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Abstract

In the past decades, statistical learning has been an increasingly popular topic that has

drawn a significant amount of attention from researchers. Kernel based nonlinear models,

in particular, are powerful tools due to their flexibility to extract information from complex

datasets. A major challenge with the kernel modeling in the current big data era is the

curse of dimensionality. Although an abundance of variable selection methods have been

proposed, the developments in high-dimensional Bayesian kernel models is still in its infancy.

In addition to the variable selection, the innate nature of kernel based models induces heavy

computational costs, which further prohibit the application of related methods. The goal of

this dissertation is to develop new, fast variable selection and prediction procedures in order

to address the problem of high-dimensional nonlinear regression and classification from the

Bayesian perspective. To reduce the computational cost, we propose a novel hybrid search

algorithm and the Bayesian doubly-sparse frameworks to the kernel based models.

In Chapter 1, we discuss the background, existing methods and their limitations. We

also give the motivation for our study. In Chapter 2, we propose a Bayesian model hybrid

search algorithm for Gaussian process (GP) regression models, which quickly scan through

the model space to search for a set of models with high posterior probabilities. In addition,

we address the massive and high-dimensional data problem for GP by proposing an approach

which combines quantile subsample hybrid search with a nearest neighbor GP scheme. In

Chapter 3, we propose a novel Bayesian doubly-sparse framework to the reproducing kernel

Hilbert space (RKHS) regression models. The proposed doubly-sparse frame work performs

both variable selection and sparse kernel matrix estimation. In Chapter 4, we extend our

proposed Bayesian doubly-sparse framework to the nonlinear Bayesian support vector ma-

chine.
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Chapter 1

Introduction

With the development of technology in the big data era, scientists are able to collect massive

complex datasets with high dimensions. To extract useful information from those datasets,

many methods have been developed in machine learning and statistics (Hastie et al., 2009).

Among those methods, the kernel based nonlinear models (Smola and Schölkopf, 1998) have

been a very popular tool in particular.

Even though the kernel based method can be very useful, its performance can also suf-

fer from the curse of dimensionality. In particular, as the number of irrelevant variables

increases, more noises are added into the model and so it results in erroneous estimated

kernels and poor predictions. Fan and Lv (2008) discussed that including all variables for

prediction is essentially as random guessing for binary classification. Hence, the problem

of variable selection is one of the biggest concerns on kernel learning methods with high-

dimensional data. Other than variable selection, another aspect that hinders the application

of kernel learning models is the heavy burden of the computational cost.

Even though many methods have been proposed to address the variable selection problem

or deal with the large sample size, challenges still remain. One in particular is that the

existing methods for performing variable selection still suffer from heavy computational

costs. Another problem is how to conduct variable selection under the large sample size for

kernel based models.
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1.1 Variable selection for high dimensional Gaussian

process (GP) regression

The Gaussian process (GP) has been one of the most popular Bayesian tools for statistics

and machine learning research. Within the field of machine learning, GP has been widely

used for supervised learning tasks. In the statistics literature, GP based models are popular

for a variety of nonlinear modeling problems. Even though GP has drawn much attention

from researchers, the problem of variable selection in the GP regression framework is less

addressed. When the size of potential predictors increases, the elimination of irrelevant

variables can greatly improve the model fits as well as the prediction accuracy.

There are some attempts to tackle variable selection problems for GP regression model-

ing. For example, Linkletter et al. (2006) proposed a Bayesian variable selection method for

GP regression by employing a mixture prior such that spikes at zero on the kernel bandwidth

parameters which corresponds to the irrelevant predictors. Savitsky et al. (2011) then formu-

lated a unified approach of GP models for exponential dispersion family data and survival

data, encompassing Linkletter et al. (2006)’s variable selection method as a special case.

They proposed a general Metropolis-Hastings algorithm within a Gibbs sampling scheme.

However, the proposed algorithm requires to go through each variable for every iteration. As

a result, the algorithm suffers from many computational burdens including reconstructing

the kernel matrix, conducting the inversion computation, and calculating the determinant

of the kernel matrix. Those computational operations require the computational cost of

O(n3), where n is the sample size of the data. Hence, for one iteration of the algorithm,

the computational cost is O(pn3) where p is the total number of predictors. This greatly

increases the computational cost as p increases. Note that when p is large, this method is

nearly infeasible.

From the frequentist point of view, Yi et al. (2011) and Yan and Qi (2010) proposed pe-

nalized approaches by asserting penalties on the bandwidth parameters. However, choosing

tuning parameters can greatly increases the computational cost. In addition, the penal-
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ized likelihood approach relies on only one single best model and thus it ignores the model

uncertainties.

Another aspect that hinders the application of GP based models is the high-dimensional

massive data setting where both p and n are large. To address the large n problem, many

ideas have been proposed in the literature (e.g. Liu et al., 2020; Williams and Rasmussen,

2006). One popular approach is to approximate the large kernel matrix by a low-rank ma-

trix. For instance, using the Nyström approximation Williams and Seeger (2001) achieved

the computational cost reduction from O(n3) to O(nm2). Some researchers have paid atten-

tion to the subset of data approach (SoD) that uses a smaller set of representative m samples

instead of the original n samples. The SoD method leads to a reduced cost of O(m3). In ad-

dition, Seeger et al. (2003); Snelson and Ghahramani (2006a, 2007) proposed to approximate

the likelihood by assuming conditional independence of training points and testing points

given m inducing points such that m� n. The computational cost of those approaches are

generally O(nm2). Furthermore, Datta et al. (2016a,b); Gramacy et al. (2016); Gramacy

and Apley (2015); Kim et al. (2005); Gramacy and Haaland (2016) proposed the localized

regression approach or local krigging approach based on the fact that points far away play

little role in prediction. However, despite many advances in large n problems, the variable

selection problem in large n settings has not been explored yet.

1.2 Variable selection for high dimensional reproduc-

ing kernel Hilbert space (RKHS) regression

For variable selection in RKHS regression models, several approaches have been proposed

in the literature. For example, Gao et al. (2010); Allen (2013) proposed the penalized ap-

proach from a frequentist perspective. From a Bayesian perspective, Liang et al. (2007);

Chakraborty (2009) proposed sparsity inducing prior approaches by assuming point mass

priors on the kernel bandwidth parameters. In addition, Crawford et al. (2018) proposed

a projection method in which variable selection can be conducted using a thresholding ap-
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proach. One of the limitations of the existing methods is that model uncertainties have been

ignored. As discussed in Barbieri and Berger (2004); Hoeting et al. (1999), prediction with

a single model could lead to poor performance.

Even though many approaches for variable selection in the RKHS method have been

proposed, vector selection or sparse matrix estimation were not considered in the existing

works. As suggested by Zhang et al. (2016), the use of all points for representing the whole

function can be less optimal if the underlying function has a sparse representation. To

address this issue, Zhang et al. (2016) proposed a data sparsity constraint approach. In a

Bayesian framework, Tipping (2001) suggested to employ a subset of vectors to represent

the whole function so that it leads to the reduction in the computational cost. Zhang et al.

(2008) showed the posterior consistency of the so-called Silver g-prior, which is commonly

used for sparse Bayesian kernel regression models. With the theoretical work, Zhang et al.

(2011) proposed using sparse priors on vector extraction to reduce the computational cost.

However, those works were developed under the nonexistence of many irrelevant predictors.

To address both variable selection and sparse kernel matrix estimation, Chen et al. (2018)

proposed a double sparse kernel learning (DoSK) by appending double L1-penalties to the

cost function. With the double L1-penalties, one can achieve double sparsity on both vari-

able selection and vector selection. Some asymptotic theoretical properties have also been

discussed in their work. However, the penalty likelihood approach has limitations. One is

that the choice of the penalty weights, which is usually conducted via cross validation. The

cross validation procedure for tuning two penalty weights results in the massive computa-

tional cost. In addition, the double L1-penalty approach did not address the uncertainties

associated with both variable selection and active vector selection. Furthermore, the existing

approach is not applicable to the large sample size problem.
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1.3 Variable selection for high dimensional nonlinear

support vector machine

The support vector machine (SVM) (Cortes and Vapnik, 1995) has been one of the most

popular methods in machine learning research since its introduction. It has drawn a lot of

attention from researchers and been widely used in many fields, such as image classification,

speech recognition, etc. With the successful application and popularity, the SVM was then

extended to a Bayesian framework. For instance, Mallick et al. (2005) proposed a Bayesian

SVM by appending a Gaussian like error to the linear predictors to get a tractable likelihood.

The greatest breakthrough in Bayesian SVM came with the invention of the data augmenta-

tion approach in Polson and Scott (2011). In the data augmentation SVM method, the hinge

loss is represented as a form of the Bayesian hierarchical model, so that MCMC and EM

algorithms can be used for posterior inference. The Bayesian SVM approach provides several

advantages over the frequentist approaches, including automatic hyperparameter tuning and

predictive uncertainty quantification. In addition to the Bayesian linear SVM, the extension

to nonlinear SVM was considered by Henao et al. (2014) in which the GP prior was further

assumed for an unknown underlying function.

However, SVM can perform poorly when there exist many irrelevant predictors. Hence,

many works have focused on addressing variable selection problems in SVM. For instance,

Bradley and Mangasarian (1998); Zhu et al. (2003); Wang et al. (2006); Zhang et al. (2006);

Zou and Yuan (2008); Becker et al. (2011) proposed penalization methods for linear SVM

from a frequentist perspective. For variable selection of nonlinear SVM, Zhang (2006) pro-

posed a smoothing spline framework to perform feature selection and classification simul-

taneously. In addition, Mangasarian and Kou (2007) proposed an approach for variable

selection by inserting a diagonal indicator matrix into the kernel matrix. Many works for

variable selection from a Bayesian perspective have also been proposed. For instance, Mar-

chiori and Sebag (2005); Luts and Ormerod (2014); Sun et al. (2018) have proposed the

Bayesian methods for linearly separable data. For a nonlinear framework, Sun et al. (2019)
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proposed an approach by incorporating graph information on features.

Even though many works for variable selection has been proposed as discussed above,

many limitations still exist for variable selection of nonlinear Bayesian SVM. One limitation

is that the existing work has not addressed the sparse kernel matrix estimation. As suggested

in Zhang et al. (2016), including all data points for training the kernel based model can lead

to suboptimal results in some cases. In addition, as proposed by Tipping (2001); Zhang et al.

(2008, 2011), the use of a subset of active vectors for model fitting can greatly reduce the

computational cost and obtain similar or even better prediction accuracy. However, those

existing methods for sparse kernel matrix estimation have ignored the variable selection

issue. Hence, they would suffer from the curse of dimensionality in the presence of many

noisy variables.

To address both sparse kernel estimation and variable selection problems together, Chen

et al. (2018) proposed the doubly sparse kernel learning by appending double L1-penalty

to the cost function. However, the limitations of this work are the choice of the tuning

parameters and prediction uncertainty quantification.

1.4 Motivation and dissertation outline

To deal with limitations of the existing methods, this dissertation aims to develop novel,

fast variable selection and prediction procedures for kernel learning models from a Bayesian

perspective. In particular, we propose a novel hybrid model search algorithm for high dimen-

sional GP regression. In addition, we propose a novel Bayesian doubly-sparse framework for

regression and classification problems using the RKHS approach. The rest of the dissertation

is organized as follows.

In Chapter 2, we address challenges in high dimensional GP regression modeling, which

is the most popular Bayesian approach to nonlinear regression. We develop a novel Bayesian

model hybrid search algorithm to quickly scan through the model space to search for a set

of models having high posterior probabilities. Prediction is then conducted via the notion of

Bayesian model averaging. In addition to the variable selection problem, another challenge
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is how to deal with variable selection under the case of massive sample size. To address

the massive data situation, we propose an approach which incorporates a quantile-based

subsample selection idea into the nearest neighbor GP framework.

In Chapter 3, we focus on the variable selection problem for RKHS models under the non-

linear regression framework. For RKHS models, simultaneous variable selection and sparse

kernel estimation, often referred to as the doubly sparse estimation problem, are needed.

To address this problem, we propose a Bayesian doubly sparse RKHS regression method

via double spike and slab priors. A key merit of our proposed approach is to factor the

sparse kernel matrix estimation into the variable selection procedures, which allows a fast

Markov Chain Monte Carlo (MCMC) implementation. In addition, our proposed method

does not require to select a single best model and a single best sparse kernel representa-

tion. In the proposed framework, all candidate models and sparse kernel representations are

automatically integrated thorough the MCMC integration.

In Chapter 4, we extend our propose doubly-sparse framework to the nonlinear Bayesian

support vector machine via the data augmentation method of Polson and Scott (2011). The

performance of proposed method is examined by real data applications.

Chapter 5 concludes the dissertation with some remarks and future directions. Some

technical details about our full conditional derivations are given in Appendix.
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Chapter 2

Bayesian hybrid model search for

sparse Gaussian process regression

In this chapter, we develop a novel hybrid model search algorithm for sparse Gaussian

process (GP) regression. In Section 2.1, we briefly present the model setup and an illustrative

example for showing the need of variable selection in GP regression modeling. In Section 2.2,

we present our proposed hybrid search algorithm under the GP regression framework and also

give details of our prediction procedure. In Section 2.3, we address high-dimensional massive

data problems by developing a new approach using the quantile-based subsample hybrid

model search and the nearest neighbor GP method. We report the results of simulation

experiments and real data analysis in Section 2.4 and Section 2.5 respectively. We conclude

this chapter in Section 2.6.

2.1 Basic set-up and motivation

2.1.1 The model

Consider a nonlinear regression problem:

Y = f(X) + ε,

8



where Y ∈ R is the response variable, X ∈ Rp is the vector-valued input variable, ε is the

random noise, and f : Rp → R is an unknown function, which is of our interest. We assume

that f ∼ GP and ε ∼ N (0, σ2).

Suppose that our data set {(xi, yi) : i = 1, · · · , n} consists of n independent realiza-

tions of (X, Y ). Let y = (y1, . . . , yn)> be the response vector and x = [x1, x2, · · · , xn]>

be the matrix of input values with xi = (xi1, xi2, · · · , xip)>. With this given data, let

f = (f(x1), f(x2), · · · , f(xn))> be a vector of the unknown function evaluated at x. Then,

a GP prior would lead f to a multivariate Gaussian distribution, that is,

f ∼ N (m(x),Kθ(x)),

where m(x) is the n by 1 mean vector and Kθ(x) = {K(xi, xj|θ)}n×n is the n by n kernel

matrix governed by the hyperparameters θ. For convenience, we assume zero mean GP for

f , that is, m(x) = 0.

Note it is well known that by the conjugacy of our problem, we can get the marginal

likelihood as

y|x,θ, σ2 ∼ N (0,Kθ(x) + σ2I) (2.1)

by integrating out the function f . Then this essentially becomes a regression model where

response y depends on the kernel matrix Kθ(x), which is a function of input data x and

hyperparameters θ.

The key component for the regression problem discussed above is the kernel matrix

Kθ(x). There are many forms to model it. Among those forms, one popular choice is the

Gaussian form. For variable selection purpose, we introduce an index set γ ⊂ {1, . . . , p} to

the kernel matrix. Let xi and xj denote the ith and jth observations of training data x. Then

the (i, j)th term of the kernel matrix is defined as

K(xi, xj|θ,γ) = λ exp

{
−1

τ

p∑
k=1

I(k ∈ γ)(xik − xjk)2

}
(2.2)

9



where the hyperparameter θ = (λ, τ)>. (Note we borrow the kernel form in Quinonero-

Candela et al. (2007) such that we assume a single bandwidth parameter τ .) Among θ,

λ controls the magnitude of the covariance and τ controls the smoothness of the function.

In addition, if k /∈ γ, the kth predictor is excluded from constructing the kernel matrix.

Otherwise, the kth predictor is included. This formulation can be easily extended to other

popular kernel forms, including the matérn kernel form.

Let x∗ = [x∗1, . . . , x
∗
n∗ ]
> be an n∗ × p matrix of new points at which we are interested in

making prediction. Letting f ∗ = f(x∗), the predictive distribution is f ∗|y ∼ N (µ∗,K∗)

with

µ∗ = K(x∗,x){K(x,x) + σ2I}−1y

K∗ = K(x∗,x∗)−K(x∗,x){K(x,x) + σ2I}−1K(x,x∗),

where K(x∗,x) = {K(x∗i , xj)}n∗,n. To account for the random noise ε, we can use y∗|y ∼

N (µ∗,K∗ + σ2I).

2.1.2 Why variable selection

With the model defined and discussed above, if γk = 0, then the kth variable is excluded

from constructing the kernel matrix, i.e., the kth variable is not associated with the response

y. What will happen if we include those nuisance features into our models? We present a

‘toy’ example to show that as the number of those nuisance features increases, the prediction

accuracy and the model fit of the GP regression decrease.

Let y = 3sin(x1) + ε be the true model, where ε ∼ N (0, 1). Note we abuse the notation

a bit here by letting xk denote the kth column of x. With this ‘true model’, we generate

samples for each xk by xk ∼ U(−π, π) with p = 100 and n = 200. Given the 200 samples,

we randomly divide them into 100 samples for training and another 100 for testing. With

this setup, we fit three GP regression models with p = 1, 20, 100 respectively. That is, we fit

10
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Figure 2.1: Fitted curve for GP regression models with different dimension

three GP regression models with the first feature, first 20 features and all 100 features:

Model 1: y = f(x1) + ε,

Model 2: y = f(x1, x2, · · · , x20) + ε,

Model 3: y = f(x1, x2, · · · , x100) + ε.

We train each regression model with the Gaussian kernel matrix defined in equation (2.2) via

the Laplace approximation method discussed in Section 2.2.4. Note that only the first one,

x1, is truly associated with the response, y. Hence, the rest of the variables are considered

as irrelevant. Figure 2.1 shows the true curve f and other three fitted curves for model 1,

model 2, and model 3. The plot suggests that as the number of noisy variables increases,

the fitted curve deviates further from the true curve. Adding irrelevant variables distorts

the kernel matrix and furthermore it leads to poor prediction.

Other than the visualization, to check the prediction results, we repeat this experiment
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Figure 2.2: MSE for different model dimensions

100 times and record the prediction Mean Squared Error (MSE) as well as the mean squared

bias on the testing set for each experiment. We define the mean squared bias as 1
nt

∑nt
i=1(f̂i−

fi)
2 and MSE as 1

nt

∑nt
i=1(ŷi− yi)2 where nt denotes the testing set size, f̂i denotes predicted

value for the ith point, and fi and yi are the actual ith values of f and y respectively.

We summarize the experimental average bias and prediction MSE in Figures 2.3 and 2.2.

Both plots suggest that the bias and the MSE increase as the number of nuisance variables

increases. This demonstrates that variable selection for GP is necessary.

2.2 Model adaptation, variable selection, and predic-

tion

Given the necessity of variable selection, we present our approach for Bayesian model fitting

and prediction in this section.
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Figure 2.3: Bias for different model dimensions

2.2.1 The posterior

Recall that γ = (γ1, γ2, · · · , γp)> is the binary indicator vector that governs the feature

selection result and θ consists of the kernel matrix hyperparameters. For instance, if we

model kernel matrix K with the Gaussian form, then θ = (λ, τ)>. In addition, we assume

a prior, π(θ, σ2|γ)π(γ). The posterior is then given as

π(θ, σ2,γ|y) ∝ π(y|θ, σ2,γ)π(θ, σ2|γ)π(γ).

To perform posterior inference, as discussed in Savitsky et al. (2011), a Metropolis-Hastings

algorithm within the Gibbs sampler can be considered to draw samples from π(γ|θ, σ2,y),

π(θ|γ, σ2,y), and π(σ2|γ,θ,y), iteratively. However, sampling from those three conditional

marginal distributions can be computationally expensive. In particular, the computational

cost for sampling from π(γ|θ, σ2,y) can be extremely high especially when p is large. This

is because for each γi, the algorithm needs to reform the kernel matrix and compute the

marginal likelihood, whose computational cost is O(n3). For sampling from π(θ|γ, σ2,y)

13



and π(σ2|γ,θ,y), we also need to reform the kernel and compute the determinant as well

as the inverse of the kernel matrix for each iteration, and this also charges a computational

cost of O(n3).

To alleviate the computational burden, we borrow the idea of the collapsed Gibbs sampler

approach (Liu, 1994) and Bayesian model averaging (Hoeting et al., 1999). Specifically,

we propose to draw samples from π(γ|y) and π(θ, σ2|γ,y) respectively. However, like the

classical Gibbs sampler, sampling from those posterior distributions are still computationally

expensive. To be more specific, sampling from π(γ|y) still needs to go through each γi ∈ γ.

In addition, sampling from π(θ, σ2|γ,y) via the Metropolis-Hastings algorithm can be costly

in each MCMC iteration. Other than that, the determination of a good proposal distribution

is a challenging issue.

Our solution to the aforementioned obstacles is as follows. For sampling from the pa-

rameter posterior π(θ, σ2|γ,y), we use the Laplace approximation (See Section 2.2.3). More

importantly, for making inference for π(γ|y), instead of the sampling based methods, we

propose a similar hybrid search algorithm (Jin and Goh, 2021) under the GP regression

framework that quickly converges to models with high posterior probabilities. After identi-

fying acceptable models in set A, using the Bayesian model averaging techniques (Madigan

and Raftery, 1994; Hoeting et al., 1999), we construct the posterior distribution of θ and σ2

as follow:

π(θ, σ2|y) =
∑
γ∈A

π(θ, σ2|γ,y)π(γ|y,A),

where

π(γ|y,A) =
π(γ|y)∑

γ′∈A P (γ ′|y)
. (2.3)

Note that for Bayesian model averaging, there are 2p possible candidates for γ. However,

as discussed in (Madigan and Raftery, 1994), we should exclude some γ with less evidence.

Our hybrid search algorithm can automatically discard those models and seize γ with high

probabilities. One may consider a sampling based approach since γ with low posteriors

would be less likely to be generated. However, our hybrid search algorithm allows us to do
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the same task with a much smaller computational cost.

2.2.2 Hybrid algorithm for variable search

As discussed above, with the idea of the collapsed Gibbs sampler (Liu, 1994), we aim to draw

samples from π(θ, σ2|γ,y) and π(γ|y) respectively. For sampling from π(γ|y), we propose

a hybrid search algorithm which is motivated by Jin and Goh (2021). To be more specific,

we borrow the idea from the iterative conditional modes (ICM) (Besag, 1986) and stochastic

shotgun search (SSS) (Hans et al., 2007) to develop our hybrid search algorithm. Using

the ICM algorithm, we first identify a local maximum. If we have a convex optimization

problem, ICM itself is sufficient. However, π(γ|y) has generally a multimodal distribution.

To ensure we reach the global maximum, we combine the ICM with the neighborhood search

idea used in SSS. By combining those two steps, we develop a hybrid search algorithm that

converges to the global maximum faster than a stochastic search algorithm.

We present our proposed hybrid model search algorithm in Algorithm 1. Within Algo-

rithm 1, we define the neighborhood of γ as

N (γ) = {γ ∪ {j} : j /∈ γ} ∪ {γ \ {j} : j ∈ γ}. (2.4)

Also note that the stochastic search steps in step 6 and step 8 in our proposed algorithm,

we have

π̃(γ̃|y) ∝ π̃(y|γ̃)π(γ̃),

where

log π̃(y|γ̃) ≈ log π(y|θ̃, σ̃2, γ̃)− q + 1

2
log n.

We set q as the number of hyperparameters for the kernel matrix. In addition, we let

(θ̃, σ̃2) = argmaxθ,σ2 log p(y|θ, σ2,γ∗)p(θ, σ2|γ∗), where γ∗ is the best model returned from

the deterministic search.

Our proposed hybrid search algorithm aims to maximize the posterior of γ and find

comparable models with high posterior probabilities. The step 1 to step 4 perform the
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Algorithm 1 Hybrid Search Algorithm

Step 1. Set an initial model γ∗ and define A = {γ∗}.
Step 2. Set A′ = A.

Step 3. Repeat for j = 1, . . . , p;

a. Update

γ
′
=

{
γ∗ ∪ {j} if j 6∈ γ∗,
γ∗ \ {j} otherwise.

b. Define A∗ = A ∪ {γ ′} and update

γ∗ = γ
′

if π(γ
′ |y) ≥ π(γ∗|y)

c. Update
A = {γ ∈ A∗ : π(γ∗|y)/π(γ|y) ≤ c}.

Step 4. If A 6= A′, go to Step 2, and otherwise move to Step 5.

Step 5. Set γI = γ∗, r = 1.

Step 6. Compute N (γI) and π̃(γ|y) for γ ∈ N (γI). Let γ̃ = arg maxγ∈N (γI) π̃(γ|y).

Step 7. For γ̃:

a. Compute π(γ̃|y).

b. If π(y|γ∗)/π(y|γ̃) < c and γ̃ /∈ A, add γ̃ to A.

c. If π(γ̃|y) > π(γ∗|y), set γ∗ = γ̃, A = A ∪ {γ̃}, update

A = {γ ∈ A : π(γ∗|y)/π(γ|y) ≤ c}

and then go to Step 2. Otherwise, continue.

Step 8. Sample new γI from N (γI) with probability π̃(γ|y)∑
π̃(γ|y)

for γ ∈ N (γI) and set
r = r + 1.

Step 9. If r < r̃, go to step 6. Else, return A as the set of selected models.
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deterministic search based on ICM (Besag, 1986). The stochastic neighbor search (step 5 to

step 8) is based on SSS of Hans et al. (2007).

The algorithm implementation can be summarized as follows. The proposed algorithm

starts with a model γ∗. (Note in practice, we can start the algorithm with a GP regression

model with a single feature having the largest correlation with the response). Then the

algorithm step-wisely goes through the model space and updates to a model with a larger

posterior. To be more specific, in each step, the algorithm update the current best model

by adding one feature to or deleting one from.

With the best model γ∗ found by the deterministic search, we define γI = γ∗ and

computes N (γI) defined in equation (2.4). Then, for each γ in N (γI), we compute the

approximate posterior π̃(γ|y) using the hyper-parameters posterior mode of fitting model

γ∗. We then find γ̃ by maximizing π̃(γ|y) over γ ∈ N (γI) and compute π(γ̃|y).

The algorithm then compares the posteriors of γ̃ with γ∗, the current best. If γ̃ has a

larger posterior than γ∗, the algorithm goes back to the deterministic search procedure in step

2 with this ‘better’ γ̃ as the starting point. Otherwise, the algorithm stochastically jumps

to a new starter model γI such that γI = γ with probability π̃(γ|y)∑
π̃(γ|y)

for γ ∈ N (γI), where

N (γI) denotes the current neighbor set. Then the algorithm constructs a new neighbor set

of this starting model γI and conducts search on this new set of N (γI).

In the stochastic search procedure (from step 5 to step 8), if it failed to update the ‘best’

model, γ∗, within a preset number of iterations (say, r̃), the algorithm then stops and returns

the selected model set A. At this point, it is most likely that the algorithm has reached the

global maximum of the whole model space.

To account for model uncertainty, our proposed algorithm computes the posterior ratio

and adds the candidate model to the selected set A such that π(γ∗|y)/π(γ|y) < c for

γ ∈ A, where γ∗ is the current best model. For the choice of c, following Madigan and

Raftery (1994), we set c = 20.
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2.2.3 Computation of π(γ|y)

The hybrid search algorithm aims to maximize the posterior π(γ|y), where

π(γ|y) ∝ π(y|γ)π(γ).

If we assume a uniform prior on γ, we can simplify the posterior as π(γ|y) ∝ π(y|γ).

However, a uniform can cause troubles when the size of the variables is large since the

dimension p increases, the larger model receives higher weights from the prior. This may

lead to the inflation of false discovery rate (Scott and Berger, 2010; Chen and Chen, 2008).

To solve this issue, following Chen and Chen (2008), we use the prior

π(γ) =
1(
p
|γ|

)I{|γ| ≤ k}. (2.5)

The use of the indicator function in (2.5) allows us to only consider models with a size smaller

than k. Given the prior, we also need to compute the marginal likelihood π(y|γ) in order to

obtain the posterior.

To compute the marginal likelihood, we use the Laplace method (Tierney and Kadane,

1986). We first assume the prior on (θ, σ2)>, π(θ, σ2|γ). Then using the Laplace method

(Tierney and Kadane, 1986), the marginal likelihood can be computed by

π(y|γ) =

∫
Θ

∫ ∞
0

π(y|θ, σ2,γ)π(θ, σ2|γ)dθdσ2

≈ (2π)
q+1
2 [det(Σ̃)]

1
2π(y|θ̃, σ̃2,γ)π(θ̃, σ̃2|γ)

(2.6)

where Θ denote the support of θ, and θ̃, σ̃2 and, Σ̃ are obtained as follows:

(θ̃, σ̃2) = argmaxθ,σ2 log π(y|θ, σ2,γ)p(θ, σ2|γ),

Σ̃ =

[
− ∂2

∂θ∂σ2
log π(y|θ, σ2,γ)π(θ, σ2|γ)|θ=θ̃,σ2=σ̃2

]−1
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Recall that the likelihood π(y|θ, σ2,γ) is given in equation (2.1).

We can further simplify the computation of the marginal likelihood. By ignoring constant

terms, as n→∞, we have

− 2 log π(y|γ) ≈ −2 log π(y|θ̃, σ̃2,γ) + (q + 1) log n. (2.7)

where q denotes the dimension of θ. This can be used for computing posterior probability

in the algorithm to improve the speed of calculating the marginal likelihood by avoiding the

computation of the Hessian matrix.

To further speed up, we can use a hash table to store the posterior probabilities of the

visited models since the algorithm may visit the same γ several times. In practice, if the

support of the hyper-parameters Θ does not fill the whole real space, one can consider a

transformation to improve the Laplace approximation. In this paper, we assume an inverse-

Gamma prior for λ, τ and σ2 respectively and consider the log transformation for λ, τ , and

σ2.

2.2.4 Predictions

Once the hybrid algorithm returns the set of selected models A, we make prediction using A.

With the Bayesian model averaging technique, (Hoeting et al., 1999; Madigan and Raftery,

1994; Wasserman et al., 2000), we can obtain the posterior predictive distribution for f ∗ as

π(f(x∗)|y) ≈
∑
γ∈A

π(f ∗|γ,y)π(γ|A,y)

≈
∑
γ∈A

[∫ ∫
π(f ∗|θ, σ2,γ,y)π(θ, σ2|γ,y)dθdσ2

]
π(γ|A,y).
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Similarly, the predictive distribution of y∗ can be computed as

π(y∗|y) ≈
∑
γ∈A

π(y∗|γ,y)π(γ|A,y)

≈
∑
γ∈A

[∫ ∫
π(y∗|θ, σ2,γ,y)π(θ, σ2|γ,y)dθdσ2

]
π(γ|A,y).

Note that π(γ|A,y) can be easily computed by (2.3) and (2.6). However, the double in-

tegration of π(f ∗|θ, σ2,γ,y)π(θ, σ2|γ,y) can be intractable in general. To solve this issue,

we use the sampling approach to address this integration. Our prediction algorithm is as

follows:

Step 1: Compute π(γ|A,y) for each γ ∈ A.

Step 2: Repeat for γ ∈ A,

(a) Generate {(θ(t), σ2(t)), t = 1, · · · , T} from π(θ, σ2|γ,y) via the Laplace approxi-

mation, where the posterior π(θ, σ2|γ,y) is given as

π(θ, σ2|γ,y) ∝ π(y|θ, σ2,γ)π(θ, σ2|γ).

(b) Given {(θ(t), σ2(t)), t = 1, · · · , T}, generate predictive samples {(y∗(t),f ∗(t)),

t = 1, · · · , T} using π(f ∗|θ, σ2,γ,y) and π(y∗|θ, σ2,γ,y) (given at the end of

Section 2.1.1).

(c) Compute the predicted mean for f ∗ and y∗ as f̂ ∗γ = 1
T

∑T
t=1 f

∗(t) and ŷ∗γ =

1
T

∑T
t=1 y

∗(t).

Step 3: Using the Bayesian model averaging techniques, the final prediction for y∗

and f ∗ are given as

f̂ ∗ =
∑
γ∈A

f̂ ∗γπ(γ|A,y),

ŷ∗ =
∑
γ∈A

ŷ∗γπ(γ|A,y).
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2.3 Dealing with massive data

In addition to variable selection, one aspect that hinders the application of GP based models

is the heavy computational cost with a large sample size. To address this problem, many

methods have been proposed by researchers (Liu et al., 2020; Williams and Rasmussen, 2006;

Quiñonero-Candela and Rasmussen, 2005). However, the problem of variable selection under

the large n setting has not been explored yet. In this section, we propose a new approach

to fill this void.

Our strategy can be summarized as follows. We tackle the problem of large p first by our

proposed hybrid search algorithm combined with a subset of data (SoD) approach. Adopting

the SoD approach for variable selection leads to low computational cost. Our proposed idea

is based on the fact that a well-selected subsample retains sufficient information for model

selection. For prediction, we use the nearest neighbor GP regression approach (Datta et al.,

2016a,b; Gramacy et al., 2016; Gramacy and Apley, 2015; Gramacy and Haaland, 2016) in

the framework of Bayesian model averaging.

2.3.1 Variable selection with QSoD

When n is large, solving π(γ|y) with full data points is nearly impossible since the compu-

tational cost is O(n3). Even though the SoD approach works poorly for prediction due to its

large variance, a well-chosen subset of data can retain good enough information for variable

selection. Hence, in order to fast pinpoint those important models, we use a subsample ỹ

rather than the full data set, y. To achieve good performance, we want this subset of data ỹ

to uniformly cover the full data set y so that it can well represent the variation of the original

data set. With this idea, we propose a quantile-based subset of data (QSoD) approach. We

present the approach below.

Let yQ = [yq1 , yq2 , · · · , yqm ]> be a vector of m empirical quantiles of y. Note that we let

yq1 < yq2 < · · · < yqm so that the elements of empirical quantile vector is in a nondecreasing

order. In addition, we keep the grid distances between each yqi and each yqi+1
to be same

and fixed in yQ to ensure a uniform coverage of the original data y. With this setup, we

21



choose the subset of data such that

ỹ = ∪mi=1ỹqi (2.8)

where each ỹqi is a vector that contains c closest observations (measured by absolute distance)

to the ith empirical quantile yqi for i = 1, · · · ,m. Treating ỹ as the observed data, we conduct

model search via the hybrid feature search algorithm in Algorithm 1.

Note that the size of subsample data yQ is c × m, which is chosen by a researcher.

Also note that there is a trade-off between the size of subsamples and the accuracy of the

estimation for the marginal likelihood of the model π(y|γ). That is, a larger subsample

results in a more accurate estimation of the marginal likelihood π(y|γ) but charges a higher

computational cost.

2.3.2 Prediction with nearest neighbor GP

After obtaining A using the hybrid search algorithm with the QSoD approach, we employ

a localized regression approach for prediction in a Bayesian model averaging framework. In

particular, we borrow the idea of nearest neighbor (NN) based GP approach as in Datta

et al. (2016a,b); Gramacy et al. (2016); Gramacy and Apley (2015); Gramacy and Haaland

(2016). The localized regression approach is based on the fact that the association decreases

as the distance between two points increases. In other words, such faraway points retain

less or no information for prediction. In this paper, we define a fixed nearest neighbor set

for each unobserved location and train a local GP expert for this particular point. We then

make prediction for each point with its local model.

Let x∗ = [x∗1, x
∗
2, · · · , x∗n∗ ]> be a finite set of n∗ new points at which we aim to make

prediction. We also define D = {(xi, yi) : i = 1, · · · , n} as the whole set of the training

data. Given A returned by algorithm 1 with QSoD subsamples, the prediction procedure is

performed as follows:

Step 1: Compute π(γ|A, ỹ) for each γ ∈ A, where ỹ is the QSoD subsample defined
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in equation (2.8).

Step 2: For each x∗i in x∗

– Repeat for γ ∈ A,

1. Construct a nearest neighbor set Dk(x∗i ;γ) = {(xi, yi), i = 1, · · · , k} such that

Dk(x∗i ;γ) ∈ D contains the k closest pairs of (xi, yi)’s to x∗i in terms of the

Euclidean distance defined as

l(xi, xj;γ) =

√√√√ p∑
g=1

γg(xig − xjg)2.

2. Train a local GP expert and generate posterior samples {(θ(t), σ2(t)),

t = 1, · · · , T} from π(θ, σ2|γ,Dk(x∗i ;γ)) via the Laplace approximation.

3. Given {(θ(t), σ2(t)), t = 1, · · · , T}, generate predictive samples {(y∗(t)i , f
∗(t)
i ),

t = 1, · · · , T} from the predictive distributions π(f ∗i |θ, σ2,γ,Dk(x∗i ;γ)) and

π(y∗i |θ, σ2,γ,Dk(x∗i ;γ)).

4. Compute f̂ ∗iγ = 1
T

∑T
t=1 f

∗(t)
i and ŷ∗iγ = 1

T

∑T
t=1 y

∗(t)
i .

– The final prediction for y∗i and f ∗i are computed as

f̂ ∗i =
∑
γ∈A

f̂ ∗iγπ(γ|A, ỹ),

ŷ∗i =
∑
γ∈A

ŷ∗iγπ(γ|A, ỹ).

In practice, one could use different divergence measures instead of the Euclidean distance

used in this paper. The size of the nearest neighbor set, k, is a subjective parameter. Note

that there is a trade-off between the prediction accuracy and computational cost associated

with k.

The approach discussed above requires a computational cost of O(n∗k3). Note that, in

this paper, we used a fixed NN. In practice, to improve the prediction accuracy, one could
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also use the greedy search approaches as in Gramacy et al. (2016); Gramacy and Apley

(2015); Gramacy and Haaland (2016). In addition, the NN localized regression approach

can be considered when the size of predictions n∗ is small. When the size n∗ is huge, one

can consider alternative approaches discussed in (Liu et al., 2020; Williams and Rasmussen,

2006; Quiñonero-Candela and Rasmussen, 2005).

2.4 Simulation studies

In this section, we conduct simulation studies to validate our proposed methods. We consider

two cases: 1) moderate sample size data and 2) massive sample size data.

2.4.1 The moderate sample size case

Following Savitsky et al. (2011), we generate the simulated data from the following ‘true’

data generating process:

yi = 2 sin(xi1) +
x2
i2

2
+

exp(xi3)

5
+ xi4 + εi,

where {i1, i2, i3, i4} are randomly selected from {1, · · · , p}, xij
iid∼ U(−π, π), and εi

iid∼

N (0, 1). Hence, the randomly selected four features are truly associated with the response

and the rest features are irrelevant. We set the sample size to be n = 100 with different fea-

ture sizes p = 20, 200, 1000. We also generate another set of observations with size n∗ = 100

from the true model for validation.

The aim of this simulation study is to compare our proposed approach to the scheme

2 adaptive MCMC algorithm proposed in Savitsky et al. (2011). We also include the true

model and full model trained with the Laplace approximation (LA) for reference.

To compare the performance, we compute the following measures: the computational cost

measured by the number of iterations as well as the CPU time (measured for variable selection

part of algorithm); variable selection accuracy measured by true positive rate (TPR) and

true negative rate (TNR); and the mean squared prediction error (MSPE) on the validation
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set defined as

MSPE =
1

n∗

n∗∑
i=1

(ŷi − yi)2. (2.9)

For the number of iterations, we count how many times our algorithm scans through the

whole feature space (i.e., from x1 to xp). For our proposed hybrid search algorithm, we set

the maximum number of the stochastic search iterations to r̃ = 100. In addition, we set

the predictive sample size to 1, 500 to match the number of the iterations for MCMC. For

the MCMC approaches, we run the GP MCMC twice. For the first one (called GP MCMC

1), we set the time cost approximately the same as the hybrid search. For the second one

(called GP MCMC 2), we run 1, 500 iterations and use the first 500 iterations as a burn-in

period. In addition to the number of iterations, we measure the CPU time (in seconds).

The experiments of both methods are conducted on the same hardware configuration. In

particular, the Monte Carlo experiments are conducted with R on the Beocat Linux based

server with a CPU MHz of 2533.414.

In terms of the variable selection accuracy, we record TPR and TNR for both methods.

To compute those two metrics, we set γj = 1 if π(γj = 1|y) > 0.5 and γj = 0 otherwise. For

our proposed hybrid search algorithm, we compute π(γj|y) by

π(γj = 1|y) =
∑
γ∈A

π(γ|y)I{γj = 1}.

For the MCMC algorithm, π(γj = 1|y) can be computed easily by the MCMC sample mean.

For both methods, we consider a single width Gaussian form. For the prior specification,

we assume λ ∼ inv-Gamma(1, 1), τ ∼ inv-Gamma(1, 1), and σ2 ∼ inv-Gamma(1, 1).

For both hybrid search and MCMC methods, we set the starting point for γ as the

model with one feature having the strongest marginal correlation with the response. For

the initial values of the kernel matrix hyperparameters, we use the maximum likelihood

estimation approach. We repeat the Monte Carlo experiments for 1, 000 times. The results

are summarized in Table 2.1. We also plot the MSPE in Figure 2.4, where the error bars are

computed by 2 times the estimated standard error.
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Figure 2.4: MSPE of simulation studies for moderate sample size case

In Table 2.1, we can see that GP without model selection provides poor prediction.

Our proposed method outperforms the GP MCMC 1 approach in terms of both feature

selection and prediction accuracy. When we compare with GP MCMC 2, we observe that

our method has approximately the same performance in terms of prediction accuracy as

well as the variable selection results. In particular, both methods provide similar prediction

results close to the true model. However, the time costs of our proposed method are 3 to 10

times smaller than that of GP MCMC 2. This demonstrates that the proposed method is

computationally more efficient than the GP MCMC method.
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Table 2.1: Moderate sample size simulation results

Dimensions MSPE TPR TNR Iterations time

Full model (LA)

p=20 5.64(0.03) 1(0) 0(0) (NA) (NA)

p=200 15.44(0.06) 1(0) 0(0) (NA) (NA)

p=1000 15.35(0.07) 1(0) 0(0) (NA) (NA)

True model (LA)

p=20 2.01(0.01) 1(0) 1(0) (NA) (NA)

p=200 2.01(0.01) 1(0) 1(0) (NA) (NA)

p=1000 2.01(0.01) 1(0) 1(0) (NA) (NA)

Hybrid search

p=20 2.04(0.01) 0.991(0.001) 0.999(0.0002) 103.24(0.01) 4.71(0.04)

p=200 2.09(0.01) 0.978(0.002) 0.999(0.0002) 103.44(0.02) 63.42(0.37)

p=1000 2.20(0.02) 0.955(0.004) 0.999(0.0001) 104.07(0.15) 711.42(5.08)

GP MCMC 1

p=20 2.10(0.01) 0.986(0.002) 0.999(0.0003) 150(0) 6.72(0.04)

p=200 2.37(0.03) 0.951(0.004) 0.999(0.0001) 150(0) 62.66(0.16)

p=1000 2.57(0.04) 0.914(0.006) 0.999(0.0002) 350(0) 713.78(4.25)

GP MCMC 2

p=20 2.05(0.01) 0.992(0.001) 0.999(0.0002) 1500(0) 65.33(0.36)

p=200 2.10(0.02) 0.980(0.002) 0.999(0.0002) 1500(0) 616.77(1.36)

p=1000 2.18(0.02) 0.961(0.003) 0.999(0.0001) 1500(0) 2295.93(34.02)

The estimated standard errors are given in the parenthesis.
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2.4.2 The massive data case

For the massive data case, we consider the following data generating process: :

yi = 2 sin(xi1) +
x2
i2

2
+

exp(xi3)

6
+ εi (2.10)

where {i1, i2, i3} are randomly selected from {1, · · · , p}, xij
iid∼ U(−π, π), and εi

iid∼ N (0, 1).

We set the sample size to n = 10, 000 with different feature sizes p = 100, 1000. To validate

the prediction performance, we also generate another 100 testing observations.

We use our proposed QSoD approach with hybrid search for model selection and the

NN localized regression for prediction. For the QSoD approach, we select 100 representative

subsamples from the original 104 training samples. For NN GP, we select 50 nearest neighbor

samples of each testing point to train a local GP for prediction.

We compare our proposed method to the hybrid search algorithm implemented with a

random subsample combined with NNGP, which is commonly considered in practice. In

addition, we also record the prediction performance of NNGP based on the true model and

the full model for reference. For each method, we record MSPE, TPR, TNR, and true model

coverage probability (denoted by π(γtrue ∈ A)). To ensure the fairness of the comparison,

we consider the same size of subsamples and nearest neighbor sets for both methods. The

remaining settings including priors are the same as in Section 2.4.1.

We repeated the experiment 1, 000 times and tabulated the simulation results in Table

2.2. The MSPEs for each method are plotted in Figure 2.5. The error bars are also drawn

as 2 times the estimated standard error.

From Table 2.2, we can see that our proposed QSoD approach provides the closest pre-

diction accuracy to the true model. In addition, both the prediction accuracy and model

selection performances of our QSoD approach significantly outperforms the random subsam-

ple approach. Furthermore, the standard error of our proposed approach on both MSPE and

variable selection metrics is smaller. Hence, we conclude that our proposed method provides

a more stable performance than the random subsample approach.
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Table 2.2: Massive data simulation results

Dimenions MSPE TPR TNR π(γtrue ∈ A)

NNGP full

p=100 5.18(0.02) 1(0) 0(0) (NA)

p=1000 11.01(0.05) 1(0) 0(0) (NA)

NNGP true

p=100 1.05(0.005) 1(0) 1(0) (NA)

p=1000 1.05(0.005) 1(0) 1(0) (NA)

NNGP QSoD hybrid search

p=100 1.06(0.005) 0.995(0.001) 0.999(0.0002) 0.998

p=1000 1.07(0.006) 0.988(0.002) 0.999(0.0002) 0.990

NNGP random hybrid search

p=100 1.17(0.01) 0.941(0.004) 0.999(0.0002) 0.929

p=1000 1.23(0.012) 0.913(0.005) 0.999(0.0002) 0.878

The estimated standard errors are given in the parenthesis.

2.5 Real data application

To demonstrate the applicability of our proposed method, we also apply our methods to two

real data sets: 1) meatspec data available at the R package faraway (Faraway, 2004) and

2) online news population data available at the UCI machine learning repository (https:

//archive.ics.uci.edu/ml/datasets/Online+News+Popularity).

2.5.1 The meatspec data

The meatspec dataset (available with R package faraway) consists of measurements of a

100 channel spectrum of absorbances and the fat content for 215 finely chopped pure meat
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Figure 2.5: MSPE of simulation studies for massive data case

samples. Since directly measuring the fat content can be costly, people want to build a

statistical model to predict the fat content based on the 100 absorbances that are much

easier to obtain. As discussed in Borggaard and Thodberg (1992) and Yi et al. (2011), the

response fat content has a nonlinear relationship with absorbance measurements. Hence,

training a nonlinear regression model would give the best prediction performance.

To analyze the data, we first remove two outliers based on studentized residuals and take

a log transformation of the fat content following Yi et al. (2011). We then conduct Monte

Carlo cross validation: randomly select 149 samples for training and use the remaining 64

for testing. We repeat this experiment 5, 000 times.

For each replication, we compare our proposed GP hybrid search method to the full

feature GP (trained with the Laplace approximation), the lasso linear regression model,

the GP trained with lasso selected features, and the GP with variable selection trained

by the MCMC. In particular, the GP MCMC algorithm is the scheme 2 adaptive MCMC

proposed by Savitsky et al. (2011) (denote by “GP MCMC” in Table 2.3), where the single

bandwidth Gaussian kernel is employed. For the lasso linear regression model, we use the
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cv.glmnet function from the glmnet (Friedman et al., 2009) package to select the best tuning

parameters λ. To evaluate the prediction accuracy, we measure the MSPE as defined in

equation (2.9). In addition, we record the CPU time (in seconds) for both our hybrid search

method and the MCMC approach.

For our hybrid search algorithm, we set the iteration bounds to 100 and the size of

predictive samples to 5, 000. For the MCMC approach, we run the algorithm 5, 000 times

and use the first 1, 000 iterations as the burn-in period. In addition, we tune the proposal

distribution so that the average acceptance rates for each parameter σ2, λ, and τ are 0.78,

0.9, 0.68, respectively. Furthermore, as in Section 2.4.1, we train all GP models with the

single width Gaussian kernel matrixK and assume the noninformative inverse gamma priors

for the hyperparameters. The analysis results are shown in Table 2.3.

Table 2.3: Meatspec data analysis results

Method MSPE

Full feature GP (LA) 0.075(0.0003)

Linear regression lasso 0.145(0.0005)

GP lasso 0.082(0.0006)

GP-MCMC 0.056(0.0004)

Hybrid search 0.054(0.0006)

The estimated standard errors are given in the

parenthesis.

From the results in Table 2.3, we see that the GP model with our proposed hybrid search

method has the smallest MSPE. In addition, the MSPE of all GP models are smaller than

the linear regression model. Note that the MCMC GP method is slightly worse than the

hybrid search. This may be due to the fact that our proposed hybrid search eliminate many

redundant models using the notion of the “Occam window” (Madigan and Raftery, 1994)

while the MCMC algorithm includes all visited models. The CPU time of our proposed

hybrid search on average is 331.93 seconds while the MCMC approach with 5, 000 iterations
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takes 2, 673.153 seconds. This demonstrates that our proposed method is computationally

efficient.

2.5.2 Online news popularity data

In addition to the meatspec data, we also apply our proposed method to the online news

popularity data (Fernandes et al., 2015). The data contains 39, 797 observations and 59

features. The number of shares is used as a measure of the popularity of the news. We use

the logarithm transformation of the share numbers.

We conduct Monte Carlo cross validation by randomly retaining 100 for testing and using

the rest for training. We repeat this experiment 5, 000 times. Note that the size of the data

is enormous such that training a full-size kernel GP is infeasible. Hence, we apply the nearest

neighbor approach combined with the QSoD hybrid search approach. To show the advantage

of our proposed method, using MPSE defined in equation (2.9), we compare the prediction

performance of our proposed method to the NNGP model with the full feature model and

the NNGP model with random subsamples hybrid search.

Table 2.4: Online new popularity data analysis results

Method MSPE

Full-NNGP 0.857(0.0024)

Random sample hybrid search-NNGP 0.815(0.0024)

QSoD hybrid search-NNGP 0.794(0.0023)

The estimated standard errors are given in the parenthesis.

For each replication of the experiment, we selected roughly 250 representative subsamples

from the training set using the QSoD approach. In addition, we set the iteration bounds of

the hybrid search algorithm to be 50. For the size of the nearest neighbors, we set it to 50.

As in Section 2.4.1, we set the same size of subsamples and nearest neighbor sets for both

methods. In addition, we also trained both GPs with the single width Gaussian kernel with

the inverse-Gamma priors as in Section 2.4.

32



We display the final results in Table 2.4. The result clearly shows that our proposed

method outperforms both the full feature NNGP and the NNGP trained with the random

sample hybrid search.

2.6 Concluding remarks

We have developed a fast hybrid search algorithm for GP regression models in this chap-

ter. The proposed method provides a significantly faster and effective way to address both

variable selection and model uncertainties problems. As shown in Section 2.4.1, while our

proposed method provides a comparable performance to the existing MCMC approach, the

computational cost can be significantly reduced by our proposed method. In addition, we

have addressed the variable selection problem under massive data settings. Note that the

proposed method can be incorporated with the big data scalable GP technique of Liu et al.

(2020). Our future research directions include, but are no limited to, employing lower rank

matrix approximation techniques to further reduce the computational costs and extensions

to the generalized GP models for analyzing a variety of data types.
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Chapter 3

Bayesian doubly-sparse reproducing

kernel Hilbert space regression

In the reproducing kernel Hilbert space (RKHS) modeling, simultaneous variable selection

and sparse kernel matrix estimation are both needed to achieve the optimal results. This

is known as the “doubly-sparse” problem. In this chapter, we develop a novel Bayesian

doubly-sparse approach to RKHS regression modeling.

We first give a brief presentation of our model set-up and the prior specifications in Section

3.1. Then in Section 3.2, we develop a collapsed Gibbs sampler that allows the selection of the

active vectors to be incorporated into the variable selection sampling procedures. In Section

3.3, we extend our proposed method to the large sample cases, where a variation of the

collapsed Gibbs sampler algorithm is developed. In Section 3.4, we describe the procedure

of making prediction. In Sections 3.5 and 3.6, we examine our proposed methods through

simulation studies and real data analysis. We conclude this chapter in Section 3.7.

34



3.1 Model set-up and prior specification for ‘double-

sparsity’

3.1.1 Model set-up and likelihood

Suppose that we observe a dataset consists n pairs of {(xi, yi)} for i = 1, · · · , n. For each

pair, xi = (xi1, xi2, · · · , xip)> ∈ Rp is defined as the p-dimensional input vector and the

yi ∈ R is defined as the uni-variate continuous response. We assume that the observed data

are generated from

yi = f(xi) + εi,

where εi
i.i.d∼ N(0, σ2) and f(xi) : Rp → R is an unknown regression function.

Note that our goal is to estimate the unknown regression function f based on the given

dataset. In this paper, we employ the RKHS approach for estimating f so that we assume

f = u+h ∈ ({1}+HK), where HK is a RKHS. Then, the estimation problem of f is turned

into the following optimization problem:

min
f∈HK

{
1

n

n∑
i=1

L(yi, f(xi)) +
g

2
||h||2HK

}
, (3.1)

where L(yi, f(xi)) is the loss function, ||h||2HK is the RKHS norm, and g is a tuning parameter.

By the representer theorem (Kimeldorf and Wahba, 1970), the solution for the optimiza-

tion problem (3.1) can be given as

f(xi) ≈ β0 +
n∑
j=1

βjK(xi, xj|θ),

where K(xi, xj|θ) corresponds to the (i, j)th element of the n by n kernel matrix Kθ =

{K(xi, xj|θ)}n×n. With this solution, the inference towards the unknown regression function

f is turned into the estimation of a linear regression function with the kernel matrix Kθ
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defined as the design matrix. That is, our model can be rewritten as

yi ≈ β0 +
n∑
j=1

βjK(xi, xj|θ) + εi. (3.2)

To model the kernel matrix Kθ, following Linkletter et al. (2006); Savitsky et al. (2011),

we define

K(xi, xj|ρ) = exp

{
−

p∑
k=1

− log(ρk)(xik − xjk)2

}

where ρ = (ρ1, · · · , ρp)> are the kernel bandwidth. As proposed by Savitsky et al. (2011), we

set ρk ∈ (0, 1]. Note that if ρk = 1, the kth feature is totally excluded from the constructing

the kernel matrix. This formulation can be easily extended to other kernel forms, such as

Laplacian and Mercer kernel. For notational simplicity, we abuse notations related to K in

the rest of this dissertation. In particular, we let it to denote the kernel matrix itself plus

a column of ones that corresponds to the intercept. Letting y = (y1, · · · , yn)>, the model

(3.2) can be equivalently written as

y|ρ,β, σ2 ∼ N (Kρβ, σ
2I). (3.3)

3.1.2 Prior specification

As discussed in Fan and Lv (2008), variable selection is of key importance for both the

model training and prediction. With this purpose, we append a binary variable selection

index vector γ = {γ1, · · · , γp} to our model. Note that variable selection can be accomplished

by manipulating the kernel bandwidth, and in this spirit, Linkletter et al. (2006); Savitsky

et al. (2011) proposed the following spike and slab prior:

π(ρ|γk) =

p∏
k=1

{γkI[0 < ρk < 1] + (1− γk)δ1(ρk)} ,
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Figure 3.1: Fitted curve for simulation studies Case 1, section 3.5

which is also assumed in this paper, where δ1(ρk) is a point mass distribution on 1. Note

that if γk = 0, the kth variable are discarded for computing the kernel matrix K. If γk = 1,

the ith feature is included in the kernel matrix construction.

For γ, as in Narisetty and He (2014), we assume

π(γ) ∝
p∏

k=1

(
1

p

)γk (
1− 1

p

)1−γk
,

where p is the number of variables.

Other variable selection, as suggested in Zhang et al. (2016); Tipping (2001); Zhang et al.

(2011), learning a relevant set of active vectors can either help reducing the computational

cost or help both reducing the computational cost and improving the prediction accuracy.

To show the merit, we give an illustrative example in Figure 3.1 motivated by Zhang et al.

(2016). In the figure, we plot the true curve, the curve estimated by sparse kernels, and the

curve estimated by full kernels. This figure clearly shows that including all vectors would

lead to over-fitting problems.
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Note that the sparse kernel estimation can be achieved by sparse estimation of the linear

coefficients β. A larger value of βj would put more weight on jth vector, indicating its

relatively stronger significance. To achieve the sparse estimation of β, we also employ a

spike and slab prior proposed by George and McCulloch (1993) originally for the variable

selection of linear regression models. As with the variable selection index vector γ, we

append another binary index vector g = (gj, · · · , gn)> to our model. The spike and slab

prior for β is then defined as

π(β|σ2, g, ν1) =
n∏
j=1

{
(1− gj)N (βj, 0, σ

2ν0) + gjN (βj, 0, σ
2ν1)

}
×N (β0, 0, λ0σ

2),

(3.4)

where ν0 and λ0 are pre-specified hyperparameters such that ν0 ≈ 0 and λ0 ≈ ∞. Note that

if gj = 1, then a flat normal prior is assigned to the jth vector. If gj = 0, the jth vector is

approximately excluded due to the assignment of a spike prior. For ν1 and σ2, we assume

the inverse-Gamma priors:

π(ν1) ∼ inv-Gamma(aν1 , bν1),

π(σ2) ∼ inverse-Gamma(aσ, bσ), (3.5)

where aν1 , bν1 , aσ and bσ are hyper-parameters that need to be pre-specified.

For the binary index vector g, we assume

π(g) ∝
n∏
j=1

(cn
n

)gj (
1− cn

n

)1−gj

as proposed by Narisetty and He (2014). For the choice of the coefficient cn, we choose

it such that Φ((gmax − cn)/
√
cn(1− cn/n)) ≈ 1 as suggested by Narisetty and He (2014),

where gmax is the upper bound size for number of the active vectors. With the motivation

of learning a parsimonious sparse kernel, we set gmax to be half of the sample size.
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3.2 Posterior inference

3.2.1 Posterior sampling via the collapsed Gibbs sampler

With the prior set-up in Section 3.1.2 and the model defined in (3.3), the posterior is obtained

as

π(γ,ρ, g,β, σ2, ν1|y) ∝ 1√
|σ2I|

exp

{
− 1

2σ2
(y −K>β)>(y −K>β)

}
× 1√

|σ2V |
exp

{
− 1

2σ2
β>V −1β

}
× (

1

σ2
)aσ+1 exp

{
− bσ
σ2

}
× (

1

ν1

)aν1+1 exp

{
−bν1
ν1

}
×

p∏
k=1

γkI[0 < ρk < 1] + (1− γk)δ1(ρk)

×
p∏

k=1

(
1

p

)γk (
1− 1

p

)1−γk
×

n∏
j=1

(cn
n

)gj (
1− cn

n

)1−gj
,

(3.6)

where V is defined as a n + 1 by n + 1 diagonal matrix with diagonal elements, ν0, ν1 and

λ0.

The equation (3.6) is complex and so making direct inference from this distribution is

impossible. Specifically, directly sampling from this distribution is infeasible due to the

complex structure. One popular way for sampling from the posterior is the Gibbs sampler

(Gelfand and Smith, 1990). However, the traditional Gibbs sampler may fail in this situation.

In particular, the sampling from the full conditionals of γ and ρ are highly sensitive to the

value of β and σ2. As a result, directly sampling from the full conditionals of γ and ρ would

lead to the poor mixing as well as the slow convergence of the Markov chain.

To address this issue, we propose a collapsed Gibbs sampler (Liu, 1994). We iteratively

generate the joint posterior samples from the following conditional distributions until con-

vergence:

Step 1. Jointly generate (γ,ρ) from π(γ,ρ|g, ν1,y).

Step 2. Generate β from π(β|γ,ρ, σ2, g, ν1,y).
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Step 3. Generate σ2 from π(σ2|γ,ρ, g,β, ν1,y).

Step 4. Generate ν1 from π(ν1|γ,ρ, g,β, σ2,y).

Step 5. Generate each gi for j = 1, · · · , n from π(gj|g−j,γ,ρ, σ2,β, ν1,y).

Let {(γ(t),ρ(t),β(t), σ2(t), ν
(t)
1 , g(t)) : t = 1, · · · , T} be the Markov chain generated by the

above collapsed Gibbs sampler. Using the MCMC computation theory, it can be easily

shown that the strationary distribution of the Markov chain is π(γ,ρ,β, σ2, ν1, g|y).

3.2.2 Conditional distribution and implementation details

In this section, we discuss the implementation of the proposed collapsed Gibbs sampler.

First, we give the sampling procedure for updating γ and ρ. We revise the sampling scheme

of Savitsky et al. (2011) using the reversible jump MCMC idea of Green (1995) and Gottardo

and Raftery (2008). Specifically, we jointly update the samples for (γ,ρ) as follows: Generate

samples from p(ρ,γ|g, ν1,y) via the Metropolis-Hastings algorithm. The update for (ρk, γk)
>

is performed with two moves conducted in successions for k = 1, · · · , p:

1 Between-models move: Jointly propose a new model such that if γk = 1, propose γ′k = 0

and set ρ′k = 1. If γk = 0, propose γ′k = 1 and randomly draw ρ′k ∼ U(0, 1). Accept

the proposed value of (γ′k, ρ
′
k)
> with the probability of

α = min

{
1,
π(γ′k, ρ

′
k|γ−k,ρ−k, g, ν1,y)

π(γk, ρk|γ−k,ρ−k, g, ν1,y)

}
.

As suggested by Savitsky et al. (2011), the proposal ratio reduces to 1 since we employ

a uniform proposal for ρk and a symmetric Dirac measure proposal for γk.

2 With-in model move: This move is performed only for those γk = 1 resulted from

the previous between-model move. We set γ′k = 1 first. Instead of using the uniform

proposal for ρ proposed by Savitsky et al. (2011), we use an adaptive random walk

proposal for better mixing (Andrieu and Thoms, 2008; Roberts and Rosenthal, 2009).

We draw ρ′k ∼ U(ρk−
sρk
2
, ρk+

sρk
2

), where sρk is the standard deviation for ρk computed
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with the generated MCMC samples. We accept the joint proposal for (γ′k, ρ
′
k)
> with

the probability of

α = min

{
1,
π(γ′k, ρ

′
k|γ−k,ρ−k, g, ν1,y)

π(γk, ρk|γ−k,ρ−k, g, ν1,y)

}
.

Again, the proposal ratio reduces to 1 as in the between model move. One could

also use Laplace approximation (Tierney and Kadane, 1986) for this step. However, a

potential drawback of the Laplace method is the computational cost associated with

the optimization step.

Note that π(γ,ρ|g, ν1,y) ∝ π(y|γ,ρ, g, ν1)π(ρ,γ). Due to the conjugacy, we can com-

pute the marginal likelihood of π(y|γ,ρ, g, ν1) by integrating out β and σ2 from the full

likelihood as follows:

π(y|γ,ρ, g, ν1) ∝ |K>K + V −1|−
1
2

1

b∗a
∗ (3.7)

where a∗ = n+2aσ
2

and b∗ = 1
2
(y>(I −K(K>K + V −1)−1K>)y) + bσ. The derivation of

equation (3.7) is given in appendix A.1.

To speed up computing the marginal likelihood, we divide β into two partitions [βg,βI ]

and K into [Kg,KI ]. As proposed by Narisetty et al. (2018), we make this division by the

vector selection index g. To be more specific, we let βg and βI to contain the elements of

β corresponding to gj = 1 and gj = 0 respectively. Similarly, we let Kg and KI contain the

columns of K corresponding to gj = 1 and gj = 0. Due to the spike shrinkage prior, we have

the approximately zero coefficients in βI . Hence, we can rewrite the model as

y = Kgβg +KIβI + ε ≈Kgβg + ε.

Similar to the equation (3.7), we integrate out βg and σ2 and then obtain the marginal

likelihood as

π(y|γ,ρ, g, ν1) ≈ c|K>gKg + V −1
g |−

1
2

1

b̃∗
a∗ ,
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where c is constant, a∗ = n+2aσ
2

, and

b̃∗ =
1

2
(y>(I−Kg(K

>
gKg + V −1

g )−1K>g )y) + bσ.

In addition, we define Vg to be a (ng + 1)× (ng + 1) diagonal matrix with ν1 and λ0 as its

diagonal elements, where ng is defined as the number of active vectors, i.e., ng =
∑n

j=1 gj.

It is easy to show that the full conditional distributions of the rest model parameter are

as follows:

β|γ,ρ, σ2, g, ν1,y ∼ N
([
K>K + V −1

]−1
K>y, σ2

[
K>K + V −1

]−1
)

σ2|β,γ,ρ, g, ν1,y ∼ Inverse-Gamma

(
2n+ 2aσ + 1

2
,
||y −Kβ||2 + β>V −1β

2
+ bσ

)
ν1|γ,ρ,β, σ2, g,y ∼ inverse-Gamma

(
|g|
2

+ aν1 ,
||βg||2

2σ2
+ bν1

)
gj|g−j,γ,ρ,β, σ2, ν1,y ∼ Bernoulli

( cn
n
φ(βj; 0, σ2ν1)

cn
n
φ(βj; 0, σ2ν1) + (1− cn

n
)φ(βj; 0, σ2ν0)

)

for j = 1, · · · , n.

3.3 Extension for dealing with large sample size

In addition to variable selection, a challenge of the RKHS approach is the computational

burden when the sample size is large. To handle the large n problem, many approaches have

been developed under the framework of Gaussian process (GP) based models, which is the

most popular way to learn an unknown nonlinear function from the Bayesian perspective

(Hensman et al., 2013; Liu et al., 2020). Among those approaches, one popular way is to

select fewer representative points of m � n via some criteria and learn the function with

those fewer induced points, for instance, Snelson and Ghahramani (2006b), Seeger et al.

(2003).

Under the RKHS framework, learning a sparse representation with fewer supporting

vectors can achieve similar results as learning with full data (Tipping, 2001; Zhang et al.,
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2011, 2016). In particular, Zhang et al. (2011) showed that learning the function with fewer

selected vectors can be equivalent to the sparse GP with the subset of a regressors (Williams

and Rasmussen, 2006). The perk of learning the sparse kernel representation is that it can

significantly reduce the computational cost and so the method is scalable to the large sample

cases.

However, the question of how to perform variable selection given the large data is seldom

addressed. For instance, the DoSK method proposed by Chen et al. (2018) only addressed

selecting vectors for better model fit under the smaller sample settings. In this section, we

modify our proposed collapsed Gibbs sampler to fill this gap.

3.3.1 The modified Collapsed Gibbs sampler

The key idea of our modification is to train a model based on the ‘active’ subset of data

corresponding to gj = 1. With this ‘active’ subset of data, we rewrite our model as

yg = K̃βg + ε, (3.8)

where yg is a subset of the original y that contains the components that corresponding to

gj = 1 and K̃ is a submatrix of Kg consisting only its rows that corresponding to gj = 1.

Based on model (3.8), we present our modified collapsed Gibbs sampler. For (γ,ρ)>, we

still generate samples via the same Metropolis-Hastings algorithm introduced in the Section

3.2.2. Here, the marginal likelihood is given by

π(γ,ρ|g, ν1,yg) ∝ |K̃>K̃ + V −1
g |−

1
2

1

b∗a
∗ ,

where a∗ = ng+2aσ
2

and

b∗ =
1

2
(y>g (I− K̃(K̃>K̃ + V −1

g )−1K̃>)yg) + bσ.

Then we employ the idea of the “skinny Gibbs” proposed by Narisetty et al. (2018) for
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sampling from the full conditionals of β and g. For βg, we draw samples from

βg|γ,ρ,βI , σ2, g, ν1,yg ∼ N
([
K̃>K̃ + V −1

g

]−1

K̃>yg, σ
2
[
K̃>K̃ + V −1

g

]−1
)
.

For βI , we generate samples from

βI |γ,ρ,βg, σ2, g, ν1,y ∼ N
(
0,S−1

I

)
,

where SI = Diag
(
K>I KI + (σ2ν0)−1In−|g|

)
. σ2 and ν1 are updated via

σ2|β,γ,ρ, g, ν1,yg ∼ Inverse-Gamma

(
2|g|+ 2aσ + 1

2
,
||yg − K̃βg||2 + β>g V

−1
g βg

2
+ bσ

)

ν1|γ,β, σ2, g,yg ∼ inverse-Gamma

(
|g|
2

+ aν1 ,
||βg||2

2σ2
+ bν1

)
.

The last parameter is the vector extraction index g, which governs the selection of the

active subset of data in each iteration. We update g via

gj|g−j,γ,ρ,β, σ2, ν1,y ∼ Bernoulli(ω∗j )

for j ∈ 1, · · · , n, where

ω∗j =

[
1 +

(1− cn
n

)φ(βj; 0, ν0σ
2)

cn
n
φ(βj; 0, ν1σ2)

exp

{
−

2βjK̃
>
j (yg − K̃CjβCj) + (σ2 − 1)K̃>j K̃jβ

2
j

2σ2

}]−1

where Cj = {k : k 6= j, gk = 1}, K̃Cj is a submatrix of K̃ with columns indexed by the Cj,

and K̃j is the jth column of K̃.

For the choice the cn, we use the similar idea presented in the Section 3.2. The modifica-

tion is that gmax is chosen now by the statistician instead of setting it to be n
2
. The trade-off

is that a large number gmax would lead to more accurate predictions but also increases com-

putational costs. For the starting point of g, we divide the data y into several grid and

randomly generate subsamples from each grid with a total size of m < gmax to ensure an
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approximate uniform coverage of the data y.

3.4 Prediction

One major objective of our proposed method is to make predictions for unseen observations.

Let xnew be the input data of the unobserved points and D = {(xi, yi), i = 1, · · · , n} be the

observed data set. For the simplicity of notations, we denote the set of all model parameters

by Θ = (γ,ρ,β, g, σ2, ν1). Then the posterior predictive distribution is given as

π(ynew|xnew,D) =

∫
Θ

π(ynew|Θ,D)π(Θ|D)dΘ,

where π(Θ|D) is the posterior distribution of model parameters. Using the MCMC technique,

we use the following steps to make prediction:

step 1. Generate T samples of model parameters from its posterior distribution π(Θ|D)

via the collapsed Gibbs sampler given in Section 3.2 or Section 3.3.

step 2. Generate predictive samples {y(t)
new, t = 1, · · · , T} for ynew from the predictive

distribution π(ynew|D,Θ).

step 3. Compute ŷnew = 1
T

∑T
i=1 y

(t)
new.

Note that π(ynew|Θ,D) ∼ N (Knewβg, σ
2), where Knew is the nnew × (ng + 1) prediction

kernel matrix computed based on the unseen points and the active vectors denoted by index

vector g. By using those active vectors only can we significantly reduce the computational

cost. This can be most effective when the size of prediction set is large.

3.5 Simulation studies

In this section, we conduct simulation studies to examine our proposed method. We consider

three cases for data generation. We consider a small data size for Cases 1 and 2, and the

large data size for Case 3. We give the details of the data generating procedures as follows.
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Case 1. yi = 10 exp
(
−x2

ik1

)
+ εi, where k1 is randomly selected from {1, · · · , p} and

εi
i.i.d∼ U(−2, 2). Each xk is simulated from U(−5, 5) with n = 50 and p = 20, 200, 500.

Case 2. yi = 2 cos(xik1) +
x2ik2

2
+

exp(xik3 )

5
+ εi, where k1, k2, k3 are randomly selected from

{1, · · · , p} and εi
i.i.d∼ N (0, 1). and ε ∼ N (0, 1). Each xk is simulated from U(−π, π)

with n = 100 and p = 20, 200, 500.

Case 3. yi = 2 cos(xik1) +
x2ik2

2
+

exp(xik3 )

5
+ xik4 + εi, where k1, k2, k3, k4 are randomly

selected from {1, · · · , p} and εi
i.i.d∼ N (0, 1). Each xk are simulated from U(−π, π) with

n = 1, 000 and p = 20, 200.

For the simulation studies, we compare our proposed Bayesian doubly-sparse regression

model to several existing Bayesian RKHS regression models tabulated in Table 3.1. For each

experiment, we measure the performance of each models with the measurements tabulated

in Table 3.2.

For the choice of the hyperparameters, we set aσ = bσ = aν1 = bν1 = aλ = bλ = 10−3. For

the spike and slab hyperparameters, we set ν0 = 10−3 and λ0 = 103. For cn, we set cn = 8

for Case 1 and cn = 30 for Case 2. For Case 3, we set gmax = 200 and results in cn = 60. For

the choice of the starting point, we assume γ to be the vector with one feature selected such

that the selected feature maximizes the marginal likelihood with the response. In addition,

we choose the Laplacian kernel for Case 1 and Gaussian kernel for Cases 2, 3.
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Table 3.1: The Bayesian RKHS regression models to be compared

Abbreviation Method Remarks

True-ssvs

Bayesian RKHS regression

with true variables and

spike and slab prior on β

Trained with true models,

sparse kernel estimated

Full-ssvs

Bayesian RKHS regression

with full variables and

spike and slab prior on β

Variable selection is not addressed,

sparse kernel estimated,

regression version of Zhang et al. (2011)

VS-L2

Bayesian RKHS regression

with variable selection and

ridge prior on β

Variable selection is conducted,

no sparse kernel matrix estimation,

regression version of Chakraborty (2009),

details are given in the Appendix B.1

Table 3.2: Measurements for model performance

Abbreviation Explanation Formula

MSPE Mean squared prediction error MSPE = 1
ntest

∑ntest

i=1 (ŷnew
i − yi)2

TP Number of true positive variables |{k : γk = 1 ∩ γ̂k = 1}|

TF Number of true negative variables |{k : γk = 0 ∩ γ̂k = 0}|

Train time CPU time for training the model

Pred time CPU time for prediction

γ and γ∗ denote binary index for the true model and estimated model. We set γ̂j = 1 if

π(γk = 1|y) > 0.5 and γ̂k = 0 otherwise. The CPU time is measured in seconds.
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Table 3.3: Case 1 simulation results

Dimensions Method MSPE TP TN Train time Pred time

p=20 True-ssvs 1.707(0.008) 1(0) 19(0) 18.64 4.526

Full-ssvs 9.125(0.12) 1(0) 0(0) 180.046 15.589

VS-L2 1.815(0.01) 1(0) 18.987(0.004) 528.129 14.405

Doubly-sparse 1.724(0.009) 1(0) 18.994(0.002) 126.167 4.1

p=200 True-ssvs 1.701(0.009) 1(0) 199(0) 19.447 4.326

Full-ssvs 12.199(0.046) 1(0) 0(0) 1643.766 165.10

VS-L2 1.861(0.02) 0.997(0.002) 198.983(0.004) 4889.586 14.012

Doubly-sparse 1.755(0.019) 0.997(0.002) 198.983(0.005) 1078.374 4.101

p=500 True-ssvs 1.701(0.009) 1(0) 499(0) 17.217 3.6

Full-ssvs 12.085(0.043) 1(0) 0(0) 3754.667 435.944

VS-L2 1.873(0.024) 0.994(0.002) 498.979 (0.005) 10865.85 12.153

Doubly-sparse 1.781( 0.024) 0.994(0.002) 498.983 (0.004) 2385.619 3.755

The estimated standard errors are given in the parenthesis.

We repeat the Monte Carlo experiments 1, 000 times for Cases 1 and 2, and 50 times for

Case 3. For each method in Cases 1 and 2, we let the MCMC run for 10, 000 iterations with

the first 5, 000 iterations as burn-in samples. For Case 3, we set MCMC to run 5, 000 times

and set the first 2, 000 iterations as burn-in. We tabulate the results in Tables 3.3, 3.4 and

3.5 respectively. In addition, we also plot the MSPE for each method in Figure 3.2. The

error bar is plotted to be equal to 2 times the estimated standard error. Furthermore, we

plotted the CPU time for each method in Cases 1 and 2 in Figure 3.3.

From the experiment results of Cases 1 and 2, we observe that our proposed method

provides smaller or equal prediction errors compared to the VS-L2. With the simulation

results of Case 1, we can see that including all vectors would lead to the problem of overfitting,

which is corroborated by Zhang et al. (2016). In terms of variable selection, VS-L2 and the

proposed method have similar performances. In addition, including all variables would lead
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to poor prediction if there exist many irrelevant variables. This suggest that the sparse

kernel methods proposed by Zhang et al. (2011, 2016) would fail when many noisy variables

exist. Other than the prediction accuracy and variable selection, another benefit of our

proposed method is the reduction of the computational cost. In Figure 3.2, for both Cases

1 and 2, the doubly-sparse model are 4 to 5 times faster than the model trained with all

data points. For the large sample scenarios in Case 3, we observe that our proposed method

performs significantly better than the sparse model on prediction performance. Furthermore,

our proposed method also requires smaller computational cost.

Table 3.4: Case 2 simulation results

Dimensions Method MSPE TP TN Train Time Pred Time

p=20 True-ssvs 1.273(0.003) 3(0) 17(0) 69.62 13.79

Full-ssvs 1.968(0.01) 3(0) 0(0) 358.105 36.14

VS-L2 1.276(0.0035) 3(0) 16.992(0.003) 1642.141 30.37

Doubly-sparse1.276(0.0035) 3(0) 16.991(0.003) 309.634 13.38

p=200 True-ssvs 1.279(0.004) 3(0) 197(0) 65.934 12.89

Full-ssvs 6.401(0.013) 3(0) 0(0) 3164.186 374.28

VS-L2 1.284(0.0035) 3(0) 196.993 (0.002) 13868.27 29.2

Doubly-sparse1.284(0.0035) 3(0) 196.992 (0.003) 2299.298 12.34

p=500 True-ssvs 1.279(0.003) 3(0) 497(0) 67.969 13.33

Full-ssvs 6.392(0.012) 3(0) 0(0) 8179.819 1048.23

VS-L2 1.284(0.004) 2.998(0.0014) 496.991(0.003) 38064.95 36.22

Doubly-sparse 1.285(0.004) 2.997(0.0017) 496.994(0.002) 6068.945 14.17

The estimated standard errors are given in the parenthesis.
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Figure 3.2: Training time for each methods

3.6 Real data analysis

In this section, we apply our proposed Bayesian doubly-sparse RKHS method to real datasets

to demonstrate its advantages.

3.6.1 The Bardet-Biedl syndrome Gene expression data

The Bardet-Biedl syndrome Gene expression (Trim32) data were first introduced by Scheetz

et al. (2006) and also analyzed in many works (Fan et al., 2011; Huang et al., 2010). As

discussed in Fan et al. (2011); Huang et al. (2010), the goal is to build a statistical model

to predict the expressions of the TRIM32 gene, which leads to the Bardet-Biedl Sydrome.

The micro-array data were gathered from tissues of eyes from 120 twelve-week-old rats. We

use the TRIM32 dataset available at the abess R package with sample size of n = 120 and

pre-selected 500 genes expressions.
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Figure 3.3: MSPE for each methods

Table 3.5: Case 3 simulation results

Dimensions Method MSPE TP TN Train time Pred time

p=20 Doubly-sparse 1.264(0.0126) 4(0) 16(0) 11080.88 41.889

Full-ssvs 1.4524(0.0138) 4(0) 0(0) 11237.04 140.564

p=200 Doubly-sparse 1.278(0.01) 4(0) 196(0) 46489.95 33.255

Full-ssvs 9.62(0.078) 4(0) 0(0) 132038.1 2036.434

The estimated standard errors are given in the parenthesis.

Since the data are not pre-spitted, we conduct Monte Carlo cross validation (repeated

1000 times) to compare and evaluate the performance of our proposed method to other

existing methods. In each experiment, we split the data into two sets with 100 observations

as the training set and the remaining 20 observations as the testing set. We record the

MSPE computed on the testing set for each method. To evaluate the computational cost,

we record the CPU time for training measured by seconds.

As in Section 3.5, we compare our proposed Bayesian doubly-sparse method (denoted

by Doubly-sparse) to the methods tabulated in Table 3.1. In addition, we adopt the same
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setting as in the Case 2 simulation studies. The results are tabulated in Table 3.6.

Table 3.6: Trim32 data analysis results

Method MSPE Time

Full-ssvs 0.01893(0.0006) 7521.816

VS-L2 0.00855(0.000155) 27557.3

Doubly-sparse 0.00849(0.00015) 6016.71

The estimated standard errors are given in the paren-

thesis.

From the table 3.6, we can see that the full model has larger prediction error compared

to methods with variable selections. This indicates the necessity of variable selection for

analyzing this dataset. In addition, our proposed doubly-sparse method not only has the

smallest prediction error but also has the smallest computational cost. To be more specific,

the doubly-sparse method is more than 4 times faster than VS-L2.

3.6.2 The breast invasive carcinoma (BRCA) data

The breast invasive carcinoma (BRCA) data are available through the Cancer Genome Atlas

(TCGA) Research Network: http://cancergenome.nih.gov. The original data contains

526 observations and 17, 814 gene expressions recorded on the log scale. The objective of the

analysis is to identify the most important genes and train a model to make predictions on the

expressions of BRCA1. The BRCA1 gene produces proteins that help repair the damaged

DNA. The risk of developing breast cancer increases tremendously if one inherits a harmful

variant of BRCA1 gene (Kuchenbaecker et al., 2017).

To analyze the data, we first screen the variables by training a single variable Gaussian

process regression model and computing its marginal likelihood via the Laplace method

Tierney and Kadane (1986). We retain the first 1, 000 gene expressions with largest marginal

likelihood. Then we conduct Monte Carlo cross validation by randomly spiting the data

into 500 observations for training and the rest for testing. For each experiment, we record
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the mean squared prediction error computed on the testing set and record the CPU time

measured by seconds.

To train models for predictions, we apply our proposed updated collapsed Gibbs sampler

(denoted by “Doubly-sparse”) due to the large sample size. We also apply the sparse kernel

learning method with full variable (denoted by Full-ssvs, tabulated in Table 3.1). For both

methods, we set the gmax = 200 and cn = 60. We let the MCMC method run for 5, 000

iterations with the first 2, 000 as the burn-in period. For the prior set-up and the kernel

form, we employ the same specifications as in the simulation experiments Case 3.

We repeat this Monte Carlo cross validation for 500 times and record the results in table

3.7. From the Table 3.7, we can see that our proposed doubly-sparse method provides a

significant smaller prediction error compared to the sparse kernel method without variable

selection. This indicates the importance of variable selection in the kernel based regression

models. The sparse kernel methods like Zhang et al. (2011) provides a pathway for training

the kernel nonlinear models with the data of large size. However, such methods would fail

when there existing many irrelevant noisy variables. In addition, our proposed method also

requires a smaller computational cost. This is because training the model with full features

imputes large noises to the model and so it leads to the slow convergence.

Table 3.7: BRCA data analysis results

MSPE Training Time

Full-ssvs 1.031(0.015) 129175.8

Doubly-sparse 0.157(0.0035) 103638.3

The estimated standard errors are given in the parenthe-

sis.

3.7 Concluding remarks

In this chapter, we have developed a Bayesian doubly-sparse RKHS model. Our proposed

method performs variable selection and active vector selection simultaneously. The un-

53



certainties of variable selection and vector extractions have been addressed in a Bayesian

fashion. In addition, the method is free from selecting a single best model or tuning penalty

parameters. The Bayesian model averaging for both variable selection and sparse kernel

matrix estimation (Hoeting et al., 1999; Raftery et al., 1997) are achieved automatically

through the MCMC integration.

For future research directions, we can extend our Bayesian doubly-sparse framework to

the Bayesian kernel probit models or Bayesian support vector machine models (Chakraborty,

2009; Mallick et al., 2005; Albert and Chib, 1993; Polson and Scott, 2011) by introducing a

latent variable, which is the topic of the next chapter. In addition, we can also extend our

method to the robust regression framework by assuming Laplace or student t-distributed

errors (Jylänki et al., 2011).
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Chapter 4

Bayesian doubly-sparse kernel

support vector machine

In this chapter, we extend our proposed doubly-sparse framework to the nonlinear Bayesian

support vector machine. In Section 4.1, we briefly introduce the model set-up. We present

the hierarchical representation of the nonlinear Bayesian support vector machine via the data

augmentation (Polson and Scott, 2011). The prior specifications are also given in Section

4.1. With the model set-up and the prior assumptions, we address the posterior inference in

Section 4.2. We develop a collapsed Gibbs sampler that the selection of active vectors can

be factored into the variable selection procedures. The procedure for making prediction are

given in Section 4.3. In Section 4.4, we examine our proposed methods via the analysis of

leukemia cancer data (Golub et al., 1999). We conclude this chapter in Section 4.5.
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4.1 Model set-up and prior specification

4.1.1 The Bayesian nonlinear SVM

Suppose we observe n pairs of {xi, yi} for i = 1, · · · , n. For each pair, yi ∈ {−1,+1} is

defined as the binary outcome and xi = (xi1, · · · , xip)> ∈ Rp is the p-dimensional input

vector. With the observed data, our objective to learn a hyper-plane based on the unknown

smooth function f : Rp → R to classify the response y = (y1, · · · , yn) based on the input

data x = [x1, · · · , xn]>. To train this classifier, one can minimize the following cost function,

d(f) =
n∑
i=1

max(1− yif(xi), 0) + τJ (f), (4.1)

where max(1 − yif(xi), 0) is the hinge loss and τ is defined as the tuning parameter. In

addition, J is defined as the regularization function, which controls the complexity of f .

By optimizing the cost function (4.1), we can obtain a classification hyper-plane such that

if f(xi) > 0, one classifies the ith observation as +1. If f(xi) < 0, one classifies the ith

observation as −1.

In this paper, we employ the approach of the reproducing kernel Hilbert space (RKHS)

for the inference of the unknown function f . With the RKHS approach, we assume f =

u+ h ∈ ({1}+HK), where HK is a reproducing kernel Hilbert space and u is the intercept.

Then, the minimization of cost (4.1) can be rewritten as

min
u,h∈HK

{
1

n

n∑
i=1

max(1− yif(xi), 0) +
τ

2
||h||2HK

}
, (4.2)

where ||h||2HK is defined as the RKHS norm and τ is the tuning parameter.

By the representer theorem (Kimeldorf and Wahba, 1970), the solution for the optimiza-

tion problem (4.2) can be given as

f(xi) ≈ β0 +
n∑
j=1

βjK(xi, xj|θ), (4.3)
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where K(xi, xj|θ) is the (i, j)th component of the kernel matrix Kθ(x) = {K(xi, xj|θ)}n×n

governed by the hyper-paramters θ. The complex optimization problem (4.2) is turned into

an estimation problem of the linear coefficients β and the kernel Kθ(x).

To estimate the β and Kθ(x), with equation (4.3) and the hinge loss in equation (4.1),

we define the pseudo-likelihood for the nonlinear SVM as

L(y|β) ∝ exp

{
−2

n∑
i=1

max(1− yik>i β, 0)

}
,

where ki is the ith row of the kernel matrix Kθ(x). As proposed by Polson and Scott (2011),

we can introduce a latent variable λ = (λ1, · · · , λn)> such that

L(yi|β) ∝ exp
{
−2 max(1− yik>i β, 0)

}
∝
∫ ∞

0

1√
2πλi

exp

{
−1

2

(1 + λi − yik>i β)2

λi

}
dλi.

With this data augmentation technique, we successfully transform the hinge loss into the

following Gaussian shape likelihood:

L(y|β,K,λ) ∝
n∏
i=1

1√
λi

exp

{
−1

2

(1 + λi − yik>i β)2

λi

}
. (4.4)

With the model likelihood defined above, we model the kernel matrix Kθ following

Linkletter et al. (2006); Savitsky et al. (2011). We define the (i, j)th term of the kernel

matrix as

K(xi, xj|ρ) = exp

{
−

p∑
k=1

− log(ρk)(xik − xjk)2

}
,

where ρ = (ρ1, · · · , ρp)> is the kernel bandwidth with each ρk ∈ (0, 1]. Note if ρk = 1, the kth

variable is completely excluded from the constructing the kernel matrix. This formulation

can be easily extended to other forms, such as Laplacian.
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4.1.2 The prior specification

As commented by Fan and Lv (2008), variable selection plays a key important role for

model prediction. With this objective, we assume the spike and slab prior proposed by

Linkletter et al. (2006); Savitsky et al. (2011) to the kernel bandwidth ρ on the basis that

variable selection can be accomplished by manipulating the kernel bandwidth. In addition,

we append a variable selection binary index vector γ = (γ1, · · · , γp)> , which we assume the

prior proposed by Narisetty and He (2014). With the above set-up, the prior for ρ and γ is

assumed as:

π(ρ,γ) =

p∏
k=1

π(ρk|γk)π(γ)

∝
p∏

k=1

{γkI[0 < ρk < 1] + (1− γk)δ1(ρk)}

×
p∏

k=1

{
1

p
I (γk = 1) + (1− 1

p
)I (γk = 0)

}
.

(4.5)

Within the equation (4.5), δ1(ρk) is defined as a point mass distribution on 1. Note if

γk = 0, a point mass on the bandwidth ρk would lead to the exclusion of the kth feature for

computing the kernel matrix. Contrarily, a uniform prior is assigned to ρk if γk = 1.

Other than the variable selection, learning a sparse kernel representation can lead to

better or same prediction results with reduced computational costs (Zhang et al., 2016,

2008, 2011; Tipping, 2001). Note the learning of the sparse kernel can be accomplished by

the sparse estimation of the vector weights β. With this aim, we also employ a spike and

slab prior proposed by George and McCulloch (1993). Similar to γ, we supplement another

binary index vector g = (gj, · · · , gn)> for the purpose of the active vector selection. Then

we assign the spike and slab prior for β as

π(β|g) =
n∏
j=1

{
(1− gj)N

(
βj, 0, ν

2
0

)
+ gjN

(
βj, 0, ν

2
1

)}
×N

(
β0, 0, ν

2
1

)
(4.6)
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Within the equation (4.6), the prior variance ν2
1 and ν2

0 are pre-defined hyperparameters

such that ν2
1 ≈ ∞ and ν2

0 ≈ 0. With this specification, the slab priors are assigned to the

coefficients of active vectors. Contrarily, the jth vector are approximately discarded due to

the allocation of the spike priors.

As proposed by Narisetty and He (2014), we assume

g ∝
n∏
j=1

(cn
n

)gj (
1− cn

n

)1−gj
.

for the index vector g. Also as suggested by Narisetty and He (2014), we choose the tuning

parameter cn by Φ((gmax − cn)/(
√
cn(1− cn/n))) ≈ 1. The gmax is set as the upper bound

of the size of active vectors. Since we aim to learn a sparse representation of the kernel, we

set gmax to be half of the sample size.

One last parameter is the latent variable λ = (λ1, · · · , λn), for which we assume a uniform

prior such that each λi ∝ 1.
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4.2 Posterior inference

4.2.1 Posterior distribution and the collapsed Gibbs sampler

With the prior specification in Section 4.1.2 and model likelihood defined in equation (4.4),

we acquire the posterior as

π(γ,ρ,λ,β, g|y) ∝ L(y|β,λ,K)π(ρ,γ)π(β|g)π(g)π(λ)

∝
n∏
i=1

1

λi
exp

{
−1

2

(1 + λi − yik>i β)2

λi

}
× 1√

|V |
exp

{
−1

2
β>V −1β

}
×

n∏
j=1

(cn
n

)gj (
1− cn

n

)1−gj

×
p∏

k=1

{γkI[0 < ρk < 1] + (1− γk)δ1(ρk)}

×
p∏

k=1

{
1

p
I (γk = 1) + (1− 1

p
)I (γk = 0)

}
(4.7)

The V is defined as a diagonal matrix with ν2
1 and ν2

0 as its diagonal elements.

The distribution in the equation (4.7) is so complex that direct inference is almost im-

possible. One common approach for posterior sampling is the Gibbs sampler. However, the

sampling of the full conditionals of (ρ,γ) is highly sensitive to β, which leads to poor mix-

ing and slow convergence of the Markov chain. To solve this issue, we propose a collapsed

Gibbs sampler (Liu, 1994). We iteratively generate samples from the joint posterior with

the following conditional distributions until convergence:

Step 1. Jointly generate (γ,ρ) from π(γ,ρ|g,λ,y).

Step 2. Generate each gj for j = 1, · · · , n from π(gj|g−j,γ,ρ,λ,β,y).

Step 3. Generate β from π(β|γ,ρ,λ, g,y).

Step 4. Generate λ from π(λ|γ,ρ, g,β,y).
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4.2.2 Conditional distributions and implementation details

With the collapsed Gibbs sampler proposed above, we give the implementation details in this

section. The sampling steps from 2 to 4 are straightforward because their full conditionals are

all well-known distributions. The marginal conditional of (γ,ρ)>, however, is the complex

one, which we have to generate samples via the Metropolis-Hastings algorithm. In particular,

we revise the sampling scheme proposed by Savitsky et al. (2011).

We update the samples of (γ,ρ)> as follows. For k = 1, · · · , p:

1 Between-models move: Jointly propose a new model such that if γk = 1, propose γ′k = 0

and set ρ′k = 1. If γk = 0, then propose γ′k = 1 and randomly draw ρ′k ∼ U(0, 1). Accept

the proposed value of (γ′k, ρ
′
k)
> with probability

α = min

{
1,
π(γ′k, ρ

′
k|γ−k,ρ−k, g,λ,y)

π(γk, ρk|γ−k,ρ−k, g,λ,y)

}

The proposal ratio reduces to 1 given that we employ a uniform proposal for ρk and a

symmetric Dirac measure proposal for γk.

2 Within-models move: This move is performed only when sampling γk = 1 from the

previous step. The aim of this step is to further refine the bandwidth parameter ρk.

We first propose γ′k = 1. Then we use an adaptive random walk approach (Andrieu

and Thoms, 2008; Roberts and Rosenthal, 2009) for the proposal of ρk. In particular,

we draw ρ′k ∼ U(ρk −
sρk
2
, ρk +

sρk
2

) where sρk is the sample standard deviation for

ρk computed with the generated MCMC samples. We accept the joint proposal for

(γ′k, ρ
′
k)
> with the probability of

α = min

{
1,
π(γ′k, ρ

′
k|γ−k,ρ−k, g,λ,y)

π(γk, ρk|γ−k,ρ−k, g,λ,y)

}

Again, the proposal ratio reduces to 1 just like the between-model move.

For the computation of π(γ,ρ|g,λ,y) ∝ π(y|ρ, g,λ)π(γ,ρ), we need to integrate out β
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from the full likelihood. The marginal likelihood is then given as

π(y|ρ, g,λ) ∝ |A|−
1
2 exp

{
1

2
λ̃>λ∗−1K̃A−1K̃>λ∗−1λ̃

}
(4.8)

where λ̃ = λ+ 1 and K̃ = y>K. The derivation of the (4.8) is given in Appendix A.2.

To speed up the computation of the equation (4.8), as proposed by Narisetty and He

(2014), we divide the β into [βg,βI ] such that βg and βI contains the components of β

corresponding to gj = 1 and gj = 0. Similarly, we divide K into [Kg,KI ] that they consist

columns of K corresponding to gj = 1 and gj = 0. With the spike priors, the components

within the βI are shrink to approximately zero. Then by discarding theKI , the approximate

marginal likelihood is computed as

π(y|ρ, g,λ) = c|Ag|−
1
2 exp

{
1

2
λ̃>λ∗−1K̃gA

−1
g K̃

>
g λ
∗−1λ̃

}

where λ̃ = λ+1 and K̃g = y>Kg. The c is defined as the normalizing constant. In addition,

we define Ag as Ag = (K̃gλ
∗−1K̃g + V −1

g ), where Vg is the (ng + 1) by (ng + 1) diagonal

matrix with ν2
1 as its diagonal elements. The ng is defined as the count of active vectors, i.e,

ng =
∑n

j=1 gj.

With the generated sample of (γ,ρ)>, the samples of the rest of model parameters are

updated as follows. For index g, we have

gj|g−j,γ,ρ,β,λ,y ∼ Bernoulli

( cn
n
φ(βj; 0, ν2

1)
cn
n
φ(βj; 0, ν2

1) + (1− cn
n

)φ(βj; 0, ν2
0)

)
.

for j = 1, · · · , n. For vector weights β, we have

β|γ,ρ, g,λ,y ∼ N
(
(Z>Z + V )−1Z>w, (Z>Z + V )−1

)
where Z = (z1, z2, · · · , zn)> with zi = yiki√

λi
and w is defined as w = (w1, w2, · · · , wn)> with
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wi = 1+λ1√
λi

. The last parameter is the latent variable λ, which we generate samples from

1

λi
|γ,ρ,β, g,y ind.∼ Inverse-Gaussian

(
|1− yik>i β|, 1

)
.

4.3 Prediction

With the collapsed Gibbs sampler algorithm developed in Section 4.1, we give the procedure

for making prediction in this section. Let xnew be the input data for the unseen points

and D = {(xi, yi), i = 1, · · · , n} denotes the observed data. In addition, we denote Θ =

(γ,ρ,β, g,λ) as the set of model parameters. The procedure for prediction is given as:

step 1. Generate T samples for model parameters from its posterior distribution

π(Θ|D) via the collapsed Gibbs sampler given in Section 4.3.

step 2. Set

ŷnew =


+1 if 1

T

∑T
t=1K

(t)
newβ

(t)
g > 0

−1 if 1
T

∑T
t=1K

(t)
newβ

(t)
g < 0

Note prediction kernel Knew is a nnew by ng + 1 matrix computed based on the input data

of unseen points and the active vectors indexed by g. This formulation can greatly reduce

the computational cost of predictions, especially when the size of prediction is large.

4.4 Application

In this section, we examine our proposed method via the analysis of the leukemia cancer data.

The leukemia data (Golub et al., 1999) is a benchmark high dimensional binary classification

dataset. The goal of the analysis is to to classify two types of leukemia cancer using the

microarray gene expressions. The dataset is available with the R SIS package (Saldana and

Feng, 2018; Fan et al., 2015), which contains 7, 129 gene expressions and only 72 samples
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To analyze the data, we first conduct the variable screening by training uni-variate gen-

eralized additive models (Hastie and Tibshirani, 2017) via the R package mgcv (Wood and

Wood, 2015) and compute its BIC (Schwarz et al., 1978). We retain the first 200 gene ex-

pressions based on the BIC. Then we conduct the Monte carlo cross validation such that for

each experiment, we randomly split half as the training set and the other half as the testing

set. To avoid imbalanced classification, we retain the class distribution in each split. We

compare the performance of our proposed doubly-sparse method to the Bayesian SVM mod-

els tabulated in Table 4.1. Both methods uses the Gaussian kernel. The hyperparameters

are set as ν2
0 = 10−3, ν2

1 = 103 and cn = 7.

Table 4.1: The Bayesian RKHS SVM models to be compared

Abbreviation Method Remarks

BSVM-full-ridge

Bayesian RKHS SVM

with full variables and

ridge priors on β

Variable selection is not addressed,

non-sparse kernel model.

BSVM-full-ssvs

Bayesian RKHS SVM

with full variables and

spike and slab prior on β

Variable selection is not addressed,

sparse kernel estimated,

SVM version of Zhang et al. (2011).

BSVM-vs-L2

Bayesian RKHS SVM

with variable selection and

ridge priors on β

Variable selection is addressed,

non-sparse kernel model,

SVM version of Chakraborty (2009),

details given in Appendix B.2.

To evaluate each method, we compute the misclassification rate defined in equation (4.9).

Classfication error =
1

ntest

ntest∑
i=1

I(yi 6= ŷi) (4.9)

In addition to the prediction accuracy, the CPU time in seconds are recorded. For both

methods, we run the MCMC for 10, 000 iterations with the first 5, 000 iterations set as
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burn-in. We repeat the experiment 1, 000 times and tabulate the results in Table 4.2.

Table 4.2: Leukemia data analysis results

Method Classification error Training time

BSVM-full-L2 0.333(0) 2229.85

BSVM-full-ssvs 0.321 (0.0021) 1572.45

BSVM-vs-L2 0.062(0.00139) 1607.801

BSVM-ds 0.058(0.00137) 979.98

The estimated standard errors are given in the parenthesis.

From the experiment results in Table 4.2, predictions made without variable selection

show little improvement upon classification via random guess. Other than the necessity of

the variable selection, we also observe that training a Bayesian SVM with all vectors (BSVM-

VS-L2) is less optimal than the proposed doubly-sparse method, which is corroborated by

the Zhang et al. (2016); Chen et al. (2018). The proposed doubly-sparse model not only

improves the prediction accuracy but also reduces the computational cost.

4.5 Discussion and future work

In this chapter, we have developed a Bayesian doubly-sparse nonlinear support vector ma-

chine. For posterior inference, a collapsed Gibbs sampler is developed such that the sparse

kernel can be incorporated into the variable selection sampling steps. Through the analysis

of the Leukemia data (Golub et al., 1999), we showed the benefits of our proposed method

on both the aspects of computational cost and prediction accuracy. Notably our proposed

method is not restricted to the Bayesian SVM framework; it can be easily extended to other

type of classification models, such as Bayesian logistic regression (Polson et al., 2013), probit

regression (Albert and Chib, 1993). In addition, the framework could also be extended to

model other types of data, such as count data, survival data, etc.

Even though our proposed method showed advantages over existing Bayesian SVM mod-
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els, room for improvements still exists. One potential future research direction would be

developing faster procedures for the latent variable sampling. Extensions to the large sam-

ple size would be another interesting future research direction.
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Chapter 5

Conclusion

In this dissertation, we have developed several strategies for performing fast variable selection

for both Gaussian process and reproducing kernel Hilbert space models. Through various

simulation studies and real data analyses, we have shown the advantages of our proposed

method.

In Chapter 2, we developed a novel Bayesian model hybrid search algorithm for Gaussian

process regression. The proposed method is able to quickly scan through the large model

space and collect those models with high posterior probabilities. To compute the marginal

likelihood, we used the Laplace approximation. Prediction was then conducted via Bayesian

model averaging. To address the model selection problem under the massive data case, we

proposed a hybrid model search algorithm based on the quantile subset of data. Predictions

are made through the nearest neighbor Gaussian process within the Bayesian model averaging

framework.

In Chapter 3, a novel Bayesian approach for the reproducing kernel Hilbert space re-

gression models is developed to address the doubly-sparse estimation problem. We assumed

the double spike and slab priors on both the kernel bandwidths and the vector weights. To

address the posterior inference, a collapsed Gibbs sampler is developed such that the sparse

kernel estimation can be factored into the variable selection procedures. To address the

large sample size cases, we proposed a data-driven subset of data approach and modified the
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collapsed Gibbs sampler by revising the ‘skinny Gibbs’ method.

In Chapter 4, we extended our Bayesian doubly-sparse framework to the nonlinear kernel

Bayesian support vector machine. Through the analysis of the Leukemia cancer data, the

merits of our proposed method are shown.

For future work, extensions of the model hybrid search algorithm and Bayesian doubly-

sparse framework to other types of data, such as, count data, time to event data, etc,

would be beneficial. In addition, the proposed method can be further speed up through

the implementation with high-performance computation R packages (e.g. Rcpp) or parallel

computations.
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Appendix A

Calculation of marginal likelihood

A.1 Derivation of equation (3.7)

From equation (3.3), the model is defined as y|γ,ρ,β, σ2 ∼ N (Kβ, σ2I). With the spike

and slab prior π(β|σ2, g, ν1) defined in equation (3.4) and the inverse-Gamma prior for σ2

in (3.5), we have

π(y|γ,ρ, g, ν1) ∝
∫ ∫

π(y|γ,ρ,β, σ2)π(β|σ2, g, ν1)π(σ2)dβdσ2

∝
∫ ∫

1√
|σ2In|

exp

{
−1

2
(y −Kβ)>(σ2I)−1(y −Kβ)

}
× 1√

|σ2V |
exp

{
−1

2
β>(σ2V )−1β

}
× baσ1

Γ(aσ)
(σ2)−aσ−1 exp

{
− bσ
σ2

}
dβdσ2

∝
∫ ∫

(σ2)−
2n+2aσ+3

2 exp

{
− 1

2σ2
(y>y − 2β>K>y

+β>K>Kβ + β>V −1β + 2bσ)
}
dβdσ2

(A.1)
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The V is a diagonal matrix with ν1 and ν0 as its diagonal elements. Inside the exponential

term, we have

y>y − 2β>Ky + βTKTKβ + β>V −1β + 2bσ

= β>(K>K + V −1)β − 2β>(K>K + V −1)−1(K>K + V −1)K>y

+ y>y + 2bσ

(A.2)

Let A = (K>K + V −1) and β̃ = A−1K>y, then the equation (A.2) is rewritten as

y>y − 2β>Ky + β>K>Kβ + β>V −1β + 2bσ

= (β − β̃)>A(β − β̃) + y>y − β̃TAβ̃ + 2bσ

= (β − β̃)>A(β − β̃) + y>y − y>KA−1AA−1K>y + 2bσ

= (β − β̃)>A(β − β̃) + y>y − y>K(K>K + V −1)−1K>y + 2bσ

= (β − β̃)>A(β − β̃) + y>(I−K(K>K + V −1)−1K>)y + 2bσ (∗)
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Plug (∗) back in the equation (A.1),

π(y|γ,ρ, g, ν1) ∝
∫ ∫

(σ2)−
2n+2aσ+3

2 |V |−
1
2

× exp

{
− 1

2σ2
((β − β̃)>A(β − β̃) + y>(I−KA−1K>)y + 2bσ)

}
dβdσ2

= V |−
1
2

∫ ∫
(σ2)−

2n+2aσ+3
2 exp

{
− 1

2σ2
(β − β̃)>A(β − β̃)

+y>(I−KA−1K>)y + 2bσ
}
dβdσ2

= |V |−
1
2

∫
(σ2)−

2n+2aσ+3
2 exp

{
− 1

2σ2
(y>(I−KA−1K>)y + 2bσ)

}
∫

exp

{
− 1

2σ2
(β − β̃)>A(β − β̃)

}
dβdσ2

= |V |−
1
2

∫
(σ2)−

2n+2aσ+3
2 exp

{
− 1

2σ2
(y>(I−KA−1K>)y + 2bσ)

}
× (2π)

n+1
2 (σ2)

n+1
2 |A−1|

1
2

∫
(2π)−

n+1
2 |σ2A−1|−

1
2

× exp

{
− 1

2σ2
(β − β̃)>A(β − β̃)

}
dβdσ2

∝ |V |−
1
2 |A−1|

1
2

∫
(σ2)−

n+2aσ+2
2

× exp

{
− 1

2σ2
(y>(I−KA−1K>)y + 2bσ)

}
dσ2

(A.3)

Let a∗ = n+2aσ
2

and b∗ = 1
2
(y>(I−KA−1K>)y)+b1 and plug a∗ and b∗ back in the equation

(A.3),

π(y|γ,ρ, g, ν1) ∝ |V |−
1
2 |A|−

1
2

Γ(a∗)

b∗a
∗

×
∫

b∗a
∗

Γ(a∗)
(σ2)−(a∗+1) exp

{
− b
∗

σ2

}
dσ2

= |V |−
1
2 |A|−

1
2

Γ(a∗)

b∗a
∗

∝ |A|−
1
2

1

b∗a
∗
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A.2 Derivation of equation (4.8)

The model likelihood is defined in equation (4.4). With the spike and slab prior, we have

π(y|ρ, g,λ) ∝
∫
L(y|ρ,β,λ)π(β|σ2, g)dβ

∝
∫

1√
|λIn|

exp

{
−1

2

(
1− y>Kβ + λ

)>
(λIn)−1 (1− y>Kβ + λ

)}
× exp

{
−1

2
β>(V )−1β

}
dβ

(A.4)

where V is a diagonal matrix with ν1 and ν0 as its diagonal elements. Let λ̃ = 1 + λ,

λ∗ = λIn and K̃ = y>K, then the equation (A.4) is given as

π(y|ρ, g,λ) ∝
∫

exp

{
−1

2

(
λ̃− K̃β

)>
(λIn)−1

(
λ̃− K̃β

)}
exp

{
−1

2
β>(V )−1β

}
dβ

=

∫
exp

{
−1

2

(
λ̃>λ∗λ̃− 2β>K̃>λ∗−1λ̃+ β>K̃>λ∗−1K̃β + βTV −1β

)}
dβ

Inside the exponential term, we have

λ̃>λ∗λ̃− 2β>K̃>λ∗−1λ̃+ β>K̃>λ∗−1K̃β + βTV −1β

= β>
(
K̃>λ∗−1K̃

)
β − 2β>

(
K̃>λ∗−1K̃ + V −1

)−1

×
(
K̃>λ∗−1K̃ + V −1

)
K̃>λ∗−1λ̃+ λ̃>λ∗−1λ̃

(A.5)

Let A = K̃>λ∗−1K̃ + V −1 and β̃ = A−1K̃>λ∗−1λ̃, the equation (A.5) is updated to

λ̃>λ∗λ̃− 2β>K̃>λ∗−1λ̃+ β>K̃>λ∗−1K̃β + βTV −1β

= (β − β̃)>A(β − β̃)− β̃TAβ̃ + λ̃>λ∗−1λ̃

= (β − β̃)>A(β − β̃) + λ̃>λ∗−1λ̃

− λ̃>λ∗−1K̃A−1AA−1K̃>λ∗−1λ̃

= (β − β̃)>A(β − β̃) + λ̃>λ∗−1λ̃
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− λ̃>λ∗−1K̃
(
K̃>λ∗−1K̃ + V −1

)−1

K̃>λ∗−1λ̃ (∗)

Plug (∗) back in equation (A.4),

π(y|ρ, g,λ) ∝
∫

exp

{
−1

2

(
λ̃>λ∗λ̃− 2β>K̃>λ∗−1λ̃+ β>K̃>λ∗−1K̃β + βTV −1β

)}
dβ

=

∫
exp

{
−1

2

[
(β − β̃)>A(β − β̃) + λ̃>λ∗−1λ̃

−λ̃>λ∗−1K̃
(
K̃>λ∗−1K̃ + V −1

)−1

K̃>λ∗−1λ̃

]}
dβ

∝ exp

{
1

2
λ̃>λ∗−1K̃

(
K̃>λ∗−1K̃ + V −1

)−1

K̃>λ∗−1λ̃

}
×
∫

exp{−1

2

[
(β − β̃)>A(β − β̃)

]
}dβ

∝ |A|−
1
2 exp

{
1

2
λ̃>λ∗−1K̃

(
K̃>λ∗−1K̃ + V −1

)−1

K̃>λ∗−1λ̃

}
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Appendix B

Bayesian ridge kernel models for high

dimensional regression and SVM

B.1 Bayesian ridge penalized RKHS regression

Note in both Section 3.5 and Section 3.6, we have compared our proposed Bayesian doubly-

sparse RKHS regression to the Bayesian RKHS ridge penalized regression. In this section, we

give an introduction to the prior assumptions and implementations details of the method. For

the Bayesian RKHS ridge penalized regression, we assume a prior on the linear coefficients

which are equivalent to appending an L2 penalty to the likelihood from the frequentist

perspective.

With the model defined in equation (3.3), the same prior assumptions are employed as

Mallick et al. (2005). To be more specific, we assume

β, σ2 ∼ Nn+1(0, σ2D∗)× Inverse-Gamma(aσ, bσ)

where D∗ ≡ diag(λ0, λ, · · · , λ) is a (n+ 1)× (n+ 1) diagonal matrix. We fix the λ0 to be a

small number and assume

λ ∼ Gamma(aλ, bλ).
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Then similar as our proposed collapsed Gibbs sampler for the doubly-sparse method, we

update the samples of β via

β|others ∼ N
([
K>K +D−1

∗
]−1

K>y, σ2
[
K>K +D−1

∗
]−1
)
.

For the random error variance σ2, its samples are generated through

σ2|others ∼ Inverse-Gamma

(
2n+ 2aσ + 1

2
,
||y −Kβ||2 + β>D−1

∗ β

2
+ bσ

)
.

For λ, we generate its samples by

λ|others ∼ Gamma

(
n

2
+ aλ,

||β||2

2σ2
+ bλ

)
.

For the purpose of variable selection, we update (γ,ρ) via the same Metropolis-Hastings

algorithm that is developed for the doubly-sparse method. The marginal likelihood is com-

puted with

π(y|γ,ρ, g, λ) ∝ |K>K +D−1
∗ |−

1
2

1

b∗a
∗

where a∗ = n+2aσ
2

and b∗ = 1
2
(y>(I−K(K>K +D−1

∗ )−1K>)y) + bσ.

B.2 Bayesian nonlinear SVM with variable selection

In this section, we give an introduction to the prior set-up and the implementation details

of the Bayesian nonlinear kernel SVM with variable selection. We assume a flat prior on β,

which is equivalent of appending an L2 penalty to the likelihood function. Variable selection

is conducted with point mass priors within the kernel. The method can be seen as the

Bayesian SVM version of Chakraborty (2009).

With model likelihood defined in equation (4.4), the same prior proposed by Mallick et al.
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(2005) is adopted. In particular, we assume

β ∼ Nn+1(0, σ2D∗)

where D∗ ≡ diag(τ) is a (n + 1) × (n + 1) diagonal matrix. In practice, τ is fixed to be a

small number, say τ = 0.001. One can also assume a Gamma prior over τ as suggested in

Polson and Scott (2011), but which could lead to suboptimal results.

Similar to the doubly-sparse SVM, we update the samples of β via

β|γ,ρ,λ,y ∼ N
(
(Z>Z +D∗)

−1Z>w, (Z>Z +D∗)
−1
)

and the samples of λ via

1

λi
|γ,ρ,β,y ind.∼ Inverse-Gaussian

(
|1− yik̃i

>
β|, 1

)
The last remaining work is the sampling from the variable selection index γ and band-

width ρ, which we update their samples by making use of the same Metropolis-Hastings

algorithm developed for the doubly-sparse models. In particular, the marginal likelihood is

computed with

π(y|ρ,λ) ∝ |A|−
1
2 exp

{
1

2
λ̃>λ∗−1K̃A−1K̃>λ∗−1λ̃

}
where A = (K̃λ∗−1K̃ +D−1

∗ ).
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