
Evaluation of the West Nile Surveillance System for the State of Kansas

MPH Capstone Experience Conducted at Kansas Department of Health and Environment

Presented By Katie Flock, DVM

Public Health Surveillance

- Ensure that problems of public health importance are being monitored efficiently and effectively and to insure that public health resources are being utilized to their fullest extent.
- Evaluating surveillance systems help improve the quality, efficiency, and usefulness of the program.

West Nile Virus

- Arboviral disease in the Flaviviridae family
- Member of the Japanese encephalitis virus antigenic complex
- Maintained in enzootic bird-mosquito-bird cycle
 - Culex species

West Nile Virus

 First isolated in 1937 from a febrile women in Uganda

 Implicated in sporadic outbreaks of encephalitis in humans and horses in Africa, the Middle East, western Asia, and Australia
 Usually mild disease in children

Signs and Symptoms

- Asymptomatic Infections
- West Nile Fever (WNF)
 Non-specific flu-like symptoms
- West Nile Neuroinvasive Disease (WNND)
 WNF with development of neurological symptoms

WNV in the United States

- Entered New York City area in 1999
- Spread to all lower 48 states by 2005
- Has caused an estimated
 - 29,624 reported cases
 - 16,765 (56.6%) West Nile Fever
 - 12,088 (40.8%) West Nile Neuroinvasive Disease
 - 771 (2.6%) Clinically Unspecified
 - 1, 161 (3.9%) Fatal

<u>Surveillance</u>

Center for Disease Control and Prevention

- Started to provide funding for state surveillance in 2000
- Original surveillance used to track spread of virus
 - Determine potential vectors, seasonality, geographic areas of high activity, and susceptible species.

Surveillance in Kansas

- 2001, Kansas Department of Health and Environment started statewide surveillance
 - Funded by the CDC's Epidemiology Laboratory Capacity (ELC) grant
 - Included: Dead bird testing, mosquito pool collection, and reporting of human, equine and other animal cases

2009 Surveillance

Passive human disease reporting

K.S.A. 65-118 and K.S.A. 65-128 all arboviral disease are reported within 7 days of diagnosis

Mosquito pool collection and testing

- 13 of 105 counties
- May through late Fall
 - Collection by Kansas State University Entomology Department
 - Testing conducted at KDHE Laboratory

WNV Surveillance

- Positive human laboratory data submitted to KDHE
- All mosquito results submitted to KDHE
- All data entered into Kansas's Electronic Disease Surveillance System (KS-EDSS)
- Shared with CDC through ArboNet

Materials and Methods

- CDC's 2001 document: Updated Guidelines for Evaluating Public Health Surveillance Systems
- CDC's 2003 document: Epidemic/Epizootic West Nile Virus in the United States: Guidelines for Surveillance, Prevention, and Control

Goals of Mosquito-based Surveillance

- 1) Use data on mosquito populations and virus infection rates to assess the threat of human disease;
- 2) Identify geographic areas of high risk;
- 3) Assess the need for and timing of interventions;
- 4) Identify larval habitats for targeted control;
- 5) Monitor the effectiveness of this type of surveillance and improve prevention and control measures; and
- 6) Develop a better understanding of transmission cycles and potential vector species.

(CDC Epidemic/Epizootic West Nile Virus in the United States: Guidelines for Surveillance, Prevention, and Control)

Engage the Stakeholders

- KDHE, Bureau of Surveillance and Epidemiology
- Dr. Ludek Zurek, KSU Entomology Department
 Supervisor and coordinator for mosquito collection
- Dr. Roman Ganta, KSU Dept. Diagnostic Medicine/Pathobiology
 - Supervises virology laboratory and animal WNV testing
- Local Health Departments with positive mosquito pools

Describe Public Health Importance

Human case data retrieved from KS-EDSS
 January 1, 2002 to December 31, 2009

- Cases are classified as confirmed, probable or suspect for surveillance purposes
 Only confirmed and probable cases included
- Exported to Microsoft Excel[®] spread sheets
 Names and address excluded to protect privacy

Describe Public Health Importance

- Data separated into case classification and year
- Evaluated by clinical classification, age, and sex
- Cases from 2002-2009 were plotted on epicurve by MMWR week

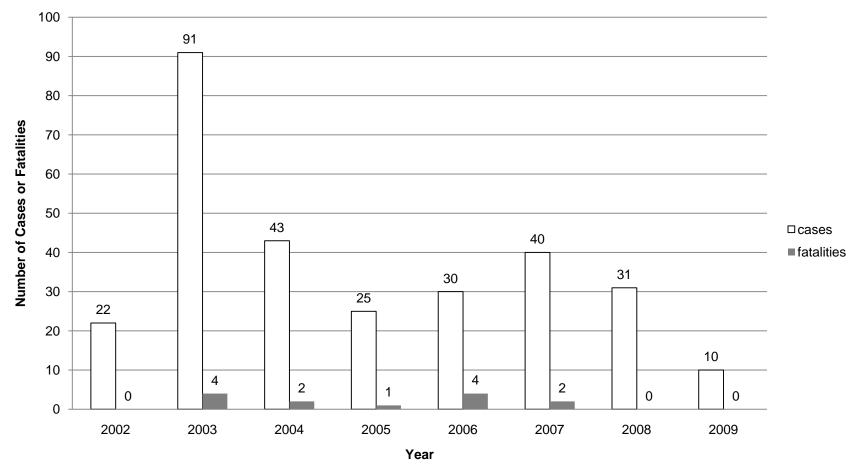
Timeliness

- Time between mosquito collection and reporting of test results to KDHE
 2008 and 2009
- Data analyzed to determine number of days between positive non-human case report dates and human case onset of illness dates in the same county
 - □ SAS 9.1.3
 - Avian, Animal, Mosquito
 - 2003-2009

- Onset dates for human illness and mosquito pool result dates were plotted by MMWR for 2003-2006 and 2008-2009
 - No mosquito pools collected in 2007

Neighboring States

- Public health officials from Oklahoma, Nebraska, Missouri and Colorado were interviewed regarding their state's WNV surveillance program
- Main focus on type of surveillance and sources of funding
 - Will surveillance be continued without ELC grant?


Results: Stakeholders

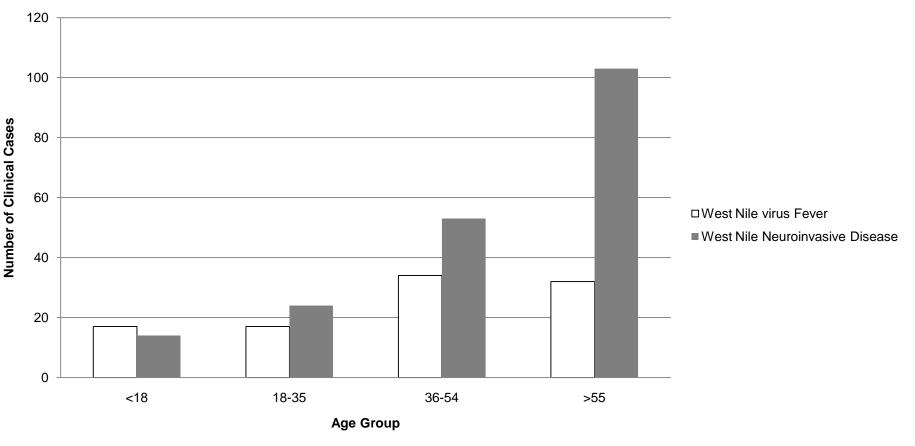
- KSU Entomology Department
 - Not gaining any new information from the data that is collected
 - As incidence goes down, more difficult to find the virus in mosquito populations
- KSU Virology Lab
 - Equine testing decreased with no positive in last few years
- Counties with positive mosquito pools
 - None indicated that they released PSAs or increased vector control measures

890 human reports in EDSS

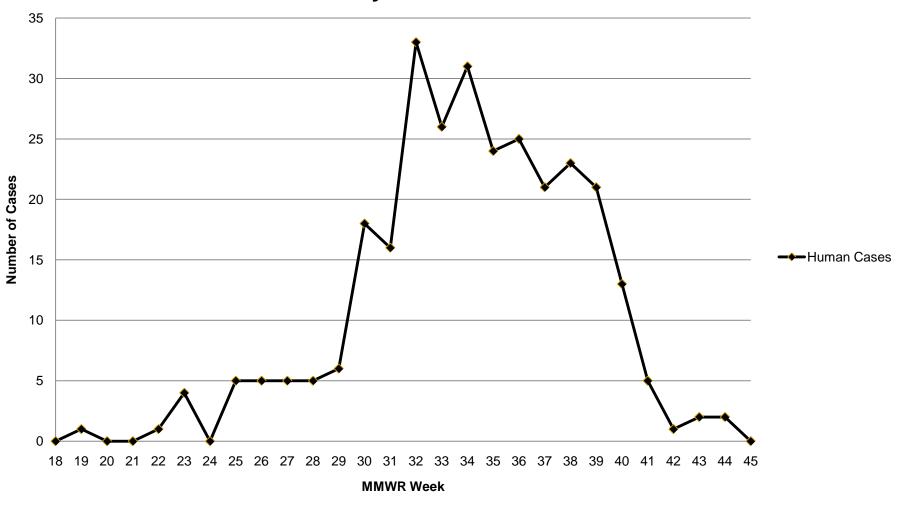
- 153 confirmed
- 142 probable
- 295 human cases since 2002
 - □ 194 (65.7%) WNND
 - □ 99 (33.6%) WNF
 - 2 (0.68%) were clinically unspecified
 - 13 (4.4%) Fatalities

Human Cases and Fatalities in Kansas 2002-2009

Age


- Range 1 94 years
- Median 52

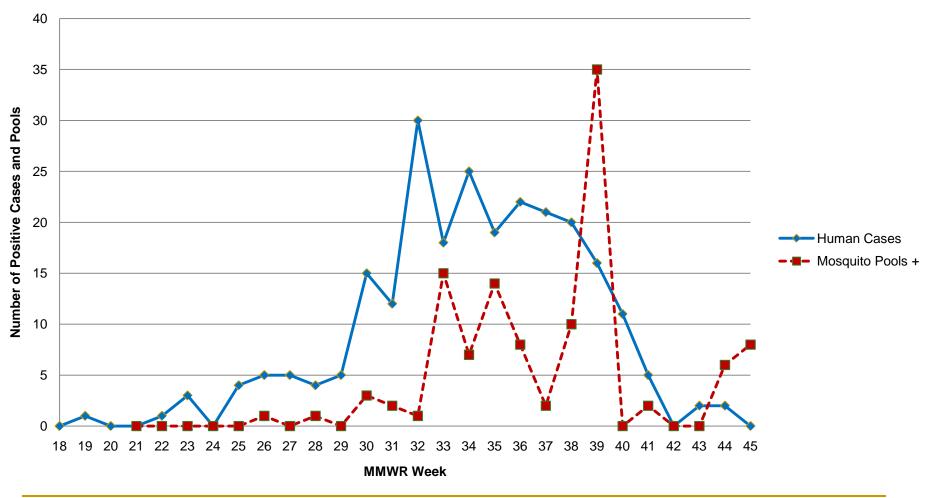
Sex


- 59.2% Male
- 39.8% Female
- 1% unspecified

Age Comparison for West Nile Fever and West Nile Neuroinvasive Disease 2002-2009

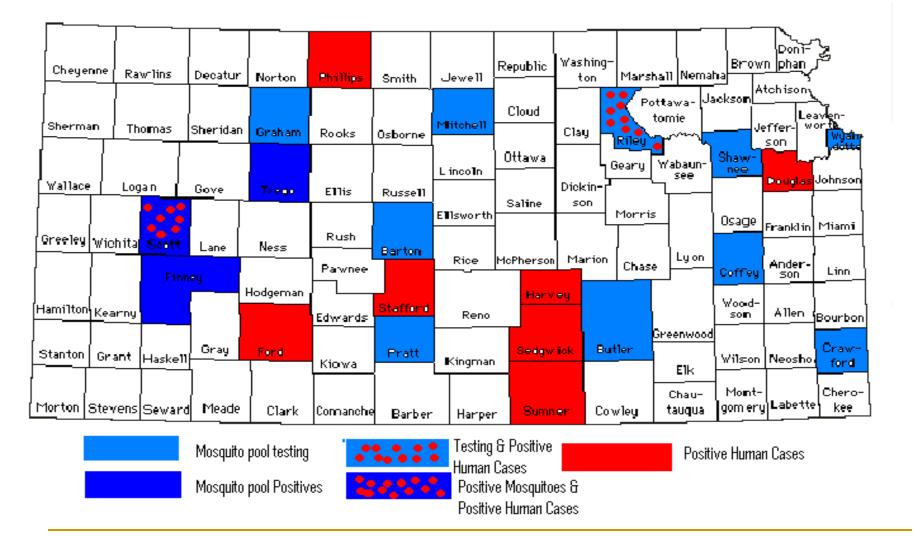
Human Cases by MMWR Week for 2002-2009

Days between mosquito pool collection and report date of test results


Year	Range (days)	Median (days)
2009	6-87	22
2008	6-43	24

Both years combined the range was 6-87 days with a median of 23 days

- Time between positive non-human cases and positive human cases in the same county
 - 890 human reports in KS-EDSS
 - 456 had a onset of illness date
 - 288 were either confirmed or probable cases
 - 122 animal cases
 - 365 avian reports, 205 positives
 - 2992 mosquito pools, 115 positives


- Animal Cases
 - Ranged from 49 days prior to 110 after human cases
 - Median 22.5 days after
- Avian Cases
 - Ranged from 60 days prior to 58 after human cases
 - Median 1 day after
- Mosquito Pools
 - Ranged from 36 days prior to 82 days after human cases
 - Median 24 days after

Positive Human Cases and Positive Mosquito Pools by MMWR Week for 2003-2009^{*}

* Excludes data from 2007 – Mosquito pool collection was not performed in 2007

Mosquito Pools and Human Cases in 2009

Results: Neighboring States

- Equine Cases reported in all 4 states
 Required in 3 of 4 states
- Dead bird reporting in 2 of 4
 - Testing done in 1 of 4
- Mosquito pool testing in all 4 states
 - Number of counties tested
 - **27/93 (29%)**
 - 19/64 (29.7%)
 - **4/77 (5.2%)**
 - 14/114 (12.3%)
 - 13/105 (12.4%) Kansas

Results: Neighboring States

All funded by ELC grant

 Only one state indicated that surveillance would continue if federal funding is cut – others were unsure at this time but not optimistic

Other thoughts

- Concerned about having to start surveillance again if another arbovirus enters the US
- National Pollutant Discharge Elimination System
 - Hard for cities to obtain permits without documented positive mosquito pools

Conclusion

- Mosquito based surveillance is not a useful tool for prediction of human illness
- Time between collection and reporting of results is prolonged
- Human cases can and have occurred and even peaked before mosquito activity is reported

<u>Conclusion</u>

- Animal and avian cases are not reliable sentinels for human infections
 - Vaccination of horses
 - Decrease in susceptible bird populations and/or herd immunity

<u>Recommendations</u>

- Discontinue mosquito pool testing
 Not providing adequate public health data
- Move in the direction of public education and vector control
 - Update and maintain website
 - Maps last updated in 2006
 - Provide public service announcements to county extension offices and Master Gardener programs
 - Release timely statewide PSAs in late June and again in August about personal protection
 - Revamp avian and animal results from KSU

Closing Comments

West Nile virus in now endemic in Kansas

- We can stop looking for it and move to continuing education to the public
- Current methods will not detect other arboviral disease
 - Resources are now known and a could be reinitiated if needed
- Education should include all vector diseases, not only WNV

In Addition

- Daily activities of State Health Department
- Press Releases
- Outbreak Investigation
 - H1N1
 - Food-borne

Thank You

- Dr. Ingrid Garrison, DVM, MPH, DACVPM
 - State Public Health Veterinarian and Environmental Health Officer
- Mr. Charlie Hunt, MPH
 State Epidemiologist
- All the Ladies (and Dan) in the Bureau of Surveillance and Epidemiology

For more information visit www.cdc.gov/wednike or www.cleetonline.org