would even
be conceivable to add additonal shortcut notation, e.g. for witnessed universals [3],
or for nominal schemas [14].
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— The development of a full-blown rule syntax for all of OWL 2 DL would then also
make it possible to perform all ontology modeling using rules, i.e., to establish an
interface where the user would get a pure rules view on the ontology, if desired.

We are looking forward to feedback by ontology modelers on the route which we
should take with the plugin in the future.
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Abstract. Once the conceptual overview, in terms of a somewhat in-
formal class diagram, has been designed in the course of engineering an
ontology, the process of adding many of the appropriate logical axioms is
mostly a routine task. We provide a Protégé® plugin which supports this
task, together with a visual user interface, based on established methods
for ontology design pattern modeling.

1 Motivation

When modeling with domain experts, particularly when they do not possess
intimate knowledge about ontology engineering, it is in our experience best to
use a visual approach to first design a conceptual overview of ontology modules
(or corresponding content ontology design patterns), in the form of class dia-
grams [4]. We have found it most effective to use non-electronic means for this,
such as whiteboards and flipcharts, as they readily support a natural flow of
discussion without assuming any prior knowledge of particular software tools.

The ontology engineers in the modeling team will of course keep track of
the precise meaning of each part of the diagram, so that they can convert their
insights into exact specifications, i.e., axioms for the ontology. This conversion
can then, based on the class diagram and the discussions during the modeling
sessions, in our experience mostly be done by the ontology engineers without a
lot of required further interaction with the domain experts. For documentation
(or publication) purposes, the class diagram will usually also be redrawn using
appropriate software tools.

In our experience, based on the class diagram and the discussions with do-
main experts during its design, it is mostly a routine, albeit somewhat tedious,
task to write down appropriate axioms for an ontology module in an ontol-
ogy editing tool. Most axioms in fact arise out of a systematic exploration of
the class diagram. In order to simplify this part of the work, we have cast
this systematic exploration into a Protégé plugin, which we describe herein.
Of course, some axioms — arguably the more interesting and more critical ones
— will not come up as candidates during our systematic exploration, and so
will have to be added manually. Nevertheless, our plugin is helpful in mak-
ing the task of adding many routine axioms much quicker and less error prone.

3 http://protege.stanford.edu/
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Fig. 1. OWLAx Ul when “Generate Axioms” command is executed.

More information about the plugin is located at http://daselab.org/content/
ontology-axiomatization-support.

2 OWLAXx: Description and Main Functionalities

The plugin provides an interface for drawing a class diagram, and a command
(accessible through an item in the menu or a button in the toolbar) to generate
axioms from the given diagram, which are to be added into the currently active
ontology. As seen in Fig. 1, the class diagram itself is composed of nodes and
edges. A node in the class diagram represents either a class, datatype, individ-
ual name, or literal. Meanwhile, an edge represents either an object property,
data property, the typing relation (i.e., rdf:type), or the subclass relation (i.e.,
rdfs:subClassOf). A pallette on the left side of the interface provides the user
with those nodes and edges, which can be dragged and dropped onto the canvas.

In the following, X L. ¥ means that there is a directed edge P from a node
X to another node Y in the class diagram. Also, A and B denote class names, M
a datatype, ¢ a named individual, ¢ a literal, R an object property, and @) a data
property. The plugin enforces the class diagram to contain at least one node, and
if there is an edge, it only allows the following node-edge-node configurations:
AL B AL A% M oAS g o O g anq 4 [fsubCasOf g
We do not aim to represent all possible relationships between components of
the class diagram above because in our experience when modeling, the class
diagram is usually considered informal, and the aforementioned node-edge-node
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configurations are those typically used to describe a conceptual overview when
we conduct modeling [4]. In fact, we do not intend to represent all possible OWL
2 constructs in the diagram unlike, e.g., Graphol [2], Graffoo [3], or Ontodia [5].
From the class diagram, a user can generate several types of candidate ax-
ioms based on the relationships depicted in the class diagram. They are only
candidates since the class diagram is informal; each candidate axiom captures
one way to read a relationship, and the actual intent should typically be inquired
to the domain experts while conducting the modeling. Note that from one type
relationship, more than one actual intents need to be formalized, i.e., the candi-
date axioms are not mutually exclusive. On the other hand, the list of candidate
axioms is not exhaustive to keep it sufficiently simple: there are obviously axioms
that will not be directly generated from the class diagram, especially if it is too
complex. For such axioms, one has to simply directly input them in Protégé.
The plugin facilitates the creation of candidate axioms through a dialog box
(accessible through “Generate Axiom” command from the menu or toolbar)
that contains a checkbox of the candidate axioms presented in the Manchester
syntax. After clicking “Integrate”, the plugin will integrate the axioms with a
check-mark to the ontology. We explain some of the candidate axioms below,

though we use mainly description logic notation [1].

rdf:type rdfs:subClassOf
_—

Every ¢ 1AFOPe, A leads to a class assertion A(e), and A Btoa

subclass axiom A C B. Next, for every A B , the plugin generates several types
of candidate axioms. First, it generates (unscoped) domain restriction IR.T C A
— equivalent to R rdfs:domain A — and scoped domain restriction IR.B C A.
The former would be later integrated if the domain experts involved in modeling
agrees that for every pair of instances x,y, if x R y holds, then x belongs to
A (regardless whether or not y belongs to B), while the latter is chosen if the
domain experts agrees that if z R y holds and y is known to belong to B, then z
belongs to A. Such agreements will be solicited from domain experts involved in
the modeling for every candidate axiom. Besides domain restrictions, the plugin
also generates scoped and unscoped range restrictions ACVR.B, T CVR.B —
equivalent to R rdfs:range B; several existential axioms, e.g., A C dR.B, etc.;
and several functionality restrictions, e.g., AC (<1 R.B), etc.

Similar types of candidate axioms are generated for every A M , A RN c,

and A 2 ¢ relationships. Finally, class disjointness axioms are generated as
candidate axioms for every pair of different classes, unless there is a path of
rdfs:subClassOf edges in the diagram connecting one class to the other.

3 Implementation Information and Other Features

The plugin is implemented on top of the OWL API provided by Protégé. The
visual components are built using mxGraph.# The plugin allows users to save the
diagram as XML-annotated PNG, which can then be loaded again. This plugin

4 http://jgraph.github.io/mxgraph/
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is not for visualizing an ontology for which there are a number of Protégé plugins
already existing, but rather, it facilitates creating graphical class diagrams inside
Protégé and provides a way to generate axioms from it. It eliminates the need to
use separate tools for creating the class diagram and writing down the axioms.
In addition, the user can customize various aspects of the class diagram, e.g.,
coloring, size of nodes and edges, text formatting, etc., through the provided
menu or by right-clicking the corresponding graphical components.

One could use this plugin for modeling from scratch, or starting from an
already created ontology. In the latter case, the plugin will not attempt create a
class diagram from the ontology, and rather, start with an empty canvas. Nev-
ertheless, when the user wishes to generate axioms through the plugin, existing
axioms that are already in the ontology will be included as part of the list of
candidate axioms, and the user can confirm whether to keep them. Finally, we
hope to continue improving this plugin, particularly to support quick modeling
of modular ontologies and ontology design patterns, and furthermore, evaluate
the usability of our plugin via a comprehensive user study.

Acknowledgements. This work was supported by the National Science Founda-
tion award 1017225 III: Small: TROn — Tractable Reasoning with Ontologies.
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Abstract. Explainable artificial intelligence (XAI) requires domain in-
formation to explain a system’s decisions, for which structured forms
of domain information like Knowledge Graphs (KGs) or ontologies are
best suited. As such, readily available KGs are important to accelerate
progress in XAl. To facilitate the advancement of XAI, we present the
cycle-free Wikipedia Knowledge Graph (WKG) based on information
from English Wikipedia. Each Wikipedia article title, its corresponding
category, and the category hierarchy are transformed into different enti-
ties in the knowledge graph. Along with cycle-free version we also provide
the original knowledge graph as it is. We evaluate whether the WKG is
helpful to improve XAl compared with existing KGs, finding that WKG
is better suited than the current state of the art. We also compare the
cycle-free WKG with the Suggested Upper Merged Ontology (SUMO)
and DBpedia schema KGs, finding minimal to no information loss.

Keywords: Knowledge Graph - Wikipedia - Ontology - XAl

1 Introduction

Artificial intelligence (AI)—including the subfields of machine learning and deep
learning—has advanced considerably in recent years. In tandem with these per-
formance improvements, understanding how Al systems make decisions has be-
come increasingly difficult due to many nonlinear transformations of input data
and the complex nature of the algorithms involved. The research area explainable
AT (XAI) [8,7,16] investigates techniques to examine these decision processes.
A main desideratum of XAI is user understandability [6,5], while explana-
tions should take into account the context of the problem and relevant domain
knowledge [10]. Humans understand and reason mostly in terms of concepts and
combinations thereof. A knowledge graph (KG) embodies such understanding in
links between concepts; such a natural conceptual network creates a pathway to
use knowledge graphs in XAI applications to improve overall understandability
of complex AT algorithms. For an overview of some of the current discussion on

* This material is based upon work supported by the Defense Advanced Research
Projects Agency (DARPA) under Agreement No. HR00111890019
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Kitchen Images Knowledge Graph

Inductive Logic Program (ILP) System

l Produce generalizations

3acontains.Dishwasher | (1)
3acontains.Microwave (2)
Jcontains.Appliance (3)

Fig. 1: Example of using knowledge graph to enhance explainability

utilizing knowledge graphs to enhance explanations, and possible limitations of
existing approaches, see [12,9].

One of the primary elements of knowledge graphs to use in the XAl context is
the notion of a concept hierarchy [4,18]. As illustrated in Figure 1, consider a sys-
tem trying to explain the decisions of an image classifier. It may determine that
an image should be given the label “Kitchen” because it contains a dishwasher,
refrigerator, and microwave, and with the help of a KG concept hierarchy, it
may produce the more general explanation that the image contains items in the
“Appliance” class. These kinds of explanation generation systems are based on
inductive logic programming (ILP) [14], and rich concept hierarchies play an
important role in the generation of satisfactory explanations. To advance the
state of XAl research, we provide a readily available knowledge graph with a
rich concept hierarchy.

Wikipedia is perhaps the largest high-quality free source of information on
the web. Wikipedia articles are classified into human-managed categories, which
form a hierarchy (albeit with cycles). These concepts embody humans’ natural
ways of thinking and are easily understood, providing a greater benefit in an
XAI context.

DBpedia [1], Suggested Upper Merged Ontology (SUMO) [15], Freebase [2],
and Yago [19] are among the many high-quality, publicly available knowledge
graphs providing domain information. These KGs use information from many
sources, including Wikipedia. The hierarchical category information of Wikiped-
ia, in which we are interested, is available in SUMO"! but not in Freebase. It also
exists in DBpedia and is accessible through SPARQL queries. Problematically,
though, the Wikipedia parts of SUMO and the DBpedia KG contain cycles. For
example, consider the following two axioms from DBpedia.

! http://www.adampease.org/0P/
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I. 1949_establishments_in_Asia skos:broader 1949_establishments_in_India
I1. 1949_establishments_in_India skos:broader 1949_establishments_in_Asia

These axioms form a cycle in the Wikipedia category hierarchy and hence
also in DBpedia. The Wikipedia category hierarchy contains many such cycles,
which complicates its use in XAI applications, as choosing parent concepts from
the KG becomes nondeterministic.

owl:Thing
Individuals

dfs:subClassOf
il Inventors_by_nationality

rdfs:subClassOf . -
American_inventors

rdf:type

rdfs:subClassOf i i
l«—————— German_Nobel_laureates Al e

rdf:type

Fig. 2: Example architecture of the Wikipedia knowledge graph

To solve this problem, we provide a noncyclic version of the Wikipedia cate-
gory hierarchy knowledge graph. We also empirically evaluate how the noncyclic
knowledge graph performs in an XAl context and whether breaking cycles de-
grades its quality, finding that the Wikipedia knowledge graph performs better
in both scenarios than other existing knowledge graphs.

The rest of the paper is organized as follows. First, we describe the high level
architecture of the knowledge graph in section 2. Next, we describe the steps
involved in building the knowledge graph. Then, in section 4, we evaluate the
knowledge graph before concluding.

2 Knowledge Graph Architecture

We want to make the knowledge graph as simple as possible to enable use within
XAI applications with minimal preprocessing. In the knowledge graph, we will
have entities (named individuals in OWL 2), their types (classes in OWL 2),
and the types’ hierarchy. Many relations can be extracted from Wikipedia, but
for simplicity we will use only two: rdf:type and rdfs:subClassOf. The relation
rdf:-type will be used to assign the individuals to their corresponding types, and
the rdfs:subClassOf relation will be used to create the hierarchy. The title of a
Wikipedia article (a.k.a. page) becomes an entity in our KG. Categories of a page
become the types of the corresponding individual. A subcategory relationship
becomes a rdfs:subClassOf relationship.
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Figure 2 shows the architecture of our knowledge graph with an example.
We can see that the article Albert_Finstein is mapped into the knowledge graph
as an individual. This article belongs to many categories, including German._
Nobel_laureates and American_inventors, which are converted into instances of
rdfs:Class. The category American_inventors is a subcategory of Inventors_by_
nationality, among others, resulting in the relation

American_inventors rdfs:subClassOf Inventors_by_nationality

in the KG.

3 Generating the Knowledge Graph

We now briefly describe a procedure for generating a knowledge graph like the
one discussed above from the version of Wikipedia for a particular language;
full details are in Appendix A. To construct the Wikipedia category hierarchy
knowledge graph from scratch, we explored two alternative approaches: travers-
ing and parsing the hierarchy page by page, and using a Wikipedia data dump.?
To get all page and category information from Wikipedia through a traversal, we

A

'y
rdfs:subGlassOf rdfssubClassOf

C
W

5 B bClassOf

A

rdfssubClassOf \

Need to break
this path to
aveid cycle

Fig. 3: Example of how cycles are broken

start at the top category® and exhaustively look through its subcategories and
pages recursively, a time-consuming process complicated by the need to parse
each page to find the proper links to visit the next categories or pages. To deter-
mine how long this process takes in practice, we used Python to implement the

2 http://dumps.wikimedia.org/enwiki/latest
3 https://en.wikipedia.org/wiki/Category:Main_topic_classifications

87



Wikipedia Knowledge Graph 5

visiting and scraping program and found that it took roughly five days on a 2.2
GHz Intel Core i5 machine with 32 GB memory. As taking five days to produce
a knowledge graph is not reasonable, we will focus on the Wikipedia data dump
option.

A Wikipedia data dump contains all the information for each article: full
text, editor list, category, etc. As stated in Section 2, our knowledge graph in-
cludes article title, category name, and the hierarchy of categories. These data
are stored in the page and categorylinks tables. Using the Wikipedia data dump
is straightforward: we just need to download the dump, import it into a database,
and access it through SQL queries. After importing it, producing the full knowl-
edge graph took only one hour, on the order of 1% of the time of the previous
approach.

3.1 Concrete Implementation

Following the steps mentioned in Appendix A, we can create a concrete Wikipedia
knowledge graph, ensuring compliance with W3C standards to make it maintain-
able, reusable, and non-proprietary. Many tools are available for this; among the
most popular are the OWL API [11], the Apache Jena? library, and Owlready?2,?,
all of which are compliant with W3C’s standards.

[’ Policy ]

*® science = Technology
+ -
-
5 e — Tr——
— R oy
— | — -
::{ Main_topic_clas ——————— /| Language
_— sifications
Hg " . T +
oncepts < — Academic_discip
+ = B —_— lines
S = -
T

@ Mind

Main_topic_arti
cles

-
+
Knowledge
*® Philosophy
R + Es

(&
& - b
Goverr{’ Food_4 Objects

Fig. 4: Wikipedia Knowledge Graph

As discussed in Section 1, the raw Wikipedia hierarchy has cycles, resulting in
cyclic relations in the knowledge graph. The Owlready2 library treats concepts
as Python classes, representing subclass relationships through inheritance; since
Python only supports inheritance without cycles, Owlready2 cannot handle these

4 https://jena.apache.org/
® https://pythonhosted.org/Owlready2/
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Table 1: Entity counts for Wikipedia, SUMO, and DBpedia knowledge graphs

Number of entities/facts| SUMO |DBpedia|Wikipedia cyclic| Wikipedia noncyclic
Concepts 4558 1183 1,901,708 1,860,342
Individuals 86,475 1 6,145,050 6,079,748
Object property 778 1144 2 2
Data property 0 1769 0 0
Axioms 175,208 7228 71,344,252 39,905,216
Class assertion axioms | 167381 1 57,335,031 27,991,282
Subclass axioms 5330 769 5,962,463 3,973,845

cycles in relations. In contrast, the OWL API and Jena can support these cyclic
relations; we use the former.%

While making the KG we face some practical issues, one being that many
page titles on Wikipedia have non-ASCII characters, multiple spaces, and other
peculiarities. For example, the article https://en.wikipedia.org/wiki/Poli
sh_People’27s_Party_%22Piast%22_(1913%E2%80%931931) has title Polish_
People%27s_Party_%22Piast%22_(1913%E2%80%931931). From an ontological
perspective, this title as an entity name seems bad. We decide to replace spaces
and characters in the set

CIe#S%kx O-+={3[]I\;’"<>, .7/

with underscores (_) and then trim leading and trailing underscores from the re-
sulting string. Another technical issue consists in the fact that if proper Unicode
rendering is not selected, some article names will be saved as non-Unicode-
compliant names. For example, as of 20 January 2020, the article title Fabian’s
Lizard contains the additional character 092 just before the s. This character
only exists in windows encoding cp1252 and not in Unicode.”

3.2 Breaking Cycles

As stated above, the Wikipedia category hierarchy contains cycles, which we
break by visiting the categories using breadth-first search (BFS). Starting from
the root—Main topic classifications—we go level by level. An example of break-
ing a cycle is shown in Figure 3. In the example, if we start from A using BFS,
we will get B and D as subclasses of A. On the next level, starting from B,
we see that F is a subclass of B and store that information. On the next level,
starting at F, we see that A is subclass of E; this results in a cycle, so we discard
this information. Breaking cycles in this way results in some missing informa-
tion in the final graph; however, it simplifies the knowledge graph considerably,
allowing for efficient parent category determination, which is especially helpful
in the XAI context.

® Our code is available at https://github.com/md-k-sarker/Wiki-KG.
" https://stackoverflow.com/q/29419322/1054358
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Entity counts for both the cyclic and noncyclic versions of the WKG are
shown in table 1. We see that breaking cycles results in losing 41,366 concepts
(0.02% of the total 1,901,708 concepts) and 65,302 individuals (0.01% of the
total 6,145,050 individuals). We further see that we lose a substantial number of
class assertion axioms—29,341,749, or 0.5% of the total noncyclic axioms. Figure
4 shows a top-level view of the complete knowledge graph.®

4 Evaluation

The goal of our experimental evaluation was to test the hypothesis that the
Wikipedia Knowledge graph produces XAl results comparable to or better than
existing knowledge graphs. As to the best of our knowledge only SUMO has
been used previously in a comparable context [18], to test this we compared
the performance of our newly created WKG with that of the SUMO KG. We
further hypothesized that breaking cycles in the Wikipedia knowledge graph
results in minimal information loss and evaluated WKG relative to SUMO and
the DBpedia schema.’

4.1 WKG’s Effectiveness in XAI

To the best of our knowledge, there is no previously established quantitative
measure of XAI quality, so we decided to use the accuracy metric of inductive
logic programming (ILP)—the backbone of XATI [18]—to explain a supervised
machine learning algorithm’s decisions in terms of a KG. ILP provides many
alternative solutions by using a KG. To measure a solution’s performance, we
used coverage score, described in equation (1), as the objective function. To
measure the overall performance of a KG, we calculated the average of all scores
of the produced solution for an experiment with equation (2).

Ps + Nngs

C S) =
overage(S) Ps 1 Pyo f No t Nus

(1)

where
Ps = Number of positive individuals subsumed by the solution
Pns = Number of positive individuals not subsumed by the solution
Ng = Number of negative individuals subsumed by the solution

Nys = Number of negative individuals not subsumed by the solution

Average coverage = Z Coverage(S;) (2)
i=1

8 Available for download at https://osf.io/3ubyr/.
 http://downloads.dbpedia.org/2014/dbpedia_2014.0wl.bz2

90



8 Sarker et al.

Following [18], we used the ADE20K dataset [20], which contains over 20,000
images classified by scene type and annotated with contained objects, to com-
pare the results. We cast the ADE20k dataset, with annotations, into an OWL
ontology and aligned it with SUMO, as in [18]; in the present context, we also
aligned the ontology with WKG. We use all five experiments mentioned in [18],
but expand the range of the experiments. While the previous paper used only
3-10 images for each experiment, we took all the training images (around 100)
of the relevant categories from the ADE20K dataset. To get the explanation, we
use ECII [17] instead of DL-Learner [3] to avoid the latter’s considerable time
complexity.

Table 2: Comparison of average coverage for WKG and SUMO in XAI context

Experiment name #Images|#Positive images #Solr‘zil(l){;péiljerage #SoluggnMC?)verage
Market vs. WorkRoom and WareHouse 96 37 286 72 240 72
Mountain vs. Market and WorkRoom 181 85 195 .61 190 .53
OutdoorWarehouse vs. IndoorWarehouse 55 3 128 .94 102 .89
Warehouse vs. Workroom 59 55 268 .56 84 .24
Workroom vs. Warehouse 59 4 128 .93 93 .84

We will now briefly discuss each of the scenarios in turn, before we summarize;
Table 2 Figure 5 provide an overview of the results.

The first experiment involved finding a generalization of market images from
the market vs. workroom and warehouse images. The ADE20K training dataset
has, for those three categories, a total of 96 images, all of which we used. The
objective was to cover as many as possible of the 37 images of market scenes and
as few as possible of the images of workroom and warehouse scenes. When using
the Wikipedia knowledge graph, the explanation framework (ECII) produced
286 alternative rules to generalize the market images, while using the SUMO
knowledge graph results in 240 alternative rules. Average coverage score for both
Wikipedia and SUMO was 0.72, i.e. in this case the simple Wikipedia category
hierarchy knowledge graph performs as well as SUMO.

To produce a generalized rule of mountain scenes was the objective of the
second experiment. All 181 images from the ADE20K training set were taken
in this mountain vs. market and workroom experiment, where 85 images were
of mountain scenes. The average coverage for Wikipedia was 0.61, representing
slightly better performance than the 0.53 coverage we obtained for SUMO.

In the ADE20K training data, only three images are of outdoor warehouse
scenes, while 52 are of indoor warehouse scenes. We wanted to compare the
performances of the WKG and SUMO given such skewed sizes of sets of positive
and negative individuals, so we took the three images of outdoor warehouses
and 52 images of indoor warehouses, aiming to produce a generalized rule to
describe the outdoor warehouse scenes. As there are fewer images to describe,
both SUMO and Wikipedia performed well: ECII produced average coverages
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Fig. 5: Comparison of average coverage score between Wikipedia and SUMO
knowledge graphs
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of 0.89 from SUMO and 0.94 from Wikipedia, leading us to conclude that the
Wikipedia KG again resulted in similar performance to the SUMO KG.

In the fourth and fifth experiments, we considered the case of warehouse vs.
workroom. The ADE20K training set has 55 warehouse images and four work-
room images. To produce a generalized rule to explain warehouse images SUMO
returned average coverage of 0.24, while Wikipedia returned 0.56, a significantly
larger difference than in previous cases. A large number of positive images com-
pared to that of negative images (55 to 4) may explain the improved coverage
score for the Wikipedia KG, as its depth and breadth of concepts exceeds those
of SUMO. In the converse experiment (experiment 5)—describing the workroom
scenes compared to the warehouse scenes—Wikipedia returned an average cov-
erage score of 0.93 and SUMO returned 0.84. In this case, only four images were
used to describe the workroom class, with 55 images on the negative side. Here
Wikipedia and SUMO produced comparable average coverage scores.

The results are visualized in Figure 5, showing the simple Wikipedia category
hierarchy’s superior performance in all experiments compared to the SUMO
ontology.

4.2 Noncyclic WKG Information Loss

For the second type of experiment, we evaluated the noncyclic WKG class hier-
archy with respect to the DBpedia schema and SUMO knowledge graph to see
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what proportion of subclass-superclass axioms remain in the WKG compared to
the SUMO and DBpedia after breaking cycles. We expected that some subclass-
superclass relations would be lost in the cycle-breaking process and hence not
exist in our noncyclic WKG despite being present in other KGs. However, our
experimental results show little to no information loss, with a substantial ma-
jority of the subclass-superclass relations in SUMO and DBpedia preserved in
the noncyclic WKG.

The experiment involved first finding matching concepts in the WKG, SUMO,
and DBpedia schema. To match the concepts we used a string similarity mea-
surement algorithm (specifically Levenshtein [13] distance=0), finding 22 match-
ing concepts, shown in Table 3. We extracted the asserted superclasses of those
concepts from all three KGs. Details of the parents are shown on table 3. In
the WKG, the number of asserted parents for some categories are quite large.
For example, the category Fish has 114 asserted parent categories in the non-
cyclic WKG. As such, here we show only some of the parent concepts for each
(:afcegory.10

Table 3: Parents of all matching concepts in SUMO, DBpedia and noncyclic
Wikipedia knowledge graph

Parent concepts

Concept SOUMO DBpedia Wikipedia #Wikipedia parent concepts
Aircraft  |Vehicle MeanOfTransportation Vehicles_by_type, Technology 5
Beer AlcoholicBeverage Beverage, Food Food_and_drink 5
Birth OrganismProcess PersonalEvent, LifeCycleEvent, Event Life 3
Boxing Sport, ViolentContest Sport, Activity Sports 5
Brain AnimalAnatomicalStructure, Organ AnatomicalStructure Human_anatomy, Physical_objects 15
Building |StationaryArtifact ArchitecturalStructure, Place Construction, Engineering 12
Cheese PreparedFood, DairyProduct Food Foods 7
City LandArea, GeopoliticalArea Settlement, PopulatedPlace, Place Human_habitats 42
Currency |Financiallnstrument Thing International_trade 60
Death OrganismProcess PersonalEvent, LifeCycleEvent, Event Life 3
Fish ColdBloodedVertebrate Animal, Eukaryote, Species Aquatic_organisms 114
Grape Fruit FloweringPlant, Plant, Eukaryote, Species|Edible_fruits 20
Language |LinguisticExpression Thing Culture 3
Medicine |Biologically ActiveSubstance Thing Health_care, Health 4
Opera DramaticPlay MusicalWork, Work Performing_arts, Entertainment 7
Painting |Coloring, Covering Artwork, Work Arts 7
Sales Working Activity Marketing, Business 5
Sculpture |ArtWork Artwork, Work Visual_arts, Culture 7
Sound BodyOfWater Document, Work Consciousness, Mind 5
Spacecraft| Vehicle MeanOfTransportation Spaceflight 13
Tax CharginAFee Topical Concept, Governmet _finances 4
Wine AlcoholicBeverage, PlantAgriculturalProduct |Beverage, Food Fermented_drinks 32

Due to space constraints, we discuss only a subset of the 22 concepts that
matched across the three KGs. We can divide the 22 concepts into twelve subsets
by using the first letter of those concepts; among these, the letter B has the
largest subset, with five elements: Beer, Birth, Boxing, Brain, and Building.

The concept Beer is available in SUMO, DBpedia and WKG. The only
SUMO axiom related to the concept Beer is Beer T AlcoholicBeverage, while
in DBpedia we have Beer C Beverage and Beer T Food; finally, in the non-
cyclic WKG we have the related axioms Beer C Food_and_drink. We see that
all three KGs have semantically similar parents of varying specificity.

10 See https://github.com/md-k-sarker/Wiki-KG for full results.
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Axioms related to the concept Birth in DBpedia are Birth C LifeCycle Event,
Birth T PersonalEvent and Birth T Fvent; in SUMO we have Birth C
OrganismProcess; and in the WKG, Birth C Life. We can see that these
parent concepts are again similar in meaning.

In SUMO, axioms related to the concept Boxing are Boxing T Sport and
Bozxing T ViolentContest; DBpedia has Boxing T Sport and Boxing C
Activity; WKG has Boxing T Sports, among others. The parent concepts of
Bozing are Sport, Sport, and Sports in SUMO, DBpedia, and WKG, respectively;
all of these clearly have the same meaning. Minor changes like the pluralization
of the category name in Wikipedia are to be expected, as the SUMO and DB-
pedia schema are manually curated by domain experts and ontologists, while
Wikipedia categories are editable by the general public.

Brain is another concept common to all three KGs. In SUMO we have
Brain © Animal Anatomical Structure and Brain C Organ, and in DBpedia,
Brain T Anatomical Structure. Some related axioms in WKG are Brain C
Human_anatomy and Brain T Physical_objects. We see that ontologically,
there exist some differences between Human_anatomy and AnatomicalStructure,
but similar differences also exist between SUMO and DBpedia.

Finally, axioms related to the Building concept are: in SUMO, Building C
StationaryArtifact; in DBpedia, Building C Architectural Structure and
Building T Place; and in WKG, ten axioms dealing with direct parents of
the concept, including Building C Construction and Building T Society. We
again see that the parents are similar in semantics, though slight differences exist
among the three ontologies.

Based on the above, we conclude that there is minimal information loss in
the noncyclic Wikipedia KG with respect to DBpedia and SUMO. There exist
some minor differences in an ontological sense with the WKG axioms, but such
minor differences exist between SUMO and DBpedia as well.

5 Conclusion

The readily available Wikipedia category hierarchy and its corresponding named
entities has great importance in artificial intelligence and its subfields. We make
the Wikipedia Knowledge Graph (WKG), break its cycles, and make available
both the original and cycle-free versions for public use. We evaluate the WKG
in the context of XAl and compare it with the DBpedia and SUMO KGs, find-
ing WKG to be highly effective compared to the other two. We also evalute the
noncyclic WKG relative to SUMO and the DBpedia schema, finding minimal in-
formation loss. Here we evaluate the WKG in a specific XAI application; further
work should focus on evaluating it in other such applications and in different
domains of artificial intelligence.
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A Steps for Building the Wikipedia Knowledge Graph

As of 20 January 2020, the page table!! (containing article information) has
around 49 million entries, while the categorylinks table'? (containing category
information) has around 140 million entries.

As these files are large (the larger is 24GB), proper settings must be applied
to the database before importing them to keep the import process from taking a
prohibitively long time. In particular, we must disable foreign key checking and
increase the buffer length.

There are different types of pages on Wikipedia: some pages are articles, some
pages are categories, and some pages are for administrative use. Administrative
pages are not of interest for the knowledge graph, so we omit them. Using the
information from the table categorylinks, we can identify which pages are articles,
which are categories, and so on. The column page_namespace holds the page
type information; for categories, page_namespace=14, while for articles, page_
namespace=0. This table also provides the category hierarchical information,
in its columns cl_from and cl_to. The column cl_from is the article name or
subcategory name, and column cl_to is the category or parent category name
(depending on whether the page is an article or category). Each page has a
unique ID and title. The table page gives us the needed information like ID of
the page, title, etc.

The steps to create the knowledge graph are shown in Algorithm 1. By way
of example, we demonstrate part of the execution of Algorithm 1 on the article
Albert_Einstein.'? Initially, we need to get the page_id for Albert_Einstein from
the page table downloaded from the dump by executing the following query

SELECT page_id, page_title, page_namespace FROM page
WHERE page_title = ‘Albert_Einstein’ and page_namespace = 0;

1 Available for download at http://dumps.wikimedia.org/enwiki/latest/enwiki
-latest-page.sql.gz, with and described in detail at https://www.mediawiki.or
g/wiki/Manual:Page_table.

Available for download at http://dumps.wikimedia.org/enwiki/latest/enwiki
-latest-categorylinks.sql.gz, and described in detail at https://www.mediaw
iki.org/wiki/Manual:Categorylinks_table.

13 https://en.wikipedia.org/wiki/Albert_Einstein

12

96



14 Sarker et al.

Algorithm 1: Wikipedia knowledge graph construction algorithm
Function Iterate(A) :

1
2 Find page_id pd, title t, page_namespace pn of page A;
3 if pn == 0 then
4 Declare title t as an entity e;
5 Find categories (c € C) of entity e;
6 foreach c € C' do
7 Declare category c as a rdf:type (class);
8 Create facts: e rdf:type c;
9 Find the pages (p € P) which are entity of category c;
10 foreach p € P do
11 | Tterate(p) ;
12 end
13 end
14 end
15 else if pn == 1/ then
16 Declare title t a category (class) c;
17 Find all sub-categories (sc C ¢) of category c;
18 foreach sc € C do
19 Create relation: sc subClassOf c;
20 Iterate(sc);
21 end
22 end
23 end
24 Iterate(Main_topic_classifications) /* start the process from root */

The result of this query is in figure 6, and we can see that the page_id of article
Albert_Einstein is 736.

After getting the page_id, we need to get the page’s category, which we can
get using the following query.

SELECT cl_from, cl_to FROM categorylinks WHERE cl_from = 736;

As of 20 January 2020, this page belongs to 148 different categories, a subset of
which is shown in Figure 7.

Using the results of these queries, we can create axioms like Albert_Einstein
rdf:type German_inventors and incorporate them into our knowledge graph. To
continue creating the full hierarchy, we must continue with the parent categories
of each the article’s categories.

To get the parent category of a category, we must find the page_id of that
category and use that to find its parent. For example, if we want to find the
parent category of German_inventors, we need to determine the page_id of the
German_inventors page as follows.

SELECT page_id, page_title, page_namespace FROM page
WHERE page_title = ‘German_inventors’ and page_namespace = 14;

97



Wikipedia Knowledge Graph 15

| cl_from | cl_to

German_Jews
German_Nobel_laureates
German_agnostics

~
w
o

i page_id i page_title i page_namespace i 736 | German_emigrants_to_Switzerland
b b + + 736 German_inventors
| 736 | Albert_Einstein | o | 736 | German_socialists
Fig. 6: Page_id of the article Fig. 7: Categories for the article
Albert_Einstein Albert_Einstein
| cl_from | cl_to |
| 1033282 | Commons_category_link_is_on_Wikidata |
T T _ T T | 1033282 | German_businesspeople |
| page_id | page_title | page_namespace | | 1033282 | German_inventions |
t t t t | 1033282 | Inventors_by_nationality |
| 1033282 | German_inventors | 14 | | 1033282 | Science_and_technology_in_Germany |
Fig. 8: Page_id of category Fig.9: Parent categories of the
German_inventors category German_inventors

This will return the result shown in Figure 8, where we see that the page_id of
German_inventors is 1033282.

After getting this page_id, we can consult the categorylinks table for the
parent category:

SELECT cl_from, cl_to FROM categorylinks WHERE cl_from = 1033282;

This will provide the parent results as shown in Figure 9, where we see that the
parent categories of German_inventors are Inventors_by_nationality and Science_
and_technology_in_Germany, among others.'* This kind of relationship creates
cycles in the category hierarchy, as discussed in Section 3.2.

We now see the complete process of creating an entity and adding axioms
for its types and supertypes. The example above is but one fragment of the
knowledge graph creation adventure; to complete the knowledge graph, we need
to start from the root of the category hierarchy and continue with Algorithm 1
until all pages have been processed to yield article titles with their categories,
along with the resulting category hierarchy.

14 Tt may seem odd to have Science_and_technology_in_Germany and similar as parent
categories of German_inventors in an ontology; this reflects the somewhat messy
nature of Wikipedia.
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