
SOME ELEMENTARY CONCEPTS IN MEASURE THEORY

by

JAMES J. CORBET

B. S. , Kansas State University, 1963

A MASTER'S REPORT

subnaitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Mathematics

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1964

Approved by:

'^-^ ^. C^otJZ!Z2
Major Professor



/

fi"! TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION 1

2. MEASURE ON RINGS 7

3. OUTER MEASURE 14

4. PROPERTIES OF MEASURABLE SETS 18

5. INDUCED MEASURES 23

6. CONCLUSION 31

REFERENCES _ . 33

ACKNOWLEDGMENT .....'. 34

11



CHAPTER 1

INTRODUCTION

In order to gain an understanding of measure theory, a special

case is discussed in the introduction of this report. Many of the

properties of measure are introduced with this special case. Later

the concept of nn.easure is extended to more general settings.

In the space, the real line, let £> be the collection of all semi-

closed intervals of the form {x:a !?x<:bj , where a and b are finite

real numbers. It is understood that a ib. These semiclosed intervals

are denoted by jja, b). The following results could also be obtained if

closed or open intervals were considered.

The length of an interval is denoted by l([a, b) ) and is defined by

l({a, b) ) = b - a. This is simply the length of the line segment with

end points a and b.

Theorem 1. 1 ^l^i' ^o' * * * ' ^J is a finite, disjoint class^

of sets in Q , each contained in a given set E in Q , then

n

Z l{E.)^l{Eo).
i=l

This denotes the first theorem in Chapter 1. The notation, a. b,

where a is the number of the chapter and b is the order of the theorem
or definition in that chapter, is used throughout this report.



Proof: To show this, write E. = fa., b.), i = 0, 1, • • • , n and1^1 1

assume that a, 6 a^^ • • • ^a . It follows that a.^ a,^ b- • • •
—12 n Oil

a ^b^b^. Therefore
n n

T UE.) = i:(b. - a.)6 i (b. - a.) + i (a.^j- b.)

1=1 1=1 1=1 1=1

Now consider the problem in which the union of a sequence of sets

contains a given set. A result is obtained which is similar to Theorem. 1.1.

It is necessary, however, first to state a lemnaa that will be used in this

proof.

Lemma 1.1. If a closed interval F = a , b i is contained in the

union of a finite number of bounded, open intervals, U, , U_,, • • •
, U ,

1 c n
n

U. = (a., b.), i = 1, 2, . • . n, then b^ - a.< T (b.- a.) (3, 34) .Ill U U .*—r 1 1
1=1

Theorem 1. 2. If iE , E , • • • ? is a sequence of sets in Ly such

thatE r(J E., then 1(E^)^ y 1(E.).
U . , 1 (J — .*-Tr 1

1=1 1=1

Proof; Write E. = fa., b. ) , i = 0, 1, 2, • • • . If a„ = b^, then the
1 L ^ 5-

result is easily seen. Otherwise, let £ be a positive number such that

^ <t'Q- a . For any positive number (j , F = la , b -£| and U. =

2
Refers to page 34 of reference number 3 in the Bibliography.

Similar notation is used throughout this report.



(a.- S , b.), i = 1, 2, • • •, it follows that F^C U U.. Therefore,
' "? ' ° i=l '

by the Heine-Borel theorem, there is a positive integer n such that

n
FQMU.. From Lemma 1. 1,

i=l

n_

l(EQ).£=(bo-aQ)-£<E(V^ + 4^
i=l 7^2

^% l(E.)+($',

i=l

Since £ and q are arbitrary, the conclusion follows.

Before the next theorem is stated, it is necessary to state two basic

definitions. In defining the length of an interval, every set or interval

was assigned a real number. This is a special case of a set function.

Definition 1.1. v is called a set function defined on j, where wT

is a class of sets, if v assigns to every A^'^ a number, denoted by

v(A), of the extended real number system.

Definition 1.2. A set function v defined on a class of sets *7is

countably additive if, for a disjoint sequence of setsTE. tC.'^such that

V
I

i=l ' i=l

Co ^
( U E.) = Z v(E.).

The length 1 of the intervals in ^is a set function. The following

theorem states that 1 is countably additive.



Theorem 1, 3. The length 1, defined on Dis countably additive.

Proof ; If |E. ?is a disjoint sequence of sets in Qwhose union is

n
also in ^ , then, S_1(E;)^1(E), where E =

|__j E.. Hence, ^ 1(E.) ^
i=l ^ i=l ^ i=l

^

1(E). By Theorem 1.2, the conclusion follows.

The idea of a set function that is countably additive is now extended

from semiclosed intervals to a more general class of sets. The space

is the plane, Euclidean 2- space, and £? is the collection of all rectangles.

Then the set function defined on Qis the area of a rectangle. If one

were to continue in this manner the space could be extended to Euclidean

n-space. The set function, "length" will be denoted by 1. A list of

desirable properties that 1 might be expected to satisfy has been proposed

by Thielman (5, 132).

These properties are:

(1) 1 is defined for every set AQE '. (E denotes Euclidean n-space. )n n
.

(2) T (A)^0 for all A in E .

n

(3) 1 is countably additive.

(4) If ACE , then 1 is invariant under translation or rotation in E .~" n n

(5) 1 (A) reduces to s if the set A is a "cube" of "edge" s in E .

n

It is shown in the following example that a "length" satisfying these

five properties cannot exist if one accepts Zermelo's Axiom of Choice

(2, 166).



Let a be an irrational number. In terms of a, a subdivision of

the interval A =Tx: 0^x<il| into a denumerable number of sets can be

obtained. Each of these sets is a translation of every other one. In

this example every real number is identified with the number of its

residue class modulo 1 which is in A. Associate with every real

number x the denumerable set

S
X

= ^ • • • , X - 2a, X - a, x, x + a, x + 2a, ' ' 'j .

Now it is proven that for every x and y, S and S are either identical
X y

or disjoint. Assume S and S are not disjoint. Then there is a
X y

z£S/iS . Let w£ S . Then z = x + na, z = y + ma, and w = x + pa,
X y X

where n, m, and p are integers. It follows that

w = x + pa=z + (p-n)a = y + (p-n+ m)a,

so that w£ S . Therefore |^S ^ is a decomposition of A into disjoint

denumerable sets.

Now define a set S consisting of one and only one element from

each of the sets S . Also for every integer m, let
X

S(m) = S + ma = ^x + ma : x Si

The sets S(m) are a denumerable number of translations of S.

Next it is proven that every z is in an S(m.) and that it is in only

one S(m). Now z£S for one and only one x£S. Hence z = x + ma for



some m so that z£S(m). Suppose zC S . Then z = y + na, y£ S. It
n

follows that X + ma = y + na. Hence x - y = (n-m)a. This naeans that

yf S , so that S = S . Since S has only one element from each S ,

X y X X

y = X. Then (n-m)a = 0, so that n = m.

It has now been proven that the sets S{m) = S are disjointm
translations of S such that

A= M S .

v-/ nam=-»

Suppose 1(T) is a set function satisfying properties (1) - (5). What can

the "length" T(S(0) ) of S = S(0) be?

Suppose 1 (S(0) ) = 0. Then by property (4), 1 (S(m.) )
= for every

integer m. Since

^—
' m

m=-cs

by property (3), 1 (A) = 0, so that property (5) is violated.

Suppose 1 (S(0) )
= k>0. Letn>l/k. Then by properties (3) and

(4),

n

T(USi)>i.
i=l

But

n

i=l

and by property (5),

n

i=l



which is a contradiction.

Hence T (3(0) ) cannot be greater than 0, nor can it be equal to 0,

Also by property (2), it cannot be less than 0.

This proves that if all sets are to have a "length" then properties (2)

to (5) are too severe. Therefore, if one accepts the last four properties

then not every set can have a "length, "

In this chapter a set function was defined first on an interval and it

was then indicated that this set function could be extended to E^. The

purpose of the next chapter is to define a set function on a more general

class of sets.

CHAPTER 2

. MEASURE ON RINGS

The purpose of the rest of this report is to discuss "length" in a

more general setting. This "length" of a set will be referred to as the

measure of a set. However, before a definition of measure is given, a

certain class of sets, a ring of sets, is needed.

Definition 2. 1, A ring of sets is a non-empty class 0\ of sets such

that if E€<R and Ft(P{ , then EUF£(f\ and E - F£(>^ .

Since AflB = A -(A-B) for any sets A and B, a ring(R is closed under

intersections. Also, A£>.B = (A-B)U(B-A), the symmetric difference of



two sets A and B is in a ring v\ .

The class of all finite unions "of semiclosed intervals of the form,

<(x^, X,, • • • , X ) : -09<a.^x. <ib.<oo , i = 1, 2, • • • , n|,^IZ n i~ii J

in E is a ring. Also, the set of all finite subsets of an arbitrary set A

is a ring. The class of sets D that was discussed in the introduction to

this report is not a ring as it is not closed under finite unions.

Now a measure can be defined for a class of sets that is naore general

than the "length" that was discussed on rectangles in E .

n

Definition 2. 2. A measure is an extended real valued, non-negative

and countably additive set function m, defined on a RingCK and such that

m(0) = 0. (The empty set is denoted by 0.)

The class of all finite disjoint unions of the intervals defined in

Chapter 1 form a ring. The length 1 defined in Chapter 1 can be

extended to a measure on this- ring. In the remainder of this report 0\

denotes a ring and m denotes a measure on(p^.

If m is a measure on^ , a set E£0\ is said to have finite measure

if m(E)<co.

If m is an extended real valued, non-negative, and additive set

function defined onu\ and such that m(E)<0Ofor at least one ECG\ .

then m(0) = 0. This holds since m is additive aj::d



m(E) = m(EUO) = m{E) f m(0).

A basic property of m. on(3\ is contained in the following theorem.

Theorem 2. 1. If m(A)^ 0, for all A£(R. and A C A^, A , A^f (R ,

then m(A )^m{A ).

Proof: A = A (J(A - A ) and therefore m(A ) = m{AAj!^ - A ))=

m{A ) + in(A - A ).

If for E£ '3- , E£ "^ , ECIF, and v is an extended real valued set

function on the class "^j then v(E)^v(F); then v is called monotone.

From Theorem 2. 1 above, m defined on(Pvis monotone.

Throughout the rest of this section additional properties of a

measure onfl^are examined. These properties give a greater under-

standing of measure onQ\ and are necessary in discussing "outer

measure" in Chapter 3.

Definition 2. 3. An extended real valued set function v on a class

"^ is said to be subtractive if, for E £ 3* » ^£ "l" » ^CF, F - E £, "^ ,

and {v(E)|<co , then v(F - E) = v(F) - v(E).

Theorem 2. 3. If m is a measure onQ^ , then m is subtractive.

,
Proof ; If E£(J^ , F^;; (J\ , and ECF, then F - Ee(|^ and
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m(F) = m(E) + m(F - E).

By subtracting m(E) from, both sides of the equation if m(E)<oo, it

is seen that m is subtr active.

Theorems 1. 1 and 1. 2 can now be extended for m on CK . The proofs

are very similar to the proofs of Theorems 1. 1 and 1. 2 (3, 37).

Before more properties of m are discussed it is necessary to make

some important definitions concerning the limits of sets. These pro-

perties of m that are proved deal with continuous measure. The basic

ideas of continuous measure are associated with the property of countable

additivity of m. This property of the countable additivity of m and also

the notion of a finite measure are the main concepts in the proofs involving

continuous measure.

Definition 2.4. If s E s is a sequence of subsets of the space (JL,

the set of all those points of (J.which belong to E for infinitely naany

values of n is called the superior limit of the sequence. This superior

limit is denoted by E = lim sup E .

n

Definition 2.5. The set of all those points of the space UL which

belong to E for all but a finite nunaber of values of n is called the
n

inferior limit of the sequence Je i . This inferior limit is denoted by

E
,
= lim inf E .

* n
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If E = E_,_ then the sequence is said to have a linnit which is denoted

by lim E . In this case E
,
= E = lim E ,

"Tt 'fi Ti
n«>«a n"»"* '^

For an example of these limits, let A = I 0, ;- I , n = 1, 2, •

CO CO ^ L ^+^J

then f~^ A = 0, ~r\ and |i A = {O, 1). Thus lim inf E =

k=n L Jj k=n

U C] \-IP'^^ - r\ IJ ^k " ^^^ ^^P '^ '^^ however A =

To, l] for odd values of n and A = 1-1, OJ for even values of n then lim

inf E ^ lim sup E (2, 8).
n n

Now the theorems which show the relation of this limit concept to

m are proved.

Definition 2. 6. An extended real valued set function v defined on

a class [Jis continuous from below at a set E in ©if, for every increasing

sequence < E i of sets in B for which linn E = E, then lim. v(E )= v(E).
L nj n.-»« n n^«i» ^ n

Similarly v is continuous from, above at E in if, for every decreasing

sequence ^E i of sets in Q for which |v(E ) l< oa for at least one m and for

which lim E = E, then lim v(E ) = v(E).
n-)oo n n-»«i«> ^ n

Theorem 2. 4. If m is a measure on(^ and if 4E $is an increasing

sequence of sets inO\for which limi E C (R , then m (limi E ) =
n^6o n 'n>*«o n

lim m(E ).
n -> ca n

Proof : Let E = 0, then
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m(lim E ) = m( 1/ E.) = m( (J (E.-E. , ) ) = X m(E.-E. )

1=1 1=1 1=1

n n
= lim "5" m(E.- E. J = lim m( { I E.- E. J ) = lim m(E ).
n^M 4rrr ^ ^-^ n-»«> S< i i-l n-»e« n

Theorem 2. 4 states that if m is a measure then it is continuous

from below. Now a similar theoremi asserts that m is also continuous

from above.

Theorem 2. 5. If m is a measure on IK , and if tE ^is a decreasing

sequence of sets invK of which at least one has finite measure and for

which lim E £ (R , then m (lim E ) = lim m(E ).
n-^ca n n-»«» n n->cs n

Proof : Assume m(E )<oa» then m{E )-^m{E )<oo for n>,k. Therefore

m(lim E )<0o.

Because <E, - E f is an increasing sequence and m is monotone and
X k n)

subtr active, then

m{E, ) - m(lim E ) = m(E, - lim E ) = m(lim (E - E ) )k n^ft» n k n^ci n n>co ^ k n

= lim m(E, - E ) = lim (m(E, )
- m(E ) ) = m(E, ) - lim m(E ).

n^c<a k n n^oa k n k n^oa n

Since m(E, )<co. then mflim E ) = lim m(E ).k n->ca n n>^e» n
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Let S be the set of all rational numbers x for which O^x ^1, and

let(r be the class of all semiclosed intervals of the form jx : xf S, a^x<b?

where O^a^b^l, and a and b are rational. Define w on(r by w('|x: aiix<b^)

= b - a. This set function w is finitely additive and continuous from above

and below but it is not countably additive (3, 40).

The following theorem is a converse of Theorems 2.4 and 2.5.

Theorem 2. 6. Let m be a finite, non- negative, and additive set

function on a ring G% . If m is either continuous from below at every E

in C\ » >-'- continuous from above at 0, then m is a measure onG^ .

Proof : Since m is additive on a ring (H then m is finitely additive.

^ LetsE
I
be a disjoint sequence of sets in (a , whose union E is also

in(J\. Write
n

F = j / E. and G = E - F .

n w in n
1=1

If m is continuous from below, then, since <F » is an increasing

sequence of sets in (R with lim F = E, then
n->oa n

11 PQ

1(E) = lim m(F ) = lim "S"* m(E.) = 3" m(E.).

If m is continuous from above at 0, then since ^G »is a decreasing

sequence of sets inG\ with lim G = 0, and since m is finite, then
n-&« n

n n
_

'm(E.) +
n*«(

m(E) =( T*m{E.) ) + m(G ) = lim V'm(E.) + lim m(G )

^^ 1 n n^oa <^ 1 n^« n
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ea

= Z M^i)-
i=l

Let X be the set of all positive integers and let U.be the class of

all finite subsets of X and their complements. For E in U write v(E) =

or v(E) =Coaccording as E is finite or infinite. The set function v is

continuous from above at but it is not countably additive. Therefore

Theorem 2. 6 is n6t true if infinite values are admitted (3, 40). With

this example. Chapter 2 is concluded. In the next chapter a set function

over an extended class of sets is discussed.

CHAPTER 3

OUTER MEASURE

In Chapter 2, some of the more important properties of m on 0%

were proved. It was seen that many of these properties were related

to the concept of countable additivity. In this section m. will be extended

to a larger class of sets. In order to do this, the measure on these sets

will be defined by relaxing the concept of countable additivity. Before

this measure is discussed, it is necessary to define several other con-

cepts. One of these is the extension of a ring by using countable unions

instead of finite unions. The measure m discussed in the previous sections

was defined on a class of sets called a ring. In this section other special

classes of sets are considered.



-. ""teejiW

Definition 3. 1. A non-empty class J of sets is hereditary if,

whenever G£ *3-and FCG, then F£ "^ .

An exanniple of a hereditary class is the class of all subsets of some

subset G of a space L4.

Definition 3. Z. An extended real valued set function v on any class

of sets is countably subadditive if for every sequence tE.? of sets in

"j- whose union is also in
""J, then v( (^ E.)<£ y v(E.),

i=l
^""1=1^

In comparing Definition 3. 2 with Definition 1.2, it is seen that

countable subadditivity is naore general than additivity.

Definition 3.3. A Qp-ring is a non-empty class "^of sets such that

if Ee'^and Gf "^ , then E - G£
'J,

and if E.t '3"' i = 1. 2, • • •, then

i=l

The hereditary classes display a very important property. A

hereditary class is a (7—ring if and only if it is closed under the forma-

tion of countable unions.

If^ is any class of sets, the hereditary G*-ring generated by'^is

denoted byTf^^ This notation is used throughout the remainder of this

report. This is the smallest hereditary cp-ring containing Tand is of

importance in defining "outer" measure.

15
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Consider any hereditary CT -ring rh A special set function, which

is an extension of measure, is now defined on f-j.

Definition 3, 5, An outer measure is an extended real valued,

non-negative, monotone, and countably subadditive set function, defined

on a hereditary C-ring H^ and such that the outer nneasure of the null

set is zero.

In Theorem 3. 1, a relationship between a measure and an outer

measure is stated. An outer measure m can be defined as a lower

bound on sums of m and may be thought of as induced by a measure m.

Theorem 3. 1. If m. is a measure onO^ and if, for every set E in

m- (E) = infj'^ m(E^) : Ee(R , n = 1, 2, • • • , EqQ e\,

then m is an extension of m to an outer measure on)^{(^).

Proof : If ECC^ , then ECEUOVJOU ' ' ' and m (E)^

m(E) + m(0) + m(0) + • • • = m(E). If E£(^ , E £CR , n = 1, 2, . . . , .

andECl J E , thenm(E)^y* m{E ), so that m(E)<!lm^(E). This^^ n — <—r, n ""0
n= 1 n= 1

last statement is a result of the generalization of Theorem 1. 2. Thus

m (E) = m(E) for all E^vH or m is an extension of m. Because m

is an extension of m, it follows that m (0) = 0.



,f^-T-".

Now it is shown that m is monotone. If E£ V(((R), FfXdJ^), ECF,

coversandiE I is a sequence of sets in (R which covers F, thenJE | also

E. Thus in (E)Z.m (F). To complete the proof, it is necessary to prove

that m is countably subadditive. Let E and E. be sets in]-("((J^) such that

EClj E.. Let £ be an arbitrary positive number, and choose, for each
i=l

i = 1, 2, • • • a se

40

quence <E..f of sets inO^ such that ECl I E . and

7 m(E .)Z.m„(E.) + c . Now,' since the sets E . form a countable
r
—

,
11 — 1 —— 11

j = l ^1

class of sets in(J^ which covers E,

Co ea

^O^E)^Y Z "^(Eij)^Z"^o^E.)+€

Since £ is arbitrary,

i=l

The following examples illustrate properties of m . In the first

two examples exactly one condition in the definition of m is violated,

but the third example is an outer measure;

Let A =
I
x, y» be a set consisting of exactly two distinct points x

and y, LXbe the class of all subsets of A, and v be defined by the

relations v^{0) = 0, Vq(|xJ) = VQ(j'y|) - 10 and Vq(A) = 1. This v is

not an outer measure since it is not monotone.

17
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Let A be arbitrary, (^is the class of all subsets of A. For every

EfiU,, let V (E) = 1. In this example v satisfies all the conditions

of the definition of outer measure except v (0) = 1 i^ 0.

Let A be arbitrary, Li is the class of all countable subsets of A,

m (E) is the number of points in E, (m (E) =00 if E is infinite.
)

Then m is an outer measure.

CHAPTER 4

PROPERTIES OF MEASURABLE SETS

In this chapter an important concept of a certain class of sets in

relation to m is defined and discussed. As before, let m be an outer

measure on a hereditary Q"- ring )-f. Definition 4. 1 is due to Carathe'odory.

Definition 4. 1. A set E innis m -measurable if, for every set A

mH.

m^{A) = m^CAQE) + ui^iADE').

where E' is the complement of E.

It is very difficult to gain an understanding of this concept of

m -measurability. This concept is, however, a valuable tool in deriving

theorems in this chapter, and the extension theorem of the following

chapter. As is given in Definition 3.5, mi is not necessarily a countably
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additive set function. To try to satisfy the requirement of additivity the

sets which split every set additivity are singled out for study. This is

a very loose description of the concept of m -measurability.

Now some properties of the sets which are m -measurable are

proved.

Theorem 4. 1. If m ^^ ^^ outer m.easure onrfand if Sis the class

of all m^- measurable sets, then Sis a ring.

Proof: If E and F are in Sand Ac H , then

(a) mQ(A) = m^{Af\E) + m^CAOE')

(b) m (AOE) = m (AOeOF) + m {AnEDF') and

(c) mQ(AnE') = mQ(AnE'nF) + in^{AOKf\F')

from, the definition of m -measurability. By substituting (b) and (c)

into (a)

(d) m^{A) = m^CAAEnF) + mQCAflEOF') + mQ{AnE'nF) + mQ{AnE'nF')

is obtained.

If A is replaced by An{EUF) in (d) then

(e) m^CAniEUF) ) = mQ(AnEnF) + mQ(AnEnF') + m^lAnE'/^F),

since the first three terms on the right hand side remain unchanged and

(An(EUF) )nE'nF' = o.
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Now by substituting (e) into (d) and using E'/^F' = (EUF)', then

(f) m^CA) = mQ(An(EUF) ) +'mQ(AO(EUF)')

is obtained. This proves that EUF£ 5 •

The next step in this proof is to show that E - F £ S. To show

this, replace A in (d) by An(E - F)' = Ar\(E'C;F) to obtain

(g) mQ(AO(E - F)') = mQCAOEflF) + m^(Af)E'nF) + mQ(AOE'nF').

Since EOF' = E - F,

mQ(A) = mQ(An(E - F) ) + mQ(An(E - F)')

from the substitution of (g) into (d). Hence E - FC S . Now substitute

E = into (a) to conaplete the proof (3, 45).

In the next theorem. Theorem 4. 1 is generalized by replacing

finite unions by countable unions. First a lemma is stated which is

used in the proof.

Lemma 4. 1. If m is an outer measure on a hereditary g-- ring n

and if a set E inK"is such that, for every A inVf, m (A)^

mQ{Arffi) + mQ(AnE') then E is m -measurable (3, 45).

Theorem 4. 2. If m is an outer measure on1-f and if S is the class

of all m -m.easurable sets, then S is a C-ring.
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Proof: Define E = I I E such that E.DE. j^ 0, i ^ \. Replace E
n=l

and F in

(a) m^{An{E\jF) }
= m^lAAEOF) + m^{Af\EriF') + m^{ADB'f)F)

by E and E which are disjoint sets. Equation (a) reduces to

(b) ra^{AD{K^UF^) )
= mQ(AnE^) + ra^{Ar\K^).

By mathematical induction, it follows that

n n

(c)
^O^'^^U ^i)

= ^^o^^^^i^
i=l i=l

for every positive integer n.

n
Let F = 1^ E., (n = 1, 2, • • • ), and then by Lemma 4. 1

^ 1=1 ^

n
(d) m^CA) = m^lAriFJ + mQ{An F^)^^ mQ(A HE.) + m^CAOE').

1=1

Since this is true for all n,

(e) mQ(A)^2I mQ(AnE.) + m^iADE')^ mQ(AnE) + m^CAOE').
i=l

Since every countable union of sets in a ring may be written as a disjoint

countable union of sets in a ring, (e) holds for every countable union of

sets in a ring. Therefore S is aO*-ring,

Now it is possible to show that the sets in ^ satisfy the condition

of countable additivity.
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Theorem 4. 3. If A £ YTS'ii^ if |E i is a disjoint sequence of sets in J
ca

with i i E = E , then

n=l

^^(AaE) = > rci^{Ar\EJ.

n-

Proof: Equation (e) in Theorem 4. 2 states that E is m -measurable.

Therefore

CO

(a) ^m^{AC\E^) + rrx'^iACiE')

i=l

- m^iAaE) + mQ(AnE').

If A is replaced by AAE in (a), then

(b) 51 ^Qi^^y^^) = mQ(AnE).
i=l

Note that m (Af^E') may be infinite and therefore cannot be subtracted

fromi both sides of (a).

Before the last theorem in this chapter is stated, it is necessary

to make the following definition.

Definition 4. 2. A m.easure m is called complete if for Eg,(R ,

FCE, and m(E) = 0, then F£ G\ •

In Theorem 4. 4 it is shown that all sets of measure zero belong

to S.
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Theorem 4. 4. If m is an outer measure on n and if S is the class

of all m -measurable sets, then every set of outer measure zero belongs

to O and the set function m, defined for E in S by m(E) = m (E) is a

complete measure on S . This naeasure m is said to be induced by the

outer measure m„.

Proof : Let E£ K and m (E) = 0, then for every AC Vf .

mQ{A) = mQ(E) + mQ(A)^ mQ(AnE) + m^{Ar\B').

Therefore E£ S from Lemma 4. 1,

If A is replaced by E in

ea

'^ rci^{AC\E^) + m^iAOE") = mQ(AnE) + m^iACiE'),
i=l

then m= m is countably additive. If E£ S . FCE, and m(E) - m (E)

0, then na (F) = 0, so that F£ S , which proves that m is complete.

CHAPTER 5

' INDUCED MEASURES

In this chapter some of the properties of induced measures are

discussed. In these results a relationship between m and m is

established. Throughout this chapter $(£) shall denote the (J -ring

generated by any class £ of sets. For example £"(0^) is the smallest

CT-ring containing *o-\ , where^is a ring. Also m denote s a measure
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Ring Oa , m denotes an outer measure on a Hereditary QT-ring H »

and m denotes the induced measure on the class of all m -measurable

sets, b

.

Theorem 5. 1. Every set in S{(R) is :m- measurable.

Proof : Let E£C^ , A£ V(((R) and f>0, then by the definition of

00

m , there exists a sequence |E v of sets invK such that ACI) E and
^ -^ n=l

CO. w
m^(A) +€^5" m(E ) = /_ (m(E OE) + m{E fjE')

^—r- n ^—

,

n n
n= 1 n= 1

= > m(E r\E) + y m(E OE^i m„(AOE) + m^CAOE').
<r n *-—

7

n "" U U

Since this is true for allC > 0, then E is m -measurable. Now since S

is a C-ring, and since d^CS. then S(^)C 5 •

The following theorem states that the outer measure m on V((0\)

can be induced by an induced measure m on S or on S((R)'

Theorem 5.2. If E£)f((j^), then

m^{E) = inf ^F) : ECF£ Z)0'

= inf CniF) : ECFcScd^)]

Proof: For F2G\ , m(F) = m(F) then '



m^CE) = inf .^^ m(E^) : eCIJ E^, ^^^. n = 1, 2. • • • T

^ inf]X "^(E^) : EC|^ E^, E^e S&). n = 1, 2, • • •

j.
n.= l n=l " -'

^^ U ^rP^' E,fSc(iJ). then F = ij E^DE. FfiSi^). m(F)^2L "^(E^)-
n=l

'

n=l n=l

Therefore inf <m(F) : EC F, FfiSlft)?

Z,infJ2! m(E^) : EcQ E E £ S(®). n= 1.2, • • •).
(n=l n=l -^

Therefore m{E):^inf ) m(F) : ECF, FcS((iJ)5

25

>inf|m(F) : ECF, F^ $(

If ECF, FeS, then xn^{E)^m^{F) = m{F). Hence inf4m(F) : ECF,

The main results in this chapter deal with the relationship between

induced measures. If the induced measure is formed from the outer

measure m and then the outer measure m induced by in is formed,

what is the relationship between m and m ? In general, these two

measures are not the same. Before this question is examined, however,

it is necessary to define a measurable cover and aCT-finite measure.

Definition 5. 1. If EC]f(CJ) and F£ Si<R}. then F is a measurable
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cover of E if ECF, and if for every set G in 5(^) ^o^ which GCF - E,

then m(G) = 0.

The term measurable cover is a good description because a

measurable cover of a set E is, in a vague sense, a minimal set in

S((R) which covers E.

Definition 5.2. The measure m of ESlR is C-finite if there exists

a sequence^E » of sets inC^ such that

CD

Ecf I E and m(E )<oo, n = 1, 2,^ n n
n=l

If the measure of every E£ (R isG"-finite, m is called (T- finite onlR .

If the space X£ (J^, Csis a ring of sets in X, and rn(X) is ^-finite, then

m is called totally ^-finite.

The following theorem illustrates another relationship between

m and m .

Theorem 5.3. If a measure mi on 0\ is 0"-finite then m on |^(0^)

is also <r-finite.

Proof : Let E be any set in }-f((J^). Then there exists a sequence lE. V

of sets in(F\ such that E C(_J E. (3, 41). Since m is C"-finite, there

exists for each i = 1, 2, • • •, a sequence ^E. .^ of sets in (j^ such that

E.CU^i" ^^d ME..)<co. Therefore E cQ {J E.. and m (E..) =
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m(E..)<03.

Theorem 5.4. If a set E in f-(((R) is of (J-finite outer measure, then

there exists a set F in S {(]^) such that "^,^(2) = na{F) and such that F is

a measurable cover of E.

Proof : First consider the case where m (E)< 00. It follows from

Theorem 5. 2 that for n = 1, 2, • • '
, there exists a set F in S((R)n

such that

ECF and m(F )^m (E) + 1/n.

09

If

n=l

«9

F = (l ^n'
^^^^ E CF £ S((R) and mQ(E)Z.m(F)^m(F^)^m (E) + l/n.

Since n is arbitrary, ^^i^) = m(F). If G£ S(G^) and GCF - E, then

ECF - G and therefore m(F) = m {E)^m(F - G) = m(F) - m(G)^

m(F). Since m(F) is finite, F is a measurable cover of E.

lfm^(E)=CO. let ECQ E^ where m'^(E^)< 00, n = 1, 2, • • .

n=l

n-1
Let A = E and A = E - I

J E, , n:^2. Note that A.fjA =0, i ^ j,

k=l J

U ^n
= \ ^^df^VlfdR). Since A CE . m (A )^m fE )<n=ln=l-^«' nn On— On^

00

Let B^ = EfjA^, n = 1, 2. • • • . Then E =
[J B^, B £ J-fllR) and
n=l

mQ(BJ<oo
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For each B there exists F € S((R) such that F OB , m(F )
=

^ n n n n
CO

m^{B ). F is a measurable cover of B . Let F = I J F , then
0^ n' n n ^ n

n=l

m (E) = m(F). Let GZ S((R) such that GCF - E = IJ F - E. Let
n=l ^

G = GflF . Then G CF - ECF - B . Since F is a measurable
n n n n n n n

cover of B , m(G) = m( I ] G )^/ m(G ) = 0. Therefore F is a
n >—< n ^—

T

n
n=l n=l

measurable cover of E.

Lemmia 5.1 . If both F and F are measurable covers of E£yf(Q^),

then m(F AF ) = 0, where F AF denotes the symmetric difference

of F and F .
•

1. £U

Proof : Since ECF^HF^CF^ then F^ - {F^nF^)CF - E. Also

since F is a measurable cover of E then m(F - (F OF ) ) = 0. By

the same relationship, m(F - (F OF ) )
= 0. Therefore m(F ^F ) = 0.

Theorem 5. 5. If E£ )f((R) ^-nd F is a measurable cover of E, then

m^lE) = m(F).

Proof : IfmQ(E)=CO. then m^(E) = m^lF). If mQ(E)< oo , then

from Theorem 5.4 there exists a measurable cover F of E with m(F )
^ o'

~
"^O^'^^'

^^*' -'-'^"^"^^ ^' ^ implies that every two measurable covers
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have the same measure. Therefore it can be concluded that m (E) =

m(F).

The following theorem states that any CT-finite measure m on Q^

can always be extended to a unique measure m, called the extension of m

on^{Q^). This theorem is the naost important result obtained using the

extension procedures of this chapter. Note that in the previous chapter

it was proved that m can be extended to 5 which is in general larger

thanS({R) (3, 55).

Theorem 5. 6. If m is a CT-fii^ite measure on 0^ , then there is

a unique measure m onS((R) such that, for E in(J^ , m(E) = m{E).

The measure nais Q"-finite (3, 54).

Proof : Theorem 4.4 states there is a measure on the sets in 5 #

and Theorem 5. 1 states that every set in S{(K) is m -measurable.

Hence, measure m exists.

To prove that m is unique, assume m and m are two measures

on Si^) such that m (E) = "a (E) whenever E£CR, and let'^be the class

of all sets E in S((R) for which m (E) = m (E). If one of the two measures

is finite, and ifVE I is a monotone sequence of sets in >?) , then

lim E f Tf), since
n-*ta n

m.(lim E ) = lim m.{E ), (i = 1, 2, )
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Since this means that^is a monotone class, and since y^O contains (J\,

it also contains S((R)'

For the general case, let A be any fixed set in (1\ , of finite

measure with respect to one of the two measures m and m . Since

1 2
(KflA is a ring and S((R)n^ ^^ ^^^ C-ring (Rf\A generates, it follows

that the ideas in the first part of this proof apply to(i\f\-^ S-"-'! Si^RO-^*

Therefore, if Ef S((R)r\A then m (E) = m (E). Since every E£ 5((J\)

can be covered by a countable disjoint union of sets with finite measure,

then every E£ S((i^) ^^.s the same property; that is, m (E) = m (E).

Now an example is given to illustrate the restriction of CT-finiteness

on Q^ in Theorem 5.6 (3, 57). Let Q be a ring of subsets of a countable

set A, with the property that every non-enapty set in G^ is infinite and

such that S((R) is the class of all subsets of A. If, for every subset E

of A, m (E) is the number of points in E and m (E) = 2m (E), then m

and m agree on(R but not on SliR)- Therefore, the uniqueness asser-

tion of Theorem 5. 6 is not true without the restriction of (X-finiteness

on 0^, even for measures which are totally O'-finite on S(R)'

O^flA denotes the class of all sets of the form E OA with E in (S^

2
If (^ is a ring and if A is any subset of the space, then S((^ C\A)

= S((HnA).
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CHAPTER 6

CONCLUSION

The purpose of this chapter is to apply the general theory discussed

in. the main part of the report to the measure discussed in Chapter 1.

This measure is a classical case in measure theory, Lebesgue measure.

Throughout this chapter the space is the real line, ^is the class of all

bounded, semi- closed intervals of the form ^, b) and v is the set

function on ^defined by v
(
[^a, b) )

= b - a. Note that v is the length

of the line segment bounded by the points a and b as in Chapter 1,

Now let '^ be the class of all finite disjoint unions of sets of ft .

Since the union and the difference of any two sets of "^is a set of the

same form, "^is a ring.

If A = I Ul U • • • Ul where L (k = 1, 2, • • • , n) are sets from
i ^ n K

'D then v{A) = v(I, ) + v (IJ + • • • + v(I ).
-

i Z n

The set function v is countably additive on '^ ; if a = b then v(0) = 0.

Since all the conditions for a measure are satisfied, the set function v

is called a measure in the remainder of this chapter.

Now consider the class^ which is the hereditary c-ring generated

by '3 . This class ..^ is the class of all subsets of the line. Define an

outer measure v on J as in Definition 3.5. A set E in ^ is v -measurable

if for every set F in ^ ,
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Vq{F) = VqCFHE) + VQ(FnE').

The class of all sets which are v -measurable is denoted by -J .

The set function v defined for E in ^ by v (E) = v (E) is now a complete

measure.

x3 could also be obtained the following way. Note that this method

was not conapletely covered in this report. Define J(( J) to be the

smallest qr-ring containing "3
. The sets of^('3) are commonly called

the Borel sets of the line. By Theorem 5. 6 there is a unique measure

V on o ("^ ) which is an extension of v on "3
. Now enlarge -^{^ ) by

including all the sets of measure zero. This is the class of sets ^ .

The sets of-^are the Lebesgue measurable sets of the line. The measure

V is called Lebesgue measure (3, 56). .

Historically, the concept of naeasure was approached in the manner

of this last chapter. However, the fundamental concepts of measure

are perhaps clearer in a more general setting and are not complicated

by a "mass of comparatively trivial detail" (4, 190).
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The purpose of this report is to gain an understanding of some of

the elementary concepts of measure theory.

In the introduction, the length of a set in the collection of senai-

closed intervals on the real line is considered. From the study of this

set function, natural questions arise which lead to the definition of

measure.

A measure m is defined on a ring of sets On and some properties

of m on(K are proved. Then the problem of extending a measure is

considered.

A special set function, outer measure, is defined on a hereditary

cr-ring, ]-|"{(|^). This outer measure is an extension of a m>easure on (R

to a set function on f-f((j^). Since an outer measure is not necessarily

additive, the sets which split every set additively are singled out and

called the class of measurable sets $. This is Caratheodory' s method.

The outer measure restricted to Sis a measure. This measure, called

the induced measure, is proven to be a complete measure. '

Nexti the class of sets S((R) which is the c"-ring generated byO^ ,

is considered. It is proven that every set in5(^) is measurable. The

measure on2((R) is, in general, not the same as the measure on ^ ,

The most important result is that a Q—finite measure on (j^can always

be extended to a unique measure onS((R).



In the conclusion, the general theory discussed in the main part

of this report is applied to the length defined on the collection of semi-

closed intervals. These intervals are extended to a ringvSof sets.

The hereditary cT-^i^ig H{(R) generated by this ring is the class of

all subsets of the line.. If the outer measure is formed ony-f((j\) then the

measure on S is complete and is called Lebesgue measure. In this

case the sets of 5 ^-^e called the Lebesgue measurable sets and the

sets of 5(vl\) 3-^e called the Borel sets.


