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Abstract 

Two significant and closely related issues pertaining to the grid-constrained transactive 

distribution system market are investigated in this research. At first, the problem of spatial fairness 

in the allocation of energy among energy consumers is addressed, where consumer agents that are 

located at large distances from the substation – in terms of grid layout, are charged at higher rates 

than those close to it. This phenomenon, arising from the grid’s voltage and flow limits is 

aggravated during demand peaks. Using the Jain’s index to quantify fairness, two auction 

mechanisms are proposed. Both approaches are bilevel, with aggregators acting as interface agents 

between the consumers and the upstream distribution system operator (DSO). Furthermore, in spite 

of maximizing social welfare, neither mechanism makes use of the agents’ utility functions. The 

first mechanism is cost-setting, with the DSO determining unit costs. It implements the Jain’s 

index as a second term to the social welfare. Next, a power setting auction mechanism is put forth 

where the DSO’s role is to allocate energy in response to market equilibrium unit costs established 

at each aggregator from an iterative bidding process among its consumers. The Augmented 

Lagrangian Multigradient Approach (ALMA), which is based on vector gradient descent, is 

proposed in this research for implementation at the upper level. The mechanism’s lower level 

comprises of multiple auctions realized by the aggregators. The quasi-concavity of the Jain’s index 

is theoretically established, and it has been shown that ALMA converges to the Pareto front 

representing tradeoffs between social welfare and fairness. The effectiveness of both mechanisms 

is established through simulations carried out using a modified IEEE 37-bus system platform. 

The issue of extracting patterns of energy usage from time series energy use profiles of 

individual consumers is the focus of the second phase of this research. Two novel approaches for 

non-intrusive load disaggregation based on non-negative matrix factorization (NMF), are 

proposed. Both algorithms distinguish between fixed and shiftable load classes, with the latter 

being characterized by binary OFF and ON cycles. Fixed loads are represented as linear 

combinations of a set of basis vectors that are learned by NMF. One approach imposes L0 normed 

constraints on each shiftable load using a new method called binary load decomposition. The other 

approach models shiftable loads as Gaussian mixture models (GMM), therefore using expectation-

maximization for unsupervised learning. This hybrid NMF-GMM algorithm enjoys the theoretical 

advantage of being interpretable as a maximum-likelihood procedure within a probabilistic 



  

framework. Numerical studies with real load profiles demonstrate that both algorithms can 

effectively disaggregate total loads into energy used by individual appliances. Using disaggregated 

loads, a maximum-margin regression approach to derive more elaborate, temperature-dependent 

utility functions of the consumers, is proposed. The research concludes by identifying the various 

ways gleaning such information can lead to more effective auction mechanisms for multi-period 

operation.  
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Abstract 

Two significant and closely related issues pertaining to the grid-constrained transactive 

distribution system market, are investigated in this research. At first, the problem of spatial fairness 

in the allocation of energy among energy consumers is addressed, where consumer agents that are 

located are large distances from the substation – in terms of grid layout, are charged at higher rates 

than those close to it. This phenomenon, arising from the grid’s voltage and flow limits; is 

aggravated during demand peaks. Using the Jain’s index to quantify fairness, two auction 

mechanisms are proposed. Both approaches are bilevel, with aggregators acting as interface agents 

between the consumers and the upstream distribution system operator (DSO). Furthermore, in spite 

of maximizing social welfare, neither mechanism makes use of the agents’ utility functions. The 

first mechanism is cost-setting, with the DSO determining unit costs. It implements the Jain’s 

index as a second term to the social welfare. Next, a power setting auction mechanism is put forth 

where the DSO’s role is to allocate energy in response to market equilibrium unit costs established 

at each aggregator from an iterative bidding process among its consumers. The Augmented 

Lagrangian Multigradient Approach (ALMA), which is based on vector gradient descent, is 

proposed in this research for implementation at the upper level. The mechanism’s lower level 

comprises of multiple auctions realized by the aggregators. The quasi-concavity of the Jain’s index 

is theoretically established, and it has been shown that ALMA converges to the Pareto front 

representing tradeoffs between social welfare and fairness. The effectiveness of both mechanisms 

is established through simulations carried out using a modified IEEE 37-bus system platform. 

The issue of extracting patterns of energy usage from time series energy use profiles of 

individual consumers is the focus of the second phase of this research. Two novel approaches for 

non-intrusive load disaggregation based on non-negative matrix factorization (NMF), are 

proposed. Both algorithms distinguish between fixed and shiftable load classes, with the latter 

being characterized by binary OFF and ON cycles. Fixed loads are represented as linear 

combinations of a set of basis vectors that are learned by NMF. One approach imposes L0 normed 

constraints on each shiftable load using a new method called binary load decomposition. The other 

approach models shiftable loads as Gaussian mixture models (GMM), therefore using expectation-

maximization for unsupervised learning. This hybrid NMF-GMM algorithm enjoys the theoretical 

advantage of being interpretable as a maximum-likelihood procedure within a probabilistic 



  

framework. Numerical studies with real load profiles demonstrate that both algorithms can 

effectively disaggregate total loads into energy used by individual appliances. Using disaggregated 

loads, a maximum-margin regression approach to derive more elaborate, temperature-dependent 

utility functions of the consumers, is proposed. The research concludes by identifying the various 

ways gleaning such information can lead to more effective auction mechanisms for multi-period 

operation. 
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Chapter 1 - Introduction 

Traditionally, electricity customers had little role in the electricity market. The flow of 

energy was unidirectional, with residential units – the customers of energy, acting merely as 

passive agents who were charged at a flat rate. However, due to the increased use of renewable 

energy and distributed energy resources (DERs), this situation is witnessing a paradigm shift. As 

prosumers, who not only use the resource, but also produce their own locally generated energy, 

and furthermore, are willing to trade their surplus in an energy marketplace, customers will 

participate proactively in the energy market, as key stakeholders. 

The exchange of electrical energy between the grid and the prosumers requires efficient 

market-based approaches. These approaches are termed as transactive energy. Transactive energy 

as defined by the U.S. Department of Energy in the GridWise report, 2015 as, “A system of 

economic and control mechanisms that allows the dynamic balance of supply and demand across 

the entire electrical infrastructure using value as a key operational parameter”.  

The Transactive energy market approaches lay the ground for a setting in which the major 

electricity producer and the electricity customers can work closely together and match and balance 

their supply and demand more efficiently. The Transactive energy participants as well as the 

society can gain potential benefits from it. The rapid advances in communication technologies, 

coupled with the emergence of the field of distributed artificial intelligence, together will lead to 

significant improvements in efficiency, resiliency, and reliability of the electrical grid, with such 

a transactive energy framework. However, it is important to study and understand the overall 

implications and impacts of the Transactive energy approaches and utilize the right control tools 

to manage and implement it. 

There are four key challenges towards realizing this goal, which are outlined below. 

- Market efficiency: Transactive energy should lead to growth in the social welfare. With 

customers acting as selfish agents with the aim of maximizing their own benefits, not only 

from utilizing energy but also in terms of monetary gains, it is imperative to introduce efficient 

distributed mechanisms for two-way exchange of electricity in the energy market.  

- Customer motivation: Customers should be willing to assume their new roles, which would 

occur as long as their exists in them, an intrinsic sense of fairness in the manner in which the 
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resource is shared. The Transactive energy mechanisms must also be based on the limited 

amount of information that the customers are willing to share publicly.  

- Prosumer model: Customer participation would be enabled only through the use of 

automation, which would require precise models of the choices that they exercise in the 

market. 

- Physical grid constraints: Unlike the traditional marketplace, physical constraints of the 

energy grid will impose additional restrictions on the exchange of energy, which will have to 

be addressed by this transactive framework. 

  

 1.1 Literature Review 

The rapid proliferation of distributed energy resources (DERs) in the energy grid necessitates the 

need for the design of efficient transactive distribution system markets (DSMs). Pricing 

mechanisms that are compatible with the physical structure of the distribution grid and take 

operation limits into account, are being proposed in the literature [1], [2], [3], [4], [5], [6]. 

Distribution locational marginal pricing (DLMP) as an effective means to establish the price of 

electricity in transactive DSMs has received significant research attention [2]-[6]. 

The latest research on DLMP-based pricing decompose locational prices to its energy, 

losses, voltage violation, and congestion components, [4], [5]. An inherent drawback of this 

method is the spatial variations in the resulting DLMP. When the grid is under stress (e.g., due to 

a line congestion or a node voltage hitting its operation limit), the DLMP-based pricing 

intrinsically charges distant nodes at higher rates than those closer to the substation. In particular, 

the effect of location in DLMP is substantially high if an extreme node violates the voltage 

constraint due to higher voltage drop. 

DLMP-based pricing methods and its DSM models either use DCOPF or a variant of AC 

optimal power flow (ACOPF) to set grid and operation limit constraints. A few papers on DCOPF-

based DLMP formulations have appeared [2], [7], and [8], [9]. References [2] and [7], propose 

DLMP-based methods through quadratic programming and chance-constrained mixed integer 

programming that use DCOPF to define line congestion and alleviate it through dynamic tariffs. 

The work in [8] proposes two benchmark pricing methodologies, namely DLMP and  iterative 

DLMP (iDLMP), for a congestion free energy management by buildings providing flexible 

demand. Aggregators are assumed to have contracts with flexible buildings to decide their reserve 
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and energy schedules by interacting with the DSO in a cost optimal manner to avoid congestion in 

the distribution grid. An augmented version of DCOPF to include losses in a DLMP-based pricing 

mechanism with hedging rights for flexible load in distribution grid has been used in [9].  

Unfortunately, due to lower x/r ratio in the distribution system, DCOPF-based DLMP has been 

shown to introduce significant errors [3]. Moreover, these techniques lack certain key features 

such as losses, voltage deviations, and reactive power flows essential in transactive DSM. 

ACOPF-based DLMP formulations to determine one or more of its constituents such as 

energy, loss, voltage violation, and congestion prices are investigated in [3], [4], [5]. In [3], a novel 

linearized power flow (LPF) method is proposed. In this paper, the real and reactive energy and 

the loss components of the DLMP are derived. In [4], a DSM model with DLMP clearing has been 

proposed to manage congestion and provide voltage support. The paper uses a mixed-integer 

second-order-cone programming to model ACOPF and determines binary variables such as feeder 

configuration status and tap locations of shunt capacitors and transformers. Similarly, in [5], the 

authors use a trust-region based solution methodology to obtain DLMP and its constituents through 

a first-order approximation of the AC power flow manifold model. 

The issue of fairness in pricing has not received due attention in the above research. 

Fairness considerations in other forms of pricing have begun to be addressed recently. Several 

papers, [10], [11], [12], [13] make use of the Shapley value, a concept borrowed from coalitional 

game theory, to accomplish fairness. In [10] prosumers’ fair hourly billings is achieved depending 

on how the DR meet system objectives. The price of anarchy, which is the deviation of the Nash 

equilibrium operating point from the optimal has been used to incorporate fairness in hourly 

billings to prosumers in [14], and as a basis for comparing two models of demand side management 

in terms of fairness in [15]. A method to determine fair energy costs to consumers based on their 

contribution to minimize overall system costs is proposed in [11]. Several fairness criteria based 

on emission minimization, minimize peak-to-average ratio, etc. have been proposed in [16]. In 

[12], a pricing during direct trade among prosumers energy is proposed using the Shapley value. 

A fairness-based criterion is proposed in [17] to share the cost savings in a coalition of prosumers 

equipped with renewable energy sources and energy storage systems. 

The aim of these approaches is to reward users that consume energy during more desirable 

time intervals and conversely, to penalize those that demand energy during undesirable periods. 

We term this aspect of fairness as temporal fairness. The expectation of temporal fairness is 
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typically to redirect the grid’s operation towards more feasible operating regions. There is another 

aspect of fairness in addition to temporal fairness that is described below. 

Energy consumption by a group of users in one area of the grid affects how the other users 

in the grid are priced. For instance, when consumers in a node that is positioned close to the 

substation transformer draw a disproportionately large amount of energy, the amounts that those 

further downstream can obtain from the grid is stymied. It is this relative advantage or drawback 

of the end users, which is based on their locations that this research proposes to mitigate. It does 

so by incorporating another form of fairness, which we term as spatial fairness.  

A few studies use other mechanisms that consider the loads’ locations to fairly redistribute 

prices [9], [18]. In [9], the authors use hedging rights, a concept borrowed from the wholesale 

market, to mitigate the undesirable effects of physical-grid-based DLMPs to the aggregators that 

provide load flexibility service and achieve fairer price redistribution. Day-ahead DLMPs are 

computed based on an augmented version of DCOPF. Monthly contracted hedging rights are then 

used to hedge the risk of surcharges arising from the DLMP’s congestion/loss components to the 

aggregators. In [18], the authors use an indirect mechanism based on load location and their 

marginal contribution to the losses and voltage deviation to attain fair billing. Although these 

mechanisms mitigate the inherent spatial unfairness in DLMP pricing, they achieve fairer pricing 

indirectly by means of a secondary corrective step. 

Vector optimization are optimization approaches with vector objective functions. For 

decades, the simultaneous optimization of more than one objective function, has been implemented 

by means of multi-objective evolutionary algorithms such as genetic algorithms and particle 

swarm optimization (cf. [19], [20]). They have been applied to a plethora of problems in the energy 

market [21], [22], [23], [24], [25]. Multi-objective evolutionary algorithms are well equipped to 

handle constraints by either repairing infeasible solutions or simply rejecting them. Unfortunately 

as they incorporate stochastic operations, multi-objective evolutionary algorithms have to evaluate 

a large number of poor solutions (in terms of the objective functions) before converging to a 

Pareto-optimal set. As population-based approaches, evolutionary optimization cannot directly be 

applied to improve within a few quick steps any existing solution that is already close to Pareto 

optimality. Lastly, theoretical convergence guarantees of this class of algorithms are only of an 

indirect nature that approximate the algorithmic processes as discrete Markov chains. Lastly, 
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evolutionary methods tend to be applied in situations without ascertaining the presence of a large 

number of local optima a priori, where simpler methods would have sufficed. 

Deterministic vector optimization is a newer alternative to evolutionary algorithms. 

Normalized boundary intersection (NBI) is an indirect method of scalarization. It identifies the 

ideal solution in the objective function space from known theoretical bounds. Thereafter NBI 

directs the search towards the ideal point by means of conventional scalar optimization techniques. 

In [26], which applies NBI, the vector objective comprises of the scalar objectives of all 

aggregators. NBI is proposed as a method to minimize a vector of uncertainties in pricing in [27]. 

Unfortunately, NBI is prone to yielding solutions that are not in the Pareto front (i.e. the image 

manifold of the Pareto-optimal set). Conversely there are some regions in the Pareto front that are 

inaccessible to NBI [28]. 

Multi-gradient algorithms are a class of nascent algorithms that extend the steepest ascent 

method to vector objectives, some of them subsequently extended to quasi-Newton and second 

order methods. The early work in [29] defines a feasible ascent direction in terms of Hessian 

approximation. The multi-gradient descent approach (MGDA) in [30] uses a geometric definition 

of a feasible ascent direction. As MGDA is, to the best of the authors’ knowledge, the only multi-

gradient algorithm to have been adopted for any significant application domain [31], [32], it forms 

the basis of the approach proposed here. Unfortunately, MGDA is not equipped to handle 

constraints [33]. In [34], and more recently in [35], penalty function approaches are proposed to 

handle constraints. A very recent approach for constrained vector optimization (CVOP) has been 

proposed in [36] that extends Zoutendijk’s method to handle active constraints. 

It must be noted that there are numerous other approaches through which vector objectives 

can be handled, such as optimizing the weighted sums of objectives, lexicographic ordering, or 

elastic constraint methods [37]. The above discussion was confined only to the major classes of 

approaches that have found energy grid applications along with vector gradient ascent, which is 

relevant here. 

Recent advancements in machine learning have made it possible to disaggregate residential 

loads obtained from smart meters into smaller components. Some algorithms for load 

disaggregation rely on supervised or semi-supervised learning, which require a set of training data 

where the individual loads are known a priori [38]. Deep neural networks are a common choice of 

such methods [39], [40], [41], [42]. Unfortunately, these methods are not suitable for non-intrusive 



6 

load monitoring where the only available data is in the form of smart meter readings, even during 

the training phase.  

Hidden Markov models (HMM) are a popular choice of modeling individual appliances. 

In all these methods, individual appliances are represented using two or more states, with the 

transition and/or emission probabilities obtained through a number of learning methods, usually 

derived from expectation-maximization (EM). In [43], the total number of appliances are 

determined using K-means clustering. An improved method proposed in [44] that models each 

appliance using a factorial HMM, each of which contains more than a single HMM. Other 

extensions include  used to represent appliances include explicit HMMs [45] and hierarchical 

HMMs [46] for load modeling. 

The EM algorithm is also used to train Gaussian mixture models (GMM) [47]. GMMs are 

based on probability theory, that usually apply the maximum likelihood criterion for appliance 

classification. These approaches assume the presence of a set of latent variables z𝑗 , where 𝑗 is an 

index, with only one being ‘active’ at each time. The output follows a Gaussian probability 

distribution that is uniquely identified by the active latent variable. The algorithm proposed in [47] 

is based on GMMs. The approach uses the Dempster-Shaffer theory for appliance classification. 

Non-negative matrix factorization (NMF) is widely used machine learning approach for 

energy disaggregation. The classical NMF algorithm decomposes an input data matrix 𝐗 whose 

columns are sample vectors, into two factors, 𝐖 and 𝐇, so that their product equals 𝐗. Usually, 𝐗 

has a very large number of columns, which are independent samples.  The columns of 𝐖 serve as 

basis vectors so that each sample 𝐱(𝑛), 𝑛 ∈ 𝒩, which are columns of 𝐗 can be represented as a 

weighted combination of the bases, with the non-negative weights being the corresponding column 

vectors 𝐡(𝑛) of 𝐇. NFM has been used for energy disaggregation of HVAC load components in 

an industrial building and in a smart home setting [48]. Another method has been proposed in [49] 

, [50] to impose 𝐿0 constraints, which uses a softmax distribution for the elements in 𝐇 to assign 

weights to them in such a manner that those with higher values are likelier to improve the objective 

function. Semi-supervised NMF using prior knowledge of the usage time profiles of individual 

appliances has been proposed in [38]. NMF has been applied for data over larger periods in time 

to retrieve seasonal trends in usage profiles in [51]. 

Several other approaches that are tailor-made for energy disaggregation have been 

proposed. Among them include [52] that uses the fuzzy c-means clustering to identify the number 
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of appliances. Quadratic programming has been used in [53]. A computationally efficient additive 

neural network is used in [54], with a specialized training algorithm called cogent confabulation. 

The approach in [54] relies on OFF-ON transitions of appliances to detect individual appliances. 

In this approach, bagging – a method of combining classifiers into ensembles, has been adopted 

for improved classification of appliances from load signatures. Two novel algorithms based on 

spectral graph theory has been applied for disaggregation in [55] whereas fuzzy logic has been 

adopted in [56]. 

In [57], generation side utilities are modeled as piecewise linear functions so that linear 

programming can be applied for  energy auction. A linear utility function is also used in [58] for 

individual appliances, with customers trying to maximize the sum of all such utilities. However, it 

should be noted that in linearization are not suitable in many other applications as they do not 

encapsulate the dependence of utility to price changes. For this reason, recent research proposals 

routinely use saturating nonlinearities as utilities. In [59] customers’ behavior based utility 

functions are modeled in this manner. In the double auction mechanism described in [60] where 

participants’ bidding strategies are determined from nonlinear utilities of individual goods. 

Similarly, in [61], nonlinear functions have been used to quantify the utility of a potential user 

from pricing and QoS. 

Recently, logarithmic functions are commonly used to model utilities. The double auctions 

for signal-to-interference plus noise ratios as well as for power allocation in [60] make use of such 

utilities. Portfolio optimization using power-log utilities are taken up in [62]. The approach in [63] 

uses risk averse and risk neutral log-concave utility functions. In [64], concave as well as non-

concave utilities have been used, with logarithmic functions to represent concave utilities and 

sigmoidal nonlinearities for the latter. Logarithmic utilities are also used to quantify the benefit 

derived from operating shiftable appliances. 

 

 1.2 Contributions 

 1.2.1 Fairness-Regularized DLMP-Based Cost-setting Mechanism in Transactive 

Energy Market 

This research is presented in chapter 2.  
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The key features of the approach proposed in this research are summarized below. 

(i) The proposed DLMP pricing mechanism addresses spatial fairness. This is 

accomplished by incorporating a regularization term in the system level objective 

function (addressed below). The Jain’s index of fairness has been used for this 

purpose. Jain’s index is an instance of a general class of fairness criteria that possess 

desirable features [65], [66] that render them particularly well-suited for user-

centric resource allocation applications [67]. Furthermore, unlike its use as an 

evaluative tool [68] or as a system constraint [69], the proposed approach 

successfully includes Jain’s index directly within the optimization algorithm, as 

well as in the DLMP pricing. 

(ii) The proposed framework accommodates physical constraints of the grid. It uses a 

linearized power flow method. Similar approaches have been used elsewhere [1], 

[5], [70], [71]. Linearizing the power flow in this research, which is directly based 

on [3], not only helps in simplifying the underlying computations, but also allows 

the components of the DLMP to be readily available.  

(iii)Prosumers in this framework are not required to reveal private information despite 

having their own DGs and individual utility functions. The only information 

exchange taking place between individual prosumers and the rest of the grid is 

limited to placing power demand bids in response to unit energy costs, i.e. DLMPS. 

(iv) If the regularization term is neglected, the proposed method maximizes the social 

welfare of all prosumers in the grid, i.e. the sum of all their utilities. It should be 

noted that this task is accomplished at the DSO level despite its lack of access to 

the nonlinear utility functions of individual prosumers. The proof that the maximum 

social welfare is attained appears in a preliminary version of one aspect of this 

research [72],  which neither considers Jain’s index or any other fairness measure, 

nor addresses the constrained optimization algorithm used here. 

(v) The proposed approach is a bi-level mechanism, with the DSO and the prosumers 

aiming to maximize different objectives. Prosumers are modeled as selfish agents 

that aim to maximize their individual payoffs, i.e. the difference between their 

utilities from consuming energy and the cost of procuring it from the grid (with 
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negative demands indicating supply). Aggregators act as the interface between 

prosumers and the grid.  

(vi) The underlying optimization is based on dual decomposition. It uses the augmented 

Lagrangian method [73] at the DSO level for social welfare maximization, 

obviating the need for off-the-shelf solvers 

 

 1.2.2 Pareto-Optimal Energy Allocation Mechanism in Transactive Energy Market 

This research is presented in chapter 3. This research proposes a novel approach to obtain Pareto 

optimal energy allocations representative of the tradeoff between efficiency and fairness, where 

fairness is quantified in terms of the Jain’s index. At first, necessary and sufficient conditions for 

Pareto optimality are formally established. The overall problem is formulated in terms of a 

constrained vector optimization problem (CVOP), with the constraints comprising of the physical 

grid’s voltage deviation and power flow limits, as well as cost and energy balance conditions. This 

vector objective framework allows a two-stage optimization algorithm to obtain tradeoff energy 

allocations that compromise some efficiency for more fair allocation. 

The major contributions of the proposed research are categorized below. 

(i) The proposed ALMA relies on the recently proposed MGDA, which has so far only 

found limited applications. Furthermore, ALMA is a novel scheme that couples the 

well-known augmented Lagrangian method, which is intended for constrained 

scalar optimization, with an enhanced version of MGDA that can now handle 

constraints. To the best of the authors’ knowledge, such an approach has not been 

used elsewhere in constrained vector optimization. Moreover, ALMA is a general- 

purpose approach for CVOP that can readily be adopted to similar engineering and 

other domains. 

(ii) Although there is no dearth of literature on multi-objective optimization in energy 

systems, again to the best of the authors’ knowledge, this research is the first to 

introduce to the energy systems community, an emergent class of vector 

optimization methods along with its accompanying mathematical underpinnings. 

(iii)At the same time, the energy market offers the opportunity for ALMA’s 

performance to be evaluated for large scale optimization, under the presence of a 
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large number of constraints, that when put together outnumber the number of 

decision variables.  

(iv) ALMA is implemented within a power-setting mechanism, thereby inheriting all 

the advantages proffered by cost-setting mechanism. 

(v) The aggregator level auction used here is an improved version of that in [1], [73]. 

Agents no longer have to declare their intended roles as buyers or sellers 

beforehand; they can switch roles at any step based on changing energy costs during 

the auction. 

(vi) As ALMA is built-in to this framework, off-the-shelf solvers are no longer required 

for optimization. This allows direct access to all quantities involved, including dual 

variables. 

(vii)  It is shown that Jain’s fairness index is quasiconcave everywhere in the design 

space. Thereby, it extends previous results that showed its concavity only in the 

first orthant [72]. This is a significant result for any application that uses the index 

within an optimization procedure. Moreover, it is shown that the output of ALMA 

is Pareto-optimal as long as the objective functions are quasiconcave. Hence, 

ALMA is not restricted to purely concave utilities as in [5], [9], [71], [73],[72], 

[74]. 

(viii) To the extent of the authors’ knowledge, this is the first attempt to seek Pareto-

optimal efficiency-fairness tradeoffs with the Jain’s index paired with the generic, 

widely accepted measure of welfare, instead of more synthetic measures of utilities 

that are specific to the Jain’s index, i.e. α-fair utility function [65], [67]. 

This research is presented in chapter 3.  

 

 1.2.3 Load Disaggregation and Energy Consumer Modeling 

The novelties of the research that this chapter entails are in the following directions. These 

are outlined below. 

(i) A fully non-intrusive approach for load disaggregation is proposed. This is an 

improvement not only over supervised learning approaches but also those that use 

unsupervised learning such as GMMs, HMMs, or NMF, most of which require 
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some form of prior information about the consumption patterns of individual 

appliances. Therefore, the proposed approach can be entirely trained in real time 

after deployment. 

(ii)  Disaggregation in this research is accomplished with a hybrid algorithm that 

harnesses the advantages of GMMs and NMF. GMMs are most effective in learning 

the load patterns of binary OFF-ON shiftable appliances as well as those operating 

at a few discrete levels, whereas NMF approaches are suitable to iteratively obtain 

basis sets to represent fixed loads whose energy consumption levels cannot be 

discretized readily.  

(iii)A semi-parametric consumer utility model has been proposed in this research, this 

represents the appropriate tradeoff between parametric and non-parametric models. 

For many applications, it suffices to distinguish only between fixed and cost 

dependent components of the load. 

(iv) Additionally, the present utility model considers temperature dependence of energy 

consumption. 

(v) Parameter estimation of the consumer utility model has been formulated in terms 

of 𝐿2-norm maximum margin regression.  

(vi) The use of the utility model as a means to validate the performance of the 

disaggregation algorithm has been proposed. 

 

This research is presented in chapters 4 and 5. 
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Chapter 2 - Fairness-Regularized DLMP-Based Cost-setting 

Mechanism in Transactive Energy Market 

Distribution locational marginal pricing (DLMP) can adversely affect users in a grid-constrained 

transactive distribution system market (DSM) that are at larger distances from the substation, 

thereby requiring longer paths to connect to it. When the grid operates closer to its physical limits 

in terms of line capacities and voltage deviations, these users are more likely to cause grid 

violations than others in the vicinity of the substation. Conversely, increased energy consumption 

by users near the substation can choke off supply to those at the grid’s extremities. This research 

describes a novel mechanism to charge users in a more equitable manner, by regularizing the 

distribution system operator (DSO)’s social welfare objective function with the Jain’s index of 

fairness. The overall problem entails the maximization of the regularized objective within a set of 

linear constraints that ensure that the grid’s physical limits are not violated. Dual decomposition 

is applied to the constrained optimization problem. The dual variables and unit costs are 

incrementally updated by the DSO using the augmented Lagrangian method (ALM). Simulation 

results confirm the effectiveness of the proposed approach. 

 

 2.1 Introduction 

In this chapter, we propose a novel method that addresses the issue of fairness in DLMP-based 

DSM. We propose a fairness-regularized mechanism that can be implemented by the distribution 

system operator (DSO). An iterative gradient descent algorithm based on dual decomposition 

maximizes the global social welfare of the grid, but with spatially driven discrepancies in how the 

prosumers within the aggregators are charged. Incorporating fairness into the algorithm’s objective 

has a demonstrably equitable effect on the unit energy costs.  

A list of abbreviations for this chapter is provided in Appendix A.  

 

 2.2 Framework 

The overall schematic of the bi-level mechanism is depicted in Figure 2.1. At the upper level is 

the DSO which acts as the intermediary between the grid and the wholesale market. The DSO 
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possesses physical information pertaining to the distribution grid and exchanges unit cost and 

power demand signals from each aggregator, 𝑘 ∈ 𝒜. Aggregators are located at some nodes of the 

grid, which follows a tree structured layout. Only a subset 𝒜 of 𝒩 contain aggregators. Each 

aggregator 𝑘 contains a set 𝒢𝑘 of prosumers within a physical neighborhood. The information flow 

between an aggregator and its prosumers again pertain to unit costs and demands. 

 

 

 

Figure 2.1: Schematic of the functional components of the grid and the bi-level flow of information 

between them. 

 

 2.2.1 Prosumer Agent 

In a transactive DSM, contemporary retail customers are key stakeholders – prosumer agents in 

this framework. Each prosumer 𝑖 ∈ 𝒢𝑘 incorporates a utility function that may be construed as a 

measure of the satisfaction it derives from using a certain amount of energy. The utility 𝑢𝑘
𝑖 : ℝ+ →

ℝ+ of prosumer 𝑖 is a strictly concave and increasing function that is continuous and differentiable. 

Prosumer utilities have been modeled as logarithmic functions in the following manner, 

𝑢𝑘
𝑖 (𝑥) = 𝑎𝑘

𝑖 log(𝑏𝑘
𝑖 𝑥 + 1) . (2.1) 

 

This form, which has been used elsewhere ([1], [11], [69], [70], [71]) is shown in the schematic in 

Figure 2.2. The quantities 𝑎𝑘
𝑖  and 𝑏𝑘

𝑖   are prosumer specific constants, while 𝑥 is its load. The 

quantity 𝑎𝑘
𝑖  is chosen to convert the utility into monetary units, while 𝑏𝑘

𝑖  governs the utility 

function’s rate of saturation. It must be emphasized that the analytical treatment throughout this 

research can handle any other utility function with the above characteristics. 
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Prosumers in this framework may be equipped with their own PV panels, thus capable of 

generating an amount of energy 𝑔𝑘
𝑖  so that its net power demand is the difference between 𝑥 and 

generation, 𝑔𝑘
𝑖  as, 

𝑝𝑘
𝑖 = 𝑥 − 𝑔𝑘

𝑖 . (2.2) 

 

 

Figure 2.2: Utility of a prosumer as a function of energy consumed.  

 

The sign of 𝑝𝑘
𝑖  indicates whether the prosumer receives or supplies energy to the grid. 

When 𝑝𝑘
𝑖 > 0, the prosumer’s consumption is more than its generation (𝑥 > 𝑔𝑘

𝑖 ); consequently, it 

must receive the additional energy from the grid. Conversely, when 𝑝𝑘
𝑖 < 0 the prosumer supplies 

the surplus energy to the latter. All parameters associated with each prosumer (𝑎𝑘
𝑖 , 𝑏𝑘

𝑖 , 𝑔𝑘
𝑖 ) as well 

as the choice of utility functions remain hidden from the rest of the grid.  

As selfish agents, prosumers try to maximize their payoffs, which is the difference between 

the utility obtained from energy use and the cost of procurement. With 𝑐𝑘  being the unit cost 

provided to the agent, its strategy can be formulated as the following constrained optimization 

problem, 

Maximize w.r.t. 𝑝𝑘
𝑖 : 

𝜋𝑘
𝑖 (𝑝𝑘

𝑖 ) = 𝑢𝑘
𝑖 (𝑝𝑘

𝑖 + 𝑔𝑘
𝑖 ) − 𝑐𝑘𝑝𝑘

𝑖 . (2.3𝑎) 

Subject to: 

𝑝𝑘
𝑖 + 𝑔𝑘

𝑖 ≥ 0. (2.3𝑏) 
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Differentiating the payoff 𝜋𝑘
𝑖  in Eqn. (2.3a) with respect to 𝑝𝑘

𝑖 , with 𝑢𝑘
𝑖  being as in Eqn. (2.1) and 

using the constraint in Eqn. (2.3b) and the load 𝑥 in Eqn. (2.2), it can be shown that the demand 

is, 

𝑝𝑘
𝑖 = max(

𝑎𝑘
𝑖 𝑏𝑘

𝑖 − 𝑐𝑘

𝑐𝑘𝑏𝑘
𝑖

, 0) − 𝑔𝑘
𝑖 . (2.4) 

 

 2.2.2 Aggregator 

The aggregators in 𝒜 are intermediary entities between their prosumers and the DSO, their role 

being primarily communicative. Each aggregator 𝑘 receives a unit cost signal from the latter, that 

it sends to the agents in 𝒢𝑘. The prosumers’ response is the corresponding demand 𝑝𝑘
𝑖  as obtained 

from Eqn. (2.3), or with logarithmic utilities, from Eqn. (2.4). The social welfare at each aggregator 

is the sum of the utilities of all its prosumers, and given by, 

𝒲𝑘(𝐩𝑘) = ∑ 𝑢𝑘
𝑖 (𝑝𝑘

𝑖 + 𝑔𝑘
𝑖 )

𝑖∈𝐺𝑘

. (2.5) 

In the above expression, 𝐩𝑘 = [𝑝𝑘
𝑖 ]𝑖∈𝒢𝑘 . Neglecting the constraint in Eqn. (2.3b) it can be seen that,  

𝜕

𝜕𝑝𝑘
𝒲𝑘(𝐩𝑘) = 𝑐𝑘.      (2.6) 

This shows that the aggregator 𝑘 responds to the DSO’s unit cost 𝑐𝑘 with an aggregate energy 

demand 𝑝𝑘 = 𝟏𝐺𝑘
T 𝐩𝑘  (𝐺𝑘 = |𝒢𝑘|) such that the slope of 𝒲𝑘  is 𝑐𝑘 . This information from all 

aggregators allows the DSO to construct the gradient ∇𝐩[𝒲𝑘(𝑝𝑘)]𝑘∈𝒜 required for its optimization 

algorithm (for further details, one is referred to [72]). 

 

 2.2.3 DSO 

The DSO’s role is in realizing the underlying optimization algorithm. It receives power demand 

as the vector 𝐩 = [𝑝𝑘]𝑘∈𝒜 from the set 𝒜 of aggregators and returns the DLMP 𝐜 = [𝑐𝑘]𝑘∈𝒜 to 

the latter. Further details of the DSO are described in the next section. 
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 2.3 Mathematical Model 

 2.3.1 Linearized AC Power Flow 

The schematic in Figure 2.3 shows a segment of the radial distribution network. Each node 

is labeled with an index 𝑘 ∈ 𝒩. Line indices are identical to those of the nodes at their receiving 

ends. With 𝑝𝑘 and 𝑞𝑘 being the active and reactive power injected at any node 𝑘, the active and 

reactive power flowing through the line 𝑘 are given by the following expressions, 

𝑃𝑘 = 𝑝𝑘 + ∑ 𝐿𝑙
𝑃

𝑙∈𝒟(𝑘)

+ ∑ 𝑝𝑙
𝑙∈𝒟(𝑘)∩𝒜

, (2.7𝑎) 

𝑄𝑘 = 𝑞𝑘 + ∑ 𝐿𝑙
𝑄

𝑙∈𝒟(𝑘)

+ ∑ 𝑞𝑙
𝑙∈𝒟(𝑘)∩𝒜

. (2.7𝑏) 

 

 

Figure 2.3: Distribution system radial branch model.  

 

Here, 𝒟(𝑘) is the set of all nodes that are downstream of node 𝑘. The quantities 𝐿𝑘
𝑃  and 𝐿𝑘

𝑄
 are the 

active and reactive line losses, that are computed as follows, 

𝐿𝑘
𝑃 = 𝑟𝑘

𝑃𝑘
2 + 𝑄𝑘

2

𝑉𝑘
2 ,                      (2.8𝑎) 

𝐿𝑘
𝑄 = 𝑥𝑘

𝑃𝑘
2 + 𝑄𝑘

2

𝑉𝑘
2 .                     (2.8𝑏) 

In Eqn. (2.8), 𝑉𝑘 is the voltage at node 𝑘 while 𝑟𝑘 and 𝑥𝑘 are the corresponding line resistance and 

reactance. Letting 𝑷 = [𝑃𝑘]𝑘∈𝒜 and 𝑸 = [𝑄𝑘]𝑘∈𝒜, it follows from Eqn. (2.7) that, 

𝑷 = (𝐈 + 𝐓)𝐩 + 𝐓𝑳𝑃, (2.9𝑎) 

𝑸 = (𝐈 + 𝐓)𝐪 + 𝐓𝑳𝑄 . (2.9𝑏) 
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In the above, the vector 𝐩 = [𝑝𝑘]𝑘∈𝒜 may be regarded as an |𝒩| × 1 vector with zeros occupying 

every place 𝑘 where 𝑘 ∉ 𝒜 , 𝐈 is the 𝑁 × 𝑁 identity matrix. The 𝑁 ×𝑁 tree matrix 𝐓 therein is 

defined as, 

[𝐓]𝑘,𝑙∈𝒩 = {
1,
0,
  
       𝑙 ∈ 𝒟(𝑘),   
      otherwise.

 

 

The real and reactive powers at the sending end of line 𝑘  are given by the following 

expressions, 

𝑃𝑘 + 𝐿𝑘
𝑃 = 

𝑟𝑘𝑉𝓊(𝑘)(𝑉𝓊(𝑘) − 𝑉𝑘 cos(𝛿𝓊(𝑘) − 𝛿𝑘))

𝑟𝑘
2 + 𝑥𝑘

2  +  
𝑉𝑘𝑉𝓊(𝑘) sin(𝛿𝓊(𝑘) − 𝛿𝑘)

𝑟𝑘
2 + 𝑥𝑘

2 , (2.10𝑎) 

𝑄𝑘 + 𝐿𝑘
𝑄 = 

𝑥𝑘𝑉𝓊(𝑘)(𝑉𝓊(𝑘) − 𝑉𝑘 cos(𝛿𝓊(𝑘) − 𝛿𝑘))

𝑟𝑘
2 + 𝑥𝑘

2  + 
𝑉𝑘𝑉𝓊(𝑘) sin(𝛿𝓊(𝑘) − 𝛿𝑘)

𝑟𝑘
2 + 𝑥𝑘

2 .  (2.10𝑏) 

In Eqn. (10), 𝛿𝑘 is the voltage angle at node 𝑘 and 𝓊(𝑘) is the index of the node that is 

immediately upstream of it. 

The expressions in Eqn. (2.10) are linearized to simplify the grid constraints (see later). We 

adopt the linearized power flow model proposed in [3]. Assuming that |𝑉𝓊(𝑘)|, |𝑉𝑘| ≈ 1 𝑝. 𝑢., 

𝛿𝓊(𝑘) − 𝛿𝑘 ≈ 0, the above equalities are approximated to yield, 

𝑃𝑘 + 𝐿𝑘
𝑃 = 𝑏𝑘

𝑟(𝑉𝓊(𝑘) − 𝑉𝑘) + 𝑏𝑘
𝑥(𝛿𝓊(𝑘) − 𝛿𝑘), (2.11𝑎) 

𝑄𝑘 + 𝐿𝑘
𝑄 = 𝑏𝑘

𝑥(𝑉𝓊(𝑘) − 𝑉𝑘) − 𝑏𝑘
𝑟(𝛿𝓊(𝑘) − 𝛿𝑘). (2.11𝑏) 

Here, 

𝑏𝑘
𝑟 =

𝑟𝑘

𝑟𝑘
2 + 𝑥𝑘

2 ,   𝑏𝑘
𝑥 =

𝑥𝑘

𝑟𝑘
2 + 𝑥𝑘

2. 

The expressions in Eqn. (2.11) can be represented more concisely in the following manner. 

With 𝑽 and 𝛅 representing the 𝑁 × 1 vectors of all node voltages and angles, it can be shown that, 

[
𝑷
𝑸
] = 𝐌[

𝑽
𝛅
] − [𝑳

𝑃

𝑳𝑄
] +  𝐍.       (2.12) 

In Eqn. (2.12),  

𝐌 = [
𝐁𝑟(𝐃T − 𝐈)    𝐁𝑥(𝐃T − 𝐈)

𝐁𝑥(𝐃T − 𝐈)−𝐁𝑟(𝐃T − 𝐈)
] , (2.13) 

𝐍 = [
𝐁𝑟𝑉0𝐞 + 𝐁

𝑥𝛿0𝐞
𝐁𝑥𝑉0𝐞 + 𝐁

𝑟𝛿0𝐞
] , (2.14) 
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𝐁𝑟 = diag (
𝑟𝑘

𝑟𝑘
2 + 𝑥𝑘

2) , (2.15𝑎) 

 𝐁𝑥 = diag (
𝑥𝑘

𝑟𝑘
2 + 𝑥𝑘

2).  (2.15𝑏) 

The 𝑁 × 𝑁 matrix 𝐃, called the downstream matrix is given by, 

[𝐃]𝑘,𝑙∈𝒩 = {
1,
0,
  
       𝑙 ∈ 𝒹(𝑘),   
      otherwise.

    

The substation bus is indexed 0 ∉ 𝒩 . Its voltage 𝑉0   and angle 𝛿0  are treated as constant 

quantities. 

Node voltages in terms of the nodes’ real and reactive power injections, can be obtained 

from Eqn. (2.9) and Eqn. (2.12).  

[
𝑽
𝛅
] = 𝐂([

𝐓 + 𝐈 𝟎
𝟎 𝐓 + 𝐈

] [𝑳
𝑃

𝑳𝑄
] − [

𝐁𝑟𝑉0𝐞 + 𝐁
𝑥𝛿0𝐞

𝐁𝑥𝑉0𝐞 + 𝐁
𝑟𝛿0𝐞

])  +  𝐂 [
(𝐓 + 𝐈)𝐀 𝟎

𝟎 (𝐓 + 𝐈)𝐀
] [
𝐩
𝐪] . (2.16) 

In Eqn. (2.16), 𝐞 is a vector with a 1 appearing as its first entry and all others being zeroes. The 

matrix 𝐂 is obtained according to, 

𝐂 = [
𝐁𝑟(𝐃T − 𝐈) 𝐁𝑥(𝐃T − 𝐈)

𝐁𝑥(𝐃T − 𝐈) −𝐁𝑟(𝐃T − 𝐈)
]
−1

. (2.17) 

 

By applying Taylor’s series expansion around the reference points, 𝐩0, 𝐪0, 𝑳0
𝑃, and 𝑳0

𝑄
, 

linear expressions for the losses can be obtained from Eqn. (2.2) as shown below, 

𝑳𝑃 = 𝑳0
𝑃 + 𝐉𝑃

𝐿T(𝐩 − 𝐩0) + 𝐉𝑃
𝐿Tdiag(𝛉)−1(𝐪 − 𝐪0),      (2.18𝑎) 

𝑳𝑄 = 𝑳0
𝑄 + 𝐉𝑄

𝐿 T(𝐩 − 𝐩0) + 𝐉𝑄
𝐿 Tdiag(𝛉)−1(𝐪 − 𝐪0).     (2.18𝑏) 

The matrices 𝐉𝑃
𝐿  and 𝐉𝑄

𝐿  in (18) are Jacobians of the losses in (8),  

𝐉𝑃
𝐿 = [

𝜕𝐿𝑙
𝑃

𝜕𝑝𝑘
]
𝑙∈ 𝒩,𝑘∈𝒜

, 𝐉𝑄
𝐿 = [

𝜕𝐿𝑙
𝑄

𝜕𝑞𝑘
]
𝑙∈ 𝒩,𝑘∈𝒜

. 

 

 2.3.2 Jain’s Fairness Index 

The Jain’s fairness index is defined as the squared inner product of the unit vectors 𝐱̂ and 𝟏̂, where 

𝐱̂ is along the direction of 𝐱 and 𝟏̂ has identical elements. The following is an expression for the 

Jain’s index, 
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𝐽(𝐱) = 〈𝐱̂, 𝟏̂〉2.                               (2.19) 

In Eqn. (2.19), 𝐱 = [𝑥𝑖]𝑖=1:𝑛 each 𝑥𝑖 is an amount of resource allocated to any user 𝑖 in a set of 𝑛 

users. It lies in the interval [0,1] with values closer to unity indicating more fairness.  

Jain’s index can be applied to the present context in a variety of ways. The simplest manner 

to implement fairness would be to replace each 𝑥𝑖 above, with an aggregator power 𝑝𝑘. In this 

manner, the fairest allocation would be when all aggregators receive an equal amount of power. 

Unfortunately, this over-simplistic version of fairness does not account for the difference in the 

numbers of prosumers in each aggregator. However, one important insight can be gained from this 

observation. Supplying resources to 𝑚 out of the 𝑛 users (𝑚 < 𝑛) and allocating 𝑥𝑖 = 0 to the 

remaining 𝑛 −𝑚 would still lead to maximum of the index when the 𝑚 users receive the same 

amount. Hence, disregarding the aggregators that supply energy does not affect optimal fairness 

among the remaining users. 

In this research, Jain’s fairness is determined as,  

𝐽(𝐧 ∘ 𝐩) =
1

‖𝐳‖1

(𝐧T𝐩)2

‖𝐧 ∘ 𝐩‖2
. (2.20)    

In the above expression and everywhere else, the operator ‖∙‖ unless subscripted, is the 𝐿𝟐 

norm. The quantity 𝐳 is a logical vector of 0s and 1s and is given by, 

𝐳 = [𝑝𝑘 > 0]𝑘∈𝒜 . (2.21) 

Hence, ‖𝐳‖1 is the number of aggregators that receive energy from the grid. Those that supply 

energy (𝑝𝑘 < 0) are set aside from fairness considerations. Although all aggregators could readily 

be used, precluding sellers demonstrates the flexibility of the proposed framework. In addition, as 

suggested in [69], in aggregators that sell energy, prosumers may collectively place bids to 

maximize their payoffs, applying their own fairness criteria. Moreover, the analytical treatment of 

Jain’s index has been restricted to the case when the argument in 𝐽(∙) is confined to the non-

negative orthant. Replacing 𝐳  with 𝟏  would allow aggregators that supply energy to also be 

included in determining fairness. In Eqn. (2.21), the vector 𝐧  is obtained as the following 

Hadamard product, 

𝐧 = 𝐜∘−1 ∘ [𝐺𝑘]𝑘∈𝒜
∘−1 ∘ 𝐳 .  (2.22) 

In the absence of any information regarding the size or electricity needs of the household 

associated with each prosumer, it is assumed that all prosumers have identical demands. The 

quantity 𝐺𝑘 = |𝒢𝑘| is present in the denominator in order to allocate power to the aggregators that 



20 

are roughly in proportion to their numbers of prosumers. Devising 𝐧 can be refined further to 

include other information, such as household sizes, monetary values of the homes, historical 

consumption averages, etc., none of which have been considered. 

The formulation provided in Eqn. (2.21) and Eqn. (2.22) applies proportional fairness to 

the remaining aggregators. Proportional fairness, a game theoretic concept where agents in an 

aggregator choose to pay more for energy are allocated greater amounts of power. Proportional 

fairness, whose effectiveness has been shown in [73], is imposed because in Eqn. (2.22) the vector 

𝐧 contains the vector of unit costs 𝐜 in its denominator. Proportional fairness is achieved through 

the use of 𝐧 ∘ 𝐩 as the argument to 𝐽(∙), which normalizes the energy demands of the aggregators 

with respect to their unit costs.  

 

 2.3.3 DSO Mechanism 

The objective of the DSO is two-fold. It primarily attempts to maximize the social welfare 

𝟏𝐴
T[𝒲𝑘(𝑝𝑘)]𝑘∈𝒜 of all prosumers present in the grid. Next, it tries to price the agents as fairly as 

possible. Hence, the DSO’s objective consists of a social welfare term, and an optional 

regularization term which is the Jain’s index in Eqn. (2.20), weighted appropriately. Accordingly, 

the DSO mechanism’s objective can be formulated as the following constrained optimization 

problem, 

 

Maximize w.r.t. 𝐩, 

Ω(𝐩) = 𝟏𝐴
T[𝒲𝑘(𝑝𝑘)]𝑘∈𝒜  +   

𝐶

2
𝐽(𝐧 ∘ 𝐩). (2.23𝑎) 

Subject to, 

 −𝐂𝑉𝐩 + 𝐜𝑙
𝑉 ≤ 𝟎,             (2.23𝑏) 

      𝐂𝑉𝐩 + 𝐜𝑢
𝑉 ≤ 𝟎,               (2.23𝑐) 

     𝐂𝑆𝐩 + 𝐜0
𝑆 ≤ 𝟎,               (2.23𝑑) 

      𝐜𝑃0
T
𝐩 + 𝑐0

𝑃0 − 𝑃0 = 0, (2.23𝑒) 

−𝐜T𝐩 + 𝑐0𝑃0 ≤ 0.         (2.23𝑓) 

 

The linear equality and inequality constraints in Eqn. (23b) – Eqn. (23f) are obtained directly from 

the linearization described earlier in this section, with appropriate rearrangements that are shown 
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in Appendix-B. As this research used real power to determine unit costs, they have been expressed 

compactly in terms of the real power, which is the primal variable, 𝐩 = [𝑝𝑘]𝑘∈𝒜. The inequalities 

in Eqn. (23b) and Eqn. (23c) restrict the node voltage deviations to lie within 𝑉0 ± 𝜖, where 𝑉0 is 

the substation voltage. Likewise, real and reactive line flow limits are imposed by means of Eqn. 

(23d). The equality appearing in Eqn. (23e) is the power balance constraint that ensures that 𝑃0, 

the total power supplied to the DSO by the wholesale market equals the sum of the total power 

demands of the grid’s prosumers and the power losses. Lastly, Eqn. (23f) is the weak budget 

balance constraint that restricts the feasible region to one where the DSO’s payment at a unit cost 

of 𝑐0 does not exceed the total monetary amount that it receives from the aggregators. 

With 𝛂, 𝛂̅, 𝛃, 𝜆, 𝛾  being dual variables, and 𝜂  (with appropriate subscripts), increment 

factors, the augmented Lagrange function corresponding to Eqn. (2.23) is given by, 

 

𝔏𝑎(𝐩, 𝛂, 𝛂̅, 𝛃, 𝜆, 𝛾) = ∑𝒲𝑘(𝑝𝑘)

𝑘∈𝒜

+  
𝐶

2
𝐽(𝐧 ∘ 𝐩)  

−𝛂̅T(𝐂𝑉𝐩 + 𝐜𝑢
𝑉) −

𝜂𝑉
2
(𝐂𝑉𝐩 + 𝐜𝑢

𝑉)T(𝐂𝑉𝐩 + 𝐜𝑢
𝑉)+ 

−𝛃T(𝐂𝑆𝐩 + 𝐜0
𝑆) −

𝜂𝑆
2
(𝐂𝑆𝐩 + 𝐜0

𝑆)T(𝐂𝑆𝐩 + 𝐜0
𝑆)+ 

−𝜆 (𝑪𝑃0
T
𝐩 + 𝑐0

𝑃0 − 𝑃0) −
𝜂𝑃
2
(𝑪𝑃0

T
𝐩 + 𝑐0

𝑃0 − 𝑃0)
2

 

−𝛾(−𝐜T𝐩 + 𝑐0𝑃0)  −
𝜂

2
(−𝐜T𝐩 + 𝑐0𝑃0)(−𝐜

T𝐩 + 𝑐0𝑃0)+.             (2.24) 

 

Equating its derivative ∇𝐩𝔏(𝐩, 𝛌, 𝛏, γ) to zero, and using Eqn. (2.6), an incremental update 

rule for the unit cost is obtained, 

𝐜new ← −𝐂𝑉
T
𝛂 − 𝜂𝑉𝐂

𝑉T(−𝐂𝑉𝐩 + 𝐜𝑙
𝑉)+  + 𝐂

𝑉T𝛂 + 𝜂𝑉𝐂
𝑉T(𝐂𝑉𝐩 + 𝐜𝑢

𝑉)+ 

                +𝐂𝑆
T
𝛃 + 𝜂𝑆𝐂

𝑆T(𝐂𝑆𝐩 + 𝐜0
𝑆)+  + 𝜆𝑪

𝑃0 + 𝜂𝑃(𝑪
𝑃0𝐩T + 𝑐0

𝑃0 − 𝑃0)𝑪
𝑃0
T
 

                      −𝛾𝐜 − 𝜂𝐜(−𝐜T𝐩 + 𝑐0𝑃0)+  −
𝐶

2
∇𝐩𝐽(𝐧 ∘ 𝐩).                                                (2.25) 

 

In the above expression, ∇𝐩𝐽 is the derivative of Jain’s index in (20), with its argument 𝐧 ∘ 𝐩 

restricted to the non-negative orthant. It is given by the expression given below, 
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∇𝐩𝐽(𝐧 ∘ 𝐩) =
2

‖𝐧 ∘ 𝐩‖
𝐧 ∘  (√𝐽(𝐧 ∘ 𝐩)

𝟏

‖𝐳‖1
−𝐽(𝐧 ∘ 𝐩)

𝐧 ∘ 𝐩

‖𝐧 ∘ 𝐩‖
) . (2.26) 

 

The unit cost 𝐜 is initialized at the beginning of the optimization algorithm. Using Eqn.  

(2.25) this cost is updated. Upon termination, the DLMP components can be readily obtained as 

the terms in the update rule for 𝐜new in Eqn. (2.25). These are the voltage component, 𝐜𝑉, the 

congestion component, 𝐜𝐶 , as well as the energy and loss component 𝐜𝐸+𝐿 .  Additionally, 

regularization introduces a new fairness component, 𝐜𝐹. These are as follows, 

𝐜𝑉 = −𝐂𝑉
T
𝛂 − 𝜂𝑉𝐂

𝑉T(−𝐂𝑉𝐩 + 𝐜𝑙
𝑉)+  + 𝐂

𝑉T𝛂 + 𝜂𝑉𝐂
𝑉T(𝐂𝑉𝐩 + 𝐜𝑢

𝑉)+,    (2.27𝑎) 

𝐜𝐶 = 𝐂
𝑆T𝛃 + 𝜂𝑆𝐂

𝑆T(𝐂𝑆𝐩 + 𝐜0
𝑆)+,                         (2.27𝑏) 

𝐜𝐸+𝐿 = 𝜆𝑪𝑃0 + 𝜂𝑃(𝑪
𝑃0𝐩T + 𝑐0

𝑃0 − 𝑃0)𝑪
𝑃0
T
,       (2.27𝑐) 

𝐜𝐹 = 
𝐶

2
∇𝐩𝐽(𝐧 ∘ 𝐩).                                                   (2.27𝑑) 

 

The unit cost, 𝐜new is therefore the sum of its components, 

𝐜new = 𝐜𝑉 + 𝐜𝐶 + 𝐜𝐸+𝐿 + 𝐜𝐹 .   (2.28) 

The budget balance terms (−𝛾𝐜 − 𝜂𝐜(−𝐜T𝐩 + 𝑐0𝑃0)+) are not included in Eqn. (2.28) because, in 

the simulations described in the next section, as expected the constraint was inactive upon 

convergence, leaving behind a small monetary surplus with the DSO. 

In each iteration of the optimization algorithm, the dual variables are updated using dual 

gradient descent as follows, 

𝛂  ← [𝛂 + 𝜂𝑉(−𝐂
𝑉𝐩 + 𝐜𝑙

𝑉)]
+
, (2.29𝑎) 

𝛂  ← [𝛂 + 𝜂𝑉(𝐂
𝑉𝐩 + 𝐜𝑢

𝑉)]+,             (2.29𝑏) 

𝛃 ← [𝛃 + 𝜂𝑆(𝐂
𝑆𝐩 + 𝐜0

𝑆)]+,              (2.29𝑐) 

𝜆 ← 𝜆 + 𝜂𝑃(𝑪
𝑃0𝐩 + 𝑐0

𝑃0 − 𝑃0),       (2.29𝑑) 

𝛾 ← 𝛾 + 𝜂(−𝐜T𝐩 + 𝑐0𝑃0).               (2.29𝑒) 

 

The increment factors 𝜂𝑉 , 𝜂𝑆 , 𝜂𝑃and 𝜂 above are adjusted in each iteration. The algorithm 

terminates only when the updates to 𝐩 are such that ‖∆𝐩‖1 ≪ 1 for several consecutive iterations. 
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The following proposition argues that termination occurs when the global maximum of Ω(𝐩) is 

reached. 

 

 2.4 Simulation Results 

The model used here was implemented on a modified IEEE 37-bus system as shown in Figure 2.4. 

There were 17 nodes with aggregators (shaded circles in Figure 2.4). For clarity, the aggregators 

were indexed separately as A1 − A17. Three separate scenarios were created for this study.  

 

 

Figure 2.4: IEEE 37 bus system with aggregators indexed A1 – A17. 

 

In Scenario-I all aggregators had 𝐺𝑘 = 10 prosumers, without generation, but with 𝑎𝑘
𝑖 , 𝑏𝑘

𝑖 , 

generated randomly in each case. Scenario-II was similar to Scenario-I, except that the number of 

prosumers was doubled in aggregators A3, A9, A11, A17  ( 𝐺𝑘 = 20, 𝑘 = 12,25,27,36 ). In 

Scenario-III prosumers in aggregators A8, A10, A14  (𝑘 = 23, 26, 31) were equipped with PV 

generation. Their generations, 𝑔𝑘
𝑖  were obtained randomly. All simulations were performed using 

MATLAB. The increment factors were obtained in each iteration as 𝜂 = ‖𝐜new‖−2𝜂0  with a 

separate 𝜂0 for each factor 𝜂 in the range 0.1 – 0.01. The mechanism was investigated for each 

scenario, both without and with fairness regularization (𝐶 = 0, 𝐶 = 0.4 in (23a)).  

Figure 2.5 (top) shows simulation results obtained from Scenarios-I, II, and III. The vertical 

bars are the power allocations of the aggregators that were obtained from the simulations. Those 

without fairness regularization appear in blue, (𝑝𝑘) while those with regularization are in yellow 
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(𝑝𝑘
∗). The unit costs of the aggregators without fairness (𝑐𝑘) and with fairness (𝑐𝑘

∗) are also provided 

in solid and dotted lines.  

From Figure 2.4 it can be seen that aggregators A1, A9, A10 are positioned close to the 

substation bus. Consequently, when not regularized for fairness the mechanism outputs costs 

where these aggregators are sold energy at lower rates and therefore enjoy higher power 

allocations. In contrast, A5, A6, A15, A16, A17  experience higher unit costs and lower power 

allocations. Figure 2.5 shows how regularization helps in mitigating this adverse effect. Fairness 

causes aggregators to be charged in a more equitable manner. 

 

 

 

Figure 2.5: Results of Scenario-I showing unit costs and allocated power to each aggregator (top) 

and the DLMP components (bottom). 

 

The breakdown of the unit costs into its DLMP components is also shown in Figure 2.5 

(bottom). These are shown as stacked bars colored purple for the fairness component (𝐜𝐹), light 

blue for the unit cost due to energy usage and loss (𝐜𝐸+𝐿), green for unit costs of congestion (𝐜𝐶), 

and yellow when the voltage limit constraints (𝐜𝑉) are active. 

The DLMP components in Figure 2.5 sheds further insights into the differences in the unit 

costs. It is seen that the voltage components are very low for the three aggregators A1, A9, A10 

located close to the substation. This is because voltage constraints are active further downstream 

in the grid, causing an increase in the voltage cost components in those aggregators 
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(A5, A6, A15, A16, A17). These are the aggregators that are furthest from the substation (Figure: 

2.4). The mitigating effect of regularizing the DSO’s objective is evident from the DLMP 

components in Figure 2.5. The algorithm provides cost discounts to the spatially disadvantaged 

aggregators, which is compensated by incrementing the unit costs of three aggregators in the 

substation’s neighborhood. 

 

 

 

Figure 2.6: Results of Scenario-II showing unit costs and allocated power to each aggregator (top) 

and the DLMP components (bottom). 

 

Figure 2.6 shows results of Scenario-II with twice the agents present in aggregators 

A3, A9, A11, A17 as elsewhere, allowing one to examine the effects of congestion. The rationale 

behind this choice of aggregators is due to the wide range of their locations vis-à-vis the substation, 

with A9, A11 being closest to it, A3 further away and A17 located at a large distance. 

A similar pattern as before is observed in Figure 2.6, with distances having a severe impact 

on the unit costs. Increased loads in some aggregators cause congestion. Consequently, in the 

absence of regularization, aggregators yield higher unit costs for aggregators 

A4, A5, A6, A15, A16, A17 due to their distance than the others, as well as in comparison to what 

they were charged in Scenario-I. 

The DLMP components elucidate the effect of higher congestion. Aggregators 

A4, A5, A6, A15, A16, A17 are priced at higher levels (𝐜𝐶). The significantly lower unit cost of A1 
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and to a lesser extent, A9, A10 due to their closeness to the substation, is evident. Supplementing 

the DSO’s objective with Jain’s index helps alleviate the pricing disparity. The previously 

advantaged aggregators see the highest unit costs due to the fairness component (𝐜𝐹). Conversely, 

those furthest away are able to increase their demands due to the lowered costs.  

The effects of the penetration of PV generation in aggregators A8, A10, A14 diminishes the 

undesirable influence of congestion in voltage deviations throughout the distribution grid. Due to 

their PV generations, and resultant lower demands, the fairness component rewards them with 

highest drop in unit costs. This is seen in Figure: 2.7. Other aggregators also benefit from the 

introduction of PV generation in the grid in comparison the unit costs without fairness shown in 

Fig. 7. The congestion costs (𝐜𝐶 ) are uniformly lower than in the previous case. The DLMP 

components of the unit costs in this figure shows how regularization tries to rectify locational 

discrepancies. 

 

 

 

Figure 2.7: Results of Scenario-III showing unit costs and allocated power to each aggregator 

(top) and the DLMP components (bottom). 

 

Lastly, the tradeoff between welfare and fairness, which is very well quantified in 

econometric and game-theory literature, is briefly addressed. Scenario-II was simulated when the 

regularization weight 𝐶 was varied between 𝐶 = 0 and 𝐶 = 0.5 in increments of 0.02. The results 

are shown in Figure 2.8 clearly illustrating the tradeoff. Increasing fairness 𝐽(𝐧 ∘ 𝐩) is associated 
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with a simultaneous decrease in the social welfare, 𝟏𝐴
T[𝒲𝑘(𝑝𝑘)]𝑘∈𝒜, as seen in Fig. 8 (left). Figure 

2.8 (right) shows the same phenomenon in terms of the price of fairness – the fraction reduction 

in efficiency. The term efficiency here refers to the ratio of the social welfare with regularization 

to that of its maximum attainable value sans regularization. The price of fairness is given by, 

1 −
𝐽(𝐧 ∘ 𝐩)

max
𝐩
𝟏𝐴
T[𝒲𝑘(𝑝𝑘)]𝑘∈𝒜

. 

 

 

Figure 2.8: Total welfare and price of fairness vs. Jain’s index 

 

The presence of a ‘knee’ region in the trade-off curves in Figure 2.8 can be observed. 

Values of 𝐶 beyond this region cause a sharp drop in welfare, but with relatively smaller 

increments in fairness. Fortunately, even in the extreme case (𝐶 = 0.5), the price of fairness is 

approximately equal to 0.04, which translates to a somewhat tolerable 4% reduction in the 

outcome’s efficiency. 

 

 2.5 Conclusion 

This research entails innovations along several directions. It is privacy preserving, in that it attains 

the global maximum of Ω(𝐩)  in Eqn. (23), without any knowledge about the prosumers’ 

parameters. This is because the bidding process taking place between the prosumers and the 

aggregators allows the gradient ∇𝐩Ω(𝐩) to be computed. The use of dual decomposition helps in 

dissociating the various DLMP components of the unit costs. 
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The application of Jain’s fairness index in a distribution system and derivation of its 

component for DLMP is, to the best of the authors’ knowledge, novel. It was shown to apportion 

energy to the aggregators in a more equitable manner. In addition, again to the best of the authors’ 

knowledge, the use of Jain’s index within the gradient descent algorithm is novel.  

There are a few limitations of the research described here. The algorithm’s rate of 

convergence was not investigated properly. When the initialization was entirely arbitrarily, the 

gradient descent would start at an infeasible region that was very far away from the active feasible 

manifold. However, the algorithm consistently reached the optimum in ~102  steps which is 

acceptable.  

In extending the proposed approach to multiple (say, 𝑇 > 1) time slots, each agent would 

receive a 𝑇 × 1 vector of costs 𝐜𝑘  from the aggregator, and similarly respond with a vector of 

demands 𝐩𝑘
𝑖 . Since this extended approach would require computing optimal schedules of energy 

storage elements and shiftable loads (e.g. PHEV, washer/dryer unit, etc.), the agent’s scalar 

constrained optimization in Eqn. (3) whose optimum can be obtained in a straightforward manner 

as shown in Eqn. (4), would have to be replaced with a mixed integer convex programming 

algorithm. Although the DSO problem would still be formulated in the manner shown in Eqn. (23), 

the dimensionality of the primal variable 𝐩  would increase 𝑇 -fold. The resulting increase in 

computational overheads needs to be investigated. The authors believe that using the primal and 

dual variables of earlier time slots instead of arbitrarily initializing the algorithm each time, would 

achieve several fold speedups. Jain’s index would also be required to quantify fairness over 𝑇 time 

slots. One plausible approach would be to treat the composite Jain’s index as one that is divided 

into 𝑇  non-overlapping time partitions. The partition-irrelevancy of Jain’s index can then be 

readily invoked. Jain’s index has been studied extensively for fairness in allocating multiple 

resources (cf. [75]). Hence, another approach would be to treat energy during each time slot as a 

distinct resource. Further studies would reveal the most suitable method. 

Linearization was used for mathematical convenience, computational simplicity, and as 

linear constraints guarantee unique maxima. The approximation error in the output must be 

quantified for a more thorough assessment of the approach’s performance, and theoretical upper 

bounds established. However, it may be noted that the outputs of some simulations were compared 

with actual power flow. The largest errors were in the line voltages, which was acceptable at the 

order of 10−3. 
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A more rigorous investigation into Jain’s index needs to be carried out. In particular, the 

choice of the parameter 𝐶  in Eqn. (23) has not been examined here; the range used in the 

simulations being rather arbitrary. A value of 𝐶 must be picked with utmost care to avoid the 

‘knee’ threshold (Figure 2.8), beyond which efficiency drops steeply. The results discussed in the 

previous section are ad hoc, offering no insights into what appropriate choices of 𝐶 might look 

like in other energy grids. The sole recommendation here is that it be scaled in proportion to the 

dimensionality of the argument to Jain’s index. Fortunately, the theoretical treatment of the 

tradeoff between welfare and fairness in [16] may offer invaluable insights for our purpose. It 

derives an expression for the maximum weight that can be assigned to fairness vis-à-vis welfare, 

beyond which the Pareto-optimality of the efficiency-fairness tradeoff can no longer be 

guaranteed. In other words, for an energy demand 𝐩 that our approach yields with a large 𝐶, there 

might exist another demand 𝐩’ that is both fairer as well as more efficient than 𝐩! It remains 

unclear whether the cessation of Pareto-optimality in [16] bears any relationship to the ‘knee’ here. 
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Chapter 3 - Pareto-Optimal Energy Allocation Mechanism in 

Transactive Energy Market  

In a grid-constrained transactive distribution system market, distribution locational marginal 

pricing (DLMP) is influenced by the distance from the substation to an energy user, thereby 

causing households that are further away from the substation to be charged more. The Jain’s index 

of fairness, which has been recently applied to alleviate this undesirable effect in efficient energy 

allocations, is used in this research to quantify fairness. It is shown that the Jain’s index is strictly 

quasi-concave. A bilevel distributed mechanism is proposed, where at the lower level, auction 

mechanisms are invoked simultaneously at each aggregator to obtain energy costs under market 

equilibrium conditions. A constrained multi-gradient ascent algorithm, Augmented Lagrangian 

Multigradient Approach (ALMA), is proposed for implementation at the upper level to attain 

energy allocations that represent tradeoffs between efficiency and fairness. Theoretical issues 

pertaining to ALMA as a generic algorithm for constrained vector optimization are considered. It 

is shown that when the objectives are restricted to be strictly quasi-concave functions and if the 

feasible region is convex, ALMA converges towards global Pareto optimality. The overall 

effectiveness of the proposed approach is confirmed through a set of MATLAB simulations 

implemented on a modified IEEE 37-bus system platform. 

 

 3.1 Introduction 

In this research, a vector optimization algorithm is proposed to simultaneously maximize 

efficiency and fairness, the latter being quantified in terms of the Jain’s index of fairness. The 

approach is an extension of the gradient ascent algorithm used in scalar optimization. The 

algorithm is capable of handling physical and other constraints imposed by the grid. Vector 

optimization is applied at the upper level of a bilevel framework and implemented by the DSO. 

The lower level incorporates distributed auction algorithms where energy users participate as 

bidding agents, is implemented by the aggregators.  

A list of abbreviations for this chapter is provided in Appendix A.  
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 3.2 Framework 

Figure 3.1 is a schematic of the bilevel framework. The upper level mechanism is implemented by 

the DSO, which possesses physical information pertaining to the distribution grid. It communicates 

power allocations 𝑝𝑘 from each aggregator, 𝑘 ∈ 𝒜, and receives equilibrium unit costs 𝑐𝑘 from 

them. Only a subset 𝒜 of 𝒩 are aggregators. Each aggregator 𝑘 contains a set 𝒢𝑘 of prosumers 

within a physical neighborhood. The information flow between an aggregator and its agents 𝑖 ∈

𝒢𝑘 are energy allocations, 𝑝𝑘
𝑖  as well as unit costs, 𝑐𝑘

𝑖 . 

 

 

Figure 3.1: Schematic of market-driven bilevel mechanism 

 

 3.2.1 Aggregator Mechanism 

There are two sets of agents in each aggregator 𝑘 – the set 𝒢𝑘
p
 of power bidders that receive unit 

costs and return power bids, as well as the set of cost bidders 𝒢𝑘
C that receive power allocations 

and return cost bids. Both sets contain selfish agents that place bids to maximize their own payoffs, 

𝑢𝑘
𝑖 (𝑝𝑘

𝑖 + 𝑔𝑘
𝑖 ) − 𝑐𝑘

𝑖 𝑝𝑘
𝑖 . As shown in Figure 3.2, the utility functions 𝑢𝑘

𝑖 (⋅) are assumed to be strictly 

quasiconcave, monotonically increasing, differentiable, and includes the origin (as in [76]). The 

quantity 𝑔𝑘
𝑖  is the PV generation. A similar assumption of quasiconcave utilities has been adopted 

in [11] for energy trade between vehicles and the grid. 

The auction algorithm is outlined below. The quantity  𝑆𝑘 is called the supply and is the 

sum of the power 𝑝𝑘 supplied by the DSO and those that the agents in 𝒢𝑘
p
 are willing to sell to the 

aggregator at unit cost 𝑐𝑘 . Similarly, the quantity 𝑅𝑘  is the total monetary revenue that the 

aggregator will garner from the buying agents in 𝒢𝑘
C. Although these can be initialized in various 

possible ways, e.g. randomly, the number of iterations can be reduced drastically if the converged 
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values from a previous auction (of aggregator 𝑘) are used. The step where they as well as 𝑝𝑘
𝑖 , 𝑐𝑘

𝑖 , 

𝐴𝑘 and 𝑅𝑘 are initialized is excluded from the outline of the auction. 

 

 

Figure 3.2: Typical quasiconcave utility function of agent 𝑖 ∈ 𝒢𝑘 

 

Algorithm 3.1: Aggregator Auction  

receive 𝑝𝑘 from DSO 

     until (market equilibrium) do 

1. 𝒢𝑘
p
← 𝒢𝑘

p
\{𝑖 ∈ 𝒢𝑘

p
|𝑝𝑘
𝑖 ≥ 0} 

 𝒢𝑘
C ← 𝒢𝑘

C ∪ {𝑖 ∈ 𝒢𝑘
p
|𝑝𝑘
𝑖 ≥ 0} 

2. 𝒢𝑘
C ← 𝒢𝑘

C\{𝑖 ∈ 𝒢𝑘
p
|𝑐𝑘
𝑖 < 𝑐𝑘} 

 𝒢𝑘
p
← 𝒢𝑘

p
∪ {𝑖 ∈ 𝒢𝑘

p
|𝑐𝑘
𝑖 < 𝑐𝑘} 

3. 𝑐𝑘 ←
𝑅𝑘

𝐴𝑘
 

4. ∀𝑖 ∈ 𝒢𝑘
P:   𝑝𝑘

𝑖 ← argmax
𝑥

(𝑢𝑘
𝑖 (𝑥 + 𝑔𝑘

𝑖 ) − 𝑐𝑘𝑥) 

5.  𝑆𝑘 ← 𝑝𝑘 − 𝟏|𝒢𝑘
P|

T [𝑝𝑘
𝑖 ]
𝑖∈𝒢𝑘

p 

6. ∀𝑖 ∈ 𝒢𝑘
C:   𝑝𝑘

𝑖 ←
𝑐𝑘
𝑖𝑝𝑘

𝑖

𝑅𝑘
𝐴𝑘 

7. ∀𝑖 ∈ 𝒢𝑘
C:   𝑐𝑘

𝑖 ← argmax
𝑥

(𝑢𝑘
𝑖 (𝑥 + 𝑔𝑘

𝑖 ) − 𝑥𝑝𝑘
𝑖 ) 

8. 𝑅𝑘 ← 𝟏
|𝒢𝑘
C|

T [𝑝𝑘
𝑖 ]𝑖∈𝒢𝑘

C ∘ [𝑐𝑘
𝑖 ]𝑖∈𝒢𝑘

C  

       end do 

send 𝑐𝑘 to DSO 

𝑔𝑘
𝑖

𝑢𝑘
𝑖 𝑥

𝑥

buy
𝑝𝑘
𝑖 < 0

Quasi-concave utility function 

sell
𝑝𝑘
𝑖 > 0
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At the beginning of each iteration, the aggregator reassigns to 𝒢𝑘
C any agent 𝑖 that was 

previously in 𝒢𝑘
P but intends to buy power 𝑝𝑘

𝑖 ≥ 0 (step 1). Likewise, it transfers any agent  𝑖 ∈ 𝒢𝑘
P 

that has placed a unit cost bid 𝑐𝑘
𝑖 < 𝑐𝑘 to 𝒢𝑘

C (step 2). In step 3, the aggregator level unit cost 𝑐𝑘 is 

computed anew as the ratio of revenue 𝑅𝑘, to supply 𝑆𝑘. Next, the aggregator holds an auction 

within all sellers in 𝒢𝑘
p
 (step 4) and receives as bids, the amounts of power 𝑝𝑘

𝑖  that they are willing 

to sell at the uniform rate, 𝑐𝑘. Following the sellers’ auction, it updates the value of 𝐴𝑘. In step 6, 

which is referred to as proportionally fair allocation [1], [77], the aggregator divides the total 

power supply available 𝑆𝑘 among the agents in 𝒢𝑘
C in proportion to the total monetary amount that 

they are willing to pay. It holds an auction with the agents in 𝒢𝑘
C bidding new values of 𝑐𝑘

𝑖  (step 7) 

In step 8, the aggregator updates 𝑅𝑘 using the received bids, by summing the products 𝑐𝑘
𝑖 𝑝𝑘

𝑖  over 

all agents in 𝒢𝑘
C. 

 

 

Figure 3.3: Convergence towards fixed point of aggregator auction 

 

As seen in steps 1 and 2 of each auction iteration, the agents are assigned as buyers or 

sellers using their bids from the preceding iteration. This is different from earlier versions of the 

algorithms in [71], [34]. Assuming that no agent is reassigned in steps 1 and 2, the aggregator 

mechanism’s convergence towards a fixed point is shown in Figure 3.3 It shows the supply 𝑆𝑘 of 

the sellers in response to a cost 𝑐𝑘 (red curve). The demand (blue curve) is the ratio  
𝑅𝑘

𝑆𝑘
  after the 

buyers have placed their bids. Starting from an initial cost of 𝑐𝑘 = 𝑐𝑘
0, the auction converges to 

𝑐𝑘 = 𝑐𝑘
∗  in the counter-clockwise direction. It may be observed that a steeper supply curve would 

render the fixed point unstable. Divergence can be easily detected within two iterations of the 
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auction, in which case the mechanism can be implemented in the clockwise direction for 

convergence. As this situation is unlikely to happen in any realistic setting (and in our simulations), 

it has not been elaborated further. 

The aggregator’s total utility is given by, 

𝒰𝑘(𝑝𝑘) = 𝟏𝐺𝑘
T [𝑢𝑘

𝑖 (𝑝𝑘
𝑖 + 𝑔𝑘

𝑖 )]
𝑖∈𝒢𝑘

                  (3.1) 

Theorem 1 below shows that the aggregators reach an equilibrium unit cost 𝐜 that is equal to 

∇𝐩𝒲(𝐩), where 𝒲(𝐩) = 𝟏𝐴
T[𝒰𝑘(𝑝𝑘)]𝑘∈𝒜  is the welfare. In  [76] this gradient is referred to as the 

marginal benefit. It will be assumed that the agents do not bid strategically so that the unit cost 𝑐𝑘 

is independent of the placed bid 𝑥 = {𝑝𝑘
𝑖 , 𝑐𝑘

𝑖 }, i.e. 
𝜕𝑐𝑘

𝜕𝑥
= 0. The proof of Theorem 1 is more 

straightforward than and distinct from the indirect one in [78], where the statement of Theorem 1 

was shown to be a limiting case of virtual bidding. 

 

Theorem-1. At the fixed point of the auction in aggregator 𝑘, the equilibrium cost is such that, 

 

∇𝐩𝒲(𝐩) = 𝐜.                                         (3.2) 
 

 

Proof: Consider a sellers’ bidding strategy as shown in step 4. If the bid is 𝑥  its payoff is 

𝑢𝑘
𝑖 (𝑥 + 𝑔𝑘

𝑖 ) − 𝑐𝑘𝑥. The payoff is maximum when its derivative with respect to 𝑥 is zero; so it 

places a power bid such that 
𝜕

𝜕𝑥
[𝑢𝑘
𝑖 (𝑥 + 𝑔𝑘

𝑖 ) − 𝑐𝑘𝑥]𝑥=𝑝𝑘
𝑖 = 0, whence 𝑢𝑘

𝑖 ′(𝑝𝑘
𝑖 + 𝑔𝑘

𝑖 ) = 𝑐𝑘. 

Next, consider a buyer’s bidding at any intermediate iteration. If the buyer responds to an 

allocation 𝑝𝑘
𝑖  with a cost bid of 𝑥, from proportional allocation, its share of the total power will be 

𝑆𝑘𝑝𝑘
𝑖

𝑅𝑘
 in the next iteration. Assuming a large 𝐺𝑘 such that 𝑆𝑘 and 𝑅𝑘 can be treated as constant with 

respect to the agent’s bidding strategy, the bid is placed to maximize the overall payoff, 

𝑢𝑘
𝑖 (

𝑆𝑘𝑝𝑘
𝑖

𝑅𝑘
𝑥 + 𝑔𝑘

𝑖 ) − 𝑥𝑝𝑘
𝑖 . This takes place in step 7. The derivative with respect to cost is 

𝜕

𝜕𝑥
[𝑢𝑘

𝑖 (
𝑆𝑘𝑝𝑘

𝑖

𝑅𝑘
𝑥 + 𝑔𝑘

𝑖 ) − 𝑥𝑝𝑘
𝑖 ]
𝑥=𝑐𝑘

𝑖
. Equated it to zero, we get, 

𝑆𝑘𝑝𝑘
𝑖

𝑅𝑘
𝑢𝑘
𝑖 ′ (

𝑆𝑘𝑝𝑘
𝑖

𝑅𝑘
𝑐𝑘
𝑖 + 𝑔𝑘

𝑖 ) = 𝑝𝑘
𝑖 . At the 

fixed point, in step 6 we must have, 𝑝𝑘
𝑖 =

𝑐𝑘𝑝𝑘
𝑖

𝑅𝑘
𝑆𝑘, so that 𝑐𝑘

𝑖 =
𝑅𝑘

𝑆𝑘
. Under these circumstances the 

sellers bid is such that 𝑢𝑘
𝑖 ′(𝑝𝑘

𝑖 + 𝑔𝑘
𝑖 ) = 𝑐𝑘. 
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Therefore it is seen that the equality 𝑢𝑘
𝑖 ′(𝑝𝑘

𝑖 + 𝑔𝑘
𝑖 ) = 𝑐𝑘 applies to buyers and sellers. The 

statement of the theorem follows directly since 𝑝𝑘 = 𝟏𝐺𝑘
T [𝑝𝑘

𝑖 ]𝑖∈𝒢𝑘. 

■ 

 3.2.2 Constraints 

Let 𝑃0  be the total energy that the DSO receives from external sources at a unit cost 𝑐0 . The 

constraints imposed on ALMA are as follows. The voltages at all nodes in 𝒩 must remain within 

their minimum and maximum limits (lower/upper voltage deviation constraints). The active and 

reactive power flows in the lines must not exceed their capacities (capacity limit constraint). 

Additionally, 𝑃0 must equal the sum of the energy delivered to the aggregators and the losses 

occurring at the lines (energy balance condition). Lastly, the amount that the DSO must pay to 

external sellers must not exceed the total revenue obtained from the aggregator (budget balance 

condition). With appropriate values of all coefficients, these constraints can be expressed concisely 

as follows (detailed derivation can be found in [79]), 

 

{
 
 

 
 
−𝐂𝑉𝐩 + 𝐜𝑙

𝑉 ≤ 𝟎,          (voltage deviation)

𝐂𝑉𝐩 + 𝐜𝑢
𝑉 ≤ 𝟎,              (voltage deviation)

𝐂𝑆𝐩 + 𝐜0
𝑆 ≤ 𝟎,               (ca acit  limits)     

𝐜𝑃0
T
𝐩 + 𝑐0

𝑃0 − 𝑃0 = 0, (energ  balance)    

−𝐜T𝐩 + 𝑐0𝑃0 ≤ 0,         (b dget balance)    

         (3.3) 

 

Thus, the feasible set of allocations 𝐩 is given by, 

ℱ𝐩 ≜ {𝐩|

−𝐂𝑉𝐩 + 𝐜𝑙
𝑉 ≤ 𝟎, 𝐂𝑉𝐩 + 𝐜𝑢

𝑉 ≤ 𝟎,

𝐂𝑆𝐩 + 𝐜0
𝑆 ≤ 𝟎,

𝐜𝑃0
T
𝐩 + 𝑐0

𝑃0 − 𝑃0 = 0,−𝐜
T𝐩 + 𝑐0𝑃0 ≤ 0

} . (3.4) 

 

 3.2.3 Jain’s Index of Fairness 

The generic expression for Jain’s index of fairness with argument 𝐱 is as follows, 

𝐽(𝐱) =
1

‖𝟏‖2
(𝟏T𝐱)2

𝐱T𝐱
.                                    (3.5) 

 



36 

The main motivation behind the choice of Jain’s index as the measure of fairness is its Schur 

concavity, which is expressed as 𝐱 ≽ 𝐲 ⇒ 𝐽(𝐱) ≥ 𝐽(𝐲). In other words, if 𝐱 majorizes 𝐲 (𝐱 ≽ 𝐲), 

then 𝐱 has a fairness index that is at least as high as that of 𝐲. Majorization is explained as follows. 

Given the 𝑛 dimensional vector 𝐱, let 𝐱𝑑
†
 denote the 𝑑 < 𝑛 dimensional vector formed by taking 

the numerically smallest 𝑑 elements of 𝐱. For instance if 𝐱 = [5 1 2 4 3]T then 𝐱3
† = [1 2 3]T. The 

vector 𝐲𝑑
†
 is obtained from 𝐲 in an identical manner. We say that 𝐱 majorizes 𝐲 if and only if 

𝟏𝑛
T𝐱 = 𝟏𝑛

T𝐲 and 𝟏𝑑
T𝐱𝑑

† ≥ 𝟏𝑑
T𝐲𝑑

†, ∀𝑑. There is a more intuitive interpretation of this relationship, 

denoted as 𝐱 ≽ 𝐲. Consider a pair of resource demand vectors, 𝐱 and 𝐲, with equal sums (𝟏𝑛
T𝐱 =

𝟏𝑛
T𝐲) allocated to 𝑛 aggregators. The quantities 𝟏𝑑

T𝐱𝑑
†

 and 𝟏𝑑
T𝐲𝑑

†
 are the sums of the resources 

received by the 𝑑 aggregators that have the least amount of resource allocated. Hence, 𝟏𝑑
T𝐱𝑑

† ≥

𝟏𝑑
T𝐲𝑑

†
 implies that the resource-deprived aggregators collectively receive more resource through 

demand 𝐱 than through demand 𝐲. Hence, intuitively 𝐱 ≽ 𝐲 means that 𝐱 is fairer than 𝐲. 

In this research, the 𝐺𝑘 × 1 vector argument 𝐱 of 𝐽(⋅) is determined as follows, 

𝐱 = [
𝑝𝑘
𝑐𝑘𝐺𝑘

]
𝑘∈𝒜

.                                       (3.6) 

Thus, each element consists of the energy 𝑝𝑘, normalized by the number of agents 𝐺𝑘 and the unit 

costs 𝑐𝑘. Dividing the power 𝑝𝑘 by 𝐺𝑘 ensures that each aggregator receives energy in proportion 

to the total number of household agents in it. The presence of 𝑐𝑘 in the denominator, is the DSO 

level version of proportional fairness [73], i.e. each aggregator allocated energy should be in 

proportion to the unit cost that the agents in it are willing to pay. 

 

 3.2.4 Constrained Vector Optimization Problem Formulation 

The welfare 𝒲(𝐩) of the DSO is the sum of the utilities of all aggregators in 𝒜. The fairness, 

expressed as a function of 𝐩 = [𝑝𝑘]𝑘∈𝒜 is denoted as ℛ(𝐩), which is equal to 𝐽(𝐱) as shown in 

Eqn. (3.5) where 𝐱 is obtained from Eqn. (3.6). The vector objective 𝛀(𝐩) that ALMA must 

simultaneously maximize with respect to 𝐩 ∈ ℱ𝐩 where ℱ𝐩 is as in (4), is given by, 

 

𝛀(𝐩) ≜ [
𝒲(𝐩)

ℛ(𝐩)
].                                        (3.7) 

Theoretical issues related to CVOPs as well as details of ALMA are discussed next. 
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 3.3 Proposed Approach 

 3.3.1 Theoretical Background 

As mentioned earlier, ALMA although developed for this application, is a general-purpose 

algorithm for constrained vector optimization. Accordingly, as well as for conciseness, ALMA is 

discussed using more generic notation in Sections IV.A and IV.B. Without loss of generality, it is 

assumed that all objectives in the CVOP are to be maximized. Accordingly, let 𝐟:ℝ𝑛 → ℝ𝑚 be the 

vector function to be maximized with respect to 𝐱 ∈ ℱ𝐱, where ℱ𝐱 is the feasible set, 

ℱ𝐱 = {𝐱|𝐀T𝐱 + 𝐚 ≤ 𝟎, 𝐁T𝐱 + 𝐛 = 𝟎}.                   (3.8) 
  

Here, 𝐀 ∈ ℝ𝑛×𝑝 , 𝐚 ∈ ℝ𝑝×1 , 𝐁 ∈ ℝ𝑛×𝑞 , 𝐛 ∈ ℝ𝑞×1 . The feasible region ℱ𝐩  introduced earlier in 

Eqn. (3.4) clearly fits the generic form in Eqn. (3.8). Scalar objectives in 𝐟(∙) are denoted as 𝑓𝑗(∙

), 𝑗 ∈ {1,2, . . . , 𝑚}. It is assumed everywhere that each such function is Lipschitz continuous, and 

differentiable. Since in engineering optimization, the dimensionality of the design space is usually 

much higher than that of its image in the objective function space (𝑛 ≫ 𝑚), it will be assumed 

hereafter that 𝑛 > 𝑚. 

Additionally, it will be assumed in this treatment, that the scalar objectives 𝑓𝑗(∙) in 𝐟(∙) are 

quasiconcave functions. Quasiconcavity generalizes the notion of concavity. Any given function 

𝑓(∙) is (strictly) quasiconcave if and only if for every 𝜗 ∈ ℝ, the upper contour set {𝐱|𝑓(𝐱) ≥ 𝜗} 

is (strictly) convex. Two sufficient conditions for quasiconcavity are stated in the following axiom.  

 

Axiom-1. With 𝐱, 𝐲 ∈ ℱ𝐱 ⊆ ℝn being any pair of vectors in the convex domain ℱ𝐱, either of 

following inequality is a sufficient condition for the quasiconcavity of the function f(∙), 

 

{
𝜃 ∈ [0,1] ⇒ 𝑓(𝜃𝐱 + (1 − 𝜃)𝐲) ≥ min(𝑓(𝐱), 𝑓(𝐲)) = 0,

𝑓(𝐱) ≥ 𝑓(𝐱 + 𝐲) ⇒ 𝐲T∇𝐱𝑓(𝐱) ≥ 0.                                      
(3.9) 

 

The function’s quasiconcavity becomes strict if all inequalities are strict in the first 

condition in Eqn. (3.9). In addition to being sufficient, this condition is also a necessary one for 

quasiconcavity. It may be noted that the second condition in Eqn. (3.9) defines pseudoconcave 
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functions that is outside the scope of this research, and is therefore a stricter requirement than the 

first. Formal proofs can be found in [80], [81]. 

The relationship 𝐟(𝐱) > 𝐟(𝐲)  is used to denote that 𝑓𝑗(𝐱) > 𝑓𝑗(𝐲), ∀𝑗 . Analogous 

elementwise interpretations apply to the remaining inequality relationships ≥,<, and ≤. Given 

two vectors 𝐱, 𝐲 ∈ ℱ𝐱, 𝐱 weakly dominates 𝐲 when 𝐟(𝐱) ≥ 𝐟(𝐲). When there is at least some 𝑓𝑗(∙) 

such than 𝑓𝑗(𝐱) > 𝑓𝑗(𝐲), then 𝐱 dominates 𝐲. This (weak) dominance relationship is denoted as 

𝐱 ≻ 𝐲 (𝐱 ≽ 𝐲). Any point1  𝐱 ∈ ℱ𝐱 is locally (weakly) Pareto-optimal if and only if there exists a 

quantity σ > 0 satisfying the condition, 

𝐲 ∈ ℱ𝐱 ∩ ℬ(𝐱, σ) ⇒ 𝐱 ≻ 𝐲 (𝐱 ≽ 𝐲).                   (3.10) 
 

In the above expression, ℬ(𝐱, σ) ⊂ ℝ𝑛 is a ball centered around 𝐱 with radius σ, ℬ(𝐱, σ) =

{𝐲 ∈ ℝ𝑛|‖𝐲 − 𝐱‖ > σ}. If the condition in Eqn. (3.10) holds in the limiting case σ → ∞, then 𝐱 is 

said to be (weakly) Pareto-optimal. The image of the set of all Pareto-optimal points is the CVOP’s 

Pareto front. 

From here onwards, the 𝑛 × 𝑚 Jacobian matrix will be denoted as ∇𝐱𝐟(𝐱) ≜

[∇𝐱𝑓1(𝐱) ⋯ ∇𝐱𝑓𝑀(𝐱)]. For simplicity it is assumed to be of full column rank unless noted 

otherwise. There is a useful relationship between the gradient vectors ∇𝐱𝑓𝑗(𝐱) of the 𝑗 ∈

{1,2, . . . , 𝑚} objectives of a locally Pareto optimal point 𝐱. Consider another point, 𝐲 = 𝐱 + δ𝐱 ∈

ℱ𝐱, where δ𝐱 is an infinitesimal perturbation of 𝐱 so that higher order terms in the Taylor’s series 

expansion can be ignored. Hence, in the limiting case of δ𝐱 → 𝟎, 𝐟(𝐲) = 𝐟(𝐱) + ∇𝐱
T𝐟(𝐱)δ𝐱. From 

(10), 𝐟(𝐱) > 𝐟(𝐲), so that ∇𝐱
T𝐟(𝐱)δ𝐱 < 𝟎. Suppose δ𝐱 is chosen such that all of its components are 

positive (δ𝐱 > 𝟎). In other words, for every 𝑓𝑗(∙) there must be at least one function 𝑓𝑖(∙) such that 

∇𝐱
T𝑓𝑖(𝐱)δ𝐱 and ∇𝐱

T𝑓𝑗(𝐱)δ𝐱 have opposite signs. This observation is significant. If such a δ𝐱 does 

not exist, then from the convexity of  ℱ𝐱, another vector δ𝐱 < 𝟎 exists, leading to the same 

observation. Another way of interpreting this observation is that from a Pareto optimal point any 

improvement (i.e. increase) in one objective can only be accomplished at the expense of another. 

In CVOPs, there exist necessary and sufficient conditions that are analogous to the KKT 

conditions in scalar constrained optimization. These are the Fritz-John (FJ) conditions [77], [80], 

[82], for local Pareto optimality. We state these conditions in the following axiom.  

                                                 

1 The terms ‘point’ and ‘vector’ are used interchangeably. 
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Axiom-2. The vector 𝐱 ∈ ℱ𝐱 is locally Pareto optimal if there exist vectors 𝛏 ∈ ℝ𝑚, 𝛌 ∈ ℝ𝑝, and 

𝛍 ∈ ℝ𝑞 satisfying the following conditions, 

 

 {

𝛏 ≥ 𝟎𝑚;  𝛌 ≥ 𝟎𝑝                 

 𝛌T(𝐀T𝐱 + 𝐚) = 0;               
∇𝐱𝐟(𝐱)𝛏 − 𝐀𝛌 − 𝐁𝛍 = 𝟎𝑝.

                     (3.11) 

 

 

The Fritz-John conditions reduce to the well-known first order KKT optimality conditions 

with 𝛏 ≠ 𝟎𝑚, the weighted sum of the objectives, 𝛏T𝐟(𝐱) acting as the equivalent scalar objective 

and treating the function 𝔏(𝐱, 𝛏, 𝛌, 𝛍)  =  𝛏T𝐟(𝐱) −  𝛌T(𝐀T𝐱 + 𝐚) −  𝛍T(𝐁T𝐱 + 𝐛)  as the 

equivalent Lagrangian function, as seen in [32]. 

In multi-gradient ascent algorithms, the common (feasible) ascent direction is a vector 𝛚 

such that for some δ > 0,  𝐱 + δ𝛚 ≻ 𝐱. Multi-gradient ascent involves iterative increments of 𝐱 

along common ascent directions. Using Taylor’s series expansion it can readily be shown that any 

common ascent direction 𝛚 must be expressed as a convex combination of the gradients, 

𝛚 = ∇𝐱𝐟(𝐱)𝛏,                                          (3.12) 
 

where 𝛏 > 𝟎. In MGDA, the weights in 𝛏  of the gradients ∇𝐱𝑓𝑗(𝐱)  are constrained so that 𝟏𝑚
T 𝛏 =

1. The direction 𝛚 is chosen to be the minimum norm element in the convex hull of the gradients. 

Axiom-3 below, stems from the observation made earlier that at a Pareto-optimal point, 

any gain with respect to an objective will always be at the expense of another. Formal proofs can 

be found in [29], [30], [31]. 

 

Axiom-3. At any point 𝐱 ∈ ℱ𝐱, if no common feasible ascent direction satisfying Eqn. (3.12) exists, 

then 𝐱 is locally Pareto optimal. 

 

 3.3.2 Augmented Lagrangian Multi-Gradient Ascent 

Since 𝛚 in Eqn. (3.12) will be used to increment 𝐱 ∈ ℱ𝐱 , we must have 𝐱 + 𝛚 ∈ ℱ𝐱 , so that, 

𝐀T(𝐱 + 𝛚) + 𝐚 ≤ 𝟎, and, 𝐁T(𝐱 + 𝛚) + 𝐛 = 𝟎. A sufficient condition on 𝛚 to satisfy the above 

constraints would be that 𝐀T𝛚 ≤ 𝟎, 𝐁T𝛚 = 𝟎. ALMA does not aim to bring the point 𝐱 to the 

feasible region. This goal can be achieved separately through any other constrained optimization 
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algorithm. The goal is merely that when ALMA increment 𝐱 by 𝛚 should not violate the constraint 

any further. Inequality and equality constraints in Figure 3.4 are considered separately below. 

 

 

Figure 3.4:  Feasible regions of ω.  

 

(i) Suppose the inequality constraint is inactive so that 𝐀T𝐱 + 𝐚 = 𝛅a < 𝟎. In Figure 

3.4 (top), this corresponds to the small, green circle representing 𝐱. After replacing 

𝐱 with 𝐱 + 𝛚, the constraint must not be violated. The analogous condition on 𝐱 +

𝛚 is, 𝐀T(𝐱 + 𝛚) + 𝐚 ≤ 𝟎, which upon simplification yields, 𝐀T𝛚 ≤ −𝛅a. Next, 

suppose the inequality constraint is violated so that 𝐀T𝐱 + 𝐚 = 𝛅a > 𝟎, with such 

an 𝐱 shown as a red circle in Figure 3.4 (top). For ALMA not to move 𝐱 +𝛚 further 

away from the feasible region than 𝐱, we must have 𝐀T(𝐱 + 𝛚) + 𝐚 ≤ 𝛅a. In other 

words, 𝐀T𝛚 ≤ 𝟎. Combining both the cases, the constraint upon the direction, 𝛚 

must be 𝐀T𝛚 ≤ −[𝛅a]−.  Here, [𝛅]− = min(𝛅, 𝟎) , with the minimization being 

carried out in a component-wise manner. Similarly, [𝛅]+ = max(𝛅, 𝟎).  

(ii) Suppose the equality constraint is violated in the positive direction so that 𝐁T𝐱 +

𝐛 = 𝛅b > 𝟎. Figure 3.4 (bottom) depicts such a situation where the red circle is to 
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the right of ℱ𝐱 (vertical line). As we chose to ensure that the updated variable 𝐱 +

𝛚 not move any further away from the feasible region, we must have, 𝟎 ≤

𝐁T(𝐱 + 𝛚) + 𝐛 ≤ 𝛅b. This leads to the bounds, −𝛅b ≤ 𝐁T𝛚 ≤ 𝟎. Next, suppose 

the equality constraint is violated in the negative direction. In this case, 𝐁T𝐱 + 𝐛 =

𝛅b < 𝟎 yielding the bounds, 𝟎 ≤ 𝐁T𝛚 ≤ −𝛅b. Combining both cases together, the 

equivalent condition that 𝐱 + 𝛚 is no further away from ℱ𝐱 than 𝐱, is given by, 

−[𝛅b]
+
≤ 𝐁T𝛚 ≤ −[𝛅b]

−
. 

 

Combining the observations for both kinds of constraints allows us to define feasible region 

ℱ𝛚 for the direction 𝛚 in the following manner, 

 

ℱ𝛚 ≜ {𝛚|
𝐀T𝛚 ≤ −[𝛅a]−,

−[𝛅b]
+
≤ 𝐁T𝛚 ≤ −[𝛅b]

−

},            (3.13) 

 

where 𝛅a = 𝐀T𝐱 + 𝐚, and 𝛅b = 𝐁T𝐱 + 𝐛.  

The term ∇𝐱𝐟(𝐱)𝛏  with 𝛏 ≥ 𝟎𝑚, 𝟏𝑚
T 𝛏 = 1  may not guarantee that the incremented 𝐱 

remains in the feasible region. In ALMA the increment 𝛚 on 𝐱 is a fraction 𝜈 ∈ (0,1] of that 

obtained by MGDA such that 𝛚 ∈ ℱ𝛚. Furthermore, 𝜈 should be maximized so that the increment 

is as close to ∇𝐱𝐟(𝐱)𝛏 as possible. This leads to the following bilevel problem, 

 

𝛚 = 𝜈∇𝐱𝐟(𝐱)𝛏,                                      (3.14) 
 

where, 

𝛏, 𝜈 = argmax
0≤𝜈≤1,𝜈𝛏T∇𝐱𝐟 ∈ ℱ𝛚

𝛏= argmin
𝛏≥𝟎,    𝟏T𝛏=1

‖∇𝐱𝐟(𝐱)𝛏‖

𝜈 .                        (3.15)

 

 

This scheme is illustrated in Figure 3.5 for a bi-objective CVOP. The shaded elliptical 

region represents ℱ𝐱. The vector ∇𝐱𝐟(𝐱)𝛏 (orange dotted arrow) is the perpendicular bisector of the 

shaded triangle shaped region whose sides are ∇𝐱𝑓1(𝐱) and ∇𝐱𝑓2(𝐱) (red, dotted arrows).  The 

increment 𝛚 is the solid green arrow in Figure 3.5. 
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Figure 3.5: Common feasible ascent direction 

 

Suppose 𝐱 is infeasible – a situation that occurs commonly in exterior point algorithms 

such as the augmented Lagrangian method that ALMA incorporates. Unless the point 𝐱  is 

sufficiently close to ℱ𝐱, there may not exist any 𝜈 ∈ [0,1] such that 𝛚 ∈  ℱ𝛚. As a result, ALMA 

does not increment 𝐱 in the direction of the gradients until it is either inside ℱ𝐱 or close enough to 

it. The point is still updated using the terms involving the dual variables.  This is a desirable feature 

as it helps 𝐱 move quicker towards the feasible region while allowing the dual variables acquire 

more consistent values. 

 

 3.3.3 DSO Level Pareto-Optimality 

It is now shown that any locally Pareto optimal point obtained by ALMA is Pareto optimal. 

 

Theorem 2. Jain’s index 𝐽(⋅) is strictly quasiconcave in ℝ𝑛. 

 

Proof: Let 𝐱, 𝐲 ∈ ℝ𝑛  be two independent non-zero vectors such that 𝑓(𝐱) ≥ 𝑓(𝐱 + 𝐲) . For a 

function 𝑓(⋅) to be quasiconcave, 𝐲T∇𝐱𝑓(𝐱) ≥ 0. Suppose 𝐱, 𝐲 are such that 𝑓(𝐱) ≥ 𝑓(𝐱 + 𝐲) and 

𝐲T∇𝐱𝑓(𝐱) = 0. From the generalized mean value theorem, there must exist a 𝜌 ∈ [0,1], such that, 

𝑓(𝐱 + 𝐲) = 𝑓(𝐱) + 𝐲T∇𝐱𝑓(𝐱) +
1

2
𝐲T∇𝐱

2𝑓(𝐱 + 𝜌(𝐲 − 𝐱))𝐲 . As 𝑓(𝐱) ≥ 𝑓(𝐱 + 𝐲)  and 

𝐲T∇𝐱𝑓(𝐱) = 0, it must be true that the third term, 𝐲T∇𝐱
2𝑓(𝐱 + 𝜌(𝐲 − 𝐱))𝐲 ≤ 0. Letting 𝜌 = 0, a 

sufficient condition for 𝑓(⋅) is that if 𝐲T∇𝐱𝑓(𝐱) ≥ 0 for some 𝐱, 𝐲 ∈ ℝ𝑛, then 𝐲T∇𝐱
2𝑓(𝐱)𝐲 ≤ 0.  
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From Eqn. (3.5) it can be shown that, 

∇𝐱𝐽(𝐱) = 2√𝐽(𝐱) (
𝟏

‖𝟏‖‖𝐱‖
 − √𝐽(𝐱)

𝐱

‖𝐱‖2
).         (3.15) 

 

The Hessian of 𝐽(𝐱) can be obtained easily by differentiating the above expression, 

∇𝐱
2𝐽(𝐱)𝐲 = −

2

‖𝐱‖2
√𝐽(𝐱)(

𝟏𝐱T

‖𝟏‖‖𝐱‖
 − √𝐽(𝐱)

𝐱𝐱T

‖𝐱‖2
) 

  −
2

‖𝐱‖2
(
−𝟏

‖𝟏‖
+ 2

𝐱

‖𝐱‖
√𝐽(𝐱))(

𝟏T

‖𝟏‖
 − √𝐽(𝐱)

𝐱T

‖𝐱‖
) 

  −
1

‖𝐱‖2
𝐽(𝐱) (2𝐈 −

𝐱𝐱T

‖𝐱‖2
) . (3.17) 

 

Rearranging terms and simplifying further using Eqn. (3.15) leads to, 

∇𝐱
2𝐽(𝐱)  = −

1

‖𝐱‖2
∇𝐱𝐽(𝐱)𝐱

T + (
1

2𝐽(𝐱)
∇𝐱𝐽(𝐱) −

𝐱

‖𝐱‖2
) ∇𝐱

T𝐽(𝐱) −
1

‖𝐱‖2
𝐽(𝐱) (2𝐈 −

𝐱𝐱T

‖𝐱‖2
) . (3.18) 

 

Using the above expression for the Hessian in Eqn. (3.17), 

𝐲T∇𝐱
2𝐽(𝐱)𝐲 =

1

‖𝐱‖2
𝐲T∇𝐱𝐽(𝐱)𝐱

T𝐲 + 𝐲T (
1

2𝐽(𝐱)
∇𝐱𝐽(𝐱) −

𝐱

‖𝐱‖2
)∇𝐱

T𝐽(𝐱)𝐲 

     −
𝐲T

‖𝐱‖2
𝐽(𝐱) (2𝐈 −

𝐱𝐱T

‖𝐱‖2
)𝐲. (3.19) 

 

Under the assumption that 𝐲T∇𝐱𝐽(𝐱) = 0, the above equality in Eqn. (3.19) can be simplified to, 

𝐲T∇𝐱
2𝐽(𝐱)𝐲 = −

1

‖𝐱‖4
𝐽(𝐱)(2‖𝐱‖2‖𝐲‖2 − (𝐱T𝐲)2). (3.20) 

 

From the Cauchy-Schwarz inequality, as 𝐱  and 𝐲  are independent non-zero vectors, |𝐱T𝐲| <

‖𝐱‖‖𝐲‖ so that 𝐲T∇𝐱
2𝐽(𝐱)𝐲 < 0. This proves the strict quasiconcavity of 𝐽(𝐱). 

■ 

 

Theorem-3 below provides sufficient conditions for the convergence of ALMA towards 

Pareto optimal allocations. 



44 

Theorem 3. If all scalar objectives 𝑓𝑗(∙) of the vector function 𝒇(∙) are strictly quasiconcave, then 

any locally Pareto optimal point 𝒙 ∈ ℱ𝒙 is globally Pareto optimal. 

 

Proof: Let 𝐱 be a locally Pareto optimal point. Thus there exists a σ > 0 such that 𝐱 dominates 

every other feasible point in the ball ℬ(𝐱, σ). Assume that, contrary to the statement of this 

theorem, 𝐱 is not globally Pareto optimal. Under these circumstances we pick an arbitrary point 

𝐲 ∈ ℱ𝐱 with ‖𝐱 − 𝐲‖ > σ, such that 𝐱 ⋡ 𝐲. In other words, there is an objective 𝑓𝑗(∙) such that 

𝑓𝑗(𝐲) > 𝑓𝑗(𝐱). From Eqn. (3.8), the feasible region ℱ𝐱 is convex, so that for all 𝜃 ∈ [0,1], the point 

𝐳 = 𝜃𝐱 + (1 − 𝜃)𝐲 must be feasible, i.e. 𝐳 ∈ ℱ𝐱. From Eqn. (3.9) the strict quasiconcavity of 𝑓𝑗(∙) 

implies that 𝑓𝑗(𝐳) > min(𝑓𝑗(𝐱), 𝑓𝑗(𝐲)), i.e. 𝑓𝑗(𝐳) > 𝑓𝑗(𝐱). If 𝜃 is confined to the smaller interval, 

(0, ‖𝐱 − 𝐲‖−1σ] ⊂ [0,1] , then 𝐳  lies inside the ball ℬ(𝐱, σ) . Since 𝐳 ∈ ℬ(𝐱, σ) , 𝐱 ≽ 𝐳  so that 

𝑓𝑗(𝐳) ≤ 𝑓𝑗(𝐱), contradicting our previous observation that 𝑓𝑗(𝐳) > 𝑓𝑗(𝐱). 

■ 

 

Theorem-3 is of significance to the DSO CVOP defined in section 3.2.4. Since it has been 

assumed that all agents’ utility functions are strictly quasiconcave, consequently, 𝒰𝑘(∙), which is 

their sum over disjoint arguments, is also strictly quasiconcave. By analogous reasoning, so is the 

welfare function 𝒲(∙). In Theorem 2, the Jain’s index is shown to be strictly quasiconcave; 

therefore the fairness measure, ℛ(∙)  is also strictly quasiconcave. In other words, all scalar 

components of 𝛀(∙) in Eqn. (3.7) are strictly quasiconcave functions, whence by Theorem 3 the 

locally Pareto optimal point obtained by ALMA is Pareto optimal. More formal proofs of the 

theorem can be found in [77], [82]. 

 

 3.3.4 DSO Algorithm 

The DSO algorithm is a specific implementation of ALMA for energy allocation in distribution 

systems. In step 1, the aggregator receives the unit cost 𝐜 from aggregator auctions, which is equal 

to ∇𝐩𝒲(𝐩) (Theorem-1). The other gradient, ∇𝐩ℛ(𝐩) is computed in step 2 where 𝐩 is the value 

from the previous iteration. Using the constraint gaps 𝛅∗ (step 3) the quantities involved in ℱ𝐱 in 

Eqn. (3.8) are determined (step 4). Steps 5–8 implement (12) as follows. Steps 5 and 6 implement 

ascent direction as in MGDA. This is scaled by the factor 𝜈 so that increments do not produce 
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infeasible solutions. The dual variables are incremented (step 9) in accordance with augmented 

Lagrangian method (see [79] for details), following which the energy allocation is incremented 

(step 10), and returned to the aggregator (step 11) for the next round of aggregator auctions until 

convergence towards a locally Pareto optimum, which Theorem-3 shows to be Pareto optimal. 

The steps involved in the DSO algorithm are outlined in Algorithm 2. 

 

Algorithm 3.2: DSO Algorithm 

until (termination) do 

1. Receive 𝐜 from aggregators 

2. 𝐠 ← ∇𝐩ℛ(𝐩) 

3. 𝛅𝑉 ← −𝐂𝑉𝐩 + 𝐜𝑙
𝑉 , 𝛅

𝑉
← 𝐂𝑉𝐩 + 𝐜𝑢

𝑉 

𝛅𝑆 ← 𝐂𝑆𝐩 + 𝐜0
𝑆 , 𝛅𝑃0 ← 𝑪𝑃0𝐩 + 𝑐0

𝑃0 − 𝑃0, 𝛅B ← −𝐜T𝐩 + 𝑐0𝑃0 

4. 

 𝐀 ← [

−𝐂𝑉

𝐂𝑉

𝐂𝑆

−𝐜T

] ,     𝐚 ←

[
 
 
 
 
−𝐜𝑙

𝑉

−𝐜𝑢
𝑉

−𝐜0
𝑆

−𝑐0𝑃0]
 
 
 
 

,  𝐁 ← 𝑪𝑃0 ,            𝐛 ← 𝑐0
𝑃0 − 𝑃0. 

5. 𝛏 ← argmin
𝛏≥𝟎,𝟏T𝛏=1

‖∇𝐱𝐟(𝐱)𝛏‖ 

6. 𝛚′ ← ∇𝐱𝐟(𝐱)𝛏 

7. 𝜈 ← max
0≤𝜈≤𝜈max
𝜈𝛚′ ∈ ℱ𝛚

𝜈 

8. 𝛚 ← 𝜈𝛚′ 

9. 𝛂  ← [𝛂 + 𝜈𝜂𝑘
𝑉𝛅𝑉]

+
,      𝛂  ← [𝛂 + 𝜈𝜂𝑘

𝑉𝛅
𝑉
]
+

,  𝛃 ← [𝛃 + 𝜈𝜂𝑘
𝑆𝛅𝑆]+ 

𝜆 ← 𝜆 + 𝜈𝜂𝑘
𝑃0𝛿𝑃0 , 𝛾 ← [𝛾 + 𝜈𝜂𝑘

B𝛿B]
+

 

10. ∆𝐩 ← 𝛚+ 𝐂𝑉
T
𝛂 − 𝐂𝑉

T
𝛂 − 𝐂𝑆

T
𝛃 − 𝜆𝑪𝑃0 + 𝛾𝐜 

𝐩 ← 𝐩 + 𝜈𝜂𝑘
𝑃∆𝐩 

11. Send p to aggregators 

12. 𝑘 ← 𝑘 + 1 

end 
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 3.4 Simulation Results 

The proposed approach use was implemented on a modified IEEE 37-bus system as shown in 

Figure 3.6. Nodes containing the 17 aggregators appear as larger blue circles, whereas the 

remaining nodes are red filled circles. For convenience, the aggregators are indexed separately 

(inset in Figure 3.6) The number of agents in each aggregator was generated randomly between 

𝐺𝑘 = 9  and 𝐺𝑘 = 25, with aggregators A4, A6, A10, A12 having a higher number of prosumers. 

Some agents were equipped with some PV generation (𝑔𝑘
𝑖 > 0). The agent parameters, 𝑎𝑘

𝑖 ,𝑏𝑘
𝑖 , and 

𝑔𝑘
𝑖  (see Figure 3.2) were generated randomly. All simulations were performed in MATLAB. 

 

 

 

Figure 3.6: IEEE 37-bus system used as simulation platform 

 

In order to see the effect of fairness, two simulations were done. The algorithm in [1] was 

implemented to obtain the efficient solution without any fairness. Following this, the DSO 

algorithm was implemented. Figure 3.7 compares the results of both simulations. The blue vertical 

bars are the power allocations of the aggregators (𝑝𝑘) that were computed from the simulations 

without fairness. The aggregators’ power allocations are shown as vertical bars that are colored 

blue (without fairness) and yellow (with fairness). The solid lines (without fairness) and dotted 

lines (with fairness) in the figure show the unit costs. The quantities with fairness are superscripted 

with asterisks (*).  
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Figure 3.7: Aggregator power allocations and unit costs 

 

From Figure 3.7 it can be seen that aggregators A1, A9, A10 received more power at lower 

unit cost in the absence of fairness.  As can be seen in in Figure 3.6, these aggregators are 

positioned closer to the substation node (red circle with white interior). In contrast, aggregators 

A3, A12, A16, and A17 which are further away, experience higher unit cost and lower power 

allocation. The allocations obtained with fairness show how utilizing the Jain’s index helps in 

mitigating this adverse effect. The fairness objective causes aggregators to be charged in a more 

equitable manner. 

Figure 3.8 shows the progress of the algorithm with iteration. Figure 3.8 (top) shows how 

the inner product 〈𝒲(𝐩), ℛ(𝐩)〉 converges towards −1 at the Pareto front. The steadily increasing 

welfare (blue line) and fairness (red line) are shown in Figure 3.8 (bottom). Note that during the 

initial stages of the algorithm, the solution would be infeasible, explaining the initial fluctuations. 

Although 3,000 iterations were allowed for convergence, with very small random initialization of 

𝐩 and zero initial duals, with higher initial values, the algorithm would require as little as 500 

iterations to converge, which is not much more than in [2] despite the presence of a vector 

objective. 

Lastly, the tradeoff between welfare and fairness was investigated. Multiple simulations 

were carried out with random initialization of the primal and dual variables.  Figure 3.9 depicts the 

resulting Pareto front. 
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Figure 3.8: Welfare and Jain’s index (top), inner product of gradients of welfare and fairness 

(bottom) vs. iteration 

 

 

 
Figure 3.9: Jain’s index vs. welfare 
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 3.5 Conclusion 

This research proposes a general-purpose approach for constrained vector optimization. The 

analytical treatment, albeit informal, shows that Pareto optimal solutions can be obtained as long 

as the objectives are strictly quasiconcave. This is an improvement over previous approaches, e.g. 

in, [5], [9], [71], [73], [83], [74],  which routinely make more restrictive assumption of concave 

utilities. This is of significance as general econometric theory does not support prior assumptions 

of concavity, instead treating utilities justifiably as quasiconcave functions [78],[84],[85]. 

Efficiency-fairness tradeoff is a crucial issue in resource allocation [11], [65], [75],[86] with a 

significant amount of research using Jain’s index (cf. [69], [79], [81]). In establishing the 

quasiconcavity of Jain’s index, this research provides a theoretical justification for the application 

of vector optimization algorithms such as ALMA for tradeoff allocations. 

It should be noted here that this research relies significantly on recent research. In 

particular, ALMA obtains the gradient in the same direction as in MGDA. The dual variables are 

incremented by the DSO algorithm in the same manner as in [79]. The aggregator auction is section 

3.2.1 is a modification of those in [1], [73]. Additionally, there are a few limitations of this research 

that are outlined below. 

It has been assumed that the feasibility constraints in Eqn. (3.8) were linear equality and 

inequality constraints. Although supported by Eqn. (3.3) for the energy grid, this assumption is 

over-simplistic for other applications. One possible improvement would be to linearize any 

nonlinear constraints at intermittent stages of the optimization algorithm. However, the 

effectiveness of ALMA in such situations needs to be further investigated. 

The Pareto front in Figure 3.9 was obtained by randomly initializing the starting point. 

However, this approach highlights that ALMA can converge to any Pareto-optimal solution. 

Although the present simulation results indicated that any additional gain in efficiency was 

accompanied by a sharp drop in fairness, this may not necessarily be the case in other grids, and 

therefore is a potential limitation in ALMA. One option to exert more influence on the Pareto-

optimal output allocation of ALMA, the authors suggest using MGDA’s approach to deal with 

opposing objectives, which suggests the use of relaxation algorithms to converge towards 

generalized Nash equilibrium. Alternately, only one of the scalar functions in Eqn. (3.7) may be 

used as a scalar objective, while imposing bounds either on the other objective or on both, as 
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additional constraints. A similar constrained method has been used in [37]. Both approaches while 

remaining quite out of scope in this study, are worthwhile directions for further investigation. 

In the absence of any secondary stage to navigate the Pareto front until a user-specified 

suitable point is reached, how useful is ALMA for use in the energy grid? Fortunately, in day-

ahead planning where scheduling is usually done in an hourly manner, the allocation 𝐩𝑡 during 

any hourly time interval 𝑡 would not differ significantly from that of the previous interval 𝐩𝑡−1. 

Initializing 𝐩𝑡 to the previous 𝐩𝑡−1, which is not only be feasible but also located very close to the 

desirable region in the Pareto front, would allow ALMA to converge to a Pareto optimal allocation 

at least an order of magnitude faster than what Figure 3.8 suggests. ALMA can be used in a similar 

fashion during real time operation, when actual user demands deviate from their forecasts. Barring 

unforeseen weather changes, as such deviations are usually very small, the planned value of 𝐩𝑡 

can readily be used as the initial point. Alternately, historical values from the DSO’s database can 

also be adopted for initialization during weather related exigencies. Put together, these reasons 

largely obviate the need for ALMA to be equipped to move along the Pareto front. 

The step sizes 𝜂𝑘
𝑋 of each dual variable 𝑋 was obtained by the DSO algorithm as in [79]. 

However, energy allocations were incremented with 𝜂𝑘
𝑃  being kept proportional to (1 +

〈𝒲(𝐩), ℛ(𝐩)〉) . This method of stepwise updates made ALMA apply increasingly smaller 

increments as it approached the Pareto front. Although simulations in this research indicated its 

effectiveness, theoretical support for such a modification is lacking. The authors intend to extend 

this technique for more than two objectives, and to formally establish convergence limits with step 

sizes fashioned in this manner.  

The proposed approach should be compared with novel algorithms for CVOP that were 

published recently in [35], [36], both of which appeared during a later phase of this research. In a 

similar manner, the effectiveness of ALMA with more than only two objectives, should be 

investigated in future research. The simulation results reported here serve as a proof-of-concept 

for a more general-purpose approach for large-scale constrained vector optimization. 
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Chapter 4 - An L0-Norm Constrained Non-Negative Matrix 

Factorization Algorithm for the Simultaneous Disaggregation of 

Fixed and Shiftable Loads 

Energy disaggregation refers to the decomposition of energy use time series data into its 

constituent loads. This research decomposes daily use data of a household unit into fixed loads 

and one or more classes of shiftable loads. The latter are characterized by ON/OFF duty cycles. A 

novel algorithm based on non-negative matrix factorization (NMF) for energy disaggregation is 

proposed, where fixed loads are represented in terms of real-valued basis vectors, whereas shiftable 

loads are divided into binary signals. This binary decomposition approach directly applies L0-

norm constraints on individual shiftable loads. The new approach obviates the need for more 

computationally intensive methods (e.g. spectral decomposition or mean-field annealing) that have 

been used in earlier research for these constraints. A probabilistic framework for the proposed 

approach has been addressed. The proposed approach’s effectiveness has been demonstrated with 

real consumer energy data. 

 

 4.1 Introduction 

Energy disaggregation refers to the decomposition of energy usage into multiple components in a 

physically meaningful way [49], [87].  For instance, daily energy consumption of a household unit 

can be disaggregated into various loads, such as refrigerator, air conditioner, lighting, pool pump, 

and other loads that are typically present in homes. In disaggregation tasks, the data samples are 

of the form of energy use over a fixed duration of time, at regularly spaced intervals. Until the last 

decade, energy disaggregation had met with little success. However, in recent years, NMF [88] 

has emerged as powerful tool for this purpose and has met with remarkable success. 

The classical NMF algorithm decomposes an input data matrix 𝐗 whose columns are 𝐷 ×

1 sample vectors, into two factors, 𝐖 and 𝐇, so that their product equals 𝐗. Usually, 𝐗 has a very 

large number of columns, which are independent samples.  Although there exists an abundance of 

classical matrix methods to factorize a given matrix in such a manner, in NMF there is the 

additional constraint that 𝐖 ≥ 𝟎 and 𝐇 ≥ 𝟎 [89],[90]. This non-negativity requirement placed on 
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both 𝐖 and 𝐇 render NMF suitable for many applications. For instance, NMF can be used to 

decompose image sequences or audio power spectra into factors 𝐖 and 𝐇 that can only have non-

negative values, since neither pixel values nor power components can be negative. This is also the 

situation in the present research. The columns of 𝐖, which are relatively lesser in number, serve 

as basis vectors so that each sample 𝐱(𝑛), 𝑛 ∈ 𝒩 which are columns of 𝐗 can be represented as a 

weighted combination of the bases, with the non-negative weights being the corresponding column 

vectors 𝐡(𝑛)  of 𝐇 . In load disaggregation, the basis vectors may correspond to individual 

appliances [49], [87],. 

Due to the non-negativity constraints, 𝐗 is not exactly factorizable into 𝐖 and 𝐇; whence 

the goal of NMF is to seek an approximate solution, so that 𝐗 ≈ 𝐖𝐇. NMF is an ill-posed problem 

since if 𝐗 ≈ 𝐖𝐇 is one solution, then so are other factorizations of the form 𝐗 ≈ 𝐖𝐏𝐏T𝐇 where 

𝐏 is any rotation matrix that preserves non-negativity, that can be considered to be other solutions. 

In this research, a novel NMF algorithm for load disaggregation has been proposed. It uses 

the Frobenius norm as objective, although the approach is generalized enough to be extended to 

others. The novelty of this approach is the manner in which the load is divided into two classes, 

(i) fixed loads, and, (ii) shiftable loads. This is a fundamental distinction between the different 

appliances in a typical household that has not been hitherto considered. 

Fixed loads are associated with appliances that are in continual use throughout the day. 

Examples of fixed loads include lighting and refrigerators. On the other hand, shiftable loads 

pertain to appliances that are used intermittently, such as washers, dryers, air-conditioners, and 

ovens. The latter class of loads are characterized by duty cycles, with typical temporal profiles. 

Our approach tries to exploit this feature in shiftable loads to obtain improved load disaggregation. 

Moreover, direct 𝐿0 norm constraints are imposed on the number of duty cycles, separately for 

each shiftable load. 

 

 4.2 Framework 

 4.2.1 Load Models 

Each input 𝐱(𝑛) is a vector of 𝐷 regularly spaced samples of energy usage of a single household 

unit over a 24-hour period. Therefore, the index 𝑛 can be regarded as the energy use of the 𝑛th day 
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in the sample set 𝒩. The purpose of the proposed NMF algorithm is to express each sample in the 

following manner. 

𝐱(𝑛) ≈ ∑ℎ𝑘
𝑓(𝑛)𝐰𝑘

𝑓

𝑘∈ℱ

+∑∑ ℎ𝑗,𝑘
𝑠 (𝑛)𝐰𝑗,𝑘

𝑠

𝑘∈𝒮𝑗𝑗

.       (4.1) 

In Eqn. (4.1), ℱ is the fixed load basis set and 𝒮𝑗  is that of the 𝑗th shiftable load. Each 𝐷 × 1 vector 

𝐰𝑘
𝑓
 is a fixed load basis vector 𝑘 (𝑘 ∈ ℱ). Likewise, each 𝐷 × 1 𝐰𝑗,𝑘

𝑠  is a basis vector 𝑘 (𝑘 ∈ 𝒮𝑗) 

of the 𝑗th shiftable load. In terms of basis matrices, 

𝐗 ≈ 𝐗̃ = 𝐖𝑓𝐇𝑓 +∑𝐖𝑗
𝑠𝐇𝑗

𝑠

𝑗

  (4.2) 

 

The quantities 𝐖𝑓  and 𝐖𝑗
𝑠  are basis matrices of dimensionalities 𝐷 × |ℱ| and 𝐷 × |𝒮𝑗|. 

The matrices 𝐇𝑓 = [𝐡𝑓(𝑛)]𝑛∈𝒩  and 𝐇𝑗
𝑠 = [𝐡𝑗

𝑠(𝑛)]𝑛∈𝒩  are |ℱ| × 𝑁  and |𝒮𝑗| × 𝑁  dimensional 

arrays of weights ℎ𝑘
𝑓(𝑛) and ℎ𝑗,𝑘

𝑠 (𝑛) ∈ {0,1}. This decomposition is illustrated in Figure 4.1. 

 

 

Figure 4.1: . Schematic of NMF factorization with separate basis and weight matrices for the fixed 

and shiftable loads. 

 

The shiftable loads are characterized by OFF-ON duty cycles. It is assumed that during ON 

intervals, the 𝑗th shiftable load draws a constant amount of energy 𝑝𝑗 and that it can stay ON for a 

maximum of 𝐿𝑗 time intervals. Hence, 

‖𝐡𝑗
𝑠(𝑛)‖

0
≤ 𝐿𝑗 . (4.3) 

Figure 4.2 shows the time profile of a shiftable load for the duration of a single day. It should be 

noted that as 𝐿𝑗 is the upper limit on the number of duty cycles, the actual number of such cycles 

may be less than 𝐿𝑗. 

≈𝐗𝐷

𝑁𝑛 ℱ 𝒮1

𝐖1
𝑠

𝒮𝑗 𝑁𝑛

 1
𝑠
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Figure 4.2: Illustrative usage profile of a shiftable load showing a maximum of 𝐿𝑗 duty cycles, 

with each such cycle being a rectangular pulse of uniform peak 𝑝𝑗. 

 

 4.2.2 Objective 

The squared Frobenius norm of the difference between the real data matrix 𝐗 and its approximation 

𝐗̃, 

Φ(𝐗̃|𝐗) =
1

2
‖𝐗 − 𝐗̃‖

𝐹

2
                                     

=
1

2
∑‖𝐱(𝑛) − 𝐱̃(𝑛)‖2

2

𝑛

. (4.4) 

The expression for the approximation 𝐱̃(𝑛) in Eqn.(4.4) has already been provided in Eqn. (4.1). 

The summation in Eqn. (4.4) is carried out over all samples in the set 𝒩 . A probabilistic 

justification for this choice is provided in section 4.3, which also serves as a theoretical basis for 

obtaining the weights associated with the shiftable loads in the proposed approach. 

 

 4.3 Proposed Approach 

 4.3.1 Probabilistic Framework 

Consider the following probabilistic interpretation. The joint probability of 𝐗, assuming that all 

samples are statistically independent is given by the following expression, 

  𝑝[𝐗|𝐖𝑓 , 𝐇𝑓 ,𝐖𝑗
𝑠, 𝐇𝑗

𝑠] 

=∏𝑝[𝐱(𝑛)|𝐖𝑓 , 𝐡𝑓(𝑛),𝐖𝑗
𝑠, 𝐡𝑗

𝑠(𝑛)]

𝑛

. (4.5) 

 

𝑝𝑗

1 𝐿𝑗

OFF and ON timing of shiftable load 𝑗

2 𝑘 𝐷
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It is assumed that each sample 𝐱(𝑛) follows a Gaussian distribution around its expected 

value 𝐱̃(𝑛). In this case, the probability of each such sample can be expressed in the following 

manner, 

  𝑝[𝐱(𝑛)|𝐖𝑓, 𝐡𝑓(𝑛),𝐖𝑗
𝑠, 𝐡𝑗

𝑠(𝑛)] 

=
1

𝜎𝐷(2𝜋)
𝐷
2

∏𝑒
−
1
2𝜎2

(𝑥𝑑(𝑛)−𝑥̃𝑑(𝑛))
2

𝑑

.  (4.6) 

 

The negated log probability of 𝐱(𝑛) is, 

 

  − log 𝑝[𝐱(𝑛)|𝐖𝑓, 𝐡𝑓(𝑛),𝐖𝑗
𝑠, 𝐡𝑗

𝑠(𝑛)] 

=
1

2𝜎2
∑(𝑥𝑑(𝑛) − 𝑥̃𝑑(𝑛))

2

𝑑

 + log 𝜎𝐷(2𝜋)
𝐷
2  

        =
1

2𝜎2
‖𝐱(𝑛) − 𝐱̃(𝑛)‖2

2  + log 𝜎𝐷(2𝜋)
𝐷
2 . (4.7) 

 

Hence the negative log probability of 𝐗 is, 

 

  − log 𝑝[𝐗|𝐖𝑓, 𝐇𝑓 ,𝐖𝑗
𝑠, 𝐇𝑗

𝑠] 

=∏𝑝[𝐱(𝑛)|𝐖𝑓, 𝐡𝑓(𝑛),𝐖𝑗
𝑠, 𝐡𝑗

𝑠(𝑛)]

𝑛

 

       =
1

2𝜎2
‖𝐗 − 𝐗̃‖

𝐹

2
 + 𝑁 log 𝜎𝐷(2𝜋)

𝐷
2 , (4.8) 

 

where the Frobenius norm of the difference between 𝐗 and 𝐗̃ is given by the earlier expression in 

Eqn. (4.8). 

Applying the maximum likelihood criterion to Eqn. (4.8), 

 

[𝐖𝑓 , 𝐇𝑓 , 𝐇𝑗
𝑠]
𝑀𝐿
= arginf

𝐖𝑓,𝐇𝑓,𝐇𝑗
𝑠

1

2
‖𝐗 − 𝐗̃‖

𝐹

2
. (4.9) 
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The expression in Eqn. (4.9) above provides a theoretical justification for the choice of objective 

function in Eqn. (4.4) in the present approach. 

The component of the objective function associated with the 𝑛th sample is, 

 

𝜑(𝐱̃(𝑛)|𝐱(𝑛)) ≜ 𝜑(𝑛) 

                           =
1

2
‖𝐱(𝑛) − 𝐱̃(𝑛)‖2

2 

                                   =
1

2
∑(𝑥𝑑(𝑛) − 𝑥̃𝑑(𝑛))

2

𝑑

. (4.10) 

 

 4.3.2 Multiplicative Update 

Multiplicative updates are used for the matrices 𝐖𝑓 and 𝐇𝑓 that are associated with the fixed load. 

Although this method is quite routine in the existing literature on NMF, it is described here for the 

sake of completeness of this work. More details can be found in [49], [88], [89], [90]. 

Consider any parameter 𝐏 (which can be either 𝐖𝑓 or 𝐇𝑓). Let ∇𝐏Φ be the gradient of tan 

arbitrary objective function Φ. Its gradient can be expressed in terms of its positive and negative 

components, so that ∇𝐏Φ = ∇𝐏
+ − ∇𝐏

−.  In gradient descent, the update rule would have been of the 

form, 

𝐏 ← 𝐏 − 𝜂∇𝐏
+ + 𝜂∇𝐏

−. 

In the multiplicative method, the following multiplicative update replaces the gradient ascent step,  

𝐏 ← 𝐏 ∘ ∇𝐏
−⊘∇𝐏

+. 

 

In the proposed approach, the parameters 𝐖𝑓 and 𝐇𝑓 are subject to multiplicative updates. 

In order to do so, the derivatives of the objective must be first computed. It can be shown that, 

 

∇𝐖𝑓

1

2
‖𝐗 − 𝐗̃‖

𝐹

2
= −𝐗 ∘ (𝐖𝑓𝐇𝑓 +∑𝐖𝑗

𝑠𝐇𝑗
𝑠

𝑗

)

∘−1

𝐇𝑓T + 𝟏𝐷×𝑁𝐇
𝑓T. (4.11) 

∇𝐇𝑓
1

2
‖𝐗 − 𝐗̃‖

𝐹

2
=  −𝐖𝑓T𝐗 ∘ (𝐖𝑓𝐇𝑓 +∑𝐖𝑗

𝑠𝐇𝑗
𝑠

𝑗

)

∘−1

+𝐖𝑓T𝟏𝐷×𝑁 . (4.12) 
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 Using the above expressions for the gradients, the update rules for the matrices pertaining 

to the fixed loads are, 

 

𝐖𝑓 ← 𝐖𝑓 ∘
(𝐗 ∘ 𝐗̃∘−1)𝐇𝑓T

𝟏𝐷×𝑁𝐇𝑓T
 . (4.13) 

𝐇𝑓 ← 𝐇𝑓 ∘
𝐖𝑓T(𝐗 ∘ 𝐗̃∘−1)

𝐖𝑓T𝟏𝐷×𝑁
 . (4.14) 

 

Since the columns of 𝐖𝑓 must be unit vectors, they are normalized at the end of each multiplicative 

update step as shown below, 

𝐰𝑘
𝑓
←

𝐰𝑘
𝑓

‖𝐰𝑘
𝑓
‖
. (4.15) 

 

 4.3.3. Sparsity Constrained Binary Updates 

In order to train 𝐇𝑗
𝑠, arginf𝐇𝑗

𝑠 Φ is obtained using the binary updating heuristic proposed in this 

research. This heuristic directly imposes the 𝐿0 norm constraint. The shiftable basis matrices 𝐖𝑗
𝑠 

remain fixed throughout the training process. 

It should be noted that since ℎ𝑗,𝑘
𝑠 (𝑛) ∈ {0,1} and ‖𝐡𝑗

𝑠(𝑛)‖
0
≤ 𝐿𝑗, computing the optimal 

weight matrix 𝐇𝑗
𝑠  is an NP-hard problem. Therefore a hill-climbing heuristic is proposed. The 

component of the total error due to any sample 𝑛 is given by the following expression, 

 

  𝐞(𝑛) = 𝐱̃(𝑛) − 𝐱(𝑛) 

            = 𝐖𝑓𝐡𝑓(𝑛) +∑𝐖𝑗
𝑠𝐡𝑗

𝑠(𝑛)

𝑗

− 𝐱(𝑛) 

            = 𝐖𝑓𝐡𝑓(𝑛) +𝐖𝑗
𝑠𝐡𝑗

𝑠(𝑛) + ∑𝐖𝑗′
𝑠𝐡𝑗′

𝑠 (𝑛)

𝑗′≠𝑗

− 𝐱(𝑛) 

        = 𝐖𝑗
𝑠𝐡𝑗

𝑠(𝑛) − 𝐫𝑗(𝑛).                                         (4.16) 
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In the above equality, 𝐫𝑗(𝑛) is the residual approximation of the 𝑛th sample when ignoring the 𝑗th 

shiftable load as shown below, 

      𝐫𝑗(𝑛) = 𝐱(𝑛) −𝐖
𝑓𝐡𝑓(𝑛) − ∑𝐖𝑗′

𝑠𝐡𝑗′
𝑠 (𝑛)

𝑗′≠𝑗

. 

≈ ∑ 𝐰𝑗,𝑘
𝑠 ℎ𝑗,𝑘

𝑠 (𝑛).

𝑘∈𝒮𝑗

(4.17) 

 

The objective function for any given sample 𝑛  provided earlier in Eqn. (4.10) can be 

expressed as given below, 

 𝜑(𝑛) =
1

2
‖𝐞(𝑛)‖2

2 

            =
1

2
∑𝑒𝑑

2(𝑛)

𝑑

 

                               =
1

2
∑(∑ 𝑤𝑗,𝑑,𝑘

𝑠 ℎ𝑗,𝑘
𝑠 (𝑛)

𝑘∈𝒮𝑗

− 𝑟𝑗,𝑑(𝑛))

2

𝑑

. (4.18) 

 

In Eqn. (4.18), consider any term 𝑑 of the outer summation. The inner summation is carried out 

over all columns 𝑘 ∈ 𝒮𝑗  of 𝐖𝑗
𝑠 such that 𝑤𝑗,𝑘,𝑑

𝑠 ≠ 0. Noting that any such non-zero 𝑤𝑗,𝑘,𝑑
𝑠 = 𝑝𝑗, the 

error 𝜑(𝑛) can be re-expressed in the following manner, 

 

𝜑(𝑛) =
1

2
𝑝𝑗
2 ∑ (∑ ℎ𝑗,𝑘

𝑠 (𝑛)

𝑘∈𝒮𝑗

−
𝑟𝑗,𝑑(𝑛)

𝑝𝑗
)

2

𝑑∈𝒟𝑘

+
1

2
∑ 𝑟𝑗,𝑑

2 (𝑛)

𝑑∉𝒟𝑘

. (4.19) 

 

The summation in Eqn. (4.19) above is carried out over all elements in the set of indices 

𝒟𝑘 defined as, 𝒟𝑘 = {𝑑|𝑤𝑗,𝑑,𝑘
𝑠 ≠ 0}. The set 𝒟𝑘 can be obtained easily by examining 𝑘th column 

of 𝐖𝑗
𝑠  and including all indices 𝑑 , that have nonzero entries in that column. After scaling 

appropriately and ignoring the term in Eqn. (4.19) not containing ℎ𝑗,𝑘
𝑠 (𝑛), the objective is, 
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𝜑′(𝑛) = ∑ (∑ ℎ𝑗,𝑘
𝑠 (𝑛)

𝑘∈𝒮𝑗

− 𝑟𝑗,𝑑
′ (𝑛))

2

𝑑∈𝒟𝑘

. (4.20) 

 

The proposed algorithm begins with 𝐡𝑗
𝑠(𝑛) = 𝟎|𝒮𝑗|, updating it in a stepwise manner, one 

element in each step. In each step 𝑙 a new index 𝑘 ∈ 𝒮𝑗  is selected and the corresponding ℎ𝑗,𝑘
𝑠 (𝑛) 

updated to 1. The algorithm can be implemented using a separate binary heuristic subroutine. 

However, the correct arguments need to be passed to the subroutine. The steps to do so are shown 

below. 

𝐫𝑗(𝑛) ← 𝐱(𝑛) −𝐖𝑓𝐡𝑓(𝑛) − ∑𝐖𝑗′
𝑠𝐡𝑗′

𝑠 (𝑛)

𝑗′≠𝑗

 

𝐫𝑗(𝑛) ←
1

𝑝𝑗
𝐫𝑗(𝑛) 

𝐡𝑗
𝑠(𝑛) ← hillClimb(𝐖𝑗

𝑠, 𝐫𝑗(𝑛)) 

The arguments of subroutine hillClimb() are a 𝐷 × 1 vector 𝐫 and either a 𝐷 × 𝑆 

binary matrix 𝐖, or equivalently the sets of indices 𝒟𝑘 for each 𝑘 ∈ {1,2, … , 𝑆}. The subroutine 

returns an updated 𝐡 that minimizes,  

𝜑(𝐡|𝐖, 𝐫) =∑(𝑟𝑑 −∑𝑤𝑘,𝑑ℎ𝑘

𝑆

𝑘=1

 )

2

𝑑

. (4.21) 

Alternately, the expression in Eqn. (4.21) can be written as, 

𝜑(𝐡|𝒟1, … , 𝒟𝐷 , 𝐫) = ∑ (𝑟𝑑 −∑ℎ𝑘

𝑆

𝑘=1

)

2

𝑑∈𝒟𝑘

+ 
1

2
∑ 𝑟𝑑

2

𝑑∉𝒟𝑘

, (4.22) 

 

The proposed subroutine is outlined in Algorithm 4.1. The two arguments that are passed 

to the subroutine hillClimb() consist of a basis matrix 𝐖, and a residual vector 𝐫. If  𝐖 ≡

𝐖𝑗
𝑠, the basis matrix of the 𝑗th shiftable load, then 𝐫 ≡ 𝐫𝑗(𝑛) as shown in Eqn. (4.17) but after 
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normalization so that 𝑝𝑗 = 1. It is assumed that two constants, 𝑆, the number of columns in 𝐖, 

and 𝐿, the maximum allowable value of ‖𝐡‖0 are implicitly accessible to the subroutine.  

 

Algorithm 4.1: Hillclimb Algorithm 

hillClimb(𝐖, 𝐫) 

1. 𝐡 ← 𝟎𝑆  

2. ℒ ← {1,2, … , 𝑆} 

3. 𝑙 ← 0 

4. terminate ← FALSE 

 5. for each 𝑘 ∈ ℒ 

 5a. 𝒟𝑘 ← {𝑑|𝑤𝑘,𝑑 ≠ 0} 

      end 

6. while terminate == FALSE 

 6a.  𝜑0 ←∑𝑟𝑑
2

𝑑

 

 6b.  for each  𝑘 ∈ ℒ 

 6c. 𝜑1(𝑘) ← ∑ 𝑟𝑑
2

𝑑∉𝒟𝑘

+ ∑(𝑟𝑑 − 1)
2

𝑑∈𝒟𝑘

 

        end 

 6d.  if  min
𝑘
𝜑1(𝑘) ≥ 𝜑0 or 𝑙 > 𝐿 

 6e. terminate ← TRUE 

 6f.  else 

 6g.  𝑘 ← argmin
𝑘

𝜑1(𝑘) 

 6h.  ℎ𝑘 ← 1 

 6i.  ℒ ← ℒ\{𝑘} 

 6j.  𝑙 ← 𝑙 + 1 

 6k.  for each 𝑑 ∈ 𝒟𝑘 

 6l.  𝑟𝑑 ← 𝑟𝑑 − 1 

    end 

   end 

     end 

end  
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The subroutine hillClimb()maintains a set ℒ of all indices 𝑘 such that ℎ𝑘 = 0. Since 

the subroutine begins with 𝐡 = 𝟎𝑆 (step 1), the set ℒ is initialized to include all basis vectors in 𝐖 

(step 2). The quantity 𝑙  stores the value of ‖𝐡‖0 ; therefore it is initialized to 1 (step 3). The 

subroutine maintains a Boolean variable terminate to indicate if the termination condition of 

the algorithm is satisfied; it is initialized to FALSE (step 4). Since 𝐖 is a sparse binary matrix, the 

sets 𝒟𝑘 (𝑘 = 1,2,… , 𝑆) are initialized to indicate the elements in column 𝐰𝑘 in 𝐖 that contain 1s 

(step 5). 

During each iteration of the while loop (step 6), an ℎ𝑘  is updated to unity and the 

corresponding index 𝑘 removed from ℒ. In other words, the norm ‖𝐡‖0 is increased by unity per 

iteration. As a hill-climbing procedure, in each iteration the subroutine picks an index 𝑘 from ℒ 

that lowers the error ‖𝐫 −𝐖𝐡‖2
2 by the maximum amount. In step 6a, the current error is obtained 

and stored in the variable 𝜑0. In the for loop that follows in step 5, for every 𝑘 in ℒ, the error 

𝜑1(𝑘) that would result if the corresponding ℎ𝑘 were to be incremented to unity, is computed. 

However, before updating the ℎ𝑘, the termination condition is evaluated. The indicator variable 

terminate is set to TRUE if ‖𝐡‖0 is equal to 𝐿, in which case no further updates are possible. 

The variable becomes TRUE also if incrementing any other ℎ𝑘 will only increase the error, that is, 

if the smallest entry of the vector 𝛗1 exceeds 𝜑0. The latter situation arises when all elements of 

the residual 𝐫 are less than 0.5. This is shown in step 6e. 

If the termination condition is not satisfied, the subroutine proceeds by obtaining the index 

𝑘 that corresponds to the smallest 𝜑1(𝑘) (step 6f) and sets that ℎ𝑘 to 1 (step 6g). Next, the same 

index 𝑘 is removed from the set ℒ, in step 6f. The variable 𝑙 in incremented to indicate the new 

value of ‖𝐡‖0. 

It is clear that the subroutine is a hill-climbing heuristic approach to update the weights of 

the shiftable load basis vectors. Therefore, upon termination, hillClimb() returns the binary 

vector 𝐡 ≡ 𝐡𝑗
𝑠(𝑛) such that, 

𝐡 = arginf
‖𝐡‖0≤𝐿

‖𝐫 −𝐖𝐡‖2
2 . (4.23) 

 

To the best of the my knowledge, there are no established upper bound estimates on the 

computational complexity of mean field annealing, as has been used in [48]. Although it is 

reasonable to consider 𝑂(|𝒮𝑗|) as the per iteration complexity in extracting the largest singular 
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value of a sparse matrix (c.f. [91]), this is only an estimate; SVD algorithms as used in [92] for 

NMF, do not have strict upper bounds. In contrast, the hill climbing procedure described in this 

research requires 𝑂(𝐿0 ln|𝒟|) steps per iteration and 𝐿0 can never exceed the total number of basis 

vectors |𝒮𝑗|. 

 

 4.3.4 NMF Algorithm 

The proposed NMF algorithm follows a block coordinated descent method, with the matrices 𝐖𝑓, 

𝐇𝑓, and each 𝐇𝑗
𝑠. Whereas the fixed load matrices are treated as in [88], [89], [90], updating the 

weight matrices of the shiftable loads, a novel feature of this research, is done by calling the 

subroutine hillClimb() described above multiple times in an iterative fashion. The overall 

algorithm is outlined in Algorithm 4.2. 

Algorithm 4.2: NMF Algorithm 

while converged == FALSE do 

1. 𝐖𝑓 ← 𝐖𝑓 ∘
(𝐗 ∘ 𝐗̃∘−1)𝐇𝑓T

𝟏𝐷×𝑁𝐇𝑓T
 

2. 𝐖𝑓 ←
𝐖𝑓

‖𝐖𝑓‖
 

3. 𝐇𝑓 ← 𝐇𝑓 ∘
𝐖𝑓T(𝐗 ∘ 𝐗̃∘−1)

𝐖𝑓T𝟏𝐷×𝑁
 

4. for each 𝑛 ∈ 𝒩  

 5. for each 𝑗 (in any order) 

 5a. 𝐫𝑗(𝑛) ← 𝐱(𝑛) −𝐖𝑓𝐡𝑓(𝑛) − ∑ 𝐖𝑗′
𝑠𝐡𝑗′

𝑠 (𝑛)𝑗′≠𝑗   

 5b. 𝐫𝑗(𝑛) ←
1

𝑝𝑗
𝐫𝑗(𝑛) 

 5c. 𝐡𝑗
𝑠(𝑛) ← hillClimb (𝐖𝑗

𝑠, 𝐫𝑗(𝑛)) 

     end  

 end  

end  

 



63 

For simplicity, the initialization steps are omitted. At first, the matrices 𝐖𝑓 , 𝐇𝑓  are 

updated in accordance with Eqn. (4.13) and Eqn. (4.14). The updates are carried out in steps 1 and 

3, with step 2 being the implementation of the normalization step in Eqn. (415). It may be noted 

that the informal notation used in step 2 should, in reality, be implemented iteratively to normalize 

each column of 𝐖𝑓 separately. 

In each iteration of step 4, a sample 𝑛 ∈ 𝒩 is picked, either randomly or sequentially, so 

that all shiftable load weights can be updated using the hill-climbing procedure. The appearance 

of a second level for loop in step 5 is due to the presence of more than a single shiftable load. As 

before, the inner loop may proceed in a sequential manner, or in any random order of the shiftable 

loads. 

Given sample 𝑛 and a shiftable load 𝑗, the residual vector is extracted in the manner shown 

in Eqn. (4.17). This is implemented in step 5a. The residual is normalized in step 5b, with respect 

to its peak 𝑝𝑗. Finally in step 5c, the column 𝐡𝑗
𝑠(𝑛) of the weight matrix 𝐇𝑗

𝑠 is updated by calling 

hillClimb(). 

 

 4.4 Simulation Results 

The proposed approach was tested on actual energy usage profiles of a single residential customer 

that was obtained from the Pecan Street Inc., Dataport database [93] sampled at one minute 

intervals, and for the first three weeks in April, 2019.  As energy consumption patterns on 

weekdays differ significantly from those in weekends, the latter was discarded, yielding a total of 

𝑁 = 15 samples. The data was arranged as a 1440 × 15 input matrix 𝐗 whose columns were the 

1440-dimensional sample vectors 𝐱(𝑛), 𝑛 ∈ 𝒩. 

The database in [93] also included individual energy usages of the following four 

appliances, (i) a furnace, (ii) a washer/dryer unit, (iii) an oven, and (iv) kitchen appliances. These 

measurements provided the basis to evaluate the quality of the disaggregation obtained by the 

proposed algorithm. All four appliances were classified as shiftable loads for this purpose and 

indexed in the above order. The rest of the aggregate load was treated as fixed loads. 

The peak values  𝑝𝑗 of the duty cycle of each load 𝑗 ∈ {1, 2, 3, 4}, as well as the maximum 

number of its ON cycles, 𝐿𝑗, of a typical day (denoted as 𝐿𝑗
max) was determined through visual 

inspection. These parameters are shown in Table 4.1. 
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Table 4.1 Duty Cycle Parameters 

 Furnace Washer/Dryer Oven Kitchen appliances 

 𝒑𝒋 0.46 2.50 5.00 0.37 

𝑳𝒋
𝐦𝐚𝐱 150.00 20.00 10.00 60.00 

 

The observed 𝐿𝑗 maximums (denoted as 𝐿𝑗
max) of the loads in Table I served as upper limits 

on the number of ON cycles, so that constraints of the form ‖𝐡𝑗
𝑠(𝑛)‖

0
≤ 𝐿𝑗

max were applied to 

each shiftable load. The total number of basis vectors were chosen to be |ℱ| = 1 for the fixed 

loads, and |𝒮𝑗| = 1440 for each shiftable load 𝑗. The disaggregated outcomes of the days indexed 

𝑛 = 1 and 𝑛 = 5 (indexed after dropping weekends) were picked for illustrative purposes. These 

will be referred to hereafter as Day-1 and Day-2.  

 

 

 
 

Figure 4.3: Disaggregated shiftable loads (top) and aggregate loads (bottom) for Day-1. 
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The plots in Figure 4.4 and Figure 4.5 show the results obtained by the NMF algorithm for 

Day-1. The disaggregated fixed load 𝐖𝑓𝐡𝑓(1) (red) and the sum of all four shiftable loads, 

∑𝐖𝑗
𝑠𝐡𝑗

𝑠(1) (blue) for the entire 24 hour period appears in Figure 4.4. (top). For the sake of 

comparison, the expected aggregate load 𝐱̃(1) from the algorithm (blue) is plotted alongside the 

real load profile 𝐱(1) (red) in Figure 4.4 (bottom). The effectiveness of the proposed approach is 

evident from the similar patterns of both plots. The peak consumption in both cases occur in the 

late evening hours (1320 – 1440 mins). Additionally the real data shows increased energy usage 

in the morning hours (540 – 600 mins), which is effectively reproduced by the NMF algorithm. 

The disaggregated loads of the individual appliances for Day-1 are provided in Figure 4.5.  

The plots for the furnace, washer/dryer unit, oven, and kitchen appliances appear in order (top 

through bottom). The actual load data of this 24 hour period appears in red. 

Upon close observation, it is apparent that the NMF algorithm accurately reproduces the 

ON and OFF periods for each load (blue). During Day-1, there were no ON periods for the oven 

in either case. The ON periods for the washer/dryer unit occur in the interval 1340 – 1400 mins. 

The effectiveness of the NMF algorithm is obvious from the very strong resemblance of the 

disaggregated washer/dryer usage to the real data. Likewise, the NMF algorithm faithfully 

reproduces the real furnace usage profile, albeit to a somewhat lesser extent than before. In 

comparison to the others, there are some discrepancies in the usage profile that the NMF algorithm 

yields and the real data for the kitchen appliances.  
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Figure 4.4: Disaggregated shiftable loads for Day-1. 
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Figure 4.5: Disaggregated shiftable loads (top) and aggregate loads (bottom) for Day-2. 

 

Figure 4.6 and Figure 4.7 pertain to the energy usage occurring in Day-2. As the results are 

remarkably similar to those in Day-1, we focus only on a few key observations. In contrast to the 

previous results, from the actual data in Figure 4.6 (bottom) it is seen that the increased usage of 

shiftable loads during the evening is more spread out. This feature is reflected in the disaggregated 

signals. Unlike before, there are a few ON cycles for the oven, which is again captured by the 

algorithm. As in the previous case, it can be seen that the algorithm is not able to pick the ON 

cycles of the kitchen appliance with the same precision as with other shiftable loads. We attribute 

the difference to the smaller peak value 𝑝4 = 0.37 relative to those of the other appliances. 
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Figure 4.6: Disaggregated shiftable loads for Day-2. 
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 4.5 Conclusion 

The major contributions of this study are as follows. 

(i)  The load disaggregation of real input data at a significantly high resolution of 1 minute intervals 

clearly demonstrates the efficacy of the NMF algorithm suggested in this research. 

(ii)  Categorizing individual appliances into fixed and shiftable loads allowed the proposed NMF 

based algorithm to leverage the observed characteristics of each appliance’s ON-cycle. 

(iii)  It has been shown that the NMF algorithm, including the treatment of the shiftable loads, can 

be viewed in terms of maximum likelihood. This provides a theoretical justification of the new 

approach introduced in this research. 

(iv) The hill climbing heuristic, requiring up to only 𝐿0 steps per iteration of the outer loop, offers 

a significant computational advantage over other NMF approaches if used for a similar application. 

(As an example, this algorithm requires up to 𝐿0 = 𝐿1
max  = 150 steps for the furnace, whereas an 

SVD based NMF [92], would need |𝒮1| = 1440 steps). 

In spite of the high fidelity of the disaggregated loads obtained using the approach 

introduced in this research, there is ample scope for future research. Incorporating a semi-

supervised learning algorithm to obtain best fits of the duty cycles would obviate the need of prior 

knowledge of the duty cycles of individual appliances. Another potential enhancement is to allow 

the algorithm to learn the ON cycles’ probabilities of the appliances. The algorithm may be 

extended to include these probabilities within the theoretical framework. 
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Chapter 5 - A Data Driven Approach for Energy Consumer 

Modeling 

The uses of reliable estimates of instantaneous consumer load demands a priori are manifold. They 

are routinely in short-term planning, load scheduling, security and privacy issues, energy trading, 

and cooperative energy use. Non-parametric models, such as neural networks, are sufficient in 

some of these applications which only require load forecasts. Elsewhere, separate estimates of 

fixed and shiftable loads are required. A semi-parametric estimation model is needed in market-

oriented aspects of the grid, costs sensitivities of demands must be known. In the latter case, 

research work consistently uses somewhat arbitrary parameters that seem to work best. We 

propose a generic class of semiparametric models that is derived from real consumer data. A two-

step machine learning approach is used. In the first phase, disaggregation of the load into fixed 

and shiftable components is accomplished by means of a hybrid non-negative matrix factorization 

(NMF) and Gaussian mixture models (GMM) approach, the latter trained with the expectation-

maximization (EM) algorithm. The fixed and shiftable loads are subject to analytic treatment using 

economic considerations. Lastly, the model parameters are estimated using an 𝑳𝟐-norm support 

vector regression (SVR). 

 

 5.1 Introduction 

Aggregate data refers to higher level data that is composed of multiple components. For example, 

traffic flow of a highway from a large city comprises of flows from all arterials leading to the 

highway. Likewise, the daily oil production of a country is the aggregate of the that produced by 

all oil corporations that are located in it. In the latter example, oil production can be divided into 

one component that directly responsive to supply, while another component that remains fixed, 

due to physical drilling requirements of oil wells. For capacity planning, environmental 

regulations, economic policies, and several other purposes, a significant amount of information 

can be acquired by disaggregating the total oil production into these two components alone, 

without having to look into those of individual oil companies. 
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This research envisages an analogous situation in the consumption of energy by households 

within the energy distribution grid. There are a variety of loads present in a typical household, 

including essentials such as lighting or temperature control appliances, whose use being entirely 

dependent upon the time of day and the surrounding temperatures is not influenced by economic 

considerations. The household also contains other loads such as PHEV charging that are directly 

driven by time of use (TOU) pricing. Accordingly, energy consumption can be divided into two 

categories, (i) fixed loads, and (ii) shiftable loads. Further details of this dichotomy are postponed 

to a later section. Unfortunately, in contrast to other domains where individual components of the 

aggregate data are readily available, however any residential consumer uses energy is treated as 

private, inaccessible information. In other words, decomposing total usage patterns can only be 

estimated using computational methods. This task is referred to as load disaggregation. 

There are significant implications from load disaggregation in energy trading – the 

procurement of energy by a customer from another customer, or an upper level grid entity such as 

aggregator or DSO, in exchange for money, through auction mechanisms that may lead to Nash, 

Stackelberg, or other game theoretic equilibrium conditions. Each customer simply tries to 

maximize its own payoff, i.e. the difference between the utility gained from consuming a certain 

amount of energy and the price it pays to procure that amount. The utility in this context quantifies 

the amount of satisfaction that a consumer derives from using a certain amount of energy. In 

accordance with the classic econometric precept – the law of diminishing returns, the utility 

function should ideally be monotonically non-decreasing and quasi-concave. For mathematical 

tractability, it must also be Lipschitz continuous. The derivative of any utility function that is 

differentiable is its marginal utility. In auctions, customer agents place cost bids that are equal to 

marginal utilities. 

Disaggregated loads are used in this research to obtain a nonlinear utility model of the 

residence. The model is semi-parametric as it does not require fine-grained disaggregation of the 

smart meter data into individual appliances; disaggregation of a coarser granularity to divide the 

aggregate into fixed and shiftable components are sufficient for the semi-parametric consumer 

model proposed here. In this context, parametric models are ones that require adequate 

representations of all individual appliances. At the other end of the spectrum are non-parametric 

models that are entirely empirical. 
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 5.2 Overall Approach 

It is assumed that any user’s energy usage 𝑥𝑡 at any time instant 𝑡 is divided into two components, 

i.e. 

𝑥𝑡 = 𝑥𝑡
𝑓
+ 𝑥𝑡

𝑠 + 𝜂𝑡 . (5.1) 

Here 𝑥𝑡
𝑓
 is the fixed load and 𝑥𝑡

𝑠, the shiftable load. The quantity 𝜂𝑡 is the sensor error.  

We define the following vectors, 𝐱 = [𝑥𝑡]𝑡∈𝒯 , 𝐱𝑓 = [𝑥𝑡
𝑓
]
𝑡∈𝒯

, and 𝐱𝑠 = [𝑥𝑡
𝑠]𝑡∈𝒯 . Each 

quantity is a |𝒯| × 1 vector, where 𝒯 is the set of time instants.  

The time instances 𝑡 ∈ 𝒯 are divided into periods with each period including exactly 𝐿 

time instances. The set of periods is 𝒦 so that 𝐿 = |𝒦|−1|𝒯|. For example, if the time instances 

are of a minute duration each, that are divided up into hour-long periods, then |𝒯| = 1440 

mins/day, |𝒦| = 24 hours/day, and 𝐿 = 60 mins/hour. Within each period 𝑘 ∈ 𝒦 we define the 

𝐿 × 1  vectors 𝐱𝑘
𝑓
= [𝑥𝑡

𝑓
]
𝓀(𝑡)=𝑘

, 𝐱𝑘
𝑠 = [𝑥𝑡

𝑠]𝓀(𝑡)=𝑘 , where 𝓀(∙)  yields the period index 

corresponding to a time instance 𝑡. The temperature vector 𝛉 = [𝜃𝑘]𝑘∈𝒦  and the vector of unit 

costs 𝐜 = [𝑐𝑘]𝑘∈𝒦 are other 𝐿 × 1 vectors. 

The dataset used in this research consists of multiple samples, where each sample pertains 

to a day. Accordingly, we define the matrices, 𝐗𝑓 = [𝐱𝑓(𝑛)]𝑛∈𝒩, and 𝐗𝑠 = [𝐱𝑠(𝑛)]𝑛∈𝒩, where 

𝒩 is the set of samples and sample index 𝑛 indicates a day. With vec⋅ being the vector operator, 

vec 𝐗𝑠 and vec 𝐗𝑓 define two |𝒯||𝒩| × 1 vectors of loads. The 𝐿 × |𝒦| matrix of temperatures is 

𝚯 = [𝛉(𝑛)]𝑛∈𝒩; vec𝚯 is its equivalent |𝒦||𝒩| × 1 vector. The cost vector 𝐜 is constant across 

all samples in 𝒩. 

 

 5.2.1 Load Model 

Fixed loads pertain to appliances that are deemed essential in any residence, such as lighting, 

refrigeration, and heating equipment. Consequently unit energy price has no bearing on their 

operation. Most fixed loads cannot be characterized as discrete loads. For instance illumination 

and heating are needed in each room and would require too many states in an HMM. Their energy 

consumption is usually relatively low, including refrigerators that do display ON-OFF cycles. 

Lastly, these appliances are in operation throughout any 24 hour period. Accordingly, it is assumed 

in this research that fixed loads are, (i) typically continuous loads, (ii) independent of unit price, 
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(iii) used throughout the day, (iv) relatively low valued. Figure 5.1 (top) illustrates two fixed loads 

(brown, magenta).  

The schematic in Figure 5.2 (bottom) shows three shiftable appliances (blue, green, cyan) 

drawing a fixed amount of power when activated. Occasionally, an appliance may display multiple 

peaks (cyan). A composite peak appears when two or more appliances are simultaneously active. 

In the schematic, two such loads (blue and green) are active in the same instant).  

 5.2.1.1 Fixed Load 

It is assumed that the fixed load at any period 𝑘 consists of a temperature dependent term so that, 

𝑥𝑘
𝑓
= 𝑝𝑘 + 𝑞𝑘𝜃𝑘. (5.2) 

Here 𝑝𝑘 and 𝑞𝑘 are two model parameters, 𝑥𝑘
𝑓
= 𝟏𝐿

T𝐱𝑘
𝑓
 is the total fixed load and 𝜃𝑘 is the 

temperature during that period.  

 

 

Figure 5.1: Schematic showing typical profiles of fixed (top) and shiftable (bottom) loads. 

 

 5.2.1.2 Shiftable Loads 

Consider a market with two divisible resources, indexed 1 and 2. Suppose the amounts consumed 

by any agent are 𝑥1  and 𝑥2 . The agent’s preference can be quantified in terms of the non-

decreasing function, 𝑦(𝑥1, 𝑥2). When the resources display perfect complementarity for the agent, 

the latter’s preference can be expressed as 𝑦(𝑥1, 𝑥2) = min(𝑎1𝑥1, 𝑎2𝑥2). Here 𝑎1 and 𝑎2 are two 

constants that are based on the agent’s individual characteristics. On the other hand, when the 

increasing 𝜃

𝑡

Shiftable Loads

𝑡

Fixed Loads
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commodities are regarded as perfect substitutes of each other, then 𝑦(𝑥1, 𝑥2) = 𝑎1𝑥1 + 𝑎2𝑥2. The 

Cobb-Douglas function [94] is used as the preference function when the agent treats the two 

resources as intermediate between being perfect complements and perfect substitutes (see Figure 

5.2.). In the present case with two resources, the preference can be expressed as 𝑦(𝑥1, 𝑥2) =

𝑥1
𝑎1𝑥2

𝑎2 . In general with 𝐱  representing the vector of all resources, an agent’s Cobb-Douglas 

preference is 𝑦(𝐱) = ∏ (𝑥𝑘)
𝑎𝑘

𝑘 . The parameters 𝑎𝑘 > 0  are referred to as elasticity constants.  

Some shiftable loads can display perfect complementarity, whereas others, perfect substitution. 

Therefore, the Cobb-Douglas preference is widely considered to be a suitable means to model a 

consumer’s preference.  

However, a few enhancements are required to make the preference amenable for our 

purpose. First, a scaling factor is incorporated to reflect individual user’s characteristics. For 

instance, a household may require more energy to derive the same benefit of consuming energy as 

either a more frugal or an environmentally aware one. Next, since the original Cobb-Douglas 

preference function serves as a production function, it becomes zero if any component 𝑥𝑘 = 0. 

Therefore each factor is incremented by 1 to prevent this from happening, so that 𝑦(𝐱𝑠) =

∏ (𝑏−1𝑥𝑘
𝑠 + 1)𝑎𝑘𝑘∈𝒦 . The logarithm of the modified Cobb–Douglas preference is chosen as the 

utility function. Treating the logarithm of the Cobb-Douglas preference in this manner, introduces 

several desirable features to the utility function: (i) it is strictly concave and increasing, (ii) it is 

Lipschitz continuous and differentiable, and (iii) it conveniently intersects the origin at 𝐱𝑠 = 𝟎, 

indicating that a consumer can glean no utility without consuming any energy. The expression for 

the utility used here is given by,  

𝑢(𝐱𝑠) = ∑ 𝑎𝑘 log (𝑏
−1(𝑥𝑘

𝑠 − (𝑥𝑘,0
𝑠 + 𝑑𝑘𝜃𝑘))+ + 1)

𝑘∈𝒦

. (5.3) 

The derivative of 𝑢(𝐱𝑠) with respect to any 𝑥𝑘
𝑠 is the agent’ marginal utility of that period 𝑘, which 

is also equal to the unit cost. 

𝑐𝑘 =
𝑎𝑘

𝑥𝑘
𝑠 − (𝑥𝑘,0

𝑠 + 𝑑𝑘𝜃𝑘) + 𝑏
. (5.4) 

 

It can be seen in Eqn. (5.3) and Eqn. (5.4) that an amount of energy (𝑥𝑘,0
𝑠 + 𝑑𝑘𝜃𝑘) is 

subtracted from 𝑥𝑘
𝑠. The quantity 𝑥𝑘,0

𝑠  is the base shiftable load. It is the component of 𝑥𝑘
𝑠 that is 

determined by non-economic factors (e.g. it is not practicable for a washer/dryer unit to be put into 



75 

use at 2:00 AM). The term 𝑑𝑘𝜃𝑘 is the temperature dependent component of 𝑥𝑘
𝑠 (such as load due 

to air conditioning). Generally speaking, the energy consumption increases when the ambient 

temperature deviates from some desirable value, say 𝜃des . Under these circumstances a term 

𝑑|𝜃𝑘 − 𝜃
des| should have been added to 𝑥𝑘

𝑠. However, as the specific data used in this research 

involved only warmer days, it is assumed that 𝜃𝑘 > 𝜃
des, thereby justifying the inclusion of an 

additive term 𝑑𝑘𝜃𝑘 in Eqn. (5.3) and Eqn (5.4). From Eqn. (5.4), the total shiftable load is, 

𝑥𝑘
𝑠 = 𝑐𝑘

−1𝑎𝑘 − 𝑏 + 𝑥𝑘,0
𝑠 + 𝑑𝑘𝜃𝑘 .    (5.5) 

 

 

 

Figure 5.2: Isoquant for a Cobb-Douglas preference function (black). For comparison, isoquants 

for perfect substitutes (blue) and perfect complements (red) are also shown in dashed lines. 

 

 5.2.3 Algorithmic Framework 

The load matrix 𝐗, the temperature matrix 𝚯, and the vector 𝐜 of unit costs are the three input data 

sets used in this research. Load disaggregation is carried out using the hybrid approach proposed 

here, with the GMM associated with shiftable loads and NMF with fixed loads. The hybrid NMF-

GMM disaggregation algorithm produces matrices of fixed loads 𝐗̃𝑓 , and shiftable loads, 𝐗̃𝑠 , 

which serve as the input to the parameter estimation algorithm that yields all parameters associated 

with the consumer utility model. Figure 5.3 illustrates the various steps of this approach. 
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Figure 5.3: Steps used in the proposed approach. Arrows depict flow of information 

 

 5.3 Load Disaggregation 

 5.3.1 Gaussian Mixture Model 

The shiftable loads are represented in our framework in terms of a Gaussian mixture model 

(GMM). The 𝑗th prior, mean, and variance are π𝑗 𝜇𝑗, and 𝜎𝑗
2, which are trainable parameters with 

the exception of 𝜇0 which is permanently assigned a value 𝜇0 = 0 to represent the case when none 

of the shiftable loads is in use. Its variance 𝜎0
2 is treated as a nonzero to subsume noise. With 𝐺 

being the number of nonzero Gaussians, the probability distribution of 𝑥𝑡 can be expressed as per 

the following expression, 

𝑝𝑟[𝑥𝑡] = ∑π𝑗𝑒
−
(𝑥𝑡−𝜇𝑗)

2

𝜎𝑗
2

𝐺

𝑗=0

. (5.5) 

 

In addition, the binary variable 𝛿𝑔(𝑡,𝑛)=𝑗 is used to indicate that the 𝑗th Gaussian is ‘active’ 

at time 𝑡, in sample 𝑛.  

The GMM is trained using the expectation-maximization (EM) algorithm, briefly 

described here for convenience. The algorithm consists of an expectation step (E-step) where, 

using existing estimates of π𝑗  𝜇𝑗 , and 𝜎𝑗
2  for each 𝑗 , the posterior probabilities, z𝑗,𝑡(𝑛) =

𝑝𝑟[𝛿𝑔(𝑡)=𝑗|𝑥𝑡] of each Gaussian is estimated as, 

-SVR

GMM

NMF

parameter

estimation

load

disaggregation

semi-parametric

model
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z𝑗,𝑡(𝑛) = Σ𝑡,𝑛
−1π𝑗𝑒

−
(𝑥𝑡(𝑛)−𝜇𝑗)

2

𝜎𝑗
2

.  (5.6)
 

The quantity Σ𝑡,𝑛 in the denominator is for normalization, such that the joint probability is unity, 

∑ z𝑗,𝑡(𝑛)
𝐺
𝑗=0 = 1, so that, 

Σ𝑡,𝑛 =∑π𝑗𝑒
−
(𝑥𝑡(𝑛)−𝜇𝑗)

2

𝜎𝑗
2

𝐺

𝑗=0

.   (5.7) 

In in this manner, the posteriors for each time instance 𝑡 ∈ 𝒯 of each sample 𝑛 ∈ 𝒩 are obtained 

in the E-step. 

During the maximization step, the GMM parameters, π𝑗 𝜇𝑗, and 𝜎𝑗
2 are updated using the 

following rules, 

𝜇𝑗 = ∑ z𝑗,𝑡𝑥𝑡(𝑛)

𝑡∈𝒯,𝑛∈𝒩

,   (5.8) 

𝜎𝑗
2 = ∑ z𝑗,𝑡(𝑥𝑡(𝑛) − 𝜇𝑗)

2

𝑡∈𝒯,𝑛∈𝒩

, (5.9) 

π𝑗 = |𝒯|
−1|𝒩|−1 ∑ z𝑗,𝑡(𝑛)

𝑡∈𝒯,𝑛∈𝒩

.  (5.10) 

The E-step and M-step are repeated multiple times until convergence. 

 

Given a total load 𝑥𝑡(𝑛), the shiftable load is estimated according to the expression below, 

𝑥̃𝑡
𝑠(𝑛) = max

𝑗
𝜇𝑗 ≤ 𝑥𝑡(𝑛) . (5.11) 

Ignoring noise, the remaining load 𝑥𝑡(𝑛) − 𝑥𝑡
𝑠(𝑛) is taken to be the fixed load 𝑥̃𝑡

𝑓(𝑛), i.e., 

𝐗̃𝑓 = 𝐗 − 𝐗̃𝑠.  (5.12) 

The estimated fixed load 𝐗̃𝑓 is used in the following algorithm. 

 

 5.3.2 Non-Negative Matrix Factorization 

It is assumed that the shiftable load 𝐱̃𝑓(𝑛) of each sample 𝑛 ∈ 𝒩 can be represented using a set of 

𝐵 basis vectors of dimensionality |𝒯| × 1. If ℎ𝑘(𝑛), 𝑘 = 1, … , 𝐵 are their coefficients, we must 

have, 



78 

𝐱̃𝑓(𝑛) = ∑ℎ𝑘
𝑓(𝑛)𝐰𝑘

𝑓

 𝐵

𝑘=1

.  (5.13) 

 

The basis set is assumed to be orthonormal, so that 𝐰𝑘
T𝐰𝑙 = 𝛿𝑘=𝑙. These basis vectors form 

the columns of a |𝒯| × 𝐵 basis matrix, 𝐖𝑓 = [ℎ𝑘(𝑛)]𝑘∈𝒦. Similarly, letting 𝐡𝑓(𝑛) = [ℎ𝑘
𝑓(𝑛)]

𝑘∈𝒦
 

be the 𝐵 × 1  vector of coefficients in Eqn. (5.13), we define the 𝐵 × |𝒩|  matrix, 𝐇𝑓 =

[𝐡𝑓(𝑛)]𝑛∈𝒩. Therefore the above expression can be written more concisely as 𝐗̃𝑓 = 𝐖𝑓𝐇𝑓. As 

the basis vectors are mutually orthonormal, it is apparent that 𝐖𝑓T𝐖𝑓 = 𝐈𝐵×𝐵. 

The matrices 𝐖𝑓 and 𝐇𝑓 are trained using the usual multiplicative update rule [38], [49], 

[50], [51] to minimize the squared Frobenius norm Φ = ‖𝐗𝑓 − 𝐗̃𝑓‖
𝐹

2
. Consider any parameter 𝐏 

(which can be either 𝐖𝑓 or 𝐇𝑓). The gradient, ∇𝐏Φ of Φ can be expressed in terms of its positive 

and negative components as, ∇𝐏Φ = ∇𝐏
+ − ∇𝐏

−.  The update rule using the multiplicative method is 

𝐏 ← 𝐏 ∘ ∇𝐏
−⊘∇𝐏

+. The coefficient matrix 𝐇𝑓 is updated in this manner, 

𝐇𝑓 ← 𝐇𝑓 ∘
𝐖𝑓T𝐗̃𝑓

𝐖𝑓T(𝐖𝑓𝐇𝑓)
.  (5.14) 

 

The corresponding update rule for 𝐖𝑓 can be obtained in the same manner. However, in 

order to maintain orthogonality of the basis vectors, a modified version has been adopted in this 

research  [95]. Accordingly, 

𝐖𝑓 ← 𝐖𝑓 ∘
𝐗̃𝑓𝐇𝑓T

(𝐖𝑓𝐇𝑓)𝐗̃𝑓
T
𝐖𝑓

.   (5.15) 

 

 5.4 Parameter Estimation 

 5.4.1 Constraints 

The |𝒦| × 1 vectors of parameters are, 𝐚, 𝐩, and 𝐪. The parameters 𝑏 and 𝑑, which are the scaling 

factors that are intrinsic to the household, are maintained at the same value everywhere. We define 

𝐆 to be a |𝒦| × |𝒯| aggregating matrix that sums time samples of variables index 𝑡 to their totals, 

that are indexed 𝑘. Letting 𝓀(𝑡) be the period of time instance 𝑡, 𝐺𝑘,𝑡 = 𝛿𝑘=𝓀(𝑡) where 𝛿σ ∈ {0,1} 
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is the usual Kronecker delta that is 1 when the statement ‘σ’ appearing in the subscript is true, or 

0 when ‘σ’ if false. 

𝐕 = [
𝟏𝐿
T ⋯ 𝟎𝐿

T

⋮ ⋱ ⋮
𝟎𝐿
T ⋯ 𝟏𝐿

T
] . (5.16) 

 

We introduce an error bound on the difference between parametric estimate of the money 

𝑚𝑘
𝑠  from Eqn. (5.1) and the actual money expended 𝑐𝑘𝑥𝑘

𝑠. Let 𝜖1
𝑓
 be the maximum allowable error 

on the fixed loads, 

|𝐩 + 𝛉(𝑛) ∘ 𝐪 − 𝐕𝐱𝑓(𝑛)| ≤ 𝟏|𝒦|𝜖
𝑓 + 𝛏𝑓 . (5.17) 

In a similar manner, let 𝜖1
𝑠 be the allowable tolerance of the error in the estimated money due to 

the shiftable loads as in Eqn. (5.3), and the real amount from the data, 

|𝐜∘−1 ∘ 𝐚 − 𝟏|𝒦|𝑏 + 𝛉(𝑛) ∘ 𝐝 + 𝐱0
𝑠 − 𝐕𝐱𝑠(𝑛)| ≤ 𝟏|𝒦|𝜖

𝑠 + 𝛏𝑠. (5.18) 

 

 5.4. 2 Objective 

The objective function contains for the error vectors 𝛏𝑓 and 𝛏𝑠. 

 

Ω =
1

2
(𝑤𝑓𝛏𝑓T𝛏𝑓 + 𝑤𝑠𝛏𝑠T𝛏𝑠 + 𝛾𝑎𝐚T𝐚 + 𝛾𝑏𝑏2 + 𝛾𝑥𝐱0

𝑠T𝐱0
𝑠 + 𝛾𝑑𝐝T𝐝 + 𝛾𝑝𝐩T𝐩 + 𝛾𝑞𝐪T𝐪). (5.19) 

 

 5.4.3 Quadratic Programming 

With multiple samples 𝑛 ∈ 𝒩  the expressions in Eqn. (5.17) and Eqn. (5.18) yield  2|𝒦||𝒩| 

constraints. The objective function can be reformulated as the sums of 𝐿2 norms.  These yield the 

following quadratic programming problem with linear equality constraints for parameter 

estimation. 
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Minimize, 

Ω =
1

2

(

 
 
 

‖[
𝑤𝑓𝐈|𝒦|×|𝒦| 𝟎|𝒦|×|𝒦|
𝟎|𝒦|×|𝒦| 𝑤𝑠𝐈|𝒦|×|𝒦|

]

1
2

[
𝛏𝑓

𝛏𝑠
]‖

2

+ 
‖

‖

[
 
 
 
 
𝛾𝑎𝐈|𝒦|×|𝒦| 𝟎|𝒦|×1 𝟎|𝒦|×|𝒦| 𝟎|𝒦|×|𝒦|

𝟎1×|𝒦| 𝛾𝑏 𝟎1×|𝒦| 𝟎1×|𝒦|

𝟎|𝒦|×|𝒦| 𝟎|𝒦|×1 𝛾𝑑𝐈|𝒦|×|𝒦| 𝟎|𝒦|×|𝒦|
𝟎|𝒦|×|𝒦| 𝟎|𝒦|×1 𝟎|𝒦|×|𝒦| 𝛾𝑥𝐈|𝒦|×|𝒦|]

 
 
 
 

1
2

[

𝐚
𝑏
𝐝
𝐱0
𝑠

]
‖

‖

2

  

+  ‖[
𝛾𝑝 𝟎|𝒦|×|𝒦|

𝟎|𝒦|×|𝒦| 𝛾𝑞
]

1
2

[
𝐩
𝐪]‖

2

)

 
 
 

 

Subject to, 

{
−𝛏𝑓 + 𝐩 + diag(𝛉(𝑛))𝐪 ≤ 𝟏|𝒦|𝜖

𝑓 + 𝐕𝐱𝑓(𝑛),

−𝛏𝑓 − 𝐩 − diag(𝛉(𝑛))𝐪 ≤ 𝟏|𝒦|𝜖
𝑓 − 𝐕𝐱𝑓(𝑛);

                          ∀𝑛 ∈ 𝒩. 

{
−𝛏𝑠 + diag(𝐜∘−1)𝐚 − 𝟏|𝒦|𝑏 + diag(𝛉(𝑛))𝐝 + 𝐱0

𝑠 ≤ 𝟏|𝒦|𝜖1
𝑠 + 𝐕𝐱𝑠(𝑛),

−𝛏𝑠 − diag(𝐜∘−1)𝐚 + 𝟏|𝒦|𝑏 − diag(𝛉(𝑛))𝐝 − 𝐱0
𝑠 ≤ 𝟏|𝒦|𝜖1

𝑠 − 𝐕𝐱𝑠(𝑛).
      ∀𝑛 ∈ 𝒩. 

 

 5.5 Simulation Results 

 5.5.1 Data Processing 

The proposed approach was tested on actual energy usage data of two residential customers (User-

1 and User-2) that was obtained from the Pecan Street Inc., Dataport database [93] sampled at one 

minute intervals, and for 61 days in March - April, 2018 so that 𝒯 = {1,2, … 1440}, and  𝒩 =

{1,2, … 61}.  The total energy data was arranged as a 1440 × 61 input matrix 𝐗 whose columns 

were the 1440-dimensional sample vectors 𝐱(𝑛), 𝑛 ∈ 𝒩. The database also included individual 

appliance usage measurements at the circuit level. The following are the appliances in use, (i) air 

conditioner, (ii) electric car, (iii) washer/dryer, (iv) dishwasher, (v) microwave, (vi) refrigerator, 

(vii) furnace, (viii) bedroom apps, (ix) light plugs and (x) kitchen apps.  The first four appliances 
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were classified as shiftable loads and the remaining ones considered as fixed loads. Neither User-

1 nor User-2 had all ten appliances. More specifically, User-1 did not have bedroom apps or 

furnace and User-2 did not own an electric car.  

The hourly temperature data for all sample days in 𝒩 was also obtained from [93]. The 

hourly time of use rates were obtained from Austin Energy website [96]. The website provides 

electricity rates in the Austin area for a time of use pilot project. The user data used in this study 

were part of DER that received pricing information from the utility and were expected to defer 

their loads during peak or high energy price hours. 

 

 5.5.2 Load Disaggregation 

The load disaggregation approach described in Section 5.4 was implemented separately on the 

total usage data for User-1 and User-2. The plots in Figures 5.3, 5.4 and 5.5 show the load 

disaggregation results obtained for User-1. All three figures contain the real loads (top, red) as well 

as the corresponding disaggregated quantities (bottom, blue) that were obtained by the proposed 

NMF-GMM hybrid algorithm. In Figure 5.3 are shown the shiftable loads, 𝐗𝑠, and 𝐗̃𝑠 of User-1. 

The remarkable similarity between the two quantities is evident.  

Figure 5.4 shows the corresponding fixed loads 𝐗𝑓 , and 𝐗̃𝑓 . The aggregate loads, 𝐗 =

𝐗𝑓 + 𝐗𝑠 and 𝐗̃ = 𝐗̃𝑓 + 𝐗̃𝑠 are provided in Figure 5.5. Among the most conspicuous discrepancies 

are at 𝑡 ≈ 250, 𝑡 ≈ 660, and 𝑡 ≈ 1080. At 𝑡 ≈ 250,660, a small fraction of the fixed load 𝐗𝑓 is 

erroneously incorporated by the hybrid algorithm into the shiftable load 𝐗̃𝑠, whereas at 𝑡 ≈ 1080 

some of 𝐗𝑠  is transferred to 𝐗̃𝑓 . However, these discrepancies are very small. The reverse 

inconsistencies are seen in Figure 5.5. However, they are exaggerated due to the smaller range of 

the fixed loads. 

 Figures 5.6, 5.7, and 5.8 are the corresponding loads associated with User-2. In this case, 

the most obvious difference occurs at 𝑡 ≈ 470 , due to the appearance of a spike in the 

disaggregated shiftable load indicating that some fixed load was mislabeled as shiftable by the 

proposed algorithm. As before, this deviation is minor. 

Table 5.1: Scaler utility parameter 
 

actual computed 

b 23.32 22.43 
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Figure 5.4:  Shiftable load actual (top) and computed (bottom) for User-1 

 

The disaggregated fixed and shiftable load results from Section 5.5.2 were used to compute 

the utility parameters using the parameter estimation approach proposed in Section 5.4.3.  To 

validate the accuracy of the parameter estimation approach, utility parameters for actual fixed and 

shiftable loads are computed. The range and median values of utility parameters, 𝑎, 𝑑, 𝑥0  for 

shiftable loads are presented in Table 5.2. They were computed for actual load and computed load 

data. Scaler parameter b is provided in Table 5.1. These parameter are also presented in Figures 

5.10 – 5.12 for comparison. Simulation results validates the accuracy of the proposed model. 

The plots in Figure 5.13 shows utility and cost curves for User-1 for one period. 

 

Table 5.2: Load model parameters 

  Range (actual) Median(actual) Range (computed) Median (computed) 

a 0 - 6.10 2.41 0 - 5.33 2.37 

d 0 - 137.87 0 0 - 142.67 0 

𝑥0 0 - 61.74 13.02 0 - 54.68 13.30 
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Figure 5.5: Fixed load actual (top) and computed (bottom) for User-1. 

 

 

Figure 5.6: Aggregate load actual (top) and computed (bottom) for User-1. 
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Figure 5.7: Shiftable load actual (top) and computed (bottom) for User-2. 

 

 

 

Figure 5.8: Fixed load actual (top) and computed (bottom) for User-2. 
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Figure 5.9: Aggregate load actual (top) and computed (bottom) for User-2. 

 

 

Figure 5.10: Actual vs. computed values of parameter a. 
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Figure 5.11: Actual vs. computed values of parameter d. 

 

 

Figure 5.12: Actual vs. computed values of parameter 𝑥0. 
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Figure 5.13: Utility curves(top), cost curves (bottom) 

 

 

 5.6 Conclusion 

This research introduces a semi-parametric utility model that can be learned from smart-metering 

in an entirely non-intrusive manner. Although not discussed, parameter estimation can be 

accomplished using gradient descent or any other iterative algorithm, rendering the entire approach 

adaptive. There are many uses of such an adaptive utility model. It would allow demand response 

programs, energy trading, day-ahead planning, generator scheduling to proceed in an entirely 

automated manner without the need for human intervention. 

In theory, it is possible to obtain an extensive utility model that is completely parametrized 

in terms of individual appliances. Each appliance can be represented with its own linear/nonlinear 

utility function; other factors besides temperature can be incorporated into it. This approach would 

require load disaggregation of a finer granularity. The GMM-NMF algorithm can be applied for 

this task, as it was observed by the authors that the loads consumed by individual appliances could 

be identified by visual inspection of the disaggregated loads. It remains to be seen whether the 
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larger errors that fine-grained disaggregation would be outweighted by the further flexibility it 

would provide in any application. 

The proposed utility model is memoryless as the immediate past load history is 

disregarded. In other words, during each period k, the model does not take into account the actual 

load used earlier (𝑥𝑘−1, 𝑥𝑘−2, etc.). Extending the utility model to consider prior usage, using 

ARMA, GARCH, Elman neural networks, or other forecasting tools would allow it to be used in 

load forecasting.  
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Chapter 6 - Conclusion 

The research in this dissertation distinguishes between cost setting and power setting modes of 

DSO operation, introducing energy exchange mechanisms for each. These approaches are not only 

efficient and privacy-preserving, but also incorporate a fairness component in the form of the Jain’s 

index of fairness. Chapters 2 and 3 establish theoretical results to show that the index is well suited 

for use in these mechanisms. Simulation results in both chapters, which were designed to 

supplement the theoretical analysis, corroborate the theoretical claims, thereby indicating that the 

Jain’s index can effectively alleviate the effects of underlying locational disadvantages of DMLP 

in these auctions. 

The effective use of primal and dual decompositions in the optimization algorithms allow 

the bilevel auctions to proceed seamlessly with the DSO operating under the power setting as well 

as the newer cost setting modes. The most significant difference between the studies in Chapters 

3 and 4 are in their optimization framework. Whereas the optimization algorithm in Chapter 3 is 

based on classical convex optimization theory, Pareto-optimality theory serves as the backdrop for 

that in Chapter 4. It extends the a priori assumption of convexity that is typically assumed in the 

existing research literature on transactive energy trade, by showing that these mechanisms can 

operate with quasi-concave objectives. 

Chapters 4 and 5 focus on a different, yet closely related aspect of energy auctions. 

Automation being the key enabling technology for such mechanisms, it is important for the service 

provider to glean as much information as possible through smart monitoring without undue 

intrusions into the privacies of individual residences. In this context, these chapters consider 

unsupervised learning approaches for energy disaggregation. Chapter 3 focuses on decomposing 

aggregate loads into individual appliances’ energy consumption. On the other hand, Chapter 4 

categorizes the load into two classes of appliances, using the disaggregated loads therein to 

estimate the parameters of consumer utility models. The remarkable similarities between the 

disaggregated loads with their real counterparts establish the effectiveness of the proposed 

machine learning algorithms. 

There are three important directions along which future research can proceed.  

 Pareto-optimality framework: It should be noted that although Chapter 4 uses vector 

optimization to achieve Pareto optimality, this was applied to a cost-setting mechanism. This 
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approach can be generalized for use in power-setting DSO mechanisms. As the latter uses dual 

decomposition, such investigations must rely on vector duality theory. 

 Multiperiod auctions: The trading algorithms suggested in this research deals with single 

period auctions. The semi-parametric consumer modeling introduced in Chapters 4 and 5 can 

be leveraged to extend the auction mechanisms for multi-period use. The ability of the 

proposed disaggregation algorithms should be assessed and if necessary, extended further for 

online adaptation. 

 Role of aggregators: The aggregators in the auction mechanisms were associated with 

intermediate nodes of the underlying grid so that its physical constraints could directly 

addressed at the DSO level. The proposed bilevel auctions can be extended for use under a 

more generalized setting where aggregators are detached from physical nodes, thereby 

offering them the flexibility of adopting a wide variety of pricing policies that satisfy the needs 

of their own sets of costumers. 
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Appendix A - Nomenclature 

 Nomenclature for Chapter 2 

𝒩   Set of nodes, lines |𝒩| = 𝑁  

𝒜   Set of nodes with aggregators, |𝒜| = 𝐴 

𝑘, 𝑙   Node indices, 𝑘, 𝑙 ∈ 𝒩 

𝓊(𝑘)   Index of 𝑘’s immediate upstream (parent) node 

𝒹(𝑘)   Set of 𝑘’s immediate downstream nodes 

𝑟𝑘 , 𝑥𝑘   Resistance, reactance of line (𝓊(𝑘), 𝑘), 𝑘 ∈ 𝒩 

𝑝𝑘, 𝑞𝑘   Real, reactive power injection into node, 𝑘 ∈ 𝒜 

𝑐𝑘   Per unit cost of node 𝑘 ∈ 𝒜 

𝑃𝑘 , 𝑄𝑘 ,    Real, reactive line power flows 𝑘 ∈ 𝒩 

𝐿𝑘
𝑃 , 𝐿𝑘

𝑄
     Real, reactive losses 𝑘 ∈ 𝒩 

𝑉𝑘 , 𝛿𝑘      Voltage, angle of node 𝑘 ∈ 𝒜 

𝜖   Maximum allowable pu voltage deviation 

𝓊(∙)    Immediate upstream node 

𝒹(∙),    Set of immediate downstream nodes 

𝒰(∙),    Set of all upstream nodes of given node 

𝐃,𝐓   Downstream and tree matrices 

𝒢𝑘   Set of agents at aggregator𝑘, 𝑘 ∈ 𝒜, 𝐺𝑘 = |𝒢𝑘| 

𝑖   Index of agent 𝑖 ∈ 𝒢𝑘  

𝑝𝑘
𝑖 , 𝑞𝑘

𝑖    Real and reactive demands of 𝑖 ∈ 𝒢𝑘 

𝑔𝑘
𝑖 , 𝑎𝑘

𝑖 , 𝑏𝑘
𝑖   Generation and utility parameters of 𝑖 ∈ 𝒢𝑘 

𝛂, 𝛂̅, 𝛃, 𝜆, 𝛾   Dual variables 

𝐜𝐶 , 𝐜𝑉   DLMP components for congestion, voltage 

𝐜𝐸+𝐿 , 𝐜𝐹  DLMP components for energy and loss, fairness 

Ω(∙)   System level objective function 

𝒲𝑘(∙)   Social welfare of aggregator 𝑘 ∈ 𝒜 

𝑢𝑘
𝑖 (∙)   Utility of 𝑖 ∈ 𝒢𝑘 

𝜋𝑘
𝑖 (∙)   Payoff of 𝑖 ∈ 𝒢𝑘 
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𝔏(∙)   Lagrange function 

𝐽(∙)   Jain’s index of fairness 

𝜂   Increment factor per iteration 

𝐶   Regularization weight 

 

 Nomenclature for Chapter 3 

𝒩   Set of nodes in grid, |𝒩| = 𝑁  
𝒜   Subset of nodes with aggregators, |𝒜| = 𝐴 
𝑘   Node index, 𝑘 ∈ 𝒩 

𝑝𝑘    Power injection into node, 𝑘 ∈ 𝒜 

𝑐𝑘   Per unit cost of node 𝑘 ∈ 𝒜 

𝒢𝑘   Set of agents at aggregator𝑘, 𝑘 ∈ 𝒜, 𝐺𝑘 = |𝒢𝑘| 

𝒢𝑘
p
, 𝒢𝑘

C   Producer and consumer subsets of 𝒢𝑘 

𝑖   Index of agent 𝑖 ∈ 𝒢𝑘  

𝑝𝑘
𝑖    Energy demand of agent 𝑖 ∈ 𝒢𝑘 

𝑔𝑘
𝑖 , 𝑎𝑘

𝑖 , 𝑏𝑘
𝑖   Generation and utility parameters of 𝑖 ∈ 𝒢𝑘 

𝑃0   Total energy at DSO 

𝑐0   Unit cost at DSO 

𝐩𝑘   𝐺𝑘 × 1 energy vector at aggregator 𝑘 ∈ 𝒜 

𝐜   𝐴 × 1 unit cost vector 

𝐩   𝐴 × 1 energy allocation vector 

𝐂𝑉, 𝐜𝑙
𝑉, 𝐜𝑢

𝑉   Voltage constraint related constants 

𝐂𝑆, 𝐜0
𝑆   Line capacity related constraint constants 

𝐜𝑃0,𝑐0
𝑃0 , 𝐜0

𝑆  Energy balance condition related constants                   

𝛀(∙)   Vector objective function 

𝒲(∙)    Global welfare function 

ℛ(∙)    Global fairness function 

𝐽(∙)   Jain’s index of fairness 

𝒰𝑘(∙)   Aggregated utility of aggregator 𝑘 ∈ 𝒜 
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Appendix B - Linearized Constraints 

With the exception of the budget balance constraint Eqn. (3.23f) in Eqn. (3.23), which is 

straightforward to obtain, the expressions associated with all other constants involved in the 

remaining constraints in Eqn. (3.23b) – (23e), are provided below. 

(i) Voltage constraint 

𝐂𝑉 = 𝐂𝑝
𝑉 + 𝐂𝑞

𝑉𝚯, 

𝐜𝑙
𝑉 = −𝐜0

𝑉 + 𝟏𝑁𝑉0 − 𝛜, 

𝐜𝑢
𝑉 = 𝐜0

𝑉 − 𝟏𝑁𝑉0 − 𝛜. 

 

The vector 𝐜0
𝑉 and the matrices 𝐂𝑝

𝑉 and 𝐂𝑞
𝑉 in the above expression are, 

𝐜0
𝑉 = [𝐂 [

𝐓 + 𝐈 𝟎
𝟎 𝐓 + 𝐈

] [
𝑳0
𝑃 − 𝐉𝑃

𝐿T𝐩0 − 𝐉𝑃
𝐿Tdiag(𝛉)−1𝐪0

𝑳0
𝑄 − 𝐉𝑄

𝐿 T𝐩0 − 𝐉𝑄
𝐿 Tdiag(𝛉)−1𝐪0

] − 𝐂 [
𝐁𝑟𝑉0𝐞 + 𝐁

𝑥𝛿0𝐞
𝐁𝑥𝑉0𝐞 + 𝐁

𝑟𝛿0𝐞
]]

𝑟=1:𝑁

, 

𝐂𝑝
𝑉 = [𝐂 [

(𝐓 + 𝐈)𝐀 𝟎
𝟎 (𝐓 + 𝐈)𝐀

]]
𝑟=1:𝑁,𝑐=1:𝐴

, 

𝐂𝑞
𝑉 = [𝐂 [

(𝐓 + 𝐈)𝐀 𝟎
𝟎 (𝐓 + 𝐈)𝐀

]]
𝑟=1:𝑁,𝑐=𝐴+1:2𝐴

. 

 

(ii) Flow constraint 

𝐂𝑆 = 𝐂𝑝
𝑃 + 𝐂𝑝

𝑄 + (𝐂𝑞
𝑃 + 𝐂𝑞

𝑄)𝚯, 

𝐜0
𝑆 = 𝐜0

𝑃 + 𝐜0
𝑄 − √2𝑺. 

 

The vector 𝐜0
𝑃 and the matrices 𝐂𝑝

𝑃 and 𝐂𝑞
𝑃 appearing in the above expressions are, 

𝐂𝑝
𝑃 = (𝐀 + 𝐓𝐀 + 𝐓𝐉𝑃

𝐿T), 

𝐂𝑞
𝑃 = 𝐓𝐉𝑃

𝐿Tdiag(𝛉)−1, 

𝐜0
𝑃 = 𝐓(𝑳0

𝑃 − 𝐉𝑃
𝐿T𝐩0 − 𝐉𝑃

𝐿Tdiag(𝛉)−1𝐪0). 

 

(iii) Power balance 

𝐜𝑃0  = 𝑪𝑝
𝑃0 +𝚯𝑪𝑞

𝑃0 , 
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𝑐0
𝑃0 = 𝟏𝑁

T (𝑳0
𝑃 − 𝐉𝑃

𝐿T𝐩0 − 𝐉𝑃
𝐿Tdiag(𝛉)−1𝐪0). 

 

In the above expression, the vectors 𝑪𝑝
𝑃0  and 𝑪𝑝𝑞

𝑃0  are given by the following pair of 

equations, 

𝑪𝑝
𝑃0 = 𝟏𝐴

T + 𝟏𝑁
T 𝐉𝑃

𝐿T, 

𝑪𝑞
𝑃0 = 𝟏𝑁

T 𝐉𝑃
𝐿Tdiag(𝛉)−1. 

  


