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ABSTRACT

Understanding the transmission dynamics of pathogens is essential to determine the epidemiology, ecology, and ways of con-
trolling enterohemorrhagic Escherichia coli (EHEC) in animals and their environments. Our objective was to estimate the epide-
miological fitness of common EHEC strains in cattle populations. For that purpose, we developed a Markov chain model to char-
acterize the dynamics of 7 serogroups of enterohemorrhagic Escherichia coli (O26, O45, O103, O111, O121, O145, and O157) in
cattle production environments based on a set of cross-sectional data on infection prevalence in 2 years in two U.S. states. The
basic reproduction number (R0) was estimated using a Bayesian framework for each serogroup based on two criteria (using sero-
group alone [the O-group data] and using O serogroup, Shiga toxin gene[s], and intimin [eae] gene together [the EHEC data]). In
addition, correlations between external covariates (e.g., location, ambient temperature, dietary, and probiotic usage) and preva-
lence/R0 were quantified. R0 estimates varied substantially among different EHEC serogroups, with EHEC O157 having an R0

of >1 (�1.5) and all six other EHEC serogroups having an R0 of less than 1. Using the O-group data substantially increased R0

estimates for the O26, O45, and O103 serogroups (R0 > 1) but not for the others. Different covariates had distinct influences on
different serogroups: the coefficients for each covariate were different among serogroups. Our modeling and analysis of this sys-
tem can be readily expanded to other pathogen systems in order to estimate the pathogen and external factors that influence
spread of infectious agents.

IMPORTANCE

In this paper we describe a Bayesian modeling framework to estimate basic reproduction numbers of multiple serotypes of Shiga
toxin-producing Escherichia coli according to a cross-sectional study. We then coupled a compartmental model to reconstruct
the infection dynamics of these serotypes and quantify their risk in the population. We incorporated different sensitivity levels
of detecting different serotypes and evaluated their potential influence on the estimation of basic reproduction numbers.

Shiga toxin-producing Escherichia coli (STEC) can cause diar-
rhea, hemorrhagic colitis, and hemolytic-uremic syndrome,

which is a major cause of acute renal failure in children (1). STEC
O157:H7 is the most common serogroup linked to human cases
and has received the most attention from public health and re-
search perspectives (2), including designation as an adulterant in
some food products. In recent years, STEC serogroups that ex-
press an O surface antigen other than O157, known collectively as
non-O157, have also emerged as important pathogens. Enterohe-
morrhagic E. coli (EHEC) strains are a subset of STEC character-
ized by the expression of an O surface antigen and the presence of
Shiga toxin and intimin genes. Non-O157 serogroups are esti-
mated to cause 64% of domestically acquired STEC infections in
the United States (2). Six non-O157 STEC serogroups have re-
cently been designated adulterants of nonintact beef products and
ground meat: O26, O45, O103, O111, O121, and O145. The most
common source of exposure and subsequent infection in humans
is food (3–5). Undercooked contaminated beef, unpasteurized
milk, produce, and unpasteurized juices, among other contami-
nated foods, have been associated with STEC outbreaks (3).
Healthy cattle, their feces, and their environment are considered
the primary reservoirs for STEC (6). STEC strains are ubiquitous
on cattle farms, particularly during the summer (7–9). While the
ecology and epidemiology of O157:H7 in cattle populations have
been studied extensively, considerably fewer studies on the distri-

bution and determinants of non-O157 serogroups in cattle have
been conducted. Although different STEC strains may share com-
mon transmission pathways and habitats, variability in survival in
cattle and various environmental habitats may result in differ-
ences in the transmissibility and persistence of the STEC strains in
cattle production systems.

The basic reproduction number (R0) measures the epidemio-
logical fitness of a pathogen in a given host population and is one
of the first metrics we estimate to gain understanding of whether a
novel pathogen would propagate in a population. For non-O157
serogroups, R0 estimates are limited (10). Formally, R0 is defined
as the average number of new infections caused by a typical in-
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fected individual during its infectious period in a completely sus-
ceptible population and has a threshold value of one for successful
invasion: a pathogen with an R0 of �1 cannot persist in the host
population, and in contrast, a pathogen can invade the host pop-
ulation when the R0 is �1 (from a deterministic point of view)
(11). R0 is a population-specific indicator; therefore, covariates
(other than the pathogen itself) can influence pathogen transmis-
sion dynamics and R0. For example, many vector-borne and en-
vironmentally transmitted pathogens are sensitive to ambient
temperature, and R0 can be formulated as a function of tempera-
ture and other environmental covariates (12, 13). Thus, by know-
ing the effects of potential covariates, researchers can estimate R0

more accurately and understand what the relevant factors are and
how they influence pathogen transmissibility. For STECs, envi-
ronmental factors (e.g., ambient temperature) and dietary factors
(e.g., level of distiller grains in the diet and use of direct-fed mi-
crobial products) are potential covariates that may influence R0 (8,
14, 15). Mathematical models (especially compartment models
that track epidemiological states of individuals) are often used to
simulate and trace the transmission dynamics based on R0 and/or
other parameters, and they provide insights into the transmission
dynamics and potential interventions (4, 10, 11, 16).

Our objective was to estimate R0 for different STEC serogroups
in feedlot systems and evaluate the effects of covariates such as
temperature and percentage of distiller grains on R0. In this study,
we used a stochastic, continuous-time Markov chain model to
quantify the transmission of E. coli, defined by (i) the presence of
one of the 7 O-group antigens (O26, O45, O103, O111, O121,
O145, or O157) (the O-group data set) and (ii) the presence of the
O group plus at least one Shiga-toxin gene and the intimin (eae)
gene (the EHEC data set). We also evaluated how detection sensi-
tivity would change the estimate of R0 as well as transmission
dynamics.

MATERIALS AND METHODS
Field data collection. The data collected in two studies carried out in
feedlots in Texas and Nebraska during the summer months (June to Au-
gust) of 2013 and 2014 were used to quantify STEC transmission. During
the 2013 collection, 24 pens of crossbred beef cattle from a large commer-
cial feedlot in the central United States were sampled. Each week, 24 pen
floor fecal samples from two pens that were within 24 h of harvest were
collected (576 samples in total). In 2014, samples were collected from
eight commercial feedlot operations in two major cattle feeding areas.
Study area A included four feedlots within a 150-mile area in northwest
Texas, whereas study area B included four feedlots within a 100-mile area
in central Nebraska. Up to 16 pen floor fecal samples were collected from
each of 4 to 6 pens per feedlot per visit. Each feedlot was visited once per
month for 3 months, for a total of three visits. Each week, the total number
of pens sampled was determined based on the availability of preharvest
pens (approximately 2 weeks before harvest) within each feedlot, as pens
were not resampled throughout the study. Fresh fecal samples (up to 16
samples per pen) were collected from individual fecal pats in multiple
areas throughout the pen; care was taken to avoid ground contamination.
A total of 1,888 samples were collected. In the 2014 study, additional
information was gathered on potential covariates of prevalence on sample
states (Texas or Nebraska), including ambient temperature (in degrees
Fahrenheit) at the time samples were collected, gender composition of the
pen (male, female, or mixed), distiller percentage in the diet (none, 20%,
or 50%), and probiotic product usage (none, product I [Lactobacillus
acidophilus and Propionibacterium freudenreichii; daily dose, 106 CFU/
animal], or product II [Lactobacillus acidophilus and Propionibacterium
freudenreichii; daily dose, 109 CFU/animal).

Samples were subjected to culture- and molecular-based detection
methods at the Pre-harvest Food Safety Laboratory at Kansas State Uni-
versity. The methods included enrichment, serogroup-specific immuno-
magnetic separation, and plating on selective media, followed by a multi-
plex PCR for serogroup confirmation and virulence gene detection (9).
Thus, two types of prevalence data, based on the detection method, were
generated: prevalence data based on serogroup identification (the O gene)
(called the O-group data here) and data based on serogroup identification
plus the presence of at least one Shiga toxin-encoding gene (stx1 or stx2)
and the attaching and effacing intimin-coding (eae) gene (called the
EHEC data here). Details of the 2014 study and the detection protocol can
be found in our previous report (17).

We first tested the concurrence of multiple serogroups to evaluate the
possible interactions among them that would justify a multiserogroup
modeling approach. The concurrences of different strains are quantified
by two indices, the Jaccard index (JI) and the Sorensen index (SI) (18). For
a pair of serogroups, let M00, M01, M10, and M11 indicate the total number
of samples with neither serogroup present in all samples, the total number
of samples with only serogroup 1 present, the total number of samples
with only serogroup 2 present, and the total number of samples with both
serogroups present, respectively, then JI � M11/(M01 � M10 � M11) and
SI � 2M11/(M01 � M10). Both indices measure correlation, but they have
different focuses, as SI puts more weight on concurrence (18). In general,
the larger these index values between a pair of serogroups, the more often
this pair occurs together and hence higher correlation between the pair.

Continuous-time Markov chain model for transmission dynamics.
A continuous-time Markov chain model was developed to simulate the
transmission dynamics of different serogroups at the pen level. The oc-
currences of different serogroups were mostly uncorrelated; therefore,
their transmission dynamics were modeled independently. The model
tracked the number of infected individuals in the pen. Infected, in this
scenario, pertains to cattle shedding O-group or EHEC bacteria in their
feces. We assumed that the prevalence in the collected pen-level samples
reflected the prevalence in the host cattle populations in that pen; e.g., a
20% prevalence in the sample corresponded to 20% infected cattle. There
are two epidemiological states for each individual in the pen, either sus-
ceptible (S) or infected (I). A new infected individual is acquired when
susceptible individuals become infected through transmission by contact-
ing an infected individual at a rate �. Infected individuals can return to
susceptible at a rate � once they stop shedding and recover upon comple-
tion of the infectious period, and this is commonly modeled as a contin-
uous-time Markov chain where infection and recovery occur at their re-
spective rates (19–21).

According to probability theory, this Markov model has a quasista-
tionary distribution where the Markov chain remains stationary before
entering the absorbing state 0 (22). Zero is an absorbing state because once
the Markov chain reaches 0, it stays there forever. Intuitively, it means that
no further infection can occur if there is no infected individual in the
population. If R0 is �1, the expectation (mean) of the quasistationary
distribution can be approximated by the deterministic model’s steady
state. Let I* (percentage of infection in the pen) be the steady state, and we
can derive the pen-level basic reproduction number (R0) as R0 � 1/(1 	
I*) when I* is �0.

If R0 is �1, then an auxiliary process where a permanently infected
individual is placed (as opposed to the original process where the number
of infected individuals can decrease to zero, i.e., reaching the disease-free
equilibrium/absorbing state) is needed in order to accurately infer R0. The
stationary distribution of such an auxiliary process is demonstrated to
approximate a geometric distribution and approximates the original qua-
sistationary distribution well (23). The analytic solution of the probability
of observing exactly 1 (permanently) infected individual of the auxiliary
process is proven as (1 	 R0) (23, 24). For serogroups with low prevalence
(all non-O157 serogroups for the EHEC data and O111, O121, and O145
for the O-group data), this approximation was used to estimate the pen-
level R0.

Basic Reproduction Number of EHEC
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Bayesian statistical inference and analysis. The R0 approximations
derived from the transmission model can be fitted to the cross-sectional
data if we assume that the observed data reflect the quasistationary prob-
ability distribution of the Markov chain (20, 21). This assumption can be
easily met if the pathogen has a relatively short infectious period (i.e., a
large recovery rate), which is likely the case for O groups and EHEC. For
instance, previous estimates for the infectious period of the serogroups
O26 and O103 were between 2.5 and 5 days (9), and consequently we
assumed it was a stable population. The first step was to derive pen-level
estimates of R0 for both O-group and EHEC data in both years based on
correct estimates of prevalence. In the observed data, some pens had zero
positive cases, especially for the EHEC data, but that did not mean that the
actual prevalence was zero. From a probabilistic point of view, any true
prevalence that was less than 100% could yield zero positive cases, accord-
ing to stochasticity. Thus, we adopted an analytical Bayesian framework to
accurately estimate pen-level prevalence using the binomial observation
data (assuming that the prior estimate of the prevalence followed a beta
distribution so that the posterior distribution of the prevalence could be
formulated analytically as another beta distribution) and then used the
posterior distribution of prevalence to infer the pen-level R0 with the
method mentioned in the previous section. The binomial distribution is
an appropriate approximation of the original hypergeometrically distrib-
uted data because the positive cases are very rare for all serogroups in most
pens. This approach can more accurately capture the variability in this
system (25). A detailed description is provided in the supplemental ma-
terial.

In the next step, we further quantified the relationship between exter-
nal covariates and pen-level prevalence/R0 specifically for the EHEC data
in 2014. We also utilized a Bayesian logistic regression model (26–28) to
investigate the potential link between prevalence and potential external
covariates. Bayesian methods had been applied for estimating disease
prevalence at the animal and herd levels (29–31). In our study, a total of
eight parameters were considered: seven for the covariates (sample state
[Nebraska or Texas], ambient temperature when the sample was taken [in
degrees Fahrenheit], gender [female, male, or mixed], dummy coded and
takes two parameters, distiller percentage [low, medium, and high],
dummy coded and takes another two parameters, and probiotic product
usage [types I and II]) and the last one as a constant (i.e., the intercept in
logistic regression). A detailed description of this Bayesian logistic regres-
sion model is provided in the supplemental material.

The estimated parameters of covariates were then used to estimate
pen-level prevalence and to provide covariate-specific estimates of R0. The
overall R0 (without consideration of covariates) for the O-group and
EHEC data were compared using unbalanced analysis of variance
(ANOVA), with years and serogroups as factors (assuming no temporal
autocorrelation between years). For the EHEC data in 2014, we then also
compared the covariate-specific R0 estimates using ANOVA, with levels of
covariates and serogroups as factors.

We then simulated the Markov model to reconstruct the complete

transmission dynamics. (Note that this Markov model corresponds the
continuous-time Markov chain model for transmission dynamics simu-
lation and should not be confused with the Markov chain Monte Carlo
method [see the supplemental material] to numerically simulate the pos-
terior distribution of the parameters.) We scale the recovery rate � as 1
(meaning that 1 time unit in the simulation represents the average infec-
tious period/recovery time), and thus the transmission rate � equals R0.
The temporal dynamics of prevalence in each serogroup were simulated
100 times, and each simulation had a total duration of 10,000 steps to
ensure convergence to the quasistationary distribution (22).

The sensitivity of the diagnostic tests used for prevalence determina-
tion can influence the estimation of R0. The recovery and detection of
non-O157 serogroups are challenging because of the lack of unique phe-
notypic or chemical characteristic that could be exploited for detection
purposes (32, 42). In addition, factors such as sample preparation, con-
centration of the microbe in the sample, or the amount of material used in
the test can also influence the test performance (32). Hence, the sensitivity
of the detection methods for non-O157 serogroups is fairly uncertain. For
example, the average sensitivity of culture methods for O-group detection
ranges from above 40% to 75% for most serogroups (M. W. Sanderson,
unpublished data). We investigated the influence of test characteristics on
prevalence and R0 for the seven O serogroups. The true prevalence was
obtained by taking into account the effect of test sensitivity and specificity
on prevalence using the Rogan-Gladen estimator (33). We considered
three levels of sensitivity, i.e., 90%, 75%, and 40%, to comprehensively
bracket the potential sensitivity ranges for most non-O157 serotypes, and
we assumed perfect specificity, i.e., a 100% specificity value indicating that
all positive cases are true positives and that no false positives existed in the
data.

RESULTS

The concurrence of multiple serogroups is summarized in Tables
1 and 2. Most serogroups had very low concurrence with others;
i.e., the SI and JI values were below 0.05, with the few exceptions of
JI and SI between O103 and O157 for the O-group data (0.14 and
0.19, respectively), SI between O157 and O145 for the O-group
data (0.08), and JI between O103 and O26 for the EHEC data
(0.06). In general, O157 occurred simultaneously with almost all
other non-O157 serogroups (but still with relatively low concur-
rence; i.e., the SI and JI were below 0.20), while others concurred
with no more than three other serogroups (Tables 1 and 2). Thus,
we suggest that these serogroups could be modeled indepen-
dently.

Next, we show the posterior means and standard deviations of
the parameters that are determined from the Bayesian inference
for potential covariates that influenced prevalence and R0 for both
the O-group and EHEC data sets (Tables 3 and 4, respectively).
The parameter estimations varied substantially across different

TABLE 1 Concurrence among serogroups using O-group data

Serogroup

JI or SIa with serogroup:

O26 O45 O103 O111 O145 O157

O26 0 0.01 0.02 0.01 0.05 0.01
O45 0.02 0 0.02 0.01 0.02 0.01
O103 0.03 0.05 0 0.01 0.03 0.14
O111 0.02 0.01 0.01 0 0 0.01
O145 0.04 0.03 0.05 0 0 0.04
O157 0.01 0.01 0.19 0.02 0.08 0
a Upper triangle elements, Jaccard index (JI) (shaded); lower triangle elements,
Sorensen index (SI) (unshaded). Results are for combined prevalence data in 2013 and
2014. Serogroup O121 is excluded because it does not have any positive case in either
year.

TABLE 2 Concurrence among serogroups using EHEC data

Serogroup

JI or SIa with serogroup:

O26 O45 O103 O111 O145 O157

O26 0 0 0.06 0 0 0.02
O45 0 0 0 0 0 0.01
O103 0.02 0 0 0.02 0 0.02
O111 0 0 0.05 0 0 0.02
O145 0 0 0 0 0 0.01
O157 0.04 0.01 0.04 0.01 0.02 0
a Upper triangle elements, Jaccard index (JI) (shaded); lower triangle elements,
Sorensen index (SI) (unshaded). Results are for combined prevalence data in 2013 and
2014. Serogroup O121 is excluded because it does not have any positive case in either
year.
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serogroups (within each of Tables 3 and 4): no serogroup had a set
of parameters similar to that of others. Furthermore, the param-
eter estimates also differed between O-group data and EHEC data.
These results indicate that different serogroups responded to dif-
ferent external covariates distinctively and that different detection
criteria (e.g., serogroup alone versus serogroup plus Shiga toxin
plus eae gene) led to different parameter estimations for the cova-
riates.

The overall R0 estimates (without taking covariates into con-
sideration) in 2013 and 2014 are shown in Fig. 1 and Fig. 2 for
O-group data and EHEC data, respectively. Within each figure
(Fig. 1 and 2), there was significant year-to-year variability be-
tween 2013 and 2014 (P � 0.01). There was also substantial be-
tween-serogroup variation (P � 0.01). In O-group data (Fig. 1),
O26, O103, and O157 had substantially higher R0 estimates than
other serogroups (O111, O121, and O145), and the R0 for O45 was
higher than the those for the serogroups with R0 values of less than
one (O111, O121, and O145) but still substantially lower than the
larger ones (for O26, O103, and O157). In the EHEC data, no
non-O157 serogroups had an R0 of �1 (Fig. 2), and the largest
value was about 0.8 for O103 in 2014. The R0 values for O157 were
approximately 1.9 in 2013 and 1.3 in 2014, and the estimates were
consistent with previous research (�1.5) as well (19).

The R0 estimates corresponding to different levels in the four
covariates (state, distiller percent, sex, and probiotic usage; tem-
perature was set constant using the mean value across the data) are
shown in Fig. 3. In general, there was not a consistent response of

the covariates across all the different serogroups. For example,
O26, O45, O103, and O157 in Nebraska had significantly (P �
0.05) larger R0 values than those in Texas; however, the R0 values
for O121 and O145 were significantly higher (P � 0.05) in Texas.
Interestingly, the use of a medium concentration of distillers in
feed (10%) yielded highest the R0 for O26, O103, and O157 but the
lowest for O145. While pens with predominantly male animals
tended to yield significantly higher R0 values than those with fe-
males for O157 (P � 0.05), again such a conclusion was reversed
for O103. The pattern of R0 for different probiotic usages was even
more complicated. These results further reinforced our previous
statement that different serogroups tended to respond to different
external covariates differently.

Next, we reconstructed the transmission dynamics by simulat-
ing the continuous-time Markov chain model for the different
serogroups from the EHEC data (because they were more specific
than the O-group data; i.e., the EHEC data were based on three
criteria, whereas the O-group data had only one criterion and was
more relevant to food safety concerns). The mean transmission
dynamics from 100 simulations are shown in Fig. 4 (upper panel).
Except for O157, which converged to its quasistationary distribu-
tion in a few steps, all non-O157 EHEC groups diminished to zero
after a few initially infected animals were introduced into the pop-
ulation, and this result was expected because all non-O157 EHEC
groups had an R0 value of less than one. Among the non-O157
serogroups, O103 was the slowest to converge to zero because it
had the highest R0 (�0.8). In general, the larger the R0 value (while

TABLE 3 Parameter estimation of external covariates for serogroups using O-group data from the 2014 data set

Serogroup

Mean (SD) posterior distributiona


0 
1 
2 
3 
4 
5 
6 
7

O26 2.80 (0.71) 	0.02 (0.01) 0.41 (0.27) 	0.07 (0.02) 	0.05 (0.01) 0.16 (0.05) 1.44 (0.81) 	0.97 (0.87)
O45 	0.45 (0.41) 	0.71 (0.14) 0.11 (0.03) 	0.31 (0.05) 	0.03 (0.01) 1.65 (0.52) 0.76 (0.40) 0.65 (0.28)
O103 1.21 (0.71) 0.85 (0.57) 0.35 (0.08) 0.18 (0.10) 	0.03 (0.01) 	0.01 (0.01) 0.64 (0.41) 	0.67 (0.14)
O111 	1.65 (0.62) 	1.96 (0.90) 1.12 (0.33) 	4.44 (0.91) 	0.01 (0.01) 3.49 (0.44) 	6.91 (1.27) 1.48 (0.54)
O121 	1.75 (0.25) 3.14 (0.83) 	0.02 (0.03) 	0.43 (0.06) 0.02 (0.01) 	5.35 (1.39) 	2.53 (0.91) 	3.23 (0.95)
O145 	1.67 (0.58) 0.91 (0.33) 1.33 (0.42) 1.49 (0.52) 	0.01 (0.01) 	3.12 (0.78) 	1.57 (0.85) 	1.27 (0.16)
O157 3.66 (1.86) 	1.38 (0.51) 	0.27 (0.11) 0.17 (0.05) 	0.06 (0.04) 1.45 (0.49) 2.31 (1.96) 	0.01 (0.01)
a The parameter estimations are the mean (standard deviation) of the posterior distribution of each parameter associated with an external covariate. Only data from 2014 were used
for parameter estimation because no covariate information was available in 2013. The parameters 
 are the parameters from the logistic regression, as described in “Bayesian
statistical inference and analysis” in Materials and Methods. The covariates associated with parameter 
1 through 
7 are U.S. state, temperature, gender (three levels; takes two
parameters), distiller (three levels; takes two parameters), and probiotics. 
0 is a constant from the logistic regression. Mixed gender and distiller type 3 are considered baseline
scenarios in the logistic regression for both O-group and EHEC data.

TABLE 4 Parameter estimation of external covariates for serogroups using EHEC data from the 2014 data set

Serogroup

Mean (SD) posterior distributiona


0 
1 
2 
3 
4 
5 
6 
7

O26 	6.58 (0.43) 2.89 (0.79) 	0.30 (0.66) 	4.94 (0.83) 	0.09 (0.04) 2.01 (0.94) 	6.89 (0.58) 1.89 (0.47)
O45 1.37 (0.47) 8.39 (0.88) 	2.65 (0.14) 5.93 (0.70) 	0.40 (0.07) 5.00 (0.80) 	1.59 (0.82) 	0.04 (0.01)
O103 	2.39 (0.30) 	0.75 (0.21) 1.49 (0.31) 0.90 (0.08) 	0.01 (0.00) 	0.16 (0.02) 0.38 (0.14) 	0.57 (0.29)
O111 	13.78 (3.23) 	1.20 (0.28) 3.17 (0.86) 	2.29 (0.84) 0.10 (0.04) 8.49 (3.31) 	3.89 (0.61) 3.47 (1.80)
O121 	1.22 (0.46) 	1.85 (0.89) 	0.91 (0.33) 	0.17 (0.03) 	9.21 (1.68) 	0.78 (0.40) 	0.31 (0.11) 	1.35 (0.56)
O145 	7.26 (0.70) 0.75 (0.05) 0.15 (0.03) 	8.50 (1.19) 0.01 (0.01) 	0.41 (0.17) 0.20 (0.12) 0.28 (0.07)
O157 3.66 (0.86) 	1.38 (0.35) 	0.27 (0.13) 0.17 (0.11) 	0.06 (0.03) 1.45 (0.84) 2.31 (1.96) 	0.01 (0.00)
a The parameter estimations are the mean (standard deviation) of the posterior distribution of each parameter associated with an external covariate. Only data from 2014 were used
for parameter estimation because no covariate information was available in 2013. The parameters 
 are the parameters from the logistic regression, as described in “Bayesian
statistical inference and analysis” in Materials and Methods. The covariates associated with parameter 
1 through 
7 are U.S. state, temperature, gender (three levels; takes two
parameters), distiller (three levels; takes two parameters), and probiotics. 
0 is a constant from the logistic regression. Mixed gender and distiller type 3 are considered baseline
scenarios in the logistic regression for both O-group and EHEC data.
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still smaller than 1), the more slowly the prevalence decreases to
zero (i.e., longer infectious period).

The R0 estimates for the seven serogroups from the EHEC data
under different sensitivity levels are shown in Fig. 5. The R0 esti-
mates from the original data are also presented as the baseline
(corresponding to a hypothetical 100% sensitivity). At 90% sen-
sitivity (about 10% probability of missing a true case), the R0

estimates were substantially higher than the baseline estimates;
however, still none of the 6 non-O157 serogroups had an R0 of �1.
If the sensitivity level decreased to 75%, then only O103 had an R0

of �1, and all other non-O157 serogroups (O26, O45, O111,
O121, and O145) still had R0 values of �1. At an even lower
sensitivity level (40%), all non-O157 serogroups had R0 values
of �1, although O111, O121, and O145 had R0 values of margin-

ally greater than one (�1.10), while O26, O45, and O103 had R0

values of substantially greater than one. The time series of preva-
lence using the 40% sensitivity level is provided in Fig. 4 (lower
panel) to contrast with the original result (assumed at 100% sen-
sitivity), and the results clearly show that prevalence of O111,
O121, and O145 still tended to decrease to zero even though their
R0 values were (marginally) greater than one. This was expected
from a stochastic Markov model with absorbing state (22). These
results demonstrate the substantial impact of detection sensitivity
on estimated R0 values.

DISCUSSION

In this study, we estimated the R0 values of important E. coli sero-
groups using cross-sectional data with a stochastic Markov chain

FIG 1 Pen-level R0 values of serogroups using O-group data in 2013 and 2014. The dashed line (y � 1) indicates the threshold of R0 � 1. The circles and triangles
represent mean values, and error bars represent standard deviations. For the O-group data, O26, O45, O103, and O157 have R0 values of �1, indicating their
potential to persist in the cattle population. On the other hand, O111, O121, and O145 have R0 values of �1, and it is difficult for them to persist in the
population.
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model. R0 is one of the most important ecological/epidemiological
metrics for infectious pathogens, and the threshold of R0 (numeric
value 1) determines whether the pathogen is able to persist in the
population. Furthermore, we also used a Bayesian modeling
framework to comprehensively assess the quantitative linkage be-
tween multiple external covariates, prevalence, and R0. Although
longitudinal data or multiple cross-sectional data are likely to
increase the accuracy of estimates for R0 (34–36), longitudinal
sampling can be financially challenging and infeasible; thus, our
approach is very useful under such constraints. We also recon-
structed the entire dynamics of prevalence over time (Fig. 3) based
on the estimated parameters. Thus, this provides a valuable tool
for risk assessment of E. coli burden and enhances our under-
standing of explicit transmission dynamics of relevant E. coli se-

rogroups on farms (16). Our approach can be easily expanded and
adapted to other pathogen systems. The only critical assumption
that our approach relies on is that the cross-sectional data are
obtained when the system is stationary (steady state). This as-
sumption can be easily met if the pathogen dynamics can be de-
scribed with a transmission model with only two states (suscepti-
ble and infectious), the host population is closed, and the
pathogen has a relatively short infectious period (i.e., a large re-
covery rate �).

From the results of our model, the R0 estimates for different
serogroups were substantially different, and this result is consis-
tent with previous studies that have estimated R0 for some of the
serogroups (10, 19, 37); only O157 had the potential of persistence
in the population because its R0 was �1. The ability of O157 to

FIG 2 Pen-level R0 values of serogroups using EHEC data in 2013 and 2014. The dashed line (y � 1) indicates the threshold of R0 � 1. The circles and triangles
represent mean values, and error bars represent standard deviations. In contrast to the results in Fig. 1, only O157 has an R0 value of �1, and all other, non-O157
serogroups have R0 values of �1 and cannot persist in the cattle population (using the EHEC data set, where the determination of the pathogen is more stringent
than for the O-group data set).
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specifically colonize the recto-anal junction of cattle is likely to
increase the persistence of O157 compared to non-O157 sero-
groups in the cattle population. O157 has been shown to survive in
several environments, including water and soil. Carriage of O157

has also been described in a variety of organisms, including pro-
tozoa, invertebrates, birds, and mammals (38). The R0 values for
non-O157 groups were overall lower than that for O157, which
suggests that abiotic and biotic reservoirs other than cattle may
even play a greater role in non-O157 ecology.

Covariate level-specific R0 estimates have shown that different
serogroups have very different responses to different levels of the
covariates (Fig. 3). It is highly possible that current farm condi-
tions favor O157 and provide a better environment for it (and its
larger R0 value would be, indeed, the consequence of such an
environment). The lower transmissibility (smaller R0 value) of
other non-O157 serogroups might be the result of less favorable
conditions for them (36, 39, 40). We further show that transmis-
sibility for serogroup alone for non-O157 was substantially differ-
ent than transmissibility of EHEC group. While the O157 sero-
group has both Shiga toxin and intimin virulence genes, most
non-O157 serogroups modeled here were not associated with vir-
ulence genes (9). Thus, the O-group and EHEC data sets were very
similar for O157 but different for non-O157 serogroups, where
prevalence of EHEC was much lower than for the O-group data,
especially for O26, O45, and O103. More specifically, we point out
that this study was done during summer months due to financial
and labor constraints, and the temperature range in this study is
only a subset of potential temperature ranges, which thus warrants
further investigation during other seasons as well. In addition,
some of the covariate parameter values are close to zero (e.g., the
parameters associate with 
4 for all serogroups), which indicated
that the corresponding covariate might not influence R0 substan-
tially.

Our study clearly indicates that different detection sensitivity
levels have a substantial impact on estimated propagation capa-
bility (as measured by R0). The transmissibility of non-O157 se-
rogroups is completely different at high sensitivity (100% and
90% sensitivity, approaching disease-free equilibriums for all
non-O157 serogroups) than at lower sensitivity (50% sensitivity
levels, approaching endemic equilibriums and enabling transmis-
sion especially for O26, O45, and O103). Consequently the disease

FIG 3 R0 values of serogroups using the EHEC data at different levels of different covariates. The dashed line (y � 1) indicates the threshold of R0 � 1. Low
distiller, 10%; medium distiller, 30%. The circles, triangles, and squares represent mean values, and error bars represent standard deviations.

FIG 4 Simulated time series of prevalence for different serogroups using
EHEC data at different sensitivity levels. Upper panel, prevalence at 100%
detection sensitivity; lower panel, prevalence at 50% detection sensitivity. All
the R0 values are estimated from the 2014 EHEC data. The unit for the x axis is
one infectious period (1/�). Note that the total simulation time is long enough
so that even for the O111, O121, and O145 serogroups with R0 values of �1,
the transmissions still eventually die out (lower panel). This is expected from
the stochastic Markov model (22).
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dynamics are completely different. Thus, it is critical to under-
stand test performance for non-O157 serogroup detection and to
provide more accurate models of disease dynamics based on ac-
curate R0 estimates (17, 41).
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