% [

“AN ADA REVIEW:
A History , Problems and Ccmplaints ,

and the Current Status of the Language
by

MICHAEL IRWIN HODGES
a
B.A., , University of Pacific , 1975

M.S. , University of Southern California , 1978

A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan , Xansas

1983

APPRCVED BY:

ERO S0 HANKLEY

LD : All202 244754
266€ -

R4
14873
M 6L
o2
CCHNTERTS
Chapter
I. HISTORI - - - - - - - - - - - - - -» - - -
Introducticn . « = « = W m e W W e W

The Need For language Standards o e

-

-

The High Order Language Work Group (HOLWG)

Defining the Ccomon Language - « « = o
The Programming Language Enviororment .
From HOLWG to the ALA Joint Prcgrammin

Office(BRJPO) + o« & o o 2 s o o

II- COEELIIHTS £l - - L] - - L] » L] - L . - L] -

INtroduction v « o ¢ o =2 & s s
language Defipition
Size and Ccmplexity . a
Oniformity , Portabllzty s 8
Bniformity « « « <« &
Portability . « - «
Reliakility .+ « .« &
Major Complaints « « « . «
EXceptions . « « o o« & o o
Tasks and Task Communication .
Concurrent Process Discussion
Pragmas - - - * L] -] - » . - - »
Miscellaneous Problems . « « + « =«
Association for Computing Machiner
Position o ¢ o « o « o o

4 + & &

e 8 ¢ & 2 e s e
[=T}
=]

& o & % 4 & (D e » e
[

LI - T D DL R L B I I B IO B A

HI‘ CURRE!T anl sIlTus - - - - - - - - - - -

Introduction . . « .+ .

Cepartment of Defense
Changes « « + » » =
ATDY =« o © » = = =
ALir FOTCE « « s = =
Navy L] L] [] [] L] - L]
AJEO / Standardizati

. & 0 s & a
L] L] [] [] L L]
4 = @ & ¥ 8 o
4 ¢ B & ® a0
. - [] L] - [] -
T * & 8 . 8]
¢ * B & & 8 @

-
.
-
aon

- i -

g

]

$ v 9 B ¥ b s o IYe » =
.

(™
@ ¢ 0 iy e »

D

8 % & @ e & &

Cle « & & & 3

=

= 40 & = @

.

S g w o o® 4 s & 2 2 * H s s

¥ ¢ 8 a2 ¢ b

v & B ¢ 9

~

e« » & o ¥ 4 & § @

kage

. & 4 = @

Oy -

12
1

14
15
16
23
23
27
34
38
39
4é
47
55

58
60

£0
61
€1
€4
63
€9
70

Civilian ALA Ffforts . .

Internaticonal ADA Efforts
Conclusicn

BIBLIOGRAPHY

L]

-

- ii -

72
75
77

94

LIST OF FIGURES

Figure ~ page
1. CCNSIDERED LANGUAGES FOR DOD COMMCN LANGUAGE .« « « €
2. KEYWORDS OF ADA & . o o « @ 2 a = = = a = = = =« o = = 17
3., ADA vs PASCAL + .+ o o o + o o o 2 o o ¢ » 3 2 s 3 +» = 19
g, EXAMELIE OF AN EXCEETION « o o o o # » 5 o« o o » 2 » » U1
e EXAMELE OF TASK WITH EXCEPTIOH W e W @ W oW oW W e owm Y

6' PRAGHA EXRHPLE L L - L] » . - L[] - » - L] - L] - * . - L] 5&

- iii -

LIST OF TABLES

Table page

t. ONITED STATES ATA EFFORTS « « « « o v o ¢ « = « =« =« = 19
2., EUROPEAN 2DA EFFORTS =+ + o + « s s o o« o s s s o &« =« 81

3- ABA PUBLIC&TICNS - - - - - - - - - L] - - - - - - - - 82

- jyv -

Chapter I

HISTORY

1.1 INTRODUCTION

This repcrt is a review of the programming language
called ADA. It covers three areas: the history, the
complaints, and an overview of the current status of the
language. ADA 1is making a significant impact on both
governmental and private agencies. This is because
Department of Defense (DOD} has mandated that all
subordinate departments and projects under their ‘auspices
will consider +the use of ADA where practical. This
requirement has caused all who are a part of, and many who
deal with DOD to initiate the use of a language that has not
been fully tested or accepted by standardization
organizations. Indeed the language has yet to see a complete
working implementation.

organization of the report will be as such. Chapter one,
the History, covers the development of the ADA language

within DOD. It reguires no exteansive language or computer

background. Chapter two, Language Complaints, is technically
oriented and requires prior kmowledge of languagqe desiqn and
an in depth understanding of many comfputer science concepts.
Some of the complaints are presented with a background and
explanation of the feature and in =some cases ny personal
comments about the comgplaints are given. Chapter three gives
a representation and overview of the known status of the ACA
language development. It also requires a minimal background
fo: understanding. Provided as tabular data are all known
U.S5. and International ADA efforts as well as all known

pertinent ADA publications.

1.2 THE MEED FOR LANGUAGE SIANDARDS

'In the early 1970's DOD was confronted by several
significant problems in the computing area. DOD was annually
spen&ing‘ about three billion dcllars for software with
projected costs expected to rise. Several intensive studies
were completed that identified lanquage proliferation as ome
of the major factors in this drastic increase(CARL 81). Many
system development projects were using custom lanquages and
compilers were being locally optimized for very specific

applications. Many failures were resulting in these

development projects for a variety of reasons and
interoperability and portability were virtually nonexistent.
This sad state of affairs provided the impetus for DOD to
institute the high-order-lanquage-standardization program.
Its goal wvas to standardize on a few well-specified,
well-pmaintained 1langnages to ensure the availability of
high quality, production engineered compilers faor computing

within DOD.

The HOLWG was formed in 1975 to achieve standardization
and end proliferation of lanquages within DOD. The first
official position of the group was annqunced in the form of
a DOD directive number 5000.29, This required that all
subordinate agencies would utilize High nr der
languages {HOLS), and that there would scon be an approved
list of HOLS. Each ﬁould be assigned a control agency who
would insure standardization within DOD. This directive was
soon follcwed by DOD directive 5000.31 which was termed an

interim 1list of DOD High Order Languages., The approved

languages were; Fortran, Tacpol, CMS-2, Jovial J3 and J73,
CoBOl, and SPL/1.

Concurrently several analyses disclosed the following
points(GLAS79).

1« The first being that it was impossible to single out
different sets of language requirements for different
user communities.

2. It was also determined that it was possible to define
one language to support all applications areas.

3. Further econgmic analysis (CARL 81) disclosed a
potential softwvare savings by DCD of one hundred
million dollars per year by gcing go a single common
language.

These ideas began to manifest to the pcint that the HOLWG
ini&iated the defining of their perceived needed common

language.

1.4 DEFINING THE CONMON LANGUAGE

Between 1975 and 1977 a series of requirements
documents were produced. Fach one had evolved from the

critique and evaluation of its predecessor. These were

called; strawman (05DD75), Woodenman ({FISHTE), Tinman
(USDD76) , and Ircnman (USDD77). Their review and evolution
to the next higher level was accomplished by circulating the
documents throughount the United States and the European
computing communities for comments and recommendation#. When
the design was suffiqiently codified twenty three existing
languages were evaluated +to determine if any <could satisfy
the requirements for the common language. See PFigure 1 .
However none of these existing languages satisfied more than
75 percent of the requiremsments and none were felt to he
expandable into a language that could satisfy the common

lapguage requirements.

‘..."....-.‘...‘.‘..........'....‘.‘....COBGL
3...“’.'.....'.."..’.-..‘..'.'..'-...IJOVIAL J73
u........-...---a-.-.---...............-.JOVIAL J3
5.......ooucon-iloolacco.o-o-oaonoosologCHS‘2
6...---...--.---.-..-------.a.--on-----oSPL/1
7.............‘........‘.'...-..'...-...‘TACPOL
8¢---.q-----.cn.-us.os...c---q-.--.----.HAL/S

g'l..‘......‘.'..'..'.'-‘.‘...Cl..‘.."-DPL/‘

10.......----.---.'..-O.-....a-..-.--.---hLGOL/ﬁB
11.............--.-...-.-...-.--..--..-.;CORRI/&E
12...0....--;-.--------.--.-.-.o.a---.-..PASCAL
]3'......ll'...l..-‘--.-o’..I'CIJOODOOOCCSIHULA 67
1“----:-.coonco--o---ocnu-.-o...-..-----.LIS
15.!..!!..-OOC..IllOODGIOO."ICCl..II..I-LTR
16---..........----.-----.-..-........¢..HTL/2
’7‘..I.I.......OD'.'I..l"l.l..lll..-.--.EUClID
189.-..11.--.-..-c-..---..onc...-.-.--.--HESA
19..-cuocotro--ooo-s--o.-.ao..oacu.oaa-..HODUAL
20.-.---——- ----.q..-....;....l.lb‘..--..--.-.PEAEL
21ct-ouoc--oo.--oa-a--c-----a.oo.a--oac-.HORAL
22'.....'....n.---o...n--..-'.-.----..-..EL_1

23‘...." I...'.".-.""'.f“......."‘..PDL

Fiqure 1; CONSIDERED LANGUAGES FOR DOD COMMON LANGUAGE

In August of 1977 four contracts were awarded for
competitive language designs. These went to Softech Inc.,
Intermetrics, SRI-International, and CII-Honeywell BULl.
Softech and Intermetrics were well kanown in domestic
language and compiler circles. SRI-International, which had
evolved from Stanford Research Instituote in California, was
more of a surprise but explainable. The fourth company
CII-Honeywell Bull was a French affiliate of the U.3. hased
Honeywell Corp. and was a complete surprise. The reguest for
proposals, specified that the designs were to utilize one of
three approved hase lanquages; Pascal, Aalgol €8, or Pl/1.
The resulting lanquage designs were delivered in February
1978. All companies had chosen to use Pascal as a base
languaqe.

Pasca; had become an eXxtremely ropular language for
teaching software engineering methodology and structured
programming. Its strength imn these areas were in consohance
with the regquirements and the goals of the DOD conaon

language.

The language design effort reached the pick-a-winner

point in the spring of 1978. Eighty volunteer teams reviewed

the prototype designs. These teams were chosen on the basis
of their interest <from industry, government, and the
academic community. Fach of the four 1languages had been
given a color coded name *to insure anonymity of the
contractor and was an attempt to mipimize any prejudicial
feelings. The four resulting lanquages were termed the Red,
Green, Blue, and Yellow languages. out of this intensive
review the four contenders were narrowed to two. The two
winners, which were felt to have a clearly superior design,
were CII-Honeywell Bull, and Intermetrics. The lanquages
chosen were the "Red" and "Green" languages. These two
designs were consegquently refined, and the language
requirements were revised to become the Steelman document
{0sSppI8y . In May 1979, after four years development of a
common tri-services and DOD wide language a final decision
vas rteached. The government had selected "Green" as the
winner, as defined by CII-Honeywell Bull.

Naming the language was not an easy task but in June
1979 it was finally decided to call the new language ALA,
The name had been chosen tc honor the first
programmer-—Augusta Ada Byron the countess of Loveiace. She
had been Babbage's first programmer. Batbage had developed
the Difference Engine and the Analytical Machine more than

150 years earlier.

Between June 1979 and July 1980 the ADA lanquage
definiticn and Steelman document were converted into a "DOD
Reference Manual For the ADA Programming Language", which
was published in July 1980 (USDD80a). Between July 1980 and
October 1980 approximately 80 typographical errors vwere
corrected and other slight modifications implemented. The
fruition of the DOD project was released in the form of the
manual "Military Standard 1815, The ADA Programming

Language" (USDD80b), in December 1980.

1.5 THE PROGRAMMING LANGUAGE ENVIORNHERI

During the ADA evolutionm it became apparent that a
language is of little or no value unless there exists a
programming environment in which to use it. Historically
this has as a nminisum meant conpilers, link editors,
loaders, debugging aids, and file system aids. DOD began
asking the gnestion, "Is that a sufficient definition of an
appropriate enviornment2?"

In the manner of the Strawman-Steelman, a prototype

enviroonment definition was called Sandman {0SDD77a) .

Subsequent to its first review a series of workshops were
set up to review the environment definition and to focus on
its requirements. In June 1978, under joint Army, Navy, and
Air Force sponsorship, about sixty participants assembled
and revised the original draft which was then called
Pebbleman (0SDD78)h).

By August 1979 the next iteraticn of the definition of
the programming envioranment wvas created in draft form. It
was called Stoneman{BUSTB1) . This was circulated and some
revision clearly delineated the Ada Programming Support
Environments. These were termed the ADA Prograaming Support
Enviornment (APSE), the Minimum Ada Programming Support
Environment (MAPSE), and the Kernal Ada Programming Support
Enviornment (KAPSE). The availability of this modern,
portable programming environment was eXpected to compliment
the language in providing £full software support for
development of computer applications. The Stoneﬁan
requirements included encapsulation of the host operating
system to improve portability of the APSES's; a central,
unified data base for software objects; standard, well
behaved interfaces for users as well as tools; an
extensible tool set and command language; support for the

entire softwvare life cycle; support for large software

projects (not just individual programs); and strong support
for configuration management (USDD80c¢).

Subsequently the Air Force let contracts to four
companies for a "Competitive Design" cf what they had termed
the "Ada Integrated Enviornment"™ (AIE). My opinion gained
from reading the 1literature suggests that they were taking
control of the long range development of the APSE. The Air
FPorce let a final production contract to Intermetrics to
produce the AIE. The Army had been an ADA supporter fron
the early stages of development and felt that the Air Force
ATE proiject noﬁld be slow in reaching fruition. It set out
to implement an Ada Compiler and MAPSE into an existing
Vax/Unix enviornment. In June 1980 the U.S. Army
Communication Electronics Command (CECOH) , awarded a
contract to Softech to design, develop, document, and verify
an Ada programming support enviormment called the Ada
language System (ALS), based on the Steeleman ﬁnd Stoneman
requirements (WOLF81).

Readily apparent is the parallel efforts by the Army

and Air Force to create essentially similar products.

1.6 FROM HOLWG TO THE ADA JOINT PROGRAMMING OFFICE (AJPO)

The entire ADA effort for DCD and the HOLWG had
originated under the direction of +the DOD Management
Steering Ccmmittee for Embedded Computer Resources
{MSC-ECR). On December 10, 1979 the MSC-ECR commissioned a
task force to develope a charter for a ©new organization to
be called the "ADA Joint Program Office (AJPO)". This task
force met during the sprinq of 1980 and established that the
office would have a full time staff of six; a military
Program Director, a civilian Technical Director, a secretary
assigned by the Office of the Secretary of Defense {05D),
and three service Deputy Program Directors, one from each of
the Military Services.

The package containing the charter for the AJPO was
being considefed by the Under Secretary of Defense for
Research and Engineerinq(USDRE) at the same time the
Military Standard 1815 was being approved. In 1o uay’uas
this a mere coincidence because Ada Byron had been born same
165 years earlier in the year 1815 and on December 10. The
AJPO charter was approved and announced to the world on
December 12 the same day that Ada Byrons birth anrouncement

was published.

The purpose of forming the AJPO was logical. The
formation of a new language +that was sure to have such a
large impact on the computing world, such that ADA wvas,
needed a central gfoint of <contact, coordination, and
guidance. It was these requirements that provided the
impetus to establish the AJPC. With such a larqge and complex
enterprise it was not a luxury but a mecessity. This was the
genesis for the language, 1its programming environment, and
the office that RoW serves as the faulcrum for alil

development within DOD.

Chapter II

COMPLAINTS

2.1 INTRODUCTION

With an undertaking of such proportion and of so great
a potential for diverse opinion gquestions concerning the
language design and features were sure to surface. This was
the first time that many modern language desiqn features
were being implemented intc a large ccommercial language.
Prior to the lanquage tecoming a Military Standard critique
and recommendaticns Were not so vehenent. However,
subsequent to it becoming a standard people in the
computing world had the opportunity to see the completed
manual, which defined the language and would be the genesis
for the compiler development. Immediately voices of
ocbjection and discontent were surfaced.

Most of the complaints can be classified into certain
themes. They have centered around the concern for the desiqgn

of the language in terms of size, complexity, portability

and reliability, major complaints akout certain features,
and many miscellaneous points. These objections, problems,
and recomaendations will be subsequently presented in the
following sections of this chapter by partitioning thenm
functionly into the major divisions of; lLanquage Definition,
Major Problems, and Miscellaneous.

The aforementioned ADA Integrated Enviornment, ACA
Prograiming Support Enviornment, ADA Minimum Progqramming
support Envicrnment, and the Kernal ADA Support Enviornment

will not be covered in this chapter.

2.2 LANGUAGE DEFINITION

BACKGEQUND

The Military Standard describes the real-time
programsing language ADA, designed in accordance with the
United States DOD requirements for use in embedded systebns.
Such applications typically involve real-time constraints,
fail-safe execution, control of non-standard input-output
devices and management of concurrent activities. Within
DOD- 1815 the stated design goals were; ™a recognition of

program reliabhility and maintenance, a cchcerln for

programming as a human activity, and efficiency of the
language™. It further states that, ‘"emphasis was placed on
program readability over ease of writing." These two
statements on the same page of the manual has caused sone
people to guestion what DOD really wants. However, when
considering these statements they dc¢ not seem at all
antithetical. If one considers the e€ase of writing code in
APL and the difficulty in reading it you immediately see the

DOD goal.

AZA is a large and complex language. In terms of shear
numbers of keywords, operators, and functions it is fairly
large. Pascal has 35 reserved words, FORTRAN 41, and ADA has
62. At first blush this does not seem to ke a great obstacle
but these figures are not a true rerresentation. ACaA
keywords are defined as representing a particular syantactic

construct and having a particular invariant spelling.

additionally,
to the above criteria,
of keyvords, but are not included in the keyword list.

Figure 2)

abort
accept
access
all
and
array
assert
at

beqgin
body

case
constant

declare
delay
delta

there are syntactic

digits
do

else
elseif
end

entry
exception
exit

for
fanction

generic
goto

if
in

Figure 2:

initiate
is
loop
mod
new
not
null
of

or
others
out

package
packing

KEYWORDS CF ALA

17 -

censtructs which conforn

and which perform all of the duties

{See

pragma
private
procedure use

type

vhen
while

raise
range
record
renames Xor
restricted

return

reverse

select
separate
subtype

task
then

They include; END LCOP, IN REVERSE, IN QUT, RESTRICTED TYPE,
I5 PRIVATE, EXCEPTICN BENAMES, END SELECT, SELECT WHEN, OR
WHEN, IS SEPARATE, USE PACKING, USE BflCGHD, AT MOD, AND
THEN, OR ELSE, and USE AT. There is no allowed variation for
these as there is with a BEGIN IP or a EEGIN CASE statement.
This really adds an additional 20 keywords for an actual
total of B2. B.A. Wickmann (WICK82) in a comparison of 2ADA
and Pascal has stated; "The ADA language is five or six
times the size of Pascal. One can see this at a superficial
level by counting syntactic producticns, pages 1in the
manual, or the number of lexical units. All indications are
that compilers will be five or six times the size of Pascal
compilers (given ccmparable code quality). At a deeper level
oﬁe can enumerate the facilities that ALA contains that have
no equivalent in Pascal."The follcwing figure gives a

picture of the two languages and compares their size.

Pascal {Subset) | Overloading
of ADaA | Floating Point
] Dynamic Arrays

tasking Packages

exceptions Separate Compilatiorn
generics Representation
Private Types Specification

o S e T m— i — s bion e S ghean M —— — T W

ks s s e M e et — S e S s T i t— —

Fiqure 32 ADA vs PASCAL

Above the dotted line are features which 'could' be added to
a Pascal language withcut radical revision. Below the line
are facilities of ADA which have a major iafluence on the
whole lanquage design. This in itself is not overvwhelming
in terms of complexity but it does qgive credence to stated
compiler implementation problems, learning complexity, and
the potential for errors during compilations and

computations.

COMPLAINTS

According to C.A.R. Hoare (HOAR73), "The language
designer should be familiar with many alternative features
designed by others, and should have excellent judgement in
chéosing the best and rejecting any that are nmutually
inconsistent, He must be <capable of reconcilling minor
inconsistencies or overlaps between separately designed
features. He must have a clear idea of the scope and
purpose and range of applications of his new language, and
how far it should qgo in size and conplexity...one thing he
should not do is to include untried ideas of his own. His
task is ccnscolidaticn not innovation.™

In light of Hoare's thoughts and the desiygn goals of
DoD-1815, it seens almost én impossible task to design a
language that is sufficiemntly rich in constructs to hacndle
universal applications, sufficiently complex to support
concurrent and real-time applications of enmbedded computer
systems, and that meets the purist interpretation of goad
design criteria. The problem of size and complexity of the
ADA lanquage has wrinkled several brows and fostered deep
reservations about the reliability and cost effectiveness of

the language.

- 20 -

Ledgard (LEDG82) has attacked the size and complexity
issue and @as campaigned publically for an official sub-set
of the language. He has stated, "AILA is perhaps the most
ambitious programming language preject ever attempted.
Nevertheless, despite its well intentioned goals, the size
and complexity of +the language continue to be the nmost
significant technical cbstacle to its success."

Ledgard has provided his own idea for scaling ADA down
to look somewhat more like a concurrent Pascal look-alike.
But DOD has flatly refused efforts for sub-setting ADA and
has taken the position that any sub-set would lack the
features necessariy to handle a conprehensive variety of
applicafions and would defeat the ©purpose of going to a
universal language. ledgard and others continue to fight for
a sub-set and have presented the following as potential
benefits cf a sub-set;

1. Cost of validation reduced

2. Tendency for sub-sub—-setting reduced

3. language forms are easier to rememter

4, Develcpment of conceptual model for using language
easier

5. Likelihood of errors is reduced

6. Diagnostic messages are less ccnfusing

- 21 =-

7. Standardization efforts eased

8. 1Implementation less error prone

9. The language effort is less criticized

10. Users need not learn as much irrelevant information
11. The develcpment of automated tools 1is sinmpler and

cheaper

ledgard has elucidated his sub-set ideas in (LEDG82) and
depicts what he would delete from the languade to obtain a

smaller and less complex design.

CCMMENTS

It is my opinion that with a language that must neet
almost universal applications it must necessarily have many
more features than a special lanquage. Programpmers need not
learn or use all asgects of the language but may really only
have a working knowledge of an a;plicablé sub-set. I also
take exception to Professor Hoare's comment about not
including new and untried features 1in the design of a
langquage. If we do not include new desiqns and features what
is the worth of developing them and if not ever tried how

will programming languages continue to evolve? I believe

that the ADA approach will greatly enhance the evolution of

programming languages.

2.2.2 Uniformity , Portability , and Beliability

Bell Laboratories in (BENNB2) an article entitled the
“"Hidden Costs of ADA"™ has taken exception +o DOD's feeling
that they are on the road to saving money with ADA. This
saving is gquestioned in terms of uniformity, portability,

and teliability in the total context of complexity.

2.2.2.1 Oniformity

BACKGROUND

Uniformity in the design and inplementation of a
programming language is important to the actual cost of
using the 1language for a variety of reasons. Learning a
language easily and quickly demands that programmers casn
have an intuitive grasp of both concept and detail. The
ability to design, isplement, or maintain code requires that

the number of details one nmust keer in mind be eipimal.

- 23 -

Uniformity also increases the efficiency and conciseness of
the +translator because the more ccntexts in whick a
construct can appear, the more often a piece of code can be

re-used.

COMPLAINTS
In ADA negative exponentiaticn of left integer
arguments is restricted. However in computer mathmatics both
negative and real expcnents are well definegd. This lacks
uniformity and does not increase the efficiency of the
language and is in short a logical break in uniformity. The
following 5 items are more examples of a lack of uniformity
in the language definition (BENNB82);
1. Underscores are permitted as part of identifiers.
They nust be isolated and must not +terminate either
end of the identifier. This makes scanning an

identifier more conmplex. Wo ambiguity would result

from 1ifting this restriction. An identifier 1like
FIRE_Control is no more problematical than
_FIRE_Control, and neither is worse than

FIRE__Control. If +this was docne for readability it
seems that they've missed the boat by not restricting
multiple “alphatetics, as in BACKVVYVVVVVFIRE and
BACKVVFIRE.

- 24 -

3.

Underscores are permitted within numbers: they nust
be isolated, they may not begin or end a number, and
they are not significant., This doces not seem to add
to readability but the costs of scanning, and
uniformity of enforcement seem to add complexity to

the langquage. i.a. 9387.7044 vs 9_383_7.7_0uuy

CCHMENT

The European community references numbers in the
fashion 92_837.704_40 to preserve the place values
and hopefully to reduce errors. This aprears to be a
good feature with some utility.

"a>b>cH may not be 1legal depending on whether the
types of a, b, and c, are boolean or numeric. What is
unexpected is that it is illegal for numerics and
legal for booleans despite the fact that the almost
universal purgose for these operators is to compare
numer ic magpitudes. This is because relaticnals
return boolean and booleans are defined as to

relative magnitude {false is "less" than true).

"'25" '

This if added would be contrary to every programming
language commonly used today. The increésed
complexity and burden to the compiler do not seen
worth the effort +to reduce problems for naive
programmers.

Floating point exponentiation restricts the exponent
to an integer type without Jjustification or
mathmatical basis. This will cause local froblems
when programmers want cube roots.

ADA does not permit an expression composed of mixed

logical operations even +though they are totally

unambiguous. Thus "a AND b OR c¢" is illegal while "a

AKD b AND c" is legal as is "a + t - c".

CCHMENT

Other people have indicated that they are in fact
ambiguous, What does the compiler do when given the
statement AuB=>C? These are mixed logical operators

and seem to confuse the issue considerably.

26

2.2.2.2 Portability

BACKGEOORNE

Portability is fundamental to the success of ADA.
Portability actually encompasses: program portability {the
ability to move an application from one machine tc another),
proqranmer.portahility {the ability of a programmer to move
to a nevw site with minimal retraining), and compiler
portability (the ability to move an ADA translator from one

machine tc¢ another).

e iy o i

An ADA programmer can move much easier to a new site
than a programmer using an assembly language or special
military dialect. However, there are a suprisingly high
number of ADA features which can vary from site to site even
within the same machine architecture. These are some
language parameters which are not constrained by the
reference manual:

1. The maximum number of identifiers in an identifier

list

- BT

2. The maximum length of an identifier

3. The number of diqits allowed in numeric literals
4. The maximum length of a string constant

5. The maximum number of enumeration literals

€. Priority Range

7. All Pragmas utilized and authorized

8. The size and representation of numbers

9. Units of tinme

10. The maximum number of indices im an array

—— .

1. Scme of these parameters will likely be estatbl

ished

by the compiler vwriter, and scme by the installation

manager. The distinc*ion is not made by the

ACA

reference manual, and so will vary from compiler to

ccppiler.

COMMENT

Other lanquages suffer from the same problenm.
does not make ADA better or worse than

languages.

- 28 -

This

other

2. In their paper on the probable impact of ADA, Kling
and Scacci{Klin79) have pointed out the extra casts
incurred in +training personnel wvhen the language is
very complex, and programmers have high mctility and
lovw motivation. They guesticn how productive software
applications will be in view of the complexity of the
language and the turnover and mctivation of the DOD

programmers.

PROGRAM PORTABILITY

There are a number of features of ACA which, if used,
are capable of constraining a program to a specific
installation or machine. Most of these appear in ADA because
of Steelmans requirements for efficiency, both in run-time
and in space. This requirement cannct be lightly put aside
in the realm of real-time, process control software. If such
a program does not meet or exceed its real-time cconstraints,
then it is unacceptable. To neet these restrictiocns high
utilizaticn of machine resources is mandated. This implies a

close bonding between machine functions and programmer

- 20 -

intentions which will almost undoubtakbly reduce
portability. It has been demonstrated that certain ADA
constructs will not provide similar results cn different

machines.

COMPLAINTS

The following examples will help to demcnstrate this
point (BENNB2).

1. The use of tasks 1is quaranteed by the reference
manual to have the same semantics an all
implémentations. However, there is no guarantee that
all implementations will have thg same efficiency. If
intertask compunications are unacceptably slow on a
new target machine then rédesign will have +to take
place.

2. Exceptions are not treated uniformly by all processor
hardware. A system which relies on its safety on
various overflow conditions may rIun erronecusly on
another architecture and give no indication of that
fact.

3. Address specifications are not dangerous taken "in
vitro™. Bowever, they may be used to derive

information directly from the underlying hardvare.

- 30 -

When this information becaomes central to an
algorithm, then the program #ill not move tc another
machine.

Machine code insertions are obviously machine
dependent. If an algorithm 1is so time-critical that
machine code insertions are required, then
substantial <changes are usually called for if the
program is transported. The danger of this feature is
that it will be used unnecessarily. Frequent
insertions will make a program impossible to
transgort.

Interfacing to other lanqguaqges presents similar
problems to those of mabhiﬁe code insertion. The
intent of this feature is to take. advantage of
capabilities outside of the milieu of ADA. These
carabilities are often very site-specific. Since an
interface to other languages is a very tpowerful
capability, it will be an overwhelming temptation to
couple ADA technology with other <complimentary
technologies. fUnfortunately, the resultant hybird

will not be expcrtable.

- 31 -

My opinion of the complaints contained in this section
is that they're all very true to varying degrees. But, the
gquestion that surfaces is; "Should we not allow these
features in the langquage because they will erode portability
or should we keep them, be cognizant of the problems and
utilize them with constraint? The latter approach seenms

appropriate.

The central issues in compiler ©portability are the
complexity of the lanquage and the reguirement for highly
efficient target code. ADA features such. as multitasking,
require extensive run-time sugpport which will need nuch
tedious, machine =specific work to integrate into an

enviornment.

w 55

COMPLAINIS

1.

While the tedious, machine specific work, is probably
less than that required for the desiqgn and
implementation of an entirely new lanquage, it will

occasionally be qreater. {BENNS2)

2. Llarge projects will be able tc Justify retargetting
an ADA compiler, but medium and small projects will
not. The costs will be prohibitive (BENNSB2).

3. The current practice of using whatever translator can
be made available cheaply which satisfy project
needs, will 1likely be more attractive econcmically
than the retargetting of an ADA compiler.

CCMMENT
These three complaints seem to te trivial. Other

lanquages suffer frcr the same problems. The copplaint might

be that

ADA has not sclved this problen.

- 33 -

2.2.2.3 Reliability
BACKGEQUND

The production of reliable code 1is important to the
development and maitenance of softvare, Zelkoiitz {ZELK78)
estimates that for 1large systems the cost of software
production and maintenance increases four times faster than
the complexity of the design., If reliable code is difficult
to produce, then many of the errors will te obscure and will
not show ur until the testing stage of the systen
development where the cost of fixing them will be five tinmes
greater than it would have been in the <coding stage

(ZELK78) .

COMPLAINIS
1. According to Bennett {BENNB2) there are a number of
factors that enter into the rroduction of reliable
code. One of the most important is the complexity of
the languaqge. He states; "pProgrammers tend to make
more errors as the language becomes more conmplex.
Futhermore, the reliability of a compiler decreases
{almost geometrically) as complexity increases, due
to the vast amount of cosplicated syntax and

semantics it must translate. As a language becomes

- 34 =

less unifornm, the programmer makes more errors
becaunse he nc lcnger can rely on his intuition about
the syntax and semantics of data structures, logical

structures, and the like."

CCHBMEN

At first blush his comment about programmers making
€rrors seens logical. But in ADA and other
structured lanquaqes features are provided to help
reduce errors. A typical example 1s strong type
checking which greatly reduces errors even though the
declaration of types is a powerful and sometimes
complex issue. So I think in some cases the language
introduces cceplexity and power but has checks and
safety features that actually reduce run time errors.
His comment seems naive. I also guestion his comment
about +the reliability of a compiler decreasing
geometrically as complexity increases. I have no
background in this area but question even the logic
of his statement. Example; Is FCRTRAN more conmplex
than BASIC?. If so, ergo, FORTRAN compilers .{using
his logic) must necessarily be less reliable. I think

not.

- 35, -

Two studies in software reliahility performed at
Boeing {GLASS79aA, GLASS 79B) revealed aspects of
verifying and debugging code. Conditional
compiliation was second only to peer code review as
an important criterion for the production of reliable
software, Yet ADA does not possess this capability,
even though it is the cheapest c¢f any capability to
implement. The ADA manual states a qood ADA compiler
will not ccmpile a piece of code which 1is not
executable. This according to Bennett (BENNB2) gives
the programmer the illusion that ADA kas conditional
compilation capabilities. He states, "Optimization of
this sort is hiqhly context sensitive. Optimization
is not required by ADA and may not be implemented.
This type of %conditional" compilation requires extra
editing, inserting, and deleting of the scurce code,
by the programmer, which increases the likelihood for
errors." {Inserting debug sfatements in the vwrong

place, deleting the wrong lines, etc.)

- 3§ -

3.

CCHHENT

Conditional Compilation is referenced by Bennett
{BENNB2) and Brosgol (BR0OS82), neither have provided
an explanation of their definition. ADA Egrovides
separate compilation of program units and also has
the ability to compile compilation units with the
declaration section only without the body of the unit
being written. The program 1library retains all
information of compiled units and only must recompile
those units that are affected by a newly compiled
unit. So to build large Frograms only the
declarations need he written at the outset to check
program flow. Then the prograe todies {stubs) can be
filled 4in, I ' am not sure what the root of this
complaint is. If he 1is indicating that a =sub-set
cempiler can be used as needed he is correct in that
ADA does not provide this facility.

Even though I stated I would not discuss enviroament
this complaint is considered as referencing the
enviornment and not the language. A means of
producing reliable code, according to the GLASS
studies, and reinforced by Ghezzi and Jazayere

{GHEZ82) is by using other source code debugging

- 47 -

techniques such as data tracing (tracing the changing
values of a variable), logic tracing ({tracing
logical paths of execution through the program), and
assertion checking (checking that specific conditions
are met). ADA does not provide the capability for
data tracing or assertion checking, and does not give
the programmer the capability to reference previous
values of variables. Problems occur if the compiler
writer wants to include these features, he in essence
is creating a superset of ADA, which is expressly

forbidden (BENNS2).

COMMENT

—— e e -

These facilities are planned for the APSE and are not

planned or desired to be included in the language.

2.3 HAJCR CONPLAINTS

Perhaps the most «critical admonition to the ACA
language came during a speech, 1in 1880, by C.A.BR. Hoare
({HOARS1). He was speaking at +the Association for Computing

Machinery's presentation of its highest award for technical

- 38 =

contribution. He <c¢ited many previous problems he had
encountered and lessons he had learped from his years of
experience. He stated;"None of the evidence we have so far
can inspire confidence that ADA has avoided any of the
problems that have affected other complex language frojects
of the past. The original objectives of the 1language
included reliability, readability of rrograms, formality of
language definiticn, and even simplicity. Gradually these
objectives have been sacraficed in favor of power,
supposedly achieved by a plethora of features and notational
conventions, many of them unecessary and some of them, 1like
exception handling, dangerous." In this section the most
vehement complaints from +the computer commupity will be
examined. These however are specific semantic issues and are

not complaints because they add to the language size.

Exceptions are one of the controversial items of the
language. Exceptions provide a mechanism for the unusual

termination cf program units. Normal termination of blocks

- 39 -

and procedures occurs by executing the last statement of the
body, while normal termination of functicns is by executing
a return statement._ Exceptions provide a dynamic mechanisnm
for exit from program units which bypasses the above normal
termination mechanisms. Excéptions may be defined by the
user cr predefined by the system. Predefined exceptions may
be illustrated by INDEX_ERROR (when an index is outside the
range specified by an array). Since INDEX_ERROR 1is a
predefined exception there is a sytem~defined "default"
action when an index e@LIOr OCCUrs. However, +his
system-defined action may be superceded by user-defined
actions to handle index errors in specific vrparts of the

program. Consider the following example.

When an exception 1is raised during execution of a
subprogranm, a handler 1is sought first 1lccal to the
subprogram, and then in successive dynamically preceeding
program units. This dynamic criterion fer determining the
handler associated with a raised exception contrasts with
the static scope criterion of associating a procedure with a
procedure call. An exception is regarded as an error. The
enviornments in which the excepticn occurs and the
environment in which it is handled are always aktandoned.

- 40 -

--Two dashes mean comment

Procedure P is

Singular: excepticn —Declaration of Exception
Procedure ¢ is
tegin ...
if determinant = 0 then --code in Q which raises
raise Singular; --the exception Singular
: end ifje..a
end Q;

Procedure R is

begin... --if call of Q within R
N --exception occurs code
exception -=0f 2nd handler used
when Sinqular=>--#2 Excepticn Handler
end R;
begin—pP
eseBeeQens -=if call of ¢ during main body
exception --of P exception handler #1

when Singular => --%1 Exception Handler

end P;

Figqure 4: EXAMPLE OF AN EXCEPTION

COMPLAINIS

The exception handler is a mechanism for unusual ccampletion
of the subprcgram in which the exception is handled. The
following is a list of points against excepticns and their

use.
1. The detection of exceptions may be suppressed. For

example, if a time-critical «computation wishes to

- 41 -

save the time of checking for index errors im a given
program unit, this can be accomplished by including
the following pragma in the declarative part of the
program unit, Pragma suppress (INﬁEK_ERﬂOB). This
allows the compiler to omit rur~-time checks for index
errors in compiling the ©program unit tut does not
reguire it to d¢ so. These are forms of optimization
the compiler may use or ignore. Use of this facility
can lead to uncontrolled program behavior when the
suppressed exception occurs and is @not properly
handled, and because prograns with suppressed

exceptions wmay behave differently for different

compilers (WEGNS80).

CONMENT

The manaqement control of the use of the supgress
pragma will have to be very tight. This 1like many
other features is potentially dangerous and will have
to be manaqged and monitored very closely. Its use
however seems to have utility.

Steelman requires that raising an exception transfers

control to the most local enclosing exception

- 1§27 -

handler, "Enclosing" in this case can only refer to
dynamic calling enviornments since unhandled
exceptions in rcutines are re-raised "at the point of
call in their callers." Thus, exception handling is
tied to the dynamic chain , a fact that nmakes it
inconsistent with the static scoping mandated for the
rest of the language by Steelpan and also inherently
more difficult to verify than if it were done

lexically {(YOUNS80).
CCMMERT

With only a modicum of understanding I may not fully
understand Mr Youngs complaint. However, it seens
that whether ;he scope <¢hecking is inconsistent or
not is irrelevant. What is ippertant is that we do
transfer contrel from a program body that has raised
an exception to its approrriate handler. Also
execution when the unit is terminated must
necessarily pass to the calling unit-dynamically and
not statically. I agree that this is more difficult
to check and verify but it seems to be the nature of

the beast.

= 3 =

3.

A translator may choose to evaluate the constituent
terms of an expression in any order that is
consistent with the precedence rproperties of the
operators, and with the rarentheses. As a
consequence, the ordek in which excertions might
occur in the evolution of an expressicn is not
guaranteed by the language, The formal semantics of
the language only defines the value of an exgression
wvhose evaluation does not raise any exception

{RATD79).

- 4 -

4.

CCMMENT

This is a wvalid point but it seems that this is
allowed for ccmpiler optimization and —restricting
order would reduce efficiency and optimization.

The ability for one task to raise or to propagate an
exception in another task must be viewed as a
possibility with potentially severe consequences in
parallel processing. In no vway should such external
exceptions be considered as being normal terminating
conditions. Interfering asynchronously with the
execution of a task may catch it in a state where it
is nct prepared to rTespond to suck intervention.
There is then alvways a risk of leaving the task in a
state of confusion and also, of contaminating other
tasks that were communicating with it. This can cause
an inability to rendezvous, or terminate an accept
when; an exception is raised within the accept
statement, a third task disrupts the called task by
an abort or failure excepticn, or a third task
disrupts the c¢alling task. All which are extremely
ccmplex and difficult to program handlers for due to

the variety of error conditions ({RATD79).

- 45 =

5. Professor Hoare, as previously cited, has expressed
his belief that exceptions are extremely dangerous
but has not chosen to share with us why. His
reputation alone gives credence to his thoughts and
cenly add to the plethora of ccmplaints about this

facility (HOARS1).

The fact of not teing sure of when excepticns will be
raised based upon the requirements of real-time processing,
especially in embedded systems such as missles, guidance
control systems, and Command and Ccntrol have 1led many to
question the prudence of using such a facility. When this
facility is 1linked to a program package that has hidden
elements, and encapsulated in a dynamic concurrent process,
exceptions could arise in a multiplicity of ways. It is this
uncertainty of outcome that has caused reservation abouat

this facility.

2.3.2 Tasks and Task Compmunication

BACKGROUND

Tasks are the facility that provides parallel

processing in ADA. Tasks are a textually distinct gprogram

- 4p =

unit which may be executed concurrently witk other tasks. &
task is comprised of a specification part, which describes
its external appearance, and the @module Lody, which
describes its internal behavior. Tasks must be initiated.
They raise the _Initiate_Error if raised while already
active.

Entry specifications are the principal ©pmechanism for
communication and synchronization among tasks. Entry
specifications are syntactically like procedure
specifications. They may have parameters with the same
binding modes as procedure paraneters, and may be called
from cther tasks by entry calls which are indistinquishable
from procedure calls. However, whereas procedure calls serve
to inmmediately invocke the called procedure, entiry calls
require synchropization with an accept statement in the task

body before they can be executed.

2.3.2.1 Concurrent Process Discussion

ACA provides communication between processes, called

tasks in ADA, on the call level. That is, a process may

= B =

communicate with ancther process by calling a special type
of procedure, the accept procedure {of which there may bhe
several), which is part of the called process. For exanmple,
in a process1 we may have a call to process2.accproc{parms).
The caller must use this two-level identification, but the
accept procedure accepts calls from anybody. ;his is
sometimes called many-to-one mapping.

Processes in ADA are always started ard scmetimes
stopped explicitly by the initiate and abort primitives.
Hence there are no implicit starts as a side—-effect of the
call or accept pripmitive. During the process call,
parameters are passed to the called accept preocedure. The
calling process is suspended until the accept rrocedure
{usually a compound statement) has been completely executed
by the called process, and possible output parameters have
been returned to the caller. This get—-together is called a
rendezvous. During the rendezvous the Frocesses
participating are thus implicitly synchronized.

A process may allow a certain sequence of calls by
simply sequencing a group of accept procedures {they may
carry the same entry point name). This is because accept
procedures are not executed asynchrcanously, -but they are
executed when encountered inside the body of statements in a

process.

- U8 -

In order to allow a choice of several accept
procedures a variant of the case statement has been-
introduced, called the select statement. Every branch in a
select contains an accept procedure. However, there are two
exceptions to this rule. The first is that a delay statement
may be used instead, the second is the else part of the
select. Case branches in the select may furthermore contain
when guards, boclean expressions usually containing local
variables (but not always) wvhich have to be true for the
branch to be accessible. The else primitive indicates those
accessible, because all guards are false, or if an immediate
rendezvous cannot be made. If a select without an else
occurs and all guards are false an error condition
(select_error) is raised. Because select occurs in the
middle of executable code, all ALA's ccntrel structures nay
be used inside and outside of it. Fcr instance a select
compound may be surrounded by a loop.

The basic difference between the select and the case
statement is that 1if more than one tranch can be taken
{guards true and calls outstanding) a random choice is made
for select, while for the case the lranches must be unique
and only one can be selected. This facility is much more

complicated than presented herein but it is not feasible to

- G -

provide a ccmplete discussicn of +this complex facility in

this review. The following is a list of the majcr ccmplaints

about tasks and task ccmmunication.

-

1.

OMBLAINT

s

The ADA Rationale calls the rendezvous concept a
notion at a higher order of aktstraction than send’s
and receive's, This pay he_so but frequently a heavy
penalty has to be paid for this. During a call both
proecesses are suépended, excert for the accept code
which is executed during the call. Call parameters
could be accessible via common stcrage, but in the
case of a distributed computer network this wen't do.
If processes are executing on serarate computers a
better solution appears to be to handle fparameter
passing by means of messages through normal network
170 <channels., In that case a call starts with a
hidden send (of parameters) to the callee and endé
with a receive in order to pick up updated
parameters. During all the time the called process is
executing the accept procedure, the calling process
hangs, while in actual fact it could Tesume

processing as soom as the parameters have teen

- 50 -

accepted. 1In an environment of heavily communicating
processes, this tends to make the system of processes
behave more sequentially than necessary. In crder to
avoid this a call could be srlit in two sub-calls,
one to pass the parameters to the called process, the
other to return (output) parameters to the calling
process. But this solution would implicitly lead to
the somewhat lovwer level of sending and receiving
messages, and would therefore run counter to the
rendezvous philosophy (B0S-80}.

Another criticism is concerned with the asymmetry of
the ADA naming. ADA's choice appears *o cover a
large class of communication problems but certainly
not all 'of them, at least not in a safe way. Why
shouldn't the called process have the capability to
single ocut its customers? The argument is that a user
has to know its server, but that the servicing
process need not know its customer. In many cases

this arqument is fallacious. Two examples follow.

The first is ping pong communication, such as in
co-routines. This could be done by having the o¢he
process repeatedly issue calls to the other process

(the parameter list would dinclude both input and

- 51 -

output parameters). This scheme would work, though at
the cost of an almost complete serialization of the
two processes. The situation is improved in an
approach in which we split up the ping pong call in a
call coming from the origiral calling process, and a
call returned by the originally called process. In
this situation reciprocal naming is in order,
otherwise other processes might sneak in and activate

the {non-discriminating) accept procedures.

The second example poses an even more serious
problem. It goes as follows. Imagine a system of
processes all routing their outpat to a single
(physical) printer. We avoid interleaved output by
dedicating the printer process to a custcmer until
this customer is done {as indicated by an ECF). In
ACA the only way to solve this problem is to have the
user serialize the printer by embracketing the calls
to the printer process by something 1like the P apnd V
semaphore operations. A poor solution for a larnguage
which claims implicit synchronization., Even vorse is
that the situation is totally unsafe, because it
derends on the user cbeying a certain protocol, where

in fact the protection should e enforced by the

3.

service routine. This is how a strictly safe solution
goes. The printing process, in recognizing the first
line of output, determines the sender. Subsequently
it goes intoc an accept loop only taking records from
the sender, until an EOF arrives. At that moment it
locps back to a situation where another £first line
may be accepted. It is clear that this solution is
not possible in ADA(B0S-80).These same complaints are
voiced by Silberschatz in (SILE81).

Another issue in ADA which raises great concern about
sipplicity and efficiency of implementation is the
exception handling mechanism defined for tasks. This
was touched vpon lightly during the exception
section, T¢ present a clear criticism of this
feature, the following example which represents a
Frogran segment of a task T1 which raises a failure
exception in task T2 and aborts it after 20 seconds

if by then it has not terminated itself.

If T2 ACTIYE then

raise T2.FPAILURE;

delay 20.0*seconds;

ABORT T2; -—if it has not terminated yet
end if;

Fiqure 5: EXAMPLE OF TASK WITH EXCEPTICN

The effect of the statement raise T2.Failure 1is to
interrupt T2 if it is executing and force it to take
appropriate actions. This is a deviation frcm the ADA
approach which treats tasks as independent unifs
communicating on mutually agreeable terms. While it
is plausible that forceful means are “scmetimes
necessary to prevent chaos and limit the extent of
damage that can be caused by a misbehaving task, I
feel that other 1language features are not totally
ccmpatible with this. PFor instance, in order for a
task 71 to justifiabley raise a failure exception in
ancther task T2 and eventually cause its termination,
it must first have some means of detecting the
misbehavior of T2. However, 1if T2's misbehavior is,

for instance, its lack of accepting messages from T1,

- Gl =

then T1 can never detect the failure as it will be

waiting indefinitely to rendezvous with T2.

2.3.3 Pragmas

BACKGROUND

Yot as much has been cpposed ccncerning pragmas as has
been said about the other language features described in
this section. However, almost all features are linked with
the other problems thru the use of pragmas and together they
compcund or generate the problenms. A short discussion of
this feature is included.

A pragma {frdm the Greek word meaning action) is used
to direct the translation system in particular ways. They
are used to convey information to the compiler. They are
like comments in that they generally have no effect on the
computaticn performed by the program (but not always). But a
pragma can have considerable effect on the information
supplied to the user as a result of compiling or executing a

pProgran,

pragma LIST{on); --Provides the user wvwith

-—-a listing of the progranm

- 55 =

Some pragmas, such as that above, specify a definite
obligatory action on the part of the conmpiler. Other
pragmas, such as the ones in the next exanmple, are
suggestions to the compiler which may or may not be

implemented.

pragma INCLUDE({"™name"); --substitute the text file named
--in the pragma at the program
--point where this pragma occurs
pragma SUPPRESS {exception names) ;
--run-time checks for the named
-—exception may {but need not) be

-—-suppressed in the program unit
~--where this pragma occurs

Figqure 6: PRAGMA EXAMELE

It 1is this above type action that is the ©point of
contention. Some pragmas are defined by the lanquage. See
{(UspD8Ob) , Appendix B. It is expected that c¢ther pragmas
will be defined as part of the support environment developed
around the language. Again let us take a look at a couple of

the specific comglaints.

COMPLAINTS

- 85& -~

Wegner (WEGNSJ) in his conmplaint of exceptions
directly links his example of the excertion problenm
with “the suppress pragnma. Pragnma Suppress
(INDEX_ERBOR) could cause the compiler to cptimize
and not check for any out of range or INDEX_ERFORS.
This allows the compiler to save time by not checking
but as several of these pragmas do, it does not
require the compiler to do so. Different ccmpilers
could treat this feature in different ways. Different
runs on the same compiler may also treat this feature
differently if the choice for optimization is tied to
dynamic operating system statistics. The tottom line
is that program correctness and consistency of
outcome is questionable utilizing the sSuppress
pragma.

The include pragma may alter rrogram kehavior and
outcome if emhedded in a nested task that may be
active before or after a required prerequisite task.
Defensive programming and sequential methodology is
the key ta preventing the include pragma from going
afoul., However, when you mix the task communications
problens with the include pragma Fotential

catastrophic results are possible. 7This feature is

also a form of conditional compilation which is

counter to the design goals of the lanquage (BR0S82).

2.4 HMISCELLANEQUS PRCBLEMS
2.8.1 Assgciation for Computing Machinery (ACM) Position

———— . = e e

In April of 1981 a <canvass was submitted by the
standards comnittee to obtain a position on whether to
reconmend American National Standards TIanstitute (ANSI)
standardization for ADA, If ADA was found to meet various
ANSI criteria the lanquage would then ke adopted as a dual
standard probably designated as ANSI/DOD PFIL-STD-1815.
Requests by the ACH standards conmittee for comment from the
members of ACM appeared in the HMay issue of SIGPLAN Hotices
with voting to conclude by October 1981. One hundred and
fifteen members responded prior to the cutoff date: 39 in
favor of ANSI standardization, 72 oprosed, and 4 abstaining.
This was the largest response ever +o a question of

standardization by the members of the ACM.

- 58 -

In the overall canvass process, ACHM was ocne of 9¢
organizations responding to the canvass; 66 concurred with
the proposed ANSI adoption, 23 objected, and f declared
themselves "not voting." The analysis by AJPO of ballots and
public review of comments resulted in a partitioning of 380
specific comments. The specific results of the complaints of
the ACM against an ANSI standardization were published
interleaved with tye AJPO's answers in the Pebruary 1982,
Compunications of the ACHM. Three major ©points were
identified as the basis of the negative ACM vote.

1. Insufficient precision and detail of specificatiomns
2. Lack of assurance of implementability

3. Failure to identify reliable and efficient sutset(s)

ANSI standardization did not occur, AJEC as a result of the
problems and critique planned chapter reviews in hopes of
obtaining a more definitive specification and improved
precision. This was to be a project to reach fruition at the
same time that a compiler could be implemented and
validated. This being in the <context of achieving ANSI
standardization for the ADA lanquage &ty eliminating the
majority of the complaints and froving ALA could te

implemented;

~ BG

Chapter II1I

CURBRENT ADA STATUS

3.1 LIBTRODUCTICH

In retrospect, Chapter one covered the years 1975 thru
1979, and provided the ratiomal for the impetus and genesis
of the ADA langmnage. Chapter two, covered the complaints
and concerns of the ccocmputing community subseguent to the
release of DOD-1815. This 1in essence was frcm 1979 thru
1981. During this later period, and understandably so, a
kind of acceptance of ADA was slowly taking place. It did
appear to many that,DGD had been quite stoic and unmoveable
in their position of not subsetting and not modifying the
language., However, to some degree, this has given a
perceived stability in the emerging lanquage and has to a
point nurtured the development of the language
implementations, As seen later in this chapter some change
and modification was necessary and will be presented. An
excellent example of this transiticn of feelings was
provided in an introduction to the article "a Methodclogy

for Mcdular Use of ADA"™, (BEN-82) . It stated, WAt the

- G0 -

outset, we wish to make it cle;r that we regard the language
as frozen and thus we will not add ancther article to the
flood describing what ADA should have been or should become.
If evern the recipient of the Turing Award, Professor Hoare,
admits his advice on simplicity, and subsetting went
unheeded, we regard it as futile to continué with such
criticism." The growing plethora of 1literature about ADA is
beginning to becocme overwhelming. It comes as no surprise
that many language and compiler [problems are being
encountered. The literature however, is turning awvay frecnm
criticism and is now zeroing in on solutions to prohléms,
methods for <circumventing deficiencies, and an overall
acceptance that ALA is ADA. This <chapter will cover the
current ADA status as it is developing within; Department of

Defense, Civilian Agencies, and International circles.

»

3.2 DEPARTMENT QF DEFENSE
3.2.1 Changes

Under Department of the Army contract number 4352-1,

changes t¢ the ADA language were evaluated, recommended and

- 61 =-

implemented by Intermetrics Inc. Although as of +this date
the revised manual has not been released Benjamin Brosgol
{BROSB82), has provided an explanaticn of the philosophy of
the changes and examples of the scope of each change. MNany
of the changes and recommendations were a direct result of
the many prchlems voiced by users, and implementers as

expressed in the preceeding chapter herein.

The chief goal of the ADA revision frocess was to make
only those changes that were necessary, and to dc¢ so in a
very conservative manner. Four aspects of the lanquage were
changed: precisicn of definition, functiocpality,
implementaticn, and teaching., Removeal of some complex and
error-prone items eliminate some very difficult run-time
issues, Listed below are a few highlights of the wmany

changes.

'« The body of a generic subunit is in general not
available at the instantiations, To simplify the
implementation, it is now permitted that a compiler
require the body for a generic subunit (as well as
the bodies for its subunits, eth) to be present in
the same conmpilation as the stut declaration. The
same restriction is allowed for gemneric liktrary
units.

- &9 -

Name resolution in generic templafes is povw clarified
to emphasize that name binding gccurs grior to and
independent of instantiation. {*stronger type
checking- will ﬁot allew Jjoining cf different
declared types-even though they return the sane
tyre¥*).

Recursive instantiation {(Generics) is now forbidden.
Tasks: The Failure exception is now removed from the
language, because it ©proved to Dbe extremely
error-prone and difficult to implement.

The 'terminated’ attribute is not sufficient for the
rurpose of determining whether a task may accept an
entry call, since it is possible for the task to be
"urncallable” before it is terminated; viz., when it
is avaiting the termination of its dependents. The
‘completed' attribute is now included to reflect this
case. Calling an entry of a task for which
'completed®' is true raises tasking_error in the
caller.

The Include pragma has been removed as a required
pragma, for two reason. First, it was inconsistent to
define Include in the language without giving similar

status to source inclusion facilities for conditional

ccmpilation and it was not desireable +to add the
latter complexity to the lanquage. Seccnd, Include

can be provided by an implementation.

Most of the language changes will not effect the teaching of
ADA, since the level of refinement is below the threshold of
Bost ADA books or training plans. For a complete listing or
reading of the changes see (BROS82). In summary, the
language revisions are large in number but small in nature.
The emphasis on language stability has served to reduce the
effects of these changes. The AJPO has announced early 1983

as a publishing date for the revised manual.

3e2e2 Army

The Arwmy has suprorted ADA almost from its inception.
It has several projects of some size in various stages of
completion and is making a growing number of ccmmitments to
ADA, At the cutset of the ADA development both the Air Force
and Navy took the 'wait in the wings' position in regards to

ADA to see how the langunage would develop without wasting

- B4 -

their own money or effort. It 1is my opinion from reading
available literature that the Army has greatly fostered the
development of the language and its envicrnment by spending
large sums of money, time, and effort. In all fairness to
the other Services they had spent quite a significant effort
in developing their embedded 1languages and were satisfied
with their performance.

The Army has for several years had an ongoing contract
with Softech Inc. This contract encompasses the prcduction
of the full ADA compiler, a translator for ALA to Pascal,
plus a MAPSE, all to operate on VAX and PLP/UNIX. In
conversation with Mr. Pete Fonash of +the AJPO, it was
discovered that +the conmpiler and the enviornment are
virtuvally complete and are undergoing acceptance testing by
the Army and also Ccmpiler Validation Testing. Both of these
projects implement the original AZLA.

The testing suite for ADA vas developed independently
by Intermetrics Inc, and is being administered bty the Mitre
Corp. Mitre has Tesponsibility for +the ADA Validation
Organization (AVG). It is AVO's resronsibility to validate
all ADaA compilers and to publically report approved
compilers and ©probleans eacounterea when compilers fail

validation, It has been projected by AJPC that the Army'’s

- 5 -

compiler and enviornment will be the first ever to gain
validat ion. It has been projected that this will be
accompl ished early in 1983,

The Army also has another very 1large project in an
unknown stage of cceapletion., It is the "Military Computer
Family". It suffices to say the project is is an attempt to
standardize hardware configurations S0 that
interoperability, interchangeability, and ease of
replacement are enhanced. The plan is to have a standard
computer used throughout the military. ADA has been chosen
as the target language for these computers. The praiject is
contracted by the Army to Litton Data Systems. The final
completion date for this project has not been made public
and it to date has taken opn an evoluticmary and continuing
flavor.

New York University {NYU) is also under Army Contract
to produce and executable semantic model for a full ADA. It
is written in SETI and includes a cecnpiler and interpreter
that, respectively, denerate and execute a tree-structured
intermediate form. The initial compiler {1981) and systen,
which was @ B80% of the full ADA, generated code at @ 25
lines per nminute. Since then significant refinement has

taken place. Currently a subset ADA is available for the

- 66 -

VAX/WMS from NTIS, a VAY/Berkeley Unix version from NYU, and
an AMTAHL UTS version from NYU. What is surprising is that
all problems and complaints of the systéms are supposedly to
be referred to U.S5. Army CECOM, rather than to ¥YO. Full ALA

is projected to be complete in June 1983.

As part of the Army's wide vranging ADA program the
investigation of systems design techniques wutilizing ACA
have not gone unnoticed. The U.S. Army CECOM and the Center
for Tactical Computer Systems(CENTACS) at Fort (Monmoutk,
N.J. awvarded three contracts in 1981 to develop desiga
technigues utilizing ADA. CDC was avarded a contract to
redesign the existing AN/TSQ 73 ¢t“Missle Minder® systen,
General Dynamics was given the job of redesigning the An/TYC
39 message switch and Softech was contracted to oversee bhoth
of the approaches and develor educaticnal materials from the
results. These contracts were to be completed in late summer
of 1982. To date no findings have been puklically anncunced.

The Army has made a full commitmest to ADA. It is
using ALA for new projects as quickly as it can in view of
the lack of a validated translatecer, The Army has over 96
embedded computer systems with many different sets of

applications. With their large array of reguirerments and the

- T -

ongoing need to update and modify programs their support of

ADA will surely help aid its proliferaticen.

3.2.13 Air Force

The Air PForce has invested a significant amount of
time and money into the research and devlopment of the ADA
language and its envicrnnment. The most significant project
heretofore is the ADA Integrated Enviornment (AIE), which is
a Stoneman-conforming MAPSE. The systenm is divided into thg
MAPSE tocl set and the KAPSE. The +tool set contains the
compiler, linker, editor, debugger, and a command lanquage
interpreter that processes an BADA-like yet user-friendly
language. A Virtual Memory Manager is provided to qivé tools
standardized access tc¢ structured disk-resident data. The
KAPSE includes the 1loader, database ranager, and ACA
‘run—time systenm, as wvwell as the host interfaces (for IBH
¥M/370 and Interdata 05/32). Intermetrics is the contractor
for this project and the required delivery date is Cecember
1984.

The Air Force has two other ongcing ALA projects,

which include, a contract to Syscom Corporaticn for the

- 58 -

verification and validation of the AIF, and a contract with
Software Engineering Associates for a Jovial/ADA
Microprocessor study. The latter to be ccmplete in August of

1982, the former June of 1984,
3. 2- 4 _!'av !

Within DOD the Navy has done perhaps the least of any
of the Services in adortion of ADA or in research efforts to
develop ADA. They, in shott, had waited to see 1if the
language was going to succeed. They have =started to
implement ADA but are proceeding slowly. The ©Naval Ocean
Systems Center 1s hecading the reasearch for the KAPSE
Interface Tean {Klf). The Navy is not developing its own
APSE, but is leading the effort for culmination of standards
and conventions for APSE interfaces. These will include the
standardization policies for the ALS, AIE, MAPSE, KAPSE etc.
The Navy is also procuring approximately three tocls to be
designed to run on both the Army's ALS and the Air Porce's
ALE.

The only known other Navy effort with ADA is a
restructured ¥Naval Tactical Data Systgm {RNTDS) . As part of

the "now" generated overall Navy transiticn-to-2CA, the Yavyy

- B

is studying the feasibility of changing an existing large
shipboard command and control system to ADA. The system now
suffers from being implemented on a number of different
equipment configurations, from little standardization
between configuratiocns, and from the resulting increase in
-development and maintenance costs. Restructuring using ADA

is expected to amelicrate this situation.

3.2.5 AJPO / Standardization

e e e e i R

The office that supervises and directs the ADA efforts
within DOD has really matured into a critical focal point
for the ADA development. The AJPO permeates the literature
regarding ADA and all coordimation for DCD is channeled thru
the office. As a general observation, from various
readings, it appears the office 1is [roviding adequate
direction and is meeting the purposes for which it was
formed.
The AJPO has worked closely with the ACM on
outstanding issues preventing ANSI standardization. As
previously stated the manual, MI1 STD-1815, has Dbeen

rTevised. The first compiler and APSE are in the AVO

- 70 -

validation process and should receive validation 1in early
1983. A recent canvass of the ACHM, disclosed-in the Auqust
ADA-TEC, indicated that only 4 negative votes vwere
preventing a unanimous approval of ANSI standardization. Two
of the problems were in the design area and two were in the
prose of the manual. All are being resolved and should be
complete prior to the next formal voting. With the
completicn of the validation of the coapiler ANSI
standardization should and is projected to be forthcoming.
This is projected to occur in early sumper of 1983,

The AJEO, 1like the Services, has many contracts let
for ADA prcjects, These include; A full ADA dehkugger and
test suite {(Intermetrics), an ADA Vvalidation Oraqanizaiioﬁ
{MITRE), and several smaller projects. For a list of all
known major ADA efforts in the Unitéd Staes please consult
data at fAB 1. Other efforts +to expand ADA include the
inclusion of ADA as an approved DOD HCL. Also, all embedded
systems projects must now consider ATA and if not used
justify the non-use. It is my opinion that this is just the
transition and fprelude to mandatory use of ALA when
Production compilers and enviornments are validated arnd
released. The AJPO has placed ADA notes and all current

information pertaining to ADA on ARPANET (Host number 23dec)

- P =

or via Telenet (address 21389). The directory name is
ADA-Information and the password is ADA. Another directory
is ADA-Ansvwer. The password is also ADA. 1t is designed to
ansver all questions concerning ADA standardization.

3.3 CIVILIAR ADA EFFORIS

There are many projects ongoing in the «civilian
communities involving ADA. Muck of this has of course héen
spurred on by government contracts and fallout from the
industry perception of the potential influence of the
language. The ACM has formed a Special Interest Group on
the language and publishes a bi-montly publication entitled,
SIG ADA-TEC. This has been an excellent source of language
information and qreatly increases the understanding and
status of the language. A few r[points of interest will be
presented to show a representation of the proqress of ADA in
the civilian enviorrment,

1. Many software producers have recently marketed ADA
compilers for systems down to and including nmicro
computers., Hovever, there is not at this time any

ccmmercial compiler that implements a full ALDA. All

- 72 -

vendors advertise a continued enrichment program and
an eventual complete language translator.
Telesoft-ADA is a typical example of an available
ccmpiler., It is currently available for the VAX/VHMS,
IBN personal, and the HCGBObO. For the IBM personal
it requires @ 3¢k bytes of RAM in its present state.
Translation time and performance statistics are not
readily available. There are also plans by Telesoft
to have a tramnslator for the 1IBM 370/VMS in the near
future. These compilers also have an operating system
and minimal support environment included. Costs for
the IBM/Vm/CMS system is advertised at $11,000 ard
the VAX/VMS is $9,930. Both will be immediately
available after 1 November 1982.

Civilian efforts in support of DOD can be seen in the
information on United States major ADA efforts
provided at TAB 1.

Intel Corporation has provided an object based
architecture of the Intel 432 for ADA. The underlying
address structure is capability base, with access
rights included with 1location. The 432 design
provides hardware support of many important features

of ADA such as data abstracticn, though the 432 is

—_

not an "ADA machine®. It gives considerakle compile
time support to ALA, though it is not specialized for
ADA run—time support. The object based architecture
does provide a small protection domain, direct
surport of data abstraction, an enviornment for
effective memory management, and should simplify the
job of writipg compilers for ADA. This machine is
presently availablie. For a ccmplete description of
the Intel 432 approach see (ZEIG8B1),

In October, 1981, Intellimac npade a corporate
ccemitment tc ADA. This decisicn was based on five
months of experience with TeleSoft's ALA compiler.
Intellimac has, since that time, used ADA exclusively
for ccntracted and in-héuse software develorment, The
hardware configuration utilizes the Motorcla €8000
picrogrocessor.

This commitment to ALA has léd to the
development and release of the first ccmmercial
applications software package Wwritten in ADA:
specifically, a 300-man payrocll package. The
develcpment of these programs, with their ancillary
utilities and support packages, has provided

significant insight into the &nmerits of the language.

- 74 -

The programmers of Intellimac, after using the
language for nine mnonths, indicate that ADA 1is the
preferred langquage for ccmmercial software
development including maintenance, upgrades, and
changes. To those who say ADA 1is too large, too
ccmplex, too 1limited, toco slow, etc., they say
"coppycock"”, Additionally +they believe motivated
programners can begin programeing withir three days
and that the speed of the payroll program is an order

of magnitude faster than the previcus package.

3.4 INTERNATIONAL ADA EFPORTS

International sugrport and interest in ADA 1is strong.
An Y"ADA Furope" organizationm has been formed to share and
interchange information about the ongoing lanquage
develcpment and discoveries. Interchange between the United
States and ©Furope is present and nmenmbers of the ACM's Sig
ADA-Tec reguarly attend European meetings and prepare
reports for U.S. consumption. The predominate names in the
European ADA community are nléys, Honeywvell-Bull, and

Siemans. The academic endeavors appear to be dcminated by

- 75 -

the UOniversity of RKarlsruhe and the Upiversity of York.
Perhaps the hest known project is the University Cf York's
compiler project. It was funded in Novembker 1979 for 3 years
to produce a workbench compiler for ALA. The workkench goal
implies particularly good diagnostics and a relationship to
the APSE. The objectivg is a low risk ALA compiler crerating
under Unix, initially on the PDP-11, and eventually moved to

a VAX.

In the AUG-SEP issue of Sigplans SIG ATA-TEC, a
complete status report of the York Cempiler was given. The
compiler, as of yet, does not implement all of the ADA
facilities but is nearing a full ALA. It presently has
successfully compiled a €000 line program at speeds of 2700
source lines per minute on the VAX 11/780-UNIX. First
releases of the compiler will go to various British
organizations beginnirpg in the fall of 1982, Total
compilation and run-time system size of the ADA translator
is @ €€k lines of 'C* code or @ 400k bytes. PFor a more

detailed look consult (WANDS82).

In April of 1982 the 1International Standards

Organization established an Experts Group on the Programming

- 76 -

Language ADA. This oOrganization established the group with
affirmitive votes from delegates from arcund the world. The
possibility of an ISO ADA standard is tecoming more of a
reality ever day. Research and development continues to grow
in the European community in the three egpected areas of,
Military, Commercial, and Academic efforts. Por an overview
of the projects known to be ongoing in Europe, at this time,

see Table 2, European ADA Efforts,

3.5 CONCLUSION

ADA is just now reaching a stage vwhere compilers are
being released. This seems to be the point where the
language will start to realize its potential. The true value
of the language can now be tested as it is delivered to the
hands of the people who will use it to produce applications
programs. History tells us that many problems will surface
and revisions to the lanquage will certainly be made. As the
language evolves refinement and solidification will.make it
more and more reliable and productive. In several articles,
of rTecent weeks, predictions of ADA dominating the world of
production languages is expressed almost as a certainty.
Some aqree that Goverament support of COBOL helped earn its

place as the number one production language in the U.S. It

N

remains tc be seen exactly how far ALA will go. For the
interested reader, the probable impact and future of ALA is
presented in; (KLIN79),(LEBLB1), or (LOVEEB1). For a concise
listing of what I comnsider pertinent ADA publications please

consult Tab 3.

- 78 =

CORPORATION

Amdakl Corp

Bell labs

Bolt , Beranek &
Newman

Burrcughs Federal
& Special Systenms

Carnegie~Mellon
(SPICE)

Control Data
Corporation

Digital Egquip.
Corporation

Florida State
University

Honeywell Small
Systenms

Intel Corporation

Intermetrics Inc.

n " n
Mills
International

TABLE 1

CONTACT

John Feiber
{408) 746-7052

Charles Wetherell
(201) 582-3099

Bob Thomas
(E17)491-1850
Terri Payton

(215) €48-T72€68
Mario Barbacci
(412) 578-2578
Clyde Roby
(404)955-0702

Charlie Mitchell
{603) 884-8107

Ted Baker
{901)644~-5452

Alan Lyman
{617)671-2807

Gary Raetz
(503)642-6103

Mike Ryer
(617) 66 1- 1840

nn nn

{217) 398-1986

- T -

ONITED STATES ADA EFFORIS

SCCPE or HOST

Full Compiler for IBM 370
INTEL 808€. Used on AMDAHL
470 IBM-370 Ccopatible

Sutset Compiler & Full
Proto on VAX/UNIX

Partial Implementation
tased on Praxis Compiler
VAX/PDP11, DEC-20

ADA front end to Diana
Eurroughs Large Systeuns

Sukset-Conmpiler

PERQ (Pascal) {DARPA)
Full ADA with partial
enviornment. Cyber-170

Full ADA , VAX/VHMS

Full ADA , VAX/VMS
For J.S.A.F.

Sutset Honeywell Level ¢
DPS~-£

Full ADA,Linker,Debugger
Intel APX-432

Full aDA,debugger PDP-10
and ToPS-20, for AJPO

Full ADA IEBEM 370,

PE 8/32

Full ADA {eventually)
Burroughs B5900,€£500,7700

New York
University

01d Dcmipion
University

Pr software

Science Applicat
ions, INC.

Softech

Stanford
University

Telesoft
Onivac Defense
Systens

USAF Armament
Lab

UsSC-1s1

Western Digital

Gerry Fisher
{212)460-749¢

Robert Mathis
(804) 440-3901

Randall Brukhardt
{608) 2u4~6436
Bruce Lightner
{714) 454-3811

larry Weissman
{617)830-6900

David Luckham
{415)497-1242

Ken Bowles
{(714) 457-2700

Joe Cross
{612) 456—-3895

CET J. Bladen
{904) 882-8264

Steve Crocker
{213)822~1511

Mary Thorne
{718)966-7740

- 80 -

Executable semantic model
of Language. Vax/VMS

Subset written in itself
CEC-10

Designed tc run on,
generate code for micros-
8086 ms-dos, 808¢€ cp/m

Full ADA eventually/HP1000
series {Pascal)

Full ADA {also translator
ACA to DEC Pascal)plus
support enviornment. For
U.S. Army CECCM VAX,PDP

ADA-M sukset-Full ADA in
Frogress. LEC-10,TI9%90

full ADA eventually.MC-
68000,8086,VAX,IBN~370

ADA subset, no tasking
Gnivac 1100

In house cross-compiler
written in Pascal-then
to ADA.

Interpreter for Formal
Semantic Definition.For
CARPA.

*MicroADA' a subset no
Generics,into UCSD Pascal
environment.

TABLE 2

EUROPEAN ADA EFFOETS

EACP CII Homeywell J.C.Heliard

Bull /Siemens

Entwick lunsshuero
WERUM

GPP Munich

Int'l Computers
LTD

Olivetti/Danish

0Y Softplan AB

SEsSA-Teutschland
GmbH

SPERBER Project;
Univ. Karlsruhe

Univ. of Hamburg

Univ. of York

France
(33-3)9181244

WWorum
(*49) 4131-53344

George Romanski
{89)681056

Alan Montgomery
(44) 782-29681
0le Dest
02-872622

Pekka Lahtinen
{+358)3137317

Jdo Stegen
0e~-11-717211
G. Fickenscher

(+201) 300-6393

Prof, H. Nadel
040-4123-4151

Georg Winterstein
(+49) 721-608-3005

Dr. Ian Wand
011-44-904-59861

Full ADA mini-micros
Cii HB level 64 ,
Siemans 77¢0

Symbolic Test/Debug Systenm
highly retargetable/rehost
Siemens 7,xxxx BS 2000

Retargetable Back end for
ADA , input is Diana frona
Rarlsruhe Front end.

Systems programs, subset
ICI 2900

Full ADA compiler plus
enviornment.RBovsind CRB0D
Clivetti S€000

Sukset for systems sftware
development on MPS 10 and
Bootstrap on MIKKO3

Specification and
realization of ABDA I/0

Standardization Progranm
system for military apps.
Siemens 7,XXXXX

ACA for image processing
Apse Implementation,
LEC-10,Target German
MINI's..

Froent end for full ADA
Siemens 7760 Vvirtual Diana

ADA subset PDP-11,0Unix,

TABLE 3

ADA POUBLICATIONS

A Common Language For Computers; Business Week; 23 March 1981;

ADA Test and Evaluation; Intermetrics, Inc; Report IR-£63 ;
6 FEB 1981 .

ADA Compiler Validation Capability; Long Range FElan;
Ssoftech, Inc; Report 1067-1.1 ; Feb 1980.

ADA Envicrnment Workshop; DOD HAigh Order languwage Working Group;
27-29 Nov 1979.

ADA Integrated Enviornment System Specification {DRAFT) Texas
Instruments 15 March 1981,

Ada Inteqrated Enviornment (AIE) Design Rationale: Technical
Report (Interim); Intermetrics, Inc. and Massachusetts
Computer Associates, Inc.; Report IR-€84 ; 13 Marck 1981.

Ada Integrated Enviornment: Computer Frogram Development
Specification, Part II; Computer Sciences Corporation ,

Software Engineering Associates, and Verified Computing

Services; 15 March 1981.

Ada Integrated Envircmnment: Ccmputer Program Development
Specification, Part I; Computer Sciences Corporation, Software
Engineerinqg Associates, and Verified Computing Services: 15 March
1981.

Ada Integrated Environment: Design Presentation; Texas
Instruments Inc.; 14 April 1981.

Ada Inteqrated Envircnpment: Interim Technical Report: CSC;
15 March 1981. .

Ada Joint Program Office Information Pulletin: Defense Advanced
Research Projects Agency; February 1981.

Ada lanquage Reference Card: Intermetrics, Inc.; March 198t.

Ada Newsletter Number2; Department of Defense, HOLWG; 20 Auqust
1979. Available in SIGPLAN NOTICES; Octoker 1979; pp.16-35.

- 82 -

Ada PROGEAMMING LANGUAGE ; DoOD:; Report MIL-STD-1815;
10 Decemker 1980.

ADA Software Environment: Computer Prcgram Development
Specification; Texas Instruments, Inc.; 15 March 1981.

ADA Support System Study: An Initial Discussion Document;
Systems Designers Limited; 31 January 1979.

Ada Support SYSTEM STUDY,Phase I,II,II,IV,15 June 1979,
! November 1979,1 June 1980, 1 April 1980.

ADA Test and Evaluation Newsletter 1; DOD , HOLUG; 25 May 1979.
Also available in SIGPIAN NOTICES; September 1979; pp. 77-80.

ADA-A Report to the Department of Industry; Department of
Industry; 11 May 1979. '

ADA: A History and Prognosis (draft) ; Advanced Computer
Technigques; January {981.

Computer Program Develcpment Specification for Ada Integrated
Environment: Ada Compiler Phases Type B5; Intermetrics, Inc. and
Massachusetts Computer Association, Inc.; Reprt IR-677:

13 March 1981.

Design Evaluation Report for the ADA Integrated Enviroanment;
Computer Sciences Corporation and Software Engineering
Associates, Inc.; 11 May 1981.

Diana BReference Manual; Institue Fuer Informatick II,
Universitat Rarlsruhe and Department cf Computer Science,
Carnegie-Mellon University; Report 1,/81; March 1981.

Draft Ada Compiler Validation Implemerters! Guide;
Softech,Inc.; Report 1067-2.2; 22 August 1980.

Pormal Definition of ADA; interim draft; Honeywell, Inc. and CII
Honeywell Bull; Octolker 1979,

Preliminary ADA Reference Manual; Sigplan Notices, Part A;
June 1979,

Proceedings of the ADA Debut, Washington C.C., 4-5 SEp 1980;

Defense Advanced Research Projects Agency; Report ALD-A095 569/0;
September 1980.

- 83 -

Rationale Por the Design Of The Green Progqramming lLanguage;
Honeywell , Inc. and CII Honeywell Bull; 15 February 1978.

Eequirements for Ada lLanguage Integrated Computer Environments;
Preliminary Stoneman; November 1979.

Requirements for High Order Computer Erogramming lLanguages;
Ironman; 14 January 1977.

Requirements for the Programming Environment for the Common
High COrder Language; Pebbleman; July 1978

Review of Coral 66 and RTL/2 Features Against ALA; Department of
Industry; 18 May 1979.

Set of Sample Problems for DOD High oOrder Language Progran;
Green Sclutions; Honeywell, Inc. April 1979.

standard Compiler Werkshop Final Report; Air Force Armament
lLaboratory; 28 September 1978.

Stravman; DOD , HCOLWG; 29 July 1975.

The ADA lLanguage System of the United States Army; Softech; 1981,
Albrecht, Garrison, Graham, Herle, and Krieg-Bruckner;
Source-to-Source Translation; Ada to Pascal and Pascal to ADA;
Sigplan Notices; November 1980; pp. 183-193.

Amoroso, Wegner , Morris, White, Lopper, Campbell;

Report to the High Order Language Working Group (HCLWG); Report
AD-A037 €34; 14 January 1977.

Archer, J E; An Instructional Subset cf the Progranmming
Language ADA; Cornell OUniversity; Report TR—-79-39%5, undated.

' Arnold, R D; The ¥ebula Architecture: ALCA Issues; ALA letters:
May 1981.

Badault, Fisher, Ichbialb, Robert and Wegner; Comments to
"Tinman"; 22 July 7&.

Baker, F T: A Concurrent Module in ADA; IBM Software Engineering
Exchange; October 1580; pp. 18-20. |

Bauner, J and Svensson, G; An Implemeptation and Fvaluation of
the Real-Time Primitives in the Programring Language ADA,
Technical Report; Department of Telecommunication and Computer

- 84 -

Systems, The Royal Institute of Technolagy {Stockhclu);
Report TRITA-CS-8001; April 1980.

Belmcnt, P A; Type Resolution in ADA; An Implementation
Report; Sigplan Notices; November 19807 pp. 57-€1.

Belz, F C, Blum, E K, and Heimbigner, D; A Multi-Processing
Implementation-Oriented Formal Definition of ADA in SEMANOL;
Sigplan Notices; WNovember 1980; pp. 202-212.

Berning,P T; Formal SEMANOL Specifications of ALCA; Eome Air
Development Center; Report RADC-TR-80-293; Septemker 1940.

Bishop J M; Rffective Machine Descriptors for ALA; Sigplan
¥otices; November 1980; pp. 235-242.

Bishop, A and Johnson, R C; Ada Computer con five
boards set to bow; Electronics; 13 Japuary 1981; pp. 39-40.

Bolz, D and Booch, G; Software Engineering with ALDA; Department
of Astronautics and Computer Science, 7Tnited States Air Force
Acadeny; March 1981.

Booch, G; Ada promotes software reliability with Pascal~like
simplicity; EDN; 7 January 1981; pp. 171-180.

Boute, R T; Simplifying ADA by Removing limitations; Sigplam
Notices; Cctober 1980; pp. 27-34.

Brender, R F: The Case Against ADA as an APSE Ccmrmand lLanguage;
Sigplan VYNotices; February 1980; pp. 27-34.

Brosgol, B M; TCOL-ALA and the "Middle End: of the PQCC ADA
Compiler; Sigplan Notices; November 1980; pp.101-112.

Buneman, P, Menten, 1, and Root, D: A Codasyl Interface for
Pascal and ADA; Moore School, University of Pennsylvania;
August 1%80.

Buxton, J N and Druffel, L E; Requirements for an ADA
Programming Support Enviornment; BRaticnale for Stcneman:
Procedings of COMPSAC; 28-30 October 1980.

Carlson, W E; ADA: A Promising Beginning; Computer; June 1981%1;
Pp. 13-15.

- 85 -

Carlson, W E; ADA-A Standard Programming languaqe for Defense
Systews; Signal; March 1980; pp. 25-28.

Clapp, J A, lLoebenstein, E, and Rhymer, P; A Cost/Benefit
Analysis of High Order lLanguage Standardization; MITRE; Refport
P 78-20¢;September 1977.

Clarke, L A, Wileden, J C, and Wolf, 2 I; Nesting in ADA
programs is for the Birds; SIGPLAN Notices; November 1980;

Cole,S N; ADA Syntax Cross Reference; Sigplan Notices;

Cormack, G V; Ar Algorithm for the Selection of Overloaded
Functions in ADA; ‘Sigplan Notices ; February 1981.

Cornhill, D and Gordon, M E; ADA-the latest words in process
control; Electronic Desiqn; September 1980.

Dausmann, M, Persch, G, and Winterstein, G; ADA-0O Reference
Manual, Operating system manual, and users guide; November 1978.

Deremer, F and Pennello, T; Syntax Chart of ADA_compilation;
November 1980. '

Dijkstra, E W; DOD~-I: The Summing UP: Sigplan Notices;
July 1978; pp. 21-26.

Donzeau-Gouge, V, Kahn, G, lang, B, and Krieg-Brueckner, B;
gn the Formal Definition of ADA; Rivista di Informatica
(Ttaly) ; January 1980.

Downes, V A, and Goldsack, S J; The Use of the ALA Language for
Real-time Programming of a Distributed Sustem; Department of
Computing and Control, Imperial College of Science and
Techneclogy;: 1980.

Druffel, L E; ADA Compiler vValidation (CRAFT); DOD;
Novemter 1980, '

Druffel, L E; ADA- How will it Affect College Offerings?;
Interface; September 1979.

Duncan, A G, and Hutchison, J S; Using ADA for Industrial

Embedded Microprocesses or Applications; Sigplan Notices;
November 1980; pp.26-35.

- @f -

Eventoff, W, Harvey, D, and Price, R J; The Rendezvous and
Monitor Concepts; Is there an Efficiency Difference?;
Sigplan Notices; November 1980.

Fairley, R E; ADA Debugging and Testing Support Environaments;
Sigplan Notices; November 1980.

Firth, R; Universal ADA lLamrguage Issue Report Ccnstruction KIT;
Sigplan Notices ; May 1980; pp.35-3s.

Fisher, D A; A Common Programming Lanquage for Defense Analyses;
Report P-1191; June 1976.

Fisher, D A; DOD's Common Program®ing Language Effort; Computer;
March 1978.

Fisher, D A; "Woodenman" a Set of Criteria and Needed
Characteristics for a Common DOD High Order Prograsming
Lanquage; Institute for Defense Analyses; August 197S.

Fisher, J; Syntactic Error Recovery ir the NYU ADA Compiler; ADA
Implementor's Newsletter; September 1980.

Galkowske, J T; A Critique of the DOD CCmmon Language Effort;
Sigplan Notices; June 1980; pp. 15-18.

Galkowske, J T; Modularity And Data Atlstraction In ALA;
IBM scftware Engineering Exchange; Qctoker 1980; pp.13-17.

Gann, S 0; A Question Cf Type; Have You anything to Declare?;
Datalink (Great Britain); February 1980.

Gann, S C; Taken to Task {(ADA); Datalink (Great Eritain);
March 19840.

Gann, S C; You've Got to Get Your Syntax Right ; Latalink (Great
Britain) ; November 1979.

Ganzinger, H and Ripken, K; Operator Identification in ADA;
Formal Specification, Conmplexity, and Concrete Implementation;
Sigplan Notices; February 1980; pp. 30-42.

Glass, R 1; From Pascal to Pebbleman...and Beyond; Datamation;
July 1979; pp. 14€-150,

Goodall, A; A Criticism of the Select Statement in +he AD2
Programming Language; November 1979.

- 87 -

Goodenough, J B; The ALA Compiler Validation Capakility;
Computer; June 1381; pp. 57-64.

Good, D I, Younqg, W D, and Tripathi, A R; An Evaluation of the
Verifiability of ADA; September 1980.

Goos, G and Winterstein, G; Tovards a Coﬁpiler Front=-gEnd for ADA;
Sigplan Notices; November 1980.

Gordon, M E and Robinscn, W B; Using Preliminary ADA in a Process
Control Application; AFIPS Conference Proceedings, 1980 Nationl
Ccomputer Confererce; pp.597-&0¢€.

Groves, L J and Roger, W J; The Design of a virtual Machine for
APA; sigplan Notices; November 1980; pp. 223-2314.

Habermann, A N and Nassi, I R; Efficient Implementation nf
ADA Tasks; Department of Computer Science, Carnegie-Mellon
University; Report CMO-CS-80-103; January 1980.

Haridi, S, Bauner, J, and Svensson, G: An Implementation and
Empirical Evaluation of the Tasking Facilities in ADA; Sigplan
Notices; February 1981; pp. 35-47.

Hibbard, P,M Hisgen, A, Rosenberqg, J, Sherman, X; Programming
In ALDA: Examples; Department of Computer Science,
Carnegie-Mellon University; Report CMU-CS5-80-149; Qctober 1980.
Hoare, € & B; Subsetting of ADA; draft ; Jumne 13979.

Ichbiah, J d; aAda and the Development of Software Components;
Proceedings of 4th Interrational Conference on Socftware
Engineering; September 1979.

Ichbiak , J D, Maddock , R F, and Pyle, I C; Comments on
"Ironman"; LTPL-E; Beport JI/RM/IP 770606; 6 June 77.

Janas, J M; A comment ¢n "Operator Identification in ADA"
by Ganzinger arnd Ripken; Sigplan Notices; September 1980;
Pp-39-43.

Johnson, R C; ADA's Modularity sparks interest for civilian uses;
Electronics; Decembher 1980.

Johnson, R C; Special Beport: ADA, the ultimate lanquage?;
Electronics; 10 February 1981; pp.39-40.

Jones, D W; Tasking and Parameters: A Prollem Area in ADA;

- B8 =

Sigplan Notices; May 1980; pp.37-40.

Kling R and Scacchi, W; The DOD Comson High Order
Programming Language Effort; What will the Impact bhe?;
Sigplan Notices; February 1979; pp.29-43.

Knobe, B; Flight Lanquages; ADA vs HAL/S; Journal for
Guidance and Control; January 1981; pp. 35-40.

Krieg-Bruckner, B and Luchham, D C; Asna: Towards a lanquaqe
for Annotating ADA Programs; SIgplan Notices; November 1980;

Lamrb, D A, Hisgen, A, Rosenberg, J, SHerman, M:; THe Charrette ADA
Compiler; Derartment of Computer Science, Carnegie-Mellon
University; Report CMU-CS-80-148; Octcher 1980,

leblanc, R J and Goda, J J; The Impact of ADA on Software
Develcpment; Proceedings of SOUTHEASTCON 81.

Locke, D; The ADA Programming Supprort Environment; IBM SOftware
Engineering Exchange; October 1980; pp.21-22,

Loveman, D; ADA resolves the unusual .with 'exception' handling;
Electronic Design; January 1981.

Loveman, D; ADA: How Big a Difference Will It Make In Software?;
Military Electronics/Countermeasures; May 1981.

Loveman, D; The ADA Integrated Envirconment: An Introduction to
the Problem: ADA Letters: March 1981.

Lovengreen, H H and Bijcrner, D; On a Formal Model of the
Tasking Concept in ADA; Sigplan Notices; November 1980;
PP. 213-222.

Luckham, D C and Polak,W; A Practical Method of Documenting and
Verifying ADA Program with Packages; Sigrlan Notices;
November 1980; pp.113-122.

Luckham, D C and Polak, W; ADA Exceptions: Specification and
Proof Techniques: Department of Computer Science, Stanford
University; Report STAN-C5-B0-789; Pebruary 1980.

Luckham, D C and Polak, W; ADA Exception Handling: AN

Axiomatice Approach; ACM Transactions on Prograpming Languages
and Systems; April 1980,

w HY =

Maclaren, L; Evolving Toward ADA in Real Time Systems; Sigplan
Notices; November 1980; pp. 146-155.

Maddock, R F and Marks, B 1L; Towards A PI1/1-Based "Ironman"
lanquage;IBM; Report TR.12.168; Decemkter 1977,

Mahjoub, A; Some Ccmments on ADA as a Real~-Time Programking
Language; Sigplan Nctices; February 1981.

Mengarini, B; Macro Facilities in ADA; Sigplan Notices;
March 1981; pp-75-82.

Moffat, D.V,; Enumerations in Pascal, ALA and Beyond; Sigplan
Notices; February 1981 ; pp. 77-82.

Newtcn, R ; Some Exception Handling Problems in Lanquaqe Systems
Displaying a Multi-Path Capability; Sigplan Notices; April 1979.

‘Nicolescu , R; Some SHort CoOmments on the Definition and the
Documentation of the ADA Programming Language; Sigplan Notices:
July 1980. ,

Notkin, D. S.; An Experience with Parrallelism in ADA:
Sigplan Notices ; November 1980.

Pennello,T.,Deremer, F.,and Meyers, R.; A simplified Operator
identificaticn Scheme for ADA; Sigplan Notices; July 1980.

Persch, G; Overloading in Preliminary ALA; Sigplan Notices;
November 1980.

Pyle, I.C.; ADA workshop, University of York, UK, Computers
and Digital Techniques 2; December 1979.

Pvyle, I.C.; Comment on the SDL/SS ADA Support System Phase
t Repcrt; June 1979,

Roubine, 0, and Heliard, J.C.: Parallel Processing in ADA;
Preprint; undated 1979.

Runciman, C; Resolving overloaded expressions in ADA; ALA
Implementor’s Newsletter; October 1981.

Rymer, J; An ADA Turorial; IBM Software Engineering Exchange;
October 1980,

Scarpelli, A.J.; ADR Test and Evaluation ; Air Force Wright
Aeronautical Labs; Report AFWAL-TR-80-1024; May 1980.

- 90 -

Schonber, E., and Falk, M; The ALA Tasking Primitives and Their
Descripticn in GYVE; New York University; undated.

Schwartz, BR. L.and Melliar-Smith, P. PM.; Cnhn the Suitability of
ADA for Artificial Intelligence Applicaticms; SRI International;
Report ARC-17127; July 1980.

Sherman, M, S. and Borkan, M.S.; A Flexiltle Semantic Analyzer
for ALCA; sigplan Notices; November 1980.

Sherman, M. Hisgen, A. Lamb, D.A., and Rosenberg, G.; An ALA Code
Generator for VAYX 11,780 with Unix; Sigplan Notices;
November 1980.

Silberschatz, A; On the Sychronization Mechanism of the ACA
Language; Sigplan Notices; February 1981.

Stenning, V. Forggatt,T. Gilbert, R. and Thomas E.; The ADA
BEnviornment : A Persrective; Computer; June 1981,

Stevenson, D.R.; Algorithms for Translating ADA Multitasking;
Sigplan Nctices; November 1980.

Stroet, J: An Alternative to the Communication Frimitives in ADA;
Sigplan Notices; December 13980,

Tai, K. and Garrard, K; Comments on the Suggested Inplementation
of Tasking Facilities in the "Rationale for the Design of the ADA
programming Language"™; Sigplan Notices; October 1980.

Van Den Bos, J; Comments on ADA Process Communication; Sigplan
Notices; June 1980.

Wwallis, P.J. and Silverman, B.W.; Efficient Implementation of
the ADA Overloading Rules; Informaticn Processing Letters;
April 1980,

Wwand, I.C.; Systems Implementation Languages and IRCNMAN;
IBM Thomas J.Watscn Research Center; EKeport RC 7410;
October 1978.

wand , I.C. and Holden, J; Towards a Run-Time System for ADA;
Department of Computer Science, Upniversity of York; EReport
YCS-29; December 1979.

Wwaugh, D.W; ADA As A Design langunage; IEM Software Engineering
Exchange; October 1980.

- 91 =

Wegner, P; The ADA language and Enviornment; Electro,s80 ; High
Technology Electronics Exhibition and Convention; May 1980.

Wwelsh, J and Lister, L; A Comparative Study of Task
Communicaticns in ADA; undated.

Whitaker, W.A; ADA- The DOD Common High Order Language;
NAECON 13879.

Whitaker, W.A.; Commnents on Portions of the ACM Sigplan on
the ALA Programming lLanguage not Available in the Proceedings;
ADA Implementor's Newsletter; October 1981,

Wirth, N; COmment on the Two Proposals for the Progqramming
lLanguage ADA submitted to the Department of Defense; March 1979.

Young, ®.D. and Good, D.I; Generics and Verification in ADA;
Sigplan Nctices; November 1980.

Young, ®. D.and Goecd, D.I.; Steelman and the Verifiability
of ADA; Sigplan Notices; February 1981,

Zeigler, S, ALlegre, N, Johnsomn, R, Morris, J, and Burns, G;
ADA for the Intel 432 Microcomputer; Computer; June 1981;
Pp. #47-56.

Zuckerman, S; Problems with the Multi-Tasking Facilities in
the ADA Programming lanquage; Defense Ccmmunicaticns
Engineering Center; Report 16-81; May 1581.

THE FOLLOWING ARE UPTCATES SIKNCE THE OFIGINAL LIST WAS MATE

ADA language System Bare VAX-11/780 Lcader B5 Specification;
s0oftech, Inc.; Rerport 1075-14.2; May 1981,

Jean Ichbiah Assesses ADA and the Future of Microcomputers;
Defense Electronics September 1981,

Baker, T.P.; A One Pass Algorithm for Overloading
Resolution in ALA; Department of Mathematics and Computer
Science, Florida State University; April 1981.

Jessop, W.H.: ADA and Distributed Systems; Department of

Computer Science, University of Washington; Report 81-01-06;
January 1981.

- 92 -

Rogers, M. A. and Myers, L.M.:; AN Adaptation of the ADA
language for Machine Generated Compilers; Naval Postgraduate
School; Reportl AL-A097 292/7; December 1580.

Shumate, K. C.; ALCA-new language that will impact cceEmercial
users; Data Management; August 1981.

- 93 -

BIBLIOGRAPHY

{BEN-81) Ben—-Ari, Yehudi , A;
Methodology for Modular Use of ADA;
Sigplan Notices ; January 1982.

{BENNE2) Bennett, D.A.,Kornman, EB.D., Wilscn, J.8.;
Hidden Costs In ADA:
SIG ADA-TEC ; January 1982.

{BGS-80) Vah Den Bos, J; Comments cn ADA Process
Communication; Sigplan Notices; June 1981.

(BRDSB2) Brosgol, B.M.:
Summary of ADA Lnaguage Changes;
SIG ADA-TEC; January 1982,

{FISH7E) Fisher, D.A.; "Woodenman": A set of Criteria
and needed Ccharacteristics for a Common DOD
HOL; Institute for Defense Analyses;
Aagust 1975.

(CARLE1) Carlscn, W.; ADA : A Prcmising Beginning;
Computer ; June 1981 ; pp. 13-15.

{GHEZ82) Ghezzi, C. , Jazayeri, M. ;
Programming lLanqguage Concefpts;
John #Wiley and Sons Inc. ; 1982.

{(GLAS79a) Glass, R.L.; "Software Reliability at
Boeing Aerospace : Some New Pindings" ;
Boeing Company Document D180~-25392-1,
September 1979.

- 4 -

{GLAS79D) Glass, B.L.; Real Time Software Debugging
and Testing; Boeing Company Document
D—-180-25249-7,2,3; September 1979.

{GLAS79) Glass, R.L.; From Pascal to Pebbleman...and
Beyoand ; Datamation ; July 1979 ; pp. 146-150.

{GOOLE1Y Goodenough , J.B.; The ADA Coampiler Validation
Capability ; Computer ; June 1981 ; pp. 57-¢4.

{HOARST) Hoare, C.A.R.3 The Emperor's 0ld Clothes ;
Communications of the ACM ; February 1981;
PP-75-83.

(KLINTT) Kling, R. , Scacci, W. ; The DOD Common High

order Programming Lanquage Effort {(DOD-1):
what will the impacts be? ; Sigplan Notices
V0l 14, Number 2, 1979.

(LEBLS1) Leblanc, R.J. and Goda, J.J.; The Ippact of
ADA on Software Develophent; Proceedings of
SOUTHEASTCON '81*; april 1981.

{LEDGS82) Ledgard, H.F., Singer, A. ; Scaling Down AD2
(or towards a standard ADA subset);
Communications of the ACM ; February 1982.

{LOVES1) Loveman, D; ADA: How Big a Difference Will it
Make In Software?; Military Electronics/
Countermeasures; May 1981,

(RATD79) Rationale for the Desigme cf the ADA
Programming Lanquage; Sigrlan Notices, Vol 14;
June 19789.

- 95 -

(SILBS81) Silberschatz, A; On The Synchronization
Mechanism of the ADA Language; Sigplan
Notices; February 1981.

(USDD75) U.S.DCD; Defense Department Regquirements for
High Order Programming languages: Strawman;
DOD HOLWG; July 19765,

{UsSDD77) JeS. DCD; Requirements for High Order Computer
Programming Language: Iromman; January 1977.

(0SDD76) U.S. DCD; Requifements for High Order Computer
Programming Language: Tinman; June 197€.

{usDbpB80a) U0.S. L0oD; ADA Programming Lanquage;July 1980.

(USDDBO L) U.S. DOD; Military Standard-1815; The ADA
Programming Language; December 1980.

{(USDD80) U.S.DOD ; Requirements for ADA Prcgramming
Suprort Environments : Stoneman ;
February 1980.

(0sDD78) 7.S.D0D; Defense Department Requirements for
High Order Programming languages:
Steelman : June 1978.

(WARDS2) wand, I.C.; The York Compiler; Derpartment
of Computer Science, University of York;
August 1982.

(WICKB82) Wickmann, B.A.; A Comparison of Pascal and
ADA; SIG ADA-TEC; August 1981.

{WEGNS0) Wegner, P.; Progqramming with ADA :
An Introduction by Means of Graduated
Examples ; Prentice Hall ; 1980.

= BE =

(WOLF81)

(YOUNB0)

(ZELK78)

Wwolfe, M.I. , Babich, W. , Simpson,
R.,Thall,R., and Weissman, L. ;

The ALA language System; Computer ;3
June 1981; pp. 37-45.

Young, W.D., Good, D.I.; Steelman and
The Verifiability of (Preliwminary) ATA;
Sigplan Notices ; June 1980.

Zelkowitz, M.V.; Perspectives on
Software Engineering; ACM Computing Surveys
Vol. 10; June 1979.

N

AN ADA REVIEW:
A History , Problems and Complaints ,

and the Current Status of the language

by

MICHAEL IRWIN HODGES
P. A. , University of Pacific , 1975

M.S. , UOniversity of Southern California , 1978

AN ABSTRACT OF A MASTER'S REPORT
Submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan , Ransas

1983

ABSTRACT

This report is a review of the programming language ADA. The
report covers three areas; the history, the complaints, and
the current status of the lanquage. Chapter One, the
History, introduces the reasons why the Department Of
Defense recognized they had a computer language problem and
why after some analysis perceived a need for a nev High
Order Computer Language.The subsequent language development
is presented.

Chapter Two, complaints from the computer ccmmunity,
regui;es some knowledge of language design and an in depth
knowledge of some computer concepts. The complaints section
presents general infcrmaticn about the features; the
specific complaint and in some cases my personal comment
pertaining to the complaint. The complaints presented center
arqund the areas of,langquage Design, Major Complaints, and
Minor Problens. Lanqgquage Design is presented in terms of
size, complexity, uniformity, and portability of the
progranming language, Major Complaints, involve the semantic
features of tasking, pragmas, and exceptioms.

Chapter Three presents an overview of the current ADA
status., Three major sectors of development are presented.
They include : the Department of Defense, Ccmmercial
efforts, and 1International ADA development. Provided as
tabular data, and as a concise reference, are; all known
U.S. and International ADA efforts as well as a list of ADA

publicaticns.

