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NOMENCLATURE

t(x,y) temperature -

T(X,r) transformed temperature

ty(x,y), Tjj(X,Y) upper bounding temperature •

"^

tL(x,y), TjJXfl) lower bounding temperature

tj^(x,y), Tjn(X,Y) mean value of upper and lower bounding temperature

z con^jlex variable

R(f (z)) real part of f (z)

I(f (z)) imaginary part of f(z)

q .
internal heat generation per unit voliime

k
'

thermal conductivity

C parameter

Er percentage error relative to the maximum temperature

Er* .
percentage error relative to the local temperature

D length of plate

B height of plate -

B dimensionless height of plate

x,y coordinates of plate

X,Y dimensionless coordinates of plate

i,j,k,m,n positive integers



INTRODUCTION

V7ith the development of high-speed digital computers, we have been able

to obtain approximate solutions for many boundary value problems for which

the exact solutions are either impossible or too cumbersome. Unfortunately,

when it is desired to determine the error associated with an approximate

solution, the error analysis is frequently even more complicated than the

solution itself. In this work, an attempt has been made to obtain exact

solutions to modified problems such that these solutions provide upper and

lower bounding functions for the original problems.

In general we seek solutions which will satisfy the differential equa-

tions and the boundary conditions. There are two ways to modify the problems

i.e. either the differential equations or the boundary conditions are modi-

fied. In the present case we find an infinite series, every term of which

satisfies the differential equations, and try to form the upper and lower ,.

bounds by certain techniques.

To demonstrate the technique, we will solve two two-dimensional, steady

state, heat conduction problems.

SOLUTION OF A TWO-DIMENSIONAL HEAT CONDUCTION PROBLEM

Definition of the Problem

The differential equation for the temperature t in two-diraensional,

steady state heat conduction, without internal heat generation, is shoxm by

Schneider [2] to be

I

J
Numbers in brackets designate References at end of report.
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(1)

where '^ indicates the operator^ 2 ^3^2 '^

The boundary conditions for a two-dimensional plate (see Fig. 1) are assumed

in the following form. . ,. \

1. t(0,y) = g^{Y) ,

". V ^,:^:

2. t(D,y) = g2(y)
* - -^"; "/

3. t(x,0) = f^ix)
''

'

•' ^/ ^

li. t(x,B) - fgCx)

Fig. 1. Two-dimensional plate.

The problem is to determine the t which satisfies equation (l) and the

prescribed boundary conditions.

Variational Procedure for Upper and Lower Bounds

Consider a complex variable

z = X + iy

and the polynomial

.2 + a^z^H-F(z) "^ ^Q + a-j_z + a2Z + •••..

Expanding each term into real and imaginary parts, we have

(2)
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z ° X + iy

2 2 2 2
z = (x + iy) = X + 2ixy - y

RCz^) = x^ - y2

I(z^) = 2xyi

5-^ = (x + iy)
3 .3

X + 3ixV - 3xy^ - iy^

R(z^) « x^ - 3xy^

1(2^) » (3xV - y^) i

etc.

and the general tena is

^, n. n (n\ n-2 2 _^
/n\ n-UL _R(z)-x -UJx y +^j^lx r*

-

- *(-i)'-'
(2(2-1)) -""'"V'''""*

!(.") - i p-V -
(?)
x-V *

(5)
x"-V -

, , ,k-l / n \ n-2k*l 2k-l ^ 1
•••*(-^'

V2k-lj=' ^ *
J

Utilizing these functions, an infinite series f (x,y) is defined as

2 2>
f (x,y) = bQ + b^x + bgy + b3(x^-y^) + b^(2xy) +

' • * ^2n-l
+ (-1)

(3)

(U)

n
,2(k-l)

"-(?)x-V.(;:)x"-V ......

n-2(k-l) 2(k-l) ^X y +

/n\ n-5^ ^ , n\k-l/n \ n-2k+l 2k-l ^ 1

(^J^
^ *^"^^

(,2k-l)^ y *••••] (5)
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Now since each term of (3) and (U) satisfies equation (l), f(x,y) is an

infinite series every term of which satisfies the differential equation (l),

see appendix A for the proof. VJe are going to choose a finite number of

terras from (5) as an approximate solution. The coefficients xfill be deter-

mined such that the approximate temperature at every point on the boundary

is in one case higher than the exact temperature. Then the approximate

temperature will be higher than the exact temperature at every point in the

region, see appendix B for the proof. This provides an upper bounding

solution. Similarly, we get a lower bounding solution by choosing a new set

of coefficients such that the approximate ten5)erat\ire at every point on the

boundary is lower than the exact temperature.

The exact solution is somewhere between the upper and the lower bounds.

If the mean value of the bounds is taken as the approximate solution, the

associated maximum possible error is determined by half of the difference

between the bounds. In order to obtain a good solution, an effort is made

to find a set of coefficients such that the bounds are as close to each other

as possible. The bounds thus obtained are defined as the least upper bound

and the greatest lower bound, expressed as ty(x,y) and t-[^(x,y) respectively.

The mean value is

*m

tu * H

The maximum possible error relative to the raaximxim temperature in the region

vrill be

Er =
(
\' ^^

] (100) %
\ max y

and that illative to the local temperature will be
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EXAMPLE PROBLEM 1

Consider a two-dimensional problem without internal heat generation as

shotm in Fig. 2.

B

t=0

t=f2(x)

t=0

D

Fig. 2. Two-dimensional plate, '

^

For this problem the general heat conduction equation is equation (l)

and the boundary conditions are assumed to be

1. t(0,y) =

2. t(D,y) =0

3. t(x,0) »

ii. t(x,B) = fg^^-) = 6^ *max(VD)^(l " xA>)^

The equations are transformed into diraensionless form by letting

y = y/D, X = x/D, H = B/D and T = ^/\ax' "^^^ differential equation and the

boundary conditions for the transformed problem become



^
'f;)> 'fT- "-

V T =

1. T(0,Y)

2. T(1,Y)

3. T(X,0)

U. T(X,H) f,(I2X)/t ^ - Fp(X) = 61; X^(l-X)3
i

,

(6)

T»0

T=F2(X)-61|X^(1-X)^

T=0

T=0

1.0 X

as

Fig, 3. Traiisformed two-dimensional plate.

We chose H » 0.75 for the numerical stucJy. Eq;aation (5) can be written

2 ^2>
f (X,Y) = ai + agX + a3Y + a^(X -Y'') + a^(2XY)

f(X,« - a, .£ a3,[xi -
(^)

X^-¥ . (j^-V -



+

^ 2k-l

or expressed as

f (X,Y) = ri a^M^(X,Y) (8)

We know that Kj_(X,Y) i=l,2,3, satisfies the differential equation (6).

As stated before, if a set of coefficients a-j_ through a^ can be determined

such that the approximate solution, f(X,Y), is higher than the exact temper-

ature T on the boundary, then f(X,Y) is an upper bound for T(X,Y). To do

this, V7e use the Method of Collocation. First, m collocation points are

arbitrarily chosen along the boundary. Then at each point the folloviing

condition is itnposed

f (X,Y) = T(X,Y) +
^3^ (9)

where 5*1 is an arbitrary parameter.

This results in m simultaneous equations in m unknox-nas a^ through a^.

The simultaneous equations are solved by using the well-laioim Gauss Method

[3]. The coefficients thus obtained are substituted into equation (8) to get

the equation for the approximate solution.

This approximate temperature may now be compared xri.th the exact temper-

atxire on the boundary. If Oj^ is big enough the approximate temperature will

be higher than the exact temperature throughout the boundaiy, and will thus

be an upper bound. The lowest value of o-, which satisfies the above condi-

tion will give us the least upper bound.



Similarly the greatest loxrer bound is obtained by starting with

f (X,Y) = T(X,Y) - $2 (10)

In order to get a good solution, i.e. the solution where the bounds are

close together, a sufficient number of collocation points must be used. For

the present case, the points and the exact teraperatxires are shox-m in Table 1.

Table 1. Collocation points and exact tenqjerature

.

i h. ^i \ i ^i ^i %
1 .

15 .932 .750 .016291

2 .n? 16 1 .750

3 .2l;2 - 17 1 .663

U .U03 18 1 .5U0

5 .5U0 19 1 .i;03

6 .663 20 1 .2U2

7 .750 21 1 .11?

8 .068 .750 .016291 22 1

9 .160 .750 .15537U 23 .897

10 .270 .750 .i;90050 2U .760

n .Uio .750 .905905 25 .600

12 .590 .750 .905905 26 .iiOO

13 .730 .750 .190050 27 .2liO

11; .8U0 .750 .15537U 28 .103

Choosing ^ = 0.3977 10"^ and 5*2 = 0.5166 lO"^, we obtain the least upper

bound and the greatest lower bound. The difference betvreen the bounding

temperatures and the exact temperature on the boundary is shown in Fig. k, 5

and 6. For interior points the mean value of the bounding ten^jeratxires.

mean' is taken as the best approximation of the temperature distribution.

The results are compared with the exact temperature, see appendix C, in Table

2. The difference between the bounding tengjeratures and the exact temper-

ature is also shown in Fig. 7, 8 and 9 along the lines Y = 0.1, 0.3 and 0.5.

We see from Fig. 1; through 9 that the upper and the lower bounds are

*- ^ J- V



c^oH

o

t

Fig. k' Difference between the bovinding temperatures

and the exact teinperature on the boundary.
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S Fig. 6. Difference between the bounding teiroeratures

and the exact temperature on the boundary.



Table 2. Values for the temperature distribution
of exanple problem 1.

10

X Y T (lower) T (upper) T(i!iean) T(exact) Er % Er"-^

.1 .075 .010U5Ii .011369 .010912 .010953 .00)1130 .3770

.2 .075 .020510 .023)1 23 .020967 .021003 .0036U5 .1735

.3 .075 .028659 .029575 .029116 .029196 .007995 .2738

.U .075 .03U086 .035000 .03i;5U3 .03l;595 .005160 .1U92

.5 .075 .036015 .036927 .036U72 .O36U8U .0011 9U .0327

.6 .075 .O3U086 .035000 .03U5U3 .O3I159I4 .005l2li .1)181

.7 .075 .028659 .029575 .029116 .029195 .007926 .2715

.8 .075 .020510 .0?11i23 .020967 .021002 .003550 .1690

.9 .075 .OIOI45U .011369 .010912 .010952 .OOU02O .3670

.1 .150 .021885 .022800 .0223i42:' .022U09 .006620 .295U

.2 .150 .0U25U0 .0U3lt55 .0li2998 .OlLt305l .005339 .I2UO

.3 .150 .059U62 .060377 .059919 .059980 .006083 .loiU

.u .150 .070688 .071603 .0711)16 .071197 .005180 .0727

.5 .150 .07U638 .075552 .075096 .075136 .OOU038 .0537

.6 .150 .070688 .071603 .0711)16 .071197 .OO510U' .0717

.7 .150 .059U62 .060377 .059919 .059979 .OO59UO .0990

.8 .150 .OU25UO .OU3U55 .Oli2998 .Ol;30U9 .0051 )i5 .1195

.'9 .150 .021885 .022800 .0223U2 .022ii06 .00639U .285U

.1 .225 .031318 .035233 .O3I4776 .03U839 .006369 .1828

.2 .225 .066666 .067581 .O6712U .067179 .00558U .0831

.3 .225 .093U93 .0914107 .093950 .091007 .005716 .0608

.It .225 .inh57 .112372 .111915 .11,1969 .005U28 .0U85

.5 .225 .117805 .118720 .118263 .ll83lit .005072 .OU29

.6 .225 .mh57 .112372 .111915 .111968 .005308 .0U7U

^7 .225 .093U93 .09l!i407 .093950 .09lt005 .005U91 .058U

.8 .225 .066666 .067581 .O6712U .067176 .005280 .0786

.9 .225 .03U318 .035233 .03U775 .03U835 .oa6oi5 .1727

.1 .300 .018129 .OU90ii3 .0[i8586 .0)48626 .00397ii .0817

.2 .300 .093863 .09U778 .09U320 .O9I+37U .005393 .0571

.3 .300 .13251i9 .133i|6U .133006 .I3306U .oo57)j.6 .Oi;32

.It .300 .158891 .159806 .I593ii9 .159U06 .005750 .0361

.5 .300 .I6828U .169199 .I687it2 .168798 .005620 .0333

.6 .300 .158891 .159806 .1593U9 .l59l;05 .005578 .0350

.7 .300 .1325U9 .133ii6U .133006 .133061 .005i|2l; .OI1O8

.8 .300 .093863 .09U778 .09U320 .09h370 .OOU96O .0526

.9 .300 .OU8129 .Ol;90U3 .Oli8586 .0U8621 .OO3U7I1 .0715

.1 .375 .063la3 .06U328 .063871 .063915 .OOi^37it .O68U

.2 .375 .12li925 .1258I4O .125383 .125U38 .005U82 .OU37

.3 .375 .178595 .179509 .179052 .179112 .005970 .0333

.u .375 .216077 .216992 .216535 .216597 .006172 .0285

.5 .375 .229623 .230537 .230080 .2301)11 .006093 .0265

.6 .375 .216077 .216992 .216535 .2l659li .00593li .0271+

.7 .375 .178595 .179509 .179052 .179107 .005528 .0309

.8 .375 .12lj.925 .12581iO .125383 .125U32 .OOU895 .0390
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Table 2. (cont.)

X Y T (lower) T (upper) T(mean) T (exact) Er % Er*^

,9 .375 .063iil3 .061i328 .063871 .063908 .003703 .0579

.1 .U^o .079757 .080672 .O8O21U .080276 .006122 .0763

.2 .1;50 .I6011i7 .161062 .160605 .I6C66I .005616 .0350

.3 .U50 .233783 .23i;698 .23U2ia .23U30U .006306 .0269

.U .U^o .28709U .288009 .287551 .287620 .006861 .0239

.5 .li^O .30670U .307615 .307161 .307228 .006675 .0217

.6 .U50 .28709U .288009 .287551 .287617 .006536 .0227

.7 .li5o .233783 .2311698 .23U2la .23U298 .005710 .02hU

.8 .U50 .1601 )i7 .161062 .160605 .160653 .COU838 .0301

.9 .I;50 .079757 .080672 .080215 .080267 .005218 .065U

.1 .525 .095U28 .0963i;3 .095886 .095957 .007126 .07ii3

.2 .525 .198592 .199507 .199050 .199115 .006533 .0328

.3 .525 .3OOU15 .301329 .300872 .300938 .006575 .0218

.U .525 .377699 .37861)1 .378157 .378229 .007189 .0190

.5 .525 .U06733 .it076U8 .U07191 .U07267 .007595 .0186

.6 .525 .377699 .37861U .378157 .378221; .0067)1)1 .0178

.7 .525 .300105 .301329 .300872 .300930 .005775 .0192

.8 .525 .198592 .199507 .199050 .199105 .005515 .0277

.9 .525 .095U28 .0963li3 .095886 .0959U6 .006011 .0627

.1 .600 .1056511 .106569 .106111 .106l81i .007232 .0681

.2 .600 .236559 .237U7U .237017 .237035 .006770 .0286

.3 .600 .380819 .38173U .381277 .381310 .006U22 .0168

•U .600 .U96572 .U97it87 .U97029 .i;97108 .007821 .0157

.5 .600 .5)|1002 .510917 .5iOii59 .ShlS^k .009501; .0175

.6 .600 .i;96572 .i;97li87 .U97029 .I497IOI .007202 .oiii5

.7 .600 .380819 .38l73li .381277 .381330 .005336 .ODiO

.8 .600 .236559 .237U7U .237017 .237071 .0051i39 .0229

.9 .600 .105651 .106569 .106111 .106170 .005837 .0550

.1 .675 .098712 .099627 .099170 .099?11 .00)!l09 .0)|1)|

.2 .675 .26U52li .265ii39 .26U98U .265061 .OO792U .0299

.3 .675 .ii77260 .U78175 .U77717 .i;77765 .OOU766 .0100

.u .675 .657616 .658531 .658073 .658152 .007850 .0119

.$ .675 .728050 .72896it .728507 .728655 .OlU8it3 .O20U

.6 .675 .657616 .658531 .658073 .658ll}3 .006966 .0106

.7 .675 .U77260 .i;78l75 .I177717 .li77750 .003258 .0068

.8 .675 .26i;52U .265i;39 .26I4982 .2650^3 .006175 .0233

.9 .675 .098712 .099627 .099170 .09919I1 .0021^03 .02l;2

exactly of the same shape, which makes the search for the parameters, ^i

and 82* niu-ch easier than usual. Once a set of collocation points is decided,

it is straightforward to let ^=0 and calculate the errors on the boundary

and then look for the maximum and the minimum errors. To show how the nuuiber



12

(^oH

(1) 1.0
c>

2 .5
a>^

n̂

§
- .^

1^ -1.0

<0

Tu-T

.5

zv^

1.0 1/H

X = 0.1, 0.9

Fig. 7. Difference between the bounding temper-

atures and the exact tenperature.

•^

s

OS

1.0

- .5

-1.0

T -T

^
~Z

Tl-T

1.0 I/H

X = 0.3, 0.7

Fig. 8. Difference between the bounding teinper-

atures and the exact temperature.

H

O

i

«D

1.0

.5

-1.0

Tu-T

.5

^— 'p _'T^-T X = 0.5

Fig. 9. Difference betvjeen the bounding temper-

atures and the exact temperature.

1.0 Y/H
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of collocation points affects the accuracy, we solve the same problem with 2it

points and compare them as follox'TS.

Table 3. Comparison of accuracy due to

number of collocation points.

Number of
points Si Sz 2^^

2h .00330U .00239U .28U9

28 .000517 .000398 .Ok^Q

EXAMPLE PROBLEM 2

A second problem will be considered with the following boundary condi-

tions.

1. t(0,y) =

2. t(D,y) =0

3. t(x,0) =

U. t(x,B) » fgCx) = t^
Note that the temperatures at (0,B) and (D,B) are undefined.

Sy the same transformation, we arrive at equation (6) and the boundary

conditions

1. T(0,Y) -
: , • ,

'

2. T(1,Y) =

3. T(X,0) =0 ^ '
,

, „,- . ,

i;. T(X,H) =F2(X) =1

The procefure is the same except that T(0,H) and T(1,H) are 1 when they are

used to determine the upper bound and zero when used to determine the lower
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bound. This is necessary if the condition of bounds is to be satisfied. The

collocation points, which are different for the upper and the lov/er bounds,

and the exact temperature are shown in Table k and 5.

Table li. Collocation points and exact
temperature for upper bound.

1 h \ ^i
i \ \ ^i

1 15 1 .75 1

2 .11 16 1 .62

3 .22 17 1 .$h

U .33 18 1 .hh

5 .hh 19 1 .33

6 .51; 20 1 .22

7 .62 21 1 .11

8 .75 1 22 1

9 .20 .75 1 23 .88

10 .30 .75 1 21; .72

11 .U2 .75 1 25 .58

12 .58 .75 1 26 .U2

13 .70 .75 1 27 .27

H; .80 .75 1 28 .12

Table 5. Collocation points and exact

temperature for lower bound.

i Xi 1 ^i i ^i ^i Ti

1 15 1 .75

2 .11 16 1 .65

3 .22 17 1 6$
U .33 18 1 .\h

5 M 19 1 .33

6 6$ 20 1 .22

7 .65 21 1 .11

8 .75 22 1

9 .20 .75 1 23 .88

10 .29 .75 1 2U .73

11 .U2 .75 1 25 .58

12 .58 .75 1 26 .1;2

13 .71 .75 1 27 .27

lU .80 .75 1 28 .12
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The parameters for the least upper and the greatest lower bounds are

respectively ^ = 0.01552 Sg = 0.00912, and the difference between the

bounding ten^ieratures and the exact temperature on the boundary is shown in

Fig. 10, 11 and 12. >

'

The results including the least upper bound, the greatest lower bound,

the mean value which is taken as the approximate solution and the associ-

ated maximum possible errors relative to both the maximum temperat\ire and the

local temperature are shovm in Table 6. The bounds are plotted along

I = 0.1, 0.3 and 0.5 in;Fig. 13, lli aad 15.

4>

g

I

.02

.01

a -.01

I

-.02

1.0 X

Y =

Fig. 10. Difference between the boxinding temperatures

and the exact temperature on the boundary.
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13

CD

(S

.3

.2

.1

-.1

-.2

1.0 X

Fig. 11. Difference between the boxmding temperatures

and the exact temperature on the boundary.

®
o

I

.2

.1
T^-T

-.1 X =

1.0 Y/H

Fig. 12. Difference between the bounding temperatures
and the exact temperature on the boundaiy.



Table 6. Values for the temperature distribution

of example problem 2.

17

X Y T(lower) T (upper) T(mean) Er % Er""^

.1 .075 .008622 .O3U672 .0216U7 1.302 9.77

.2 .075 .023986 .051U39 .037712 1.373 12.91

.3 .075 .036U08 .06)1136 .050272 1.386 22.25

.U .075 .0)|)i012 .07195U .057983 1.397 17.93

.5 .075 .OU6)n3 .07U530 .060i;71 I.I1O6 10.89

.6 .075 .Oli)t012 .071951; .057983 1.397 8.09

.7 .075 .036U08 .0614136 .050272 1.386 6.73

.8 .075 .023986 .05lit39 .037712 1.373 6.32

.9 .075 .008622 .03U672 .O216U7 1.302 6.73

.1 .150 .027372 .05U865 .o)mi8 1.375 8.09

.2 .150 .0$9S$^ .O89U69 .07U512 I.U96 10.89

.3 .150 .08ia;39 .115U69 .09995U 1.551 17.93

.U .150 .099907 .131326 .115617 1.571 16.32

.5 .150 .105097 .136616 .120856 1.576 9.88

.6 .150 .099907 .131326 .115617 1.571 6.92

.7 .150 .08Ut39 .115U69 .09995U 1.551 5.ii9

.8 .150 .OS9S6^ .089169 .07U512 I.U96 5.06

.9 .150 .027372 .051^865 .o)im8 1.375 $.h9

.1 .225 .OU8588 .078273 .063l;30 1.U8U 6.92

.2 .225 .099281 .132lt71 .115876 1.660 9.88

.3 .225 .137878 .172588 .155233 1.735 16.32

.U .225 .I6l61;2 .196671 .179156 1.751 16.99

.5 .225 .16961)1. .20U6)|1 .187128 1.751 9.U8

.6 .225 .1616U2 .196671 .179156 1.751 5.92

.7 .225 .137878 .172587 .155233 1.735 1;.38

.8 .225 .099281 .I32U70 .115875 1.659 3.9li

.9 .225 .OU8588 .078272 .063ii30 l.USi; li.38

.1 .300 .073897 .106783 .0903UO 1.6iii; 5.92

.2 .300 .1U5993 .183678 .I6U835 1.88U 9.i;8

.3 .300 .199796 .238857 .219327 1.953 16.99

*•!• .300 .232311 .271087 .251699 1.939 21.06

•«^ .300 .2i;3108 .28159U .262351 1.921; 9.11i

.6 .300 .232311 .271087 .251699 1.939 it.76

.7 .300 .199796 .238857 .219327 1.953 3.29

.8 .300 .lii5993 .183677 .16U835 1.88U 2.8U

.9 .300 .073897 .106782 .0903UO l.Shh 3.29

.1 .375 .105718 .ULt3632 .12U675 1.896 ii.76

.2 .375 .203337 .2ii763U .225ii86 2.215 9.1U

.3 .375 .273879 .318190 .29603U 2.216 ?1.06

.U .375 .315223 .357661 .336U.2 2.122 28.85

.5 .375 .328710 .3702Ut .3li9li77 2.077 7.37

.6 .375 .315223 .357661 .336i4i;2 2.122 3.16

.7 .375 .273879 .318190 .29603U 2.216 2.26

.8 .375 .203337 .2lt763l| .225U86 2.215 1.66
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Table 6. (cont.)

X T(lower) T(upper) T(mean) Er % Er'

.9

.1

.2

.3

.U

.5

.6

.7

.8

.9

.1

.2

.3

.U

.5

.6

.7

.8

.9

.1

.2

.3

.U

.5

.6

.7

.8

.9

.1

.2

.3

.U

.5

.6

.7

.8

.9

.375

.U50

.U50

.U50

.U50

.U50

.U50

.U50

.ii5o

.U50

.525

.525

.525

.525

.525

.525

.525

.525

.525

.600

.600

.600

.600

.600

.600

.600

.600

.600

.675

.675

.675

.675

.675

.675

.675

.675

.675

.105718

.lli7782

.276550

.36U622

.ia3738

.U29330

.ia3738

.36U622

.276550

.lli7782

.207136

.373799

.hllhlh,

.530820

.5i;7127

.530820

.l;77i;7U

.373799

.207136

.297855

.508ii99

.618U07

.667985

.682679

.667985

.618I1O7

.508h99

.297855

.ii5l809

.702938

.791335

.823202

.83U321

.823202

.791335

.702938

.1.51809

.lii3631

.196018

.33120U

.la5068

.U593ii7

.U7278I

.U5911i7

.ia5o68

.33120U

.196017

.277517

.iM705

.533969

.57729U

.590189

.57729U

.533969

.I^IOS

.277518

.U23313

.6011.<,80

.677290

.711889

.7211t05

.711890

.677290

.6031.82

.ii233l5

.712503

.806601

.81a269

.860362

.862089

.860362

.8ia269

.806602

.712508

.I2U675

.171900

.303877

.3898U5

.U36Ui2

.I;51055

.U36ia;2

.3898U5

.303877

.171900

.2U2326

.ii09252

.505721

.551^057

.568658

.55U057

.505721

.U09253

.2U2327

.360581;

.551^990

.6U78U8

.689937

.7020i;2

.689937

.6U78U8

.$Sk990

.360585

.582156

.75U770

.816302

.81a782

.8ii8205

.8ia782

.816302

.75U770

.582158

1.896 17.93

2.ia2 16.32

2.733 9.88

2.522 6.92

2.270 5.ii9

2.173 5.06
2.270 $.h9
2.522 6.92

2.733 9.88

2.ia2 16.32

3.519 16.99

3.5U5 9.U8
2.825 $.9Z
2.32U U.38
2.153 3.9U
2.32U U.38
2.825 5.92:

3.5U5 9.ii8

3.519 16.99
6.273 21.06

ii.6U9 9.IU
2.9l4ii 1;.76

2.195 3.29
1.936 2.8U
2.195 3.29
2.9iii; U.76
ii.61;9 9.IU
6.273 21.06

13.035 28.85
5-183 7.37
2.it97 3.16
1.858 2.26

1.388 1.66
1.858 2.26

2.1;97 3.16

5.183 7.37
13.035 28.85
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t

X = 0.1

Fig. 13. Upper and lower bounds,
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I

S

1 = 0.3

Fig. lU. Upper and lower bounds.
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I

X - 0.5

Fig. 25. Upper and lower bounds.
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DISCUSSION AND CONCLUSIONS

As mentioned in the introduction, ttiere are two ways to modify the

problem to obtain upper and lower boxmds for the original problem. It would
;

then be desirable to compare the resvats obtained by applying each of the

tvxo. It is for this purpose that we first consider example problem 1, which

has been solved by K. M. Hostetler. In the paper by Hostetler pj, the

series was chosen as * , - ' ^
^

•*''•>

^m ' -f-^^(l-^)^ *tltl\. xV(X-l)(I-H) •

'

'

, .

We see that every term of the series satisfies the boundary conditions, but

not the differential equation. The coefficients a. . vjere so determined as

to provide upper and lower bounds from which the approximate solution and the

associated error were obtained. Using 14.9 terms of the series, the error

relative to the local temperature varied from 0.910 % to 29.9ii2 %.

In the present work, we utilize equation (7), where every terra satisfies

the differential equation, and determine the coefficients to approximate the

boundary condition. In comparison, the error relative to the local temper-

ature varies from 0,010 % to 0.377 % using 28 terras of the series. In

addition to the improved accuracy the present method has another advantage

in that there is no need to vary $ i^ searching for better bounds

.

In example problem 2, the boundary conditions are so defined that the

temperature is discontinuous at the upper comers. As sho^ra by Table 6, the

solution is reasonably good using 28 terms of the series. The maximum

possible percentage error with respect to the local temperature is consider-

ably higher at the lower side of the plate. The actual error is not partic-
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ularly large there, but the exact temperature is so near zero that the

relative error becomes large. The maximum possible percentage error yilth

respect to the maximum temperature seemis the most reasonable criterion in

this case.

Comparing the two problems, we see that the discontinuity in the bound-

aiy conditions makes it difficult to obtain good bounds in the vicinity of

the comers. However with a bigger computer, we would be able to consider

more terms in the series and thus improve the results. Accompanying a larger

number of collocation points, a higher arithmetic precision woxild be required.

Take the two problems for example, 8 place arithmetic precision is good for

16 collocation points, but lU places are needed for 28 points. It is pre-

dicted that 18 places would be enough to consider kO collocation points.

This can easily by done by some digital computers in use.
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INFINITE SERIES FOR LAPLACE EQUATiai

¥e are going to prove that each terra of the iixfinite series on the right

side of equation (5) satisfies equation (l).

Rewrite (5) as

'n\ n-2 2oo

f (2:,y) = bo + I_ b2n-.l
n=l

x"" -
1 2 I

2c y +
(S)

^"-h h
y -

*(-«"'(2(tl))
-""""'' ^''"'^*

r ]

+ (-1)

]e>o

n=l

1/ n \ n'

'2n

n-1
nx y

-2k+l 2k-l
y

(11)

First of all, the constant bQ satisfies (l) . Since (l) is a homogeneous

equation, we need only to prove that each of the two general terras satisfies

(1). Letting

, ,>k-l / n \ ii-2(k-l) 2(k-l) ^ "1

'• - " <-"
2(k-i)

^^ ^ ^
"J

and substituting into the left side of (l), we obtain

b2^.^ [n(n-l)x^-2 - [^](n-2)(n-3)x^-^ 7^ - (;;j(n-U)(n-5)-

3x 3y

7 - + (-1)
k-1/ n

i2(k-l)j
(n-2k.2)(n-2k-l)x^-^y2(^-l^

n-h 2
-(^)2x^"'*(;;](U)(3)x y -

+ (-1)
k-1 / n

l2(k-l)J
(2k-2)(2k-3) x^-^^^-'^ y2^-^ * ]
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^.2,2^

•••-{g2x»-2*(£)(3)a)."-s'

Comparing the like-power terms, we see that the coefficients of the

first part are exactly the same as those of the second part except that they

have the opposite signs term by terra and therefore

The proof for the second general term is carried out in the same manner.
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PROOF OF BOUNDS

Equation {$) is rewritten as

-
(3)

=^-' ^ *
(?)

=='"' ^ *
'-''""

i^U
^'""^" ''i-2k+l „2k-l

] (12)

For simplicity, we denote K^ and N^^ for the two general terms in equation

(12) respectively. The equation becomes

f (x,y) - bo + £ ^2n-l ^^n + £ ^2n ^n ^13)

n"! n^'l

With the differential equation

a!i .^t
(1)

^x2 ay2

and any prescribed boundary condition, we are going to prove that

tu>t

j m

n=l n=l

where j and ra are positive integers and ty>t throvighout the prescribed

boundary.

To prove this, we divide tj. into two parts

tg(x,y) = t(x,y) + u(x,y)

where t , t and u are functions of x and y and t is the exact solution.

Since t„ and t both satisfy equation (l)., which is homogeneous, we have
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-2!^ *^= (15)

And as tTT>t throughout the prescribed boundary, we can say that u is the

solution of equation (l5) with positive boundary value, A corollary of

Gauss' Theorem of the Arithmetic Mean \k\ states: "Let R denote a closed

bounded region (regular or not) of space, and let u be harmonic, but not

constant, in R. Then u attaiixs its maximxam and rainimum values oiily on the

boundary of R." Now for our case u, satisfying equation (l5)* is harmonic

and is greater than zero throughout the boundary; therefore u can not be

negative in the region and therefore

tu(x,y) >t(x,y) throughout the region.

Thus we have completed the proof for the upper bound.

In a like manner, we can prove that

*L<^

if
6 m

b- * ^ l=2n-l ^n * IZ ^2^ N^ (16)

n=l n=l

where j and ra are positive integers and ty <t throughout the prescribed

boundary.

J
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EXACT TEMPERATURE DISTRIBUTION

For the steady-state, two-dimensional, rectangular plate heat conduction

problem shown in Fig. 2, Schneider [2] has shown the exact temperature dis-

tribution to be

t(x,y) =—E )„J Sin [— fW Sin [Sfj
n=l Sinh^-^y JO ^ *

dx (17)

By transforming the problera into the dimensionless problem shown in Fig. 3,

the exact temperature distribution becomes

T(X,Y) = 2 n 3g;i;["^H?
SinCnTrX)P F(X) Sin(nTrX) dX (I8)

n=l ^0

Substituting F(X) = 6U T^^a^ X"^ (1-X)-^ into equation (I8), integrating and

reducing, the exact ten?)erature distribution becomes

18U32 Tniax V^ Sinh(nffY) 1 f 10
T(X,Y) - -^ 1_ sinh(nTrH) Sin(n,7X) -^ -^-^ " 1 (19)

TT-' n-1 n^ Ln T!

n = 1, 3, 5, 7

In solving for the exact temperature vri.th a computer, we sura the series

—ft
to the point where the last term is less than 10~ .
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LISTING OF FORTRAN PROGRAM TO SET
UP THE SIMULTANEOUS EQUATIONS.

MONSi JOB TEMPERATURE BOUNDS
MON$$ COMT 30, 20, PAGES, 6, F C APPL, T S CHOU, ME DEPT
MON$$ ASGN MJB,12
MON$$ ASGN KG0,16
MONS$ MODE GO, TEST
MONS^ EXEQ FORTRAN,,, 14,,,, BOUNDSl ,

^ ... ^r^.^^.DIMENSI0NB(28,29),BIN0{14,14),X{28),Y(28),XN{14),YN(14),CC{28)
1 F0RfiAT(I5)
2 F0RMAT(E18. 10,15,15)
3 F0i^M4T(3E18.10,I5)

READ(1,1) LN '

WRITE(3,1)LN
READ(1,2) ZAC
WP.ITE{3,2)ZAC
DO 4 1 = 1, LN
READ(1,3) X(I) ,Y(I) ,CC( n.I

4 WRITE(3,3) X(I) ,Y{I ),CC{I),I
READ (1,3) DEL
^^IRITE{3,3) DEL
LNH=LN/2
N1=LN+1
DO 10 1=1, LNH
DO 10 J=1,I
BIN0(I,J)=1.0
DO 5 K=1,J
GI = I

GK=K
5 BIN0(I,J)=BIN0(I,J)*(GI-GK+1.0)/GK

10 CONTINUE
DO 15 1=1, LN

15 B(I,l)=1.0
DO 70 1=1, LN
XN{1)=X(I)
YN(1)=Y(I)
DO 20 JJ=2,LNH
JJJ=JJ-1
XN( JJ)=XN{JJJ)*X{I)

20 YN(JJ)=YN(JJJ)»Y{I)
DO 70 J=2,LN
M=J/2
IF ((J+I)/2-J/2) 30,30,55

30 K=0
B(I,J)=XN(M)

35 K=K+2
KK=M-K
IF(KK) 70,36,40 ':

36 IF( (K/2+l)/2-K/4) 37,37,38
37 B(I,J)=B(I,J)+BINC(«,K)*YN(K)

GO TO 70
38 B{I,J)=B(I,J)-BINQ(«,K)*YN(K) „

"
i

GO TO 70 ; ;

^
iT

•

40 IF {{K/2+l)/2-K/4) 45,45,50 * '
.

'

45 8{ I,J)=B(I,J)+BINO(M,K)*XN(KK)»YN{K> ' -

GO TO 35
50 B( I,J) = B(I,J)-8INC(H,K)*XN(KK)»YN(K)

GO TO 35
55 K=l

GM=M
IF (M-1) 56,56,57

56 8( I,J)=GM»Y{I)
GO TO 60

57 B(I,J)=GM»XNl«-l)*Y(I)
60 K=K+2

KK=M-K



f f

36

IF(KK) 70,61,64 ^ „ ,

.

61 IF{ {(K-l)/2+l>/2-(K-l)/4) 62,62,63
62 B( I,J)=8{I,J)+BIN0(M,K)*YN(K)

GO TO 70
63 B( I,J)=B{I,J)-BINO(M,K)«YN(K>

GO TO 70 ^ ,,
64- IF( {{K-l)/2+l)/2-(K-I)/A) 65,65,66
65 B(I,J)=B(I,J)+BINO(M,K)»XN{KK)»YN(K)

GO TO 60
66 B( I,J)=8( I,J)-BINC(M,K)»XN(KK)*YN(K)

GO TO 60
70 CONTINUE

DO 72 1=1, LN
72 B( I,N1) = DEL+CC(I)

REWIND 6
WRITE(6) LN,N1,LNH,ZAC
WRITE(6) {(B(I,J),J=1,N1),I=1,LN) ,

WRITE (6) ( IBIN0(I,J),J=1,I),I=1,LNH)
REWIND 6
STOP
END
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LISTING OF FORTRAN PROGRAM TO SOLVE
THE SIMULTANEOUS EQUATIONS.

MON$S EXEQ FORTRAN, ,,14,.,, B0UNDS2
DIMENSION B{28,29),ABAXX(29i,BSTAR(29),ABA(29)

9090 FORMAT (13, 17HTH COLUMN IS ZERO)
501 F0RMAT{2£18.10)
505 FORMATI2E18.10,I5)

REWIND 6
READ(6) LN,N1,LNH,ZAC
READ(6) ( (8(1, J),J=1,N1),I=1,LN)
2TRY=0.0
DO 2000 J=1,LN
ABA(J)=0.0

2000 BSTAR(J)=0.0
2511 DO 2200 J=1,LN
2028 IF{J-LN) 2029,2059,2059
2029 DO 2030 I = J,LN .; ..

IF (8(1, J)) 2031,2032,2032 ^ •

2031 A8AXX(I)=-B(I,J)
GO TO 2030

2032 ABAXX( I)=B(I,J)
2030 CONTINUE

IC = J
C=ABAXX{J)
JJ = J+1
DO 2040 I=JJ,LN
IF (C-ABAXX(I)) 2039,2040,2040

2039 C=ABAXX{I)
IC = I

2040 CONTINUE ;
'

.

DO 2050 K=J,N1 •
-

D = B(IC,K)
B( IC,K) = B(J,K)

2050 B(J,K) = D
2059 DIV = B(J,J)

IF (DIV) 2351,2350,2351
2351 Z=1.0/DIV

DO 2060 K=J,N1
2060 B{ J,K)=B{J,K)*Z

DO 2080 1=1, LN
IF (I-J) 2065,2080,2065 >

2065 AIJ = -B(I,J)
DO 2070 K= J,N1

2070 8(1, K) = B(I,K) + AIJ»B(J,K)
2080 CONTINUE
2200 CONTINUE

ZTRY=ZTRy+1.0
DO 2300 1=1, LN

2300 ABA(I)=B(I,N1)+ABA(I)
REWIND 6
READ(6) LN,N1,LNH,ZAC
REA0(6) ( (Bd, J),J=1,N1),I = 1,LN)
D02560 LI=1,LN
D02560 LJ=1,LN

2560 8STAR(LI)=ABA{LJ)» B( LI ,LJ) +BSTAR ( LI)
D02561 LI=1,LN
B(LI, Nl)= B(LI, N1)-8STAR(LI)

2561 BSTAR(LI)=0.0
IF (ZTRY-ZAC)2562, 2565, 2565

2562 ZZE=0.0
D02563 LI=1,LN

2563 ZZE=ZZE+B(LI, Nl)
IF (ZZE) 2564,2565,2564

2564 GO T02511
2565 WRITE(3,501) ZTRY, ZAC

D02566 LI=l,LN
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2566 WRITEO, 505) ABA(LI), 8{LI, Nl), LI
GO TO 2352

2350 WRITE (3,9090) J
2352 CONTINUE

READ(6) {(8(1, J),J=l,I),I=ltLNH)
WRITE(6) (ABA(LI),LI=1,LN)
REVUND 6
STOP
ENO
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LISTING OF FORTRAN PROGRAM TO SEARCH FOR THE
LEAST UPPER SOUND AND THE GREATEST LOWER BOUND.

MON$$ EXEQ FORTRAN, ,,14,, ,,30UN0S3
1 MENS I ON ASA ( 29 ) , B INO ( 28, 29 ) , XXN ( 14 > , YYN ( 14

)

3 F0RMAT(3E18.10,I5)
4 F0RMAT{5E18.10)

REWIND 6
R£AD{6) LN,N1,LNH,ZAC
READ{6) l(3IN0<I,J),J=l,Nl),I=l,LN)
READ(6) ((BIN0(I,J),J=1,I),I=1,LNH>
R£A0(6) (ABA(LI),LI=1,LN)
XX=0.0
YY=0.0

80 T1=ABA(1)
DO 165 J=2,LN
M=J/2
XXN(1)=XX
YYN(1)=YY
DO 100 11=2, LNH
III=II-1
XXN(II)=XXN{II I)»XX
yYN(II)=YYN(III)»YY

100 CONTINUE . . ^
IF( {J+l)/2-J/2) 105,105,130

105 K=0
8X = XXN{M) :-

110 K=K-!-2
KK=M-K
IF(KK) 160,111,115

111 IF( (K/2+l)/2-K/4) 112,112,113
112 BX=SX+8INQ(M,K)»YYN(K)

GO TO 160
113 8X=BX-BIN0(M,K)»YYN{K)

GO TO 160 = .'v'.^
115 IF( (K/2+l)/2-K/4) 120,120,125
120 BX=BX+BINO(M,K)»XXN(KK)«YYN(K)

GO TO 110
125 BX=BX-8IN0(M,K)«XXN{KK)»YYN(K) / /

GO TO 110
130 K=l

GM=M
IF(M-l) 135,135,140

135 BX=GH«YY
GO TO 145

140 BX=GM*XXN{M-1)»YY
145 K=K+2

KK=M-K
IF(XK) 160,146,149

146 IF{ ({K-l)/2+l)/2-{K-l)/4) 147,147,148
147 BX=BX+BIN0(M,K)»YYN{K)

GO TO 160
148 BX=BX-BINO{M,K)»YYN{K)

GO TO 160
149 IF( {(K-l)/2+l)/2-(K-l)/4) 150,150,151
150 BX=BX+BINO(M,K)*XXN(KK)*YYN(K)

GO TO 145
151 BX=BX-BINO{M,K)«XXN{KK)«YYN(K)

GO TO 145
160 CONTINUE
165 T1=T1+A8A(J)»BX

IF(XX) 170,180,170
170 IF{XX-1.0) 175,180,175
175 IF(YY) 185,180,185
180 T=0.0

GO TO 200
185 T=64.0»XX»XX»XX»{1.0-XX)»{1.0-XX)*(1.0-XX)



hp

220

225
230

270

GO TO 80
XX=L.O
GO TO 80
IF(YY-0.75) 230,270,270
XX=0.0
YY=YY+0.0375
GO TO 80
CONTINUE
STOP
END
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LISTING OF FORTRAN PROGRAM TO SOLVE FOR
BOUNDS, EXACT SOLUTION AND ERRORS.

MON$$ EXEQ FORTRAN, ,,14», ,,B0UNDS4
DIMENSION ABA(29),BIN0{28,29),XXN{ 14),YYN(14)

3 F0RMAT(3E18.10,I5)
4 F0RhAT{6E18.10)

REWIND 6
READ(6) LN,N1,LNH,ZAC
READ{6) ( (BIN0(I,J),J=1,N1),I=1,LN)
READ(6) ( {BIN0(I,J),J=1,I),I=1,LNH)
READ(6) (ABA(LI),LI=I,LN)
H=0.75
E=0. 0000000001
DELI=0.1
DEL2=0.075
XX=DEL1
YY=D£L2

405 AN=I.0
ST=0.0

410 Xl=3.L415g26»( AN»XX-300.)
Y1=AN»3.1415926*YY
Hl=AN«3.14I5926aH
C1=10./(9.8696 044»AN«AN)-I.
SINH=(1.-EXP(-2.»YI))/(EXP(H1-Y1)-EXP(-H1-Y1))
STN=SINH*SIN(Xl)«Cl/{AiN«AN»AN»AN»AN)
ST=ST+STN
RIS=ABS(STN)
IF(RIS-E) 420,420,415

415 AN=AN+2.0
GO TO 410

420 T=60.23142»ST
430 Tl=ABA(l)

DO 515 J=2,LN
M = J/2
XXN{1)=XX
YYN(1)=YY
DO 450 II=2,LNH
I 1 1 = 11-1
XXN{in = XXN( III)*XX
YYNdl ) =YYN(III )»YY

450 CONTINUE
IF{ (J+l)/2-J/2) 455,455,480

455 K=0
BX=XXN{M)

460 K=K+2
KK=iM-K
IF(KK) 510,461,465

461 IF{ (:</2+l)/2-K/4} 462,462,463
462 BX=BX+BINa(M,K)*YYN(!<)

GO TO 510
463 BX=BX-BINO{M,K)*YYN{K)

GO TO 510
465 IF( (K/2-»-l)/2-K/4) 470,470,475
470 BX=BX+BINO(M,K)*XXN(KK)*YYN(K)

GO TO 460
475 B X=BX-B I NO ( M , K ) »XXN ( KK ) «YYN ( K

)

GO TO 460
480 K=l

GM=M
IF(M-l) 485,485,490

485 BX=GM»YY
GO TO 495

490 BX=GM»XXNCM-I)*YY
495 K=K+2

KK=M-K
IF(KK) 510,496,499
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496 IF{((K-l)/2+l)/2-(K-l)/4) 497,497,498
497 BX=BX+BI.MO(M,K)*YYN(K)

GO TO 510
493 BX=BX-BINO(M,K)*YYN(K)

499 IF( ((K-l)/2+l)/2-{K-l)/4) 500.500,501
500 BX = BX+BIiNO{M,K)«XXN(KK)*YYN{i<.)

GO TO 495
501 BX=BX-8IN0(M,K)»XXN(KK)*YYN(K)

GO TO 495
510 CONTINUE
515 T1=TI+ABA(J)«BX

ER=T1-T
PERC=100.0»ER/T ^^^
WRITEJ3,4) XX,YY,Tl,T,hR,PERC
IF(XX+DEL1-1.0) 520,525,525

520 XX=XX+D£L1
GO TO 405

525 IF{YY+DEL2-H) 530,535,535
530 XX=DEL1

YY=YY+DEL2
GO TO 405

535 CONTINUE
STOP
END

MON$$ EXEQ LINKLCAD
PHASEBl
CALL BCUNOSl
PHASEB2
CALL B0UNDS2
PHASEB3
CALL B0UN0S3
PHASEB4
CALL B0UNDS4

MON$$ EXEQ 81,.MJB
MON$$ EXEQ B2,MJB
MONS$ EXEQ B3,MJB
MON$$ EXEQ B4,Mja
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A method is presented for obtaining bounds for the solution of

two-dimensional, steady-state heat conduction problems x^ithout internal

heat generation. The method emphasizes the attainment of an approximate

solution of known accuracy, is systematic, and is well adapted to analysis

on high speed digital computers.

The method is applied to a rectangular plate with specified boundary

temperature. The results of the examples are close to the knoxra exact

solution in the first case and reasonably good in the second.


