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CHAPTER I

INTRODUCTION

1.1 Motivation and General Purpose

In the determination of the amount of reflected electro-

magnetic energy from a surface, called the radar backscattering, 2

one of the major methods of modeling the reflecting surface is

to assume the surface height above some mean surface can be de-

scribed by a random process. 9 By the tangent plane approximation

which assumes the reflected body is isotropic and homogeneous,

the radar backscatter can be obtained in an integral form.

Essentially the integrand of this integral is a new random pro-

cess which is a function of the surface height random process

and its derivatives. The form of this function changes as the

shape of the average surface changes, i.e., a sphere or a plane.

It is desired to find the probability density of the integrand

and the integral for each case.

Upon the realization of the magnitude of this problem, a

sub-problem is decided upon which could be utilized as an interim

step regardless of the form of the average surface. The inte-

grands in most cases can be expressed in terms of a power series

of cos 0-^ times an exponential term whose exponent is a function

of only the surface height, where Q
±

is the angle between the

surface normal and the direction to the receiver. Therefore as

a first step, it is decided to determine the probability density

of cos 02 and then this density can later be applied to a par-

ticular surface.



1.2 The Problem

For the problem of radar backscatterlng from a rough spheri-

cal surface, normal spherical coordinates (a , a Q , aw-) are

defined. The variation in the radius of the rough sphere from

the average at a point (0, 0) is denoted by H(0, 0) . The random

surface is assumed continuous in the mean and ' differentiable over

a finite region. The radius vector from the origin to the sur-

face point is rQ . (r
Q

= r
Q

a
r ). Then the equation of the

surface can be written as

^ = r
Q

- [(a + H(e,j2T)] = (1.1.1)

where a is an average radius of the rough surface. By normaliz-

ing the gradient of the equation ( 1.1.1), the unit outward sur-

face normal vector a is found.

an
B

ay i Pf

? ro
o m ?Q

a
Q

+

r sin dtf ^J|VY|
(1.1.2)

Performing the indicated operations of (1.1.2) on ^as defined

in (1.1.1), the above equation yields

an
=

where

1 9E(Qj) _>

*0 d e
'o

r sin e d $

r-i

J =1/1 +
i 3E(eJ)

r dQ
.

0H(e,#)'

_rQ sin 6 d $

(1.1.3)

(1.1. k)

Under the assumption that H(0, 0) is a normal variable, its

partial derivatives with respect to its variables are also
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normal. ' Therefore two normal variables are defined as

1 d
x = — — H(e, $)

r ae

1 d
Y = _ H(e, jzf)

r sin 9 d®

aR denotes the direction of the receiver from the point on

the rough surface given by r
Q , 6, J2f. The angle between a and

an is defined as 6 . The expression of cos 6, then is found.

cos 6 + Y sin 6
cos e

i
=
IT 9 o

(i.i.5)
-Y 1 + X2 + Y2

Since cos 6-^ involves the function fl + X2 + Y2
, the

problem of finding the density function of cos 6-, starts from

finding the densities of 71 + X2 + y2 and l/Vl + X2 + Y2 with

a desire to find the former density by the information contained

in the latter two.

Hopefully, the probability density of cos B-. can be deter-

mined analytically and the variations of this density with each

different standard deviation a~ , correlation coefficient f, and

angle 6 can be studied. If it fails, a valid approximation is

desired. The Monte Carlo method is thus introduced to solve the

aforementioned problem numerically due to the failure of finding

the density function of cos 6^ analytically.

1.3 Summary of Chapter Development

Chapter I contains the statement of the problem. Chapter II



presents two general analytical methods for finding the prob-

ability density function. The explicit densities of

Vl + X2 + Y 2 and l/Vl + X2 + Y2 are obtained by using these

two methods. Appendix A presents the derivation of the density

function of cos 9-j_ by analytical methods. However, the problem

is not solved by these methods.

Chapter III states the Monte Carlo method used to obtain

the desired probability density. First, the method of generating

random numbers is discussed. Chi-square test is mentioned here

to check the goodness of fit of the generated random numbers.

Two curve fitting techniques are developed for finding the

explicit expression by the given data from the Monte Carlo method.

More details of the curve fitting algorithm are given in

Appendix B.

Chapter IV presents the results of densities by using the

methods of Chapter III. A comparison is made to the density

function of i4 + X2 + Y 2 and l/Vl + X2 + Y2 with the results

by the analytical methods. The densities of cos Bi for certain

parameters are also obtained. Appendix C is the computer pro-

grams used in this chapter. The various densities of cos 6-,

corresponding to different parameters are discussed and further

researches are recommended in Chapter V.



CHAPTER II

THE ANALYTICAL METHODS OP FINDING THE DENSITY

FUNCTION OF A FUNCTION OF TWO OR

MORE RANDOM VARIABLES

2.1 Introduction

The difficulty of finding the probability density of a

function of random variables depends on the number of random

variables and the complexity of the functional relationships

involved. If these random variables are independent, it makes

the problem easier than if they are dependent. The densities

can be quickly calculated for linear functions of random vari-

ables. In most physical problems, either the random variables

are not independent or the function is nonlinear. When either

or both of these cases occur the algebraic solutions require

very complicated integrations which are not always solvable in

closed form or expressed as a well-known series.

In this chapter two general analytical methods of finding

the density function will be discussed. The algebraic solutions

for the density functions of Vl + X2 + Y2 and l/Vl + X2 + Y2

are obtained by these methods. These explicit densities will be

compared with the densities obtained by the Monte Carlo method

in order to estimate the accuracy and validity of the Monte

Carlo method.



2.2 The Density Function of a Function of Two or

More Random Variables

Under certain conditions, ^> the function of random vari-

ables can be considered as another random variable. There are

many methods of finding the density function of this new random

variable. Only two different methods are discussed here.

The first method consists of finding the distribution func-

tion F
z
(z) first, then by taking derivative with respect to z

the probability density function is obtained.

fz ( z ) = — Fz (z) (2.2.1)

In order to determine Fz (z) for a given z, the probability of

the event \Z ^ zj must be found. For the function of two random

variables case, Dz is denoted by the region of XY plane such

that g(x,y) = z. Then (z ^ z) = ((X,Y) £ Dzj . Hence it suf-

fices to find the probability mass in the region Dz . This mass

is given by the integration

Fz (z) = P(Z ^ z) = p (X, Y) £ D7

-if ^XY (x
> ^ dx ^ (2.2.2)

Dz'

where f
X
y(x, y) is the original joint density function of

random variables X and Y.

Similarly for a function of n random variables, that is

z = g(x
1 , x

2 , . . ., x
n ) , D

z
is denoted by the region of n-

dimensional space such that g(xx , x2 , . . . , xn ) = z and



{z ^ zj ={(X
1

, X
2

, . . ., X
n

) £ D
z j

. Then

(z) = P(Z£ z) = p{(X
1 , X

2 , . . ., Xn ) € Dz]

=
J

...|fYY (xn, x2 , ..., xn)dXldx2 ,

>DZ /
A
1
A
2 *

'

'

An

F
Z>

dxn

(2.2.3)

where f
x x x

(x
1 , x

2 , ..-, *n ) is the original joint

density function of random variables X-., X
2 , . . ., X .

The second method consists of introducing an auxiliary vari-

able and finding the joint density function of the desired

random variable and the auxiliary variable. Then by integrating

the joint density function over the entire range of the auxiliary

variable, the marginal density function of the random variable

is obtained.

For the case of the function of two random variables, the

auxiliary variable ¥ is assumed to be W = g2(X, Y) . With

Z = g-i(X, Y) the joint density is

x

fXY( xl>yi) fXY( xn>Yn) , .
,f™ (z,w) = -+ . . . + (2.2.I4.)

ZW
J(xi,yi)|

l

J(xn*yn)l

where (x
1 ,y1 ), (x

2
,y'

2
) . . . (xn,yn ) are all the real solutions

of the equation, g-,(x,y) = z with g2
(x,y) = w, and J(x,y) is

the Jacobian of the transformation. The unknown density func-

tion of Z is

(°°
fz (z) = f^z.wjdw (2.2.5)

The second method can be extended to a function of n random

variables. Given Z-, = g-,(X-,, X
2 , ..., X ), then n - 1 auxiliary
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variables as

z 2 = g2 (x1 ,x2 ,...,xn ), z
3

= g3
(x

1
,x

2 ,...,xn ), . . .,

Zn
= Sn ( xi> X2>- • -> Xn)

are assumed. The choice of the auxiliary variables depends on

which assumption can simplify the problem of finding the joint

density. By solving these n-system equations, k sets of real

solution (x x x ..., x .) are obtained, where
-Lx d.x ix ni

1 = 1, 2, 3, . . ., k. Therefore the joint density function is

f (* „ \ £-
fXiX2...Xn (

xli> x2i>- • -'Xni)
Z
l
Z2'" zn

X 2""' Zn = ? |~^
i-1 |J(xli ,x2i ,. .., ...,...,

x

ni )

(2.2.6)

where J(x±t x
g , ..., xn ) is the Jacobian of the transformation

of these n-system equations. Then

fzi(Zl) =

/-oo"* |. 00
fz

lZ2... Zn
(Z^ Z2--- Z

n )dz 2 dz3 ' ' '
dz

n

. (2.2.7)

The above two methods are commonly used to find the density

function of a function of random variables. They will be used

in the next section.

2.3 The Density Functions of J 1 + X2 + Y2 and l/Vl + X2 + Y2

For finding the density functions of -f/ 1 + X2 + Y2 and

l/yl + X2 + y2, the polar coordinates are used here due to their

simplicity in the operation. Assuming Z = X2 + Y2
, the density

function of Z is obtained by the first method of the last sec-

tion. After that, a new random variable W is defined as Z + 1.



Its density is found merely by shifting the variable of the

density function of Z to If - 1, The square root of W and one

over this square root are other random variables. These two

densities are obtained by the second method of the last section

based on the density of W.

X and Y are two random variables with zero means and equal

standard deviation <T and correlation coefficient /° . The joint

probability density function of X and Y is

?T£^>?) = ~
2 j g exp

(
_ (2.3.1)

By starting with Z = X2 + Y2
, then Dz is a circle with radius

of ATz. In polar form, r = YT, x = r cos 0, y = r sin 6, then

PZ (z) = ( fexpf _ . (x2+y2-2/4cy)]dxdy

1 f^ f
-r2 "\ ,2% (p{sln 29)r2

)=

2„r2fT^ i '
eXP

(
2^2 (lV2) j I

eXP

( 2CT-2 (1.^2) )

dMr

The second part of the above integration is the modified Bessel

function of first kind of order zero 1 denoted as I ; then

M^P* }

yr (- -r2 ) s pr2

By taking the derivative of Pz (z) with respect to z and using

the generalized Leibnitz formula,^ the density function of Z

is obtained.
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-z

Msb) = exp-
2cr2 /]772 [20-2(1-/32)

*o/*
2cr 2 (i-/^ 2

)

u(z)

(2.3.2)

where u(z) is the unit step function.

Defining W = Z + 1, with fw (w) = fz (w
- 1), then

%(w)
2cr 2 Vir72

/- -(w-l)
exp-f 1 I

/>(w-l)

20-2(1- /)2)J °) 2CT 2 (l-/02)
u(w-l)

(2.3.3)

For S =7W =T1 + X2 + Y2
, with fs (s) = 2s f¥ (s

2
), then

2s

fsU) =
20-2^1772

exp
( -(az-l) -) ,- (s^-1) )

2Cr2(i-/>2)J °^ 20-2(1-
/72,J

(2.3.4)

For V = -
S 4/l+X2+Y2

^

1 1
with fy(v) = — fs ( ), then

fv(v) =
, -d-v2

)

-J

• d-v^)r )

eXP
l 2 cr2( 1 _ /

)2 )v2J
I

°l 2 cr 2 (i-
/

^ 2 )v
2
j

[u(v) - u(v - 1)]

(l-v2^
(2.3.5)

Equations (2. 3. 4) and (2.3.5) are the solutions needed to com-

pare with the results of the Monte Carlo method in Chapter IV.

They are also plotted for <T - 1 and r - ®-k-> 0.9 as Fig. 6

through Fig. 9 in Chapter IV for a comparison.

For the limiting case, when /^ = 1, equations ( 2.3.1]-) and

(2.3.5) yield

fs(s) =
<7-y-n(s 2 -l) I \±CT 2

-(s 2 -l)
exp } fu(s - 1) (2.3.6)
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1 / (1-vO)
r

-,

fv(v) = exp — fu(v) - u(v-l)J (2.3.7)

When p= 0, they yield

s f (s 2 - 1)"\

fS (s ) = — o exP1~ 5— / u(s ~ 1} (2.3.8)
(T^ ( 2CT 2

J

1 ( (l-v 2
)) r

fV (v) = —T"J exP 1 TT f I

u ^ v ) " u < v " Dj (2.3.9)
cr 2v3 [ 2<T l

v
l
)

L J

The graphs of equations (2.3.6) - (2.3.9) are shown in Fig. 1

and Fig. 2 for <7~ = 1 case.

All the results of the above density functions are verified

by integrating over the entire range of the variable and obtain-

ing the number one.

The derivation of the density function of cos 6n is shown

in Appendix A. With the methods used here and the method by

Fourier transformation, all involve a difficult integration.

It cannot end with a closed form or a well-known series expres-

sion. Therefore the Monte Carlo method is used in Chapter IV

which gives an approximate result with certain fixed parameters.
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1.6

1 —.

1 2 3
Pig. 1. Density function of S with g- = 1 by the

Analytical method (S = >j/l + X2 + Y2 ).

f s
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o.75
v

1.00

Pig. 2. Density function of V with <7~ = 1 by the

analytical method (V = l/Yl + X2 + Y2
) .



CHAPTER III

THE MONTE CARLO METHOD AND CURVE PITTING TECHNIQUE

3.1 Introduction

As previously indicated, analytical methods of obtaining

probability densities for functions of random variables do not

always yield closed form solutions. In this chapter, the Monte

Carlo method is introduced. When it is combined with curve

fitting techniques, an approximate closed form solution can

be obtained.

The important job of the Monte Carlo method is to generate

a set of random numbers with a certain distribution. How to

generate random numbers of uniform distribution and how to change

them to another distribution are discussed in section 3.2. This

job will be done by the computer, IBM 36o/50. With a limited

sampled size and computer round-off errors, the accuracy of the

Monte Carlo method has to be considered. It is discussed in

section 3-3>-

Finally, two curve fitting techniques which will be used

to find the density function explicitly with the data from the

Monte Carlo method are developed in section 3.1]..

3.2 Generation of Random Numbers

The Monte Carlo method 10 ' 12 ' 1^ is a kind of simulation

technique. The generation of random numbers plays an important

role in this method. First, the way to generate random numbers
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with uniform distribution is discussed. Then by a simple com-

putation, they are changed to random numbers with a normal dis-

tribution. This set of numbers will be used to solve the problem

of finding the probability density function of a function of the

normal random variables.

There are several ways to generate random numbers with a

f> IP
uniform distribution. ' Most of the available schemes use

the multiplicative congruential method. This method is con-

cerned with generating sequences of nonnegative integers by means

of a congruence relation, then they are divided by their mode

to get the numbers between and 1.

The congruence relation is

Un+1 = a Un (mod p
b

) (3.2.1)

where p denotes the number of numerals in the number system

utilized by the computer and b denotes the number of digits in

a word. a is a constant multiplier of the form a = 8t ± 3

(t is a positive integer), and Uq, the starting value, is an

odd integer to assure maximal periods for the sequences gener-

ated by this method.

The principal value of the uniform distribution for simu-

lation techniques lies in its simplicity and in the fact that

it can be used to simulate random variables from almost any kind

of probability distribution. Therefore when the random vari-

able of uniform distribution has been generated, the random

variable of the desired distribution is obtained by means of a

simple computation.
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In general, there are three ways to generate normal random

numbers from the uniform ones. These are the central limit

approach, the direct approach, and the fast procedure. The

direct approach is discussed here due to its faster calculation

and an exact result compared with the others.

Given two uniform random variables R-, and Rp that are inde-

pendent and defined on the (0, 1) interval, then

Z 1
= (-2 log

e
R-^

1/2 cos 2irR
2 (3.2.2)

Z2 = (-2 log
e

R1 )

1/2 sin 2tiR
2 (3.2.3)

are two independent normal variables.

It is also very easy to change Z and Z
?

into a pair of

correlated normal variables with mean vector p, and covariance

matrix V. There exists a unique lower triangular matrix C

such that

X = c z

where Z is a standard uncorrelated vector of random variables

as generated by equation (3.2.2) and (3.2.3). X is the desired
~> -* -» m

correlated normal vector, and V = C • C . (T means transpose.)

When two random normal variables X-, and X? are given, their

means, variance and correlation coefficient are then defined as

E
Xl (xx ) = y.lt EX2 (x2 ) = p.2 , Var

Xi (x-L) = (T^, Corx^^x^)

Consequently,
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V =

en, r^cr
:

fair.

c =

en,

P<r,

cr2 2

,VT^ (3.2.14.)

By equation (3.2.1j_), then

+ H
* Txil -»

l

z i
X = = c

x2 z 2

<rlZl

cr
2 (

/

Pz
1 + Yi- ^ 2 z

2) M-2

(3.2.5)

Equation (3.2.5) is the equation to find two correlated normal

random variables. The test of the accuracy of these random

variables will be discussed in the next section.

3.3 The Accuracy of the Monte Carlo Method

The accuracy of the Monte Carlo method mainly depends on

the sample size of the generating numbers and the validity of

randomness. By the law of large numbers, ^ it is shown that

p{|x. - Pj |<e)
P

1
q

1> 1 Liy
n£

- Xjl + X
j2

+ • •
•

+ X
jn

*j
n

(3.3.1)

where 6 is any infinitesimal positive number,

p. is the actual probability of occurrence in the 1
J

interval,

and q. = 1 - p. .

J j

n is the sample size, and

th
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X-jL = 1 when the event occurs in the j
th interval,

othe rwise

X.. = 0.

If the k is the total number of occurrences out of n trials

in that interval, then X. = k/n. The value is obtained by the
J

Monte Carlo method. Thus as n —> oo, equation (3.3.1) yields

pflXj - Pj |
$ fej—>i (3-3.2)

The above equation illustrates the probability of the dif-

ference between the value by the Monte Carlo method and the

actual value which is less than a small quantity. As n approaches

infinity, this probability becomes one. This means the differ-

ence is less than a small quantity £ when n is sufficiently

large. No matter how small the £ is, the equation (3.3.2)

holds. The larger n the smaller 6 can be expected.

However, it is impossible to increase the sample size n to

infinity. A compromise is made considering the economic con-

sideration of computer running time, the size of memory of com-

puter and how much accuracy is needed.

Next question is the validity of randomness. The statis-

tical properties of random numbers generated by the methods out-

lined in the previous section should coincide with the statis-

tical properties of numbers generated by an idealized chance

device that selects numbers from a certain interval independently

where each number has a certain probability. Clearly the random

numbers produced by computer programs are not random in this
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sense, since they are completely determined by the starting 'data

and have limited precision. But so long as the generated random

numbers can pass the set of statistical tests implied by the

aforementioned idealized chance device, these numbers can be

treated as truly random. There are several tests used to test

3 cj TO
the validity of randomness. '^ , Here only chi-square test for

the goodness of fit is discussed.

With the assumption that in each of n independent trials

precisely one of r events, A-^, A2 , . . . , A must happen,

v
l»

v2> * ' * > vn are ^e nurn^ers °f successes out of n in each

event by the Monte Carlo method. With the actual probabilities
r

plo' p2o' * * "' pro are numtiers with £_ p. = 1. In order to
3=1 J

test the hypothesis p±
= plQ , p2

= p2o , . . ., pp
= ppo , the

following statistic is considered:

D2 = f
(V

J
- nP

J°
)2

= £ n(p
j

- Pjo>

3=1 nPj0 j=l p.
o

(3.3.3)

It can be shown that D2 has asymptotically a chi-square

distribution with r = 1 degree of freedom.

The test of the hypothesis at the 100 •>< per cent signifi-

cance level is obtained by choosing a number b such that

P {"X > b| = *. Where X has chi-square distribution with r - 1

degrees of freedom and rejecting the hypothesis if a value of

Dc greater than b is actually observed. The chi-square value

for a different degree of freedom can be found in a good mathe-

matical table.
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3.1]- Curve Fitting Technique

Two kinds of fitting curves are used in this paper. The

first kind corresponds to a polynomial multiplied by an expo-

nential term. This curve can fit smooth data with a few terms

and match its peak value by the exponential term very easily.

The second kind is a finite Fourier series of sine terms only.

It can fit rough data faster than the first kind. The fitting

technique is based on minimizing the least square error between

the assumed curve and fitting data. The iterative method is

used to find the coefficients of the fitting curve, with the

assumption that the first kind of fitting curve is

f(x) = £ a
rx

r e"Px2 (3.4.1)
r=o

Since the integration of the density function over its entire

range of the variable is unity, the above equation is modified

in order to satisfy this constraint. Introducing a Lagrangian

multiplier A, the modified equation is

f(x) = f(x) + X( I f(x)dx - 1) (3.1]-. 2)
'- CO

with the assumption that g(x^) is the i
th given datum of the

fitting set, and f(x
i ) is the i th datum of the fitted set. Then

the error vector is E = (eA = fg(x
± ) - f(x

i )| .

The squared error is

where i = 1, 2, . . . n.
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To minimize the squared error, a set of equations are ob-

*Htained by setting = for a particular a„ and ~—— =
d e 2

r.^rn
° d \o

Based on these two derivatives, a matrix equation is written as

W* f•^
i
} W + * f*"i>] (3.4.4)

where the notation
[
denotes a square or rectangular matrix

and [
J
denotes a column vector. The details of the above

equation are presented in Appendix B.

For a given p and setting A = o, the coefficient vector

{a^ is obtained with a value [a]
_1

{c}. Then by assuming

a X $ o, and the previous coefficient vector (aJ substituted

into |Y(a
i )j( , a new coefficient and vector can be obtained.

Every time a new coefficient and X vector is obtained by

putting the old one of a step before into equation (3.J+.5) .

After several steps it is expected (aA and A will converge to

some value. That is a vector satisfying the least square error

fitting requirement under a preassigned p. The error ||e||
2

can

be computed by (3.k.3) immediately. The variation of this error

Note: When [a] is not a square matrix, both sides ofequation of (3.J±.k) are then multiplied by transpose of f>1,i.e., LAJ . JAKLAJ = B is a square matrix. Thus it makes theinversion possible. So that the least square solution can beobtained Later on, all the notation of [ ] is assumed as asquare matrix to make the discussion of the problem simple
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function by changing p can be used as a criterion finding opti-

mum p; i.e., whenljEiH - \^i-i\
2 * o and ||Ei+1 [|

2 -
|
[eJI

2 > o.

there is a local optimum Po such that Pi < Po <. Pi+1, ||e|| = f(p)

in the small neighborhood about Po can be found by the tech-

nique mentioned above. The optimum Po is achieved by minimiz-

ing f(p) .

A Lagrangian multiplier X is used to adjust the integrating

area of the density function to one. It can be assumed as a

small value less than 0.5, because the result of the density

functions by the Monte Carlo method does not cause a large error.

Figure 3 is the flow chart of the algorithm used in the

first kind of curve fitting. Appendix B has a detail deviation

of the first kind curve fitting algorithm.

The second kind of the curve fitting is of the form

n
f(x) = £T ak sln kx (3.I4..6)

k=o

Given f(j A x) is the j
th fitting data, the x is the incre-

ment of the fitting interval. The equation (3.1j..6) is written

as a matrix form

(f(jAx)j = [sin (jkAx)J fakJ
(3.^.7)

with

2

n+1
[sin(jk^ x)]

-1
= ( ) [sin(jkAx)]

,

therefore

{
akj = (— ) [sin(jkAx)] (f(jAx)) O.4.8)
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Set P

KU = 1 MU = 1

KT

I
P = P + DP

I
By iteration meth-
od to find (a^j

i

*

E(KT)
KT = KT + 1

MU = MU + 1
E(KT) = E(MU)

MU = 1

<—MTT =fr^> T ^_ Find

JF
optimum P

T

T
T2> KU = KU+1

MU = 6

* P 1

KT = 3
E(l) = E(2)
E(2) = E(3)

Pig. 3. Plow chart of the first kind curve fitting

r=0
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Input data

Set upper and
lower bound of

data

Construct error
bound V(I)

I
Construct

[sin(jkAx)]

I
Rearrange the

column of _
[sin(jk£x)J

I
Choose k

I
Find {a

J

Find error R(l)

Decrease k

Increase k

Fig. h,. Flow chart of the second kind of fitting curve
n

f(x) = 27 a^ sin kx.
k=l
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By considering the above equation, the inner products of

the columns of the sine matrix with respect to the data vector

f(jAx) denote how much is the contribution of the correspond-

ing column to the fitting. A simple algorithm called the con-

strained least mean square solution is therefore suggested. It

is a method to arrange the columns of the sine matrix according

to their inner products. Then, with a given error bound, it can

also adjust the mean squared error of the fitting to within

this bound. Since this method is designed to fit the data

occupied between the interval to % and all harmonic terms of

sine function at and % are zero, therefore if both or either

terminals of the fitting data are nonzero, it is necessary to

set them to zero by adjusting the length of the interval due to

the convergent consideration. Also for any given interval T,

the scale factor T/tc is used to normalize this interval to the

designed one. Equation (3.^.8) is thus rewritten as

n kit

f (t) = H ak sin — t (3.IJ..9)

k=l T

Figure q. is the flow chart of the algorithm used in the second

kind of curve fitting.

The methods discussed in this chapter will be used to find

density function of cos 6-^ in the next chapter.



CHAPTER IV

THE RESULTS OP DENSITY FUNCTIONS

BY THE MONTE CARLO METHOD

Jj.,1 Introduction

This chapter is going to use the methods of Chapter III

to find the desired probability function.

The subroutine RANDU of IBM 3&0 is used to generate two

sets of independent uniform random variables. These uniform

random variables are changed to dependent normal pairs. Based

on these pairs, a new random variable, that is, a function of

normal random pairs, is obtained. The chi-square test is used

to check the randomness of uniform and normal random variables.

A simple sorting program is run on these random numbers to find

the frequency ratios of the distribution. After having the fre-

quency ratio, the curve fitting technique is used to find an

explicit expression for the desired density function. In order

to decrease the round-off errors due to the computation, all

of the computer programs of this chapter use the double preci-

sion. In section I4..3, a comparison is made to the densities of

S and V by using the Monte Carlo method and the analytical method

for the 0~ - 1 and f = O.if, 0.9 cases. The densities of cos 6-,

are obtained with explicit expressions for certain parameters

in the last section.



27

ij.,2 The Result of the Generated Random Numbers

First of all, the IBM scientific subroutine RANDU is used

here to generate a pair of uniform random variables. By equa-

tions (3.2.2), (3.2.3), and (3-2.5), a transformation is made

on them to pairs of dependent variables.

This subroutine RANDU is specific to the system 360 and

29will produce 2 7 uniform random numbers before repeating. The

seed a in equation (3-2.1) is suggested to be 65,539. 21if,358,88l

and 776,179,721 are the two odd numbers used to generate a pair

of uniform random variables. The sample size is chosen to be

lCn- throughout this paper.

After the uniform random variables are obtained, they are

sorted according to the magnitude of their values and put into

fifty equal distance cells from zero to one. Then the frequency

ratio of each cell is the number of random numbers on that cell

over the length of cell multiplied by the total sample size.

Since the actual frequency ratio is unity everywhere for a

uniform distribution, chi-square values of these pairs of uni-

form random numbers are calculated by the definition of section

3-3. They are 6£.lj.9 and l±3.l\.6 respectively. For the case of

k9 degrees of freedom, P \%
2 > 77-7331+] = 0.005 is the value.

Because the above two values are less than 77.7331+, these two

sets of uniform random numbers are not rejected for 0.5 per

cent significance level.

By equations (3-22) and (3-23) two independent normal

variables with zero means and standard deviations of one are

obtained. Although the range of these random numbers is between
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positive and negative infinities, it is cut down to a value from

+3.5 to -3.5 (i.e., = 3.5 <1T~). That is reasonable since the

probability that the normal random numbers are outside the afore-

mentioned range is less than O.OI4.7. For finding the chi-square

of the generated normal random variables, the same procedure is

done as uniform random variable case. The only difference is

its range of the variable. In this case, the chi-square values

are 7&.20 and 61|. 20, respectively. They are also not rejected

for the 0.5 per cent significance level. Figure 5 shows a. histo-

gram of one of the generated normal density function. The dot

points express the value in the exact normal density function.

By using a curve fitting method to fit the histogram, those

irregular deviations caused by errors are smoothed out.

lj..3 Comparisons of the Results by the Monte Carlo Method

and the Analytical Method

The density functions of S and V are obtained in this sec-

tion by the Monte Carlo method. They are compared with the

results obtained by analytical methods in section 2.3.

The two sets of independent normal variables which are

found in the last section are changed to dependent ones with a

given standard deviation vector and correlation coefficient.

The mean vector is assumed to be zero and the two random vari-

ables X and Y have the same standard deviation throughout this

paper. The random variables, S and V, are calculated by their

functional relationship with the generated random variables.

The range of V is from zero to one and S is cut down from one
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0.0 tx

-2.0
^x

Fig. 5« Histogram of the generated normal distribution
of zero mean and standard deviation one

by the Monte Carlo method.
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to 5-0. By the same method as used in the last section, they

are sorted according to the magnitude of their values into fifty

equal distance cells in the range of the variable. The frequency

ratios of each cell is calculated thereafter. In other words,

the histograms of S and V are found. The first kind of fitting

curve is then used to fit these histograms. The coefficients

of the fitted equations S and V for Q~ - 1 and P - O.lj., 0.9

are listed in Table 1. Actually, the fitted equations express

the density functions of V and S with the given parameters.

Their curves are plotted in Pig. 6 to Pig. 9. They are compared

with the corresponding curves obtained by the Monte Carlo

method. These comparisons show that fairly close results are

obtained by both methods. Because the inverse quantity might

cause larger round-off error, the densities of V produce more

error than the densities of S by the Monte Carlo method. How-

ever, the errors are not over +3 per cent. These results verify

that the Monte Carlo method is a good valid approximation. By

using the Monte Carlo method the probability density of cos 0-,

will be obtained in the next section.

W The Density Function of Cos Q-^ by the

Monte Carlo Method

Although by using analytical methods to find an algebraic

solution of the density of the random variable cos 6-i is very

hard, the Monte Carlo method can do this job numerically without

too many difficulties.
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Table 1. Coefficients of fitting curves of
S and. V with QT = 1

f(x) -I
r=0

a rx
re-P (x-Pl }

f= 0.4 P= 0.9 P= o.k 0.9

Pi 0.705 0.0 0.0 0.0

p 11.7781; 1.5137 0.779 0.552

a -18.00380 1.37614 -7.37264 42.52669

a
l 132. 42396 -22.27794 17.24265 -86.40062

a 2 -292.89944 104.01710 -9.15744 69.11961

a
3 272.25791 -157.98395 0.50329 -24.80488

a
4 -86.77027 85.05811 1.01621 3.45576
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2.0 -p

fo(s)

1.5 "

1.0 •-
\\

o.5

0.0 .

By the Monte Carlo method

By the analytical method

Pig. 7. Density functions of S with (7" =

f>= 0.9.

5.0

1.0,
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By the same method as section I+..2, the new random variable

cos 0-, is obtained by its functional relationship to X and Y in

the cases CT = 0.1, 3, 100, f>= 0.1]., 0.9, and = 30°, k$° ,
60°.

Frequency ratios of each cos 0-, with different parameters are

calculated. The first kind of curve fitting technique is then

used for Q~ = 0.1 case. However, for CT > 1, the second kind

of curve fitting is used due to the histograms changing so

rapidly. In Table 2 to Table 7 are listed all the coefficients

of the fitted curves. Pairs of density curves of cos 0-^ with

equal o~ and but different P are plotted from Pig. 10 to

Fig. 18. Since the total areas under the densities are unity,

the areas in Fig. l£ are calculated by the trapezoidal method

as a valid check. They are 0.951 for P = 0.9, and 1.0098 for

f
= O.ij., respectively.

From these curves and tables, observations can be made with

respect to changing of parameters U~, P , and 0. The range of

the random variable cos ©^ is between +1 and -1. For CT = 0.1

and the different r cases, the curve occupies only the posi-

tive axis with one peak value (Figs. 10-12) . When C7~ increases,

it extends to the negative axis with two major peak values in

the positive and negative sides respectively (Figs. 13-18).

The amplitudes of these densities are also affected by CT . If

the standard deviation is smaller, then the amplitude of the

peak is larger.

The correlation coefficient does not cause a significant

difference of the densities for the CT = 0.1 case (Figs. 10-12).

It does not affect the density greatly when CT increases. The
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f(cos
6-l)

9.0 -

8.0
-

7.0 -

6.0 -

5.0 •

k.o

3.0 -

2.0 -

1.0 .

0.0

P = 0.9

0.65 0.866

cos 6-

0.98

Fig. 10. Density functions of cos 9]_ with

o- = o.i, e = 30°.
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f(cos 6-j^)

0.440 0.706

Pig. 11. Density functions of cos 0-.

with <T = 0.1, = 45°.

0.902
cos 6-
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f(cos e
1 )

0.116

Fig. 12. Density functions of cos 0-|_

with (T = 0.1, 9 = 60°.
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1+6

larger P produces a higher peak. The range of cos 6^ also

Increases when P decreases (Pigs. 13-18)

.

When cr is equal to 0.1, the angle 9 exactly locates the

point where the peak value of the densities occurs. That is

the value of cos (Figs. 10-12). However, when <J~ is equal to

3 and 100, it is hard to see where the peak value does occur.

A conservative estimate is around the value of cos for the

major peak of the positive axis. The major peak of the negative

axis is closer to the origin than the peak of the positive axis.

This estimate is better for the cr = 3 case than the 0~ = 100

case (Pigs. 13-18)

.

As a physical interpretation, when a~ is large sharp slopes

in the reflecting body are expected. As example <T~ = 100, over

90 per cent of the surface slopes are between 1+5° and 87 •

Especially when is very large, the most values of cos 0-j_ are

either in the same direction as a^ or in the opposite direction

(i.e., cos —> ±1) . When decreases, a considerable number

of cos 0-, values approach 0-, = 90° (i.e., cos 0-^ = 0). These

phenomena are clearly shown in Fig. 19. They are actually

observed in Figs. 13 to 18.

From the tables, when 0~ =0.1, the densities of cos 0-^

are approximately normal distributions with mean 0.5 for = 60°

as shown (Table 3). The densities are centered at 0.707 and

0.866 for = \\S° and = 60°, respectively, with the same

standard deviation 0.1 (Table 2, Table \\.) . They are somewhat

like Rice distribution for the latter two cases. The existence

of higher order harmonic terms in the fitting curve of cos 0n
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for the cases CT" = 3 and CT = 100 means more roughness in the

data as given by the Monte Carlo method. Theoretically, such

roughness cannot occur. This is an accumulated error due to

the curve fitting and the computer simulation. The error of

curve fitting is not so great because it uses the minimum least

square sense. The computer simulation error is actually the

origin of the error. By increasing the sample size, a better

result is expected. However, the computer program used in this

paper has to use a double precision and pairs of generated

random numbers have to be stored. Therefore by using IBM

360/50 with the double precision and the sample size 10,000

(for pairs, i.e., 20,000), the size cannot be increased sig-

nificantly. But to avoid the problem of the limited memory of

the computer, one way is to store the generated random numbers

on tapes. This is a recommended suggestion for the future

research.



Table 2. Coefficients of fitting curves of cos 9-p
with ir s o.l, 9 = 30°,

f(x) = £ a rx e
HV K1/

.

r=0

k9

<r = o.l, e = 30°

/* = 0.I4. P = 0.9

Pi 0.866 0.866

p 192.247 2014.. 370

a 3363.18032 7859.27189

a
1

-II844.72088 -27538.79014

a
2

13917. 81+435 32136.8961

a, -5443.13619 -12477.08512

Table 3. Coefficients of fitting curves of cos 8^

with <T = o.l, 6 = 60, f(x) = Ae"
p(x_pl )

cr = o.l, 6 = 60

P = 0.4 p = 0.9

Px 0.5 0.5

p 69.928 67.889

A 4.72168 4.65298
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Table 1].. Coefficients of fitting curves of cos 6-1

with <T- 0.1, 6 = \\$°

,

*t \ rr- r -p(x-P"i )f(x) = £__ arx e
^ v ^J-'

.

r=0

cr = o.i, e = k$°

P = 0.24- /* = 0.9

Pi 0.707 0.707

p 101.859 120.00

a
Q 265.329 692.26728

a
1 -1130.96678 -2877.5886i|.

a 2 1635.07361 3998.563^2

83 -78if.38536 -I8I4I.2388I4
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Table 5>. Coefficients of fitting curves of cos 6-,

with <T = 3, 6 = 30°.

(°=o.k P= 0.9

Order
No.

Coefficient Order
No.

Coefficient

1 0.99702

3 0.29310

k 0.10095

6 0.0701+9

2 -O.069I4.O

10 -0.06015

12 -0.03525

18 -0.03381+

27 0.033i|-9

5 -0.03190

13 -0.021+20

1 0.98888

3 0.1+1367

k > 0.36381^

7 0.22l].71

2 -0.15871

Terms
of

fitting
11

Terms
of

fitting
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Table 6.

Order
No.

Coefficients of fitting curves of cos 9-.

with or = 3, e = ij.5 .

x

e= o.k

Coefficient

l°= 0.9

Order
No.

Coefficient

1 0.77251^ 1 0.76162

3 0.39098 3 0.60205

5 0.18252 6 O.Uj.228

7 O.08083 2 -0.l30i|.7

k -0.079098 9 0.10959

2 -0. 07^57 10 -0.10710

6 -O.Olj.739 k 0.05369

21 O.02976 5 0.08159

1$ -0.03256 8 -0.05959

11 -0.03134 12 -0. 014.341

20 0.03166 20 0.03795

38 0.08162

33 -0.02759

28 -0.02775

Terms
of

fitting
111-

Terms
of

fitting
11



Table 7- Coefficient of fitting curve of cos 9^
wither = 3, = 60°.

53

Order
No.

P= o.k

Coefficient

/" = 0.9

Order
No.

Coefficient

1 0.61517

3 0.34107

5 . 20143

7 0.16137

9 0.13458

16 -0.08781

12 -0.08355

11 0.07622

10 0.07668

13 0.07392

8 -0.07460

18 -0.07502

6 -0.06877

14 -0.06860

15 0.06057

17 0.04955

22 -0.05024

Range

Terms
of

fitting

-0.8 1.0

17

1

3

5

14

12

22

2

16

Range

Terms
of

fitting

0.62455

0.60531

0.26235

-0.05642

-0.04905

-0.04840

-O.03867

-0.03540

0.7 1.0

8
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Table 8. Coefficients of fitting curves of cos 9-,

with cr = ioo, e = 30°.

e- = 0.4 P- 0.9

Order:
No. :

Coef- :

ficient :

Order:
No. :

Coef-
ficient

Order:
: No. :

Coef-
ficient

: Order:
: No. :

Coef-
ficient

1 1.0091*4 11+ . 14006 3 1.11162 8 0.05313

3 0.68269 26 0.09201 1 1.01148 22 0.05175

5 O.48581 12 0.11103 5 0.41252 24 0.05059

7 0.37063 15 0.10281 6 0.19378 1+1 0.04973

9 0.29316 28 0.05442 1+ 0.13130

11 0.21800 10 0.08699 13 0.09265

18 0.20250 31 0.11149 11 0.07872

16 o.i9i5o
v

3^ 0.11179 16 0.07023

20 0.18180 32 0.02277 15 0.06885 f

22 0.16734 k2> 0.09621 18 0.06152

24 0.13745 10 -0.05963

IB 0. 11+415 11+ 0.05315

Rang e : -0 .48 — 0.58 r Ran ge : -0.48 — 0.58

Terms
of

fitting
22

Terms
of

fitting
16
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Table 9. Coefficients of fitting curves of cos Q^_

with <T = 100, = k$°.

/° = 0.1| P = 0.9

Order:
No. :

Coef- :

ficient :

Order:
No. :

Coef-
ficient

Order:
No. :

Coef-
ficient

: Order:
: No. :

Coef-
ficient

1 0.73180 kk -O.I3236 3 O.80616 27 -0.061j.88

3 O.ij.9717 16 0.13527 1 0.71i|68 k2 -0.05182

5 0.37588 k2 -0.11895 5 0.32176 ko -0.05171

7 0.2902l| 2k 0.12506 6 0.09813 16 0.01^123

9 0.23121 36 -0.12ij45 13 0.07023 25 -0.05101

11 0.16809 Ik 0.12319 kh -0.07021 2i+ 0.03620

22 0.15313 27 -0.09990 k O.06139

18 . 15035 15 0.05217 11 . 05lif7

38 -0.1i|206 29 -O.09i4.i3 21 -O.06185

13 0.09973 26 0.11080 29 -0.05998

20 0.1^376 23 -0.05352

U-0 -0.12922 ks -0.05910

Range : 0.68 — O.78 : Range : -0.68 — O.78

Terms
of

fitting
22

Terms
of

fitting
i8
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Table 10. Coefficients of fitting curves of cos 0-j_

with cr = 100, = 60°.

r-: O.I4

•

«

• P- 0.9

Order:
No. :

Coef- :

ficient :

Order:
No. :

Coef- :

ficient :

Order:
No. :

Coef-
ficient

: Order:
: No. :

Coef-
ficient

1 0.57913 27 -0.07782 3 0.61967 36 -O.O39I46

3 0.38075 38 -0.07357 1 0.56811 I4O -O.OI4306

5 0.29065 26 0.07253 5 0.2l(.5l7

7 0.22918 16 0.06938 6 0.09974

9 O.I6796 ¥> -0.06857 13 O.0253I4.

11 0.12681 29 -0.06596 25 -O.069I4.3

22 0.10099 36 -0.05705 23 -0.07201

2k 0.09531J- ki 0.0560i| k 0.05738

20 0.09171 1+8 -0.05523 21 -0.07097

13 O.090I4.5 ki 0.05337 kh -O.OI4.892

kh -0.08523 ik 0.05113 11 0.01302

18 0.08226 28 0.024.7814. 38 -O.Ol4J4.Ol

ko -0.08090 15 O.Olj.715 2k 0.05995

2$ -O.O80I4J4. 21 -O.Ol4.657 18 0.06820

23 -0.07956 31 -O.OI1.382 k2 - 0.01+563

k2 -0.07765 kl . OI4.3I4.8 10 -0.01168

Rang e : -0 .86 — 0.98 : Range : -0.86 — 0.98

Terras
of

fitting
32

Terras
of

fitting
18



CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The goal of finding the probability density of cos Q1 which

is a function of two correlated random variables X and Y does

not succeed by using the analytical methods. Therefore the Monte

Carlo method is used. When this method is combined with the

curve fitting techniques, approximate solutions are obtained in

a closed form for different parameters a~ , f> , ©. Three con-

clusions are made to these results.

1. When the standard deviations of the two random variables

X and Y are less than unity, the densities of cos 0^ are

slightly affected by the changing of the correlation

coefficient. They are approximately Rice distributions

centered at the value cos 9.

2. When the standard deviations of X and Y are larger than

unity, the effect on the densities due to increasing

the correlation coefficient is significant. Two major

peak values of the densities occur in positive and nega-

tive sides, respectively.

3. The larger the standard deviation of X and Y, the larger

the occupied range of the density of cos 0j_ is. However,

the range is limited between -1 to 1.
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£.2 Recommendations

1. One way to find the density of cos 6 1 by analytical

method might be very interesting. Because the density

of cos 6-, can be obtained by the densities of

Y/Vl + X2 + Y 2 which is the derivative of V 1 + X2 + Y2

with respect to Y. In other words, with given prob-

ability densities of f(X, Y) , the study of finding the

a d
densities of — f (X, Y) or — f (X, Y) is suggested.

Hopefully, this approach will not be tied up by hard

integrations

.

2. In order to solve the problem of the limited memory of

the computer, storing the generated random numbers on

tapes is suggested. Thus the sample size of the Monte

Carlo method can be increased greatly. A better accuracy

is then expected by this method in finding the densities

of cos 0-^.

3. With a larger sample size,. the use of the Monte Carlo

method to find the probability density functions of the

reflection coefficients V (0-^ and Vnn (0 1 ) is recom-

mended, where

n-L
2 cos 6]_ -•Vn2

2
+ cos 2

6 1

n-j^
2 cos 0-^ +*y n

2
2 + cos 2 0,

no cos
0-l

- y n
2
2 + cos 2

Q-^

n-, cos 0, +Vn 2 + cos 2 eT

nl> n2» n 1 are deterministic constants.

v
pp

(s
i)

vnn (ei) =
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ij.. The densities of cos 6-^ change from Rice distribution

to two-peak distributions when cr are altered from

0.1 to 3. An interesting problem is to find the value

of 0~ when this changing exactly occurs.
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APPENDIX A

A.l The Derivation of the Probability Density of cos 6-,

<a + bj> = a + b<y> = a (A. 1.1)

<y=r=i> = <WTT77> + h<^ 77 + *>
u ' 1

;

2)

By using polar coordinates, with c = 2CT2 (l - ffi) , then

/ y v ( f2% *Y 1- f
2 r2 sin 6 / r2 \

\T) p 2 /
=

/ w 9
exP (l-^sin 2e)}d9dr

N i/l+x2+yV /0 /0 rccYl + r2 ( c 7

f* YTT^r2
r2 ^ ,r2 /* .

exp (- — ) / sin 6 exp/ sin 26 f d6dr
b nc-yi+r2

c h

where the second integration of the above equation is

r 2% , pv2 ,<*>
. pv2

sin0jl o ( ) +2[Y. (-I)* I 2k+1 ( ) sin(2(2k+l)©)
/0 L c V k=0

x
c

0£>

+ JL (-D
k

I 2k ( )
cos k ke)[ de = ° (A. 1.3)

k=l c f
)

The mean value of cos Q-, i;

/ a + by n = y 1 \X
i/l + x2 + y2/

a

\f1 + X2 + y2/

f rYl-/72 r2 r 2/>
= 2a

/ V 5- exp ( } I o ( ) dr (A. 1.^)
/0 c-Tl+r2 c c
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Assume z =
71 + x2 + y

2

F7 (z) =

>-C*2 - DO
2CT 2 Yl - p

2
71

(x
2

+ y
2

- 2/^xy)
•

-r,—r^ r
dxdy

2Cr2(i _^^)

By taking the derivative with respect to z, it yields

Ma) =
'-C*£> C7l(l-Z 2 )^/2

/" (x2+z 2
)

>
) / 2 /^xz -fl+x2

|

exp - - ( exp J , \

c (i-z 2 )J ( c-yi - z
y

dx

(A. 1.5)

For ^= case, c = 2CP

-D^

f
7i
(z)

-f1 + x2 (x2+z 2 )

exp
'-oo 2oicr2 (l-z 2 )3/2 2cr 2 (l-z 2 )

dx (A. 1.6)

Equations (A.l.Ij.), (A. 1.5), (A. 1.6) have not been solved to

obtain the solutions which can be expressed in algebraic form

or with well-known series expressions. The moment theorem

states that

<g (jW )

n

<P (w) = 2^ ]

n=0 n
n

th Twhere mn is the n moments. If they are known, then
(f)

(w)

can be obtained. Then,

f(x) = — 1 I (w) e"Jwx dx
2% /-Oo J'
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<cosne^> -<(
r a + by

)><

n(n-l)
an+nban

- 1y+ b 2 an_2y
2+. . .+bny

n

21

(1 + X2 + y2)n/2

n(n-l)

nban_1y
:^

( 1+

x

2+y2 ) n/2/
+\

i

+x2+y2 ) n/2' ^ (1 + x2 + y2) n/2
;><

2 J

b 2 an-2y
2

;>

n ,„n

<-
b" y

(1 + x2 + y
2)V2>

->

The average value of the terms with odd power of y vanish in

the above equation. The terms with even powers of y, by using

polar coordinates and assuming n = 2m, then

2™ Vi.^2,2m

<-
(l+x2+y2 ) a2oi (r sin 9)

(l+r2 )
n/2 ^c

exp (1 - /° sin 29)

J I

y d6dr

where c is defined as above, it yields

r2m

N
(l+x2+Y2)n/2/ y

r2m Ap[Tp^

2mTtc(l+r2 )n/2

2/ Z
9^" r / C T (i—

) dr (A. 1.7)

The above equation has not been solved to find a solution

which can be expressed algebraically or with a well-known

series expression.
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APPENDIX B

B.l The Derivation of the First Kind of Curve Fitting Algorithm

By substituting equation (3.I4..I) into (3.1^.2), then

m o / m
f(x) = (£* a rx

r
)

e"Px + \(
)

£ a rx
r e"Px dz - I)

r=0 /-c*> r=0

the square error is

E
|

2
= I! fg( Xi ) - ^1 x±

r e"Pxi^ + \(£ ar [ x^'P* dx-^J
i=l u r=0 r=0 '-<&

2

2

= 0, then
3 \

.C*S>m f
— 2I ar xr e

_ Px dx = 1 (B.l.l)
r=0 /-«<$o

— = 0, with equation (B.l), then

2%

i=l r=0
r 1 x

i=l
x Loo

dx

n m 2 r t. 9 n ?
= X r ZT a

r
x.

r e"Pxi x
P

e-Px' dx + £ x.
r0e"Pxi g(x,)

i=l r=0
r x Loc i=l

1

(B.l. 2)

where r
Q

= 0, 1, 2, . . . , m.

Equations (B.l) and (B.2) are combined and written in a

matrix form.



i ffcl. ;

}
+ x(Y(a.)j

where
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(B.1.3)

W
a,

M-

m
y

fZTxi e"Pxi
2

g(x
i

)'

^x^ e"Pxi
2

g( Xl )

r
XjL
m

e"
pXi

g( Xi )

/j-x° e-P^ dx^

fx e"P^ dx

Y(a i ) = { .

n m

(x™ e"
px2

dx

( • )

z. zr a-x --

r e_pxi
'

i=l r=0 r 1

I

A21 I

A
22

A is a (m+2) x (m+2) square matrix

A
i:l

is (m+1) x (m+1), A,p is (m+1) x 1, Ap, is 1 x (rat+1),

App is 0.

"See the matrix notation in the footnote of section 3.1±.



69

11

£ x± x.0e-2pXi
2 f 1 O

e
-2pXi2 £ x^x.V 2?*!

2

i=l
X X

1=1
X X

1=1
1 X

£ x.°x.V 2 Pxi
2

, r x^x.V^i 2

,...,^ x.-x.^e
1=1 i=l

1=1

n

i=l

m 1 -2px,-'
x. «

l l

Jl m -2PX-;
2 " x -2pxi

2

2. x x e , £_ x. x. e
x

, .

1=1 l l

12

£ g(x
± ) fx°

i=l
x

'

n ,
1T g(x

± ) x
1=1 i

1=1

e"Px dx

- Px j
e dx

i i
f x.\.me- 2pxi

2

1=1 x x

n /

1=1 /

xm e"Px dx

l21
= [(x°e-Px2 dx, /x^-P^ dx, . . ., fA-P*2

dx]

B.2 The Algorithm for Finding an Optimum P

With the assumption that the exact error curve is

E
x (p) = a

Q
+ a

x p
+ a

2 p
2

The calculated error value is E
d (p.), then the square

error between these two values is

IMI
2

= f [
ei(pi)

- Ed(pi)]
:
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? e i

3 a,

= , where r = 0, 1, 2, then

£ f2 E-lCpj;) - 2 E d ( Pl )l =
i=0 L J

f [2 P^CPi) - 2 PlEd ( Pl )] =
1=0 "

r [2 P^E^p.) - 2 Pi
2 E

d ( Pl)]=0

The above three equations are combined and written in a

matrix form.

i=l

n n n

r 1 r Pi i^
i=l i=l i=l

n n n

r Pi x: Pi
2 t Pl

3

i=l i=l i=l

n n n n

r Pi
2 r p^ r Pi

1=1 1=1 1=1

'0
i=l

= V

, 2
V /

n

i=l

n

1 1
(B.2.1)

Vli
p—

'0

The coefficient vector •/ a-, I can be obtained by the equa-

a 2

tion (B.2.1). The o Ptimum P is then p> =
-a-

2a'
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APPENDIX C

C.l PROGRAM FOR GENERATION UNIFORM RANOCM NUMBERS

2
6
8

40
42
78

85
86

10

15
11

18

IMPLIC
DIMENS
01 MENS
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
READ (

00 3 K

READ (

DO 3 I

IY=IX*
IF (IV
IY=IY+
YFL=IY
YFL=YF
IX=IY
R(K,I)
CM=M
BN=NN
B(1)=C
DO 10
Bin=e
DO 9 K

DO 9 I

C(K, I )

DO 11

DO 11

H=0.C2
DO 15
IF (R(
H=H+G.
C(K, I )

DO 18
'CD(K)=
AM(K)=
SM(K)=
DC 18
FR(K, I

DD(K)=
AM(K)=
SM(K)=
DO 30
IF (Af
DM(K)=

IT REAL*8(A-H f G-Z) » INTEGER I I-N)
ION R(2,ICCCG),C(2,5G),B(5C),FR(2,50)
I CM AM (2) , DH (2

)

f SM 1 2 J t DD 1 2

)

(2110)
(14X»*0X*t6X v 'URSeX, 'FRISIX, »FR2' )

(/12X,F5.2,3X,F7.4,3X,F7,4,3X,r7.<,)
l/i2X,«MEAN=« iF9.7,3X,« VARIAMCE = »,F9.7)
I////12X, 'UNIFORM
(/12X,'CHI SCUARE

1,2) NN.M
= 1,2
1,2) IX
= 1,M
65539
) 85,86,86
2147463647+1

L*.4656613E-9

= YFL

.0
1=2, NN
(I-D+0.02
= 1.2
= 1,NN
= 0.0
K=l,2
J=l,M

DISTRiBUl IGN
VALUE=',F9.4)

li)

1 = 1

K, J

C2
= C(

K=l
CO
CO
CO
1 = 1

)=C
cot
(C(

(C(

K=l
(K)

SM(

V NN
).LE.H) GO TO 11

K, I )+1.0
,2

• NN
(K,I )*BN/CM
K)+( (FR(K»I )-l.G)**2)*2QQ
K, t)*(B( I) + ,01)/CM)+AfMK)
K, I )*( { C< { I » + .0i)**2)/CM)+SM(K)
.2
.EC.C. ) GO TO 31
K)-(AM(K)**2)
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31
30

60

GO TO 30
DM(K)=SM(KJ
CONTINUE
U = l.
WRITE
WRITE
DO 6C
WRITE
WRITE

(3,6)
(3,8) (B(I),U,FR(l,I) t FR{2,I),I=l,NNJ
1 = 1,2
(3,42) I

(3,40)
WRITE(3,78)
STOP
END

AM

C

lit DMCIJ
CD( I)
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C.2 PROGRAM FOR GENERATING INDEPENDENT NORMAL RANDOM NUMBERS

IMPLICIT RE AL*8(A-H,0-Z), INTEGER! I-N)
DIMENSION Z(2,100CO),C(2,50),B(51),FRi2,50),D(5l)
DIMENSION AM (2) , DM ( 2 ) , SM (2 ) , CD ( 2 ) ,G ( 5C

)

2 FORMAT (2110)
6 FORMAT (14X,«CX»,6X, »NR«, 8X, • FR1 • ,7X, « FR2*

)

8 FORMAT l/12X,F5.2, 3X, F7.4, 3X ,F7.4 , 3X, F7. 4

}

40 FORMAT (/12X,«MEAN=» ,F9.7,3X,' VARIANCE =«,F9.7)
42 FORMAT (////12X, 'NORMAL DISTRIBUTION »,I1)
78 FORMAT l/12X,»CHI SQUARE VALUE= • , F9.4

)

READ (1,2) NN,M
N1=NN+1
READ (1,2) 1X1,1X2
DO 33 1=1,

M

IY1=IX1*65539
IF (IY1) 51,61,61

51 IYI=IY1+2147483647+1
61 YFL1=IY1

YFLl=YFLl*.4656613E-9
IX1=IY1
IY2=IX2*65539
IF (IY2) 52,62,62

52 IY2=IY2+2147483647+1
62 YFL2=IY2

YFL2=YFL2*. 465661 3 E-9
IX2=IY2
Ri=YFLl
R2=YFL2
Z(1,I)=( (-2.*CL0G(R1) )**.5)*0C0S(R2*6.2832)

33 Z(2,I)=( (-2.*CLCG(R1) )**. 5 ) *CS IN ( R2*6. 28 32

)

CM=M
BN=NN
B(l)=-3.5
DO 10 1=2, Nl

10 B(I ) = B(I-1)+0.14
DO 9 K=l,2
DO 9 1=1, NN

9 C(K,I )=0.0
DO 11 K=l,2
DO 11 J=1,M
H=-3.36
DO 15 1=1, NN

. IF (Z(K,J).LE.M) GO TO 11
15 H=H*0.14
11 C(K,I )=C(K,I )41.0

DO 14 1=1, Nl
14 D( I ) = B(T)/1.41A

DO 18 K=l,2
DD(K)=C.O
AM(K)=C.O
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SM.(K)-C.O
' DO 18 1=1, NN
G(I )=C.5*(DERF(D( 1 + 1) J-DERFIDII) D/CH
FR(K, l)=C(K, !)/(CM*.14>
DD(K)=CD< KM 200*1 (FRIK, I)-Gll))**2)/Gm
AM(K)=C(K,l)*(B(I M0.071/CM+AMIK)

18 SM(K)=SN(K)+(C(K,I )*( (B(I ) +0. 07 ) **2 ) /CM

)

DO 30 K=l,2
IF (AN(K).EQ.O.O) CO TO 31

DM(K)=SK(K)-(AM(K)**2)
GO TO 30

31 DM(K)=SN(K)
30 CONTINUE

WRITE (3,6)
WRITE (3,8) (B(I),G(I),FR(1,I),FR(2,1),I=1,NN)
DO 60 1=1,2
WRITE (3,42) I

WRITE (3,40) AtUDfCMCI]
60 WRITE (3,78) CD ( I )

STOP
END
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C.3 PROGRAM FOR GENERATING NEK RANDOM NUMBERS (FUNCTION OF NORMAL
RANDOf PAIRS)

IMPLICIT INTEG£R**(I-N'J t REALMS { A-H, C-Z )

DIMENSION C( 101 ) t B( ICl ItFRt 101

)

t Zl( 100OO) f Z2(IC0C0J
2 F0RMA1 (2110)
3 FORMAT (2F7.2,3F5.2,F7.4)
5 FORMAT {/5(2X,«DX«,5X, 'FR',AX)

J

6 FORMAT (1H1.1CX,

•

Vl= • , F7.2 , IX, « V2= • ,F7.2 , IX, «RHO= • ,F5. 2, IX, • Wl = «

,

IF5.2,IX,*W2=« ,F5.2,1X,'ZTA=',F7.4)
7 FORMAT (/5( 1X,F6. 3, IX, F7. A, IX )

)

8 FORMAT (10F0.5)
40 F0RMAT(/12X,«MEAN=',F9.6t3X,«- V A R I AN CE - >',F9.6)

• REAO (1,2) NN,M
READ (1,2) 1X1,1X2
DO 33 1=1,

M

IYI=IX1*65539
IF(TYl) 51,61,61

51 IY1=IYI+2147483647+1
61 YFL1=IYI

YFLl=YFLl*.4656613E-9
1X1 = 1 Y 1

IY2=IX2*65539
IF (IY2) 52,62,62

52 IY2=IY2+2147483647+1
62 YFL2=IY2

YFL2=YFL2*. 46566 13E-9
IX2=IY2
Ri=YFLl
R2=YFL2
Zl(l)=( (-2.*DL0G(R1) )**.5)*DC0S(R2*6.28 32)

33 Z2(I )=(l-2.*DL0G(Rl) ) **. 5

)

*DS INI R2*6.2832 )

CM = M

BN=NN
B(l)=-1.0
DO 9 1=2, NN

9 B(I ) = B( I-D + 0.02
LS=l

74 READ (1,3) VI, V2, RHC, Wl, W2, ZTA
CF=DCCS(ZTA)
SF=DSIN(ZTA)
C(l)=C.O
DO 10 1=2, NN

10 C(I)=C.O
SM=O.C
AM=O.C
DO 11 J=1,M
Xl=Vl*Zl( JUKI
X2=V2MRH0*Z1(J)+Z2(J)*DSCRT(1.-RH0*RH0) )+W2
TT=DSCRT( l.+Xl*Xl+X2*X2)
TR=(CF+X2*SF)/TT
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H=-1.C
DO 15 1=1, NN
IF (TR.LE.H) GO TO il

H=H+0.C2
15 CONTINUE
11 C(I )=C( D + 1.0

DO 30 1=1 |NN
FR( I )=C(I »/(CP*.02J
AN=(C(I)*B(I)/CM)+AN

30 SH=(C(I)*(B( I)**2 )/CM)+SM
IF (AN.EQ.G. J GO TO 3*
0K=SP-(AM**2)
GO TO 32

31 DK=SK
32 WRITE (3,6) Vl,V2,RH0,Wi,W2,ZTA

WRITE (3,5)
WRITE (3,7) (B( J) ,FR( J),J=i,NN)
WRITE (3,40) AM, DM
WRITE (2,8) (FR(J),J=l,NN)
LS=LS+1
IF (LS.LE.6) GO TO 74
STOP
END

Note: 1. This program used to find the random numbers cos 61 ,

2. When it is used to generate random numbers of

V1 + X2 + Y2 , then TR = TT, B(l) = 1.0, B(l) =

B(I-1) + 0.014., H = 1.0, H = H + 0.0/j., FR(l) =

C(I)/(CM « .Ok).

3. When it is used to generate random numbers of

l/Yl + X2 + Y2
, then TR = l/TT, B(l) = 0.0,

B(I) = B(I-1) + 0.01, H = 0.0, H = H + 0.01,

FR(I) = C(I)/(CM -::- .01).
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C.4 PROGRAM FOR THE FIRST KIND OF CURVE FITTING

IMPLICIT 1NTEGER*4(I-N) ,REAL*8 « A-H, C-Z )

DIMENSION Y(51)tX(51),T(51,5)»PE(5i),Al6,6JtG(51),TPI5)fC(6),
lB(5,5),TC(6),CRV(6),SV(5),D(2,6),CD(6),Fl5i),E(3),H{3,4),CA(3)
DIMENSION ED(IO)

6 FORMAT (4F8.4)
8 FORMAT (10X,2F9.5)
9 FORMAT (10X, • P= • , F7.3,6X, • E= • , F10.4 ,6X, ' KU=' , ID

12 FORMAT (10X, 'COEFFICIENTS')
13 FORMAT (IOX.8F12.5J
14 FORMAT (10X, «RTA=',F12.5)

KSU=1
15 READ,(Y( I) , 1=1,34)

READ (1,6) XO,XL,P,DP
NU=1
MU=l
P1=0.7C7
N=4
DX=(XL-X0)/33.
X(l)=XC+DX/2.
DO 1C 1=2, 34

10 XII ) = XU-1) + DX
DO 11 1=1,34
T(I,l)=l.O
DO 11 J=2,N

11 T(I,J) = TU,J-1)*X(I )

KT=1
KU=1

100 DO 30 1=1,34
30 PE(I)sCEXP(-P*(X(I)-Pl)**2)

00 40 1=1,

N

DO 40 J=1,N
A(I,J)=0.0
DO 40 K=l,34

40 A(I,J)=A(I,J)4T(K,I )*T(K,J)*PE(K)*PE(K)
MN=N+1
DO 41 J=1,N
DO 45 1=1,34

45 C(I) = PE(I)*T(I, J)
DO 42 1=1,34
TP(J)=C.O

42 TP(J) = TP(J)+GU )

CALL INTG(G,34,DX,APA)
41. AIMN, J)=ARA

SY=O.C
DO 46 1=1,34

46 SY=SY+Y(I)
DO 47 1=1,

N

47 A(IffMN)*SY*A(MNf I)
A{MN,MN)=0.0
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50

55

53
54

60

65

66

68

67

85
80

70

88

89

91

300

81

DO 5C 1=1, N

C(I)=C.O
DO 50 J=l,34
C(I )=CU)+Y( J)*T( J, [)*PE(J)
C(MN)=1.0
DO 55 1 = 1,

N

DO 55 J=l,N
B(I,J}=A(I,J)
IF (N.EO.l ) GC TO 53
CALL IiNVERS (B,N)
GO TC 54
BU,J) = 1./B(1,1)
DO 60 1 = 1,

N

TC( I)=C.O
DO 60 J=1,N
rcti > = rcu )+B(i,j)*cm
CRF=0.0
DO 65 1=1,

N

CRF=CRF+TC(l)*TP( I)

DO 66 1=1, N
CRV( I)=CRF*A(MN, l)*0.3
CRV(Mf\)=0.0
DO 68 1 = 1,

N

SV( I)=A(MN,I)
DO 67 1=1, MN
TC(i)=cm
C(l )=C( IHCRVd )

CALL INVERS (A,MN)
KK=1
DO 70 1*1, MN
D1KK, I)=0.0
DO 70 J=1,KN
0(KK,I)=D(KK,I)+AU,J)*C(J)
CALL CCNST ( MN, N, SV ,TP, 0,KK, TC,C

)

KK=KK+1
IFIKK.LT.3) GC TO 8C
DO 8 8 1=1, MM
DDU ) = CABS( (0(KK-1, I)/D(KK-2,I) l-l.O)
CRT=CC(1)
DO 89 1=2, MN
IF ICRT.GE.ODU ) ) GC TO 89
CRT =CC( I)

CONTIME
IF (CRT.LT.0.C001 ) GC TO 300
DO 91 1=1, MN
D(1,I)=U(2, I)

KK = 2

GO TO 80
DO 81 1=1,34
FlI)=C.O
DO 81 J=l,N
F(I ) = F(

I

)+T(I,J)*0(2,J)*PE(I )

E(KT)=C.O
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97

899

105

400

650

600

750

620

111

DO 97
E(KT>=
WRITE
WRITE
WRITE
WRITE
WRITE
ED(MU)
HU=MU+
IF (fl
IF (NO
CALL L

MU=1
KT = 1

NU=NU*
GO TO
IF (KL
KT=KT+
IF (KT
P=P+DP
GO TO
CCRT=(
IF (CC
E(1)=E
E(2)=E
KT = 3

GO TO
T2=E(1
IFIT2.
KU=KU+
KT=3
DO 605
H(Itl)
AI=l
H(I,2)
H(I,3)
CALL I

DO 62C
CA(I)=
DO 62C
CA(I)=
P=-CA(
GO TO
KSU=K$
IF (KS
STOP
END

1=1,34
E(KT)+DABS(Y( I)-F(I)

I

(3,9) P,E(KT),KU
(3»12)

(0(2,1), 1=1, N)
0(2, KN)
(Y(

I

),F(I ), 1=1, 34)

(3,13)
(3,14)
(3,8)
=E(KT)
1

.LT. 6) GO TO
•EQ. 3) GO TO
SQP (ED,P,DP)

899
111

1

100
.EQ.2) GO TO 111
1

.GE.4) GO TO 400

100
E(KT-2)-E(KT-3) )* ( E ( KT-1 )-E ( KT-2 )

)

RT.LT.O.O) GO TO 600
(2)

(3)

105
)-2.*E(2)+E(3)
LT.O.O) GO TO 650
1

1 = 1,3
= 1.0

=P-(3.0-Al )*0P
=H(I,2)*HU,2)
NVERS (H,3)

1 = 1,3
CO
J=l,3

H( I,J)*E( J)+CA( I

)

2)/(2.*CA(3) )

100
0+1
U.EQ.l) CO TO 15



80

SUBR01TINE INTG(G,N,H,ARA)
IMPLICIT INTEGER*4U-N),REAL*8(A-H,C-Z)
DIMENSION G(34)
ARA=G(1»-G(34)
Nl=N-l
DO 1C 1=2, Nl,

2

10 ARA=ARA + 't.G*GU )+2.C*G(I+l)
ARA=H*ARA/3.0

! RETURN
END
SUBROUTINE CONST ( MN, N, SV,TP, 0, KK,TC,C )

IMPLICIT INTEGER*4(I-N),REAL*8(A-H t C-Z)
DIMENSION SV(5),TPl5),D<2,6),TC(6) t CRV(6) t C<6)
CRF=0.C
DO 1C 1=1,

N

10 CRF=CRF+D(KK, I)*TP(I )

CRF=C(KK,MN)*CRF
DO 20 1=1,

N

20 CRVd ) = CRF*SV(I )

• CRV(MN)=0.0
DO 30 1=1, MN

30 CII)=TC(I )+CRV( I

)

RETURN
END
SUBROUTINE LSCP (ED.P.CP)
IMPLICIT INTECER*4(I-N) f REAL*8<A-H,C-Z}
DIMENSION ED(10),PT{10),C(5),B{3,3),A{3),0(3)
PT(5)=P
DO 1C 1=1,4
AIM

10 PT(I)=P-(5.-AI)*0P
DO 20 1=1,5
J = I-i
cm=c.o
DO 20 K = l,5

20 C(I )=C(I)+PT(K)**J
DO 30 1=1,3
J=I-1
D(I )=C.O
DO 30 K=l,5

30 D(I )=C(I )+ED(K)*(PT{K}**J)
DO 40 1=1,3
DO 4C J=l,3
K=J+I-1

40 B(I t J)=C(K)
CALL INVERS (8,3)
DO 50 1=1,3
A(I)=C.O
DO 5C J=l,3

50 All )=A( I )+B( I,J)*D( J)
P=-A(2)/(2.*A(3) )

RETURN
END
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SUBROUTINE [MVERS(A,NJ
IMPLICIT INTEGER*MI-N> , REAL* 8 ( A-H,C-Z

)

DIMENSION A(9,9),G(9),F(9)
NN=N-1
A(l,l)=1.0/A(l,l)
00 21C K=i,NN
K = M+1

250 DO 26C 1 = 1,

M

G(I)=C.O
DO 26C J = 1,M

260 G(I )=G(I )+A(I,J)*AU t K)

Q=0.G
DO 27C 1=1,

M

270 Q=Q+A(K,I)*Gll)
Q=-Q+MK,K)
A(K,K)-~1.0/Q
DO ?8C 1=1,

M

280 AU,K)=-G(I)*A(K,K)
DO 29C J=1,M
F(JJ=C.O
DO 29C 1=1,

M

290 F(J) = F(J)+AIK,I J*A( I, J)
DO 200 J=i,M

200 A(K,J)=-F(J)*A(K',K)
DO 21C 1 = 1,

M

DO 21C J=1,M
210 All, J)=A(I,J)-G(1)*A(K,J)

• RETURN
END
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C.5 PROGRAM FOR -THE SECOND KINO OF CURVE FITTINC

DIMENSION A<55,55),X(55)tYt2t55J,U(55),Vl55)»W(55)tXl(55,55)tR(55J
1,T(55),DT(55),DM(55),DS(5),TY(55),C(55),8(55,55),DATA(2,98)
DIMENSION F(98) ,DF(98)

860 FORMAT ( lH0 f 5X, •COEFFICIENT* /)

865 F0RMAT(1H0,5X,' APPROXIMATE VALUES^/)
866 FORMAT ( 1H0. 5X, • U' , /

)

867 FORMAT ( 1H0, 5X, •
V

• , /

)

668 FORMAT ( lHO f 5X, •
N=

' , 14

)

869 F0RMAT11H ,5X,«R' )

870 FORMAT (5E18.8)
871 FORMAT (IH1)
879 FORMAT (4E18.8)

5 FORMAT (10F8.5)
7 FORMAT (3F8.5)

KP=1
6C0 READ, NX, MK

READ (1,7) (F(I), 1=1, 3)

READ (1,5) (F(I ), 1=4, MX)
00 9 1=1, MX
IF (F(I).LE. 0.0) CO TO 11
GO TO 9

11 F(I)=C.0000i
9 CONTINUE

DO 10 1=1, MX
DF( I )=0.4*SQRT(F( I )

)

DATA(1,I )=F( I)+DF(I )

10 DATA12, 1 ) = F(I)-DFU )

DO 666 KKA=1,MK
READ,N
CALL SET(M,B)
CALL VECTOR (DA TA,MX, M, Y

)

Ml=M+l
AM=M1
S = 0.0
1 = 1

15 U( I)=(Y(l,I )+Y(2,I) )/2.0
V(I) = (Y(1, I )-Y(2, I ) )/2.0
S=S*V(I)**2
1=1 + 1

IF(I.LE.M) GO TO 15
S=SQRT(S)
CALL ARAMGE(B,U,M,A)
KRITE (3,871)
N=M
ND=N/2
KL=-i
NT=ND+2

100 N=N*KL*ND
IF(N.EC.M)GO TO 8C0
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25

33
30

300
38

36

37

200
40

41

45

80

70

WRITE (3,868) N

1 = 1

TY(I)=C.O
1=1 + 1

IF(I.LE.M) GO TO 25
1 = 1

J=l
Xlt I,J) =M I, J)

J=J + 1

IF(J.LE.N) GO TO 30
1 = 1 + 1

I'FC I.LE.M) GO TO 33
KT=1
KK=1
KS=1
1 = 1

W(t)=l(I)+TY(I)
1 = 1 + 1

IF(I.LE.K) GO TO 33
1 = 1

C(I ) = C.O
J=l
C(I )=C( IJ+XKJ, I }*V) i J)

J=J+1
IF(J.LE.M) GO TO 37
C(I)=C(I)*2.0/AM
1=1 + 1

IFU.LE.N) GO TO 36
1 = 1

R(I)=-U(I)
J=l
R(I)=R(I)+X1(I,J)*C(J)
J=J + 1

IFU.LE.N) GO TO 41
1 = 1 + 1

IF(I.LE.M) GO TO 40
WRITE (3,869)
SR=0.C
1 = 1

SR=SR+R( I)**2
1 = 1 + 1

IFU.LE.M) GO TO 45
SR=SCRT(SR)
IF(SR.LE.S) GC TO 70
NT = N

KL=1
ND=NC/2
IF(ND.GE.l) GC TO ICO
IF(N.LT.M) GO TO 80
GO TC 500
ND=1
GO TC 100
1 = 1



at*

72

71

233
85

95

84
86

105

115

700

710

IF(
GO
1 = 1

IF(
KL =

ND=
IF(
IFl
ND =

IF(
GO
1 = 1

T(I
IF(
DT(
GO
DT(
TY(
GO
TY(
1 = 1

IF(
DS(
1 = 1

DS(
1=1
IFl
KR1
IF(

KT=
IFl
GO
DM(
DMl
KS=
KT =

IFl
GO
R2 =

Rl=
R3=
IFl
DMl
DM I

KS=
IFl
KK=
GO
KL=
NF =

ND=
IFl
IFl

ABSIRI I I J.LE.VU ) ) GO TO 71

TO 233
+ 1

I.LE.M) GO TO 72
-1

ND/2
ND.GE.l) GC TC ICO
N.GT.NT) GO TO 5C0
1

N.GE.2) GO TO 100
TC 500

)=RU)/VU)
ABSITII ) J.LE.1.0) GO TO 95
I )=IABS(TU) )-1.0)*RU)
TO 84
I)=C.O
I ) =RU)
TO 86
l) =RU)-DTU )*1.10
+ 1

I.LE.M) GO TO 85
KT)=0.0

KT)
+ 1

I.L
TE
OS I

KT +

KT.
TO
KS)
KS)
KS +

1

KS.
TO
DMl
DMl
ABS
R3.
1) =

2) =

3

KK.
KK +

TO
I

N

NC/
MD.
N.t

= DS(KT)+ABSIDTU) }

E.M) GO TO 105
13,870) DS(KT)
KTJ.LE.O. 1E-20) GO TO 555
1

GE.5) GO TO 115
300
= DS( 1)+CS12)+CS13)*DS14)
=DM{KS)/4.0
1

CE.4) GO TO 7C0
3C0
3) /DM12)
2)/DM(l)
IR1/R2-1.0)
IT. 0.01) GO TC 710
CM12)
CM13)

GT.M/A) GO TO 710
1

3C0

GE.l) GO TO ICO
T.M) GO TO 72C
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GO TO 500
720 ND=l

GO TO 100
BOO 1=1
BIO C(I)=C.O

J = l

320 C(I)=C(I)+A( I,JJ*U(J|
J=J + 1

IF(J.LE.M) GO TO 820
Cm«C(I)*2.0/AM
1 = 1 + 1

IF( I.LE.M) GO TO 810
1 = 1

830 TY( 1 )=C.0
J=l

840 TYII J=IY(I)+A(I, J)*C(J)
J = J + l

IF(J.LE.M) GO TO 84
1=1 + 1

IF(I.LE.M) GO TO 830
GO TO 765

500 WRITE(3,868J N
1 = 1

760 TY(I)=C.O
J = l

761 TY(I)=TYU)+X1(I,J)*C(J)
J=J + 1

IF(J.LE.N) GO TO 761
1 = 1 + 1

IF(I.LE.M) GO TO 760
765 WRITE(3,860)

WRITE(3,870) (C(I),I=l,N)
WRITE(3,865)

• WRITE(3,870) (TY ( I )

,

1=1 , M

)

WRITE (3,866)
WRITE(3,870) (U(I),I=1,M)
WRITE (3,867)
WRITE (3,870) I Vf I 1 , I = 1 V M!

666 CONTIME
KP=KP4l
IF (KF.LE.2) GO TO 6C0
STOP
END
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SUBROUTINE VECTOR t H , f-'l , M, Y )

D I MENS I ON W I 2, 98 1 , Y (2 , 98

)

f X ( 98 ) , Z ( 98 J

IF(M.EC.Ml) GC TC 6C
Al=Kl+l
A2=M+1
DO 1C 1=1, Mi
AI = I

10 X(I) = M/Al
DO 15 1=1, M

AI = I

15 Z(l) = M/A2
JM=1

DO 30 1=1,

M

DO 35 J=JM,MM
IF(Z(I).LT.X(J) ) GO TO 35
IF(Z(I).EQ.X(J) ) GC TO 45
CR=(Z(i)-x(j) )*(zm-xu+i>)
IF(CR.GT.O.O) GO TC 35
Y(1,I)=W(1,J)
Y(2,I)=W(2,J)
GO TO 65

45 Y(l, I)=W(1, J)

Y(2,I)=W(2,J)
GO TO 75

35 CONTINUE
65 JM=J

GO TO 30
75 JM=J+l
30 CONTINUE

GO TC 70
60 DO 85 1=1, M

DO 85 J=l,2
85 Y(J, I)=W(J,I)
70 RETURN

• END
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SUBRGiriNC ARANGE(A,U,K,C)
DIMENSION A (66, 66) ,U(66),B(66) ,KC(66) ,TP(66),C(66,66)

200 FORMAT 1 1!U,5X,« INKER PRODUCTS'/)
210 F0RMATU0E12.5)
220 FORMAT ( IHO, 5X, • CRCER NO.'/)
230 FORMAT (201 5)

231 FORMAT (1414!
1 = 1

10 B(I ) = C.O
J=l

16 B(I )=B(I)+A(J,I )*U(J)
J=J + 1

IFU.LE.M) GO TO 16
B(I)=ABS(8( I ) )

1 = 1 + 1

IF( I.LE.M) GO TO 10
G=-1.C
WRITE (3,200)
L=l
1 = 1

20 J = l

30 IF(BU).LT.G) GO TG 31
IFIB(J).EC.G) GO TO 33
G=B(J)
L = J

GO TO 31
33 IF(L.EC.l) GO TO 31

IF(L.NE.KGU-l) ) GO TO 31
L=J

31 J=J + 1

IFU.LE.M) GO TO 30
G=-l.
KO(I)=L
WRITE (3,210) B(L)
B(L)=-2.0
1=1 + 1

IFU.LE.M) GO TO 20
WRITE(3,??0)
WRITE (2,231) (KC(I), 1 = 1, M)
WRITE(3,230) (KO ( I ) , 1 = 1 ,M

)

1 = 1

35 K=KO(I)
J=l

36 C(J, I)^A(J,K)
J = J + 1

IFU.LE.M) GO TO 36
1 = 1 + 1

IFU.LE.M) GO TO 35
RETURN
END



88

SUOUCCTINE SETCM,C1
IMPLICIT P.E AL*8 ( A , ) , REAL*4 1 B,

C

t E-H,CJ-Z ) , INT EGER I I- M )

DIMENSION C( ICO, ICC)
Ml=M+l
AM = M1
AP= 3. 14109265358 979^+ (.32 38460-14) /AM
Al=DSIN(AP)
A2=CCCS(AP)
ADl=Al
AD2=A2
CCltl)=SNGLlAl)
1=2

1C AT=A2*AD1+A1*A02
A2=-A1*A01+A2*A02
A1 = AT
C(I»l)=SNCL(Al)
AD3=AT
A04=A2
J=2

20 AT=A2*AD3+A1*AD4
A2=-Al*AD3+A2*AD4
A1=AT
C(I|J)=SNGL(A1)
J=J + 1

IFtJ.LE.I ) GC TO 20
A1=AD3
A2=AD'i
1 = 1 + 1

IF(I.LE.M) GC TO 10

1 = 1

40 11=1+1
J=TI

41 X(I t J)-C(J V II

J=J+l
1FU.LE.M) GO TO 41
1 = 1 + 1

IF(I.LT.M) GO TO 40
REIURN
ENO
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A study of probability density functions of the angle, 6-^,

between the surface normal and the direction to the receiver of

a rough surface in a radar backscattering problem is discussed.

Both the analytical and the Monte Carlo methods for finding a

probability density of a function of random variables are intro-

duced. In order to get the algebraic expressions of the density

from the data by the Monte Carlo method, two different curve

fitting techniques are developed.

Because cos 6-, involves the function f 1 + X2 + Y 2
, where

X and Y are two correlated normal random variables, the problem

of finding the density function of cos Q-^ starts from finding

the densities of A/\ + X2 + Y2 and l/Vl + X2 + Y2 with a

desire to find the former density by the information method con-

tained in the latter two. The Monte Carlo method is used to

find the densities of cos 9-, with each different parameter CT

,

f, and 6 due to the failure of finding the density function of

cos 6-. analytically. The results show that the densities of

cos 6-i are approximately Rice distributions centered at the

value of cos 9^ when CT is less than unity. The densities of

cos 0]_ are also discussed by changing <J~ , f* , and 0.


