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INTRODUCTION

The purpose of this paper is to investigate and exhibit

various properties of positive definite binary quadratic forms.

It will be shown that the equivalence of binary quadratic forms

is actually an equivalence relation which divides the set of

positive definite forms into mutually exclusive equivalence

classes. Once these equivalence classes are established, methods

will be developed for determining the minimum positive integer

represented by all the forms of a given equivalence class. Then

methods will be established for determining whether or not a

given positive integer has a proper representation by a positive

definite form: and, in the case of the sum of two squares, the

actual number of proper representations will be determined -,

without having to exhibit them.

It is assumed that the reader has a sufficient knowledge

of the theory of numbers: however, in the following paragraphs

definitions, theorems, and problems which will be used through-

out this paper are presented.

We will accept without proof the following division algo-

rithm. For any two integers a and b, b 7^ 0, there exist unique

integers q and r such that a = bq + r, where :^ r -^C
j
b I

.

When we speak of a common divisor, we will mean a positive

common divisor.

Two integers a and b are said to be relatively prime if

their greatest common divisor is unity. Also, there exist in-

tegers x and y such that 1 = ax + by. We note that x and y

are not unique by considering 1 = ax + kab - kab + by



= a(x + kb) + b(y - ka) . Since k can be any integer, there are

infinitely many x's and y's which will satisfy 1 = ax + by.

If m is a positive integer, then we ssy "_§ is congruent to

b modulo m" and write a = b (mod m) if and only if s - b = km

for some integer k.

2
If a and m are relatively prime and the congruence x = a

(mod m) has a solution, we say that a_ is a quadratic residue of

m. If no solution exists, a is called a quadratic nonresidue

of ra.

We also accept without proof the fact that x^e. a (mod m)

has no solution if x^ =. a (mod p) , where p is som.e odd prime

divisor of m, has no solution.

The integer -1 is a quadratic residue of prim.es of the

form kk + 1 and a quadratic nonresidue of primes of the form

k^ + 3- .

Two roots, r-, and V2, of the congruence f(x) = O(mod m.)

are said to be incongruent if r-, ^ rp (mod m) .

When we refer to the number of roots of a congruence, we

mean the number of incongruent roots. : '\
''."•

Theorem I-l . If m, , . . . , m , are relatively prime in

pairs and if n is their product, the number of roots of

f(x) ^0 (mod m) is equal to the product of the number of roots

of f(x) = (m.od m;^), . . ., f(x) h (mod m^) .

Theorem 1-2 . If p is an odd prime not dividing c,

X ^ c (m.od p") has no root or exactly two roots. The num.ber

of roots is the sam.e for all positive integers n.



TRANSFORMATIONS AND EQUIVALENT POMS

Obtaining a solution to the equation 9 = 2x + xy + 37-

is equivalent to solving the equation 9 = 3X^ + ^Tl + 1;Y^ which

is obtained from the first equation by the linear transformation

X = -Y, y = X + Y. Once a solution for either equation has been

found, a solution to the other one is easily obtained with the

aid of this linear transformation or its inverse X = x -!- y,

Y = -X. In a like manner, there are infinitely many equations

which are equivalent to 9 = 2x2 + xy + 3y . It is readily seen

that to solve all such equations would be laborious and time-

consuming. For this reason we find it beneficial to study

linear transformations and equivalences.

Definition 1. A binary quadratic form is a function

(1) q = ax^ + bxy + cy^

where a, b, and c are constants and x and y are independent

variables from the integral domain of integers.

If there exist integers Xq and Jq such that

m - axg + bxoYo + cyo , m is said to be represented by the

form q = ax^ -f bxy + cy^.

It should be noted here that the letters which are em.ployed

as independent variables in the quadratic form have no particu-

lar significance in themselves. By this we mean that

m - ax + bxy + cy and m = au + buv + cv^ have the same solu-

tions. Thus it becom.es apparent that the constants a, b, and c

actually determ.ine the form q given by equation (l). Therefore
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we will use the notation q = |_a, b, c^ or :'ust [_8 . b, cj to

denote the form q given by equation (1)-.

Definition 2. The discriminant of the binary quadratic

form given by equation (1) is d = b - Ij-ac.

The linear transformation

(2) T0 =

y = 70C + 5Y
^0 =

-< [3

r 5

7^0

replaces the form q = \~_a, b, c]] by the form Q = j^A, B, c]]

where

(3;

A = a^^ + b»<7' + cr^ C = ap + bp5 + c5^

B = 2a^p + b(<<5 + py) + 20/5 .

¥e also say that q is transformed into Q, by Tq,

' ^ p
We call Xq =

Y 5

^5 - p/ 7^ of the transform.ation T

in equation (2) the determinant of Tq.

If we replace the form Q, by P with the transformation

ik) T-

X = ru + sv

Y = pu + qv
\ =

r s I

p q

7^0

and then eliminate the variables X and Y between the equations

(2) and (li.), '^-e obtain

(5) ^2

X = ^(ru+sv) + p(pu+qv) = (»<r+pp)u + (<<s+Pq)v

y =y(ru+sv) + 5(pu+qv) = (rr+5p)u + (/s+5q)v.



We now look at the product of the coefficient natrices of

the transformations Tq and T]_,

r s"l r»<r + j3p <<s + j3q

i_p qj Ijyr + 5p 7^3 + 5q

Also note tha"

^2 =
-<r + Pp -^s + Pq

nAr + 5p Ys + 5q

^ P

Y 5

r s

P q

= XqXi ^ .

Hence the equations (5) ai^e a linear transformation which re-

places the form q by F; and as we have observed, T2 has the same

effect upon q as was obtained by first applying Tq and then T]_.

The transformation T2 is called the product of Tq and Ti_ and is

denoted by TqT-j .

From matrix theory we know that the set of all 2x2
matrices is associative under multiplication. From the preced-

ing discussion it follows that if three linear transformations

T-, . Tg, and T, with nonzero determinants are applied succes-

sively to a form q, then (T-j_T2)To = T-[_(T2To).

Henceforth we will consider only integral linear trans-

formations of determinant +1.

Definition 3- The binary quadratic form q is said to be

properly equivalent to the binary quadratic form Q if and only

if there exists a linear transformation T of determinant +1,

which replaces q by Q. If the determinant of T is -1, q is

said to be improperly equivalent to Q.



For the remainder of this paper we will use the word

equivalent to mean properly equivalent.-

¥e write q /'^ Q whenever q is equivalent to Q.

Let
y 5

be the coefficient matrix of the transforma-

tion Tq given by equations (2) and let Tq have determinant +1.

Wow consider the matrix product "

..... .

' •
'.

=< (3

Y 6

5 -p

-<

5 -p

Y 5

1

1

Thus the transformation given by equations (2) replaces the

form q = Qa, b, c] by Q = ]~_A, B, cj and the transformation

"<5 - p/ = 1

X = 5r - ps 5 -8
T^: H =

Y = -Yj> + ^s -r ^

replaces Q by q since TqT-[_, the identity transformation, re-

• places q by q. By definition, Q is equivalent to q since

X-j_ = +1, The transform-ation T-j_ is called the inverse of Tq

and is denoted by Tq" . Here we note that the coefficient

matrix of the inverse transformation m.ay be obtained from the

coefficient matrix of the original transformation by exchanging

the main diagonal elements and changing the algebraic sign of

the off diagonal elements whenever the determinant of the

original transformation is +1.

Theorem 1. Equivalent forms have the same discriminant.

Let q = Qa, b, c]] be equivalent to Q = pA, B, Cj ; then



there exists a transformation T of determinant +1 which replaces

j^a, b. cH by PA, 3, cl where A, B, and -C are given by equations

(3). The discriminant of Q is D = B^ - l4_AC, or

D =
B 20

_
5 P b^ + 2 C'Y bp + 2c5

2A B y ^ 2a»< + b/ 2ap + b5

5 (3 b 2c ^ P
.

-

/ »< 2a b Y 5

= (»<5 - S/)(b2 - kac)(»<5 - p/)

,

' = b^ - l^ac = d .

If q /'^ Q and Q, -'^^ P, then there exist transformations T-^

and I2, each of determinant unity ;, which replace q by Q and Q,

by F^ respectively. By equations (2), ik) ^ and (5) the product

transformation T3 = Ti_T2 replaces q by F; and by expression (6)

the determinant of To is +1. Therefore, q ."^ F.

Theorem 2. i^"^) is an equivalence relation.

The identity transformation has determinant unity and re-

places q by q. Hence q ,^^^ q. If q /^^ Q, then there exists a

transformation T of determinant unity which replaces q by Q.

The transformation T~ has determinant unity and replaces Q by

q. Hence Q, .•'^-^ q. If q /-v^ Q and Q ^^^ F, then there exist trans-

formations T]_ and T2 of determinant unity which replace q by Q,

and Q by F, respectively. The transformation T-|_T2 has deter-

minant unity and replaces q by F. Hence q ^'•^ F

.
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Thus all binary quadratic forms equivalent to a binary

quadratic forn q are equivalent to each other and are said to

forin an equivalence class.

• Theorem 3. Equivalent binary quadratic forms represent

the same integral values.

Suppose q .-^ Q; then there exists a transformation

T
X = »<X + 6Y

y = yx + 5Y
A =

/ 5

= 1

which replaces q = \\, b, c^ by Q = [j., 3, C]] where A. B, and C

are given by equations (3) . Let m be any integer represented

by Q. This implies that there exist integers Xq. Yq such that

m. = AXq2 -f BXqYq + CYq^. From the above we get xq = ^Xq + PYq

and yo = YXq -f SYq. Thus ;.
'

,

axn" + ox.^y^ + c"0 0^0 + ^yo

= a(^Xo + PYq) + b(»<XQ + ^Yq){-YXq + OYq) + o'.'j/Tq + QYq)

= (a^2 + b^/+cy2)XQ2 + [js^Q + b(^5 + pO + 2cr5]xQYQ

+ (ap2 + bp5 + c52)Yq2

= AXn + BXnYp, + CYo = m.^0 0^0

Similarly^ 0, /-^ q since we have shown (^^) to be an equiva-

lence relation. Hence, by the same argument, if m is repre-

sented by q, it is 'represented by Q.



'
- :.

. REDUCED FORMS

Let q = []a, b, cj be a binary quadratic form with negative

discriminant. If A = -d, then A is positive, a 7^ 0, and

(7) ij-aq = b,5^x^ + l;abxy + ij-acy^ ,'.

= (iia^x^ + kabxy + b^yS) + (ij.ac - b2)y2

= (2ax + by)2 + Ay^ .

If the form q is restricted to representing nonzero inte-

gral values, then by equation (7) the product [f-aq will neces-

sarily be positive. Because a quadratic form is determined by

its constant coefficients, a_ will determine the sign of the

integers representable by q. In other words, if £ is positive,

q will assume only positive integral values and for this reason

is called a positive form. Should a_ be negative, negative inte-

gral values will be assumed by q, and q will be called a nega-

tive form^. Both positive and negative forms are called definite

forms. It should be pointed out that the multiple of q used in

equation (7) could have been lie as well as lia . Had this been

the case, c would have been said to determine the sign of q.

However, as the case m.ay be a_ and' c will necessarilj' have the

same sign in a definite form. This becomes apparent when it

is recalled the discriminant, b - i;ac, must be negative.

When d is positive, equation (7) shows that q m.ay take on

both positive and negative integral values since A is negative.

In this instance q is scid to be an indefinite form.
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From this! point on, only positive definite binary quad-

ratic foi'ins wi.11 be discussed.

Let m be an integer greater than zero. Look at all inte-

gers less thari or equal to m which are represented by the form

q =
[
a, b, c~|. By equation (7), we have _ .

.-••_-

(8) (2ax + by)2 + Ay^^ 1+am
_

_

'

Ay^^ l;am - (2ax + by) ^
.

Because -(2ax
2

+ by) is at most equal to zero.

(9) y ^ ij-am./A • -
"

There are but a finite nujriber of integral values for which y

will satisfy t;he relation (9), and for each of thosr values

there are but a finite number for which x will satisfy the in-

equalLities (8) Hence there are but a finite number of ways of

representing t;he positive integers less than or equal to the

integer m by i;he form q. Note that each positive integer less

than or equal to m is not necessarily represented ''"'" c. All

that is implie•d is that the number of integral values repre-

sented is fini.te and that each has a finite number of repre-

sentations

.

•

Definitio'n k. A positive form q = a, b, c [ is said to be

reduced if

(10) c > a >;• b > -a and b ^ when c = a.
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Definition 5. A positive forin q = {_a, b, cj is said to

be semi-reduced if

(11) c > a > lb

Any integer b which, satisfies a >- b > -a necessarily satis-

fies s ;> b > -a; however, the converse is not true. Thus any

reduced form is semi-reduced; but a semi-reduced form need not

be reduced. ^

'

, ^

Theorem L. Every positive form is equivalent to a reduced

form. -...

p pLet q = ax + bxy + cy be a positive form. The integer a

is represented by q when x = +1 and y = 0. Therefore

,1
I 3, h, cJ represents at least one positive integer, and

hence a minimujn positive integer. Call this minimum integer

A. There exist relatively prime integers -< and "Y such that

A = a<<2 + D-^Y -^ cY . If cA and Y x\Tere not relatively prim.e, we

could write -</D = -<-[_ and //D = 7^j_, where D > 1 and -;]_ ^^-"^ ^1

2 2
are integral. Then it would follow that a<<2_ + b.^^'^'l "^ ^"7^1

= a(VD)^ + o{.</'D){Y/D) + ciY/B)^ = A/D^, which contradicts the

fact that A is the minimum positive integral value represented

by q. Thus =< and 7^ are relatively prime, and there exist inte-

gers p and 5 such that -<5 - BY = 1. Hence the transform.ation

given by equations (2) replaces q by the equivalent form.

Q = [_A, k, ril . Transform Q, into the equivalent form

F = \~k, B, Cj with the transformation X = u + tv, Y = v.

Since B = k + 2At, a proper choice for t yields -A -=^ B ^- A.

Because C is represented by P, and F and q are equivalent, C is
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represented by q. Hence C > A. If C > A or C = A and B > 0,

then F is redi;.ceG. If C = A and B < 0, then the transformation

u = 77 , V = - 3 replaces P by A, -B, aI which is reduced.

Theorein ^. Any two equivalent and distinct serr.i-reduced,

positive forms are one of the two pairs:

(12) [^a, a, c] , \~z, -a, cj :

(13) []a, b, a] , Qa, -b, a_ .

Let q = Pa, b, c" and Q = P^, B, CH be any two distinct

and equivalent semi-reduced, positive forms; then there exists

a transformation^ given by equations {2), of determinant unity

which replaces q by Q. The integers A, B, and C are given by

equations (3)

•

Withou" loss of generality we assujne & 7> A. Since

{^^\ - |y r > 0, ^2 + V2 ^ 2 ^Y Because q is semi-reduced.

c > C: p' b which implies b > -a. If -<y> 0, then -<?^ = j'<7'^

and b^/^ -a \^Y . If ^•/< 0, then ^•/= - -<7^ . Since

a > b also implies a > b, -a <<y\ < bo< X . Thus

(lii) a > A = a»<2 + b^r-f c?'^ > a^^ - aUy + ar^ •

,

/ = a(»<2 + r^) - a -<'/ > a ^r •

Hence 1 > -<7'! .

- If \^r = 0, a > A = a»<2 + cr'2 •> a(^2 + y2) ^ ^^ since

both -< and 9^ are not zero in <<5 - ^Y - 1. Thus a = A. If

-</ = 1, then from the relations ( ll;) a = A.
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Let c > e or C > A. Without disturbing a = A and without

loss of generality^ we choose c > a. Suppose 'Y j^ . then

cY~ > a/"^ and from the relations (iL.) a = A> a^s - aUT"!Oil ) i

+ aY ^ a[»<yj . Hence 1 >
j

-< y
|

; therefore <^Y = 0, and since

y T^ , ^ = 0. Now a = A = 0/2 -^ gy2 ^ ^^ "YYiis contradiction

shows that y= 0. Thus from .<5 - P'/ = 1, we get =<5 = 1 or

^ = 5 - ±1. Prom equations (3), B = 2a-<|3 + b, or

(15) B - b = 2a»<p

Now a >• b = -b
j

and a = A > | B
|
or a > -b ^ -a and

a > B > -a. Therefore, 2a > B - b > -2a, or | B - b
I

< 2a:

but from, equation (l5)j, [b - b = 2; -<P I

= 2a S
[

. This impli es

P -< 1, If (3 = 0, then we have a = A, b = B, and, since the

discrim.inants of q and Q must be equal, c = C. Thus q and Q

are equal and not distinct. Hence p j

= 1 and iB - bj = 2a.

From this, one of b or 3 is a_ vjhile the other is -a. Again,

c = C since the discriminants of q and Q are equal. This is

the pair given, by the expression (12), ^

Suppose c = a and C = A. With a = A and b^ - Lac

= B - [\AQ, we get b^ = 3^
. Either B = b or B = -b. If B = b,

the two forms are not distinct. Therefore B = -b and we get

the pair given by the expression (13). _
— .

Theorem. 6. Each equivalence class of positive forms con-

tains one and only one reduced form.

Suppose two reduc-'" positive forms are equivalent. The

reduced forms are also semi-reduced and must be one of the pairs
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given by expressions (12) and (13). The second form in expres-

sion (12) is not a reduced form; and since a = c in both forms

given by expression (13), one of the forms is not reduced.

Hence the two reduced forms are not equivalent and m.ust belong

to different equivalence classes. Since every positive form is

equivalent to a reduced form, each equivalence class contains

a reduced form.

NEIGHBORING FORMS

We see from Theorems l\. and 6 that to obtain the m.inimum

integral value represented by a positive definite form

q = pa, b, cj we first obtain the reduced form, R = Pa, B, CJ ,

of its equivalence class and then let X = 1, Y = in

R = AX -^ BXT + CY to get A, the minimum integral value. "Dpon

substituting X = 1, Y = into the 'transformation which replaces

q by R, we obtain one pair of integers for the independent var-

iables in q which will yield A.

Thus we find it necessary to devise a m^ethod for obtaining

a transformation which replaces the form q by the reduced form,

of its equivalence class.

First we introduce the following notation. A transforma-

tion

/-
. X = ^X + 8Y

•
• y = fX + 5Y

will be vjritten as
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/ 5

This notation, will Toe used throughout this report.

Hence the following definition is necessitated.

Definition 6. A form Q is said to be a right neighboring

form to a form q if there exists a transformation

(16; X

1 5

which replaces q by Q,. The form q is called a left neighboring

form to Q,. .

'

The transformation given by the expression (l6) is of de-

_ r. 1terminant unity and replaces the form q = a. b. a-|
\
b the

r.equivalent form q-, =
i Bn, I)-,, ^2 \

where

(17) b-^ = -b ^anS and a + b5 + a -^5 2.

With the aid of neighboring forms we give the following

proof of Theorem I4-.
'

Among the right neighboring forms cy^ = Ta^, '^1, a2~| t

^1

o

To seeq =
!
a^ b, a-]_

|
there exists one in which a-L >

thiS;, vje divide -b by 2a-j_ to obtain a quotient 5 and a remainder

{

r
{
< a]_. Then

-b = 28-^5 + b-j_ where b-[_ = r, r
j
^ a-, .

Kow if 82 given by equation (17) is greater than or equal to

^1'- '^-1 ^^ semi-reduced. If a-j_ > ap, then there exists a right
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neighboring form Og - \_^2> ^2' ®^J ^° ^1 ^^* wMch a2 > '^2

Again, If So > 32, q2 -^ serai-reduced. But if S2 ::> 83, we con-

tinue tiie process. In a finite number of steps we obtain a

semi-reduced form Q = Ta, B, C^ . This occurs since a]_, 82,

So. . . ., is a finite decreasing sequence of positive integers.

If C 7^ A and A > B > -A or if C = A and A > B > 0, Q is reduced.

"1 1"

However, if B = -A, the transformation
_0 1_

Pa, a, c] which is reduced. If C = A and .:> B

l'

transformation
-1

replaces Q, by

-A, the

replaces Q, by [^A, -B, AJ which is

also reduced. '
.

Recalling the discussion following Definition 2, we find

that the transformation which replaces a form q by the reduced

form of its equivalence class is the product of the successive

transformations employed to produce the right neighboring forms

in the preceding paragraph and one of the transform.ations

1 1

1
or

1
if it is warranted,

-1
!

ASCERTAINMENT OP REDUCED FORMS

w

Theorem. 7. There are a finite num.ber of reduced form.s

.th discriminant -A.

Using Definition Lj. we obtain

il-a^ < Itac = (^ao - b , + j •< A + a ,

where /S. was previously shown to be positive.
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Hence 3a''- < /\ ,,
and

(18) /..., a < Va/3 .
^ / '

'

' '

». ' -^

Thus for a given discriminant -A there are but a finite

numlDer of integral values for a which will satisfy relation

(l8) ; and since we must have -a b _ a, there are but a finite

number of integral b's. For each pair of a ' s and b's there is

at most one integral c which satisfies -/A = b - Lac.

Hence the theorem follows.
.,

There is an expedient method for obtaining all the reduced

forms with a given discriminant^ but first we need the follow-

ing theorem.

Theorem. 8. Let -/S. be the discriminant of a positive

form.. Then A = or 3 (mod I4.) .

A ? ?
Since ii.ac = (mod 1;) in A = I}.ac - b , we see that b

determines the value to which A is congruent modulo four. If

b is even, then b = 2k, b"^ = Lk , and A -E. (m.od k) . If b is

odd, then b = 2k + 1, b^ = /a<2 + ij_k + i_, and A =-1 = 3 (m.od k)

To obtain the reduced forms with discriminant -A let F be

the greatest positive integer such that F< '1/ A/3. Depend-

ing upon whether. Z\ ^ 3 or (m.od ij.) , let the possible values

for b be the odd or even integers, respectively, whose absolute

values are less than or equal to F. If b = 2k, then A = h-3

and (b2 + A)A = k^- -^- j . If b = 2k + 1., then A = kj + 3 and

(b^ -f /^ )/ii. = k^ + k + j + 1. In either case ac = (b + A)/h.
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'is an integer. Write (b^ + A )
/ij- in as many ways as possible

as a product of a and c, rem.embering that c :> a >- b . Omit

all. cases in which b = -a: and if c =- a, accept only the cases

in which h > .

To illustrate, conssider the cases A = 3 snd /\. = b,. When

A = 3,. F = 1, A = 3 (mod h.) , and b = ±1. If b = 1, ac = 1.

Hence a = c = 1. We exc;lude the case! b = -1, since a = c = 1.

For the case A = k- F =
^ 1, A = (mod k) , and b = Since"

ac = 1, a = c = 1. Therefore the reduced forms with discrim.i-

nan ts -3 and -k are Pi, 1, ij and Pl, 0, ll , respectively.

-
- 1-

AUTOMORPHS

- Definition 7. A transformation T of determ.inant unity is

sal d to be an automorph of a form q i.f T transforms q into q.

Theorem. 9. If the automorphs, AI, of a form q ar e known

and if T is a transfor- ,? tion which replaces a form, h by q, then

the automorphs of h are given by TAT"'"^. Equivalent forms have

the same number of automorphs.

The transformation T replaces h by q, A replaces q bjr q..

and T""- replaces q by h. Hence TAT"^ replaces h by h Suppose

^1 is an automorph of h. The transfo rm.ation T'-^T-^T 1eaves q

una Itered. Hence it _s an automorph. A, of q. Thus •we get

T-LT-jT = A or T^ = TAT"! •

Theorem 10. The on1Y -
"'-1 on rph s of a(x^ + y2) a:re
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A =
+1 o"

+1

+ll
B =

+1

The only sutonorphs of s{x'^ + xy + y ) are

A, C =
+1

+1 +1

,-1 _

L

±1 ±1

+1

c is any reduced form other than these, its only automorphs

are A.

jet > a and q From Theorem 5. '^-'le case c

r = 0. Since ^5 - 87'= 1, ^ = 5 = ±1. b, since q = Q,

Thus from equations (3), B = 2a^t3 + b. This implies that

2a<<L3 = or p = 0, Hence the only automorphs of q are A.

Let a = c. According to Definition i^, b > 0. Again^ from.

Theorem 5, j'^^'/''j = or 1. Now (|p[-J5|)2^0so that

2 2 f !

P +5 > 2 1

po
I

. In a m^anner similar to that of Theorem- ^. it

can be shown that bps > -cjpSi . Thus

c = C = ap2 + bp5 + 05^ > cp^ - c
I
p5 |

+ c5^

> c |p5
I

.

Hence
|
So

j

= or 1. If 9^ = 0, then as in the previous para-

graph, ^ = 5 = :tl a^d p = 0. If p = 0, then again ^ = 5 = ^l,

and, from equations (3), B = b -i- 2c7^3 so that 20^5 = 0, Thus

V = 0. In either case we get A.

Suppose 0=0. Prom -^,5 - p/ = 1, we get -p/ = 1 or

S = -/ = 4-1, From c = G, and equations (3), b = B = 2a^p - b.

Hence b = a»<p. If ^ = 0, then b = and q = ax^ + ay^, and we
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get B. If ^ 7^ 0, then ' .<7'| =
|

=< j';^
|

= 1; that is,
|

•<
j
= !/ I

= 1. Hence »<p 7^ 0. Since a ^ b ^ 0, b = s-xp implies that

o<p = 1. Thus ^ = p = -/ = +1. Hence q = qyJ^ ^ bttj + ay and

we get C . .V
•

If ^ = and 5 7^ 0, 'Z = -P = ±1 and b = B = -b + 2c/Q

implies b = c/6. f5 7^ . Since' a = c > b ^ 0, /S = 1. Hence

_|3 = </"= 5 = j-l and q = ax^ + axy + ay^, and v;e get C.

Since ^5 - p/ = 1, the case in which =<, p, Y' ^^^^ ^ °^®

all numerically equal to unity is excluded.

Definition 8. A form [^a, b, cj is said to be a primitive

form if a, b, and c have no com.mon divisors greater than one.

A form which is not primitive is imxprimitive.

Theorem 11 . Each form of an equivalence class is primi-

tive if and only if the reduced form of the equivalence class

is primitive. .

Let q = ax^ + bxy + cy^ = k(a;i_x^ + ^1^7 + <^iJ ) te a posi-

tive im.primitive formx and k > 1 the greatest common divisor of

O
a, b, and c. Since a-, is positive and b"^ - Ixac = k (bi_ - lLa;;L"^l)

is negative, c-i = 'Tsi, b^ , c-~j is a positive form. There exists

a transform.ation T which replaces q^ by the reduced form 0,-, .

Also, T replaces q by Q = kQ,-, , which is necessarily reduced

since 0,-j. is reduced. Hence if the form q is imprim.itive, the

reduced form of its equivalence class is imprimitive.

Let T be a transf'c-'T'-'r'-.i'-'n which replaces the form, q by the

reduced form. Q,. Suppose Q, = kQ,-, where k >• 1 is the greatest
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common divisor of the coefficients in Q. Then T~ replaces Q,-,

by some form H. I'ence T"-'" replaces 0, = kQ-, by a_ = kH. There-

fore the form q is imprimitive if the reduced form of its

equivalence class is imprimitive.

Thus a form, is imprimitive if and only if the reduced form

of its equivalence class is imprimitive. This is equivalent

to saying that a form is primitive if and only if the reduced

form is primitive.

A combination of Theorem 9 and Theorem 10 shows that all

formis equivalent to a(x'^ + y^) have four automorphs and all

forms equivalent to a(x2 + xy + y^) have six automiorphs.

Those forms equivalent to neither of these two have only the

automorphs given by A in Theorem 10. •

According to the discussion preceding Definition 7, all

form.s with discriminant -3 or ~li are equivalent to

2 2 2?X + xy + y or X + y , respectively. These reduced forms are

primitive forms obtained from the forms above by letting a = 1.

According to Theorem 11, all form.s which are equivalent to these

two are primitive. Moreover;, those which are equivalent to

x'^ + xy + y- nave six automiorphs and those which are equivalent

2 2to X + y have four automorphs. Also, all primitive forms

not equivalent to one of these two have only the two automorphs

given by A in Theorem 10. This proves the following theorem.

Theorem 12 . Let w denote the number of automorphs of a

primitive form q of discriminant d.
. If d = -3, w = 6; if d = -4,

w = l\.; and if d ^ -I4., w = 2.
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PROPER REPRESENTATION

An integer m is said to be properly represented by the forin

q = ps^ b, cj if there exist relatively prime integers ^, Y

such that n = a»< + "Oc<Y ^ c7^ . In other words, we say that the

relatively prime pair (^., Y) is a proper representation of m

by a. b, CJ .

Theorem 13. Let {><, /) be a proper representation of m :>

by the form fa, b, c~j of discriminant d. Integers p, 6, n

can be determined in one and only one way to satisfy

»<5 - S/ = 1, C < n < 2m, and

(19) n^ = d (mod Ijia)

~^ f
such that the transformation

_-/ 5_

replaces s., t, c by

the equivalent form m, n, kj in which k is determined by

(20) n^ - umk = d .

Since ^ and /'are relatively prime, there exist integers

S, 5 such that ^p - /S = 1. Similarly, there exist other inte-

gers p', 5' such that ^p' - /5 '
= 1. Equating the left-hand

side of each equation and simplifying yields

(21) »<,(p - p') = /(5 - .5') .

This implies that ^ divides 5-5'. Hence 6=5'+ <^t. Upon

substituting this into equation (21) , we get p - P' = /t, or
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[3 = ,3 ' + '/t. The transformation
r 5j

replaces []a, 'o, c^j

by \ m, n, k_[ where, according to equations (3) ,

n = 2a<^Q + b(=<5 + p/) + 207/8

= 2a^(P' + /t) + bU(5' + ^t) + (P' + /t)/j + 2c7/(5' + ^t)

= 2a^p' + b(^5' + p'y) + 2c/5' + 2t(a^2 + b^/ + c/^)

= n' + 2tin , .

With 3 proper choice of t, n satisfies < n < 2f. and ^ and ^
are uniquely determined. Since []a, b. cj is equivalent to

[^m, n, k^ , the tvo forms must have the same discriminant.

Hence k is determined from equation (20). Necessarily the con-

gruence (19) is satisfied.

Clearly, if •< n < 2m is a root of the congruence (19),

n + 2m. is a root. ' Conversely, n is a root when n + 2m, is a root.

All n which satisfy the congruence (19) and < n '=^ 2m are called

the minimum, roots of the congruence (19). Note that the number

of minimum roots is one-half the total number of incongruent

roots.

To determine whether or not a positive integer m is prop-

erly represented by a form q = |_a , b, c]] of discrim.inant d,

obtain all minim.umi roots n of the congruence (19). For each n,

determiine k from equation (20) and write the form Q = \jxi. n, k~] .

If q and Q are not equivalent, Theorem 13 shows that there is

no proper representation of m by q belonging to the root n.

Let n be a miinimum root for which q /V Q. Let A be ;:n automorph
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or q and T be a transformation which replaces q by q. Then the

product transformation AT reiplaces q by 0,. Conversely, if T^

is a transformation which resplaces q by Q, 1-^~^ is an autc-

morph A of q. Thus T^T"^ = A or T;L = ^'^•

To recapitulate, it is seen that once a transformation T

has been found which will reiplace q by Q, all remaining trans-

formations, which replace q by Q, may be ascertained by forming

the product transformations AT, where A denotes the automorphs

of q.

If the elements in the first column of the m.a trices AT are

denoted by ^ and ^/, m = a-<'^ + b^/ + c/ and m. is properly repre-

sented by q.

Let (»<. Y) be a proper representation of m by the imprim.i-

tive formx q. Let D be the greatest common divisor of q so that

q = Df. It is obvious that (^, Y) is 3 proper representation

of the integer m/D by the positive form f . Conversely, if

("<, 7/) is a proper representation of an integer m-^ by a primii-

tive form, f, (^, Y) is a proper representation of m. = Dm.-[_ by

tne imprim.itive form q - Df

,

Hence a discussion of proper

representation can be reduced to a discussion of proper repre-

sentation by s primitive form.

The preceding paragraphs and Theorem 12 constitute a

proof of the following theorem.

Theorem 1[|.. Let q be z! primitive form with discriminant

d. Let w = 6 if d = -3, w -•' ]^ if d = -li, and w = 2 if d < -k.

Let m be a positive integer. Determ.ine by the congruence (19)

and equation (20) all miiniraum roots n and forms Q = Pm., n, kJ .
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If q and Q are not equivalent, then there Is no proper repre-

sentation of ra by q belonging to the root n. If q ^v^ Q, there

are v; representations of m by q belonging to the root n.

Two problems, as yet, have not been considered. The first

is hov7 to determine when the forms q and Q of Theorem ll}. are

equivalent and the second is how to determine a transformation

T which replaces q by Q, should they be equivalent.

It has been shown in the section on neighboring forms that

there exists a transformation, call it T-j_, which replaces "q by

q-j^, the reduced form of q's equivalence class. Sim.ilarly, there

exists a transformiation T2 which replaces Q by q2, the reduced

form of Q's equivalence class. Should q-, = qg, then q and Q,

have the same reduced form, and hence belong to the same equiva-

lence class. Moreover, the product transformation To = T]_T2~

replaces q by 0,. .

Suppose that b, in the q_uadratic form q = Ta, b, cl , is

an even integer; then b = 2b-j_ and d = b^ - kac = (2b2_)2 - iiac

= a.(b-j_ - ac) = [|.d-^. Prom, equation (20) r/ - ijmk = 1^.6.^^. This

implies that n^ is divisible by Ij.. Hence we write n = 2X, the

congruence (19) becomes

(22) ]}j2 ^ . (^^^ ^^^^— X

and the condition < n < 2m. becomes £ N < m. Necessarily,

any root N of the congruence (22) yields a minimum root, n = 2N

of the congruence (19).

Prom Theorems I-l and 1-2 we are led to the following

theorem..
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Theorem 15, Let 'o in the form q = []a, b, cj be even.

Let m. be positive and odd, and let d-|_ be relatively prime to m.

If d-, is a quadratic nonresidue for some prime factor p of m,

there is no root to the congruence (22). However, if d^^ is a

quadratic residue for each of the r distinct prime factors of

m, then there are exactly 2-'" incongruent roots of the con-

gruence (22) . .

THE SL-M OF TWO SQUARES

If we consider the form q = x^ + y , we find that d = -[;.

and d-| = -1. In order to determine the proper representations

of 3 positive odd integer m by q, we must first determine the

solutions of the congruence (22), Since -1 is a quadratic resi-

due of all primes p of the form p = kk + 1 and a quadratic non-

residue of those primes of the form^ p = [;.k + 3; ws .'?ee that the

congruence (22) has solutions if and only if for each prime

factor p of m, p ^ 1 (mod I4.) ,

Suppose each prim,e p of m satisfies p = 1 (mod b^) . Let r

denote the number of distinct prim.e factors of m. By Theorem

15? there are 2^ solutions to the congruence (22), Take each

solution and obtain n = 2N, Determine the forms Q, = ~vri, n, iCj

of Theoreri 13 . Each Q, has discriminant -1^ and since q is the

only reduced form of the set of positive definite forms with

discriminant -h,, Q ^- q. Thus there are no solutions K of the

congruence (22) for vjhich Q, is not equivalent to q. By Theorem

II4. there are four proper representations of m by each root N,

Hence there are 14.(2^) representations of m by q.
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We have proved the following theore:n.

Theorem l6 . Let m be positive, odd and a product o± powers

of r distinct primes p. Let p = 1 (mod L) for each p. Then m

has exactly k{2^) proper representations by q = x^ + y^ . If

V = 3 (mod i^) for any prime factor p, there is no proper repre-

sentation.

Now suppose m is a positive even integer. Since

x^ = 0, 1 (mod k) and y^ = 0, 1 (mod 1|) , we see that

m = x2 + y2 = 0, 2 (mod k) If m = (mod ij.) , x and y are both

even and there is no proper representation of m by [JL, 0, Ij .

Thus if m is to be considered for proper representation, m m.ust

satisfy the congruence m = 2 (mod I4.) . However, being congruent

to two does not guarantee a solution to 11^ = -1 (mod m.) . For

example, if m = 6, m = 2 (m.od h.) but -1 is a quadratic non-

residue of three. Also, it is obvious that there are no inte-

gers for which 6 = x^ + y2 , If m = I8 = 2 (3^)
_, n h 2 (mod ij.)

and again -1 is a quadratic nonresidue of three. However,

although it is not a proper representation, I8 = 3^ + 32^

Should m = 2 (m.od Ij.) , m = 2 + [f.k = 2( 1 + 2k) for some

integer k. Hence two appears as a factor of m only once. The

remaining factors are odd. The process of obtaining a solution

to N = -1 (mod m) is now reduced to finding an integer N which

satisfies both IT^ =_ -i (mod 2) and N^ = -1 (mod (1 -f 2k)).

Obviously the first congruence has only one incongruent root.

Thus if there is a solution to the second congruence, the

Chinese Remainder Theorem guarantees that the integer K can be
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found. Prom the proof of Theorem l6 we see that

K^ ^-1 (mod (1 + 2k)) has a solution if and only if all the

primes p which divide 1 + 2k are of the form i|.q + 1. In other

words, an even integer m is properly represented by the form

Ql, 0, IJ only if m ^ 2 (mod l\.) and the odd prime divisors of

m are congruent to one modulo four.

Since the only incongruent solution to N ^ -1 (mod 2) is

one. the nujnber of proper representations of m by Fl, 0, 1~|

'

is l\-{2") where r is the num.ber of distinct odd primes divid-

ing m.

.-'' r
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The purpose of this paper was to investigate the methods

for determining the minimum positive integer represented by a

positive definite binary quadratic form: the proper representa-

tions of a given positive integer by a positive definite binary

quadratic form: and^, in the special case of the sum of two

squares, the number of proper representations of an integer

without having to exhibit them..

A form q = [^a, b;, cj was defined to be equivalent to a

second form 0, = fA, B, Cj if and only if there existed a linear

transform.ation of detenninant unity which replaced q by Q. With

this definition in m.ind it was shown that the equivalence of

forms was actually an equivalence relation and that equivalent

forms represented the sam.e integral values. Also, the mutually

exclusive equivalence classes' of equivalent forms were shown to

contain one and only one reduced form.. The minim.um positive

integral value represented by all the equivalent forms of an

equivalence class was then obtained from^ the reduced form.

Neighboring forms were introduced, and with their use a

method was developed by which any positive definite form could

be replaced by a reduced form. " '" '

By introducing congruences, a method was established for

determining whether or not a positive integer m could be prop-

erly represented by a given form q = £b _, b, cJ. The method

involved obtaining forms equivalent to q, obtaining a trans-

formation T which replaced q by one of the equivalent forms,

and then foi-ming the product transformations which would exhibit

the proper representations. The product transformations were



formed from esch of the su.tomorphs of q and the transforma-

tion T. .
'

.

"

The sum of two squares was found to properly represent

odd integers which had, as prime divisors, only those prim.es

of the form lik + 1. Even integers were properly represented

only if they were congruent to two modulo four. However, this

was hut one restriction which had to be placed on the even

integers.


