A STUDY OF PROBABILITY DENSITY FUNCTIONS

 RELATED TO THE RADAR BACKSCATTERINGby

STEPHEN MIAU CHENG
B. S., TAIWAN PROVINCIAL CHENG KUNG UNIVERSITY, 1966

A MASTER'S THESIS
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1970

Approved by:

L1970 table of contentsC475
PAGE
LIST OF FIGURES iv
LIST OF TABLES v
CHAPTER
I. INTRODUCTION 1
1.1 Motivation and General Purpose 1
1.2 The Problem 2

1. 3 Summary of Chapter Development 3
II. THE ANALYTICAL METHODS OF FINDING THE DENSITY FUNCTION OF A FUNCTION OF TWO OR MORE RANDOM VARIABLES 5
2.1 Introduction 5
2.2 The Density Function of a Function of Two or More Random Variables 6
2.3 The Density Functions of $\sqrt{1+X^{2}+Y^{2}}$ and $I / \sqrt{1+X^{2}+Y^{2}}$ 8
III. THE MONTE CARLO METHOD AND CURVE FITTING TECHNIQUE 14
3.1 Introduction 14
3.2 Generation of Random Numbers 14
3.3 The Accuracy of the Monte Carlo Method 17
3.4 Curve Fitting Technique 20
IV. THE RESULTS OF DENSITY FUNCTIONS BY THE MONTE CARLO METHOD 26
4.1 Introduction 26
4.2 The Result of the Generated Random Numbers 27
4.3 Comparisons of the Results by the Monte Carlo Method and the Analytical Method 28
4.4 The Density Function of $\cos \theta_{1}$ by the
Monte Carlo Method 30
V. CONCLUSIONS AND RECOMMENDATIONS 57
5.1 Conclusions 57
5.2 Recommendations 58

REFERENCES . 60
ACKNOWLEDGMENTS . 62
APPENDIX A . 64
A. 1 The Derivation of the Probability Density 64

APPENDIX B . 67
B. 1 The Derivation of the First Kind of
Curve Fitting Algorithm 67
B. 2 The Algorithm for Finding an Optimum p. . 69

APPENDIX C . 71
C.l Program for Generation Uniform Random $\begin{gathered}\text { Numbers } 71\end{gathered}$
C. 2 Program for Generating Independent Normal Random Numbers
C. 3 Program for Generating New Random Numbers (Function of Normal Random Pairs) 75
C. 4 Program for the First Kind of Curve Fitting 77
C. 5 Program for the Second Kind of Curve Fitting 82

PAGE

$$
\begin{aligned}
& \text { 1. Density Function of } S \text { with } \sigma=1 \text { by the } \\
& \text { Analytical Method } 12
\end{aligned}
$$

2. Density Function of V with $\sigma=I$ by the Analytical Method 13
3. Flow Chart of the First Kind of Curve Fitting 23
4. Flow Chart of the Second Kind of Curve Fitting 24
5. Histogram of the Generated Normal Distribution of Zero Mean and Standard Deviation One by the Monte Carlo Method 29
6. Density Functions of S , with $\sigma=1.0, P=0.4$ 32
7. Density Functions of S, with $\sigma=1.0, \rho=0.9$ 33
8. Density Functions of V, with $\sigma=1.0, \rho=0.4$ 34
9. Density Functions of V , with $\sigma=1.0, \rho=0.9$ 35
10. Density Functions of $\cos \theta_{1}$, with $\sigma=0.1$, 37
11. Density Functions of $\cos \theta_{I}$, with $\sigma=0.1$, $\theta=45^{\circ}$ 38
12. Density Functions of $\cos \theta_{1}$, with $\sigma=0.1$, $\theta=60^{\circ}$. 39
13. Density Functions of $\cos \theta_{I}$, with $\sigma=3, \theta=30^{\circ}$ 40
14. Density Functions of $\cos \theta_{1}$, with $\sigma=3, \theta=45^{\circ}$ 41
15. Density Functions of $\cos \theta_{1}$, with $\sigma=3, \theta=60^{\circ}$ 42
16. Density Functions of $\cos \theta_{1}$, with $\sigma=100$, $\theta=30^{\circ}$. 43
17. Density Functions of $\cos \theta_{1}$, with $\sigma=100$, $\theta=45^{\circ}$. 44
18. Density Functions of $\cos \theta_{1}$, with $\sigma=100$, 45
19. A Physical Interpretation of the Densities of $\cos \theta_{I}$ when σ is Large 47

CHAPTER I

INTRODUCTION

1.l Motivation and General Purpose

In the determination of the amount of reflected electromagnetic energy from a surface, called the radar backscattering, ${ }^{2}$ one of the major methods of modeling the reflecting surface is to assume the surface height above some mean surface can be described by a random process. 9 By the tangent plane approximation which assumes the reflected body is isotropic and homogeneous, the radar backscatter can be obtained in an integral form. Essentially the integrand of this integral is a new random process which is a function of the surface height random process and its derivatives. The form of this function changes as the shape of the average surface changes, i.e., a sphere or a plane. It is desired to find the probability density of the integrand and the integral for each case.

Upon the realization of the magnitude of this problem, a sub-problem is decided upon which could be utilized as an interim step regardless of the form of the average surface. The integrands in most cases can be expressed in terms of a power series of $\cos \theta_{l}$ times an exponential term whose exponent is a function of only the surface height, where θ_{1} is the angle between the surface normal and the direction to the receiver. Therefore as a first step, it is decided to determine the probability density of $\cos \theta_{l}$ and then this density can later be applied to a particular surface.

1.2 The Problem

For the problem of radar backscattering from a rough spherical surface, 9 normal spherical coordinates $\left(\vec{a}_{r O}, \vec{a}_{\theta}\right.$, $\left.\vec{a}_{\phi}\right)$ are defined. The variation in the radius of the rough sphere from the average at a point (θ, \varnothing) is denoted by $H(\theta, \varnothing)$. The random surface is assumed continuous in the mean and differentiable over a finite region. The radius vector from the origin to the surface point is $\vec{r}_{0} . \quad\left(\vec{r}_{0}=r_{0} \vec{a}_{r_{0}}\right)$. Then the equation of the surface can be written as

$$
\begin{equation*}
\psi=r_{0}-[(a+H(\theta, \phi)] \equiv 0 \tag{1.1.1}
\end{equation*}
$$

where a is an average radius of the rough surface. By normalizing the gradient of the equation (1.1.1), the unit outward surface normal vector \vec{a}_{n} is found.

$$
\begin{equation*}
\vec{a}_{n}=\frac{\nabla \psi}{|\nabla \psi|}=\left[\frac{\partial \psi}{\partial r_{0}} a_{r_{0}}+\frac{1}{r_{0}} \frac{\partial \psi}{\partial \theta} \vec{a}_{\theta}+\frac{1}{r_{0} \sin \theta} \frac{\partial \psi}{\partial \phi} \vec{a}_{\phi}\right] \frac{1}{|\nabla \psi|} \tag{1.1.2}
\end{equation*}
$$

Performing the indicated operations of (1.1.2) on ψ as defined in (1.1.1), the above equation yields

$$
\begin{equation*}
\vec{a}_{n}=\left[a_{r_{0}}-\frac{1}{r_{0}} \frac{\partial H(\theta, \phi)}{\partial \theta} \vec{a}_{0}-\frac{1}{r \sin \theta} \frac{\partial H(\theta, \phi)}{\partial \emptyset} \vec{a}_{\phi}\right] J^{-1} \tag{1.1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
J=\sqrt{1+\left[\frac{1}{r_{0}} \frac{\partial H(\theta, \phi)}{\partial \theta}\right]^{2}+\left[\frac{1}{r_{0} \sin \theta} \frac{\partial H(\theta, \phi)}{\partial \emptyset}\right]^{2}} \tag{1.1.4}
\end{equation*}
$$

Under the assumption that $H(\theta, \varnothing)$ is a normal variable, its partial derivatives with respect to its variables are also
normal. 11,13 Therefore two normal variables are defined as

$$
\begin{aligned}
& X=\frac{1}{r_{0}} \frac{\partial}{\partial \theta} H(\theta, \phi) \\
& Y=\frac{1}{r_{0} \sin \theta} \cdot \frac{\partial}{\partial \emptyset} H(\theta, \phi)
\end{aligned}
$$

\vec{a}_{R} denotes the direction of the receiver from the point on the rough surface given by $r_{0}, \theta, \varnothing$. The angle between \vec{a}_{R} and \vec{a}_{n} is defined as θ_{1}. The expression of $\cos \theta_{1}$ then is found.

$$
\begin{equation*}
\cos \theta_{1}=\frac{\cos \theta+Y \sin \theta}{\sqrt{I+\mathrm{X}^{2}+\mathrm{Y}^{2}}} \tag{1.1.5}
\end{equation*}
$$

Since $\cos \theta_{1}$ involves the function $\sqrt{1+X^{2}+Y^{2}}$, the problem of finding the density function of $\cos \theta_{1}$ starts from finding the densities of $\sqrt{1+X^{2}+Y^{2}}$ and $I / \sqrt{1+X^{2}+Y^{2}}$ with a desire to find the former density by the information contained in the latter two.

Hopefully, the probability density of $\cos \theta_{1}$ can be determined analytically and the variations of this density with each different standard deviation σ, correlation coefficient P, and angle θ can be studied. If it fails, a valid approximation is desired. The Monte Carlo method is thus introduced to solve the aforementioned problem numerically due to the failure of finding the density function of $\cos \theta_{1}$ analytically.
1.3 Summary of Chapter Development

Chapter I contains the statement of the problem. Chapter II
presents two general analytical methods for finding the probability density function. The explicit densities of $\sqrt{1+X^{2}+Y^{2}}$ and $I / \sqrt{1+X^{2}+Y^{2}}$ are obtained by using these two methods. Appendix A presents the derivation of the density function of $\cos \theta_{1}$ by analytical methods. However, the problem is not solved by these methods.

Chapter III states the Monte Carlo method used to obtain the desired probability density. First, the method of generating random numbers is discussed. Chi-square test is mentioned here to check the goodness of fit of the generated random numbers. Two curve fitting techniques are developed for finding the explicit expression by the given data from the Monte Carlo method. More details of the curve fitting algorithm are given in Appendix B.

Chapter IV presents the results of densities by using the methods of Chapter III. A comparison is made to the density function of $\sqrt{1+X^{2}+Y^{2}}$ and $I / \sqrt{1+X^{2}+Y^{2}}$ with the results by the analytical methods. The densities of $\cos \theta_{l}$ for certain parameters are also obtained. Appendix C is the computer programs used in this chapter. The various densities of $\cos \theta_{1}$ corresponding to different parameters are discussed and further researches are recommended in Chapter V.

THE ANALYTICAL METHODS OF FINDING THE DENSITY FUNCTION OF A FUNCTION OF TWO OR
 MORE RANDOM VARIABLES

2.1 Introduction

The difficulty of finding the probability density of a function of random variables depends on the number of random variables and the complexity of the functional relationships involved. If these random variables are independent, it makes the problem easier than if they are dependent. The densities can be quickly calculated for linear functions of random variables. In most physical problems, either the random variables are not independent or the function is nonlinear. When either or both of these cases occur the algebraic solutions require very complicated integrations which are not always solvable in closed form or expressed as a well-known series.

In this chapter two general analytical methods of finding the density function will be discussed. The algebraic solutions for the density functions of $\sqrt{1+X^{2}+Y^{2}}$ and $I / \sqrt{1+X^{2}+Y^{2}}$ are obtained by these methods. These explicit densities will be compared with the densities obtained by the Monte Carlo method in order to estimate the accuracy and validity of the Monte Carlo method.

2.2 The Density Function of a Function of Two or

More Random Variables
Under certain conditions, 13,8 the function of random variables can be considered as another random variable. There are many methods of finding the density function of this new random variable. Only two different methods are discussed here.

The first method consists of finding the distribution function $F_{Z}(z)$ first, then by taking derivative with respect to z the probability density function is obtained.

$$
\begin{equation*}
f_{Z}(z)=\frac{\partial}{\partial z} F_{Z}(z) \tag{2.2.1}
\end{equation*}
$$

In order to determine $F_{Z}(z)$ for a given z, the probability of the event $\{Z \leqslant z\}$ must be found. For the function of two random variables case, D_{Z} is denoted by the region of XY plane such that $g(x, y)=z$. Then $\{z \leqslant z\}=\left\{(x, y) \in D_{z}\right\}$. Hence it suffices to find the probability mass in the region D_{Z}. This mass is given by the integration

$$
\begin{align*}
F_{Z}(z) & =P(Z \leqslant z)=p(X, Y) \in D_{Z} \\
& =\int_{D_{Z}} \int_{X Y}(x, y) d x d y \tag{2.2.2}
\end{align*}
$$

where $f_{X Y}(x, y)$ is the original joint density function of random variables X and Y .

Similarly for a function of n random variables, that is $z=g\left(x_{1}, x_{2}, \ldots ., x_{n}\right), D_{Z}$ is denoted by the region of $n-$ dimensional space such that $g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=z$ and

$$
\begin{align*}
\{Z \leq z\} & =\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in D_{z}\right\} \text { Then } \\
F_{z}(z) & =P(z \leqslant z)=P\left\{\left(x_{1}, x_{2}, \ldots ., x_{n}\right) \in D_{z}\right\} \\
& =\int_{D_{Z}} \ldots \int f_{x_{1}} x_{2} \ldots x_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{1} d x_{2} \ldots d x_{n} \tag{2.2.3}
\end{align*}
$$

where $f_{x_{1}} x_{2} \ldots x_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is the original joint density function of random variables $\mathrm{X}_{1}, \mathrm{X}_{2}$, . . ., X_{n}.

The second method consists of introducing an auxiliary variable and finding the joint density function of the desired random variable and the auxiliary variable. Then by integrating the joint density function over the entire range of the auxiliary variable, the marginal density function of the random variable is obtained.

For the case of the function of two random variables, the auxiliary variable W is assumed to be $\mathrm{W}=\mathrm{g}_{2}(\mathrm{X}, \mathrm{Y})$. With $Z=g_{1}(X, Y)$ the joint density is

$$
\begin{equation*}
f_{Z W}(z, w)=\frac{f_{X Y}\left(x_{1}, y_{1}\right)}{\left|J\left(x_{1}, y_{1}\right)\right|}+\cdots+\frac{f_{X Y}\left(x_{n}, y_{n}\right)}{\left|J\left(x_{n}, y_{n}\right)\right|} \tag{2.2.4}
\end{equation*}
$$

where $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \cdot \cdots\left(x_{n}, y_{n}\right)$ are all the real solutions of the equation, $g_{1}(x, y)=z$ with $g_{2}(x, y)=w$, and $J(x, y)$ is the Jacobian of the transformation. The unknown density fundlion of Z is

$$
\begin{equation*}
f_{Z}(z)=\int_{-\infty}^{\infty} f_{Z W}(z, w) d w \tag{2.2.5}
\end{equation*}
$$

The second method can be extended to a function of n random variables. Given $\mathrm{Z}_{1}=\mathrm{g}_{1}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$, then $\mathrm{n}-\mathrm{l}$ auxiliary
variables as

$$
\begin{aligned}
z_{2}=g_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right), z_{3} & =g_{3}\left(x_{1}, x_{2}, \ldots, x_{n}\right), \ldots, \\
z_{n} & =g_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$

are assumed. The choice of the auxiliary variables depends on which assumption can simplify the problem of finding the joint density. By solving these n-system equations, k sets of real solution $\left(x_{1 i}, x_{2 i}, x_{3 i}, \ldots, x_{n i}\right)$ are obtained, where $i=1,2,3, . . ., k$. Therefore the joint density function is

$$
\begin{equation*}
f_{Z_{1} z_{2}} \cdots z_{n}\left(z_{1}, z_{2}, \ldots, z_{n}\right)=\sum_{i=1}^{k} \frac{f_{X_{1}} x_{2} \ldots x_{n}\left(x_{1 i}, x_{2 i}, \ldots, x_{n i}\right)}{\left|J\left(x_{1 i}, x_{2 i}, \ldots, \ldots, \ldots, x_{n i}\right)\right|} \tag{2.2.6}
\end{equation*}
$$

where $J\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is the Jacobian of the transformation of these n-system equations. Then

$$
\begin{equation*}
f_{Z 1}\left(z_{1}\right)=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} f_{Z_{1}} z_{2} \ldots z_{n}\left(z_{1}, z_{2}, \ldots, z_{n}\right) d z_{2} d z_{3} \ldots d z_{n} \tag{2.2.7}
\end{equation*}
$$

The above two methods are commonly used to find the density function of a function of random variables. They will be used in the next section.
2.3 The Density Functions of $\sqrt{I+X^{2}+Y^{2}}$ and $I / \sqrt{1+X^{2}+Y^{2}}$ For finding the density functions of $\sqrt{1+X^{2}+Y^{2}}$ and $1 / \sqrt{1+X^{2}+Y^{2}}$, the polar coordinates are used here due to their simplicity in the operation. Assuming $Z=X^{2}+Y^{2}$, the density function of Z is obtained by the first method of the last section. After that, a new random variable W is defined as $Z+1$.

Its density is found merely by shifting the variable of the density function of Z to $W-1$. The square root of W and one over this square root are other random variables. These two densities are obtained by the second method of the last section based on the density of W .
X and Y are two random variables with zero means and equal standard deviation σ and correlation coefficient ρ. The joint probability density function of X and Y is

$$
\begin{equation*}
f_{X Y}(x, y)=\frac{1}{2 \pi \sigma^{2} \sqrt{1-\rho^{2}}} \exp \left\{-\frac{x^{2}+y^{2}-2 \rho_{x y}}{2 \sigma^{2}\left(1-\rho^{2}\right)}\right\} \tag{2.3.1}
\end{equation*}
$$

By starting with $Z=X^{2}+Y^{2}$, then D_{Z} is a circle with radius of $\sqrt{2}$. In polar form, $r=\sqrt{z}, x=r \cos \theta, y=r \sin \theta$, then

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{Z}}(z)=\frac{1}{2 \pi \sigma^{2} \sqrt{1-\rho^{2}}} \int_{D_{Z}}\left\{\exp \left\{-\frac{1}{2 \sigma^{2}\left(1-\rho^{2}\right)} \cdot\left(\mathrm{x}^{2}+\mathrm{y}^{2}-2 \rho_{\mathrm{xy}}\right)\right\} d x d y\right. \\
& =\frac{1}{2 \pi \sigma^{2} \sqrt{1-\rho^{2}}} \int_{0}^{\sqrt{\mathrm{Z}}} r \exp \left\{\frac{-r^{2}}{2 \sigma^{2}\left(1-\rho^{2}\right)}\right\} \int_{0}^{2 \pi} \exp \left\{\frac{\rho(\sin 2 \theta) r^{2}}{2 \sigma^{2}\left(1-\rho^{2}\right)}\right\} d \theta d r
\end{aligned}
$$

The second part of the above integration is the modified Bessel function of first kind of order zerol denoted as I_{0}; then

$$
F_{Z}(z)=\frac{1}{\sigma^{2} \sqrt{1-\rho^{2}}} \int_{0}^{\sqrt{z}} r \exp \left\{\frac{-r^{2}}{2 \sigma^{2}\left(1-\rho^{2}\right)}\right\} I_{0}\left\{\frac{\rho_{r^{2}}}{2 \sigma^{2}\left(1-\rho^{2}\right)}\right\} d r
$$

By taking the derivative of $F_{Z}(z)$ with respect to z and using the generalized Leibnitz formula, 4 the density function of z is obtained.

$$
\begin{equation*}
f_{Z}(z)=\frac{1}{2 \sigma^{2} \sqrt{1-\rho^{2}}} \exp \left\{\frac{-z}{2 \sigma^{2}\left(1-\rho^{2}\right)}\right\} I_{0}\left\{\rho \frac{z}{2 \sigma^{2}\left(1-\rho^{2}\right)}\right\} u(z) \tag{2.3.2}
\end{equation*}
$$

where $u(z)$ is the unit step function.
Defining $W=Z+l$, with $f_{W}(w)=f_{Z}(w-l)$, then

$$
\begin{equation*}
f_{W}(w)=\frac{1}{2 \sigma^{2} \sqrt{1-\rho^{2}}} \exp \left\{\frac{-(w-1)}{2 \sigma^{2}\left(1-\rho^{2}\right)}\right\} I_{0}\left\{\frac{\rho(w-1)}{2 \sigma^{2}\left(1-\rho^{2}\right)}\right\} u(w-1) \tag{2.3.3}
\end{equation*}
$$

For $S=\sqrt{W}=\sqrt{1+X^{2}+Y^{2}}$, with $f_{S}(s)=2 s f_{W}\left(s^{2}\right)$, then

$$
\begin{equation*}
f_{S}(s)=\frac{2 s}{2 \sigma^{2} \sqrt{1-\rho^{2}}} \exp \left\{\frac{-\left(s^{2}-1\right)}{2 \sigma^{2}\left(1-\rho^{2}\right)}\right\} I_{0}\left\{\rho \frac{\left(s^{2}-1\right)}{2 \sigma^{2}\left(1-\rho^{2}\right)}\right\} u(s-1) \tag{2.3.4}
\end{equation*}
$$

For $V=\frac{1}{S}=\frac{1}{\sqrt{1+X^{2}+Y^{2}}}$ with $f_{V}(v)=\frac{1}{v^{2}} f_{S}\left(\frac{l}{v}\right)$, then

$$
\begin{align*}
f_{V}(v)=\frac{2}{2 \sigma^{2} \sqrt{1-\rho^{2}} v^{3}} \exp \left\{\frac{-\left(1-v^{2}\right)}{2 \sigma^{2}\left(1-\rho^{2}\right) v^{2}}\right\} I_{0}\left\{\frac{\left(1-v^{2}\right) \rho}{2 \sigma^{2}\left(1-\rho^{2}\right) v^{2}}\right\} \\
{[u(v)-u(v-1)] }
\end{align*}
$$

Equations (2.3.4) and (2.3.5) are the solutions needed to compare with the results of the Monte Carlo method in Chapter IV. They are also plotted for $\sigma=1$ and $\beta=0.4,0.9$ as Fig. 6 through Fig. 9 in Chapter IV for a comparison.

For the limiting case, when $\rho=1$, equations (2.3.4) and (2.3.5) yield

$$
\begin{equation*}
f_{S}(s)=\frac{s}{\sigma \sqrt{\pi\left(s^{2}-1\right)}} \quad \exp \left\{\frac{-\left(s^{2}-1\right)}{4 \sigma^{2}}\right\} u(s-1) \tag{2.3.6}
\end{equation*}
$$

$$
f_{V}(v)=\frac{1}{\sigma v^{2} \sqrt{\pi\left(1-v^{2}\right)}} \exp \left\{-\frac{\left(1-v^{2}\right)}{4 \sigma^{2} v^{2}}\right\}[u(v)-u(v-1)]
$$

When $\rho=0$, they yield

$$
\begin{align*}
& f_{S}(s)=\frac{s}{\sigma^{2}} \exp \left\{-\frac{\left(s^{2}-1\right)}{2 \sigma^{2}}\right\} u(s-1) \tag{2.3.8}\\
& f_{V}(v)=\frac{1}{\sigma^{2} v^{3}} \exp \left\{-\frac{\left(1-v^{2}\right)}{2 \sigma^{2} v^{2}}\right\}[u(v)-u(v-1)] \tag{2.3.9}
\end{align*}
$$

The graphs of equations (2.3.6) - (2.3.9) are shown in Fig. 1 and Fig. 2 for $\sigma=1$ case.

All the results of the above density functions are verified by integrating over the entire range of the variable and obtaining the number one.

The derivation of the density function of $\cos \theta_{1}$ is shown in Appendix A. With the methods used here and the method by Fourier transformation, all involve a difficult integration. It cannot end with a closed form or a well-known series expression. Therefore the Monte Carlo method is used in Chapter IV which gives an approximate result with certain fixed parameters.

Fig. 1. Density function of S with $\sigma^{-}=1$ by the analytical method $\left(S=\sqrt{\left.1+X^{2}+Y^{2}\right)}\right.$.

Fig. 2. Density function of V with $\sigma=1$ by the analytical method $\left(V=1 / \sqrt{1+X^{2}+Y^{2}}\right)$.

CHAPTER III

THE MONTE CARLO METHOD AND CURVE FITTING TECHNIQUE

3.1 Introduction

As previously indicated, analytical methods of obtaining probability densities for functions of random variables do not always yield closed form solutions. In this chapter, the Monte Carlo method is introduced. When it is combined with curve fitting techniques, an approximate closed form solution can be obtained.

The important job of the Monte Carlo method is to generate a set of random numbers with a certain distribution. How to generate random numbers of uniform distribution and how to change them to another distribution are discussed in section 3.2. This job will be done by the computer, IBM 360/50. With a limited sampled size and computer round-off errors, the accuracy of the Monte Carlo method has to be considered. It is discussed in section 3.3.

Finally, two curve fitting techniques which will be used to find the density function explicitly with the data from the Monte Carlo method are developed in section 3.4.

3.2 Generation of Random Numbers

The Monte Carlo method $10,12,15$ is a kind of simulation technique. The generation of random numbers plays an important role in this method. First, the way to generate random numbers
with uniform distribution is discussed. Then by a simple computation, they are changed to random numbers with a normal distribution. This set of numbers will be used to solve the problem of finding the probability density function of a function of the normal random variables.

There are several ways to generate random numbers with a uniform distribution. 6,12 Most of the available schemes use the multiplicative congruential method. This method is concerned with generating sequences of nonnegative integers by means of a congruence relation, then they are divided by their mode to get the numbers between 0 and 1 .

The congmence relation is

$$
\begin{equation*}
U_{n+1}=a U_{n}\left(\bmod p^{b}\right) \tag{3.2.1}
\end{equation*}
$$

where p denotes the number of numerals in the number system utilized by the computer and b denotes the number of digits in a word. a is a constant multiplier of the form a $=8 t \pm 3$ (t is a positive integer), and U_{0}, the starting value, is an odd integer to assure maximal periods for the sequences generated by this method.

The principal value of the uniform distribution for simulation techniques lies in its simplicity and in the fact that it can be used to simulate random variables from almost any kind of probability distribution. 12 Therefore when the random variable of uniform distribution has been generated, the random variable of the desired distribution is obtained by means of a simple computation.

In general, there are three ways to generate normal random numbers from the uniform ones. These are the central limit approach, the direct approach, and the fast procedure. ${ }^{12}$ The direct approach is discussed here due to its faster calculation and an exact result compared with the others.

Given two uniform random variables R_{1} and R_{2} that are independent and defined on the (0,1) interval, then

$$
\begin{align*}
& z_{1}=\left(-2 \log _{e} R_{1}\right)^{1 / 2} \cos 2 \pi R_{2} \tag{3.2.2}\\
& z_{2}=\left(-2 \log _{e} R_{1}\right)^{1 / 2} \sin 2 \pi R_{2} \tag{3.2.3}
\end{align*}
$$

are two independent normal variables.
It is also very easy to change Z_{1} and Z_{2} into a pair of correlated normal variables with mean vector $\vec{\mu}$ and covariance $\operatorname{matrix} \vec{V}$. There exists a unique lower triangular matrix C such that

$$
\overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{C}} \overrightarrow{\mathrm{Z}}
$$

where Z is a standard uncorrelated vector of random variables as generated by equation (3.2.2) and (3.2.3). X is the desired correlated normal vector, and $\vec{V}=\vec{C} \cdot \vec{C} T$. (T means transpose.)

When two random normal variables X_{1} and X_{2} are given, their means, variance and correlation coefficient are then defined as $\mathrm{E}_{\mathrm{X}_{1}}\left(\mathrm{x}_{1}\right)=\mu_{1}, \mathrm{E}_{\mathrm{X}_{2}}\left(\mathrm{x}_{2}\right)=\mu_{2}, \operatorname{Var}_{\mathrm{X}_{1}}\left(\mathrm{x}_{1}\right)=\sigma_{1}^{2}, \operatorname{Cor}_{\mathrm{X}_{1} \mathrm{X}_{2}}\left(\mathrm{x}_{1} \mathrm{X}_{2}\right)$ $=P \sigma_{1} \sigma_{2}$.

Consequently,

$$
\begin{align*}
& \overrightarrow{\mathrm{v}}=\left[\begin{array}{ll}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2^{2}}
\end{array}\right] \\
& \overrightarrow{\mathrm{C}}=\left[\begin{array}{lr}
\sigma_{1} & 0 \\
\rho \sigma_{2} & \sigma_{2} \sqrt{1-\rho^{2}}
\end{array}\right] \tag{3.2.4}
\end{align*}
$$

By equation (3.2.4), then

$$
\overrightarrow{\mathrm{x}}=\left[\begin{array}{l}
x_{1} \tag{3.2.5}\\
\mathrm{x}_{2}
\end{array}\right]=\overrightarrow{\mathrm{c}}\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]+\vec{\mu}=\left[\begin{array}{ll}
\sigma_{1} z_{1} & \\
\sigma_{2}\left(\rho z_{1}+\sqrt{1-\rho^{2}}\right. & \left.z_{2}\right)
\end{array}\right]+\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]
$$

Equation (3.2.5) is the equation to find two correlated normal random variables. The test of the accuracy of these random variables will be discussed in the next section.

3.3 The Accuracy of the Monte Carlo Method

The accuracy of the Monte Carlo method mainly depends on the sample size of the generating numbers and the validity of randomness. By the law of large numbers, ${ }^{13}$ it is shown that

$$
\begin{align*}
& P\left\{\left|\bar{x}_{j}-p_{j}\right|<\epsilon\right\} \geqslant l-\frac{p_{j} q_{j}}{n \epsilon^{2}} \\
& \bar{x}_{j}=\frac{\bar{x}_{j 1}+\bar{x}_{j 2}+\ldots+\bar{x}_{j n}}{n} \tag{3.3.1}
\end{align*}
$$

where \mathcal{E} is any infinitesimal positive number,

$$
p_{j} \text { is the actual probability of occurrence in the } j^{\text {th }}
$$ interval,

and

$$
\begin{aligned}
& q_{j}=l-p_{j} . \\
& n \text { is the sample size, and }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{x}_{\mathrm{ji}}= & 1 \text { when the event occurs in the } j^{\text {th }} \text { interval, } \\
& \text { otherwise } \\
\mathrm{x}_{\mathrm{ji}}= & 0 .
\end{aligned}
$$

If the k is the total number of occurrences out of n trials in that interval, then $X_{j}=k / n$. The value is obtained by the Monte Carlo method. Thus as $n \longrightarrow \infty$, equation (3.3.1) yields

$$
\begin{equation*}
P\left\{\left|\bar{x}_{j}-p_{j}\right| \leqslant \epsilon\right\} \rightarrow 1 \tag{3.3.2}
\end{equation*}
$$

The above equation illustrates the probability of the difference between the value by the Monte Carlo method and the actual value which is less than a small quantity. As n approaches infinity, this probability becomes one. This means the difference is less than a small quantity ϵ when n is sufficiently large. No matter how small the ϵ is, the equation (3.3.2) holds. The larger n the smaller \in can be expected.

However, it is impossible to increase the sample size n to infinity. A compromise is made considering the economic consideration of computer running time, the size of memory of computer and how much accuracy is needed.

Next question is the validity of randomness. The statistical properties of random numbers generated by the methods outlined in the previous section should coincide with the statistical properties of numbers generated by an idealized chance device that selects numbers from a certain interval independently where each number has a certain probability. Clearly the random numbers produced by computer programs are not random in this
sense, since they are completely determined by the starting data and have limited precision. But so long as the generated random numbers can pass the set of statistical tests implied by the aforementioned idealized chance device, these numbers can be treated as truly random. There are several tests used to test the validity of randomness. ${ }^{3,5,12}$ Here only chi-square test for the goodness of fit is discussed.

With the assumption that in each of n independent trials precisely one of r events, $A_{1}, A_{2}, . . ., A_{r}$ must happen, $\mathrm{v}_{1}, \mathrm{v}_{2}, . . ., \mathrm{v}_{\mathrm{n}}$ are the numbers of successes out of n in each event by the Monte Carlo method. With the actual probabilities p_{10}, p_{20}, . . ., $p_{\text {ro }}$ are numbers with $\sum_{j=1}^{r} p_{j o}=1$. In order to test the hypothesis $p_{1}=p_{10}, p_{2}=p_{20}$, . ., $p_{r}=p_{r o}$, the following statistic is considered:

$$
D^{2}=\sum_{j=1}^{r} \frac{\left(v_{j}-n p_{j o}\right)^{2}}{n p_{j o}}=\sum_{j=1}^{r} \frac{n\left(p_{j}-p_{j o}\right)^{2}}{p_{j o}}
$$

It can be shown that D^{2} has asymptotically a chi-square distribution with $r=1$ degree of freedom.

The test of the hypothesis at the $100 \propto$ per cent significance level is obtained by choosing a number b such that $P\left\{X^{2}>b\right\}=\alpha$. Where χ^{2} has chi-square distribution with $r-1$ degrees of freedom and rejecting the hypothesis if a value of D^{2} greater than b is actually observed. The chi-square value for a different degree of freedom can be found in a good mathematical table. ${ }^{1}$

3.4 Curve Fitting Technique

Two kinds of fitting curves are used in this paper. The first kind corresponds to a polynomial multiplied by an exponential term. This curve can fit smooth data with a few terms and match its peak value by the exponential term very easily. The second kind is a finite Fourier series of sine terms only. It can fit rough data faster than the first kind. The fitting technique is based on minimizing the least square error between the assumed curve and fitting data. The iterative method is used to find the coefficients of the fitting curve, with the assumption that the first kind of fitting curve is

$$
\begin{equation*}
f(x)=\sum_{r=0}^{n} a_{r} x^{r} e^{-p x^{2}} \tag{3.4.1}
\end{equation*}
$$

Since the integration of the density function over its entire range of the variable is unity, the above equation is modified in order to satisfy this constraint. Introducing a Lagrangian multiplier λ, the modified equation is

$$
\begin{equation*}
\bar{f}(x)=f(x)+\lambda\left(\int_{-\infty}^{\infty} \bar{f}(x) d x-1\right) \tag{3.4.2}
\end{equation*}
$$

with the assumption that $g\left(x_{i}\right)$ is the $i^{\text {th }}$ given datum of the fitting set, and $f\left(x_{i}\right)$ is the $i^{\text {th }}$ datum of the fitted set. Then the error vector is $E=\left\{e_{i}\right\}=\left\{g\left(x_{i}\right)-f\left(x_{i}\right)\right\}$.

The squared error is

$$
\begin{equation*}
\|E\|^{2}=\left\{e_{i}\right\}^{T}\left\{e_{i}\right\} \tag{3.4.3}
\end{equation*}
$$

where $i=1,2$, . . n.

To minimize the squared error, a set of equations are obtained by setting $\frac{\partial\|E\|^{2}}{\partial a_{r_{0}}}=0$ for a particular $a_{r_{0}}$ and $\frac{\partial\|E\|^{2}}{\partial \lambda}=0$. Based on these two derivatives, a matrix equation is written as

$$
\begin{equation*}
[A]^{*}\left\{\frac{\left\{\mathrm{a}_{\mathrm{i}}\right\}}{\lambda}\right\}=\{c\}+\lambda\left\{\mathrm{Y}\left(\mathrm{a}_{\mathrm{i}}\right)\right\} \tag{3.4.4}
\end{equation*}
$$

where the notation [] denotes a square or rectangular matrix and $\}$ denotes a column vector. The details of the above equation are presented in Appendix B.

For a given p and setting $\lambda=0$, the coefficient vector $\left\{a_{i}\right\}$ is obtained with a value $[A]^{-1}\{C\}$. Then by assuming a $\lambda \neq \circ$, and the previous coefficient vector $\left\{\mathrm{a}_{\mathrm{j}}\right\}$ substituted into $\left\{\mathrm{Y}\left(\mathrm{a}_{\mathrm{i}}\right)\right\}$, a new coefficient and vector can be obtained.

$$
\left\{\frac{\left\{\mathrm{a}_{\mathrm{i}}\right\}}{\lambda}\right\}=[\mathrm{A}]^{-1}\left\{\{\mathrm{C}\}+\lambda\left\{\mathrm{Y}\left(\mathrm{a}_{\mathrm{i}}\right)\right\}\right\}
$$

Every time a new coefficient and λ vector is obtained by putting the old one of a step before into equation (3.4.5). After several steps it is expected $\left\{a_{i}\right\}$ and λ will converge to some value. That is a vector satisfying the least square error fitting requirement under a preassigned p. The error $\|E\|^{2}$ can be computed by (3.4.3) immediately. The variation of this error

[^0]function by changing p can be used as a criterion finding optimum p; i.e., when $\left\|E_{i}\right\|^{2}-\left\|E_{i-1}\right\|^{2}<0$ and $\left\|E_{i+1}\right\|^{2}-\left\|E_{i}\right\|^{2}>0$, there is a local optimum Po such that $P i<P o<P i+l,\|E\|=f(p)$ in the small neighborhood about Po can be found by the technique mentioned above. The optimum Po is achieved by minimizing $f(p)$.

A Lagrangian multiplier λ is used to adjust the integrating area of the density function to one. It can be assumed as a small value less than 0.5 , because the result of the density functions by the Monte Carlo method does not cause a large error.

Figure 3 is the flow chart of the algorithm used in the first kind of curve fitting. Appendix B has a detail deviation of the first kind curve fitting algorithm.

The second kind of the curve fitting is of the form

$$
\begin{equation*}
f(x)=\sum_{k=0}^{n} a_{k} \sin k x \tag{3.4.6}
\end{equation*}
$$

Given $f(j \Delta x)$ is the $j^{\text {th }}$ fitting data, the x is the increment of the fitting interval. The equation (3.4.6) is written as a matrix form

$$
\begin{equation*}
\{f(j \Delta x)\}=[\sin (j k \Delta x)]\left\{a_{k}\right\} \tag{3.4.7}
\end{equation*}
$$

with
therefore

$$
[\sin (j k \Delta x)]^{-1}=\left(\frac{2}{n+1}\right)[\sin (j k \Delta x)]
$$

$$
\begin{equation*}
\left\{a_{k}\right\}=\left(\frac{2}{n+1}\right)[\sin (j k \Delta x)]\{f(j \Delta x)\} \tag{3.4.8}
\end{equation*}
$$

Fig. 3. Flow chart of the first kind curve fitting

$$
f(x)=\sum_{r=0}^{n} a_{r} x^{r} e^{-p x^{2}}
$$

Fig. 4. Flow chart of the second kind of fitting curve

$$
f(x)=\sum_{k=1}^{n} a_{k} \sin k x .
$$

By considering the above equation, the inner products of the columns of the sine matrix with respect to the data vector $f(j \Delta x)$ denote how much is the contribution of the corresponding column to the fitting. A simple algorithm called the constrained least mean square solution is therefore suggested. It is a method to arrange the columns of the sine matrix according to their inner products. Then, with a given error bound, it can also adjust the mean squared error of the fitting to within this bound. Since this method is designed to fit the data occupied between the interval 0 to π and all harmonic terms of sine function at 0 and π are zero, therefore if both or either terminals of the fitting data are nonzero, it is necessary to set them to zero by adjusting the length of the interval due to the convergent consideration. Also for any given interval T, the scale factor T / π is used to normalize this interval to the designed one. Equation (3.4.8) is thus rewritten as

$$
\begin{equation*}
f(t)=\sum_{k=1}^{n} a_{k} \sin \frac{k \pi}{T} t \tag{3.4.9}
\end{equation*}
$$

Figure 4 is the flow chart of the algorithm used in the second kind of curve fitting.

The methods discussed in this chapter will be used to find density function of $\cos \theta_{1}$ in the next chapter.

CHAPTER IV

THE RESULTS OF DENSITY FUNCTIONS BY THE MONTE CARLO METHOD
4.1 Introduction

This chapter is going to use the methods of Chapter III to find the desired probability function.

The subroutine RANDU of IBM 360 is used to generate two sets of independent uniform random variables. These uniform random variables are changed to dependent normal pairs. Based on these pairs, a new random variable, that is, a function of normal random pairs, is obtained. The chi-square test is used to check the randomness of uniform and normal random variables. A simple sorting program is run on these random numbers to find the frequency ratios of the distribution. After having the frequency ratio, the curve fitting technique is used to find an explicit expression for the desired density function. In order to decrease the round-off errors due to the computation, all of the computer programs of this chapter use the double precision. In section 4.3 , a comparison is made to the densities of S and V by using the Monte Carlo method and the analytical method for the $\sigma=1$ and $\rho=0.4,0.9$ cases. The densities of $\cos \theta_{1}$ are obtained with explicit expressions for certain parameters in the last section.
4.2 The Result of the Generated Random Numbers

First of all, the IBM scientific subroutine RANDU is used here to generate a pair of uniform random variables. By equations (3.2.2), (3.2.3), and (3.2.5), a transformation is made on them to pairs of dependent variables.

This subroutine RANDU is specific to the system 360 and will produce 2^{29} uniform random numbers before repeating. The seed a in equation (3.2.1) is suggested to be 65,539. 214,358,881 and $776,179,721$ are the two odd numbers used to generate a pair of uniform random variables. The sample size is chosen to be 104 throughout this paper.

After the uniform random variables are obtained, they are sorted according to the magnitude of their values and put into fifty equal distance cells from zero to one. Then the frequency ratio of each cell is the number of random numbers on that cell over the length of cell multiplied by the total sample size. Since the actual frequency ratio is unity everywhere for a uniform distribution, chi-square values of these pairs of uniform random numbers are calculated by the definition of section 3.3. They are 65.49 and 43.46 respectively. For the case of 49 degrees of freedom, $P\left\{X^{2}>77.7334\right\}=0.005$ is the value. Because the above two values are less than 77.7334, these two sets of uniform random numbers are not rejected for 0.5 per cent significance level.

By equations (3.22) and (3.23) two independent normal variables with zero means and standard deviations of one are obtained. Although the range of the se random numbers is between
positive and negative infinities, it is cut down to a value from +3.5 to -3.5 (i.e., $=3.5 \sigma$). That is reasonable since the probability that the normal random numbers are outside the aforementioned range is less than 0.047 . For finding the chi-square of the generated normal random variables, the same procedure is done as uniform random variable case. The only difference is its range of the variable. In this case, the chi-square values are 76.20 and 64.20 , respectively. They are also not rejected for the 0.5 per cent significance level. Figure 5 shows a histogram of one of the generated normal density function. The dot points express the value in the exact normal density function. By using a curve fitting method to fit the histogram, those irregular deviations caused by errors are smoothed out.
4.3 Comparisons of the Results by the Monte Carlo Method and the Analytical Method

The density functions of S and V are obtained in this section by the Monte Carlo method. They are compared with the results obtained by analytical methods in section 2.3.

The two sets of independent normal variables which are found in the last section are changed to dependent ones with a given standard deviation vector and correlation coefficient. The mean vector is assumed to be zero and the two random variables X and Y have the same standard deviation throughout this paper. The random variables, S and V, are calculated by their functional relationship with the generated random variables. The range of V is from zero to one and S is cut down from one

Fig. 5. Histogram of the generated normal distribution of zero mean and standard deviation one by the Monte Carlo method.
to 5.0. By the same method as used in the last section, they are sorted according to the magnitude of their values into fifty equal distance cells in the range of the variable. The frequency ratios of each cell is calculated thereafter. In other words, the histograms of S and V are found. The first kind of fitting curve is then used to fit these histograms. The coefficients of the fitted equations S and V for $\sigma=1$ and $P=0.4,0.9$ are listed in Table l. Actually, the fitted equations express the density functions of V and S with the given parameters. Their curves are plotted in Fig. 6 to Fig. 9. They are compared with the corresponding curves obtained by the Monte Carlo method. These comparisons show that fairly close results are obtained by both methods. Because the inverse quantity might cause larger round-off error, the densities of V produce more error than the densities of S by the Monte Carlo method. However, the errors are not over ± 3 per cent. These results verify that the Monte Carlo method is a good valid approximation. By using the Monte Carlo method the probability density of $\cos \theta_{l}$ will be obtained in the next section.
4.4 The Density Function of $\operatorname{Cos} \theta_{1}$ by the Monte Carlo Method

Although by using analytical methods to find an algebraic solution of the density of the random variable $\cos \theta_{1}$ is very hard, the Monte Carlo method can do this job numerically without too many difficulties.

Table l. Coefficients of fitting curves of S and V with $\sigma=1$

$$
f(x)=\sum_{r=0}^{4} a_{r} x^{r} e^{-p\left(x-p_{1}\right)^{2}}
$$

Fig. 7. Density functions of s with $\sigma=1.0$,

$$
\rho=0.9
$$

By the same method as section 4.2, the new random variable $\cos \theta_{1}$ is obtained by its functional relationship to X and Y in the cases $\sigma=0.1,3,100, P=0.4,0.9$, and $\theta=30^{\circ}, 45^{\circ}, 60^{\circ}$. Frequency ratios of each $\cos \theta_{1}$ with different parameters are calculated. The first kind of curve fitting technique is then used for $\sigma=0.1$ case. However, for $\sigma>1$, the second kind of curve fitting is used due to the histograms changing so rapidly. In Table 2 to Table 7 are listed all the coefficients of the fitted curves. Pairs of density curves of $\cos \theta_{l}$ with equal σ and θ but different P are plotted from Fig. 10 to Fig. 18. Since the total areas under the densities are unity, the areas in Fig. 15 are calculated by the trapezoidal method as a valid check. They are 0.951 for $P=0.9$, and 1.0098 for $P=0.4$, respectively.

From these curves and tables, observations can be made with respect to changing of parameters σ, ρ, and θ. The range of the random variable $\cos \theta_{1}$ is between +1 and -1 . For $\sigma=0.1$ and the different ρ cases, the curve occupies only the positive axis with one peak value (Figs. 10-12). When σ increases, it extends to the negative axis with two major peak values in the positive and negative sides respectively (Figs. 13-18). The amplitudes of these densities are also affected by σ. If the standard deviation is smaller, then the amplitude of the peak is larger.

The correlation coefficient does not cause a significant difference of the densities for the $\sigma=0.1$ case (Figs. 10-12). It does not affect the density greatly when σ increases. The

Fig. 10. Density functions of $\cos \theta_{1}$ with $\sigma=0.1, \theta=30^{\circ}$.

42
$f\left(\cos \theta_{1}\right)$

larger ρ produces a higher peak. The range of $\cos \theta_{l}$ also increases when ρ decreases (Figs. 13-18).

When σ is equal to 0.1 , the angle θ exactly locates the point where the peak value of the densities occurs. That is the value of $\cos \theta$ (Figs. 10-12). However, when σ is equal to 3 and 100 , it is hard to see where the peak value does occur. A conservative estimate is around the value of $\cos \theta$ for the major peak of the positive axis. The major peak of the negative axis is closer to the origin than the peak of the positive axis. This estimate is better for the $\sigma=3$ case than the $\sigma=100$ case (Figs. 13-18).

As a physical interpretation, when σ is large sharp slopes in the reflecting body are expected. As example $\sigma=100$, over 90 per cent of the surface slopes are between 45° and 87°. Especially when θ is very large, the most values of $\cos \theta_{l}$ are either in the same direction as \vec{a}_{R} or in the opposite direction (i.e., $\cos \theta \longrightarrow \pm 1$). When θ decreases, a considerable number of $\cos \theta_{1}$ values approach $\theta_{1}=90^{\circ}$ (i.e., $\cos \theta_{1}=0$). These phenomena are clearly shown in Fig. 19. They are actually observed in Figs. 13 to 18.

From the tables, when $\sigma=0.1$, the densities of $\cos \theta_{1}$ are approximately normal distributions with mean 0.5 for $\theta=60^{\circ}$ as shown (Table 3). The densities are centered at 0.707 and 0.866 for $\theta=45^{\circ}$ and $\theta=60^{\circ}$, respectively, with the same standard deviation 0.1 (Table 2, Table 4). They are somewhat like Rice distribution for the latter two cases. The existence of higher order harmonic terms in the fitting curve of $\cos \theta_{1}$

for the cases $\sigma=3$ and $\sigma=100$ means more roughness in the data as given by the Monte Carlo method. Theoretically, such roughness cannot occur. This is an accumulated error due to the curve fitting and the computer simulation. The error of curve fitting is not so great because it uses the minimum least square sense. The computer simulation error is actually the origin of the error. By increasing the sample size, a better result is expected. However, the computer program used in this paper has to use a double precision and pairs of generated random numbers have to be stored. Therefore by using IBM $360 / 50$ with the double precision and the sample size 10,000 (for pairs, i.e., 20,000), the size cannot be increased significantly. But to avoid the problem of the limited memory of the computer, one way is to store the generated random numbers on tapes. This is a recommended suggestion for the future research.

Table 2. Coefficients of fitting curves of $\cos \theta_{1}$, with $\sigma^{\sigma}=0.1, \theta=30^{\circ}$,

$$
f(x)=\sum_{r=0}^{3} a_{r} x^{r} e^{-p\left(x-p_{1}\right)^{2}}
$$

$$
\sigma=0.1, \theta=30^{\circ}
$$

$$
P=0.4 \quad P=0.9
$$

p_{1}
0.866
0.866
p
192.247
204.370
${ }^{a} 0$
3363.18032
-i1844.72088
-27538.79014
a_{2}
13917.84435
32136.8961
a_{3}
-5443.13619
-12477.08512

Table 3. Coefficients of fitting curves of $\cos \theta_{l}$
with $\sigma=0.1, \theta=60, f(x)=A e^{-p\left(x-p_{1}\right)^{2}}$

$$
\sigma=0.1, \theta=60
$$

$P=0.4$

$$
\rho=0.9
$$

p_{1}
0.5
0.5
p
69.928
67.889

A
4.72168
4.65298

Table 4. Coefficients of fitting curves of $\cos \theta_{1}$ with $\sigma=0.1, \theta=45^{\circ}$,

$$
f(x)=\sum_{r=0}^{3} a_{r} x^{r} e^{-p\left(x-p_{1}\right)^{2}}
$$

$$
\sigma=0.1, \theta=45^{\circ}
$$

$$
P=0.4 \quad P=0.9
$$

p_{1}	0.707	0.707
p	101.859	120.00
a_{0}	265.329	692.26728
a_{1}	-1130.96678	-2877.58864
a_{2}	1635.07361	3998.56342
a_{3}	-784.38536	-1841.23884

Table 5. Coefficients of fitting curves of $\cos \theta_{1}$ with $\sigma=3, \theta=30^{\circ}$.

	$P=0.4$:	$\rho=0.9$		
Order No.	:	Coefficient	:	Order No.	:	Coefficient
1		0.99702		1		0.98888
3		0.29310		3		0.41367
4		0.10095		4		- 0.36384
6		0.07049		7		0.22471
2		-0.06940		2		-0.15871
10		-0.06015		,		
12		-0.03525				
18		-0.03384				
27		0.03349				
5		-0.03190		,		
13		-0.02420				
Range	:	$-0.4 \sim 1.0$:	Range	\vdots \vdots	$-0.4 \sim 1.0$
```Terms of fitting```		11		Terms of fitting		5

Table 6. Coefficients of fitting curves of $\cos \theta_{1}$ with $\sigma=3, \theta=45^{\circ}$.

	$P=0.4$		:			0.9
Order No.	:	Coefficient	:	Order No.	:	Coefficient
1		0.77254		1		0.76162
3		0.39098		3		0.60205
5		0.18252		6		0.14228
7		0.08083		2		-0.13047
4		-0.079098		9		0.10959
2		-0.07457		10		-0.10710
6		-0.04739		4		0.05369
21		0.02976		5		0.08159
15		-0.03256		8		-0.05959
11		-0.03114		12		-0.04141
20		0.03166		20		0.03795
38		0.08162				
33		-0.02759				
28		-0.02775				
Range		$-0.6 \sim 1.0$	!	Range	:	-0.5~ 1.0
```Terms of fitting```		14		Terms of fitting		11

Table 7. Coefficient of fitting curve of $\cos \theta_{1}$ with $\sigma=3, \theta=600$.

$\rho=0.4$!	$P=0.9$		
Order No.	:	Coefficient	:	Order No.		Coefficient
1		0.61517		1		0.62455
3		0.34107		3		0.60531
5		0.20143		5	,	0.26235
7		0.16137		14		-0.05642
9		0.11458		12		-0.04905
16		-0.08781		22		-0.04840
12		-0.08355		2		-0.03867
11		0.07622		16		-0.03540
10		0.07668				
13		0.07392				
8		-0.07460				
18		-0.07502				
6		-0.06877				
14		-0.06860				
15		0.06057				
17	-	0.04955				
22		-0.05024				
Range	:	- $-0.8 \sim 1.0$:	Range	:	$-0.7 \sim 1.0$
```Terms of fitting```		17		Terms of fitting		8

Table 8. Coefficients of fitting curves of $\cos \theta_{1}$ with $\sigma=100, \theta=30^{\circ}$.

|  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Table 9. Coefficients of fitting curves of $\cos \theta_{l}$ with $\sigma=100, \theta=45^{\circ}$.

$P=0.4$				:	$P=0.9$				
Order:   No. :	Coefficient	$\begin{aligned} & : \text { Order: } \\ & : \text { No. : } \end{aligned}$	Coef-   ficient	:	Order:   No. :	Coef-   ficient		Order:   No. :	Coef-   ficient
1	0.73180	44	-0.13236		3	0.80616		27	-0.06488
3	0.49717	16	0.13527		1	0.71468		42	-0.05182
5	0.37588	42	-0.11895		5	0.32176		40	-0.05171
7	0.29024	24	0.12506		6	0.09813		16	0.04123
9	0.23121	36	-0.12445		13	0.07023		25	-0.05101
11	0.16809	14	0.12319		44	-0.07021		24	0.03620
22	0.15313	27	-0.09990		4	0.06139			
18	0.15035	15	0.05217		11	0.05147			
38	-0.14206	29	-0.09413		21	-0.06185			
13	0.09973	26	0.11080		29	-0.05998			
20	0.14376				23	-0.05352			
40	-0.12922				46	-0.05910			
Range	e :	-0.68~	0.78	:	Rang	-	-0	0.68 ~	0.78
$\begin{aligned} & \text { Terms } \\ & \text { of } \\ & \text { fittin } \end{aligned}$		22			$\begin{gathered} \text { Term } \\ \text { of } \\ \text { fitti } \end{gathered}$	$\begin{aligned} & \text { ting } \\ & \text { tins } \end{aligned}$		i8	

Table 10. Coefficients of fitting curves of $\cos \theta_{1}$ with $\sigma=100, \theta=60^{\circ}$.

$\rho=0.4$					,	$\rho=0.9$				
$\begin{aligned} & \text { Order: } \\ & \text { No. : } \end{aligned}$	Coef-   ficient	:	Order: No.	Coef-   ficient	:	Order: No.	Coef-   ficient	:	Order: No.	Coefficient
1	0.57913		27	-0.07782		3	0.61967		36	-0.03946
3	0.38075		38	-0.07357		1	0.56811		40	-0.04306
5	0.29065		26	0.07253		5	0.24517			
7	0.22918		16	0.06938		6	0.09974			
9	0.16796		46	-0.06857		13	0.02534			
11	0.12681		29	-0.06596		25	-0.06943			
22	0.10099		36	-0.05705		23	-0.07201			
24	0.09534		43	0.05604		4	0.05738			
20	0.09171		48	-0.05523		21	-0.07097			
13	0.09045		41	0.05337		44	-0.04892			
44	-0.08523		14	0.05113		11	0.01302			
18	0.08226		28	0.04784		38	-0.04401			
40	-0.08090		15	0.04715		24	0.05995			
25	-0.08044		21	-0.04657		18	0.06820			
23	-0.07956		31	-0.04382		42	-0.04563			
42	-0.07765		47	0.04348		10	-0.01168			
Rang	e :	-0	. $86 \sim$	0.98	:	Ran	nge :	-0	. $86 \sim$	0.98
			32				ms ing		18	

## CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

### 5.1 Conclusions

The goal of finding the probability density of $\cos \theta_{1}$ which is a function of two correlated random variables X and Y does not succeed by using the analytical methods. Therefore the Monte Carlo method is used. When this method is combined with the curve fitting techniques, approximate solutions are obtained in a closed form for different parameters $\sigma, \rho, \theta$. Three conclusions are made to these results.

1. When the standard deviations of the two random variables $X$ and $Y$ are less than unity, the densities of $\cos \theta_{1}$ are slightly affected by the changing of the correlation coefficient. They are approximately Rice distributions centered at the value $\cos \theta$.
2. When the standard deviations of $X$ and $Y$ are larger than unity, the effect on the densities due to increasing the correlation coefficient is significant. Two major peak values of the densities occur in positive and negative sides, respectively.
3. The larger the standard deviation of X and Y , the larger the occupied range of the density of $\cos \theta_{1}$ is. However, the range is limited between -l to 1.

### 5.2 Recommendations

1. One way to find the density of $\cos \theta_{1}$ by analytical method might be very interesting. Because the density of $\cos \theta_{1}$ can be obtained by the densities of $Y / \sqrt{1+X^{2}+Y^{2}}$ which is the derivative of $\sqrt{1+X^{2}+Y^{2}}$ with respect to $Y$. In other words, with given probability densities of $f(X, Y)$, the study of finding the densities of $\frac{\partial}{\partial X} f(X, Y)$ or $\frac{\partial}{\partial Y} f(X, Y)$ is suggested. Hopefully, this approach will not be tied up by hard integrations.
2. In order to solve the problem of the limited memory of the computer, storing the generated random numbers on tapes is suggested. Thus the sample size of the Monte Carlo method can be increased greatly. A better accuracy is then expected by this method in finding the densities of $\cos \theta_{1}$.
3. With a larger sample size, the use of the Monte Carlo method to find the probability density functions of the reflection coefficients $V_{p p}\left(\theta_{1}\right)$ and $V_{n n}\left(\theta_{1}\right)$ is recommended, where

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{pp}}\left(\theta_{1}\right)=\frac{\mathrm{n}_{1}^{2} \cos \theta_{1}-\sqrt{n_{2}^{2}+\cos ^{2} \theta_{1}}}{n_{1}^{2} \cos \theta_{1}+\sqrt{n_{2}^{2}+\cos ^{2} \theta_{1}}} \\
& \mathrm{~V}_{\mathrm{nn}}\left(\theta_{1}\right)=\frac{n_{3} \cos \theta_{1}-\sqrt{n_{2}^{2}+\cos ^{2} \theta_{1}}}{n_{3} \cos \theta_{1}+\sqrt{n_{2}^{2}+\cos ^{2} \theta_{1}}}
\end{aligned}
$$

$n_{1}, n_{2}, n_{3}$ are deterministic constants.
4. The densities of $\cos \theta_{1}$ change from Rice distribution to two-peak distributions when $\sigma$ are altered from 0.1 to 3. An interesting problem is to find the value of $\sigma$ when this changing exactly occurs.

## REFERENCES

1. Abramowitz, M. and I. Stegun (1965), Handbook of Mathematical Functions (Dover Publications, Inc., New York, New York).
2. Beckmann, P. and A. Spizzichino (1963), The Scattering of Electromagnetic Waves from Rough Surfaces (Pergamon Press, New York, New York).
3. Brunk, H. D. (1960), An Introduction to Mathematical Statistics (Ginn and Company, New York, New York).
4. Churchill, R. V. (1958), Operational Mathematics (McGrawHill Book Co., New York, New York).
5. Hogg, R. V. and A. T. Craig (1965), Introduction to Mathematical Statistics (The Macmillan Company, New York, New York).
6. IBM Manual C20-8011, Random Number Generation and Testing.
7. Kirmser, P. G., A Constrained Least-Mean-Square Solution (Unpublished papers).
8. Lee, Y. W. (1960), Statistical Theory of Communication (John Wiley and Sons, Inc., New York, New York).
9. Lenhert, D. H. (1965), Effects of Surface Randomness of Radar Backscatter from a Spherical Surface (Technical Report EE 132, Bureau of Engineering Research, University of New Mexico, Albuquerque, New Mexico).
10. Maclaren, M. D. and G. Marsaglia (1965), Uniform Random Number Generators (Journal of the Association for Computing Machinery, Vol. 12, No. 1, January, pp. 83-89).
11. Middleton, D. (1960), An Introduction to Statistical Communication Theory (McGraw-Hill Book Co., New York, New York).
12. Naylor, Balintfy, Burdick, and Chu (1966), Computer Simulation Techniques (John Wiley and Sons, Inc., New York, New York).
13. Papoulis, A. (1965), Probability, Random Variables and Stochastic Processes (McGraw-Hill Book Co., New York, New York).
14. Rudin, W. (1964), Principles of Mathematical Analysis (McGraw-Hill Book Co., New York, New York).
15. Shrieder, Yu A. (1966), The Monte Carlo Method (Pergamon Press, Oxford).
16. Taussky, 0. and J. Todd (1956), Generation and Testing of Pseudo-Random Numbers (Symposium on Monte Carlo Methods, John Wiley and Sons, Inc., pp. 15-27).
17. Wine, R. Lowell (1964), Statistics for Scientists and Engineers (Prentice-Hall Company, Englewood Cliffs, N.J.).

ACKNOWLEDGMENTS

The author wishes to express sincere appreciation to his adviser, Dr. D. H. Lenhert, for his advice, understanding, encouragement, and patience during the course of this research. Appreciation is expressed also to Drs. N. Ahmed, D. E. Kaufman, and L. E. Grosh who served as his committee members. Their suggestions and comments were invaluable toward the completion of the thesis. Especially for the great help of Dr. Grosh the author is certainly indebted.

The financial assistance provided by the Department of Electrical Engineering is gratefully acknowledged.

APPENDICES

## APPENDIX A

A. 1 The Derivation of the Probability Density of $\cos \theta_{1}$

$$
\begin{equation*}
\langle\mathrm{a}+\mathrm{by}\rangle=\mathrm{a}+\mathrm{b}\langle\mathrm{y}\rangle=\mathrm{a} \tag{A.1.I}
\end{equation*}
$$

$\left\langle\frac{a+b y}{\sqrt{1+x^{2}+y^{2}}}\right\rangle=a\left\langle\frac{1}{\sqrt{1+x^{2}+y^{2}}}\right\rangle+b\left\langle\frac{y}{\sqrt{1+x^{2}+y^{2}}}\right\rangle$
By using polar coordinates, with $c=2 \sigma^{2}\left(1-\rho^{2}\right)$, then
$\left\langle\frac{y}{\sqrt{1+x^{2}+y^{2}}}\right\rangle=\int_{0}^{\infty} \int_{0}^{2 \pi} \frac{\sqrt{1-\rho^{2}} r^{2} \sin \theta}{\pi c \sqrt{1+r^{2}}} \exp \left\{-\frac{r^{2}}{c}(1-\rho \sin 2 \theta)\right\} d \theta d r$

$$
=\int_{0}^{\infty} \frac{\sqrt{1-\rho^{2}} r^{2}}{\pi c \sqrt{1+r^{2}}} \exp \left(-\frac{r^{2}}{c}\right) \int_{0}^{2 \pi} \sin \theta \exp \left\{\frac{r^{2} \rho}{c} \sin 2 \theta\right\} d \theta d r
$$

where the second integration of the above equation is

$$
\begin{align*}
= & \int_{0}^{2 \pi} \sin \theta\left\{I_{0}\left(\frac{\rho_{r^{2}}}{c}\right)+2\left(\sum_{k=0}^{\infty}(-1)^{k} I_{2 k+1}\left(\frac{\rho_{r^{2}}}{c}\right) \sin (2(2 k+1) \theta)\right.\right. \\
& \left.\left.+\sum_{k=1}^{\infty}(-1)^{k} I_{2 k}\left(\frac{\rho r^{2}}{c}\right) \cos 4 k \theta\right)\right\} d \theta=0 \tag{A.1.3}
\end{align*}
$$

The mean value of $\cos \theta_{1}$ is

$$
\begin{align*}
& \left\langle\frac{a+b y}{\sqrt{1+x^{2}+y^{2}}}\right\rangle=a\left\langle\frac{1}{\sqrt{1+x^{2}+y^{2}}}\right\rangle \\
& =2 a \int_{0}^{\infty} \frac{r \sqrt{1-\rho^{2}}}{c \sqrt{1+r^{2}}} \exp \left(-\frac{r^{2}}{c}\right) I_{o}\left(\frac{r^{2} \rho}{c}\right) d r \tag{A.1.4}
\end{align*}
$$

Assume $\quad z=\frac{y}{\sqrt{1+x^{2}+y^{2}}}$
$F_{Z}(z)=\int_{-\infty}^{\infty} \int_{-\infty}^{z \sqrt{1+x^{2}} \sqrt{1-z^{2}}} \frac{1}{2 \sigma^{2} \sqrt{1-\rho^{2}} \pi}$

$$
\exp \left\{-\frac{\left(x^{2}+y^{2}-2 \rho_{x y}\right)}{2 \sigma^{2}\left(1-\rho^{2}\right)}\right\} d x d y
$$

By taking the derivative with respect to $z$, it yields

$$
\begin{equation*}
f_{Z}(z)=\int_{-\infty}^{\infty} \frac{\sqrt{1-\rho^{2}} \sqrt{1+x^{2}}}{c \pi\left(1-z^{2}\right)^{3 / 2}} \exp \left\{-\frac{\left(x^{2}+z^{2}\right)}{c\left(1-z^{2}\right)}\right\} \exp \left\{\frac{2 \rho_{x z} \sqrt{1+x^{2}}}{c \sqrt{1-z^{2}}}\right\} d x \tag{A.1.5}
\end{equation*}
$$

For $P=0$ case, $c=2 \sigma^{2}$

$$
\begin{equation*}
f_{Z}(z)=\int_{-\infty}^{\infty} \frac{\sqrt{1+x^{2}}}{2 \pi \sigma^{2}\left(1-z^{2}\right)^{3 / 2}} \exp \left\{-\frac{\left(x^{2}+z^{2}\right)}{2 \sigma^{2}\left(1-z^{2}\right)}\right\} d x \tag{A.1.6}
\end{equation*}
$$

Equations (A.1.4), (A.1.5), (A.1.6) have not been solved to obtain the solutions which can be expressed in algebraic form or with well-known series expressions. The moment theorem states that

$$
\Phi(w)=\sum_{n=0}^{\infty} \frac{(j w)^{n}}{n} m_{n}
$$

where $m_{n}$ is the $n^{\text {th }}$ moments. If they are known, then $\Phi$ (w) can be obtained. Then,

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \Phi(w) e^{-j w x} d x
$$

$$
\begin{gathered}
\left\langle\cos ^{n} \theta_{1}\right\rangle=\left\langle\left\langle\frac{a+b y}{\sqrt{1+x^{2}+y^{2}}}\right)^{n}\right\rangle=\left\langle\frac{a^{n}+n b a^{n-1} y+\frac{n(n-1)}{2!} b^{2} a^{n-2} y^{2}+\ldots+b^{n} y^{n}}{\left(1+x^{2}+y^{2}\right)^{n / 2}}\right\rangle \\
=\left\langle\frac{a^{n}}{\left(1+x^{2}+y^{2}\right)^{n / 2}}\right\rangle+\left\langle\frac{n b a^{n-1} y}{\left(1+x^{2}+y^{2}\right)^{n / 2}}\right\rangle+\left\langle\frac{\frac{n(n-1)}{2!} b^{2} a^{n-2} y^{2}}{\left(1+x^{2}+y^{2}\right)^{n / 2}}\right\rangle+\ldots \\
+\left\langle\frac{b^{n} y^{n}}{\left(1+x^{2}+y^{2}\right)^{n / 2}}\right\rangle
\end{gathered}
$$

The average value of the terms with odd power of y vanish in the above equation. The terms with even powers of $y$, by using polar coordinates and assuming $n=2 m$, then

$$
\begin{aligned}
\left\langle\frac{y^{2 m}}{\left(1+x^{2}+y^{2}\right)^{n / 2}}\right\rangle= & \int_{0}^{\infty} \int_{0}^{2 \pi} \frac{(r \sin \theta)^{2 m} \sqrt{1-\rho^{2}}}{\left(1+r^{2}\right)^{n / 2} \pi c} \\
& \exp \left\{-\left[\frac{r^{2}}{c}(1-\rho \sin 2 \theta)\right]\right\} d \theta d r
\end{aligned}
$$

where c is defined as above, it yields
$\left\langle\frac{y^{2 m}}{\left(1+x^{2}+y^{2}\right)^{n / 2}}\right\rangle=\int_{0}^{\infty} \frac{r^{2 m} \sqrt{1-\rho^{2}}}{2^{m} \pi c\left(1+r^{2}\right)^{n / 2}} e^{-r^{2} / c} I_{0}\left(\frac{\rho_{r^{2}}}{c}\right) d r$ (A.1.7)
The above equation has not been solved to find a solution which can be expressed algebraically or with a well-known series expression.

## APPENDIX B

B. 1 The Derivation of the First Kind of Curve Fitting Algorithm By substituting equation (3.4.1) into (3.4.2), then

$$
\bar{f}(x)=\left(\sum_{r=0}^{m} a_{r} x^{r}\right) e^{-p x^{2}}+\lambda\left(\int_{-\infty}^{\infty} \sum_{r=0}^{m} a_{r} x^{r} e^{-p x^{2}} d z-1\right)
$$

the square error is

$$
\begin{array}{r}
\|E\|^{2}=\sum_{i=1}^{n}\left[g\left(x_{i}\right)-\sum_{r=0}^{m} x_{i}^{r} e^{-p x_{i}^{2}}+\lambda\left(\sum_{r=0}^{m} a_{r} \int_{-\infty}^{\infty} x^{r}-p x^{2} d x-1\right)\right]^{2} \\
\frac{\partial\|E\|^{2}}{\partial \lambda}=0, \text { then }
\end{array}
$$

$$
\sum_{r=0}^{m} a_{r} \int_{-\infty}^{\infty} x^{r} e^{-p x^{2}} d x=1
$$

$$
\frac{\partial\|E\|^{2}}{\partial a_{r_{0}}}=0, \text { with equation (B.I), then }
$$

$$
\sum_{i=1}^{n} \sum_{r=0}^{m} a_{r} x_{i} r_{x_{i}}^{r_{0}} e^{-2 p x_{i}^{2}}+\lambda \sum_{i=1}^{n} g\left(x_{i}\right) \int_{-\infty}^{\infty} x^{r_{0}} e^{-p x^{2}} d x
$$

$$
\begin{equation*}
=\lambda \sum_{i=1}^{n} \sum_{r=0}^{m} a_{r x_{i}}{ }^{r} e^{-p x_{i}} \int_{-\infty}^{\infty} x^{r} 0 e^{-p x^{2}} d x+\sum_{i=1}^{n} x_{i} r_{0^{-p x_{i}}}{ }^{2} g\left(x_{i}\right) \tag{B.1.2}
\end{equation*}
$$

where $r_{0}=0,1,2, \ldots, \quad m$.
Equations (B.1) and (B.2) are combined and written in a matrix form.

$$
\begin{equation*}
A\left\{\left\{a_{i}\right\} \cdot\right\}=\left\{\{c\}+\lambda\left\{Y\left(a_{i}\right)\right\}\right\}^{*} \tag{B.1.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& \left\{a_{i}\right\}=\left\{\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
\vdots \\
a_{m}
\end{array}\right\} \\
& \{c\}=\left\{\begin{array}{ccc}
\sum x_{i}^{0} & e^{-p x_{i}}{ }^{2} & g\left(x_{i}\right) \\
\sum x_{i}^{1} & e^{-p x_{i}{ }^{2}} & g\left(x_{i}\right) \\
\vdots & & \\
\vdots & & \\
\sum x_{i}^{m} & e^{-p x_{i}{ }^{2}} & g\left(x_{i}\right)
\end{array}\right\} \\
& Y\left(a_{i}\right)=\left\{\begin{array}{l}
\left.\int \begin{array}{ll}
x^{0} & e^{-p x^{2}} \\
d x \\
\int & e^{-p x^{2}} \\
d x \\
\vdots & \\
\int x^{m} & e^{-p x^{2}} \\
0
\end{array}\right\} \quad\left(\begin{array}{lll}
\sum_{i=1}^{n} & \sum_{r=0}^{m} & a_{r} x_{i}
\end{array} e^{-p x_{1}}{ }^{2}\right)
\end{array}\right\} \\
& A=\left[\begin{array}{l:c}
A_{11} & A_{12} \\
\hdashline A_{21} & A_{22}
\end{array}\right]
\end{aligned}
$$

$A$ is a $(m+2) x(m+2)$ square matrix
$A_{11}$ is $(m+1) x(m+1), A_{12}$ is $(m+1) x 1, A_{21}$ is $1 \times(m+1)$, $A_{22}$ is 0.
*See the matrix notation in the footnote of section 3.4.

$$
\begin{aligned}
& A_{11}=\left[\begin{array}{ccc}
\sum_{i=1}^{n} x_{i}{ }^{0} x_{i}{ }^{0} e^{-2 p x_{i}}{ }^{2}, & \sum_{i=1}^{n} x_{i}{ }^{1} x_{i}{ }^{0} e^{-2 p x_{i}{ }^{2}}, \ldots, \sum_{i=1}^{n} x_{i}{ }^{m} x_{i}{ }^{0} e^{-2 p x_{i}}{ }^{2} \\
\sum_{i=1}^{n} x_{i}{ }^{0} x_{i}{ }^{l} e^{-2 p x_{i}{ }^{2}}, & \sum_{i=1}^{n} x_{i}{ }^{1} x_{i}{ }^{l} e^{-2 p x_{i}}{ }^{2}, \ldots, \sum_{i=1}^{n} x_{i}{ }^{m} x_{i}{ }^{1} e^{-2 p x_{i}}{ }^{2} \\
\vdots & \vdots \\
\sum_{i=1}^{n} x_{i}{ }^{0} x_{i}{ }^{m} e^{-2 p x_{i}{ }^{2}}, & \sum_{i=1}^{n} x_{i}{ }^{l} x_{i}{ }^{m} e^{-2 p x_{i}}{ }^{2}, \ldots & \sum_{i=1}^{n} x_{i}{ }^{m} x_{i}{ }^{m} e^{-2 p x_{i}}{ }^{2}
\end{array}\right] \\
& A_{12}=\left[\begin{array}{c}
\sum_{i=1}^{n} g\left(x_{i}\right) \int x^{0} e^{-p x^{2}} d x \\
\sum_{i=1}^{n} g\left(x_{i}\right) \int x^{1} e^{-p x^{2}} d x \\
\vdots \\
\sum_{i=1}^{n} g\left(x_{i}\right) \int x^{m} e^{-p x^{2}} d x
\end{array}\right] \\
& A_{21}=\left[\int x^{0} e^{-p x^{2}} d x, \int x^{1} e^{-p x^{2}} d x, \ldots, \int x^{m} e^{-p x^{2}} d x\right]
\end{aligned}
$$

B. 2 The Algorithm for Finding an Optimum $P$

With the assumption that the exact error curve is

$$
E_{1}(p)=a_{0}+a_{1} p+a_{2} p^{2}
$$

The calculated error value is $E_{d}\left(p_{i}\right)$, then the square error between these two values is

$$
\left\|e_{i}\right\|^{2}=\sum_{i=0}^{n}\left[E_{I}\left(p_{I}\right)-E_{d}\left(p_{i}\right)\right]^{2}
$$

$$
\begin{aligned}
& \frac{\partial\left\|e_{i}\right\|^{2}}{\partial a_{r}}=0, \text { where } r=0,1,2 \text {, then } \\
& \sum_{i=0}^{n}\left[2 E_{1}\left(p_{i}\right)-2 E_{d}\left(p_{i}\right)\right]=0 \\
& \sum_{i=0}^{n}\left[2 p_{i} E_{1}\left(p_{i}\right)-2 p_{i} E_{d}\left(p_{i}\right)\right]=0 \\
& \sum_{i=0}^{n}\left[2 p_{i}^{2} E_{1}\left(p_{i}\right)-2 p_{i}^{2} E_{d}\left(p_{i}\right)\right]=0
\end{aligned}
$$

The above three equations are combined and written in a matrix form.
$i=1\left[\begin{array}{llll}\sum_{i=1}^{n} 1 & \sum_{i=1}^{n} p_{i} & \sum_{i=1}^{n} p_{i}^{2} \\ \sum_{i=1}^{n} p_{i} & \sum_{i=1}^{n} p_{i}^{2} & \sum_{i=1}^{n} p_{i}^{3} \\ \sum_{i=1}^{n} p_{i}{ }^{2} & \sum_{i=1}^{n} p_{i}{ }^{2} & \sum_{i=1}^{n} p_{i}\end{array}\right]\left\{\begin{array}{l}a_{0} \\ a_{i} \\ a_{2}\end{array}\right\}=\left\{\begin{array}{l}\sum_{i=1}^{n} d_{i} \\ \sum_{i=1}^{n} p_{i} d_{i} \\ \sum_{i=1}^{n} p_{i}{ }^{2} d_{i}\end{array}\right\}$

The coefficient vector $\left\{\begin{array}{l}a_{0} \\ a_{1} \\ a_{2}\end{array}\right\}$ can be obtained by the equal-
tron (B.2.1). The optimum $p$ is then $p=\frac{-a_{1}}{2 a_{2}}$.

## APPENDIX C

C. 1 PROGRA: FOR GENERATLON LNIFORM RANLCM NUMEERS

```
 IMPLICIT REAL*8(A-H,O-Z),INTEGER(I-N)
 DINENSIOM R(2,1OCCC),C(2,5C),B(5C),FR{2,50)
 OIMENSIDN AM(2),DN(2),SM(2),DD(2)
 2 FORMAT (2I10)
 6 FORNA1 (14X,'EX',6X,'UR',8X,'FR1',7X,'FR2')
 8 FORMAT (/12X,F5.2,3X,F7.4,3X,F7,4,3X,F7,4)
40 FCRMAT (/12X,'MEAN=',59.7.3X,' VARIANCE= ',F9.7)
42 FGRMAT (////l2x,'UNIFORM DISTEIBUIICN *,[I)
78 FORMAT (/12X,'CHI SGUARE VALUE=?,F9.4)
 RE&D (1,2) NV.M
 DO 3 K=1,2
 REAO (1,2) IX
 DO 3 I=1,M
 IY=IX*65539
 IF (IV) 85,86,86
85 I Y=IY+2147483647+1
86 YFL=IY
 YFL=YFL*.4656613E-9
 IX=IY
 3 R(K,I)=YFL
 CM=M
 BN=NN
 B(1)=C.0
 DO 10 I=2,NN
108(I)=8(I-1)+0.02
 DO 9 K=1,2
 DO 9 I = 1,NN
 9C(K,I)=0.0
 DO 11 K=1,2
 DO 11 J=1,M
 H=0.02
 OO 15 I=1,NN
 IF (R(K,J).LE.H) GC TO 11
15 H=H+O.C2
11C(K,I)=C(K,I)+1.0
 DO 18 K=1,2
 * CD(K)=C.0
 AM(K)=C.O
 SN(K)=C.D
 CO 18 I= 1, +NW
 FR(K,I)=C(K,I)*BN/CN
 OD(K)=CO(K.)+((FRZ(K,I)-1.0)**2)*2QO
 AN(K)=(C(K,I)*(B(I)+.01)/CM)+A:'(K)
18 SM(K)=(C(K,I)*i(0(I)+.01)**2)/CM)+SM(K)
 DO 30 K=1,2
 If (AN(K).EG.C.) GC TO 31
 DM(K)=SH(K)-(AMA (K)*&2)
```

GO TO 30
$31 \operatorname{DM}(K)=S M(K)$
30 CONTINUE
$U=1$.
WRITE $(3,6)$
WRITE $(3,8) \quad(B(I), U, F R(1, I), F R(2, I), I=1, N N)$
DO 6 C $I=1,2$
HRITE $(3,42)$ I
HRITE $(3,40)$ AM(I), CM(I)
60 WRITE $(3,78)$ CC(I)
STOP
END
C. 2 PROGRAN FOR GENERATING INDEPENDENT NORNAL RANDOM NUPBERS

IMPLICIT REAL* $8(A-H, O-Z)$, INTEGER(I-N)
DIMENSION Z(2,10000), C(2,50),B(51),FR(2,50), D(51)
DIMENSION AM(2),DM(2),SM(2),CD(2),G(5C)
2 FORMAT (2I10)

8 FORMAT ( $/ 12 x, F 5.2,3 x, F 7.4,3 x, F 7.4,3 x, F 7.4)$
40 FORMAT $/ / 12 \mathrm{X}$, 'MEAN=, F9.7.3X,' VARIANCE $=1 ; F 9.71$
42 FORMAT (////12x,'NORHAL DISTRIBUTIOM ', Il)
78 FORMAT (/12X,'CHI SGUARE VALUE=',F9.4)
READ $(1,2) \quad N N, M$
$\mathrm{N} 1=\mathrm{NN}+1$
READ $(1,2)$ IX1, IX2
DO $33 \mathrm{I}=1, \mathrm{M}$
$I Y 1=I \times 1 * 65539$
IF (IYI) $51,61,61$
51 I $Y 1=1 Y 1+2147483647+1$
$61 \mathrm{YFLI}=\mathrm{IY} 1$
YFLI=YFLI*.4656613E-9
$\mathrm{IXI}=\mathrm{I} Y \mathrm{I}$
$1 Y 2=1 \times 2 * 65539$
IF (IY2) 52,62,62
52 IY2 $=1$ Y $2+2147483647+1$
$62 \mathrm{YFL} 2=1 \mathrm{Y} 2$
YFL2=YFL2*.4656613E-9
$1 \times 2=1 Y 2$
R1 $=Y \mathrm{FLI}$
R2 $=\mathrm{YFL} 2$
Z(1,1)=(1-2.*CLOG(R1))**.5)*DCCS(R2*6.2832)
$33 \mathrm{Z}(2,1)=(1-2 . * \operatorname{CLOG}(\mathrm{R} 1)) * * .5) * \operatorname{CSIN}(R 2 * 6.2832)$
$\mathrm{CN}=\mathrm{N}$
$\mathrm{BN}=\mathrm{NN}$
$B(1)=-3.5$
DO $10 \quad \mathrm{I}=2, \mathrm{~N} 1$
$10 \mathrm{~B}(1)=\mathrm{B}(1-1)+0.14$
DO $9 \mathrm{~K}=1,2$
DO 9 I $=1, \mathrm{NN}$
$9 C(K, I)=0.0$
DO $11 \mathrm{~K}=1,2$
$0011 \mathrm{~J}=1, \mathrm{M}$
$\mathrm{H}=-3.36$
$0015 \quad \mathrm{I}=1, \mathrm{VN}$
If (Z(K,J).LE.H) GO TO 11
$15 \mathrm{H}=\mathrm{H}+0.14$
$11 \mathrm{C}(\mathrm{K}, \mathrm{I})=\mathrm{C}(\mathrm{K}, \mathrm{I})+1.0$
DO $14 \mathrm{I}=1$, N1
14 D(I) $=\mathrm{B}(1) / 1.414$
DO $18 \mathrm{~K}=1,2$
$D D(K)=C .0$
$A M(K)=0.0$
$S M(K)=C .0$
DO $18 \mathrm{I}=1$, NN
G(I)=C.5*(DERF(D(I+1))-DERF(D(I)))/C.14.
FR(K,I) $=C(K, I) /(C M * 。 14)$
$D D(K)=C D(K)+200 *((F R(K, I)-G(I)) \div t 2) / G(I)$
$A M(K)=C(K, I) *(B(I)+0.07) / C M+A M(K)$
$18 S M(K)=S M(K)+(C(K, I) *(1 B(I)+0.07) *$ * 2$) / C A:)$
DO $30 \mathrm{~K}=1,2$
IF (AN(K).EQ.O.O) GO TO 31
$D M(K)=S M(K)-(A M(K) * * 2)$
GO 1030
$31 \operatorname{DM}(K)=S M(K)$
30 CONTINUE
WRITE $(3,6)$
$\operatorname{HRITE}(3,8)(B(I), G(I), F R(1, I), F R(2,1), I=1, N(N)$
DO $60 \quad[=1,2$
WRITE $(3,42)$ I
WRITE $(3,40)$ AM(I), CM(I)
60 WRITE $(3,78)$ CD(I)
STOP
END
*C. 3 PROGRAN FOR GENERATING NEW RANDOM NLNBERS IFUNCTION OF NCRMAL RANDON PAIRS)

IMPLICIT INTEGER*4(I-N), REAL*8(A-H,C-Z)
UIMENSIUN C(101), B(1C1), FR(101),21(10000), 22(1COCO)
2 FORNA1 (2I10)
3 FORMAT (2F7.2.3F5.2,F7.4)

 1F5.2,1X,'W2=',F5.2,1X,'2TA=',F7.41
7 FORMAI $(/ 5(1 X, F 6.3,1 X, F 7.4,1 X))$
8 FORMAT (10F8.5)
40 FORMAT(/12X,'MEAN=',FG.6.3X,'"VARIANCE $\quad, \quad \geqslant \quad=1, F 9.6)$

- READ $(1,2) \mathrm{NN}, \mathrm{N}$

READ (1,2) IX1,IX2
DO $33 \mathrm{I}=1 \mathrm{~N}$
$\mathrm{IYl}=\mathrm{IX}$ 1*65539
IF(IY1) 51,61,61
51 IYI $=1 Y 1+2147483647+1$
$61 \mathrm{YFLI}=1 \mathrm{Y} 1$
YFLI=YFL1*.4656613E-9.
$I X I=I Y I$
IY2 = I X2*65539
IF (IY2) 52,62,62
52 I $Y 2=1$ Y $2+2147483647+1$
$62 \mathrm{YFL} 2=1 \mathrm{Y} 2$
YFL2=YFL2*.4656613E-9
I $X_{2}=1 Y 2$
R1=YFL1
$R 2=Y F L 2$
Z1(I) $=((-2 . * \operatorname{DLOG}(R 1)) * \hbar .5) * \operatorname{DCOS}(R 2 * 6.2832)$
$33 \mathrm{Z2}(1)=((-2 . * \operatorname{CLOG}(\mathrm{R} 1)) * * .5) * \operatorname{CSIN}(R 2 * 6.2832)$
$\mathrm{CM}=\mathrm{M}$
$B N=N N$
$B(1)=-1.0$
DO $9 \quad I=2$, $\mathrm{N} N$
$9 B(I)=E([-1)+0.02$
$L S=1$
74 READ (1,3) V1,V2,RHC, W1,W2,ZTA
CFनDCCS(LTA)
$S F=D S I N(Z T A)$
$C(1)=C .0$
DO $10 \mathrm{I}=2, \mathrm{NN}$
$10 \mathrm{C}(1)=\mathrm{C} .0$
$S M=0 . C$
$A M=0 . C$
DO $11 \mathrm{~J}=\mathrm{l}, \mathrm{M}$
$x_{1}=V 1 * 21(J)+i l$
$x_{2}=V 2 *(R H O * Z 1(J)+Z 2(J) * D S C R T(1 .-R H O * R H O))+h 2$
$T T=$ ESGRT $(1 .+\times 1 * \times 1+\times 2 * \times 2)$
$T R=(C F+X 2 * S F) / T T$

```
 H=-1.C
 DO 15 I= I,NN
 IF (TR.LE.HI) GO TO 11
 H=H+O.C2
15 CONTINUE
11C(I)=C(1)+1.0
 DO 30 I=1,NN
 FR([)=C(I)/(CF*.02)
 AN=(C(I)*B(I)/CN)+AN
30 SM=(C(I)*(B(I)**2)/CM)*SM
 IF (AN.EQ.C.) GO TO 31
 DN=SM-(AM**2)
 GO TO 32
31 DK=SH
32 WRITE (3,6) V1,V2,RHO,W1,W2,ZTA
 WRITE (3,5)
 WRITE (3,7) (B(J),FR(J),J=1,NN)
 WRITE (3,40) AM,DM
 WRITE (2,8) (FK(J),J=1,NV)
 LS=LS+1
 IF (LS.LE.G) GO TO }7
 STOP
 END
```

*Note: 1. This program used to find the random numbers $\cos \theta_{1}$. 2. When it is used to generate random numbers of $\sqrt{1+\mathrm{X}^{2}+\mathrm{Y}^{2}}$, then $\mathrm{TR}=\mathrm{TT}, \mathrm{B}(1)=1.0, \mathrm{~B}(\mathrm{I})=$ $B(I-1)+0.04, H=1.0, H=H+0.04, F R(I)=$ C(I)/(CM *.04).
3. When it is used to generate random numbers of $1 / \sqrt{1+X^{2}+Y^{2}}$, then $T R=1 / T T, B(1)=0.0$, $B(I)=B(I-I)+0.01, H=0.0, H=H+0.01$, $\mathrm{FR}(\mathrm{I})=C(I) /(C M * . O 1)$.

## C. 4 PROGRAN FOR THE FIRST KIND OF CURVE FITTING

```
 IMPLICIT INTEGER*4(I-N),REAL*8(A-H,C-Z)
 DIMENSION Y(51),X(51),T(51,5),PE(51),A(6,6),G(51),TP(5),C(6),
 1B(5,5),TC(6),CRV(6),SV(5),D(2,6),CC(6),F(51),E(3),H(3,4),CA(3)
 DIMENSION ED(10)
 6 \text { FORMAT (4F8.4)}
 8 FORMAT (10X,2F9.5)
 9 FORMAT (10X,'P=',F7.3,6X,'E=',F10.4,6X,'KU=',I1)
 12 FORMAT (1OX,'COEFFICIENTS')
 13 FORMAT (10X,8F12.5)
 14 FORMAT (10X;'RTA=',F12.5)
 KSU=1
 15 READ, (Y(I), I= 1,34)
 READ (2,6) XO,XL,P,OP
 NU=1
 MU=1
 P1=0.707
 N=4
 DX= (XL-XO)/33.
 X(1)=XC+DX/2.
 DO 1C I =2,34
 10 X(I)=X(I-1)+DX
 DO 11 I= 1,34
 T(I,1)=1.0
 DO 11 J=2,N
 11 T(I,J)=T(I,J-1)* X(I)
 KT=1
 KU=1
100 DO 30 I=1,34
 30 PE(I)=CEXP(-P*(X(I)-P1)**2)
 00 40 I=1,N
 DO 40 J=1,N
 A(I,J)=0.0
 DO 40 K=1,34
 40 A(I,J)=A(I,J)+T(K,I)*T(K,J)&PE(K)*PE(K)
 MN=N+1
 DO 41 J=1,N
 DO 45 I=1,34
 45 G(I)=PE(I)祖(I,J)
 DO 42 I= 1,34
 TP(J)=C.0
 42 TP(J)=TP(J)+G(1)
 CALL INTG(G,34,DX,ARA)
 41 A(NN,J)=ARA
 SY=O.C
 DO 46 I=1,34
 46 SY=SY+Y(I)
 DC 47 I=1,N
47 A(I,NN)=SY*A(NM,I)
 A(MN,NM)=0.0
```

$005 \mathrm{C} \quad \mathrm{I}=\mathrm{I}, \mathrm{N}$
$C(I)=C .0$
DO $50 \mathrm{~J}=1,34$
$50 C(I)=C(I)+Y(J) * T(J, I) * P E(J)$
$C(M N)=1.0$
DO $55 \mathrm{I}=1, \mathrm{~N}$
DO $55 \mathrm{~J}=1, \mathrm{~N}$
$55 \mathrm{~B}(\mathrm{I}, \mathrm{J})=\mathrm{A}(\mathrm{I}, \mathrm{J})$
IF (N.EQ.1) GC TO 53
CALL INVERS $(8, N)$
GO TC 54
$53 \mathrm{~B}(1, \mathrm{~J})=1 . / B(1,1)$
54 DO $60 \mathrm{I}=1, \mathrm{~N}$
$T C(I)=C .0$
DU $60 \mathrm{~J}=1, \mathrm{~N}$
60 TC(I) $=I C(I)+B(I, J) * C(I)$
CRF $=0.0$
DO $65 \mathrm{I}=1, \mathrm{~N}$
$65 \mathrm{CRF}=\mathrm{CRF}+\mathrm{TC}(\mathrm{I}) * T \mathrm{P}$ (I)
DO $66 \mathrm{I}=1, \mathrm{~N}$
$66 \operatorname{CRV}(I)=C R F * A(N N, I) * 0.3$
$\operatorname{CRV}(M A)=0.0$
DO $68 \mathrm{I}=1, \mathrm{~N}$
68 SV(I) $=A(M N, I)$
DO $67 \mathrm{I}=1$, MN
TC(I) $=$ C(I)
67 C(I) $=$ C(I) + CRV(I)
CALL INVERS (A,MN)
$85 \mathrm{KK}=1$
80 DO $70 \mathrm{I}=1$, NN
$D(K K, I)=0.0$
DO $70 \mathrm{~J}=1, \mathrm{MN}$
$70 \mathrm{D}(\mathrm{KK}, \mathrm{I})=\mathrm{D}(\mathrm{KK}, \mathrm{I})+\mathrm{A}(\mathrm{I}, \mathrm{J}) * \mathrm{C}(\mathrm{J})$
CALL CCNST (MN, N,SV,TP,D,KK,TC,C)
$K K=K K+1$
IF(KK.LT.3) GC 10 \&C
DO $88 \quad \mathrm{I}=1$, MN
88 DO(I) $=\operatorname{CABS}((0(K K-1, I) / D(K K-2, I))-1.0)$
$C R T=C[1)$
DO $89 \mathrm{I}=2, \mathrm{MN}$
IF (CRT.GE.DC(I)) GO TO 89
CRT $=$ CC(I)
89 CONTINLE
IF (CRT.LT.O.COO1) GC TO 300
DO $91 \mathrm{I}=1, \mathrm{MN}$
$91 \mathrm{D}(1, I)=\mathrm{U}(2,1)$
$\mathrm{KK}=2$
GO TO 80
300 DO $81 \mathrm{I}=1,34$
$F(I)=C .0$
DO $81 \mathrm{~J}=1, \mathrm{~N}$
$81 F(I)=F(I)+T(I, J) * C(2, J) * P E(I)$
$E(K T)=C .0$

```
 D0 97 I = 1,34
97E(KT)=E(KT)+DABS(Y(I)-F(I))
 WRITE (3,9) P,E(KT),KU
 WRITE (3,12)
 WRITE (3,13) (D (2,I),I=1,N)
 WRITE (3,14) C(2,NN)
 WRITE (3,8) (Y(I),F(I),I=1,34)
 ED(MU)=E(KT)
 MU=MU+1
 IF (NL'.LT. 6) GO TO 899
 IF (NL.EQ. 3) GO TO 111
 CALL LSQP (ED,P,OP)
 MU=1
 KT=1
 NU=NU+1
 GO TO 100
899 IF (KL.EQ.2) GO TO 111
 KT=KT+1
 IF (KI.GE.4) GO TO 400
105P=P+CP
 GO TO 100
400 CCRT=(E(KT-2)-E(KT-3))*(E(KT-1)-E(KT-2))
 IF (CCRT.LT.O.0) GO TO 600
650 E(1)=E(2)
 E(2)=E(3)
 KT=3
 GO TO 105
600 T2=E(1)-2.*E(2)+E(3)
 IF(T2.LT.O.O) GO TG 650
750 KU=KU+1
 KT=3
 DO 605 I=1,3
 H(I,1)=1.0
 AI=I
 H(I,2)=P-(3.0-AI)&DP
605 H(I,3)=H(I,2)*H(1,2)
 CALL INVERS (H,3)
 DO 62C I=1,3
 CA(I)=C.O
 DO 62C J=1,3
620CA(I)=H(I,J) *E(J)+CA(I)
 P=-CA(2)/(2.*CA(3))
 GO TO 100
111 KSU=KSL+1
 IF (KSU.FQ.1) GO TO 15
 STOP
 END
```

SUBROLTINE INTG(G, $N ; H$, ARA)
IMPLICIT INTEGERヶ4(I-N),REAL*8(A-H, C-Z)
DIMENSICN G(34)
$A R A=G(1)-G(34)$
$\mathrm{NL}=\mathrm{N}-1$
DO $10 \quad I=2, N 1,2$
$10 \mathrm{ARA}=A R A+4.0 * G(1)+2.0 * G(I+1)$
$A R A=H * A R A / 3.0$
RETURA
END
SUBRCLTINE CONST(MN,N,SV,TP,D,KK, $\mathrm{IC}, \mathrm{C})$
IMPLICIT INTEGER*4(I-N), REAL*8(A-H,C-Z)
DIMENSIUN SV(5), TP(5), D(2,6),TC(6),CRV(6),C(6)
CRF $=0 . C$
DO $1 \mathrm{C} \quad \mathrm{I}=1, \mathrm{~N}$
$10 C R F=C R F+D(K K, I) * T P(I)$
$C R F=C(K K, M N) * C R F$
DO $20 \quad I=1, N$
$20 \operatorname{CRV}(I)=C R F * S V(I)$
$\operatorname{CRV}(M N)=0.0$
DO $30 \quad I=1, M N$
$30 \mathrm{C}(\mathrm{I})=\mathrm{TC}(I)+$ CRV(I)
RETURA
END
SUBRCLTIVE LSGP (ED,P,DP)
IMPLICIT INTEGER*4 (I-N), REAL*8(A-H, O-2)
DIMENSION ED (10), PT $(10), C(5), B(3,3), A(3), D(3)$
PT(5) = P
DO $10 \quad \mathrm{I}=1,4$
$A I=I$
10 PI(I) $=P-(5 .-A I) * D P$
DO $20 \quad I=1,5$
$\mathrm{J}=\mathrm{I}-1$
$C(I)=C .0$
DO $20 \mathrm{~K}=1,5$
$20 \mathrm{C}(I)=C(I)+\mathrm{PT}(\mathrm{K}) * * J$
DO $30 \quad I=1,3$
$\mathbf{J}=\mathbf{I}-1$
$D(I)=C .0$
DO $30 \mathrm{~K}=1,5$
$30 D(I)=\mathbb{C}(I)+E D(K) \div(P \Gamma(K) \neq \downarrow)$
DO $40 \quad 1=1,3$
DO $4 \mathrm{C} \quad \mathrm{J}=1,3$
$K=J+1-1$
$40 B(I, J)=C(K)$
CALL INVERS (8,3)
DO $50 \quad I=1,3$
$A(1)=C .0$
D0 5C $J=1,3$
$50 \mathrm{~A}(I)=A(I)+B(I, J) \div C(J)$
$P=-A(2) /(2 . * A(3))$
RETURA
END

```
 SUBRCLTINE INVERS(A,N)
 IMPLICIT INTEGER*4(I-N),REAL*8(A-H,C-Z)
 DIMENSION A(9,9),G(9),F(9)
 \(\mathrm{NN}=\mathrm{N}-1\)
 \(A(1,1)=1.0 / A(1,1)\)
 \(0021 \mathrm{C}=1, \mathrm{NN}\)
 \(K=M+1\)
250 DU 26C \(I=1, M\)
 G(I) \(=\mathrm{C} .0\)
 DO 26C J=1,M
\(260 \mathrm{G}(I)=G(I)+A(I, J) * A(J, K)\)
 \(Q=0.0\)
 DO 27C \(1=1, M\)
\(270 Q=Q+A(K, I) * G(I)\)
 \(Q=-Q+\Delta(K, K)\)
 \(A(K, K)=1.0 / Q\)
 DO 28C \(\mathrm{I}=1, \mathrm{M}\)
\(280 \mathrm{~A}(\mathrm{I}, \mathrm{K})=-\mathrm{G}(\mathrm{I}) * \mathrm{~A}(\mathrm{~K}, \mathrm{~K})\)
 DO \(29 \mathrm{~J}=1, \mathrm{M}\)
 F(J)=C. 0
 D0 29C \(I=1\), \(M\)
\(290 F(J)=F(J)+A(K, I) * A(I, J)\)
 DO 20C J=1,M
\(200 A(K, J)=-F(J) * A(K, K)\)
 DO 21C \(I=1, M\)
 DO \(21 \mathrm{C} J=1, M\)
\(210 \mathrm{~A}(\mathrm{I}, \mathrm{j})=\mathrm{A}(I, J)-G(I) * A(K, J)\)
 RETURA
 END
```


## C. 5 PROGRAN FOR.THE SECONC KIND OF CURVE FITIING

DIMENSIOV A(55,55),X(55),Y(2,55),U(55),V(55),W(55),X1(55,55),R(55)
1,T(55),DT(55), DH(55), DS(5), TY(55),C(55),8(55,55), DATA(2, 98$)$
DIMENSION F(98), DF(98)
860 FORMAT (IHO,5X, 'COEFFICIENT',/)
865 FORMAT(1HO,5X,'APPROXIMATE VALUES:, $)$
866 FORMAT (1HO,5x, 'U',1)
867 FORMAT ( $1 \mathrm{HO}, 5 \mathrm{X}, \mathrm{V}, \mathrm{V}, 11$
868 FORMAT ( $1 \mathrm{HO}, 5 \mathrm{x}$, ' $\mathrm{N}=\mathrm{\prime}=1,14$ )
869 FORMAT(IH ,5X,'R')
870 FORMAT (5E18.8)
871 FORNAT (1H1)
879 FORMAT (4E18.8)
5 FORMAT (10F8.5)
7 FORMAT (3F8.5)
$K P=1$
6 CO READ,NX,MK
READ (1,7) (F(I), $1=1,3)$
READ ( 1,5 ) (F(I), $1=4, \mathrm{MX})$
DO 9 I $=1, \mathrm{MX}$
IF (FII).LE. O.0) CO TO 11
GO то 9
$11 \mathrm{~F}(\mathrm{I})=\mathrm{C} .00001$
9 Contince
DO $10 \mathrm{I}=1, \mu \mathrm{M}$
DF(I) $=0.4 * \operatorname{SQRT}(F(I))$
DATA(1, I) $=$ F(I) + DF(I)
10 DATA(2,I)=F(I)-DF(I)
DO $666 \mathrm{KKA}=1$, ${ }^{1} \mathrm{~K}$
READ, $N$
Call SEt(M,B)
CALL VECTOR (CATA, NX, M,y)
$M L=M+1$
$A M=M 1$
$\mathrm{S}=0.0$
$\mathbf{I}=1$
15 U(I)=(Y(1,1)+Y(2,1))/2.0
$V(I)=(Y(1, I)-Y(2, I)) / 2.0$
$\mathrm{S}=\mathrm{S}+\mathrm{V}(\mathrm{I}) * * 2$
$\mathbf{I}=\mathbf{1}+1$
IF(I.LE.M) GO TO 15
S=SQRT(S)
Call arange $(B, U, N, A)$
KRITE (3,871)
$\mathrm{N}=\mathrm{M}$
$\mathrm{ND}=\mathrm{N} / 2$
$\mathrm{KL}=-1$
$\mathrm{NT}=\mathrm{ND}+2$
$100 \mathrm{~N}=\mathrm{N}+\mathrm{KL}+\mathrm{ND}$
IF(N.EG.M)GO TO 8CO

WRITE $(3, B 68) \mathrm{N}$
$\mathrm{I}=1$
25 TY(I) $=\mathrm{C} .0$
$\mathrm{I}=\mathrm{I}+1$
IF(I.LE.M) GU TO 25
$I=1$
$33 \mathrm{~J}=1$
$30 \times 1(I, J)=A(I, J)$
$\mathrm{J}=\mathrm{J}+1$
IF(J.LE.N) GO ro 30
$\mathrm{I}=\mathrm{I}+1$
IF(I.LE.M) GO TO 33
$K T=1$
$K K=1$
$K S=1$
$300 \mathrm{I}=1$
$38 \mathrm{~W}(\mathrm{I})=\mathrm{L}(\mathrm{I})+$ TY(I)
$I=I+1$
IF(I.LE.M) GO TO 33
$\mathrm{I}=1$
$36 \mathrm{C}(\mathrm{I})=\mathrm{C} .0$
$\mathrm{J}=1$
$37 C(I)=C(I)+X I(J, I) * W(J)$
$\mathrm{J}=\mathrm{J}+1$
IF(J.LE.M) GO TO 37
$C(I)=C(I) * 2.0 / A M$
$\mathrm{I}=\mathrm{I}+\mathrm{I}$
IF(I.LE.N) GO TO 36
200 I = 1
$40 \mathrm{R}(I)=-U(I)$
$\mathrm{J}=1$
$41 R(I)=R(I)+X I(I, J) * C(J)$
$J=J+1$
IF(J.LE.N) GO TO 41
$\mathrm{I}=\mathrm{I}+\mathrm{I}$
IF(I.LE.M) GO TO 40
WRITE (3,869)
$S R=0 . C$
$\mathrm{I}=1$
$45 S R=S R+R(1) * * 2$
$\mathrm{I}=\mathrm{I}+\mathrm{I}$
IF(I.LE.M) GO TO 45
SR=SGRT(SR)
IF(SR.LE.S) GC TO 70
$\mathrm{NT}=\mathrm{N}$
$K L=1$
ND=NC/2
IF(NU.GE.1) GC TO $1 C 0$
IF(N.LT.M) GO TO 80
GO TC 5CO
80 ND=1
GO TC 100
70 I =1

```
72 IF(ABS(R(I)).LE.V(I)) GO TO 71
 GO TO ミ33
 71 I=I +1
 IF(I.LE.M) GO rO 72
555 KL=-1
 ND=ND/2
 IF(ND.GE.1) GC TC ICO
 IF(N.GT.NT) GO TO 5CO
 ND=1
 IF(N.GE.2) GO TO 100
 GO TO 500
333 I=1
 85 T(I)=R(I)/V(I)
 IF(ABS(T(I)).LE.1.0) GO TO 95
 DT(I)=(ABS(T(I))-1.0)*R(I)
 GO TC }8
 95 DI(I)=C.0
 TY(I)=R(I)
 GO TO 86
 84 TY(I)=R(I)-DT(I)*1.10
 86 I=I+1
 IF(I.LE.M) GO TO }8
 DS(KT)=0.0
 I=1
105 DS(KT)=DS(KT)+ABS(OT(I))
 I= I +1
 IF(I.LE.M) GO TO }10
 KRITE (3,870) DS(KT)
 IF(DS(KT).LE.O.1E-2O) GO TO 555
 KT=KT+1
 IF(KT.GE.5) GO TO }11
 GO TO 300
115 DM(KS)=CS(1)+CS(2)+CS(3)+CS(4)
 DM(KS)=CM(KS)/4.0
 KS=KS+1
 KT=1
 IF(KS.GE.4) GC TO 7CO
 GO TO 3CO
700 R2=D:1(3)/DM(2)
 R1=OM(2)/DN(1)
 R3=ARS(R1/R2-1.0)
 IF(R3.LT.O.01) GO TC 710
 DM(1)=CM(2)
 DM(2)=CM(3)
 KS=3
 IF(KK.GT.M/4) GO TO 710
 KK=KK+1
 GO TO 3CO
710 KL=1
 NT=N
 NO=NC/2
 IF(ND.GE.1) GO TO 1CO
 IF(N.LT.M) GO TO 720
```


## GO TO 500

720 ND=1
GO TO 100
BOO I=1
$310 \mathrm{C}(\mathrm{I})=\mathrm{C} .0$
$J=1$
$320 \mathrm{C}(\mathrm{I})=\mathrm{C}(I)+A(I, J) * U(J)$
$\mathrm{J}=\mathrm{J}+1$
IF(J.LE.M) GO ro 820
$C(I)=C(I) * 2.0 / A M$
$\mathbf{I}=\mathbf{I}+\mathbf{I}$
IF(I.LE.M) GO ro 810
$I=1$
$830 \mathrm{TY}(\mathrm{I})=\mathrm{C} .0$
$J=1$
$840 \mathrm{TY}(I)=I Y(I)+A(I, J) * C(J)$
$J=J+1$
IF(J.LE.N) GO TO 840
$\mathbf{I}=\mathbf{I}+1$
IF(I.LE.M) GO TO 830
GOTO 765
500 WRITE 3,868$) \mathrm{N}$
$I=1$
760 TY(I) $=\mathrm{C} .0$
$J=1$
761 TY(I) $=T Y(I)+X I(I, J) * C(J)$
$J=J+1$
IF(J.LE.N) GO ro 761
$\mathrm{I}=\mathrm{I}+1$
IF(I.LE.M) GO TO 760
765 WRITE 3,860$)$
WRITE(3,870) (C(I), I=I,N)
WRITE $(3,865)$
WRITE(3,870) (TY(I),I=1,M)
WRITE $(3,866)$
WRITE(3,870) (U(I), I=1,M)
WRITE $(3,867)$
WRITE (3,370) (V(I),I=1,M)
666 CONTINLE
$K P=K P+1$
IF (KF.LE.2) GO TO 600
STOP
END

```
 SUBROLTINE VECTOR(W,N1,N,Y)
 DIMENSION W(2,98),Y(2,98),X(98),2(98)
 IF(M.EG.ML) GC YO 6C
 Al=N1+1
 A2 = M+1
 DO 1C I=1,M1
 AI=I
10 X(I)=AI/Al
 DO 15 I=1,M
 AI=I
.15 Z(II)=AI/A2
 JM=1
 MN=N1-1
 DO 30 I= 1,M
 DO 35 J=JM,MM
 IF(Z(I).LT.X(J)) GO TO }3
 IF(Z(I).EQ.X(J)) GO TO 45
 CR=(Z(I)-X(J))*(Z(I)-X(J+l))
 IF(CR.GT.0.0) GO TC }3
 Y(1,I)=W(1,J)
 Y(2,I)=W(2,J)
 GO TO }6
45 Y(1, I)={i(1,J)
 Y(2,I)=W:(2,J)
 GO TO }7
35 CONTINUE
65 JM= J
 GO T0 30
75 JM=J+1
30 CONTINLE
 GO TC 70
60 DO 85 I=1,M
 DO 85 J=1,2
85 Y(J,I)=W(J,I)
7 0 \text { RETURN}
 END
```

```
 SUBRCLIINE ARANGE(A,U,N,C)
 DIMENSION A (66,66),U(E6), E(66),KO(66),IP(t6),C(66,66)
200 FOR'AAT(1:11,5x,'[NNER PRCDUCTS'/)
210 FORMAT(1OE12.5)
220 FORMAT (1HO,5X,'CRLER NOc'/)
230 FORMAT(20I5)
231 FORMAT (14I4)
 I=1
10 B(I)=C.0
 J=1
16 B(I)=R(I)+A(J,I)*U(J)
 J=J+1
 IF(J.LE.M) GO TO 16
 B(I)=ABS(B(I))
 I=I +I
 IF(I.LE.M) GC TO 10
 G=-1.C
 WRITE (3,200)
 L=1
 I=1
20 J=1
30 [F(B(J).LT.G) GO TG 31
 IF(B(J).EG.G) GO TO 33
 G=B(J)
 L=J
 GO TO 31
33 IF(L.EG.1) GC TO 31
 IF(L.NE.KO(I-1)) GO TO 31
 L=J
31 J=J+1
 IF(J.LE.M) GO TO 30
 G=-1.
 KO(I)=L
 WRITE (3,210) B(L)
 8(L)=-2.0
 I= I +1
 IF(I.LE.M) GO TO 20
 WRITE(3,220)
 WRITE (2,231) (KC(I), I= 1,N)
 WRITE(3,230) (KO(I),I=1,M)
 I=1
35K=KO(I)
 J=1
36C(J,I)=A(J,K)
 J=J+1
 IF(J.LE.M) GO TO 36
 I=1+1
 IF(I.LE.M) GO TO 35
 RETURA
 ENO
```

```
 SURRCLTINE SET(M,C)
 IMPLICIT REAL*E(A,S),REAL&4(B,C,E-H,C-L),INTEGER:S-N)
 DIMENSIUN C(ICOO,lCO)
 ML=N+!
 AM=M1
 AP=3.14159265358979/AN+(.323846D-14)/AN.
 Al=DSIN(AF)
 A2=CCCS(AP)
 AD1=A1
 AD2=A2
 C(1,1)=SNGL(A1)
 I=2
10 AT=A2*AD1+A1*AD2
 A2=-A1*AD1+A2*AD2
 Al=AT
 C(I,I)=SNCL(AL)
 AD3=AT
 AD4=A2
 J=2
20 AT=A2*AD3+A1*AD4
 A2=-A1*AD3+A2*AD4
 Al=&T
 C(I,J)=SNGL(Al)
 J=J+1
 IFIJ.LE.I! GC TO 20
 Al=AD?
 AZ=AD4
 I=I +1
 IF(I.LE.N) GO TO 10
 I=1
40 II = I + 1
 J=II
41C(If,J)=C(J,I)
 J=J+1
 IF(J.LE.M) GOTO 4l
 I= I +1
 IFII.LT.M) GO TO 40
 REIURN
 END
```


## A STUDY OF PROBABILITY DENSITY FUNCTIONS

 RELATED TO THE RADAR BACKSCATTERING
## by

STEPHEN MIAU CHENG
B. S., Taiwan Provincial Cheng Kung University, 1966

> AN ABSTRACT OF A MASTER'S THESIS
> submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1970

A study of probability density functions of the angle, $\theta_{1}$, between the surface normal and the direction to the receiver of a rough surface in a radar backscattering problem is discussed. Both the analytical and the Monte Carlo methods for finding a probability density of a function of random variables are introduced. In order to get the algebraic expressions of the density from the data by the Monte Carlo method, two different curve fitting techniques are developed.

Because $\cos \theta_{I}$ involves the function $\sqrt{1+X^{2}+Y^{2}}$, where $X$ and $Y$ are two correlated normal random variables, the problem of finding the density function of $\cos \theta_{1}$ starts from finding the densities of $\sqrt{1+X^{2}+Y^{2}}$ and $1 / \sqrt{1+X^{2}+Y^{2}}$ with a desire to find the former density by the information method contained in the latter two. The Monte Carlo method is used to find the densities of $\cos \theta_{l}$ with each different parameter $\sigma$, $\rho$, and $\theta$ due to the failure of finding the density function of $\cos \theta_{I}$ analytically. The results show that the densities of $\cos \theta_{1}$ are approximately Rice distributions centered at the value of $\cos \theta_{l}$ when $\sigma$ is less than unity. The densities of $\cos \theta_{1}$ are also discussed by changing $\sigma, \rho$, and $\theta$.


[^0]:    *Note: When $[A]$ is not a square matrix, both sides of equation of ( $3.4 \cdot 4$ ) are then multiplied by transpose of [A], i. $\theta$., $[A] T$. $[A] T[A]=B$ is a square matrix. Thus it makes the inversion possible. So that the least square solution can be obtained. Later on, all the notation of [] is assumed as a square matrix to make the discussion of the problem simple.

