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Abstract 

Protein structures have been reported to the Protein Data Bank (PDB) to share the 

information with scientists and researchers. They provide structural information and help other 

scientists and researchers to understand the mechanisms of these proteins. However, crystal 

structures and electron microscopy (EM) structures only show a single conformation of a protein 

which makes it difficult to understand the protein’s flexibility and internal motions. 

Computational and simulation methods offer alternative ways to study protein structures and 

understand mechanisms, and have recently been more frequently used for chemical, biochemical, 

and biological research. This work is going to show new insights into protein structures by 

integrating different computational methods, solving the issues with proteins and protein 

complexes, and present protein modelling, ligand docking, and simulations. 

Proctolin is a neuropeptide, RYLPT. The proctolin receptor is a G-protein coupled 

receptor. They are encoded in arthropods, but not in the honey bee. Varroa destructor is an 

ectoparasite of honey bees. Here, we tried to use proctolin to design a novel potential drug to 

treat these mites and save honey bees. In this work, the homology model of proctolin receptor 

has been built and used to study proctolin docking by Induced fit docking and QM (quantum 

mechanics) - polarized ligand docking. For further study, we performed molecular dynamics 

simulations to unravel the binding mechanism of proctolin. We found and explain that the first 

and second residues of proctolin form two cation-pi interactions with Tyr99 and Arg111 from 

proctolin receptor. This shows the first two residues act as an anchor docked into the binding 

pocket. 

Later, we also studied the chromophore behavior of red fluorescent protein. Fluorescent 

proteins have been improved from natural fluorescent proteins and heavily used in life science as 



  

protein labels, markers of gene expression, and living-cell imaging. The characteristics of 

fluorescent protein chromophores can give us information about the structure-function 

relationship with the protein matrix. This can guide us to engineer tuned color variants and 

broaden the spectral range of useful proteins. We present the behavior of the chromophore with 

the protein matrix and have a deeper understanding of fluorescent proteins. We performed 

molecular dynamics simulations on four trans-form fluorescent proteins. All fluorescent proteins 

with the trans-form chromophores tend to be non-planar, and the residues 67, 92, 143, and 197 

are more important sites. These residues interact with the chromophore. 

Since the most inspiring thing that happened last year was the achievement of 

AlphaFold2, we also did an assessment and application of the structures predicted by 

AlphaFold2 on popular drug targets. It provides and emphasizes a valuable way to apply the AI 

developed method in drug discovery. 
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protein labels, markers of gene expression, and living-cell imaging. The characteristics of 

fluorescent protein chromophores can give us information about the structure-function 

relationship with the protein matrix. This can guide us to engineer tuned color variants and 
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molecular dynamics simulations on four trans-form fluorescent proteins. All fluorescent proteins 
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Preface 

This study focused on applying computational methods to solve chemical and 

biochemical questions and trying to reveal the mechanisms of protein interactions with ligands. 

The first chapter was published as a journal article, Zou, Y., Ewalt, J., Ng, H. Recent insights 

from molecular dynamics simulations for g protein-coupled receptor drug discovery. It 

introduced the different computational methods and used G-protein coupled receptors as study 

cases to show the application of computational methods. This starts the computational scenario 

of this thesis. 

Chapter 2 is a collaboration with Dr. Yoonseong Park to fight against Varror destructor, 

an ectoparasite of honey bee. We studied proctolin receptor shown in arthropods, but not shown 

in most insects, especially the honey bee. Hence, we were trying to unravel the complex behavior 

of proctolin and proctolin receptor. Proctolin receptor is a G-protein coupled receptor. We used 

homology model building, different docking studies, and Molecular Dynamics (MD) simulations 

to study proctolin and proctolin receptor. It shows the binding interactions between proctolin and 

proctolin receptor. We found the cation-pi interactions play an important role between proctolin 

and proctolin receptor. It is shown the reserved residue Tyr 99 acts as a dock to let the anchor - 

proctolin bind into the binding pocket. 

Chapter 3 studied the chromophore behavior of red fluorescent proteins. Fluorescent 

proteins have been improved from the natural fluorescent proteins. Here, we illustrate the trans-

form fluorescent proteins. We found the planar, trans-form chromophores of fluorescent proteins 

show very interesting conformational changes from their crystal structures. Here, we performed 

MD simulations to understand the chromophore behavior at 300 K and their interaction with the 

protein matrix. 



xix 

In chapter 4, we studied the latest protein modeling method, AlphaFold 2. It achieved the 

best performance in Critical Assessment of Protein Structure Prediction 14 (CASP14). This is 

also the biggest, exciting news. AlphaFold 2 also filled the gap between the experimental protein 

structures from protein data bank and the total known DNA encoded proteins. However, the 

limitation of this new AI-based method has been neglected. Here, we focused on the assessment 

and application of the structures predicted by AlphaFold 2 on popular drug targets. 
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Chapter 1 - Insights from molecular dynamics simulations for G 

protein-coupled receptor drug discovery 

This chapter has been published in International Journal of Molecular Sciences. 

 Introduction 

G protein-coupled receptors (GPCRs) are the largest superfamily of membrane proteins 

in the human genome (Rosenbaum et al., 2009). They are also the most important and largest 

collection of pharmacological drug targets (Hauser et al., 2017). These receptors share modest 

sequence similarity but high structural conservation, all with seven transmembrane-spanning 

helices, an extracellular N terminus, and an intracellular C terminus. The crystal structure of 

bovine rhodopsin, one of the most studied GPCRs, shows the seven helices forming a helical 

cylinder, which is linked by three intracellular and three extracellular loops (Palczewski et al., 

2000). There are five main GPCR families: rhodopsin (class A), secretin (class B), glutamate 

(class C), frizzled/taste (class F), and adhesion (Alexander et al., 2015). GPCRs’ typical 

functions are the translation of extracellular stimulation into intracellular signals via the binding 

of different ligands, which then cause different conformational changes and downstream effects. 

Each receptor can activate specific G proteins and regulate unique downstream signals. The 

GPCR ligands bind to these receptors and stabilize conformations, then regulate and modulate 

various intracellular transduction processes. GPCR agonist ligands are extremely diverse and 

include photons, ions, odorants, tastants, small molecule neurotransmitters, amino acids, 

polypeptides, hormones, nucleotides, and lipids (Allen and Roth, 2011; Roth and Kroeze, 2015). 

Classical GPCR activation involves an agonist-induced conformational change. This causes the 

receptor to interact with the Gα subunit, part of the heterotrimeric GTP-binding proteins (G 
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proteins), which then dissociates from the Gβγ subunits and binds to guanosine diphosphate 

(GDP). Research has also shown that there are also at least five different activation modes 

different from classical activations(Wang et al., 2018; Zhou et al., 2017). These are involved in 

phenomena such as intracellular activation, dimerization activation, transactivation, biphasic 

activation, and biased activation. Because GPCRs are involved in these activations, which are 

related to many human diseases, they are common drug targets (Kaczor et al., 2016; Latorraca et 

al., 2017; Lee et al., 2019; Wacker et al., 2017a). GPCRs are normally activated on the cell 

surface. GPCRs can also be activated from inside the cell, which is called intracellular 

activation(Schiaffino et al., 1999). GPCR activation functions also depend on the forms of the 

GPCRs, monomeric or dimeric, the latter of which is called dimerization activation(Gomes et al., 

2001). GPCRs can be activated by ligands and these activated GPCRs can transactivate other 

proteins, such as receptor tyrosine kinases (RTKs), which then can activate Ras/MAP kinases. 

This is called transactivation(Daub et al., 1996). GPCRs can also activate two different phases of 

signaling. This is called biphasic activation(Schorb et al., 1995). The last activation is called 

biased activation (Figure 1.1). The biased activation (also called biased signaling pathway) 

involves parallel G protein-independent signaling pathways. Instead of activating G proteins, 

there are activating β-arrestins, which mediate downstream signaling. The main functions are 

internalization and desensitization. Activated by agonists, the GPCRs are phosphorylated by 

GPCR kinases (GRKs) on multiple sites of the C-terminus; arrestins will bind to these 

phosphorylated sites, and G protein-coupling will be blocked by the arrestin-GPCR complex. 

This is called biased activation(Alexander et al., 2015; DeWire et al., 2007; Lefkowitz, 2004; 

Milligan and Kostenis, 2006; Scheerer and Sommer, 2017). In this review article, we focus on 

the biased-signaling pathway and β-arrestins. There are four classes of arrestins: arrestin 1 
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(visual arrestin), arrestin 2 (β-arrestin 1), arrestin 3 (β-arrestin-2), and arrestin 4 (cone arrestin). 

Arrestins are highly conserved, with approximately 50% sequence homology between 

vertebrates and invertebrate primary structures(Attramadal et al., 1992; Benovic et al., 1987; 

Craft et al., 1994; Gainetdinov et al., 2004; Smith and Rajagopal, 2016). Because the functions 

of arrestins are diverse, β-arrestin biased-signaling pathways are of significant pharmaceutical 

interest. The current understanding of the structural conformations related to biased signaling is 

sparse. 

Recent studies have revealed that GPCRs are dynamic proteins with multiple 

conformational changes depending on ligand binding, signaling proteins, and the membrane 

environment(Nygaard et al., 2013; Vaidehi and Bhattacharya, 2016). Several crystals of class A 

GPCRs in the active state show there are conformational changes in the intracellular domain and 

transmembrane helices 5, 6, and 7 (TM5, TM6, and TM7) of the receptors(Burg et al., 2015; 

Huang et al., 2015a; Kruse et al., 2013). Biophysical research has shown that the binding affinity 

to an agonist is increased by coupling the G protein to the receptor(Yao et al., 2009). After a 

ligand binds to a receptor, it causes and stabilizes conformational changes(Vaidehi and Kenakin, 

2010). Agonists binding to GPCRs induce and mediate different downstream pathways, either 

through G protein activation or β-arrestin biased signaling. Typically, the primary ligand binding 

sites, orthosteric sites, are highly conserved. This presents a significant challenge for drug 

discovery. Ideally, a designed ligand has high selectivity and only activates specific receptors; an 

orthosteric site that is highly conserved between related receptors increases the difficulty of 

doing so. Because of the challenges these orthosteric sites present, researchers have been trying 

to explore new alternative binding sites, which could increase both binding affinity and decrease 

off-target effects. Allosteric binding sites share less homology compared with orthosteric sites, 
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so they have become increasingly attractive to researchers(Christopoulos, 2014). Positive 

allosteric modulators can increase the potency of orthosteric ligands; negative allosteric 

modulators can decrease the potency of the response to orthosteric ligands(Foster and Conn, 

2017). Several crystal structures of GPCRs bound with allosteric modulators have already been 

solved. Kruse et al. solved a crystal structure of a GPCR (M2 muscarinic receptor) with an 

allosteric modulator(Kruse et al., 2013). Dore et al. solved a class C GPCR (metabotropic 

glutamate receptor 5) bound with an allosteric modulator(Doré et al., 2014). Jazayeri et al. solved 

a class B GPCR (glucagon receptor) bound with an allosteric antagonist(Jazayeri et al., 2016). 

However, it is also challenging to determine crystal structures of GPCRs with allosteric 

modulators, and few are in the Protein Data Bank (PDB). Therefore, computational methods are 

valuable in helping to identify new allosteric binding sites and offer new structural information 

of GPCRs and their interactions with ligands. 

Molecular dynamics simulations are important computational methods widely used in 

many fields of study. Simulations assist researchers in obtaining structural information, 

specifically, the conformational states that are hard to capture by experimental methods. Because 

of rapid technological development, computing is easier and faster than ever. This has also 

allowed researchers to run long time scale simulations to obtain more detailed mechanistic 

information(Karplus and McCammon, 2002). In this review, we will discuss the insights on 

GPCR interactions with ligands revealed by molecular dynamics simulations and enhanced 

sampling techniques. 

 New Insights from Molecular Dynamics Simulations 

Computational and simulation methods provide other ways to explore complex systems 

that are difficult to study with current experimental methods. Simulation via molecular dynamics 
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(MD) is a very powerful and easy to use computational tool. It can help researchers determine 

receptor-ligand structures, dynamics of binding, and binding kinetics and functions (Cournia et 

al., 2015; Dror et al., 2012; Khalili-Araghi et al., 2009; Stansfeld and Sansom, 2011). More 

recently, MD simulations have been used to study macromolecular conformational dynamics on 

longer time scales, up to a millisecond and beyond (Dror et al., 2009; Dror et al., 2013; 

Grossfield et al., 2008; Gumbart et al., 2013). Computational and simulation methods can play 

useful roles in drug discovery as well. These methods have helped improve our understanding of 

GPCRs’ structures and functions (De Vivo et al., 2016; Dror et al., 2011b; Hauser et al., 2017; 

Marino and Filizola, 2018; Sabbadin and Moro, 2014). There are three main requirements for an 

MD simulation: the model system, the force field, and the MD simulation software. The most 

popular MD simulation packages include AMBER (Case et al., 2008), CHARMM (Brooks et al., 

1983), GROMACS (Hess et al., 2008), and NAMD (Phillips et al., 2005). These packages are 

making simulations easier to perform and are quick to adopt new technological and 

methodological advances. 

 Using Molecular Dynamics Simulations to Study GPCR-Ligand Binding 

Biased signaling generates functional selectivity and has attracted notable drug discovery 

interest. The structures and mechanisms involved in biased signaling are still not clear as there 

are very few GPCR crystal structures available. 

The μ-opioid receptor (μOR or MOR) is the first GPCR that demonstrated β-arrestin-

biased signaling (Violin and Lefkowitz, 2007). The μOR is the primary target for strong 

analgesics (Vardanyan and Hruby, 2014). The best-known opioid agonists are opiate drugs, 

which are among the oldest medicines and are analgesics (Stein, 2016). Even though opiates are 

widely used, they have notorious side effects including addiction, respiratory suppression, and 
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constipation. β-arrestins act as negative regulators in the μOR signaling pathways(Pasternak and 

Pan, 2013; Raehal and Bohn, 2005). Recent research has supported a trend in which ligands that 

are more biased towards the β-arrestin pathway are associated with increased undesired side 

effects (Conibear and Kelly, 2019; Schmid et al., 2017). Currently, there are two μOR crystal 

structures and two electron microscopy structures available in the Protein Data Bank (PDB: 

4DKL, 5C1M, 6DDE/6DDF) (Huang et al., 2015a; Koehl et al., 2018; Manglik et al., 2012). 

These high-resolution structures offer the possibilities of using these structures to perform 

simulations and potentially assist in the discovery of novel drugs with fewer side effects (Kaserer 

et al., 2016; Latorraca et al., 2017; Manglik et al., 2016). 

Crystallographic studies of μOR bound with the potent agonist, fentanyl, involved active 

and inactive states. The crystal structures used are PDB 5C1M and 4DKL. 4DKL is the structure 

of inactive μOR with the irreversible morphinan antagonist β-funaltrexamine (β-FNA), which 

can be seen in Figure 1.2. 5C1M is the structure of active μOR with the agonist BU72. The 

primary structural difference between active and inactive states is transmembrane 6 (TM6) 

shifting outwards by 10.3 Å (Huang et al., 2015a). 

Fentanyl is an analgesic that is much more potent and dangerous than morphine (Bremer 

et al., 2016). Unlike morphine, fentanyl can strongly induce β-arrestin biased signaling (Zheng et 

al., 2011). Both morphine and fentanyl have a protonatable tertiary amine in the piperidine ring. 

Compared to morphine, fentanyl is more flexible (Figure 1.3). Lipinski et al., using the 4DKL 

and 5C1M crystal structures and manually docking morphine and fentanyl into the protein, found 

that the mutation of Ser3297.46 to alanine, located in the sodium binding pocket, is sensitive to the 

N-phenethyl chain of fentanyl (Pil and Tytgat, 2003); mutations involving Trp3187.35 and 

His3197.36 to methionine demonstrate similar sensitivities to the N-phenethyl chain of fentanyl 
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(Ulens et al., 2000). The superscript decimal numbers seen in the previous sentence refer to the 

Ballesteros–Weinstein numbering scheme, with the number to the left of the decimal referring to 

which of the seven transmembrane helices the residue is on and the number to the right of the 

decimal giving the relative position to the most conserved residue on the helix, which is 

numbered 50 (Isberg et al., 2015). 

In the fentanyl binding mode, both active and inactive receptors are stimulated. In the 

inactive mode, there is a sodium cation in an allosteric site. The simulation results of active and 

inactive binding interactions are similar. The two ligands both have the amine of the piperidine 

ring protonated. In the binding mode, the protonated amines interact with residue Asp1473.32; 

hence, the N-phenethyl chain is facing the intracellular side. The piperidine ring plays an 

important role in this binding mode. It interacts not only with A1473.32 but also with Gln1242.60. 

The N-phenethyl chain forms hydrophobic contacts with Try3267.43, Ile2966.51, Ile3227.39, and 

Trp2936.48. In the morphine binding mode, the simulation results of active and inactive binding 

interactions are also similar. The protonated amine in morphine also interacts with residue 

Asp1473.32. Morphine’s binding pocket is similar to fentanyl’s. The protonated amine is facing 

intracellularly. The phenol and the ether group are facing the extracellular side and are exposed 

to the solvent. The CHARMM-GUI service (Jo et al., 2008) was used to parameterize and 

prepare the sample for simulation. The receptor was placed in a phosphatidylcholine (POPC) 

membrane and solvated with the TIP3P water model; the CHARMM36 force-field was used. The 

simulation runtime was 1.2 μs (Lipiński et al., 2019). 

In this research, MD simulations were also used to study a “Trp rotamer toggle switch”, 

which acts as a transmission switch. Trp2936.48 was found to be a highly conserved residue, and 

multiple MD simulations support its central role in conformational change (Marino et al., 2018; 
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Shang et al., 2014; Sutcliffe et al., 2017). Analysis of MD simulations monitored the movement 

of Trp2936.48 and focused on two different dihedral angles, χ1 and χ2. Three rotamers were 

observed that differed from those seen in the crystal structure. Such rotamers would have been 

difficult to observe by experimental means. 

 Using Molecular Dynamics to Predict Arrestin-Biased Ligands 

Pursuing biased signaling is an alternative strategy to discover highly selective drugs 

(Soergel et al., 2014). However, a detailed understanding of the biased signaling pathway is still 

incomplete. In particular, the crystal structures reported are of the active and inactive states, with 

very few structures that are relevant to intermediate conformations. MD simulations have 

assisted in revealing these intermediate conformations and the mechanisms of biased signaling. 

We discuss an example that used MD simulations to predict arrestin-biased ligands. 

Recently, McCorvy et al. reported using the D2 dopamine receptor (D2R) as a model to 

study GPCR-ligand binding, which involves biased signaling, by MD simulations (McCorvy et 

al., 2018). D2R is a primary drug target for schizophrenia and Parkinson’s disease. The clinical 

implications of differently biased D2R ligands is a topic of great research interest. The authors 

describe a new method to use MD simulations to design β-arrestin biased ligands. The crystal 

structure of the complex of β2 adrenergic receptor (β2AR) bound to epinephrine shows that the 

ligand forms a hydrogen bond network with the conserved TM5 serine residues (Ring et al., 

2013). Three crystal structures of the GPCRs, β2AR bound with epinephrine (4LDO), 5-

HT2B serotonin receptor bound with lysergic acid diethylamide (LSD) (5TVN), and β1 adrenergic 

receptor (β1AR) bound with 4-indole piperazine (3ZPQ), share conserved serine residues, 5.42, 

5.43, and 5.46, respectively. The 5-HT2B crystal structure and MD simulations show that 
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extracellular loop 2 (EL2) plays the role of a lid at the entrance to the binding pocket, slowing 

LSD’s binding kinetics, which can be seen in Figure 1.4 (Wacker et al., 2017b). 

There are conserved hydrophobic residues located in EL2, such as isoleucine 184 

(I184EL2) in D2R, which may lead to β-arrestin signaling in this receptor. McCorvy et al. also 

did biophysical experiments to test the structure-functional selectivity relationships of the 

designed compounds such as indole N-substitutions. They were intended to disrupt interactions 

with transmembrane 5 (TM5) and confirmed the validity of their simulations. MD simulations 

used a homology model based on the dopamine D3 receptor with the antagonist eticlopride 

(3PBL). MD simulations were used to predict EL2 engagement and find the key to biased 

signaling. The designed compounds contain an indole-piperazine moiety. The MD package 

AMBER14 was used. MD simulation results show that the conserved D1143.32 forms a salt 

bridge with the protonated nitrogen piperazine ring in the orthosteric site. To better understand 

the mechanism between G protein activation and β-arrestin signaling, MD simulations were done 

without dihydroquinoline-2-one and the alkyl linker. These simulations showed that in the head 

group of Compound 1 (Figure 1.5a), the hydrogen on the indole formed a hydrogen bond with 

S1935.42 and did not interact with I184EL2. Instead of forming a hydrogen bond, the nitrogen on 

the indole of Compound 2 was tracked by S1935.42; the center of the indole is closer to I184EL2 

than Compound 1. The two compounds show different poses and interactions with GPCRs. 

Compound 1 is associated with G protein activation, and Compound 2 (Figure 1.5b) is associated 

with β-arrestin biased signaling. Based on these critical simulation results, the authors were able 

to design new arrestin-biased compounds (McCorvy et al., 2018). 
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 Identification of New Ligand Binding Sites and Activation Mechanisms by 

Accelerated Molecular Dynamics and Metadynamics Simulation 

MD simulations have been commonly used to study GPCR activation mechanisms and 

conformational changes (Dror et al., 2011a; Esguerra et al., 2016; Zeng et al., 2015). However, 

in the study of conformational dynamics, sampling the extended timescales involved is the 

greatest challenge for MD simulation studies. To overcome this challenge, computational 

scientists have invented new methods and algorithms. Continued increases in computing power 

have also been of assistance. Currently, commonly used advanced hardware includes powerful 

graphics processing units (GPUs), supercomputers, and cloud computing (Dror et al., 2012; 

Kohlhoff et al., 2014). Conventional molecular dynamics (cMD) simulations have been widely 

used to study GPCR activation mechanisms. cMD can reach timescales of microseconds (Bai et 

al., 2014; Shukla et al., 2015; Vaidehi et al., 2014; Xiao et al., 2015; Xu et al., 2015; Yang et al., 

2015b). However, there are many cases of GPCR activation processes that can take longer than 

the timescale limits of cMD simulation. Two of the most popular computational methods for 

enhanced sampling of protein molecular dynamics simulations to access longer time scales are 

accelerated molecular dynamics (aMD) and metadynamics (Maximova et al., 2016). aMD 

simulation improves conformational space sampling by adding a bias potential into cMD that 

reduces energy barriers between different states (Hamelberg et al., 2004). Metadynamics 

simulation parameterizes the model system with collective variables and introduces bias 

potentials to discourage resampling of explored conformational space (Valsson et al., 2016). As a 

result, both aMD and metadynamics simulations reduce calculation time and are much faster 

than regular cMD simulations at the risk of utilizing modified energy landscapes. Here, we 

discuss an example of using cMD and aMD simulations to find a new ligand-binding site and 



11 

 

 

activation mechanism. P2Y1R is a purinergic GPCR that is activated by adenosine 5′-

diphosphate (ADP). It plays an important role in platelet aggregation and thrombosis formation 

(Gachet, 2008; Jacobson et al., 2011). The crystal structure of P2Y1R bound with the antagonist 

MRS2500 is available on the Protein Data Bank (4XNW); however, there is no structure of 

P2Y1R bound with an agonist. Li et al. used cMD and aMD simulations to find a new agonist-

binding site (Li et al., 2017). The crystal structure of P2Y1R bound with MRS2500 (4XNW) was 

used for simulation. The agonist, 2MeSADP, was docked to the same site as MRS2500. The 

results showed that the aromatic adenine ring of 2MeSADP has a π-π stacking interaction with 

Tyr3037.32. The pyrophosphates interact with Arg1283.29 and Arg3107.39. However, these results 

did not match the experimental results. The experimental results show that the mutagenesis of 

His1323.33, Tyr1363.37, and Lys2806.55 decreased the binding affinity of 2MeSADP with P2Y1R. 

So, aMD simulations were used to run the long time-scale simulations necessary to find an 

alternative binding site, which can be seen in Figure 1.6. In this research, all MD simulations 

used the particle mesh ewald molecular dynamics (PMEMD) module from AMBER14. The 

ff99SB force field was used for the receptor, and the general AMBER force field (GAFF) was 

used for the ligands. 

The aMD simulations results show the aromatic adenine ring of 2MeSADP interacting 

with His1323.33 through π-π stacking interactions. The N1 in the adenine forms hydrogen bonds 

with the Tyr1363.37 and Thr2215.42. The pyrophosphates interact with Arg1283.29, Arg2876.62, 

Arg3107.39, Lys2806.55, and Tyr3067.35. These results match the experimental results. In this 

research, metadynamics simulations were used to obtain the potential of mean force for helices 

III-helix VI, which showed that 2MeSADP-P2Y1R has three states: inactive, intermediate, and 

active. Apo-P2Y1R and MRS2500-P2Y1R only have two states. The aMD simulation allowed 
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2MeSADP-P2Y1R to pass through the intermediate state and finally reach the active states from 

the inactive state (Li et al., 2017). 

 Study of Allosteric Modulation and Dynamics of GPCR-Ligand Binding 

Traditionally, research has focused on the orthosteric binding sites of GPCRs. There has 

been growing recent interest in allosteric sites, especially regarding their advantages for drug 

discovery. Allosteric ligands can act as positive allosteric modulators, negative allosteric 

modulators, or neutral allosteric ligands. One of the advantages of allosteric modulators is that 

they have potentially better selectivity than orthosteric ligands (Wootten et al., 2013). 

In studying the mechanisms of allosteric modulators, experiments such as x-ray 

crystallography, NMR, and systematic mutagenesis experiments have had important roles, and 

these techniques have already given researchers much conformational information of GPCRs and 

GPCR-mediated signaling. However, these methods only provide information on static 

conformational states, with the X-ray crystallography experiments only resolving two 

conformational states, active and inactive. There is no information about the conformations and 

transitions between these two states. The transition between inactive and active states is difficult 

to access by experimental methods. Currently, a more intricate, multi-state model, is being 

investigated by researchers (Bar-Shavit et al., 2016; Latorraca et al., 2017). Molecular dynamics 

simulations give the possibility of revealing the intermediates of GPCRs between multiple states 

(Latorraca et al., 2017; Rajagopal et al., 2010; Violin et al., 2014). In the following section, we 

will discuss how molecular dynamics simulations provide information on intermediate states and 

can also identify new allosteric binding sites. 

The muscarinic receptors are drug targets for many diseases such as overactive bladder, 

chronic obstructive pulmonary disease, and neurodegenerative diseases (Felder et al., 2018; 
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Kruse et al., 2014). Drug discovery for the muscarinic receptors has been hindered due to the 

challenge of selectively targeting receptor subtypes. The crystal structures of muscarinic M3 and 

M4 receptors show the antagonist tiotropium (TTP) in the orthosteric site (PDB: 4DAJ, and 

5DSG). The crystal structures show that the orthosteric binding site is highly conserved (Kruse et 

al., 2012; Thal et al., 2016). However, there is no crystal structure of a muscarinic receptor with 

agonist available yet. Chan et al. used MD simulations to simulate acetylcholine (ACh), the 

endogenous agonist, binding to M3 and M4 receptors (Chan et al., 2018). Figure 1.7 shows the 

chemical structures of ACh and TTP. The simulation results show ACh binding to a new, deeper 

allosteric site near D2.50 that is highly conserved (Isberg et al., 2015). To further understand the 

ACh activation process, an all-atom MD simulation was used to determine the ligand entrance 

pathway. ACh binds to the orthosteric site, an aromatic cage, quickly (0.1–0.2 μs). ACh was 

superimposed over TTP in the M3-TPP structure; both of their conformations are the same. After 

0.5–0.6 μs into the simulation, the ACh goes deeper into a new binding site, and the pocket size 

is expanded. In contrast, during the entire simulation, TTP stays at the orthosteric site, as can be 

seen in Figure 1.8. 

The simulation also shows ACh interacting with residues A1122.57, I1162.53, A1503.35, 

S1543.39, and W5036.48. In the M4 receptor MD simulation, ACh shows a similar binding 

behavior with the M3 receptor, with ACh getting into a deeper binding site next to D782.50. The 

only difference is that there is an ionic interaction between the quaternary nitrogen of ACh and 

D1132.50. In the M4-ACh model, the quaternary nitrogen interacts with I812.53, V1153.35, S1163.36, 

and S1193.39 because the ACh flips by 180 degrees. 

MD simulations are also used to determine free energies. From the extracellular surface 

to the orthosteric site to the new binding allosteric site, there are energy barriers between the 
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orthosteric site and the new binding site. This explains why ACh slowly moves from the 

orthosteric to the new binding sites. These results demonstrate that molecular simulations can be 

used to determine free energy differences between different binding states, which means that it 

can also potentially be used to design new allosteric ligands. 

In this research, the CHARRMM36 force field was used for the receptor, and the 

CHARMM CgenFF force field was used for the ligands. The MD package GROMACS was 

used. The simulation was run longer than 3 μs. Hence, these MD simulations have allowed 

researchers to see the entire process of ACh binding to the orthosteric and allosteric sites. They 

also provided unique insights into mechanistic differences induced by the agonist and antagonist. 

Both TTP and ACh have a quaternary nitrogen. The simulation results suggest that the positively 

charged nitrogen can be stabilized by forming ionic interactions with the highly conserved 

Asp2.50 in both M3 and M4. This may help researchers identify and optimize future drug 

candidates. The successful identification of specific allosteric modulators for muscarinic 

receptors has already inspired similar approaches targeting other receptors involved in 

neurodegenerative and psychiatric diseases (Bock et al., 2018). 

An interesting interaction between a positively charged ligand nitrogen atom and a 

negatively charged receptor aspartate is also observed in the simulation studies of μOR. The two 

opioid ligands, fentanyl and morphine, both have a protonated nitrogen amine in the piperidine 

ring. Both interact with Asp1473.32. In M3 and M4, the positive nitrogen charges form 

interactions with Asp2.50. The positive nitrogen charges in the ligands apparently play a central 

role in binding and activation. 
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 Insights of Molecular Dynamics to Drug Design 

Drug discovery is among the most challenging of scientific enterprises: it is high risk, 

high cost, and requires a long time to move from the bench to the market (Paul et al., 2010). 

Early-stage structure-based drug design has the potential to reduce risk and accelerate projects. 

The recent, tremendous advances in GPCR crystallography have provided new opportunities for 

structure-based drug design (Jazayeri et al., 2015; Kooistra et al., 2014; Kumari et al., 2015; 

Shoichet and Kobilka, 2012). Increasing experimental evidence shows that the GPCR-signaling 

pathway is more complicated than classical signaling (Wacker et al., 2017b). The multiple 

mechanisms of GPCR activation and regulation offer diverse possibilities for drug discovery 

(Kaya et al., 2013; Marti-Solano et al., 2015). 

GPCRs undergo major conformational changes during their functional cycles. 

Researchers frequently want to design a ligand that can specifically bind to the target, in addition 

to wanting the ligand to activate or inactivate a desired signaling pathway with little to no off-

target effects. To reach this point, the designed ligand needs to bind to a specific binding site so 

that it induces certain conformational states of the receptor. Therefore, understanding the 

structural dynamics and the mechanisms of various signaling pathways of GPCRs is crucial to 

the design of GPCR-targeted ligands. As described above, GPCR functional mechanisms are 

extremely complicated. Hence, understanding receptor dynamics is very important for drug 

design. There is growing interest in using allosteric modulators for GPCR drug discovery (Huang 

et al., 2015b). It has been difficult thus far to identify new allosteric binding sites from crystal 

structures, in the rare cases that crystal structures are even available. MD simulations can help 

researchers solve these problems. 
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Enhanced sampling methods play an important role in this research. Adaptive biased 

techniques offer the chance to shorten simulation time, thus decreasing computational cost, and 

let ligands explore more conformational space by making it easier to escape local minima. aMD, 

one of the more popular adaptive-biased methods, allows the dynamic processes that are required 

to have agonists pass some energy barriers and reach new energy states. This should allow the 

possibility of finding new allosteric sites. Metadynamics allows researchers to observe the two-

dimensional energy landscape, thus easily seeing the energy differences in all the states. They 

can serve as a reliability check on the results that aMD provides (Li et al., 2017). To achieve 

these enhanced sampling methods, the most popular MD packages currently available include 

AMBER, NAMD, GROMACS, and CHARMM. To obtain an accurate result, the force field 

chosen plays a very important role. The ff99SB and ff14SB force fields are those most 

commonly used with AMBER. ff14SB is similar to ff99SB; however, ff14SB was modified by 

empirical adjustments of the protein backbone dihedral parameters, ϕ and ψ (Maier et al., 2015). 

CHARMM36 is a force field commonly used with NAMD and CHARMM, which includes 

improved refined backbone CMAP (a grid-based correction for the φ-, ψ-angular dependence of 

the energy) potentials and side-chain dihedral parameters (Huang and MacKerell Jr, 2013). To 

obtain new and accurate insights from simulations, the inclusion of lipids in the model system is 

important. Experimental results show that bovine rhodopsin is sensitive to lipid environments 

(Soubias et al., 2010; Zaitseva et al., 2010). Crozier et al. are the first to report computational 

insight about rhodopsin-lipid interactions (Crozier et al., 2003). They found differences of lipid 

accessibility differences for the transmembrane helices of rhodopsin. Later, Lyman et al. 

reported the adenosine A2A receptor in a cholesterol-free POPC membrane, both with and 

without the antagonist ZM241385 (Lyman et al., 2009). It showed that there is a gap between 
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transmembrane 1 (TM1) and transmembrane 2 (TM2), which allows the lipid headgroup into the 

binding site and causes receptor instability when there is no ligand present. This prediction was 

proved later (Hanson et al., 2008). This is also a good example of long-time scale simulation, 

with the time scale being 3 μs. Simulations with longer time scales may give us new insights on 

slower developing phenomena. Previously, simulations performed by Lipinski et al. were longer 

than 1.2 μs, from which the “Trp rotamer toggle switch” was found. 

The primary goal when designing a GPCR-targeted drug is normally to make a ligand 

that, in addition to binding the desired target, also creates a specific signaling profile. To achieve 

the desired signaling profile, the drug needs to be able to stabilize certain conformational states 

of the receptor. If the desired conformational change involves an agonist creating more stabilized 

active states compared to inactive states, something that needs to be taken into account is how 

minor changes in the structure of the binding pocket can be associated with different signaling 

profiles and different intracellular coupling interface conformations (Latorraca et al., 2017). 

There are challenges involved in successfully doing this. Small changes in one area of the 

binding pocket can have larger effects elsewhere in the pocket. Changes in an area completely 

outside of the pocket itself can also have small or large effects throughout the pocket, and vice 

versa; the latter of which can be important when an allosteric modulator is introduced after the 

orthosteric ligand is already in the orthosteric binding site. Further difficulties can arise if one 

seeks to design a modulator that only affects arrestin signaling when changes to any of the sites 

mentioned above can have an effect on G protein and/or arrestin signaling (Latorraca et al., 

2017). 

The potential contributions of simulations include helping identify important interactions 

the orthosteric ligand can make with the binding pocket or rearrangements of the binding pocket 
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induced by the ligand. They can also assist with characterizing receptor pocket dynamics, both 

for known structures based on experiments as well as intermediate or metastable states that are 

difficult or impossible to currently access experimentally. Another potential use is assessing how 

ligands affect the pocket and receptor dynamics, and comparing dynamics of closely related 

GPCRs, which should allow more precise and specific ligand design (Latorraca et al., 2017). 

A simulation-based approach was used to design chemical modifications that 

substantially altered a modulator’s allosteric effects on the M2 muscarinic receptor. The 

modulators the researchers initially studied all partially block the ingress and egress of 

orthosteric ligands. The allosteric binding site is along the path that the orthosteric ligands take to 

bind to the orthosteric site, which is curious because the modulators studied also weakened the 

association and dissociation of the orthosteric ligands. Simulations indicated that the ligand 

interaction mode was different than initially proposed. The researchers were able to design new 

modulators that took advantage of information about ligand interactions from the simulation 

results; the measured affinities of the new modulators were consistent with those predicted by the 

simulations (Dror et al., 2013). 

 Summary and Perspectives 

Computational methods are essential tools for biomacromolecular structural studies. 

GPCRs are the largest class of drug targets and have structural flexibility, dynamic structures, 

and complex biological functions. Recent breakthroughs in GPCR crystallography have enabled 

accurate and predictive MD simulations. Here, we have reviewed recent works that have used 

MD simulations and enhanced sampling methods to study interactions with new ligands, 

characterize unknown active/inactive states, and identify new binding sites. This has allowed 

researchers to gain insights to study new potential drug candidates and obtain qualitative 
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structural information in less time. With computers and algorithms continually growing faster, 

computational methods will be even more effective in helping future researchers reveal the inner 

mysteries of GPCRs and their ligands. 

The ever-increasing number of GPCR structures found by molecular dynamics 

simulations of crystal structures will provide a growing database from which new ligands and 

potentially new binding sites can be determined and explored. Because testing in silico is less 

resource intensive than in vitro or in vivo, this should allow researchers to find new interesting 

drug targets. 
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 Figures 

 

Figure 1.1 Overview of pathway-biased ligand activation for G protein-coupled receptors 

(GPCRs). 

 

Figure 1.2 Activation of µOR displaces transmembrane 6 (TM6) by 10.3 Å. 

The inactive state is in blue and is bound to the antagonist β-FNA (purple). The active state is in 

green and is bound to the agonist BU72 (orange). 
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Figure 1.3 Chemical structures of μ - opioid receptor agonists. 

(a) morphine; (b) fentanyl. 

 
Figure 1.4 The binding pocket of 5-HT2B 

(a) open when ergotamine binds and is (b) partially closed by movement of L209EL2 when LSD 

binds. 
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Figure 1.5 Structure of indole-aripiprazole hybrid compounds used to investigate D2R 

biased signaling. 

(a) Compound 1; (b) Compound 2 (McCorvy et al., 2018). 

 

Figure 1.6 P2Y1R binding sites for (a) MRS2500 and (b) 2MeSADP. 

 

Figure 1.7 Chemical structures of muscarinic receptor ligands. 

(a) tiotropium (TTP); (b) acetylcholine (Ach). 
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Figure 1.8 The M3 muscarinic receptor orthosteric binding site is near W6.48, whereas the 

new allosteric binding site is near D2.50. 
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Chapter 2 - The study of proctolin and proctolin receptor by 

computational Methods 

 Summary 

European honey bees are very important to agriculture, however, the population of 

European honey bees is decreasing. One of the biggest threats is the Varroa mite, which is an 

ectoparasite of the European honey bees that spreads viruses and causes colony collapse disorder 

(CCD). The purpose of this study is to examine the proctolin receptor from these mites to design 

potential compounds that can be used as a new generation of acaricides. Proctolin is a unique 

neuropeptide in a variety of arthropods and most importantly, the proctolin receptor is absent 

from most species of insects. In this research, we integrated different computational methods to 

build the proctolin receptor homology model and studied the interactions between proctolin and 

the proctolin receptor based on experimental data. We found that two cation-pi interactions 

involving Tyr 99 and Arg 111 mediate important binding interactions between the peptide and 

the receptor. The first and second residues, Arg 1 and Tyr 2 from proctolin form cation-pi 

interactions with Tyr 99 and Arg 111 respectively. Kinetics studies also show that the first Arg 1 

residue from proctolin forms a cation-pi interaction with Tyr 99 first, followed the second cation-

pi interaction. This work shows the interactions between proctolin and proctolin receptor and 

gives evidence to help design acaricides. 
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 Introduction 

Apis mellifera, or the European honey bee, is an important pollinator. This insect is 

essential to agriculture as over 100 crops are pollinated by honey bees. However, the population 

of the European honey bees is decreasing. There are many reasons that are causing the 

decreasing bee population, such as parasites and pathogens (Berthoud et al., 2010; Dainat et al., 

2012; Highfield et al., 2009). One of the most critical reasons is Varroa destructor. Varroa 

destructor, also called the Varroa mite, is a devastating ectoparasite of European honey bees, 

which can cause honey bee colony collapse disorder (CCD) and can carry viruses (Di Prisco et 

al., 2011; Highfield et al., 2009; Wang et al., 2013). Acaricides began to be used to treat Varroa 

mites, and Varroa mite also very easily generated resistances to general chemical compounds 

used as acaricides (Hillesheim et al., 1996; Maggi et al., 2009; Milani, 1995; 1999). These 

acaricides also exhibit toxicity to honey bees (Johnson et al., 2013). 

 Proctolin and neuropeptides 

Proctolin is a neuropeptide, with the sequence Arg-Tyr-Leu-Pro-Thr (shown in Figure 

2.5). Neuropeptides are typical peptide-like molecules, and normally act as neurohormones, 

neurotransmitters, or neuromodulators. Proctolin was the first neuropeptide found and sequenced 

from insects (Starratt and Brown, 1975). It functions to stimulate visceral and skeletal muscle 

contraction in insects (Isaac et al., 2004). There are also two other forms, Ala-Tyr-Leu-Pro-Thr 

and Arg-Tyr-Leu-Met-Thr (Dircksen et al., 2011; Spittaels et al., 1995). There is evidence that 

proctolin-like immunoreactive neurons are distributed throughout the central nervous system 

(CNS) of Rhodnius prolixus. Proctolin is involved in the stimulation of skeletal and visceral 

muscles contraction, present in interneurons, and in motoneurons after an infection (Chiang et 

al., 2010; Lange, 1990; Lange et al., 1988).  
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 Proctolin receptor and neuropeptide receptors 

Most neuropeptide receptors have seven-transmembrane helices, which is also called G-

protein coupled receptors. The neuropeptide receptor has an extracellular N-terminus, seven-

transmembrane helices, and an intracellular C-terminus. When the neuropeptides are agonists, it 

can activate intracellular G-protein-mediated signaling. The extracellular and the transmembrane 

domains are more important for ligand binding (Brothers et al., 2003). The proctolin receptor 

was first identified from the Drosophila melanogaster (Johnson et al., 2003). The Drosophila 

proctolin receptor gene encoded by CG6986. Proctolin has very high affinity, the IC50 is around 

4 nM (Johnson et al., 2003).  

From available genome sequencing, no genes encoding proctolin or proctolin receptor 

have been identified in Apis mellifera (Veenstra et al., 2012). Proctolin can be a good study 

model to design new potential peptide-like compounds to treat Varroa mites. 

To have a better understanding of proctolin and proctolin receptor, we integrated 

different computational methods (shown in Figure 2.1) to study the binding mechanism of 

proctolin and proctolin receptor. 

 Results 

 The proctolin receptor homology model building 

We tried to use docking methods to seek an explanation for the natural peptide exhibiting 

high potency binding to the receptor. Proctolin receptor is the same as other neuropeptide 

receptors, having seven-transmembrane helices, and lacking crystal structures due to its high 

backbone and side-chain flexibility. Hence, we were trying to build the proctolin receptor 

homology model by GPCR-I-TASSER. The proctolin receptor protein sequence was originally 

obtained from Dr. Yoonseong Park’s lab. Now, the protein sequence was reported to GenBank, 
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the GenBank ID is QPP11369.1. The crystal structures were used as templates. The PDB IDs are 

4N6H, 4BWB, 6ME6, 5ZBH, and 6HLP. Figure 2.2A and 2.2B show the homology model of 

proctolin receptor built by GPCR-I-TASSER. Figure 2.2A shows the side-view. The N-terminus 

is on the extracellular side. The seven transmembrane helices are in the membrane. The C-

terminus is on the intracellular side. Figure 2.2B shows the top-view of the homology model of 

the proctolin receptor. 

 The proctolin docking study 

 Initial virtual screening 

We used regular peptide-protein docking method to dock proctolin to the proctolin 

receptor. However, there was no rational results. Proctolin is a pentapeptide, RYLPT. There is a 

proline in this peptide, which increases the molecule’s rigidity. As a peptide, proctolin is not as 

flexible as other peptides. Hence, we prepared and treated proctolin as a small molecule. To 

easily find the binding pocket, we only kept the extracellular N-terminus and transmembrane 

domains and removed the intracellular C-terminus. Figure 2.3A shows the remaining receptor 

and the docking result. It shows the proctolin binding pocket is around the top part of proctolin 

receptor. Figure 2.3B is the zoomed-in view of the binding pocket. It shows the Thr5 from 

proctolin forms a hydrogen bond with Arg111. The previous alanine scan results (from my 

collaborator Dr. Yoonseong Park’s lab) show the arginine 1 (Arg, R1) and Tyr2 from proctolin 

are critical to the binding. However, the docking results do not match the experimental results. 

 Induced-Fit Docking 

GPCRs typically have a flexible conformation. Hence, we chose to use induced-fit 

docking (IFD) to do the preliminary proctolin docking study in order to increase reliability by 

allowing for the flexibility of the backbone and sidechain. The IFD method has been successfully 
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used for other GPCRs (Beuming and Sherman, 2012; McRobb et al., 2010). The induced fit 

docking allowed flexible receptor conformational changes(Sherman et al., 2006). So, we 

believed the IFD docking method would help us to obtain better docking results. Figure 2.4 

shows the IFD docking result. The first residue of proctolin is arginine (Arg, R), a positive 

charge rich residue and from the IFD preliminary results there are tyrosine (Tyr, Y) and 

phenylalanine (Phe, F) around this R1. The second residue is tyrosine (Tyr, Y), an aromatic 

residue and the IFD preliminary results shows there are arginine (Arg, R) residues around this 

Y2. 

 QM (quantum mechanics) - polarized ligand docking 

Those residues would indicate binding contributions from cation-π interactions. The 

cation-π interaction as a noncovalent binding interaction plays an important role in biological 

receptors and it is a major force for drug and receptor interactions as well (Dougherty, 2013; 

Mecozzi et al., 1996). 

To have more accurate treatment of electrostatic charges like cation-π interactions and to 

further investigate binding, we used the QM/MM (quantum mechanics/molecular mechanics) 

based method, QM (quantum mechanics) - polarized ligand docking to continue to process the 

IFD results. Then, we obtained the docking model. 

Figure 2.5 shows the QM-polarized ligand docking result. Figure 2.5A shows the 

proctolin chemical formula. The two dashed line circles label the two critical residues, Arg1 and 

Tyr2 from proctolin. Figure 2.5B shows the binding pocket. The Arg 1 from proctolin binds to 

Tyr99 from proctolin receptor. The Tyr2 from proctolin binds to Arg126 from proctolin receptor 

(shown in Figure 2.5B, 2.5C, and 2.5D). This docking results show the first residues from 

proctolin are binding with proctolin receptor, which match with the experimental results. 
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 The Molecular Dynamic Simulations Study of Proctolin Receptor Docking Model 

For further study of the docking model, molecular dynamic (MD) simulations were used 

to further prove the docking model. Figure 2.7A shows the MD result. Figure 2.7B shows the 

zoomed in view of the binding pocket. In Figure 2.7B, it can be seen that proctolin N terminus 

residues interact with Tyr 99 and Arg 111 in the receptor, forming cation-π interactions. Cation-π 

interactions play a unique and important role between protein and ligand interactions, and this 

interaction has been underestimated. It is a very strong, and noncovalent binding interaction. 

This interaction requires an aromatic system and a cation to form. In the 20 natural residues, the 

side chains of phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp) have aromatic systems, 

which contain only sp2-hybridized atoms. The side chains of arginine (Arg) and lysine (Lys) are 

the cations. In our case, Tyr 99 from proctolin receptor offers the aromatic ring, Arg 1 from 

proctolin offers a cation. The distance of cation-pi between Tyr 99 and Arg 1 is around 3.9 Å. 

The distance of cation pi between Arg 111 and Tyr 2 is around 3.6 Å. Comparing with 

experimental results, the alanine scan results show A1’s EC50s is 956.5 nM and it is 3921.7-fold 

higher than the natural proctolin N terminus (from my collaborator Dr. Yoonseong Park’s lab). 

The R1A mutant loses the positive charge in the N terminus to form the cation-π interaction with 

the tyrosine from receptor. It is the same case with the Y2A mutant, there is no aromatic system 

like benzene ring to form the cation-π interaction. These docking results match the experimental 

results for activities of proctolin peptidomimetics on the Varroa mite proctolin receptor. The first 

two residues of proctolin are like an anchor to dock into the receptor and pull the peptide into the 

receptor pocket. 
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Discussion 

The results revealed the binding pocket of proctolin, the interactions between proctolin 

and the proctolin receptor, and the kinetics of the binding interaction. This work also integrates 

different computational methods to indicate the binding mechanism of proctolin and the 

proctolin receptor. The workflow of this research can be a model study for binding mechanisms 

of ligands and unknown structure receptors. 

 The roles of Tyr 99 and Arg 111 

Tyr 99 and Arg 111 from the proctolin receptor play a very important role in the binding 

pocket, forming a cation-π interaction to stabilize the physical interaction. Two of the residues 

are conserved sites in the proctolin receptor. Tyr 99 appears more often in different species. In 

the proctolin receptor, Tyr 99 offers an aromatic system used like an “aromatic dock”, the Arg 1 

from proctolin is the “cation anchor”. The “cation anchor” pulls proctolin into the binding 

pocket. Even in some other species, Phe replaces the Tyr. The Phe side chain can still offer the 

aromatic system and form a cation-π interaction with Arg 1 from proctolin. Arg 111 from the 

proctolin receptor in other species is Tyr 111. This removes the cation in other species making it 

unable to form the cation-π interaction, however it is still possible to form π-π stacking with Tyr 

2 from proctolin. In other species the binding pocket will be slightly different with Varroa mite 

as well. Instead of forming the cation-π interaction, a π-π stacking may have a better fit in other 

species. In different species, the N-terminus first two residues from proctolin may have 

interactions with receptor and are critical to the binding to receptor. The differences between 

proctolin receptors in various species also could allow fine tuning of small molecules to be more 

targeted towards specific species. 
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 The kinetic study of the two cation-pi interactions 

We performed the MD simulations on the complex of proctolin and proctolin receptor. 

The maximum distance for cation-pi interactions is up to 5 Å. Figure 2.8 shows the distances 

between Tyr 99 and Arg 1 and Arg 111 and Tyr 2 during the simulations. Figure 2.8 shows the 

distance between Tyr 99 and Arg 1. This first cation-pi interaction of Tyr 99 and Arg 1 started 

forming around 480 ns. However, the second cation-pi interaction of Arg 111 and Tyr 2 started 

forming around 800 ns. This shows the proctolin binding into proctolin receptor has two steps. 

The first step the Arg 1 binding with the Tyr 99, then the Tyr 2 binding with Arg 111. 

Eventually, the entirety of proctolin docked into the receptor binding pocket.  

 The surface study of neuropeptides binding with the neuropeptide receptors 

 Proctolin and proctolin receptor 

Figure 2.9 shows the electrostatic surface of proctolin receptor. The positive charge is 

shown in blue. The negative charge is shown in red. In Fig 2.9B is the top view of proctolin 

receptor’s binding pocket. It shows the proctolin receptor binding pocket carries more negative 

charges. The C-terminus Arg 1 from proctolin inserted into the binding pocket and forms the 

cation-π interaction. Figure 2.9C shows a clip of the electrostatic surface of the binding pocket 

and the electrostatic surface of proctolin. The bottom of the pocket carries negative charges. The 

N-terminus of proctolin carries positive charges. Both the receptor pocket and the proctolin 

match very well. This also shows the reason of high potency with EC50 of proctolin. 

 Neurotensin and the neurotensin receptor 

Neurotensin is a neuropeptide. The receptor of neurotensin is neurotensin receptor 

(NSTR), which is also a neuropeptide receptor. Figure 2.10 shows the electrostatic surface of 

neurotensin receptor with neurotensin8-13. The PDB ID is 4GRV. The electrostatic surface of the 
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binding pocket of neurotensin and neurotensin receptor is shown in the Fig. 2.10. In Fig 2.10, the 

positive charges are shown in blue, the negative charges are shown in red. Figure 2.10B is the 

top view of neurotensin receptor’s binding pocket. It shows the neurotensin receptor binding 

pocket carries more positive charges. Figure 2.10C is a clip of the electrostatic surface of the 

binding pocket and shows neurotensin’s electrostatic surface. The neurotensin8-13 C-terminus 

carries the negative charge. Hence, the backbone of the Leu 13 carboxylic group from 

neurotensin8-13 inserted into the binding pocket. The binding pocket charges of neurotensin 

receptor is opposed to proctolin receptor binding pocket charges. 

Both two neuropeptides and the two neuropeptide receptors have charged dock. Both 

neuropeptides have the charged residues as well. Even there are different partial charges in the 

receptor binding pocket, the neuropeptides carry the opposed partial charges with the receptor 

binding pocket. This allows the neuropeptide to strongly bind to the receptor.  

 Materials and Methods 

 Proctolin receptor and proctolin docking 

The structure of proctolin receptor was built by using GPCR I-TASSER (Iterative 

Threading ASSEmbly Refinement) server (Roy et al., 2010; Yang et al., 2015a; Yang and 

Zhang, 2015; Zhang et al., 2015). The C-terminus of proctolin receptor was removed. The 

homology model of proctolin receptor was used to dock with proctolin. The Induced Fit Docking 

(IFD) method (Sherman et al., 2006) was used to obtain the preliminary results. Then the 

preliminary results from the IFD were used to dock by QM-Polarized Ligand Docking method. 

All the docking process were implemented in Maestro software (Schrodinger Release 2019-3).  
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 The molecular dynamic simulations study of the proctolin receptor docking model 

We used the previous docking model of proctolin and proctolin receptor to continue the 

simulation study. CHARMM-GUI was used to embed the docking model of proctolin receptor 

with proctolin into the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayer 

environment, and the length of X and Y are 80 Å which is perpendicular to the Z-direction, the 

length of Z is 132 Å (Wu et al., 2014) (shown in Figure 2.6). The Cl- ions were added to generate 

a neutral system. Amber17 was used to run the solvated structures by MD simulations and 

AMBER force field, ff14SB was applied for the MD simulations (Maier et al., 2015). The 

particle mesh Ewald method was used to calculate the long-range electrostatic interactions 

(Petersen, 1995). First, the system was minimized in 5000 steps with positional restraints for 

proteins, ligand, and lipid head groups. The lipid structures were keeping dihedral restraints. 

Then, the system was equilibrated for 50 ps at 303.15 K (canonical ensemble) and 325 ps 

(isothermal-isobaric ensemble). The temperature was controlled by using a Langevin thermostat 

with a friction coefficient 1.0 ps-1, the pressure was controlled by Monte-Carlo barostats. The 

time step of this simulation was 0.002 ps, the total production time was 1.5 µs.  

 MD simulations trajectory analysis 

VMD software (Humphrey et al., 1996) and CPPTRAJ (Roe and Cheatham III, 2013)was 

used to analyze the MD trajectory. Xmgrace was used to process and present the simulations 

distance study of the two cation-pi interactions. Figures were processed and presented by 

ChimeraX (Goddard et al., 2018; Pettersen et al., 2021).  
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 Figures 

 
Figure 2.1 The workflow of the proctolin receptor model building, proctolin docking and 

MD simulations study. 

The work started from the homology model building by GPCR-I-TASSER. The proctolin 

receptor protein sequence was originally obtained from Dr. Park’s lab. Now, the protein 

sequence was reported to GenBank, the GenBank ID is QPP11369.1. The crystal structures were 

used as templates. The PDB IDs are 4N6H, 4BWB, 6ME6, 5ZBH, and 6HLP. Then, virtual 

screening, induced fit docking, and QM-polarized ligand docking were performed. The last step 

was MD simulations to obtain the interactions between proctolin and proctolin receptor. 
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Figure 2.2 The proctolin receptor homology model built by GPCR-I-TASSER. 

A. It shows the proctolin receptor homology model. The N-terminus is in the extracellular. The 

seven transmembrane helices are in the membrane. The C-terminus is in the intracellular. B. 

shows the top view from the N-terminus of proctolin receptor.  
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Figure 2.3 The virtual screening results of proctolin and proctolin receptor. 

A. This is the preliminary docking results of proctolin and proctolin receptor. The red surface 

shows the proctolin surface. The tan color shows the proctolin. B. The interactions between 

proctolin and proctolin receptor do not match with the experimental results. 
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Figure 2.4 The induced fit docking results of proctolin and proctolin receptor. 

The light orange surface is showing proctolin surface. The yellow dashed line shows the 

hydrogen bond.  
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Figure 2.5 The QM-polarized ligand docking results of proctolin and proctolin receptor. 

A. shows the chemical formula of proctolin. The two dashed line circles label the first two 

important residues from proctolin. B. shows the QM-polarized ligand docking result of proctolin 

and proctolin receptor complex. C. The zoomed-in view of the interaction between Tyr2 and 

Arg126. D. The zoomed-in view of the interaction between Arg1 and Tyr99. The dark magenta 

color dashed lines show the cation-pi interactions. The yellow dashed lines show the hydrogen 

bonds. The hydrogen atoms are hidden. 
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Figure 2.6 The MD simulations system of the proctolin and proctolin receptor complex. 

Both figures are showing the bilipid layers, and the complex in the solvent system. 
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Figure 2.7 The interactions between proctolin and proctolin receptor after running MD 

simulations. 

A. shows the complex of proctolin and proctolin receptor, which is the average structure of 

1000ns MD simulations. The orange color shows the proctolin surface. B. shows the zoomed-in 

view of the binding pocket. The dark green dashed lines show the cation-pi interactions between 

proctolin and proctolin receptor. The first Arg from proctolin form the first cation-pi interaction 

with Tyr99 from proctolin receptor. The second Tyr from proctolin forms the second cation-pi 

interaction with Arg111. The dark yellow sticker shows the proctolin molecule. Nitrogen atoms 

are shown in blue. Oxygen atoms are shown in red. The dark green dashed lines show the cation-

pi interactions.  
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Figure 2.8 The distance between Tyr 99 from proctolin receptor to Arg 1 from proctolin, 

the distance between Arg 111 from proctolin receptor to Tyr 2 from proctolin. 

The distance between cation and pi can be up to 5Å in cation-pi interactions. Left: The figure 

shows the distance of Tyr 99 from proctolin receptor and Arg 1 from proctolin. Right: The 

distance Arg 111 from proctolin receptor and Tyr 2 from proctolin. The left figure shows the 

cation-pi interaction of Tyr 99 and Arg 1 started forming around 480 ns. The right figure shows 

the cation-pi interaction of Arg 111 and Tyr 2 started forming around 800 ns.  

 

 

  



42 

 

 

 
Figure 2.9 The electrostatic surface of proctolin and proctolin receptor. 

A. shows the side-view of the surface of the complex of proctolin and proctolin receptor. Blue 

color shows the positive charges. Red color shows the negative charges. B. shows the top-view 

of the proctolin receptor. The black circle shows the area of the binding pocket. In the binding 

pocket, it is carrying negative charges. C. shows the clip view of the binding pocket. Yellow 

color shows the proctolin in stick form. In the middle of Figure 2.8C is the surface of proctolin. 

It shows the N-terminus of proctolin carries positive charges. It opposes with the charge of the 
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binding pocket of proctolin pocket. The proctolin acts like an anchor. The binding pocket of 

proctolin receptor offers the negative dock and lets the proctolin dock into the pocket and form 

the interactions. 
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Figure 2.10 The electrostatic surface of the neurotensin receptor binding pocket. 

The binding structure of neurotensin8-13 and neurotensin receptor is from the crystal structure of 

neurotensin receptor. The neurotensin8-13 is N-RRPYIL-C. The PDB ID is 4GRV. In the 

electrosurface figures, the positive charges are shown in blue, and the negative charges are 

shown in red.  Figure. A shows the electrosurface binding pocket of neurotensin. In the 

neurotensin receptor binding pocket, the positive charges are inside, the negative charges are 

around the top part of the pocket. Figure. B shows the electrosurface of neurotensin. The C-
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terminus of neurotensin is negative. The N-terminus of neurotensin is positive. Figure. C shows 

the conformation of neurotensin.  
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Chapter 3 - The behavior of red fluorescent protein chromophore at 

room temperature 

 Summary 

Fluorescent proteins have been improved from natural fluorescent proteins and heavily 

used in life science as protein labels, markers of gene expression, and living-cell imaging. The 

characteristics of fluorescent protein chromophores can give us information about the structure-

function relationship with the protein matrix. This can guide us to engineer tuned color variants 

and broaden the spectral range of useful proteins. Here, we present the behavior of the 

chromophore with the protein matrix and develop a deeper understanding of fluorescent proteins. 

We performed molecular dynamics simulations on four trans-form fluorescent proteins. All 

fluorescent proteins with the trans-form chromophores tend to be non-planar which has been 

rarely caught by experimental methods. After the planarity changed, the interactions of 

chromophore and protein matrix have changed as well. The residues 67, 92, 143, and 197 are 

identified as more important sites for the fluorescent proteins. These site residues interact with 

the chromophore. 
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 Introduction 

Fluorescent protein (FP) was first found from the jellyfish Aequoria Victoria. The color is 

green. Later, there were aquatic species, such as sea anemones, and coral found displaying 

different visible fluorescence and colors. The green fluorescent protein (GFP) is monomeric, 

soluble, stable, and brightly fluorescent. It is used in life science research as protein labels, 

markers of gene expression, and living-cell imaging, and was hailed as a revolution of  

fundamental biomedical research (Chalfie et al., 1994; Shaner et al., 2007). Since then, 

fluorescent proteins have been engineered to meet different requirements. Different engineered 

GFPs or GFP homologs have been reported which cover almost the entire visible range of 

emission wavelengths (Gurskaya et al., 2001; Matz et al., 1999; Tsien, 1998). Some other 

variants have been optimized to fit different bio-conditions such as different pH (Miesenböck et 

al., 1998), and redox potential (Østergaard et al., 2001).  

Engineering fluorescent protein allows for fine-tuning the photophysical properties of 

blue to yellow variants derived from the Aequoria Victoria jellyfish and the improvement of 

monomeric fluorescent proteins from other organisms, such as the yellow-orange to far-red 

regions of the visible light spectrum. Table 3.1 shows different fluorescent proteins and their 

basic information. Specifically, different color fluorescent proteins are very useful to use in 

multicolor labeling or other experiments. The red-emitting range has been extended with the 

naturally red fluorescent protein such as DsRed (Disc Red) from the corallimorphian Discosoma 

sp (Matz et al., 1999) and eqFP611 from the sea anemone Entacmaea quadricolor (Wiedenmann 

et al., 2002). However, there is still limitations of DsRed as a fluorescent marker, such as slow 

chromophore maturation and oligomeric nature. The improvement of DsRed has produced 

different variants and obtained better fluorescent proteins with better properties (Bevis and 
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Glick, 2002; Campbell et al., 2002). It is important to understand the interests of the relationship 

of the structural basis and the spectral properties. Pervious study shows some features that affect 

the spectral properties, such as the extended conjugated pi-system. The fluorescent protein 

Rtms5, derived from Motipora efflorescens, exhibits different properties despite having the same 

chromophore sequence as DsRed due to conformation differences in the chromophore. The 

phenoxy ring of the chromophore is in a trans and non-coplanar conformation (Prescott et al., 

2003). 

Fluorescent proteins typically have 11-stranded β-barrel and chromophore structures 

(shown in Figure 3.1A). Different fluorescent proteins have different chromophores, which show 

different color. The red fluorescent proteins like DsRed, has red tyrosine-based chromophores 

(shown in Figure 3.1D). The autocatalyzed reaction produces an N-acylimine derivative. This 

extended the pi-conjugation on the chromophore and shifted the absorbance and emission spectra 

to red (Yarbrough et al., 2001). Several studies have shown the fundamental origins and 

manipulation of the emission color (Remington, 2006; Shaner et al., 2007).  The different 

chromophores shown in Figure 3.1B, 3.1C, 3.1D, and 3.1E. Figure 3.1B is green fluorescent 

protein chromophore, CRO. Figure 3.2C is cyan fluorescent protein chromophore, SWG. Figure 

3.1D is red fluorescent protein chromophore, NRQ. Figure 3.1E is yellow fluorescent protein 

chromophore, CR2. The local environments of the chromophore are very critical to the intensity 

of the fluorescence, and emission wavelengths, which includes the chromophore interactions 

with the protein matrix, and the extent of pi conjugation of the chromophore. These variables can 

cause blue or red spectral shifts in absorption and emission and the maxima shift can reach as 

much as 40 nm (Shaner et al., 2007).  
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The characteristics of fluorescent protein chromophore can give us the information about 

the structure-function relationship with protein matrix. This can guide us to engineer tuned color 

variants and extending spectral range of proteins. We studied the trans-form chromophore red 

fluorescent proteins, mRuby, TagBFP, TagRFP, and LSSmKate2, to obtain a deeper 

understanding the interactions of chromophore affections of these variables to the fluorescence 

intensity. 

 Results 

 TagBFP 

TagBFP is one of the blue fluorescent proteins. It is a monomeric fluorescent protein. The 

excitation peak is 402 nm, and emission peak is 457 nm. It has 0.63 high quantum yield (QY) 

(shown in Table 3.1). Figure 3.2C and 3.2D show the crystal structure of TagBFP (PDB ID: 

3M24). Both Figure 3.2C and 3.2D show the conformation of the chromophore NRP. The trans-

form and nonplanar chromophore has been captured. It also has a high quantum yield. Figure 

3.2D is the top view of TagBFP. It clearly shows the interactions between the chromophore NRP 

and the protein matrix. The two light blue dashed lines show the pi-stacking. The dark green 

dashed line shows the cation-pi interaction. The magenta dashed line shows the salt bridge. 

Figure 3.3A shows the dihedral angle that was picked to study the chromophore. In the crystal 

structure, the dihedral angle is around 67.5º. This is different from typical chromophore planar 

angles. The crystal structure shows the Tyr 197 and Phe 143 form pi-stacking with the 

chromophore, Arg 92 forms a cation-pi interaction and a salt bridge. We utilized this crystal 

structure to study this fluorescent protein and gain a better understanding of chromophore 

behavior. Hence, we perform MD simulations at 300K. Figure 3.3D shows the molecular 

dynamics simulations. After 2000ns simulation time, the chromophore still forms pi-stacking 
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with Tyr 197 and Phe 143. The chromophore lost the cation-pi interaction with Arg 92. There is 

still a salt bridge between Arg 92 and chromophore. There are differences after the simulations. 

The dihedral angle is rotated. Hence, Lys 67 forms a cation-pi interaction with the chromophore 

and a salt bridge. Figure 3.4 E shows the planar angles of the chromophore at the last 400 ns 

simulations, which is between 1600-2000 ns. In this figure, it shows the chromophore keeps 

rotating, the rotation angle is between 42º and 70º. The most planar angle shown is around 50º. 

This means the chromophore can form a cation-pi interaction and a salt bridge with Lys67, and it 

can form a salt bridge with Arg 92 as well. This simulations result shows the conformations of 

the chromophore tended to be different from the crystal structure. In the TagBFP system, the two 

pi-stacking interactions extend the pi-conjugation, two salt bridges stabilized the chromophore. 

All this may increase the quantum yield. 

 TagRFP 

TagRFP is one of the red fluorescent proteins which has a trans-form of chromophore. 

Figure 3.4B shows the TagRFP crystal structure (PDB ID: 3M22). The excitation peak is 555 

nm, the emission peak is 584 nm. The quantum yield is 0.48 (shown in Table 1). Figure 3.4C 

shows the chromophore NRQ crystal conformation. The planar chromophore was captured. 

Comparing with TagBFP, TagRFP has a lower quantum yield. Figure 3.2B shows the top view 

of TagRFP. His 197 forms pi-stacking with the chromophore. Asn 143 and Ser 158 form two 

hydrogen bonds with the chromophore to stabilize the chromophore (shown in Figure 3.4C). 

However, in the MD simulations result, the chromophore planarity changed. Figure 3.4D shows 

the dihedral angle rotates and the chromophore is non-planar. There are three water molecules 

that form three hydrogen bonds with the phenolic oxygen atom. There are two water molecules 

that form two hydrogen bonds with the oxygen of the imidazole ring. These hydrogen bonds 
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stabilized the chromophore. Figure 3.4E shows the planar angle’s changes, it is between 26º and 

57º which is between 1600-2000 ns simulations. 

 LSSmKate2 

LSSmKate2 is another red fluorescent protein. It also has a trans-form and planar 

chromophore captured by X-ray crystallology (shown in Figure 3.5A). Figure 3.5B shows the 

LSSmKate2 crystal structure. Similar with other fluorescent proteins, it has a similar 

conformation of the beta-barrel. Figure 3.5C shows the interactions of the chromophore and the 

protein matrix. The Arg 197 forms a cation-pi interaction with the chromophore. The Ser 158 

and a water molecule form two hydrogen bonds with the chromophore. It is similar to TagRFP. 

After MD simulations, the dihedral angle of the chromophore turned. The Arg 197 still forms a 

cation-pi interaction with the chromophore. Arg 92 forms a hydrogen bond with the phenolic 

oxygen atom. There are three water molecules that formed hydrogen bonds with the phenolic 

oxygen atom. Figure 3.5E shows the planar angle of the chromophore during the last 400 ns of 

the simulations, 1600-2000 ns. The changes of the planar angle are around 38º - 67º. 

 mRuby 

mRuby is one of the red fluorescent proteins, which has been captured as a trans-form 

and planar chromophore. The excitation peak of this protein is 558, the emission peak is 605. 

The quantum yield is 0.35. Figure 3.6C shows the interactions between chromophore and protein 

matrix. His 197 forms pi-stacking with chromophore. Asn 143 and Thr 158 form two hydrogen 

bonds with the phenolic oxygen atom from the chromophore. Arg 92 forms a hydrogen bond 

with the oxygen of the imidazole ring from the chromophore. After running MD simulations, the 

chromophore rotated. Trp 140 forms pi-stacking with the chromophore. Arg 92 forms cation-pi 

interactions with the chromophore. There are four water molecules that form hydrogen bonds 
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with the phenolic oxygen atom. Figure 3.6E shows the changes of planar angle during the last 

400 ns MD simulations, 1600-2000 ns. The range of the planar angle changes is around 35º - 65º. 

 Discussion 

Since fluorescent proteins were first found, they have been studied to extend the 

fluorescence ranges and increase the fluorescence intensity. In order to enhance their utility, 

engineering of the fluorescent proteins has been worked on. The local environments of the 

chromophores have been shown to have a huge effect on the intensity of the fluorescence, and 

emission wavelengths (Shaner et al., 2007). 

The trans-form chromophore fluorescent proteins are always more interesting than cis-

form chromophore fluorescent proteins. Most of the time, the trans-form fluorescent proteins 

were captured as a planar chromophore by X-ray crystallography. Crystal structures are only 

showing one conformation and cannot show all the protein’s conformations. Hence, we 

performed MD simulations to study trans-form fluorescent proteins and to identify the properties 

of local environments and chromophore. From this MD simulation study, we can easily find that 

the trans-form chromophores tend to be non-planar at 300 K. This is different from the crystal 

structures. The trans-form chromophores seem to wiggle at certain angles. The chromophore of 

TagBFP was non-planar when it was captured by X-ray crystallography. The planar angle is 

67.5º. Since the chromophore is non-planar, the phenol ring faces to the Tyr 197 and Phe 143 

and form the two pi-stacking interactions, and it also makes the chromophore face to Arg 92 to 

form a cation-pi interaction. These main three interactions also stabilized the chromophore. 

TagBFP also shows similar results from MD simulations. The differences of the TagBFP 

chromophore interactions with protein matrix is Lys 67 forms the cation-pi with the 

chromophore instead of Arg 92. Even though TagBFP chromophore interacts with different 
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residues, the chromophore still has two pi-stacking and one cation-pi interactions. The two pi-

stacking extends the pi-conjugation of the chromophore. This may increase the quantum yield.  

TagRFP is another trans-form fluorescent protein. The chromophore was captured planar 

by X-ray crystallography. His 197 forms pi-stacking with the chromophore which can extend the 

pi-conjugation. Asn 143 and Ser 158 form two hydrogen bonds with the chromophore. However, 

the MD simulations results show the planar angle turned and is wiggling between 42º - 58º. 

Since the chromophore planar angle turned, three water molecules form three hydrogen bonds 

with the phenolic oxygen atom. After the planar angle turned, the chromophore formed more 

hydrogen bonds with water, this stabilizes the chromophore.  

LSSmKate2 is a long Stokes shift fluorescent protein. The crystal structure shows the Arg 

197 forms a cation-pi interaction with the chromophore. Ser 158 and one water molecule forms 

two hydrogen bonds with the chromophore. After MD simulations, the two ring’s dihedral angle 

of the chromophore turned. Arg 197 still forms a cation-pi with the chromophore. There are three 

water molecules forming three hydrogen bonds and Arg 92 forms a salt bridge with the 

chromophore.  

mRuby is also a trans-form fluorescent protein. The crystal structure shows His 197 

forms pi-stacking, Asn 143 and Thr 138 form two hydrogen bonds with the phenolic oxygen 

atom. Arg 92 hydrogen bonds with the oxygen from the imidazole ring from the chromophore. 

After MD simulations, the dihedral angle of the two rings also turned. The interactions of the 

chromophore and protein matrix are changed. Trp 140 forms pi-stacking and Arg 92 forms a 

cation-pi interaction with the chromophore. There are three water molecules that form hydrogen 

bonds. 
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The planar trans-form fluorescent protein crystal structures are different from MD 

simulations results. The planar trans-form chromophores tend to be non-planar at 300 K. The 

non-planar chromophores have different interactions with the protein matrix. This has been 

ignored. Here, this study pointed out the trans-form chromophores of crystal structures 

interactions can’t present the real interactions of chromophores. Also, there are some important 

residue sites. Residue site 197 can interact with the chromophore. Histidine can form pi-stacking, 

Arginine can form cation-pi interaction. Residue 143 can also interact with the chromophore. 

Residues 67 and 92 also can interact with the chromophore to form either hydrogen bonds or 

cation-pi interactions.  This shows that care must be taken in using the crystal structures of 

fluorescent proteins and MD simulations can be used to find real interactions and the interaction 

residue sites. These results can help to engineer new fluorescent proteins with random mutations. 

 Materials and Methods 

 The fluorescent proteins’ preparation  

 Protein preparation 

The crystal structures of red fluorescent proteins were obtained from Protein Data Bank. 

The water was removed beyond 3.0 Å. All the proteins were prepared by Schrödinger Protein 

Preparation Wizard (Sastry et al., 2013). 

 The molecular dynamic simulations study of the red fluorescent proteins 

After the structures were prepared by Schrödinger Protein Preparation Wizard (Sastry et 

al., 2013), each fluorescent protein system was built by Desmond system builder (Schrödinger 

Release 2021-4). The TIP3P water molecules were added. Sodium chloride was used to 

neutralize the system, 0.15M sodium chloride was added into the system. The water box shape 
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was orthorhombic and the size of the box was 10 × 10 × 10 Å. OPLS4 was used for the force 

field (Jorgensen and Tirado-Rives, 1988; Lu et al., 2021). The temperature was 300 K. The 

total simulation time is 2000 ns on each protein. 

 MD simulations trajectory analysis 

The MD trajectory was analyzed by Schrödinger Desmond (Schrödinger Release 2021-

4). The planar angles were analyzed by the MD simulations trajectory event study. 

All data was processed by Schrödinger Desmond (Schrödinger Release 2021-4). All of 

the figures were presented by UCSF ChimeraX version is 1.1 (2020-10-07) (Goddard et al., 

2018).  
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 Figures 

 

Figure 3.1 The structure of fluorescent protein and different color fluorescent proteins’ 

chromophores. 

A. Shows the structure of red fluorescent protein (PDB ID: 3M22). Fluorescent proteins have a 

β-barrel and a chromophore. Normally, the size of β-barrel is around 30 × 40 Å. B. It shows the 

typical green fluorescent protein’s chromophore, CRO. C. Shows the cyan fluorescent protein’s 

chromophore, SWG. D. Shows the red fluorescent protein’s chromophore, NRQ. E. Shows the 

yellow fluorescent protein’s chromophore, CR2.  
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Figure 3.2 The blue and red fluorescent proteins and the chromophore interactions with 

protein matrix. 

Figure 3.2A. and 3.2B. show the red fluorescent protein, TagRFP. The PDB ID is 3M22. Figure 

3.2B is the top view of Figure 3.2A. The chromophore of TagRFP is flat. Figures 3.2C. and 

3.2D. show the blue fluorescent protein, TagBFP. The PDB ID is 3M24. Figure 3.2 D is the top 

view of Figure 3.2C. The chromophore of TagBFP is not flat. The light blue dashed lines show 
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the pi stacking between the chromophore and protein matrix. The dark green dashed line shows 

the cation-pi interaction between the chromophore and protein matrix. The magenta dashed line 

shows the salt bridge between the chromophore and protein matrix. The chromophore of blue 

fluorescent protein has more interactions with protein matrix. 
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Figure 3.3 The conformations of TagBFP fluorescent protein.  

A. The conformation of crystal structure of TagBFP chromophore (PDB ID: 3M24). The blue 

arrow shows the rotated bond, which results in the dihedral angle changing. B. The crystal 

structure of TagBFP fluorescent protein. C. The crystal structure of TagBFP chromophore. The 

light blue dashed lines show the pi stacking. The dark green line shows the cation-pi interaction. 

The magenta dashed line shows the salt bridge. The Tyr 197 and Phe 143 form two pi-stackings 

with the chromophore. The Arg 92 forms the cation-pi interaction and the salt bridge with 

chromophore. D. The most common conformation found in MD simulations. The Tyr 197 and 

Phe 143 form pi-stacking with the chromophore. Lys 67 forms a cation-pi interaction and a salt 

bridge interaction with the chromophore. Arg 92 forms a salt bridge with chromophore. E. The 

planar angle, which is the dihedral angle of the chromophore (shown in 3.4A). In this figure, the 
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dihedral angle (planar angle) is around 42º - 70º between 1600 ns – 2000 ns. The chromophores 

two rings dihedral angle prefers certain angles. 
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Figure 3.4 The conformations of TagRFP fluorescent protein. 

A. The conformation of the crystal structure of TagRFP chromophore (PDB ID: 3M22). The blue 

arrow shows the rotated bond, which results in the dihedral angle changing. B. The crystal 

structure of TagRFP fluorescent protein. C. The crystal structure of TagRFP chromophore. The 

light blue dashed lines show the pi stacking. The yellow lines show the hydrogen bonds. His 197 

forms pi-stacking with the chromophore. The Asn 143 and Ser 158 form two hydrogen bonds 

with the chromophore. D. The most common conformation shown in MD simulations. The His 

197 forms pi-stacking with the chromophore. There are three water molecules that form 

hydrogen bonds with the phenolic oxygen atom from the chromophore. Two water molecules 

form hydrogen bonds with the oxygen of the imidazole ring. E. Shows the planar angle, which is 
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the dihedral angle of the chromophore (shown in 3.4A). In this figure, the dihedral angle (planar 

angle) is around 26º - 57º between 1600 ns – 2000 ns.  
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Figure 3.5 The conformations of LSSmKate2 red fluorescent protein. 

A. The conformation of the crystal structure of LSSmKate2 chromophore (PDB ID: 3NT3). The 

blue arrow shows the rotated bond, which results in the dihedral angle changing. B. The crystal 

structure of LSSmKate2 fluorescent protein. C. The crystal structure of LSSmKate2 

chromophore. The dark green dashed lines show the cation-pi interaction. The yellow dashed 

lines show the hydrogen bonds. Arg 197 forms a cation-pi interaction with chromophore. Ser 158 

forms hydrogen bonds with the chromophore. One water molecule forms a hydrogen bond with 

the oxygen of the phenol from the chromophore. D. The most common conformation found in 

MD simulations. Arg 197 forms a cation-pi interaction with the chromophore. There are three 

water molecules that form hydrogen bonds with the oxygen of the phenol from the chromophore. 

The magenta dashed line indicates a salt bridge Arg 92 forms with the chromophore. E. Shows 
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the planar angle, which is the dihedral angle of the chromophore (shown in 3.5A). In this figure, 

the dihedral angle (planar angle) is around 38º - 67º between 1600 ns – 2000 ns.  
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Figure 3.6 The conformations of mRuby fluorescent protein. 

A. The conformation of the crystal structure of the mRuby chromophore (PDB ID: 3U0M). The 

blue arrow shows the rotated bond, which results in the dihedral angle changing. B. The crystal 

structure of mRuby fluorescent protein. C. The crystal structure of mRuby chromophore. The 

light blue dashed line shows the pi-stacking. The yellow lines show the hydrogen bonds. His 197 

forms pi-stacking with chromophore. Asn 143 and Thr 158 form hydrogen bonds with the 

oxygen of the phenol from the chromophore. Arg 92 forms a hydrogen bond with the oxygen of 

the imidazole ring from the chromophore. D. The most common conformation found in MD 

simulations. Trp 140 forms pi-stacking with the chromophore. There are four water molecules 

forming hydrogen bonds with the oxygen of the phenol from the chromophore. Arg 92 forms a 

cation-pi interaction with the chromophore as shown with the dark green dashed line. Arg 67 
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forms a hydrogen bond with the oxygen of the imidazole ring. E. Shows the planar angle, which 

is the dihedral angle of the chromophore (shown in 3.6A). In this figure, the dihedral angle 

(planar angle) is around 35º - 65º between 1600 ns – 2000 ns. 
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 Tables 

Table 3.1 Physical properties of red and blue fluorescent proteins 

Name Excitation Peak (nm) Emission Peak (nm) Quantum Yield 

TagBFP 402 457 0.63 

TagRFP 555 584 0.48 

DsRed 558 583 0.68 

TagRFP-T 555 584 0.41 

mRuby3 558 592 0.45 

mRuby2 559 600 0.38 

mRuby 558 605 0.35 

LSS-mKate 2 460 605 0.17 

eqFP611 559 611 0.45 

LSS-mKate 1 463 624 0.08 

Rtms5 592 630 0.004 

mKate 588 635 0.33 

Neptune 600 650 0.18 

mCardinal 604 659 0.19 
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Chapter 4 - The application and assessment of AlphaFold2 in drug 

design 

 Summary 

There are 180,000 protein structures available in the Protein Data Bank that have been 

resolved by experimental methods, however this is still the tip of the iceberg compared to DNA 

encoded proteins. People have been trying to determine protein structures for the past 50 years, 

either with experimental or computational methods. The most inspiring thing that happened last 

year is the achievement of AlphaFold2 in Critical Assessment of Protein Structure Prediction 

(CASP). After this competition, AlphaFold2 has expanded the protein structures to around 

350,000 structures, which is a huge contribution towards understanding numerous biological 

processes. However, the limitation of this new AI-based method has been neglected. Here, we 

focused on the assessment and application of the structures predicted by AlphaFold 2 on popular 

drug targets. It provides and emphasizes a valuable way to apply the AI developed method in 

drug discovery. 
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 Introduction 

Protein structures have been contributing to the elucidation of the mechanisms of 

metabolisms and drug design. There are over 180,000 protein structures available in the protein 

data bank (PDB) which contains structures solved by X-ray diffraction, nuclear magnetic 

resonance (NMR), cryogenic electron microscopy (Cryo-EM), and other experimental methods. 

The number of experimental structures is still expanding in the protein data bank, however there 

is still a huge gap between the number of experimentally solved structures and the total known 

DNA encoded proteins. Last year the biggest news in structural biology is that AlphaFold2 

achieved a new level of protein structure prediction in Critical Assessment of Protein Structure 

Prediction 14 (CASP14). The AlphaFold2 (AF2) paper finally came out in Nature in 2021, 

which explains the algorithm of AI-based structure prediction method (Jumper et al., 2021). 

After it came out, this method has been applied to multiple different biological and biochemical 

fields. However, this method has not been applied to the drug discovery field. Computer aided 

drug design (CADD) is a huge advantage for finding new potential drug compounds as it is faster 

and lower cost than other approaches. However, it heavily relies on drug target structures. Since 

there are very limited protein structures available, high confidence predicted structures are very 

important to drug discovery. A big challenge in drug discovery is the prediction of flexible loops 

and protein multi-states. Loops always show incredible behavior in protein functions. It is also 

very hard to obtain the loop structures by experimental methods such cryo-EM or X-ray 

crystallization. Another big challenge in drug discovery is drug resistance. One of the reasons 

that causes drug resistance is mutations in the protein target (Fojo and Bates, 2013; Frey et al., 

2010; Ghosh et al., 2020; Ito et al., 2001). Researchers are also trying to predict resistance 

mutations (Frey et al., 2010). To develop drugs for these new mutants, either computational or 
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crystallization methods can be utilized to determine their structure. However, obtaining 

structures experimentally takes a long time. These two challenges are critical to drug discovery. 

The quality and accuracy of loops and mutants’ structures is important to drug discovery, and 

lower quality protein structures can mislead researchers and waste time and resources. 

Root-mean-square deviation (RMSD) has been used to evaluate predicted structures. It is 

a superposition method, aligning the alpha carbons of the predicted structure and reference 

structures. A lower RMSD value shows the two structures are more similar. This method is a 

quick and straightforward assessment resulting in a simple evaluation. It is the general standard 

to evaluate predicted structures and is also heavily used in virtual screening (Kirchmair et al., 

2008). There are of course shortcomings in using the RMSD method. The flexibility of proteins 

is an issue, and especially with the hinges between subdomains which are more likely loops, 

some of the structures are disordered in apo-form. So, subdomains’ orientations are evaluated by 

RMSD. Sometimes the domain has a low RMSD value, but the overall RMSD is high. To have a 

better understanding of the predicted structures, AlphaFold2 uses different methods to evaluate 

the predicted structures by a local superposition-free score (lDDT) and global distance test 

(GDT). The subdomains’ orientations do not affect the lDDT score. (Mariani et al., 2013) 

The protein structures used in drug discovery always require very high quality, including 

the sidechain poses and binding modes. The modes of the AlphaFold2 predicted structures are 

going to be important to drug design. One of the things that must be taken into account is that the 

structures predicted by AlphaFold2 from the AlphaFold Protein Structure Database are not 

considered co-factors and complexes.  

Here we used typical popular drug targets to evaluate and more deeply explore the 

advantages and limitations of this innovative method. 
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 Results 

 Liver X Receptor beta and Retinoic Acid Receptor alpha 

Nuclear hormone receptors (NRs) are transcription factors that are composed of multiple 

subfamilies of proteins. There are many members of nuclear receptors related to various 

processes of physiology and pathology(Chawla et al., 2001; Evans, 2005). The study of nuclear 

receptors has revealed some of the mechanisms of nuclear receptors. It is also shown that many 

nuclear receptors are related to multiple cancers, hence they have caught people’s attention and 

the members of nuclear receptors became drug targets (Weikum et al., 2018; Zhao et al., 2019). 

Most of the nuclear receptors have similar structures which contain five domains: N-terminus 

domain (NTD), DNA binding domain (DBD), hinge region, and ligand binding domain (LBD) 

(shown in Figure 4.1A) (Lou et al., 2014). Here, we used retinoic acid receptor alpha (RXRα), 

liver X receptor beta (LXR-β), and RXRα-LXRβ complex to evaluate the quality of predicted 

structures by AF2. 

Liver X receptor beta (LXR-β) is related to regulation of the lipid and cholesterol 

metabolism, and other physiological processes (Korach-André et al., 2011). LXR-βs are 

important drug targets in different diseases (Jakobsson et al., 2012). LXR-βs bind with RXRs 

forming heterodimers which bind to their cognate agonist ligands. Then the complexes conduct 

the active LBD domain conformations. Understanding the structure of LXR-RXRα complex is 

essential to reveal the NRs functions, and drug design. The RXRα-LXRβ complex is very 

interesting as it is different from the other NR family members. The crystal structure of RXRα-

LXRβ complex shows the LBD and DBD domains form an X-shaped arrangement (Figure 

4.1H). Figure 4.1A shows the crystal structure of retinoic acid receptor alpha (RXR-α) with liver 

X receptor beta (LXR-β) on DNA (Lou et al., 2014). We used this complex to evaluate the AF2 
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predicted structure. Figures 4.1B and 4.6A show the AF2 predicted LXR model. After 

superimposing the predicted structures and the crystal structure, the RMSD is 0.605 Å. The 

plDDT score indicates the prediction confidence of different areas of the structure. The loops 

between each domain are shown with low confidence. The same thing happens to the RXR-α 

predicted model. Figures 4.1C and 4.6B show the AF2 predicted RXRα models. The RMSD is 

0.456 Å. The loops between each domain of the RXR-α AF2 predicted model also show low 

confidence. It is very hard to predict flexible structures and it is also very hard to obtain these 

regions from crystal structures. Next, we used AF2 to predict the complex. Figures 4.1D and 

4.6C show the AF2 predicted RXRα-LXRβ complex. It is similar with the predicted LXRβ and 

RXR-α structures, the LBD domains from the predicted complex show higher confidence than 

other domains. Figure 4.1G shows the superimposition of the predicted complex and the crystal 

structure. From the side view to look at the predicted complex, AF2 failed to generate the DBD 

domains of RXRα-LXRβ. 

The AF2 predicted LBD domains show high confidence. Hence, we did a docking study 

to deeply evaluate the AF2 predicted structures. Compound 1 and compound 2 shown in Figure 

4.1 are LXR and RXR agonists. For better evaluations we used the same protein sequences as the 

crystal structure to regenerate the AF2 predicted LXR and RXR structures. Figure 4.2A shows 

the AF2 predicted structure superimposed on to the LXR-RXR crystal structure. Figure 4.2B 

shows the AF2 predicted structure superimposed on to the LXR-RXR crystal structure. Figures 

4.2C and 4.2B show the LXR and RXR structure plDDT scoring and the LXR crystal structure 

and the RXR crystal structure superimposed. Figure 4.2E shows the binding site of RXR. The 

crystal structure of RXR and ligand are shown in blue. The predicted structure is shown in green. 

The docked ligand is shown in pink. Figure 4.2F shows the zoomed-in view of the binding site. 
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The docking score is -9.420, the glide gscore is -9.425 (the smaller number is better). Using the 

crystal structure to do docking, the docking score is -9.739 and the glide gscore is -9.743 (Figure 

4.7.). AlphaFold2 performed well on the RXR LDB domain. We kept evaluating the LXR LDB 

domain. The AF2 predicted LXR LBD domain was used to perform docking. However, we can’t 

produce any docking results even though the structure has a low RMSD and is showing high 

confidence by plDDT. Figure 4.8 explains in detail why this docking failed. Figure 4.8A shows 

the sidechain of the binding site. Figure 4.8B shows the ligand in the predicted structure after 

superimposing the two structures. Figure 4.8B shows steric clashing between the sidechain of 

Phe340, and the ligand circled in black. The red dashed lines show the bad clash that is causing 

the docking to fail. In Figure 4.8, most of the side chains are quite similar, the biggest difference 

is Phe340. 

 Estrogen Receptor alpha 

Another popular nuclear receptor as a drug target is estrogen receptor alpha (ERα). 

Estrogen receptor alpha is related to breast career which is the most common cancer in women. 

Over half of breast cancers overexpress ERα (Ali and Coombes, 2000). Tamoxifen has been used 

to treat all stages of estrogen receptor positive breast cancer (Jordan, 2003). Tamoxifen was also 

the first cancer chemotherapy approved by the FDA. However, clinical evidence is showing drug 

resistance after extended treatment. A big challenge to predicting protein structures is to predict 

mutants. For testing AlphaFold2 protein mutant prediction, we used the two common ERα 

mutants Y537S and D538G to evaluate AF2 prediction performance. 

We used AF2 to generate the two mutants and evaluated the predicted wild type ERα, 

and the two mutants’ structures. Figures 4.3A and 4.9 show the predicted full-length wildtype 

structure. The superimposition of crystal structure and AF2 predicted structure of wildtype ERα 
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is shown in Figure 4.3A. The crystal structure of wildtype ERα is shown in gold, the ligand is 

shown in salmon (PDB ID: 1YIM). The AF2 predicted wildtype ERα is shown in purple. The 

RMSD value between the crystal structure and AF2 predicted structure is 0.514 Å. The black 

circle shows the steric clash between the ligand and helix 12 (H12). Figure 4.3A shows the 

ligand clashes with the AF2 predicted structure. Figures 4.3C and 4.10A show the zoomed in 

view of the binding pocket. The red dashed lines show the clash in Figure 4.10B. This clash 

causes the docking to fail. We kept studying the other two mutants, Y537S, and D538G. There 

were similar results as with the wildtype ERα. The RMSD values of Y537S and D538G are 

0.534 Å and 0.530 Å. The ligands clash with H12 shown in Figures 4.3B, 4.3D, 4.12B. Figure 

4.12A shows the binding site of the crystal structure of mutant Y537S, Figure 4.12B shows the 

binding site of the AF2 predicted Y537S structure. The red dashed lines show the bad clash 

between the ligand and the receptor. Figures 4.9, 4.11A, and 4.11B show the wildtype, Y537S, 

and D538G AF2 predicted structures with plDDT confidence. It shows the AF2 structures with 

high confidence. Even with high RMSDs and plDDT confidence, the AF2 predicted structures of 

ERα still fail to generate docking results. 

 PTP1B 

The protein tyrosine kinases (PTKs) and phosphatases (PTPs) are important to the 

growth, proliferation, differentiation, survival, and apoptosis pathways (Hunter, 2000).  Protein 

tyrosine phosphatase 1B (PTP1B) is one of the protein tyrosine phosphatases (PTPs) family and 

a potential drug target for the treatments of type 2 diabetes, obesity and HER2-positive breast 

cancer (Krishnan et al., 2014). PTP1B has been shown to play a critical role in signaling 

pathways, especially involving insulin and leptin signaling (Zhang and Zhang, 2007). PTP1B as 

a tyrosine phosphatase catalyzes the hydrolysis of phosphorylated tyrosine residues using a 
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phosphocysteine (Pannifer et al., 1998). The PTP1B’s catalytic site contains the PTP loop, the 

WPD loop, and the substrate binding loop (Choy et al., 2017). The PTP loop 

(VHCSXGXGR[T/S]G) includes the catalytic cysteine Cys215, which is the phosphate-binding 

loop; the WPD loop (WPDXGXP) includes Asp181, which is the proton donor and acceptor 

during phosphoryl transfer (Andersen et al., 2001). The WPD loop is also highly conserved 

among PTP domains. The WPD loop switches from the open state to the closed state by the 

substrate binding (Choy et al., 2017). Figure 4.4A shows the superimposition of crystal 

structures of the two states of PTP1B (PDB ID: 5K9V – open state; 5K9W – closed state) (Choy 

et al., 2017). The main difference between the two states is the WPD loop. The open state loop is 

open towards the outside. After binding the ligand, the WPD loop closes towards the inside of 

the binding pocket forming the closed state. The ligand is shown in gray. To know which state 

AF2 predicted for PTP1B, we superimposed the AF2 structure with the open and closed state 

crystal structures (shown in Figure 4.4B and 4.4C). After comparison we found that the AF2 

predicted PTP1B structure is in the closed state which binds to the ligand. Figure 4.4B shows the 

open state of PTP1B superimposed with the AF2 predicted structure. Figure 4.4C shows the 

closed state of PTP1B superimposed with the AF2 predicted structure. Figure 4.4D shows the 

zoomed in view of the superimposed binding pocket of the closed state and the AF2 predicted 

structure. The sidechain of the AF2 predicted structure is quite similar with the crystal structure. 

We used the AF2 predicted structure as the receptor and docked the ligand into it. We then used 

the closed state crystal structure to dock the ligand back into the receptor. The results are shown 

in Figures 4.4E and 4.4F. The AF2 structure is shown in blue, the docked ligand is shown in dark 

blue. The crystal structure is shown in pink, the docked ligand is shown in dark pink. Both 

docked ligands’ poses are very similar. The crystal structure's docking score is -9.099, the glide 
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gscore is -9.123. The AF2 predicted structure’s docking score is -8.064, the glide score is -8.088. 

Both docked ligand’s poses look quite similar, the docking scores are around 1 different. Figure 

4.4F shows the zoomed in view of the binding pocket. The ligand from the crystal structure is 

shown in gray. The AF2 structure's binding pocket is quite similar with the crystal structure 

except for Phe182 which is changing the shape of the binding pocket. The small discrepancy 

between the two structures leads to the docking error. The AF2 predicted structure docking result 

is still quite good. 

 Insulin Receptor 

Insulin receptor (IR) is a receptor tyrosine kinase (RTK) and a critical drug target related 

to glucose metabolism and cell growth. Unlike other RTKs, insulin receptor covalently links and 

forms a homodimer by multiple disulfide bonds. It contains two chains, 𝛼𝛼 and 𝛽𝛽. There is the 

extracellular region, transmembrane region, and the cytoplasmic region. The extracellular region 

contains various domains, L1, CR, L1, Fibronectin type-III 1 (FnIII-1), Fibronectin type-III 2 

(FnIII-2), Fibronectin type-III 3 (FnIII-3) and insert domain (ID-𝛼𝛼, ID-𝛽𝛽) (Figure 4.5J). In this 

region it also contains two insulin-binding sites with different binding affinities (Figure 4.5D). 

The cytoplasmic region contains juxtamembrane (JM), and tyrosine kinase (TK) domains (Figure 

4.5J). The cryo-EM structures show the inverted “V” and “T” shape of insulin receptor 

(Gutmann et al., 2018; Scapin et al., 2018; Weis et al., 2018). Recently the extracellular region 

structure of insulin receptor was solved by cryo-EM, and it revealed the ‘T’ shape of the 

homodimer architecture (Figure 4.5C and Figure 4.5D, PDB ID: 6PXV) (Uchikawa et al., 2019). 

Here we used the cryo-EM structure of insulin receptor as a reference to evaluate the AF2 

predicted model of insulin receptor. This cryo-EM structure resolution is 3.2 Å. Figure 4.5A 

shows the AF2 predicted structure with confidence evaluated by the lDDT method. It clearly 
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shows that most of L1, L2, FnII-1, FnIII-2, FnIII-3, and TK domains have relatively high 

confidence. The CR domain failed to build, and its secondary structures predicted as helices and 

loops are not packed well in the AF2 model. Due to the failure of the CR domain to pack, the L1 

and L2 domains are in the wrong layout. Hence the insulin binding sites also failed to build. The 

insert domain and transmembrane domain are shown with low confidences. After comparing 

with the cryo-EM structure, the insert domain is on the wrong side of the protein. The TM 

domain is folded toward the extracellular region which causes the TK domain to be in the 

extracellular region. This AF2 predicted structure fails to show each domain layout. The cryo-

EM structure revealed insulin 1 bound to L1, FnIII-1, and 𝛼𝛼-CT (Uchikawa et al., 2019). Since 

the AF2 predicted model failed to build the overall structure we believe using this structure to 

study insulin binding or the layout of each domain is not going to be successful. We did not keep 

evaluating the full-length insulin receptor binding with insulins. 

As we know, the flexible region and the connections between the domains are a big 

challenge to be predicted. These regions are also very hard to obtain by crystallography and 

cryo-EM structures. Hence, we evaluated the important domains in the insulin receptor. 

Insulin receptor is an essential tyrosine kinase, the tyrosine kinase domain is the key to 

regulation of cell functions. Insulin receptor tyrosine kinase has been crystallized. We used the 

crystal structure as a reference to evaluate the AlphaFold2 predicted model and used AF2 to 

rebuild a new model that only contains the TK domain. The crystal structure of insulin receptor 

tyrosine kinase domain is bound to a small molecule, cis-(R)-7-(3-(azetidin-1-

ylmethyl)cyclobutyl)-5-(3-((tetrahydro-2H-pyran-2-yl)methoxy)phenyl)-7H-pyrrolo[2,3-

d]pyrimidin-4-amine (Stauffer et al., 2016). The PDB ID is 5HHW shown in Figure 4.5F. We 

superimposed two structures with the crystal structure. The RMSD of the TK domain and the 
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crystal structure is 0.776Å, the RMSD of the TK domain from full-length IR and the crystal 

structure is 0.909Å. The regular superimpose only compares the backbone and uses RMSD value 

to show the similarity. The smaller RMSD value shows the model is more similar. From the 

simple backbone comparison, it shows the TK domain predicted model is a little bit better than 

the TK domain from the full-length IR predicted model. However, the RMSD method is too 

simple to compare structures’ similarity. For deeper investigation of these two predicted models, 

we looked at the predicted structures shown in plDDT model confidence. The new AF2 

predicted TK domain model of insulin receptor is shown in Figures 4.5G and 4.14B. Figures 

4.5A and 4.14A show the full-length insulin receptor model with the model confidence, the 

tyrosine kinase domain region is shown to have relatively high confidence. The figures 4.5G and 

4.14B show the new TK domain which is with higher confidence than the TK domain from the 

full-length IR model. Unfortunately, the binding site of TK domain model shows low confidence 

(Figures 4.5 and 4.14B). We then performed a docking study of this domain. As expected, the 

docking results of both predicted models presented poorly (Figures 4.5H). The ligand did not 

dock into the binding pocket. We also used the crystal structure to generate the grid, then docked 

the ligand back to the receptor; the docking results are shown in Figures 4.15D and 4.15E. It 

shows the docked ligand is in the binding pocket. The table in Figure 4.15 shows the docking 

scores and glide gscores. The crystal structure docking score is -10.346, the glide gscore is -

10.349. The docking score of the AF2 predicted structure is -6.062, and the glide gscore is -

6.064. Both the scores and the docking pose shows the AF2 result has lower accuracy. We 

further investigated the AF2 predicted structure to find the reason docking failed. In the binding 

pocket there is an important loop predicted with low confidence. This loop causes the docking to 
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fail and blocks the ligand entering into the pocket. In this case AF2 failed to generate a correct 

loop. 

 Discussion 

AlphaFold Protein Structure Database now is available online. People can easily 

download the AF2 predicted structure from the Database or through uniprot.org. This allows 

researchers to easily obtain the protein structures. AlphaFold offers a confidence assessment of 

the predicted structures by plDDT and expected position error. However, protein structures have 

multiple states. Sometimes it is very hard to estimate the structure accuracy of the various protein 

states, and that of sidechains by just looking at the backbone cartoon view. Despite this 

assessment, our work with AlphaFold2 predicted structures is limited to only a few typical 

popular drug targets, though it still covers different cases, and the main goal of this paper is to 

show the performance details of AlphaFold2 and to help people better understand AlphaFold2 

and protein structures. It evaluates the performance of AlphaFold2 and points out the confidence 

of the structures and the details of the predicted protein structures, such as the loops and 

sidechains which have been neglected in the past. Even with good RMSDs and plDDT values, 

the predicted structures still need to be reevaluated, especially if there are different states of 

proteins, and ligand binding modes which is of more interest in drug discovery. Drug discovery 

requires very high-quality protein structures.  

We worked on the assessment of AF2 predicted structures of RXR-α, LXR-β, Erα, 

PTP1B, insulin receptor, and insulin receptor tyrosine receptor. We found LXR-β has a good 

docking result. The AF2 predicted LXR-β binding site shows high confidence, and the docking 

result also shows good results compared with the crystal structure (shown in Figures 4.2D and 

4.7). Unfortunately, the AF2 predicted RXR-α structure can’t be used to do docking even though 

https://alphafold.ebi.ac.uk/
https://www.uniprot.org/
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this structure has very high confidence. To study AF2 prediction of mutants, a protein notorious 

for drug resistance, estrogen receptor alpha was used as an example. After compared to the 

wildtype, mutant Y537S, and mutant D538G, all AF2 predicted structures failed to generate 

correct structures on helix 12. PTP1B was studied as a typical protein tyrosine phosphatase. The 

WPD loop has two states, open and closed states. As drug designers, we are more interested in 

which state AF2 predicted. In the case of PTP1B, AF2 predicted the closed state, which is the 

ligand binding mode. This is very important to drug design for studying ligand binding with 

receptors. The PTP1B docking results show a slight side chain difference which causes the 

docking results to be different. With a low confidence predicted structure as with the case of 

insulin receptor, the full-length insulin receptor predicted structure is not as high confidence as 

other studied cases in this work. As expected, the insulin receptor AF2 predicted structure also 

did not produce satisfactory results. However, one of the domains were of high confidence, the 

tyrosine kinase domain. Although the general confidence of the AF2 TK domain structure is 

quite high, the binding site area shows lower confidence than the other part of the TK domain. 

Hence, we did not get a decent docking result. 

After we evaluated the AF2 predicted structures, we found not all the structures are good 

enough to apply into drug discovery. There is no rule to make it easy to evaluate the performance 

of AF2 predicted structures. We still tried to summarize the assessment. First, looking at the 

plDDT confidence figure we can understand the general AF2 structure performance. If the 

structure or motif already shows low confidence, this means the predicted structure is not very 

good to use for docking study or virtual screening. Then if the predicted structure has high 

confidence, we can look at the details of the AF2 structure. Even if there are a lot of protein 

structures that have not been solved by either X-crystallography or cryo-EM, we are still able to 
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find an experimental structure from the same family or other species to look at the binding sites 

or the conserved residues and verify the state of the predicted structure. 

There is a huge contribution to science by AlphaFold2. It offers structural information 

and is trying to fill the gap between the number of experimental structures and known DNA 

coded proteins. This helps researchers to have a better understanding of protein functions. This 

work offers the objective and detailed assessment of using AlphaFold2 predicted structure to 

study drug discovery and gives a brief guide of how to use AlphaFold2 structures.  

 Materials and Methods 

 Predicted Model Building 

The full-length human proteins of AlphaFold 2 predicted structures were obtained from 

AlphaFold Protein Structure Database (https://alphafold.ebi.ac.uk) (Jumper et al., 2021). Other 

proteins of AlphaFold2 predicted structures were obtained by running AlphaFold2 Python code 

on Google Colab 

(https://colab.research.google.com/github/deepmind/alphafold/blob/main/notebooks/AlphaFold.i

pynb). The crystal structures were obtained from Protein Data Bank (PDB). 

 Ligand Docking 

Glide was used to study ligand docking. The crystal structures were prepared by Protein 

Preparation Wizard (Sastry et al., 2013). The ligands were prepared by LigPrep. The receptor 

grids were generated by Receptor Grid Generation (Schrödinger Release 2021-4). All binding 

pockets coordinates are obtained from crystal structures. The docking study used Glide 

(Schrödinger Release 2021-4) (Friesner et al., 2004; Friesner et al., 2006; Halgren et al., 2004). 
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 Structural Assessment 

The structural comparisons in this study were performed with different methods, which 

are RMSD, and plDDT. UCSF ChimeraX was used to align these predicted structures and 

calculate these RMSD values. The UCSF ChimeraX version is 1.1 (2020-10-07) (Goddard et al., 

2018). The values of plDDT were obtained from the AlphaFold2 on Google Colab. The protein 

structures were visualized by ChimeraX. The chemical formulas were drawn by ChemDraw 

20.1. 

  



83 

 

 

 Figures 

 

Figure 4.1 The crystal structure and AlphaFold2 predicted retinoid X receptor alpha–liver 

X receptor beta complex.  

A. shows the crystal structure of the retinoid X receptor alpha–liver X receptor beta (RXRα-

LXRβ) heterodimer binds to DNA (PDB ID: 4NQA). Most nuclear receptors have a similar 

structure which mainly contains five subdomains, N-terminus domain (NTD), DNA binding 

domain (DBD), hinge, and ligand binding domain (LBD). The bottom of the proteins in contact 

with DNA are the DNA binding domain. The Retinoic acid receptor alpha (RXR-α) is in purple. 

The liver X nuclear receptor beta (LXR-β) is in cyan. The DNA is in gray. B. shows the AF2 

predicted LXR-β structure (yellow). C. shows the AF2 predicted RXR-α structure (teal). D. 

shows the AF2 predicted full-length RXRα-LXRβ complex structures (RXR-α: teal, LXR-β: 

yellow). H. shows the layout of the RXRα-LXRβ binding with DNA complex. LXR is in cyan. 

RXR is in purple. E. shows the superimposition of AF2 predicted full-length RXR-α LXR-β 
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structure and the crystal structure of LXR- β (AF2 LXR-β: yellow, crystal LXR-β: cyan). F. 

shows the superimposition of AF2 predicted full-length RXR-α structure and the crystal structure 

of RXR-α (AF2 RXR-α: teal, crystal RXR-α: purple). G. shows the superimposition of AF2 

predicted full-length RXRα-LXRβ complex structure (AF2 LXR-β: yellow, crystal LXR-β: cyan, 

AF2 RXR-α: teal, crystal RXR-α: purple). The structure turned 90º. The black circle shows the 

DNA binding domains of AF2 predicted full-length RXRα-LXRβ complex structure. The 

confidence of the structure is shown in Figure 4.6. The table shows the RMSDs of the AF2 

predicted full-length LXR-β structure, the AF2 predicted full-length RXR-α structure, the AF2 

predicted full-length RXRα-LXRβ complex structure, with crystal structure. H. shows the 

schematization of the RXRα-LXRβ complex. Compounds 1 and 2 are the cognate ligand 

structures which bind with two LBDs.  
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Figure 4.2 The RXRα and LXRβ AlphaFold2 predicted models and the crystal structure of 

RXRα-LXRβ complex.  

A. shows the superimposition of the RXRα-LXRβ crystal structure and the LXRβ AF2 predicted 

structure (the protein sequence is the same with the crystal structure). The PDB ID is 4NQA. The 

crystal structure of the RXRα is shown in purple. The crystal structure of LXRβ is shown in 

cyan. The LXRβ AF2 model is shown in gold. B. shows the superimposition of the RXRα-LXRβ 

crystal structure and the RXRα AF2 predicted structure (the protein sequence is the same as the 

crystal structure). The RXRα AF2 predicted model is shown in green. C. shows the LXRβ AF2 

predicted structure. The colors indicate plDDT confidence. The right side of C shows the 

superimposition of the crystal structure and the AF2 model. D. shows the RXRα AF2 predicted 

structure. The colors indicate plDDT confidence. The right side of C shows the superimposition 
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of the crystal structure and the AF2 model. The table shows the RMSDs between the crystal 

structure and AF2 predicted two models. The ligand binding domains of both RXRα and LXRβ 

AF2 predicted models are predicted quite well. However, the DNA binding domains of both AF2 

predicted models failed to generate. E. shows the superimposition of the ligand binding site of 

crystal structure of RXRα and the RXRα AF2 predicted model. F. shows the superimposition of 

the ligand binding site of the RXRα crystal structure and AF2 predicted model. The details of 

binding results and pocket are shown in Figure 4.7. The docked ligand into the AF2 model is 

shown in pink. The table shows the docking score and glide gscore. The LXR-β AF2 predicted 

structure fails to generate a docking result. Figure 4.8 shows the steric clash between the receptor 

and the ligand. 

  



87 

 

 

 
Figure 4.3 The estrogen receptor alpha crystal structures and AlphaFold2 predicted 

structures.  

A. shows the superimposition of wild type estrogen receptor alpha crystal structure and AF2 

predicted structure from two different views. The crystal structure is shown in purple (PDB ID: 

1YIM). The AF2 predicted structure is shown in gold. The black circle shows helix 12 (H12). 

The H12 from the AF2 predicted structure has a different orientation from the crystal structure. 

This difference in orientation causes the H12 steric clashes with the ligand and changes the 

ligand binding site. C. shows the two zoomed-in views of the binding site of A. Figure 4.9 shows 

the AF2 predicted structure’s confidence and the superimposition of the crystal structure and the 

AF2 predicted structure. The black circles show the steric clash of the ligand and the H12 from 

the AF2 predicted structure. Figure 4.10 also shows the details of wild type ERα binding site of 

the AF2 predicted structure. B. shows the superimposition of estrogen receptor alpha mutant 

Y537S crystal structure and the AF2 predicted structure. The crystal structure of the mutant 
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Y537S (PDB ID: 6PSJ) is in salmon. The AF2 predicted mutant Y537S is in light cyan. Figure 

4.11 shows the mutant Y537S AF2 predicted structure’s confidence. H12 is indicated by the 

black circle. There are two different orientations of H12. H12 from the AF2 predicted structure 

has steric clashing with the ligand as well. The Figure 4.12 shows the details of the AF2 

predicted structure steric clashing with the ligand. D. shows the superimposition of estrogen 

receptor alpha mutant D538G crystal structure and the AF2 predicted structure. The crystal 

structure of mutant D538G is shown in blue (PDB ID: 4Q50). The AF2 predicted structure is 

shown in light gray. Figure 4.6B shows the mutant D538G AF2 predicted structure’s confidence. 

H12 from the AF2 predicted structure has steric clashing with the ligand too. Compared to three 

estrogen receptor alpha, H12 from the AF2 predicted models all have different orientations from 

each crystal structure. These different orientations cause H12 to steric clash with the ligands. The 

table shows the RMSDs of crystal structures and AF2 predicted structures. 
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Figure 4.4 The PTP1B crystal structures and AlphaFold2 predicted structure. A. shows 

two PTP1B crystal structures.  

A. shows two PTP1B crystal structures. There are two states, the open and the closed state. The 

difference between two states is the WPD loop. The 5K9V crystal structure which is the open 

state is shown in salmon. The open state WPD loop is shown in green. The 5K9W crystal 

structure which is the closed state is shown in pink. The closed state WPD loop is shown in red. 

B. shows the superimposing structures of the open state crystal structure 5K9V and the AF2 

predicted structure. The AF2 predicted structure is shown in blue. Figures 4.13A and 4.13B 

shows the AF2 predicted structures’ confidences. C. shows the superimposing structures of the 

closed state crystal structure 5K9W and the AF2 predicted structure. From B and C, it shows the 

AF2 predicted structure is the closed state. D. shows the zoomed-in view of the Figure 4.4C 

binding site. E. shows the docking results. The AF2 model’s ligand docking result is in dark 

blue. The closed state crystal structure 5K9W’s ligand docking result is in dark pink. F. shows 
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the zoomed-in view of the binding site. The ligand from crystal structure 5K9W is shown in 

gray. The tables show the RMSDs and the docking scores. The details of the docking results are 

also shown in Figures 4.13D, 4.13E, and 4.13F 
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Figure 4.5 The comparison of AlphaFold2 predicted model of full-length human insulin 

receptor and the cryo-EM structure of extracellular region insulin receptor.  

This cryo-EM structure resolution is 3.2 Å, PDB ID is 6PXV. 

A. shows the AlphaFold2 predicted model for full-length insulin receptor. The structure is shown 

in the confidence by plDDT. The dark blue color shows the confidence is beyond 90%. The light 

blue color shows the confidence between 70% and 90%. The yellow color shows the confidence 

between 50% and 70%. The orange color shows the confidence below 50%. The loop domains 

show low confidence. The flexible domains are very hard to predict, even crystal structures and 

cryo-EM structures are commonly missing these regions’ structures. The insert domain and 

transmembrane domain are shown with low confidences as well. This domain structure appears 

less commonly in experimental structures.  

B. shows the AlphaFold2 predicted model for full-length insulin receptor. The L1 domain is 

shown in pink. The CR domain is shown in light blue. The L2 domain in shown in light purple. 
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The Fibronectin type-III 1 domain (FnIII-1) is shown in light green. The Fibronectin type-III 2 

domain (FnIII-2) is shown in yellow. The Fibronectin type-III 3 domain (FnIII-3) is shown in 

red. The transmembrane domain is shown in olive. The insulin receptor tyrosine kinase 

(cytoplasmic) is shown in dark purple. The insert domain (ID) is shown in light gray. The dark 

blue is tyrosine kinase domain (TK). The other one shows the AlphaFold2 predicted model 

rotated 90°. 

C. shows the monomer of human insulin receptor. The L1 domain is shown in pink. The CR 

domain is shown in light blue. The L2 domain in shown in light purple. The FnIII-1 domain is 

shown in light green. The FnIII-2 domain is shown in yellow. The FnIII-3 is shown in red. The 

insert domain is shown in light gray. 

D. shows the homodimer of human insulin receptor with four insulins. The full-length 

extracellular insulin receptor is shown in red. The two insulin binding in site 1 and 1’ are shown 

in yellow. The two insulin binding in site 2 and 2’ are shown in green.  

E. shows the crystal structure of TK domain binding with a small molecule (PDB ID: 5HHW). 

The crystal structure is in teal. The ligand is in salmon. 

F. shows the TK domain from the AlphaFold2 predicted model of the IR TK domain. The 

structure’s colors are shown in plDDT confidence, same with A.  

G. shows the superimposed structures of the TK domain from the full-length IR, the TK domain 

structure built by AF2 and the crystal structure 5HHW. The crystal structure is in teal. The AF2 

model is in purple. 

H. shows the TK domain from the full-length IR docked with the 5HHW ligand (purple). The 

binding site coordination setting is the same as the crystal structure. 
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I. It shows the small molecule, cis-(R)-7-(3-(azetidin-1-ylmethyl)cyclobutyl)-5-(3-((tetrahydro-

2H-pyran-2-yl)methoxy)phenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine. 

J. shows insulin receptor domains. The colors are matched with B. The L1 domain is shown in 

pink. The CR domain is shown in light blue. The L2 domain is shown in light purple. The FnIII-

1 domain is shown in light green. The FnIII-2 alpha and beta domains are shown in wheat. ID 

alpha and beta domains are shown in light gray. The FnIII-3 domain is shown in red. The dashed 

lines show the TM/JM domain and C-tail. The TK domain is shown in dark blue. 
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Figure 4.6 The AlphaFold2 predicted structures of RXR-𝛼𝛼, LXR-β, and RXR𝛼𝛼-LXRβ 

complex. 

A. shows the AF2 predicted model of full-length retinoid X receptor alpha (RXR-𝛼𝛼), coloration 

indicates plDDT confidence. The predicted aligned error graph is under the structure. B. shows 

the AF2 predicted model of full-length liver X nuclear receptor beta (LXR-β), coloration 

indicates plDDT confidence. The predicted aligned error graph is under the structure. C. shows 

the AF2 predicted complex model of the full-length retinoid X receptor 𝛼𝛼-liver X receptor β 

(RXR𝛼𝛼 -LXR β) complex, coloration indicates plDDT confidence. The predicted aligned error 

graph is under the structure. 
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Figure 4.7 The RXR-𝛼𝛼 ligand binding domain docking result. 

The left figure shows the superimposition of crystal structure and AF2 predicted RXR-𝛼𝛼. The 

crystal structure is shown in purple. The AF2 predicted model is shown in green. The ligand 

docked into the AF2 model is shown in pink. The right figures show the binding site. The top 

right shows the superimposition of crystal structure and AF2 model. The ligand docked into the 

AF2 model is shown in pink. The ligand docked into the crystal structure is shown in gray. The 

ligand from the crystal structure is shown in purple. The bottom right only shows the docked 

results. The table shows the docking score and glide gscore. A smaller value shows a better 

docking result. The AF2 predicted RXR-𝛼𝛼 model shows a very impressive docking result, and 

the binding site’s sidechains are also showing very good prediction. 
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Figure 4.8 The binding site of LXR-β. A. shows the crystal structure of LXR- β. 

A. shows the crystal structure of LXR- β (PDB ID: 4NQA). The ligand is in purple. The blue 

dashed line shows the pi-pi stacking. The yellow dash shows the hydrogen bond. The magenta 

dashed line shows the salt bridge. B. shows the AF2 predicted LXR-β model. After 

superimposed the crystal structure and the AF2 model, the ligand lies inside of the AF2 model’s 

binding pocket. The ligand can form similar interactions with the crystal structure. However, 

there is also a bad clash between the ligand and receptor’s sidechains. The red dashed line shows 

the ugly clash. 
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Figure 4.9 The ER𝛼𝛼 AlphaFold2 predicted model, and the superimposition with the crystal 

structure of ER𝛼𝛼. 

A. The structure is the AlphaFold2 predicted model of full-length wildtype ER𝛼𝛼. The colors 

indicate different confidences. B. shows the AF2 predicted expected position error. C. shows the 

superimposition of the crystal structure and AF2 model. The gold shows the AF2 predicted 

structure. The purple shows the crystal structure. (PDB ID: 1YIM) 
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Figure 4.10 The superimposed binding site of wild type estrogen receptor alpha. 

The crystal structure (PDB ID:1YIM) is shown in purple. The AF2 predicted wild type full-

length estrogen receptor alpha structure is shown in gold. The ligand is in pink. In the black 

circle, the ligand clashes with the helix from the AF2 predicted structure. B. shows the steric 

clashes of ligand with the AF2 predicted structure. The color code is the same as A. The red 

dashed lines show the bad clashes. The chemical formula is for the ligand. 
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Figure 4.11 The AlphaFold2 predicted estrogen receptor alpha two mutants’ structures, 

Y537S, and D538G. 

A. The structure is the AlphaFold2 predicted model of Estrogen Receptor alpha Y537S mutant. 

The colors indicate different confidences. B. The structure is the AlphaFold2 predicted model of 

Estrogen Receptor alpha D538G mutant. The colors indicate different confidences. Under each 

structure, left is the pLDDT of the predicted model of Estrogen Receptor Alpha Mutant Y537A, 

right is the predicted aligned error of the predicted model. 
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Figure 4.12 The ERa mutant Y537S superimposition of the crystal structure and the 

AlphaFold2 predicted structure of binding site.  

A. shows the binding site of ERa mutant Y537S crystal structure. The blue dashed lines show the 

pi-pi stacking. The orange dashed line shows the bad clash between the ligand and receptor. The 

red dashed line shows the ugly clash between the ligand and receptor. The ligand is in blue. 

Other sticks show the sidechains. B. shows the binding site of full-length ERa mutant Y537S 

AF2 predicted model. The ligand can’t dock into this model. This is the superimposition of the 

binding site. Most of the sidechains in the binding site of the AF2 predicted model are quite 

good, which can form the same pi stacking with the ligand. However, there are very bad clashes 

in the black circle. There is not enough room to let the ligand go into it. This causes the ligand to 

be unable to dock into this binding site.  
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Figure 4.13 The AlphaFold2 predicted PTP1B structure. 

A. shows the full-length PTP1B AF2 predicted structure. B. shows the AF2 predicted PTP1B 

which is the same protein sequence with the crystal structure (PDB ID:5K9W). Under figure A 

and B are the confidences of the two predicted structures. C. shows the superimposed structures 

of crystal structure and the AF2 predicted structure. The crystal structure 5K9W is shown in 

pink. The AF2 predicted 5K9W model is shown in teal. D. shows the zoomed-in view of the 

ligand binding site. The cyan dashed lines show hydrogen bonds. The yellow dashed line shows 
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the pi-pi stacking. The brown dashed line shows the cation-pi interaction. E. shows 

superimposed structures of crystal structure (PDB ID: 5K9W) and the AF2 predicted 5K9W. F. 

shows superimposed binding site of crystal structure (PDB ID: 5K9W) and the AF2 predicted 

full-length PTP1B and the 5K9W structures.  
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Figure 4.14 The AlphaFold2 predicted models and the comparison of AlphaFold2 

predicted models with the crystal structures. 

A. shows the AF2 predicted model of full-length of insulin receptor. The colors indicate plDDT 

model confidence and the expected position error figure is below the structure. B. shows the AF2 

predicted TK domain model. Under the structure is the plDDT figure and expected position 

error. From the two expected position error figures, the TK domain AF2 model has better 

confidence than the AF2 model of TK domain from full-length model. C. shows the AF2 model 

of TK domain from the full-length IR. D is the superimposed structures of C and the crystal 

structure 5HHW. E. shows the superimposed structures of B and the crystal structure 5HHW. F. 

shows the superimposing three structures of B, C, and 5HHW. The table shows the RMSD 

values.  
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Figure 4.15 The docking results of insulin receptor tyrosine kinase receptor. 

A. B. and C. show the AF2 predicted TKR domain model docking results. A. shows the 

superimposition of the AF2 predicted TKR domain model and crystal structure. The AF2 

predicted TKR domain model is shown in blue, and the docked ligand is in cyan. The crystal 

structure is shown in green, and the ligand is in pink. The black circle shows the binding pocket 

of TKR domain. B. shows the zoomed in view of the binding pocket. C. shows the binding site. 

The black circle labels the difference of the loop which effects the binding pocket and causes the 

ligand to be unable to dock properly. D. and E. show the crystal structure and the docked ligand. 

The black circle shows the binding pocket. The crystal structure ligand is shown in pink. The 

docked ligand is shown in light green. The table shows the docking scores and glide gscores of 

using the AF2 predicted structure and crystal structure.  
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Chapter 5 - Conclusion 

This work focused on using computational methods to solve and answer questions about 

biological systems. Chapter 2 shows how to integrate different computational methods to reveal 

the interactions between the peptide and protein. Chapter 3 shows the real behavior of red 

fluorescent protein by MD simulations. Chapter 4 assessed the protein modelling methods which 

present the predicted models’ quality and how to use it for other research and drug design. 

 The study of proctolin and proctolin receptor by computational methods 

In chapter 2, we investigate the integration of different computational methods, such as 

protein modelling, virtual screening, ligand docking, and MD simulations. We built the proctolin 

receptor homology model and docked proctolin into the receptor, and also studied kinetics by 

MD simulations. The workflow (shown in Figure 2.1) of this research can be a study model for 

ligands or peptides binding with unknown structure receptors. 

From this study, we obtained the complex of proctolin and proctolin receptor. By running 

MD simulations to obtain the binding pose, we revealed the mechanism of the binding, and 

found that cation-pi interactions play a very important role in the binding. We can get multiple 

conclusions from the MD simulations results. 

First, the results show Tyr 99 and Arg 111 from proctolin receptor are the critical binding 

sites. Tyr 99 from the receptor binds to the first Arg from proctolin. Arg 111 from the receptor 

binds to the second Tyr from proctolin. This result also matches with the alanine scan results 

from Dr. Yoonseong Park’s lab. Second, the cation-pi interactions play a very important role in 

this binding, which is an electrostatic interaction between a cation and a polarizable pi system, 

such as an aromatic ring. Cation-pi interactions tend to be stronger than hydrogen bonds and pi-

stacking interactions (Hunter and Sanders, 1990; Sinnokrot et al., 2002). In this complex, the Arg 
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1 from proctolin binds to Tyr 99 through a cation-pi interaction. Tyr2 from proctolin binds to 

Arg 111 through a cation-pi interaction as well. Third, the electrostatic surface study of the 

proctolin and proctolin receptor complex shows the Arg 1 from proctolin acts as a “cation 

anchor”. This allows the proctolin to dock into the binding pocket and stabilizes the binding. 

Compared with other neurotensin and neurotensin receptors complex, the neurotensin binding 

pocket has a positive charge rich pocket. Fourth, the kinetic study of the binding shows the 

cation-pi interaction between Arg 1 from proctolin and Tyr 99 from the receptor forms first. 

Then the cation-pi interaction between Tyr2 from proctolin and Arg 111 forms. 

This study found the binding pocket and the critical binding sites. These results show the 

proctolin and proctolin receptor binding mechanism and show the binding mechanism from the 

kinetic study as well. 

 The behavior of red fluorescent protein chromophore at room temperature 

Fluorescent proteins have been applied to multiple study fields; hence, it has been studied 

in order to engineer and enhance fluorescent proteins’ performance. The local environment of 

chromophores and the interactions between the chromophores and protein matrix have been 

shown to have a huge effect on the intensity of fluorescence (Shaner et al., 2007). Obtaining 

fluorescent proteins’ crystal structures is important to help in engineering new fluorescent 

proteins, however, most crystal structures were obtained at cryo-state. Protein structures are 

affected by temperatures (Bradford et al., 2021), and a crystal structure is also only one 

conformation. Most fluorescent protein crystal structures chromophores were captured in a 

planar conformation. Here, we performed MD simulations on trans-chromophore red fluorescent 

proteins and were able to come to multiple conclusions. First, the trans-chromophores of red 

fluorescent proteins are non-planar at 300K. The difference in planarity as seen in crystal 
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structures causes the interactions between the chromophores and protein matrixes to be different 

as well. Second, the dihedral of the phenol ring and imidazole ring will “wiggle” at certain angles. 

This also shows the chromophore is not stable and keeps wiggling at 300K. The wiggling of angles is 

around 30º. Lastly, residue site 197 interacts with the chromophore and either forms a pi-stacking or 

a cation-pi interaction to stabilize the chromophore. 

 The application and assessment of AlphaFold2 in drug design 

AlphaFold2 was released late last year. It was the biggest news in structural biology. 

Predicting protein structures is always a big challenge. After AlphaFold2 was available, this method 

has been applied to multiple different biological and biochemical fields. In this chapter, we assessed 

AlphaFold2 and applied it to drug design using some typical drug targets. The results of the 

prediction of AF2 are complicated. AF2 did not generate a good result for the RXRα-LXRβ complex, 

specifically the DNA-binding domain. There are also only very limited crystal structures available to 

use for training. This could be the reason the prediction of the DNA-binding domain was so poor. 

The next thing we wanted to predict was mutant structures. Hence, estrogen receptor alpha, Y537S, 

and D538G were tested. Unfortunately, these cannot be used in drug design. Most parts of these 

proteins were predicted with high confidence. However, the most important helix 12 is in the wrong 

orientation and blocks the binding site which causes the ligand to be unable to dock into the pocket. 

PTP1B has two states, open and closed states. The closed state is the ligand binding mode. AF2 

successfully predicted the closed state. After the docking study, the docking result is quite close to 

the crystal structure docking result. The last protein we studied is insulin receptor. It is too hard to 

predict a protein like insulin receptor. Hence, we also did not see a good prediction. However, we did 

examine the tyrosine kinase domain. The predicted structure of the tyrosine kinase domain shows 

high confidence except for the binding domain, though the docking study did not give us a good 

result. 
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All the proteins studied in this work already have crystal structures in the Protein Data Bank. 

Even though there are crystal structures available, it is still very hard to predict the structures using 

AF2 that meet drug design requirements. When using AF2 to predict protein structures, we need to 

be very careful. There is still no question about the huge contribution to science by AF2. It is trying 

to fill the gap between the number of experimental structures and unknown DNA coded proteins. We 

believe this work can help people have a better understanding of AF2 predicted structures and it is a 

brief guide of how to use AF2. 
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