
INVESTIGATION OF

A TAGGED COMPUTER ARCHITECTURE

FOR THE PROLOG LANGUAGE

by

DANIEL R. MEIGS

B.S., Kansas State University, 1985

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1988

Approved by:

Major Professor

L-D

,2.6.6.?

ZZC£. A115D7 31SDS1

|Y>M4

c.Z

Table of Contents

List of Figures iv

List of Tables vii

Acknowledgments viii

1.0 Introduction 1

2.0 Computer Architecture and Tags 3

3.0 Prolog Overview and Interpreter Details 7

3 .

1

Prolog Overview 7

3.2 Interpreter Details 10

4.0 Application of a Tagged Architecture to Prolog. . . 15

4.1 Data 15

4.2 Control 16

4.2.1 Decisions 17

4.2.2 Tags 18

Null Pointer 18

Pointer 19

Last Call 20

EOS 20

Code 20

Complete Set 2

i i

4.3 Evaluation 22

Unification 23

Variable Binding 26

5.0 Data Structures and Depth First Search 28

5.1 Data Structures 29

Global Registers 30

Frame Stack and Trail Stack 30

5.2 Algorithms 35

Initialization 36

Call Selection 37

Procedure Selection 38

Unification 38

Frame Creation 39

Backtracking 39

Unbinding 39

5.3 Database Form 40

6.0 Demonstration of Control Flow 45

6.1 Likes: A Simple Example 45

6.2 Sister-of: A More Comprehensive Example 54

7.0 Conclusions 80

References 81

List of Figures

2.1 Data format of a 32-bit word with an 8-bit
tag in a tagged machine 5

3.1 Example database 12

4.1 The tree structure of parameters of a call 24

4.2 Address generation concept for unification
routines 26

5.1 Frame stack 32

5.2 Backtrack example 34

5.3 An example Prolog program 40

5.4 Database structure 41

5.5 Codified facsimile of an example program 42

5.6 Sisterhood example 43

5.7 Codified facsimile of the sisterhood example
program 44

6.1 Frame stack after initialization 47

6.2 Global registers after initialization 47

6.3 Global registers after creation of second frame . . 49

6.4 Trail stack after creation of second frame 50

6.5 Frame stack after creation of second frame 50

6.6 Global registers at unification 51

6.7 Trail stack after creation of third frame 52

6.8 Frame stack after creation of third frame 53

6.9 Frame stack after initialization 56

6.10 Global registers after initialization 56

6.11 Global registers after frame 2 58

6.12 Frame stack after creation of second frame 59

6.13 Trail stack after frame 2 59

6.14 Global registers at unification 60

6.15 Global registers after frame 3 61

6.16 Frame stack after creation of the third frame. . . 62

6.17 Global registers after frame 4 63

6.18 Trail stack after frame 4 63

6.19 Frame stack after creation of fourth frame 64

6.20 Frame stack after creation of the fifth frame. . . 67

6.21 Global registers after frame 5 67

6.22 Trail stack after frame 5 67

6.23 Frame stack after creation of the sixth frame. . . 69

6.24 Global registers after frame 6 70

6.25 Trail stack after frame 6 70

6.26 Global registers after backtracking 73

6.27 Frame stack after creation of the sixth frame. . . 75

6.28 Global registers after frame 6 75

6.29 Trail stack after frame 6 75

6.30 Global registers after frame 6 76

6.31 Trail stack after frame 6 76

6.32 Frame stack after creation of the sixth frame. . . 78

6.33 Global registers after last solution 79

List of Tables

2.1 A proposed set of tags in a general purpose
computer 6

4.1 Eighteen tags identifying the Prolog data 16

4.2 Control procedures and decisions 18

4.3 Decisions based on the null pointer tag 19

4.4 Tags for Prolog 21

4.5 Parameter matching rules 25

5.1 The set of global registers 31

Acknowledgments

Not even the humblest project can be accomplished in a

vacuum, and I owe a debt of gratitude to so many people who

helped with this project that I can not name them all.

However, I would like to express my gratitude to Dr. E. Haft

for the guidance and help he gave me on this project and,

most of all, for his patience while I was incommunicado. I

would also like to thank Dr. E. Unger and Dr. E. Fowler for

serving on my graduate committee.

Special thanks go to Dr. Fowler for his support and

"fatherly advice" (life would have been easier if I could

have followed it more closely), to Denise Bandat and

NeoGraphics of Phoenix, Arizona for excellent printing

services, and to a half a dozen close friends who lent

support and encouragement without which this report may not

have been completed. I must also include a tip of the hat

to my parents, whom I can not thank enough.

1.0 Introduction

During the past 40 years the nature of computer

programs has changed radically. Today's artificial

intelligence research is dealing with problems of enormous

complexity. Computers are being used for vision systems,

natural language understanding, robotic control, and

attempts to imitate human reasoning. These tasks are far

more sophisticated than the primarily numerical processing

of the early days of computing.

Sophisticated tasks require sophisticated tools. As

computer programming problems have evolved, computer

programming languages have become more sophisticated as

well. Prolog, the primary artificial intelligence language

of Europe and Japan, is a language based on first order

logic. Unlike most programming languages which require the

programmer to tell the computer what to do and when to do

it, Prolog programs tell the computer facts about the world

and ask it to draw conclusions [3:253].

While programming languages have become more

sophisticated, the computers on which the languages have

been run have not. According to Elaine Rich [5:405], "The

idea of designing an A.I. machine has been around since at

least 1960..." However most of the research has been

concerned with the list processing operations and the memory

management necessary for implementing the LISP language.

Only in the past decade has serious attention been paid to a

machine based on Prolog.

The goal of this paper is to provide an explanation of

how the inference mechanism of a Prolog interpreter works

and to suggest a tagged computer architecture which will

facilitate the implementation of a Prolog interpreter. The

organization of the report is as follows. Chapter 2

introduces the general idea of a tagged computer

architecture. Chapter 3 introduces the Prolog language and

the theory of first order logic. Chapters 4 relates the

concept of tags to Prolog and suggests a set of tags that

can help optimize a Prolog computer. Chapter 5 describes in

detail the form of a Prolog database and the data structures

that are used to record the state of the solution. Chapter

6 details the execution of two Prolog programs showing how

all of the elements of chapter 5 are used and how the tags

of chapter 4 play a part in the process. Chapter 7 suggests

an area of further research.

2.0. Computer Architecture and Tags

There are many architectural issues in the design of a

computer. The most fundamental issue is the nature of the

data in the machine. Most common computers use a single,

linear memory with a fixed number of bits allocated for

every word. In this system, called the von Neumann

architecture, a specific binary word has no intrinsic

meaning out of the context of the words around it and no

distinction is made between data and programs. Meaning is

attached to the data words when they are manipulated by the

computer or program in which they exist.

There are many disadvantages to the von Neumann

architecture. The biggest disadvantage is that there is a

great conceptual distance between the problem that a

computer program is trying to solve and the hardware on

which the program is being run. This conceptual distance is

known as the semantic gap [1]. To narrow the semantic gap,

it makes sense to tailor the hardware, operating system, and

software to the task.

There are several ways to tailor the system to the

problem. The most flexible approach, and the easiest to

implement, is to use self-identifying data throughout the

machine. That is, each binary word, whether it is code or

data, should have meaning out of the context of the program

in which it is written. The hardware in such a machine could

infer much of the necessary manipulation based on the type

of data that was being manipulated.

For example, if the machine could tell the difference

between integers, real numbers, boolean expressions, complex

numbers, etc., the machine language would need only one ADD

instruction. The advantage would be two-fold. First,

hardware could "know" to behave differently if the two

numbers were integers than if the two numbers were complex.

Second, the machine could have built in traps for error

handling. If the programmer tried to add something that was

not a number, such as an instruction or a boolean, or if the

programmer tried to manipulate an uninitialized variable the

machine would know to execute some error handling routines.

This could provide some powerful diagnostics.

The way to make data self-identifying is to use bit-

fields called tags. Using tags, a data item could have two

bit-fields as shown in figure 2.1. One field (the value

field) would contain the binary data just as it would in a

von Neumann machine. The other field (the tag field) would

contain a set of bits that identified the data as an

instruction, an address, a real number, etc. Edward Feustel

[2] identified 32 types of data that should be represented

in a general purpose computer. Mr. Feustel's suggestions

included tags for such primitives as integers and real

numbers, as well as tags for common data structures such as

single and double linked lists; stacks and queues; matrices,

vectors, and sparse vectors. Mr. Feustel also recommended

tags for system information such as machine states,

messages, interrupts, and garbage. The full set of tags is

listed in table 2.1.

TAG
8-bits

VALUE
24-bits

Figure 2.1. Data format of a 32-bit word with an 8-bit tag
in a tagged machine.

It may be possible to go beyond Mr. Feustel's tags for

a general purpose machine and develop a specialized set of

tags for a specific machine dedicated to a specific

language. Such specialization has the potential to improve

greatly the efficiency of the execution of the language.

However this requires an understanding of the language to be

implemented. Chapter 3 provides an overview of the Prolog

language and the theory of first order logic behind Prolog.

Table 2.1. A proposed set of tags in a general purpose
computer. Source: Feustel [1].

integer
real number
double precision integer
double precision real
single precision complex
double precision complex
undefined
mixed types
character
Boolean
vector of
reference to
label in ith environment
matrix of
sparse vector of
single linked list of
double linked list of
stack of
queue of
machine state of
message from-to
interrupt of
event
parameter set for
procedure-environment designator
name of variable
i.d. of process or user
instructions
file
formal parameter
semaphore
garbage

3.0 Prolog Overview and Interpreter Detai ls

The previous chapter described how a tagged

architecture could improve the efficiency of a general

purpose computer. A set of tags was outlined based on a

paper by E. Feustel. The purpose of this report is to

describe an efficient computer architecture for a computer

dedicated to the Prolog language. This chapter attempts to

explain the nature of Prolog programs and how a Prolog

interpreter executes the programs. An understanding of

this information is essential to the design of a set of tags

for a Prolog computer. It is assumed that the reader has

some knowledge of Prolog.

3.1 Prolog Overview

A Prolog program consists of a database of facts and

rules describing the problem that the program is designed to

solve. A user asks a query and the interpreter answers the

query based on the facts and rules in the database. The

database for a simple problem concerning relationships

between siblings is explained below. The database contains

one rule and three facts.

The rule in the database could state that one person is

the sister of a second person if the first person is a

female and the two people have the same parents. In Prolog

the rule would be written with a head and a body separated

by the symbol "i-" which is read as "if." Prolog rules are

terminated by a period. The rule then would be written as

follows

.

sister-of (A,B) :- female(A), same-parents (A,B).

The head of the rule is sister-of (A,B). The head of the

rule describes what fact the rule intends to define. The

body, in this case female (A), same-parents (A,B), describes

the conjunction of goals that must be satisfied, one after

the other, for the head to be true. The comma in the body

is a conjunction and is read, "and." In Prolog rules, the

scope of a variable is the entire rule from the head to the

period. So, if the variable A is instantiated to alice, the

interpreter will try to satisfy the goals female (alice) and

same-parents (alice, B). (Note that in Prolog, variables

begin with upper case letters and atoms begin with lower

case letters.)

The first two facts included in the database could

state that Mary and Sue are females. These facts would be

written in Prolog as follows.

female (mary).

female (sue).

The third fact could state that Sue and John have the same

parents. In Prolog, that fact would be written as follows.

same-parents (sue, John).

After the rule and the facts have been entered into the

database, the program would contain the following four

lines

:

sister-of (A,B) :- female(A), same-parents (A,B).

female (mary).

female (sue).

same-parents (sue, John).

The user, then, could ask the query, "is Sue the sister of

John?" The query would be written as follows.

:- sister-of (sue, John).

The Prolog interpreter would consult the database and

respond that Sue was indeed John's sister.

There are three important things about Prolog programs

that are illustrated by this example. First, note that the

fact that Mary is a female is of no use in answering the

query, "is Sue the sister of John?" Not all facts in a

database are applicable to all questions. Second, if the

user asked, "Is Mary the sister of John?" the interpreter

would answer "No." Although it may be true in some family

that Mary is the sister of John, that relationship cannot be

proven from the database. Third, while the database shows

that Sue is the sister of John, it does not prove that John

is the brother of Sue. The query, "Is John the brother of

Sue?" would fail. When the interpreter answers no to a

question it means not provable; it does not mean not true.

[3]

The previous example simply asked if Sue is John's

sister. If that was all that one could do with the

database, Prolog would not be very useful. One might wish to

inquire about more general cases such as "Does John have a

sister?" "Who is John's sister?" "Does anyone have a sister

named Sue?" "Who has a sister named Sue?" and, finally, "Who

is the sister of whom?" Fortunately, Prolog allows

variables in queries and returns the names of any atoms

that, when put in place of the variables in the query make

the query true. Thus, if one really did care to know the

name of John's sister, one could ask the following query.

:- sister-of (X,john).

The response that the interpreter would give is as follows.

X = sue

The response means that Sue is the only member of the

database that makes the statement sister-of (X,john) true.

3.2 Interpreter Details

Formally, the rule:

sister-of (A,B) :- female(A), same-parents (A,B).

is a first order logic clause. The clause can be read, "For

all values of A and B, it is true that A is the sister of B

if and on^Ly if it is true that A is a female and it is true

that A and B have the same parents." Because the rule is

10

stated as an if and only if_ relationship, a second

interpretation of the rule is valid: "It is not true that A

is the sister of B if it is not true that A is a female or

if it is not true that A and B have the same parents."

Furthermore something is assumed not true if it cannot be

proven true. Therefore, the preceding interpretation can be

stated more generally as follows. The head of a rule is

proven not true as soon as one of the goals in the body is

not proven true. This interpretation is the most important

because it is the way the Prolog interpreter uses the rule

in answering a query.

The strategy that the Prolog interpreter uses to answer

a query is known as resolution. The technique is to negate

the query and then see if the negation is inconsistent with

the database. In other words, the interpreter assumes that

the answer to the query is, "No." Then the interpreter

matches the query with facts and rules in the database. If

a fact matches the query, then the assumption that the

answer was no is shown to be inconsistent with the database.

Under those conditions, the interpreter answers, "Yes." If

the query matches the head of a rule, the goals in the body

of the rule become new queries, and the process is repeated

recursively. If all of the rules and facts in the database

can be searched without disproving the initial assumption

that the query is false, the interpreter will answer, "No."

In the above example, the query was

11

:- sister-of (sue, John).

The interpreter, in trying to answer the query would assume

that Sue is not the sister of John. This assumption will be

regarded as valid unless something in the database

contradicts it. The interpreter would match the query with

the head of the rule that defines the sister-of

relationship:

sister-of (A,B) :- female(A), same-parents (A,B).

Then the interpreter would substitute the atom sue for all

occurrences of the variable A, and it would substitute the

atom John for all occurrences of the variable B. This

substitution would leave the interpreter with the two goals

of the body:

female (sue)

same-parents (sue, John)

The state of the database is shown in figure 3.1.

Database:

Rl: sister-of (A, B) :- female(A), same-parents (A, B)

.

Fl: female (mary)

.

F2 : female (sue)

.

F3 : same-parents (sue, John) .

Query: :- sister-of (sue, John) .

Second goal

:

female (sue).

Third goal

:

same-parents (sue, John) .

Figure 3.1 Example database

\2

The query, :- sister-of (sue, John), matches with the

rule, Rl. The result of matching is that A is instantiated

to John. Because the query matched the head of a rule,

there are more goals to satisfy corresponding to the body of

the rule. The interpreter, then, begins again with the

second goal, female(sue). If nothing in the database shows

that Sue is a female, then the head of the rule is proven

false and the second goal (same-parents (sue, John)) is not

needed. Recall that a rule is assumed false unless all

parts of the rule are proven true. However, in this

database, there is a fact that states that Sue is indeed a

female. Consequently the interpreter turns its attention to

the same-parents goal.

The interpreter follows the same strategy of assuming

that Sue and John do not have the same parents. If the

database fails to show that Sue and John have the same

parents, then the head of the rule is shown to be false and

cannot contradict the assumption that Sue is not the sister

of John. In that case, the interpreter would search the rest

of the data base for rules or facts beginning with sister-

of. In this example, however, the goal same-parents

(sue, John) is proven true by the third fact in the database:

same-parents (sue, John).

If that fact were replaced by a rule governing the notion of

same-parents, then the interpreter would have other goals to

consider in resolving the goal same-parents (sue, John)

.

U

Thus the interpreter goes from the query through the

database searching for facts and rules that contradict the

assumption that the query is false. When the query is

further defined by a rule, the clauses of the rule make up

new goals to resolve. If the entire database can be

searched without proving the goal true, then the interpreter

has proven the goal false.

14

4.0 Application of a Tagged Architecture

to Prolog

This chapter relates the concept of tags, as discussed

in Chapter 2, to Prolog and suggests a set of tags that can

help optimize a Prolog computer.

4.1 Data

Prolog has a different set of data than one would find

in a general purpose programming language. There are three

data structures in Prolog: constants (integers and atoms),

structures (lists), and variables. The code consists of

assertions (facts), procedures (rules), and built in

predicates (fundamental rules). Variables in Prolog can be

either bound or unbound. If a variable is bound, it can be

bound to an integer, structure, or another variable.

Furthermore, some Prolog systems make provisions for all of

those variables to be either local, global, or void. This

set of data types dictates a set of eighteen tags. These

tags are listed in table 4.1, below.

15

Table 4.1. Eighteen tags identifying the Prolog data.

Constants

:

integer

Structure:
list

Local Variables
unbound
bound to integer
bound to atom
bound to structure
bound to variable

Global Variables
unbound
bound to integer
bound to atom
bound to structure
bound to variable

Void Variables
unbound
bound to integer
bound to atom
bound to structure
bound to variable

Code:
assertion
procedure
built in predicate

4.2 Contro l

The computer dealt with in this report has an

architecture designed to run the Prolog language

efficiently. This design required that the Prolog

interpreter, the program that executed the user's code, be

implemented efficiently. The specific control information

16

needed to implement a Prolog interpreter was determined by

examining the control algorithm such an interpreter would

use. The goal of the design was to make most of the

decisions that need to be made during control flow simply by

examining the tags of one or two data items. The control

algorithm will be described in detail in chapter 5 below.

At this point, the decisions that need to be made and the

tags that facilitate them will be introduced.

4.2.1 Decisions

The control algorithm outlined in David Rodenbaugh's

master's report [4] included four main procedures: call

selection, procedure selection, frame creation, and

backtracking. Each of these procedures required decisions.

The four procedures and their decisions are listed in table

4.2.

The set of tags in table 4.1 is sufficient to make two

of the decisions. The first decision during call selection,

"Is the current procedure an assertion?" can be made by

comparing the tag of the current procedure register to the

tag of an assertion. Likewise, the fourth decision during

call selection, "Was a call found?" can be made by comparing

the tag of the current call register to the tag of a

procedure. The rest of the decisions require specific

control information.

17

Table 4.2 Control procedures and decisions.

Call Selection

1) Is the current procedure an assertion?
2) Is the current call pointer null?
3) Is the most recent parent not frame 1?

4) Was a call found?
5) Are there any candidates left?

Procedure Selection

1) Is the current procedure null?
2) Is the next candidate null?
3) Did the current procedure fail to unify with current

call?

Frame Creation

1) Is the current call the last call of the procedure?
2) Are there other candidate procedures?

Backtracking

1) Is there a backtrack point?
2) Has anything been put on the trail during this frame?

4.2.2 Tags

Null Pointer

A null pointer tag would be the single most helpful

piece of control information. Of the 10 remaining

decisions, six ask if one of the pointers is null or if

there are any calls or candidates left. Those calls are

listed in table 4.3 below.

If the last candidate in the linked list of candidates

was linked to a word with the tag "null pointer," then the

decisions "Is the next candidate null?" "Are there any other

18

Table 4.3. Decisions based on the null pointer tag listed
by function.

Next Candidate:

Are there any candidates left?

Is the next candidate null?

Are there other candidate procedures?

Current Call:

Is the current call pointer null?

Current Procedure:

Is the current procedure null?

Most Recent Backtrack:

Is there a backtrack point?

candidate procedures?" and "Are there any candidates left?"

could be made by comparing the tag of the next candidate

pointer to the null pointer tag.

Pointer

The second tag that would be useful is the pointer tag.

E. Feustel suggested the pointer tag in a general machine.

Most of the work that is handled by the interpreter deals

with manipulating pointers. The interpreter could check

that all of pointers that it manipulates really are

pointers. This could provide some internal error handling.

19

Last Call

One of the decisions during Frame Creation is "Is the

Current Call the last call of the procedure?" If the

interpreter could affix a "Last Call" tag to the last call

of each procedure when the database is first organized, this

decision could be taken care of automatically. Most calls

would have a "Procedure" tag. The last call of each

procedure would have a "Last Call" tag. If the two tags

differed only by the last bit, then the distinction could be

overlooked easily when necessary.

EOS

The list of tags in table 4.1 includes a tag for

structures. Generally, lists are easier to handle if they

are terminated by a special symbol. The "EOS" tag is

suggested for this purpose.

Code

The machine code that makes up the interpreter,

operating system, etc. should be distinguished from the rest

of the words in memory. This is important to prevent the

user of the machine from corrupting the important code. The

"Code" tag is suggested for this purpose.

Complete Set

The set of tags suggested in this chapter appear along

with the tags of Section 4.1 in table 4.4 below. The actual

20

binary value of the tags are, for the most part,

hypothetical. However there are some important points.

Table 4.4 Tags for Prolog

Type
Local Variables

Tag (8 bits)
lOOOxxxx

Global Variables lOlOxxxx

Void Variables HOOxxxx

unbound lxxxlOll

bound to integer lxxxllOO

bound to atom lxxxllOl

bound to structure lxxxlllO

bound to variable lxxxllll

Integer

Atom

List

EOS

Last Call

Procedure

Assertion

Code

Pointer

Null Pointer

Built in Predicate

00000000

00000001

00000010

00000011

00000100

00000101

00000110

00000111

00001000

00001001

00001010

Value (24bit s

)

variable index

variable index

variable index

variable index

variable index

immediate data

pointer to heap

pointer to beginning

(don't care)

pointer to skeleton

pointer to skeleton

pointer to skeleton

machine code

address

(don't care)

address of procedure

21

First, variables can be readily distinguished from the

other tags because only variables have a one as the most

significant bit. Second, the last four bits of a variable

are determined by what, if anything, it is bound to. This

was done because the unification routine makes a decision

based on what a variable is bound to, and all variables

bound to the same data type must look alike. Third, the

three types of variables: local, global, and void not

withstanding, there are sixteen tags. Each tag has a unique

value in the four least significant bits. Thus for most

applications only a four bit tag need be manipulated.

Fourth, often the differences between very similar data

structures represented with unique tags will be disregarded.

"Last Call" and "Procedure" both identify calls. "Pointer"

and "Null Pointer" are both valid pointers. "Integers" are

just a special case of "Atoms." To allow the differences

between these tags to be ignored easily when appropriate,

the pairs of tags differ only in the least significant bit.

4.3 Eval uation

The goal of adding the tags was to answer automatically

most of the decisions necessary during control flow. There

were twelve decisions listed in table 4.2. Two of the

decisions were answered based on a data type tag. Six of

the decisions were made based on the null pointer tag. One

of the decisions was made based on the last call tag.

22

Of the three remaining decisions, two of them cannot be

made more easily with tags. The decision, "Is the Most

Recent Parent not frame 1?" can best be answered by checking

the value of the Most Recent Parent pointer. The decision,

"Has anything been put on the trail during this frame?" can

best be answered by comparing the Top of Trail register to

the Trail Pointer stored in the frame.

Unification

The final decision, "Did the Current Procedure fail to

unify with the Current Call?" is the most complicated of

all. This decision invokes the Unification procedure.

Unification is the process of comparing the parameters of

the Current Call to the parameters of the head of a

candidate procedure to see if they match.

Because the parameters of a call can be atoms,

variables, or structures, the parameters of a call can be

conceptualized as a tree. The tree structure is illustrated

in figure 4.1 below. The call name is the root of the tree,

and the parameters are siblings on the first level of nodes.

If a node of the tree is a structure, the parameters of that

structure are descendants of the node. In this manner, the

tree is built recursively.

The unification procedure traverses the tree for the

call and the tree for the procedure head trying to match

corresponding parameters. If the two parameters are atoms,

then they match if they both point to the same atom in the

23

Call: a (B, c (X,y), d)

Tree:

X W y

Figure 4.1 The tree structure of parameters of a call.

heap. Thus if the two tags are atoms, the value fields must

simply be equal. Unification is more complicated for

variables. Unbound variables match with anything, atoms,

structures, or other variables. A variable that is bound to

something matches with a parameter if the item to which the

variable is bound matches the parameter.

There are nine ways that the three data types can

appear in the unification attempt. The rules for parameter

matching are listed in table 4.5.

The computer proposed in this paper would contain a set

of six routines in memory corresponding to the six sections

in table 4.5. The four least significant bits of both tags

of the parameters that were being matched could be

concatenated to form an eight bit value. This value could

be a pointer to a segment of memory which contained a vector

table. The vector table would contain the addresses of the

six routines. Then the decision of which routine to jump to

2 4

Table 4.5 Parameter matching rules. Source: Rodenbaugh
[4:44] .

Parameter Parameter Rule

atom atom Matches if pointers are equal.

atom variable Matches if variable is unbound
or bound to atom with same

variable atom pointer.

atom

structure

structure

atom

Never matches because atom has
no children.

variable structure Matches if variable is unbound
or if variable is bound to a

structure variable structure whose parameters
match according to the rules
in this table.

structure structure Matches if all parameters
match according to the rules
in this table.

variable variable Matches if at least one
variable is unbound. Matches
if both are bound and the
values they are bound to match
according to the rules in this
table

.

for the current step in the unification procedure would be

made automatically. This concept is illustrated in figure

4.2 below.

25

Parameter One:

Tagl
xxxxOOOO

Valuel

Parameter Two:

Tag2
xxxxllOl

Value2

Vector Table Offset:

Tagl
|

Tag2

0000
|

1101 = $0D

Vector Table Offset

$FF

< $0D Address of routine for an atom
$00 and a variable bound to an atom

Figure 4.2. Address generation concept for unification
routines

.

Variable Binding

During resolution, variables that are encountered are

kept on a stack. The variables in a procedure head in the

database are initially unbound. Thus all variables in the

database will have the unbound variable tag (lxxxlOll). The

value field of an unbound variable contains the index of

2 6

that variable, a unique value for all unique variables in

the database. When the variables are matched to the

parameters of the call, they become bound and need to

acquire a new tag and some additional information.

The new tag indicates to what data structure the

variable is bound as outlined in table 4.4. The additional

information includes a value pointer and, optionally, an

environment pointer. The value pointer points to the

specific data item to which the variable is bound. Thus if

the variable is bound to an atom, the tag would reflect

that. The value field would contain the variable index, and

the next field, the value pointer, would contain a pointer

to the specific atom in the atom heap. If the variable is

bound to a structure, the environment pointer is necessary.

The environment pointer is a pointer to a location in the

stack where the value of the structure's parameters are

defined.

27

5.0 Data Structures and Depth First Search

As the interpreter goes through a Prolog program trying

to resolve a query, there is often a multitude of paths

through the database. The search through the database begins

with the initial query. This query becomes the current

call. The interpreter then tries to find a fact or rule

that matches the current cal 1 by name. The set of al 1 facts

and rules that match the current call are possible

candidates for resolving the query. To complete the search,

each of these paths much be searched. Prolog's search

strategy is depth first. Each path is searched to its

conclusion, either a successful conclusion or a dead end,

before alternate paths are searched.

Depth first search is analogous to solving a maze by

starting off in one direction and preceding to either a

solution or a dead end. If the path hits a dead end, there

are many untried paths between the dead end and the start.

The maze solver then backs up to the closest untried path

and starts off again. If there is a path to the end of the

maze, that strategy will find it. The problem with solving

28

a maze depth first is that there is a lot of record keeping

necessary to prevent getting lost. A careful log of untried

paths must be kept, and any information picked up along the

way to a dead end must be discarded when a new path is

taken. Therefore, the maze solver must keep track of where

information was picked up.

Just as the hypothetical maze solver has to keep

careful records, so must the computer. The interpreter can

find a series of goals that succeed and instantiate several

variables on the way to a dead end. At that point the

interpreter must backtrack and try another solution path.

Backtracking involves unbinding any variables that were

instantiated on the way to the dead end and resetting the

database pointers to the state they were in before the path

that lead to the dead end was undertaken. The interpreter

keeps the records needed to recover from a dead end in three

data structures: a frame stack, a trail stack and a set of

pointers. This chapter explains the form of the database,

and these data structures. Chapter six explains how the

interpreter uses the database and data structures and how

tagged data can play a part.

5.1 Data Structures

The interpreter keeps a set of data structures to

define the state of the search through the database. This

information includes the current variable bindings, the

information needed to find the next call, and the

29

information needed to recover from a dead end. The data

structures used are the frame stack, the trail stack and a

set of eight global registers.

Global Registers

The state of the search is kept in a set of global

pointer registers. There is a total of eight registers in

the set. The set of global registers is shown in table 5.1

below. The set of registers can be divided into three

groups. The first two registers, Current Call, and Current

Procedure define the position of the search through the

database. The next three registers. Next Candidate, Most

Recent Parent and Most Recent Backtrack define the next call

if the Current Call and the Current Procedure don't match.

The last three registers Top of Frame Stack, Last Top of

Frame Stack, and Top of Trail are stack pointers used to

keep track of the current positions on the stacks.

Frame Stack and Trail Stack

The frame stack is an area of memory in which

information about variable bindings and the location of the

next call is stored. This information changes as solution

paths are searched and rejected. For this reason, the

information is kept in a stack of frames with each frame

representing the variable and call information at a point in

the solution. Each time a call matches with the head of a

rule, a frame is created. The frame contains five pointers,

30

Table 5.1 The set of global registers

Current Call

Current Procedure

Next Candidate

Most Recent Parent

Most Recent Backtrack

Top of Frame Stack

Last Top of Frame Stack

Top of Trail

which determine the next call to be solved, an unknown

number of variables with their bindings, and one pointer for

record keeping within the stack. Figure 5.1 shows the

generic form of the frame stack.

The space at the top of a frame contains the

information about all the variables in the rule for which

the frame was created. The number of variables that will be

encountered varies from frame to frame. This provides the

motivation for the previous frame pointer. The previous

frame pointer is the first item in the frame and contains

the address of the first entry in the previous frame. The

other members of the frame are pointers that determine which

call should be solved next and help recover from dead ends.

31

Top of frame >

Last
Top of Frame

variable n

variable 1

Trail Pointer
Previous Backtrack
Next Candidate
Previous Return
Return Pointer
Parent Frame
Previous Frame

Variable Space

Trail Pointer
Previous Backtrack
Next Candidate
Previous Return
Return Pointer
Parent Frame
Previous Frame

/ \

Growth

Figure 5.1 Frame stack.

In addition to the previous frame pointer, each frame

has, as a minimum, a return pointer and a parent frame

pointer. The return pointer points to the next call to be

solved. The return pointer normally points to the call

following the current call. If the current call is the last

call in the rule, the return pointer is set to null. If the

interpreter finds a null return pointer while looking for

the next call, the interpreter must examine the return

pointer of the frame that called the current frame. That

32

frame is called the parent frame. The parent frame pointer

is the pointer used to trace back to a non-null return

pointer.

In addition to the parent frame pointer and the return

pointer, some frames have four other pointers. Sometimes in

searching the database the interpreter will reach a call

that fails to match with anything in the database, that is,

it cannot be proven true by the database. Often when such a

dead end is reached, there are untried paths between the

dead end and the beginning. This is the case when there

were untried candidate procedures that might have succeeded

had they been tried. In this case the interpreter must

backtrack to the point where an untried path exists and

begin again. All variables that were instantiated due to

calls beyond the backtrack point need to be unbound because

their bindings are not valid. The trail stack and the four

remaining pointers in the frame stack are used to allow

backtracking. Figure 5.2 gives an example database which

contains a backtrack point.

When the interpreter reaches a point where there is

more than one possible candidate to match a call, the first

of the candidates is chosen and a frame is created. If this

candidate fails, the interpreter must be able to disregard

any variable bindings made since that frame was created.

The trail stack is used to record these potentially invalid

bindings

.

33

Database:

a :- b, c.

b :- d.

b :- e.

e.

c .

:- a.

Figure 5.2 Backtrack example. In this database the rule b

:- d matches the call b. At that point the rule b :- e is an

untried candidate for the call b, so the frame created for b

:- d is a backtrack frame. When the call d fails the

interpreter will backtrack and try the rule b :- e. The

call e will succeed and the next call will be c.

As bindings are made in a backtrack frame, the

interpreter puts a pointer on the trail stack which points

to that variable's position in the frame. Then if

backtracking is necessary, the bindings pointed to by all of

the pointers between the top of the trail stack and the top

of the trail stack when the frame was created need to be

unbound. To do this, the interpreter must record the

position of the top of trail at the time of creation of the

backtrack frame. That position is recorded in the trail

pointer location of the frame.

34

The other three pointers in the frame are very straight

forward. A backtrack frame is created because there is at

least one untried candidate that matches with the current

call. This candidate is remembered by the next candidate

pointer in the frame. The call that invoked the backtrack

frame must be remembered to restore the state of the search

upon backtracking. That call is pointed to by the previous

return pointer. If there was a backtrack frame before the

current one, a pointer to it must be kept in case further

backtracking is necessary. That pointer is kept in the

previous backtrack cell of the frame.

5.2 Al gorithms

The following pseudo-code outlines the inference

mechanism of the interpreter. The code is a data flow

description of the machine proposed in this report. The

algorithm is an adaptation of the algorithm by Rodenbaugh

[4]. These algorithms will be used in the description of

the execution of example programs in Chapter 6.

35

Initialization

NC := null ptr.
MRB := null ptr.
MRP := null ptr.
TOT := Trail bottom
LTOF := frame stack bottom
TOF := frame stack bottom
M(TOF) := null ptr
TOF := TOF + 1

M(TOF) := null ptr
TOF := TOF + 1

M(TOF) := null ptr.
TOF := TOF + 1

CP := location of codified
facsimile of main goal.

CP := CP + 1

VC := M(CP)
While VC > do

find the variable
M(TOF) := var

TOF TOF + 3

VC := VC - 1

go to call selection

{next candidate}
{Most recent backtrack}
{most recent parent}
{top of trail}
{Last top of frame}
{top of frame}
{previous frame pointer}

{parent frame pointer}

{return pointer}

{current procedure}

{current procedure pts to
variable count for
the proc

.

}

{variable count}

{push the var on
the frame}
{leave room for environ,
and value pointer fields}

36

Call Selection

temp := CP {temporary register}
If tag [M(CP)] = assertion {is the current procedure

an assertion}
then

CC := M(LTOF +2)
while CC is null ptr. and MRP <>
do

CC := M(MRP +2)
MRP := M(MRP + 1) {MRP := parent of MRP}

if CC is null ptr.
then

output solution
go to backtrack step

else {CP is a rule}
While tag[M(temp)] <> procedure or last call
do {find a call}

temp := temp +1
CC := temp {pointer to the call in CC}
MRP := LTOF {current frame is a parent}

{At this point current call points
to the linked list of candidates.
The procedure pointer of the list
points to the first entry of the
first candidate in the facsimile
area. That is the next candidate
pointer}

if M(CC) .procptr <> nil {if there is a candidate}
then

NC := M(CC) .procptr {CC pts to the next
candidate}

go to procedure selection
else

go to backtrack

37

Procedure Selection

M(TOF +5) := TOT {save top of trail in trail ptr}
M(TOF +2) := CC {save current call in return ptr}
CP := NC

if NC <> null ptr.
then

NC := M(NC)
CP := CP + 1 {current procedure pts to variable

count}
VC := M(CP)

while CP is not null ptr.
do

go to unify procedure

if CP did not unify with CC
then

CP := NC + 1

if M(NC) is not null ptr.
then

NC := M(NC) {get next candidate}
VC := M(CP)

unbind variables bound during
unsuccessful unification attempt

else
go to frame creation {CC unified with CP}

go to backtrack {CC did not unify with any
candidates}

Unification

CP : = CP + 1 {find first parameter
CC := CC + 1 of each}
Repeat until done

temp := M(CP) {generate the
MAR := address gen (temp, M(CC)) address of the
IR := M(MAR) match routine

and jump there}
if there is a match
then

do variable bindings
find next parameter

else return (failure)
restore CC
CP := CP + 1

Return (success)

3 8

Frame Creation

M(TOF) := LTOF
LTOF := TOF
TOF := TOF + 1

M(TOF) := MRP
TOF := TOF + 1

if tag[CC] is last call
then

M(TOF) := null ptr
else

M(TOF) := ptr to next call
TOF := TOF + 1

if NC is null ptr
then

TOF := TOF + 2

else
M(TOF) := NC
TOF := TOF + 1

M(TOF) := MRB
TOF := TOF + 1

MRB := LTOF
TOF := TOF + 1 +(VC * 3

{push previous frame pointer}
{mark new frame}

{push parent frame pointer}

{return pointer}

{not a backtrack frame}

{this is a backtrack frame}

go to call selection

Backtracking

if MRB is nil
then

output (No)
quit

else
NC := M(LTOF + 3)
CC := M(LTOF + 4)
MRP := M(LTOF + 1)
TOF := MRB
LTOF := M(TOF)
If TOT > M(TOF + 6)
then

unbind
MRB := M(TOF + 5)
go to procedure selection

{allocate three spaces
for each variable}

{done}

{restore pointers}

{discard all frames above
and including MRB}
{if bindings have been
made unbind them}

Unbinding

while trail pointer < TOT
do

M (M (TOT)). tag := unbound tag
TOT := TOT -1

return

39

5.3 Database Form

The set of rules (procedures) and facts (assertions)

that may be useful in solving a user's queries are stored in

the computer's database in an efficient, codified form.

Conceptually, the form can be represented as a set of linked

lists. Each entry in a list has three cells. The first cell

contains a pointer to the spelling of name of a set of rules

or facts, located in an atom heap. The second cell points to

the first rule or fact in the linked list of rules and facts

that have that name. The third cell is a collision pointer.

It points to the next list whose name hashed to the same

value in the hash table.

Figure 5.3 shows a simple, recursive Prolog program

consisting of one fact and one query. This program defines

what John likes as anything that likes wine. The program

also includes the fact that Mary likes wine. The query

asks, "What does John like."

likes (John, X) :- likes (X, wine),

likes (mary, wine)

.

:- likes (John, Y) .

Figure 5.3 An example Prolog program.

Figure 5.4 shows the structure of the database. The

procedure name, likes, would be accessed through a hash

table. The hashed value of likes would point to a linked

4

list of the names that hash to that value. The entry in the

list for likes points to the first occurrence of likes in

the facsimile area. The rules and facts in the facsimile

area are linked by pointers to the following rule or fact

with the same name. Figure 5.5 shows the codified facsimile

of the example program. The index numbers that appear along

side the entries in figure 5.5 are used in the discussion of

the execution of this program in Chapter six.

Hash Table

likes

h(likes) ^^^^ >IZZ_IZZZIZZZI—>l~l~l~l

Figure 5.4 Database structure

Figure 5.6 shows a more comprehensive example program.

This program describes the notion of sisterhood (in at least

a limited sense). The program contains a rule which states

that one person is the sister of another if the first person

is female and the two people have the same mother. The

example program contains a second rule stating that two

people have the same mother if the first person's mother is

the same as the second person's mother. The program then

contains a set of facts about females and mothers. The

codified facsimile of this example is shown in figure 5.7.

41

dex Identifier

1 Next candidate
2 Variable Count
3 Atom
4 Variable
5 Call
6 Variable
7 Atom

End

8 Next candidate
9 Variable Count
10 Atom
11 Atom

End

12 Goal
13 Variable Count
14 Call
15 Atom
16 Variable

Tag Value

pointer index 8

procedure 1

atom >john
unbound _0
last call h(likes)
unbound _0
atom >wine
null pointer /

null pointer /

assertion
atom >mary
atom >wine
null pointer /

null pointer /

procedure 1

last call h(likes)
atom >john
unbound 1

Figure 5.5 Codified facsimile of an example program.

The execution of this program will be detailed in

Chapter six showing the state of the data structures kept by

the interpreter and how the tags of Chapter four facilitate

the process.

42

sister-of (X,Y) :- female (X), same-mother (X,Y)

.

same-mother (X,Y) :- mother (X,Z), mother (Y,Z).

female (sue)

.

female (diano)

.

mother (diane , sue)

.

mother (dan , sue)

.

mother (david,sue).

:- sister-of (diane,A) .

Figure 5.6 Sisterhood example.

Index Identifier Tag Value

1 Next candidate null pointer /
2 Variable Count procedure 2

3 Variable unbound
4 Variable unbound 1
5 Call procedure h(female)
6 Variable unbound _0
7 Call last call h(same-mother)
8 Variable unbound
9 Variable unbound 1

End null pointer 7

10 Next candidate
11 Variable Count
12 Atom

End

pointer index 13
assertion
atom >sue
null pointer /

13 Next candidate
14 Variable Count
1

5

Atom
End

null pointer /

assertion
atom
null pointer /

->diane

43

dex Identifier

16 Next candidate
17 Variable Count
18 Variable
19 Variable
20 Call
21 Variable
22 Variable
2 3 Call
24 Variable
2 5 Variable

End

Tag Value

null pointer /
procedure 2

unbound 2

unbound 3

procedure h (mother)
unbound 2

unbound 4

last call h (mother)
unbound 3

unbound 4

null pointer 7

26 Next candidate
27 Variable Count
28 Atom
29 Atom

End

pointer
assertion
atom
atom
null pointer

index 30

>diane
>sue

/

30 Next candidate
31 Variable Count
32 Atom
33 Atom

End

pointer
assertion
atom
atom
null pointer

index 34

>dan
>sue

/

34 Next candidate
35 Variable Count
36 Atom
37 Atom

End

38 Goal
39 Variable Count
40 Call
41 Atom
42 Variable

Figure 5.7 Codified f,

program.

pointer
assertion
atom
atom
null pointer

index 38

>david
>sue

/

null pointer /

procedure 1

last call h(sister-of)
atom >diane
unbound 5

sisterhood example

44

6.0 Demonstration of Contro l F low

Previous chapters of this report have outlined the

nature of Prolog programs, the form of Prolog databases and

data structures, and proposed a set of tags to implement an

interpreter efficiently. This chapter details the execution

of two example Prolog programs. The examples were listed

and discussed in section 5.3, immediately preceding. The

examples show what happens to all of the elements that have

been introduced, namely the frame and trail stacks and the

global registers, as the interpreter executes the programs.

The examples also show how the tags facilitate the

execution. The control strategy is detailed in the

algorithms presented in Section 5.2.

6.1 Likes: A Simple Example

The example program of figure 5.3 is a very short,

recursive program whose query asks about what John likes.

The rule in the database states that John likes anything

that likes wine. The fact in the database states that Mary

likes wine. The codified facsimile of the database is shown

in figure 5.5. While this is a short example, it

45

demonstrates all of the important features of the control

program, namely call and procedure selection, variable

binding and unbinding, backtracking, the function of the

frame and trail stacks and how Prolog handles recursion.

Snapshots of the frame stack and global registers are

included at important points in the execution.

The execution begins with the initialization routine.

The initialization routine sets the current procedure

pointer to the codified facsimile of the main goal, index 12

in figure 5.5. Then the current procedure pointer is

incremented to find the variable count for the procedure. A

frame is created for the goal procedure with a null parent

pointer, and null previous frame pointer. The variables of

the call are pushed on the stack and two extra spaces are

allocated for the environment and value pointers for each

variable. The state of the frame stack after initialization

is shown in figure 6.1. The variable is shown with its tag

and value fields separated by a vertical bar. The value

pointer is the next entry above the variable, and the

environment pointer is the next entry. Throughout this

example, the frame stack will grow upward.

The state of the global registers is shown in figure

6.2 below. The frame and trail stack pointers are obvious

and will be omitted for brevity.

46

Frame 1 for

:- likes(john, Y)

Null ptr. /
Null ptr. /

UNBOUND Y
Return pointer = null
parent pointer = null
previous frame = null

Frame Stack

Figure 6.1 Frame stack after initialization.

Current Call
Current Procedure
Next Candidate
Most Recent Parent
Most Recent Backtrack

nil
main goal, index 13
null
null
null

Figure 6.2 Global registers after initialization.

When the initialization is finished, control passes to

the call selection routine. Call selection checks the tag

of the current procedure, index 13, and finds that it is a

procedure. Then the call is found at index 14 and current

call points there. Because the current procedure was a call

rather than an assertion, the current frame is a parent

frame and most recent parent is set to the current frame.

The current call, using the hash table, points to the linked

list of procedures and assertions that start with like. The

next candidate is pointed to by the procedure pointer of the

linked list. The next candidate pointer takes the value of

4 7

this procedure pointer. Then the next candidate pointer is

pointing to index 1. The control then jumps to the

procedure selection routine.

Procedure selection begins by saving the top of trail

and current call pointers in the second frame of the stack.

This is done because an unsuccessful unification attempt

will change those pointers and they will need to be

restored. Procedure selection then uses the next candidate

pointer to get a current procedure. Upon entry to the

procedure selection routine, current procedure still points

to index 13. Procedure selection changes current procedure

to the location one beyond the place next candidate is

pointing. Current procedure then points to index 2, the

variable count of the procedure

likes (john,X) :- likes (X,wine).

Next candidate is advanced to the next link in the likes

list, namely to index 8.

The next step is the unification procedure which

attempts to match the parameters of the current call,

likes (john,Y)

to the parameters of the current procedure

likes (john,X)

Because they do match, the interpreter goes to the frame

creation routine to build a frame for the procedure that

just unified with the current call.

4 8

At this point in the execution, the next candidate

register is not null showing that there is at least one

untried candidate for unification with the current call, so

the frame that is created in the frame creation routine is a

backtrack frame. The state of the frame stack after the

frame is created is shown in figure 6.5. Note that the

variable in the procedure became bound to the variable in

the call during unification. Thus, the value pointer of the

variable in frame two points to the variable in frame 1.

This binding is recorded by a pointer to the variable, X, in

frame 2 on top of the trail stack. The previous frame

pointer and parent pointer are shown simply as frame 1.

This represents the top of frame 1. The trail was empty

when unification began, so the trail pointer points to the

bottom of the trail, shown as 0. The trail is shown in

figure 6.4, and the global registers are shown in figure

6.3.

Current Call index 14
Current Procedure index 2

Next Candidate index 8

Most Recent Parent null
Most Recent Backtrack frame 2

Figure 6.3 Global registers after creation of second frame.

49

1 pointer to X in frame 2

Trail

Figure 6.4 Trail stack after creation of second frame.

Frame 2 for

likes (john,X)

:- likes (X,wine)

Null ptr.
pointer
BOUND-VAR
trail pointer =

previous backtrack = null
previous return = 14
next candidate = 8

return pointer = null
parent frame = frame 1

previous frame = frame 1

-> Y in frame 1

Frame 1 for

:- likes (John, Y)

Null ptr. /

Null ptr. /
UNBOUND Y
Return pointer = null
parent frame = null
previous frame = null

Frame Stack

Figure 6.5 Frame stack after creation of second frame.

Once the frame has been created, control returns back

to the call selection routine. This time the current

procedure pointer is pointing to index 5. The call that is

selected is the first, and only, call in the procedure.

This makes the current call

likes (X, wine).

The next candidate is set to the procedure pointed to by the

50

procedure pointer of the call, index 1. This is an example

of a recursive call. Then control passes to procedure

selection.

Procedure selection begins as it did before. The

current procedure pointer gets set to index 3. The next

candidate pointer gets set to index 8. When the unification

procedure is called, the current call is

likes (X,wine)

and the current procedure is

likes (John, X).

Unification would bind X to John and X to wine. Because, a

variable cannot be bound to two different atoms, the

unification fails and a new current procedure must be found.

The state of the global registers at this point is shown in

figure 6.6, below.

Current Call index 5
Current Procedure index 1

Next Candidate index 8
Most Recent Parent frame 2

Most Recent Backtrack frame 2

Figure 6.6 Global registers at unification.

Procedure selection assigns the index 1 past the next

candidate to the current procedure, thus the current

procedure gets index 9. Now the current procedure is the

last in the list and so the next candidate is null. When

unification is called the current call is still

51

likes (X,wine),

and the current procedure is

likes (mary, wine).

Unification binds X to mary and notices that the two atoms

match. Thus the current procedure unifies with the current

call. However, unlike the last time unification succeeded,

the current procedure is an assertion. Thus the variable,

Y, is bound to the atom, mary, and the control passes to the

frame creation step. This state of the frame stack is shown

in figure 6.8. The state of the trail is shown in figure

6.7.

2 pointer to Y in frame 1

1 pointer to X in frame 2

Trail

Figure 6.7 Trail stack after creation of third frame.

After creating a frame the interpreter returns to call

selection to see if there are any more calls to be resolved.

Call selection determines that the current procedure is an

assertion and begins looking for unanswered calls. The

return pointers of frames three and two are null pointers,

so the interpreter understands that it has arrived at a

solution. At this point the interpreter will output the

solution and go to the backtrack routine and look for other

solutions

.

52

Frame 3 for

likes (mary,wine)

return pointer = null
parent frame = 2

previous frame = 2

Frame 2 for

likes (john,X)

:- likes (X,wine)

Null ptr.
pointer
BOUND-VAR

-> Y in frame 1

X
trail pointer =

previous backtrack = null
previous return = 14
next candidate = 8

return pointer = null
parent frame = frame 1

previous frame = frame 1

Frame 1 for

:- likes (John, Y)

Null ptr.
pointer
BOUND-ATOM
Return pointer = null
parent frame = null
previous frame = null

->mary

Frame Stack

Figure 6.8 Frame stack after creation of third frame.

Backtracking restores the pointers that were saved in

the backtrack frame, frame two, unbinds any bindings that

were made since the creation of frame two, namely the

binding of the variable, Y to the atom, mary, and discards

the third and second frames. After that, the current call

is once again

likes (X,wine).

However, the next candidate pointer is null. At this point

control jumps to the procedure selection routine. The

53

interpreter enters the procedure selection routine with a

null next candidate pointer. This invokes backtracking

again. What this means is that the interpreter has found

all of the solutions to the call,

likes (X, wine)

and must look for other procedures to match the previous

call

,

likes (John, Y).

Backtracking resets the current call to the

aforementioned previous call, and the next candidate to

index 8. The binding of X to Y is removed and the second

frame is discarded. At this point the frame stack looks

exactly as it did in figure 6.1, just after creation of the

first frame.

Procedure selection selects the assertion,

likes(mary, wine)

as the current procedure. Of course, the current procedure

fails to unify with the current call. This requires further

backtracking. The interpreter looks for more unanswered

calls and finds none. So, it outputs the answer "No"

meaning "no more solutions." There was only one solution to

the query, and the interpreter found it.

6.2 Sister-of

:

A More Comprehensive Examp le

The example program of figure 5.6 is a fairly involved

program whose query asks, "Whose sister is Diane?" The

54

rules in the database state that if Diane is a female, then

she is the sister of anyone who has the same mother as her.

The codified facsimile of the database is shown in figure

5.7. The execution of this program demonstrates call and

procedure selection, variable binding and unbinding, record

keeping on the frame and trail stacks, and backtracking both

on success and on failure. Snapshots of the frame stack,

trail stack and global registers at important points in the

execution are included to illustrate the record keeping.

The execution begins, as in the previous example, with

initialization. The initialization routine sets the current

procedure pointer to the codified facsimile of the main

goal, index 38 in figure 5.7. The current procedure is

incremented to get the variable count for the current

procedure, and a frame is created for the main goal. As

always, the main goal has a null parent pointer and null

previous frame pointer. The one variable is pushed on the

stack and space is allocated for its value and environment

pointers. The information is shown in figure 6.9 below.

The format is the same as in the previous example with the

stack growing up.

The state of the global registers is shown in figure

6.10. The frame and trail stack pointers are obvious and

will be omitted for brevity.

55

Frame 1 for

:- sister-of (diane,A)

Null ptr. /
Null ptr. /

UNBOUND A
Return pointer = null
parent frame = null
previous frame = null

Frame Stack

Figure 6.9 Frame stack after initialization.

Current Call nil
Current Procedure main goal
Next Candidate null
Most Recent Parent null
Most Recent Backtrack null

Figure 6.10 Global registers after initialization.

After initialization, the interpreter performs call

selection. Call selection checks the tag of the current

procedure (index 39) and finds that it is a procedure.

Because the current procedure was a call rather than an

assertion, the current frame is a parent frame and the most

recent parent register is set to the current frame. The

current call points to the linked list of procedures and

assertions that start with

sister-of.

The next candidate is pointed to by the procedure pointer of

the linked list. The next candidate pointer takes the value

56

of this procedure pointer. The next candidate pointer is

pointing to index 1. The control then proceeds to the

procedure selection routine.

Procedure selection begins by saving the top of trail

and current call pointer in the second frame of the stack as

in the previous example. Current procedure then takes the

value of the next candidate, index 1, and the next candidate

points to the next member of the linked list of candidates.

In this case, there are no more candidates beginning with

sister-of, so the next candidate is the null pointer. Note

that this is done simply by assigning the value field of the

previous next candidate to the new next candidate.

Procedure selection calls the unification procedure to

see if the current procedure matches the current call and to

bind variables if necessary. The unification procedure,

then, tries to unify the current procedure,

sister-of (X,Y),

to the current call,

sister-of (diane. A).

Unification succeeds, and X gets bound to diane and Y gets

bound to A. Successful unification is analogous to a maze

solver choosing to turn at an intersection. There is no

guarantee that that turn will lead to the solution, so the

maze solver must keep track of the state of his search

before making the turn in case it becomes necessary to

return to that point and start over. The interpreter saves

57

the state of the search in the frame stack by creating a new

frame

.

The frame creation routine saves a pointer to the

previous frame, a pointer to the parent frame, and the

return pointer in all cases. If there were untried

candidates (i.e. the next candidate pointer was not null)

then the frame is a backtrack frame and more information is

stored. The next candidate pointer is null at this point,

so just the three pointers are saved. Above the pointers in

the frame, the variable information is stored. The previous

frame pointer points to the top of frame 1. The parent of

the current procedure is the main goal, so the parent frame

pointer also points to frame 1. The return pointer points

to the next unresolved call, the call following the current

call. In this case the return pointer is null. In the

variable space, the X and Y are stored with the information

that X is bound to the atom diane and Y is bound to the

variable A in the first frame. The state of the frame stack

is shown in figure 6.12 below. The state of the global

registers is shown in figure 6.11, and the trail stack is

shown in figure 6.13.

Current Call sister-of (diane, A)
Current Procedure sister-of (X,Y)
Next Candidate null
Most Recent Parent null
Most Recent Backtrack null

Figure 6.11 Global registers after frame 2.

r
)>i

Frame 2 for

sister-of (X,Y)

Null ptr.
pointer
BOUND-VAR
Null ptr.
pointer
BOUND-ATOM

-> A in frame 1

x

return pointer = null
parent frame frame 1

previous frame = frame 1

-> diane

Frame 1 for

:- sister-of (diane, A)

Null ptr.
Null ptr.
UNBOUND
Return pointer = null
parent frame = null
previous frame = null

Frame Stack

Figure 6.12 Frame stack after creation of second frame.

2 pointer to Y in frame 2

1 pointer to X in frame 2

Trail Stack

Figure 6.13 Trail stack after frame 2.

Once the record keeping has been done, the maze solver

can continue down the path he has chosen. Likewise, the

interpreter proceeds from frame creation to the search for a

new call. The new call is the first call of the current

procedure,

female (X),

which is located at index 5 in the codified facsimile. The

59

next candidate is set based on the pointer from the current

call. In this case, the next candidate,

female (sue),

is located at index 10.

The procedure selection routine sets the current

procedure to the value of the next candidate,

female (sue).

The next candidate is set to the next member of the

candidate list,

female (diane),

at index 13. Procedure selection then calls unification to

unify the current procedure,

female (sue),

with the current call,

female (X).

Because X is bound to diane and a variable cannot be bound

to two different atoms, the unification fails. The state of

the registers at this point is shown in figure 6.14 below.

Current Call female (X) {X is bound to diane}
Current Procedure female (sue)
Next Candidate female (diane)
Most Recent Parent frame 2

Most Recent Backtrack null

Figure 6.14 Global registers at unification.

When the current procedure fails to unify with the

current call, the procedure selection routine looks for a

60

new current procedure. The current procedure gets the value

of the next candidate,

female (diane),

at index 13, and the next candidate gets the next member of

the list of candidates, the null pointer. Then unification

is called again and this time succeeds. However, this

unification did not involve binding any new variables.

The frame that is created as a result of this

unification is very simple. The next candidate pointer is

null, so the frame is not a backtrack frame. The current

procedure was an assertion, so there are no variables to

store. Therefore, only three pointers will be stored. The

previous frame is frame 2, the parent frame is frame 2, and

the return pointer is the next call, index 7. The state of

the frame stack is shown in figure 6.16 below. The state of

the global registers is shown in figure 6.15. The trail

stack is unchanged.

Current Call female (X)
Current Procedure female (diane)
Next Candidate null
Most Recent Parent frame 2

Most Recent Backtrack null

Figure 6.15 Global registers after frame 3.

61

for

diane)

.

for

Frame 3

female

return pointer
parent frame =

previous frame

= index
frame 2

= frame

7

2

Null ptr.
pointer
BOUND-VAR
Null ptr.
pointer
BOUND-ATOM

/

Y
/

> A in frame 1

Frame 2 X

sister-of (X,Y)
return pointer = null
parent frame = frame 1

previous frame = frame 1

Frame 1 for

:- sister-of (diane, A)

Null ptr.
Null ptr.
UNBOUND
Return pointer = null
parent frame = null
previous frame = null

Frame Stack

Figure 6.16 Frame stack after creation of the third frame.

As before, frame creation is followed by the selection

of another call. The new current call is the call following

female (X),

namely the call at index 7,

same-mother (X,Y).

This current call has the tag last call signifying that if

the current call is satisfied, its parent call will be

satisfied. The next candidate is set by call selection to

index 16,

6 2

same-mother (X,Y) :-.

Procedure selection assigns the value of the next

candidate to the current procedure. The next candidate,

pointed to by index 16, is the null pointer. Unification

succeeds in unifying the current procedure and current call,

and control passes again to frame creation.

The next candidate pointer is, again, a null pointer,

so the frame is not a backtrack frame. The fourth frame is

created with the previous frame pointer pointing to frame

three, the parent frame is frame two, and the return pointer

is null. The state of the frame stack is shown in figure

6.19. The global registers and the trail stack are detailed

in figures 6.17 and 6.18 respectively.

Current Call same-mother (X,Y)
Current Procedure same mother (X,Y)
Next Candidate null
Most Recent Parent frame 2

Most Recent Backtrack null

Figure 6.17 Global registers after frame 4.

4 pointer to Y in frame 4

3 pointer to X in frame 4

2 pointer to Y in frame 2

1 pointer to X in frame 2

Trail Stack

Figure 6.18 Trail stack after frame 4.

63

Frame 4 for

same-mother (X,Y)

null ptr
pointer
BOUND-VAR
null ptr
pointer
BOUND-VAR
return pointer = null
parent frame = frame 2

previous frame = frame

-> Y in frame 2

-> X in frame 2

Frame 3 for

female (diane)

.

Frame 2 for

sister-of (X,Y)

return pointer = index 7

parent frame = frame 2

previous frame = frame 2

I

/Null ptr.
pointer
BOUND-VAR
Null ptr.
pointer
BOUND-ATOM
return pointer = null
parent frame = frame 1

previous frame = frame 1

-> A in frame 1

-> diane

Frame 1 for

:- sister-of (diane, A)

Null ptr.
Null ptr.
UNBOUND
Return pointer = null
parent frame = null
previous frame = null

Frame Stack

Figure 6.19 Frame stack after creation of fourth frame.

Once again the call selection routine is executed to

find the next call to address. This time the current call

is the first call of

same-mother (X,Y),

64

namely
mother (X,Z),

at index 20. The next candidate is index 26,

mother (diane,sue).

The procedure selection routine sets the current

procedure to index 26, and the next candidate to index 30,

mother (dan, sue).

Unification attempts to unify

mother (X,Z)

with

mother (diane,sue),

while X is bound to the atom, diane, and Z is unbound. This

succeeds and binds Z to sue.

The frame creation routine finds the next candidate

pointer not null, and the frame that is created is the first

example of a backtrack frame. The previous frame is, of

course, frame 4, and the parent frame, from the most recent

parent register, is also frame 4. The return pointer is the

next call,

mother (Y, Z) ,

located at index 23. Four other pointers are also stored in

a backtrack frame. The next candidate is

mother (dan, sue).

The previous return pointer is simply the current call,

mother (X,Z).

The previous backtrack is null, because this is the first

65

backtrack frame. The trail pointer points to the top of the

trail in figure 6.18, index 4. All of this information and

the variable bindings is shown in figure 6.20 below. The

state of the global registers and trail follows in figures

6.21 and 6.22.

Frame 5 for

mother (X,Z)

Frame 4 for

same-mother (X,Y)

Null ptr.
pointer
BOUND-ATOM
Null ptr.
pointer
BOUND-VAR
trail ptr.

-> X in frame 4

previous backtrack = null
previous return = index 20
next candidate = index 30
return pointer = index 2 3

parent frame = frame 4

previous frame = frame 4

null ptr
pointer
BOUND-VAR
null ptr
pointer
BOUND-VAR
return pointer = null
parent frame = frame 2

previous frame = frame

-> Y in frame 2

-> X in frame 2

Frame 3 for

female (diane)

Frame 2 for

sister-of (X,Y)

return pointer = index 7

parent frame = frame 2

previous frame = frame 2

I

/Null ptr.
pointer
BOUND-VAR
Null ptr.
pointer
BOUND-ATOM
return pointer = null
parent frame = frame 1

previous frame = frame 1

-> A in frame 1

-> diane

6 6

Frame 1 for

:- sister-of (diane,A)

Null ptr. /
Null ptr. /
UNBOUND A
Return pointer = null
parent frame = null
previous frame = null

Frame Stack

Figure 6.20 Frame stack after creation of the fifth frame.

Current Call
Current Procedure
Next Candidate
Most Recent Parent
Most Recent Backtrack

mother (X,Z)
mother (diane, sue)
mother (dan, sue)
frame 4

frame 5

Figure 6.21 Global registers after frame 5.

6 pointer to Z in frame 5

5 pointer to X in frame 5

4 pointer to Y in frame 4

3 pointer to X in frame 4

2 pointer to Y in frame 2

1 pointer to X in frame 2

Trail Stack

Figure 6.22 Trail stack after frame 5.

After creation of frame 5, the call selection routine

sets the current call to the last call in the same-mother

rule, index 23,

mother (Y,Z).

The next candidate is

6 7

mother (diane, sue),

at index 26. Procedure selection moves the next candidate

into the current procedure and sets the next candidate to

index 30,

mother (dan, sue).

Unification compares

mother (Y,Z)

and

mother (diane, sue).

The variable, Y, is initially bound to the unbound variable,

A, in frame 1, and the variable, Z, is bound to the atom,

sue, in frame 5. Thus unification succeeds, binding the

variable, A, to the atom, diane. The frame that is created

is a backtrack frame and is shown in figure 6.23. The

global registers and trail follow in figures 6.24 and 6.25.

Frame 6 for

mother (Y,Z)

/Null ptr.
pointer
BOUND-VAR
Null ptr.
pointer
BOUND-VAR
trail ptr. = 6

previous backtrack = frame 5

previous return = index 20
next candidate = index 30
return pointer = null
parent frame = frame 4

previous frame = frame 5

> Z in frame 5

> Y in frame 4

6 8

Frame 5 for

mother (X,Z)

Frame 4 for

same-mother (X,Y)

Frame 3 for

female (diane)

Null ptr. /

pointer > sue
BOUND-ATOM Z

Null ptr. /

pointer > X in frame 4

BOUND-VAR X
trail ptr. = 4

previous backtrack = null
previous return = index 2

next candidate = index 30
return pointer = index 23
parent frame = frame 4

previous frame = frame 4

/null ptr
pointer
BOUND-VAR
null ptr
pointer
BOUND-VAR
return pointer
parent frame =

previous frame

Y in frame 2

X in frame 2

= null
frame 2
= frame

return pointer = index 7

parent frame = frame 2

previous frame = frame 2

Frame 2 for

sister-of (X,Y)

Null ptr.
pointer
BOUND-VAR
Null ptr.
pointer
BOUND-ATOM
return pointer = null
parent frame = frame 1

previous frame = frame 1

-> A in frame 1

-> diane

Frame 1 for

:- sister-of (diane, A)

Null ptr.
pointer
BOUND -ATOM
Return pointer = null
parent frame = null
previous frame = null

-> diane

Figure 6.23 Frame stack after creation of the sixth frame.

6 9

Current Call mother (Y,Z)
Current Procedure mother (diane, sue)
Next Candidate mother (dan, sue)
Most Recent Parent frame 4

Most Recent Backtrack frame 6

Figure 6.24 Global registers after frame 6.

9 pointer to A in frame 1

8 pointer to Z in frame 6

7 pointer to Y in frame 6

6 pointer to Z in frame 5

5 pointer to X in frame 5

4 pointer to Y in frame 4

3 pointer to X in frame 4

2 pointer to Y in frame 2

1 pointer to X in frame 2

Trail Stack

Figure 6.25 Trail stack after frame 6.

As always, call selection is entered after frame

creation, however this time the current procedure is an

assertion, so there are no new calls to pursue, and there

are no more unresolved calls to answer. When that happens

the interpreter understands that the query has been

successfully answered. The solution,

A = diane,

is printed for the user, and backtracking is initiated to

find more solutions.

The solution that diane is the sister of diane may come

as a surprise to some. We do not normally think of a person

70

being her own sister. However, the program stated that one

person is the sister of another if one is a female and they

have the same parents. The program did not state that the

people had to be unique. Naturally, a rule could be added

to preclude this solution, but it is more informative to

consider changing the query to prevent the trivial solution

from being chosen. The query could be written using the

built in predicate, /=, meaning not equal to, as follows:

:- sister-of (diane,A), A /= diane.

If the query had been written that way, the call selection

routine after frame 6 was created would have found one more

call to answer:

A /= diane.

That call would of course fail given that A is instantiated

to diane. This failure would initiate backtracking just as

the success of the last call did with the initial query.

The only difference is that the result,

A = diane,

would not be printed.

The backtracking routine behaves the same regardless of

whether it was entered after a success, as with the initial

query, or on failure, as with the modified query. In either

case there is a backtrack frame on the stack signifying that

there are untried solution paths. The job of the

backtracking routine is to restore the state of the database

71

as it was when the last backtrack frame was created. This

involves restoring the next candidate register from the next

candidate entry in the frame, restoring the current call

from the previous return entry in the frame, restoring the

most recent parent register from the parent frame pointer

entry of the frame, and restoring the most recent backtrack

register from the previous backtrack entry in the frame.

Then the frame is discarded by setting the top of frame

pointer to the position recorded in the most recent

backtrack register. This action restores all of the global

registers, except current procedure, and the frame stack to

the state when the backtrack frame was created. (Note that

the current procedure register is left unchanged during

backtracking and will not be updated until the next call to

procedure selection.)

All that is left is unbinding the variables that were

bound between the creation of the backtrack frame and the

initiation of backtracking. Those variable bindings are

recorded on the trail stack between the top of the trail

stack, position 9, and the top of the trail stack when the

backtrack frame was created, position 6, recorded in the

trail pointer entry of the backtrack frame. The states of

the frame stack and trail stack are exactly as they were

after the creation of the fifth frame (see figures 6.20 and

6.22). The global registers are detailed in figure 6.26

below.

72

Current Call mother (Y,Z)
Current Procedure mother (diane, sue)
Next Candidate mother (dan, sue)
Most Recent Parent frame 4
Most Recent Backtrack frame 5

Figure 6.26 Global registers after backtracking.

After backtracking, all of the global registers are

restored to the state of the search before the unification

that lead to backtracking. Control then passes to the

procedure selection routine. As always, the procedure that

is selected is the next candidate, and the next candidate is

chosen from the list of candidate procedures. This makes

the current procedure

mother(dan, sue),

and the next candidate is

mother (david, sue).

Unification is then called to match the current procedure

with the current call,

mother (Y,Z),

where Y is bound to an unbound variable, A, and Z is bound

to the atom, sue.

Unification succeeds, binding A to the atom, dan.

There is an untried candidate, so the frame that is created

is a backtrack frame. The states of the frame stack, global

registers, and trail stack are shown in figures 6.27 through

6.29.

73

Frame 6 for

mother (Y,Z)

Null ptr.
pointer
BOUND-VAR
Null ptr.
pointer
BOUND-VAR
trail ptr.

-> Z in frame 5

-> Y in frame 5
Y

= 6

previous backtrack = frame
previous return = index 20
next candidate index 34
return pointer = null
parent frame = frame 4

previous frame = frame 5

Frame 5 for

mother (X,Z)

Frame 4 for

same-mother (X,Y)

Null ptr. /

pointer > sue
BOUND-ATOM Z

Null ptr. /

pointer > X in frame 4
BOUND-VAR X
trail ptr. = 4

previous backtrack = null
previous return = index 20
next candidate = index 30
return pointer index 23
parent frame = frame 4

previous frame frame 4

null ptr
pointer
BOUND-VAR
null ptr
pointer
BOUND-VAR
return pointer = null
parent frame = frame 2

previous frame = frame 3

-> Y in frame 2

-> X in frame 2

Frame 3 for

female (diane)

.

return pointer = index 7

parent frame = frame 2

previous frame = frame 2

74

Frame 2 for

sister-of (X,Y)

Null ptr.
pointer
BOUND-VAR
Null ptr.
pointer
BOUND-ATOM

-> A in frame 1

x
return pointer = null
parent frame = frame 1

previous frame = frame 1

-> diane

Frame 1 for

:- sister-of (diane, A)

Null ptr.
pointer
BOUND -ATOM
Return pointer = null
parent frame = null
previous frame = null

dan

Frame Stack

Figure 6.27 Frame stack after creation of the sixth frame.

Current Call
Current Procedure
Next Candidate
Most Recent Parent
Most Recent Backtrack

mother (Y,Z)
mother (dan, sue)
mother (david,sue)
frame 4

frame 6

Figure 6.28 Global registers after frame 6.

9 pointer to A in frame 1

8 pointer to Z in frame 6
7 pointer to Y in frame 6

6 pointer to Z in frame 5

5 pointer to X in frame 5

4 pointer to Y in frame 4

3 pointer to X in frame 4
2 pointer to Y in frame 2

1 pointer to X in frame 2

Trail Stack

Figure 6.29 Trail stack after frame 6.

7 5

After frame creation is call selection. Just as

before, there are no more calls, so the interpreter outputs

the solution,

A = dan.

Control proceeds to backtracking as before and the state of

the search is exactly the same as it was after the last

backtracking except that the next candidate is now index 34,

mother (david, sue).

Procedure selection assigns that candidate to current

procedure, and the next candidate is the null pointer.

Unification succeeds and a new frame 6 is built. However,

the new frame 6 is not a backtrack frame. This state is

recorded in figures 6.30 through 6.32.

Current Call mother (Y,Z)
Current Procedure mother (david, sue)
Next Candidate null
Most Recent Parent frame 4

Most Recent Backtrack frame 5

Figure 6.30 Global registers after frame 6.

9 pointer to A in frame 1

8 pointer to Z in frame 6

7 pointer to Y in frame 6

6 pointer to Z in frame 5
5 pointer to X in frame 5
4 pointer to Y in frame 4

3 pointer to X in frame 4

2 pointer to Y in frame 2

1 pointer to X in frame 2

Trail Stack

Figure 6.31 Trail stack after frame 6.

76

Frame 6 for

mother (Y,Z)

Null ptr.
pointer
BOUND-VAR
Null ptr.
pointer
BOUND-VAR
return pointer = null
parent frame = frame 4

previous frame = frame 5

-> Z in frame 5

-> Y in frame 4

Frame 5 for

mother (X,Z)

Frame 4 for

same-mother (X,Y)

Null ptr.
pointer
BOUND-ATOM
Null ptr.
pointer
BOUND-VAR
trail ptr.

-> X in frame 4

previous backtrack = null
previous return = index 20
next candidate = index 30
return pointer = index 2 3

parent frame = frame 4

previous frame = frame 4

null ptr
pointer
BOUND-VAR
null ptr
pointer
BOUND-VAR

-> Y in frame 2

-> X in frame 2

X
return pointer = null
parent frame = frame 2

previous frame = frame

Frame 3 for

female (diane)

.

return pointer = index 7

parent frame = frame 2

previous frame = frame 2

77

Frame 2 for

sister-of (X,Y)

Null ptr.
pointer
BOUND-VAR
Null ptr.
pointer
BOUND-ATOM
return pointer = null
parent frame = frame 1

previous frame = frame 1

-> A in frame 1

-> diane

Frame 1 for

:- sister-of (diane, A)

Null ptr. /

pointer
BOUND -ATOM A
Return pointer = null
parent frame = null
previous frame = null

> dan

Frame Stack

Figure 6.32 Frame stack after creation of the sixth frame.

Call selection will output the solution

A = david.

Then control passes to backtracking. The most recent

backtrack point is frame 5, so the database is restored to

its state before frame 5 was created. Frames 5 and 6 are

deleted, the variables pointed to by the trail entries 5

through 9 are changed to unbound, and those trail entries

are removed. The frame and trail stacks look like they did

after creation of frame 4 (see figures 6.18 and 6.19). The

global registers are detailed in figure 6.33.

The current call reverts to

mother (X,Z)

where the variable, X, is bound to the atom, diane, and the

variable, Z, is bound to the atom, sue. The procedure

Current Call mother (X,Z)
Current Procedure mother (david,sue)
Next Candidate mother (dan, sue)
Most Recent Parent frame 4

Most Recent Backtrack null

Figure 6.33 Global registers after last solution.

selection routine selects

mother (dan, sue),

which fails to unify, and then selects

mother (david,sue),

which also fails to unify. Then the list of candidates is

exhausted and control passes to backtracking.

When backtracking is entered with a null most recent

backtrack pointer, the interpreter knows that there are no

more solutions, and it outputs

No.

At that point the execution of the query

sister-of (diane, A)

is completed. All of the solutions were found and output as

follows

:

A = diane

A = dan

A = david

No.

79

7.0 Conc l usions

The goal of this report was to propose a tagged

computer architecture that would lend itself to an efficient

implementation of the Prolog computer language. The

inference mechanism of a Prolog interpreter was described

and a set of tags based on the Prolog data structures and

the control algorithm of the interpreter was proposed.

The computer described in this report would be capable

of reasonably fast execution. However, for a substantial

increase in processing speed, the parallelism of Prolog must

be exploited. This is an appropriate area for further

research.

References

[1] Meyers, Glenford J. Advances in Computer Architecture

New York: John Wiley & Sons, 19 7 8

[2] Feustel, Edward A. "On the Advantages of Tagged

Architecture." IEEE Transactions on Computers,

vol. C-22, no. 7, July 1973.

[3] Clocksin, W. F. and C. S. Mellish. Programming in

Prolog 2nd ed. Berlin: Springer-Verlag, 1984.

[4] Rodenbaugh, David J. A Control Strategy for a Prolog

Interpreter, A Master's Report. Kansas State

University, Manhattan, Kansas, 1985.

[5] Rich, Elaine. Artificial Intelligence. New York:

McGraw-Hill, Inc., 1983.

[6] Lloyd, J. W. Foundations of Logic Programming.

Berlin: Springer-Verlag, 1984.

[7] Hogger, Christopher. Introduction to Logic

Programming. London: Academic Press, 1984.

INVESTIGATION OF

A TAGGED COMPUTER ARCHITECTURE

FOR THE PROLOG LANGUAGE

by

DANIEL R. MEIGS

B.S., Kansas State University, 1985

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1988

Abstract

Artificial Intelligence programming is done primarily

in LISP and Prolog. Since 1960 effort has been expended

toward making a dedicated LISP machine. However, only in

the last decade has research been done on a computer

dedicated to Prolog. This report focuses on the advantages

of, and implementation of, a tagged architecture tailored to

Prolog. While the emphasis in this report is on Prolog, a

tagged architecture is a very flexible design approach. The

concepts in this report are valid for other applications

where a computer should be tailored to the task rather than

the task to a computer.

