VINUBHAI CHHOTABHAI PATEL

B. Е. (M.E.), Maharaja Sayajirao University Baroda, India, 1962

A MASTER'S REPORT

submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE

Department of Industrial Engineering

KaNSAS STATE UNIVERSITY
Manhattan, Kansas

1964

> Approved by

2.068
24 TABLE OF CONTENTS
1964 P295C. 2INTRODUCTION1
HI STORY 2
DEFINITION 3
PROCEDURE 4
CALCULATIONS 10
CONCLUSION 11
illustration 12
ACKNOWLIDGEMENTS 19
REFERENCES 20
APPENDIX. 21

The postal route problem can be simply stated as the problem of selecting a route that will minimize the total distance travclled in visiting M blocks. The tour length can be expressed in feet, units of time, or other cost criteria. This problem is applicable to any city. It will require special consideration to treat this type of problem due to its symmetry.

This paper describes a technique (algorithm) and computer program which was used by the author to solve this problem. Though no effort has been made by the author of this paper to solve an assymmetric problem, enough published material is available which can be used to tackle such a type of problem when necessary.

This paper is organized in the following manner: An algorithm used to solve this problem is preceded by brief introduction of the problem. The second part contains some results of a particular problem. The computer program is given in the appendix.

HI STORY

At present a postman unaware of modern scientific planning, travels unnecessary additional distance every day and becomes unduly tired at the end of the routine monotonous job. If a postman has to cover a wider span of area than necessary the whole department suffers. This not only consumes the extra energy of the postman but also the precious time and money of the Post Office department. Instead, a well defined route for a postman may save a distance of a few hundred feet to be travelled by a postman.

The whole process of delivering the mail will be more efficient and effeptive than before by using scientific planning. The Post Office department can utilize services of postmen in a better way thereby making it more economical for the department.

The purpose of this paper is to find out the best possible route scientifically. This paper will explain the computerized algorithm used for this purpose.

A similar type of program developed by Mr. R. R. Gonzalez --Zubieta for "travelling salesman problem" can bè. used here. This program is now available at KSU IBM 1620 Computing Centre library but arrived too late for testing.

DEFINITION

The postal route problem is a snecific case of the general problem of finding the smallest or shortest loon that connects a number of points in a plane. The distance between each point and every other noint is usually recorded in a distence matrix. It should be noted that this distance matrix need not always be in terms of geometric distance since the optimum serquence or loop may be that which minimizes time or costs associated with the closed loop path. It is apparent then that time, costs or distance may be the variable of consideration.

The problem faced by the postman is to select a route that will minimize the total distance travelled while delivering the mail. If there are M points or blocks to be considered, then our problem is to choose a set of M elements, one in each row and one in each column, so as to minimize the sum of the elements chosen. Thus far the problem is identical with the ascignment problem; however there are two further restrictions on our choice of element, one of which makes the problem considerably more difficult. Clearly we cannot choose an element along the diagonal, and this can be avoided by filling the diagonal with infinitely large elements. The second restriction is that we do not want a subloop in a route.

Before illustrating the problem with an example, we give a formal statement of the problem.

The postal route problem is a symmetrical problem. In other words distance to be travelled by a postman from point or block
i to j is same as from j to i.
The distance to be travelled by a postman from block to block or from point to point forms a scuare matrix. The entry in row i and column j of the matrix is the distance from point 1 to point j and vice versa.

Stating in another way, if there are M points or blocks to be considered then it will give a square matrix of size MxM and with $M_{i i}=$ infinity for each i. The problem will be to find a subset of M elements $M_{p q}, M_{q r} ; M_{r s}, \ldots M_{u v}, M_{v p}$ where p, r, \ldots , u, v are some permutation of integers $1,2, \ldots, M$ such that the sum of the elements of the subset shall be a minimum. Due to symmetry there arie $\left.\frac{1}{2}(M-1) \right\rvert\,$ subsets or possible routes. Out of these there may $p e$ one or more routes which will give a minimum distance to be travelled by a postman.

PROCEDURE

The problem of minimizing the total distance travelled by a postman is solved by an algorithm. Basic method will be to break up the distance matrix into smaller and smaller size as the algorithm proceeds.

In this algorithm our first starting point will be the reduction of an original matrix. The smallest element of a row (which we will call as MINR in program) is to be subtracted from each element of the row and thus the row will be reduced. Then each column will be reduced by subtracting the smallest element of the column (MINC) from each element of the column. This process is continued for each row and column. This will

Table 1

Table 2
ensure a new matrix with non-negative elements and at least one zero in each row and column.

Table 1 is the original distance matrix of ten point problem. Reduction of the matrix by rows and then by columns gives the matrix of table 2.

We commence by treating the problem as an assignment problem. The zeros of this particular matrix (table 2) provides a solution to the assignment problem, shown by distinguished elements. However, this is not a solution of the route problem, because it tells us to go from point 1 to 2 and then back to 1 .

We examine the matrix for some of the "next best" solutions to the assignment 'problem, and try to find out one that satisfies the additionat restrictions. It should be obvious from this matrix that any one of the cells which contains zero $M(i, j)$ should be selected, in going from $X(X=i)$ to $Y(Y=j)$.

We need to select the best available route which will give a minimum distance to be travelled. Since point j must connect to some point, the route must incur at least the cost of the smallest element incolumn j excluding $M(i, j)$ ard since point i must be reached from some point, the route must incur at least the cost of the smallest element in row i excluding $M(i, j)$. The author has used MINEC and MINER for these minimum values in column and row excluding $M(i, j)$. Sum of these two elements is denoted by L.

$$
\mathrm{L}=\mathrm{MINER}+\mathrm{MINEC}
$$

We should calculate L for all cells which have zero value.

We shall select (X, Y) to be that pair that gives the largest L. For example, the values L are written in small circles placed in the cells of zeros of table 2. The largest L is $M(6,7)$ $=\operatorname{MINER}(6)=\operatorname{MINEC}(7)=34+34=68$ and $\operatorname{M}(7,6)=\operatorname{MINER}(7)+\operatorname{MINEC}$ $(6)=33+35=68$ and so either $(6,7)$ or $(7,6)$ will be the first pair to be selected. Ne know that due to symmetry each optimum route will give an optimum route in reverse direction also. Due to this we have to decide from the beginning which way to go and stick to it until final solution is reached. Due to symmetry there are chances that one will get two similar largest values of L. One of them will be alxays above the diagonal of matrix and other below the diagonal. In such circumstances select the largest L which ifabove the diagonal. Mathematically for two equal and largest values of L, select L for which j,i. In Fig. 2 $(6,7)$ satisfies our condition and is the point of our choice. Since the pair (X, Y) is now committed to the tour, row X and column Y are no longer needed and are deleted from the matrix. For convenience, in the computer programming it was found easier to keen infinity (i.e. the largest number 9999) in rows and columns which were to be deleted. It will be noticed that (X, Y) now will be a part of connected path. Suppose the path starts at point f and ends at point g i.e. if we get a pa.th (f, g), the connecting of g to f should be forbidden for it would create a subroute - a circuit with less than n.noints and no subroute can be a part of a final route.

This will be clear from Fig. 3. Row 6 and column 7 are deleted i.e. replaced by infinity and $N(7,6)=\infty$ should also be noticed.

	1	2	3	4	5	6	7	8	9	10
1	∞	0	15	20	6	46	∞	11	22	16
2	0	∞	10	15	0	40	∞	6	16	11
3	15	10	∞	0	15	25	∞	21	31	25
4	20	15	0	∞	10	50	∞	15	26	31
5	6	0	15	10	∞	35	∞	0	11	16
6	∞									
7	51	45	40	55	40	∞	∞	33	44	49
8	11	6	21	15	0	40	∞	∞	4	9
9	22	16	31	26	11	50	∞	4	∞	0
10	16	11	25	31	16	55	∞	9	0	∞

Fig. 3

Fig. 3 is now a new matrix which is modified. After these modifications the matrix can be reduced again. Check each row first and then each colamn for a zero element in it. If there is an absence of rero element in a row, subtract the minimum number $M(i, j)$ from each element of that row. Similarly after reducing all rows check the columns and reaeat the whole process again. In Fig. 3 row 7 and column 6 do not have zero elements. In row 7 the minimum element is $M(7,8)=33$. Subtract this amount from each element in the row 7. In column 6 the
minimum element is $M(5,6)=35$. Subtract this amount from each element in column 6. Now we have an entirely new modified matrix as sho"n in Fig. 4.

)	1	2	3	4	5	6	7	8	9	10
1	∞	0 (6)	15	20	6	11	-	11	22	16
2	0 (6)	∞	10	15	0 (0)	5	∞	6	16	11
3	15	10	∞	σ (2)	15	20	∞	21	31	25
4	20	15	0 (17)	∞	10	15	∞	15	20	31
5	6	0 (0)	15	10	∞	- (5)	∞	0 (0)	11	16
6	∞	ω	∞							
7	18	12.	7	22	7	∞	∞	- (7)	11	16
8	11	6 \%	21	15	- (4)	40	-	∞	4	9
9	22	16 \$	31	26	11	50	ω	4	∞	0 (13)
10	16	11	25	31	16	20	ω	9	0 (13)	ω
		1								

Fig. 4

Having this new' matrix find L for all $M(i, j)=0$. Select the $M(i, j)$ which ha's the maximum L. Values of L are written in small circles placed in the zero cells of Fig. 4. The largest L is 20 for $M(3,4)$ and so $(3,4)$ is second pair selected. As stated before, row 3 and column 4 are no longer needed and should be deleted from the matrix. Next substitute $M(4,3)=\infty$.

It may be worth giving another example of finding (g, f) to clarify a fundamental concept. Suppose the committed points or

Block pairs were $(6,7)(7,8)(8,9)$ and $(3,4)$ and (X, Y) were $(7,8)$. Then connected route containing (X, Y) would start at 6 and end at 9 giving $(g, f)=(9,6)$. Again we have similar confronting situation. Now we have to carry out routine calculations each time dealing with new matrix. Starting from the original matrix, rows and columns are deleted for the blocks or point pairs committed to the route, infinities are placed to block subroutes and at forbidden point pairs, and the resulting matrix is reduced.

By the time M is a 2×2 matrix, there are only two feasible (i, j) left and they complete the route.

If we examine algorithm closely it can be observed that crossing out of a fiow and colum and blocking of the corresponding subroute creates a new postman route problem having one less point each time. The blocking of subroutes is a way of introducing the route restrictions into what is otherwise an assignment problem and is accomplished rather successfully by the algorithm.

The ten point problem used for illustration was fully solved on an IBM 1620 and is presented fully in detail in subsequent pages.

CALCULATIONS

Problems up to ten points can be solved easily by hand. Although the author has made no special study of. the time required for hand calculations, experience is that a ten point problem can be solved in approximately an hour.

The principle testing of algorithm has been by machine on an

IBM 1620 and IBM 1410. The program was written in Fortran II to implement programming.

CONCLUSION

A scale map of a particular postal route is given in the appendix. The ten point problem used for illustration is a part of this particular route.

No change was found in present route followed by a postman. This proves the efficiency of the present route. The author would like to suggest a further study on routes in outlaying areas.

A very interesting case happened when the author was testing a twenty point route. The optimized route included all twenty points miving a minimum distance to be travelled to reach all the points, but this particular route omitted one block. This type of situation is undesirakle. It is advisable in such cases to include one more point in the problem by adding an extra point in the middle of the missed block and this will be a new data to solve the problem.

The problem up to 15 points usually requires only a few minutes. The time grows exponentially, however, and for 30 points time increases appreciably on IBM 1620. As a rule of thumb, adding ten points to the problem multiplies time by a factor of three.

Curves (1) and (2) of the graph on page 18 shows the results of problems solved on IBM 1620 and IBM 1410.

ILLUSTRATION

DATA

10
9999004000550060004600860092005200620056 40999900150020000500450051001200210016 55001599990005002000600046002700360030 60002000059999001500550061002100310036 46000500200015999900400046000600160021 86004500600055004099990006004600550060 92005100460061004600069999004000500055 52001200270021000600460040999900100015 62002100360031001600550050001099990005 56001600300036002100600055001500059999

REDUCED MATRIX

9999000150020000600460052001100220016 99990010001000400046000600160011 15001099990001500550041002100310025 20001509999001000500056001500260031 6000150010999900350041000110016 45003900340049003499990003900490054 51004500400055004009999003300440049 11000600210015000400034999900040009 22001600310026001100500045000499990 1600110025003100160055005000090999

```
9999 0 15 20 6 469999
    9999 10 15 0 409999 6 16 111
```



```
    20}1150999910 509999 15 26 31 
    6}00015 109999 359999 0 11 16 
99999999999999999999999999999999999999999
    51 45 40 55 4099999999 33 44 49
    11 6 21 15 0 4099999999 4 9
```



```
    6
        7
                        6 8
```

```
9999 0 159999 6 119999 11 
    9999 109999 0 59999 6 16 11
```

99
$20 \quad 1599999999 \quad 10 \quad 159999 \quad 15 \quad 26$
$6 \quad 0 \quad 159999999909999 \quad 0 \quad 11 \quad 16$
9ロ9999999999ソ999999999999999999999999999
$\begin{array}{lllllll}18 & 12 & 79999 & 799999999 & 0 & 11 & 16\end{array}$
$116219999 \quad 0 \quad 599999999 \quad 4 \quad 9$
$\begin{array}{lllllll}22 & 16 & 319999 & 11 & 159999 & 49999 & 0\end{array}$
$\begin{array}{lllllll}16 & 11 & 259999 & 16 & 209999 & 9 & 09999\end{array}$
3
4
20

9999	0	89999	6	119999	11	229999
9999	39999	0	59999	6	169999	

99
$10 \quad 599999999 \quad 0 \quad 59999 \quad 5 \quad 169999$
$6 \quad 0 \quad 89999999909999 \quad 0 \quad 119999$
99
$\begin{array}{lllll}18 & 12 & 09999 & 799999999 & 0\end{array} 19999$
$\begin{array}{llllll}11 & 6 & 149999 & 0 & 599999999 & 49999\end{array}$
99
$16 \quad 11 \quad 18999916 \quad 209999 \quad 999999999$
9
10
13
$9999 \quad 0 \quad 89999 \quad 6 \quad 119999 \quad 1199999999$ $9999 \quad 39999 \quad 699999999$ 99

1059999999999999999
$6 \quad 0 \quad 89999999909999099999999$ 9999999999999999999999099999999999999999 $18 \quad 1209999799999999099999999$ 99 99
$7 \quad 2 \quad 99999 \quad 119999999999999999$

99 $99999999 \quad 39999 \quad 0999999999$ 99 1099999999999999999999 69999099999999099999999 99 $189999 \quad 099990999999999999$ 99 99 $5999979999 \quad 59999999999999999$ 1 2 6

999 9999999999999999999999999 99999999999999999999999499999999999999999 $9999999999999999 \quad 5999999999$ 999999990999999999999999 99 9999999909999 0999999999 99 99 99
10
1
6

99 99999999999999999999999999999 99 $9999999999999999 \quad 0999999999999999$ 99 99 999999990999999999999999909999 99 99 99
5
6
5

9999999999999999999999099999999999999999 9999999939999999999999999999999999999 9099999999999999999999999999999999999999 9999999999999999099999999999999999999 99 99 99 99 99 99

9099999999999999999999999999999999999999 99 99 99 99 99 99 99 99 99

(1) Shows time required in minutes on IBM 1620
(2) Shows time renuired in minutes on IBM 1410

ACKNOWLEDGEMENTS

The author gratefully acknowledges the invaluable guidance rendered by the faculty and staff members in the Department of Industrial Engincering. In particular, the author Wishes to express his sincere gratitude to his major professor and Director of IBM 1620 Computing Center at KSU, Professor J. J. Smaltz for suggestions, guidance, kind advice and encouragement during the entire study period. Thanks are also expressed to Mr. Larry Hofman for his excellent assistance in programming.

The assistance of the personnel at Post office, Nazhattan, Kansas in cooperating with the project is herewith gratefuliy accepted.

REFERENCES

1. Flood, M. M.
"The Traveling Salesman Problem", Opns. Res. 4, pp. 61-75 (1956)
2. Dantzig, G. B., Fulkerson, D. R., and Johnson, S. M. "Solution of a Large Scale Traveling Salesman Problem", Opns. Res. 2, pp. 393-410 (1954).
3. Little, John D. C., Murty, K. G., Sweeney, D. W., and Karel, Caroline "An Algorithn for the Traveling Salesman Problem", Opns. Res. 6, pp. 972-989 (1963).
4. Sasieni, M., Yaspan, A., and Friedman, L.
"Operations Research", Sequencing. pp. 264-267.
5. Armbruster, J.
"The Traveling Salesman Problem", Unpublished ?3ner May 12, 1962. Industrial Engineering Department, Kansés State University.

APPENDIX

```
    MAIN PROGRAM
                    BCP ROUTS PATL
    DIMENSICN N(50,50)
    DIMENSION ICHEK(!0),JCHEK(50)
    COMMON N
    IPRCT=0
    k=0
    KKK=0
    I I =0
    JJ=0
    READ INPUT TAPE5,1,M
    1 FORMAT(I4)
    DO 101 I=1,M
101 READ INPUT TAPE 5,2,(N(I,J),J=1,M)
    2 FORMAT (10I4)
    3 DO 6I =1,M
    L=MINR(I,M)
    IF(L-9y99)4,6,4
    4 DS 6J=1,M
    IF(N(I,J)-9999)5,6,5
5 N(I,J)=N(I,J)-L
6 CSNTINUE
```

```
    Dこ 7J=1,M
    L=MINC(J,M)
    IF(L-9999)30,7,30
30 DC 7I=1,M
    IF(N(I,J)-9999)31,7,31
31 N(I,J)=N(I,J)-L
    7 CONTINUE
        X1=-1
        x2=-1
        DO 8I=1,M
        DO 8 J=1,M
        IF (N(:,J))99,9,8
9 9 ~ C A L L ~ E X I T ~
    9 K=J
    Ll=MINER(I,M,J)
    L2=MINEC(J,M,I)
    X1=L1+L2
    IF(X1-X2)8,90,11
90 IF(J-1)8,8,11
11 }\times2=\times
    I1= I
    Jl=J
8 CONTINUE
    I PRCT=I PRCT+1
```

```
    ICHEK(IPRCT)=I 1
    JCHEK(IPRCT)=JI
    12 FこRMAT(2HOBI 4,5X,14,5X,14)
    N(Jl,Il)=9999
    DO 10 K=1,M
    N(II,K)=9999
    10N(K,Jl)=9999
    DO 300 I=1,IPRCT
    DO 290 J=1,IPRCT
    IF(ICHEK(I)-JCHEK(J))290,280,290
280 IRCW=JCHEK (I)
    JCOL=ICHEK(J)
    N(IROW,JCOL)=9999
281 DO 285 K=1,IPRCT
    IF(ICHEK(K)-IROW)285,282,285
282 I RCW=JCHEK(K)
    N(IROW,JCOL)=9999
    GO T^ 281
285 CONTINUE
    G^ T^ 300
290 CONTINUE
300 CONTINLIE
    WRITE CUT PUT TAPE6,12,I1,J1,X2
    KKK=KKKK+1
    IF(KKY-M)3,99,99
    END
```


SUBPRCGRAM MINR

BCP MINR
FUNCTION MINR(I,M)
DIMENSION N(50,50)
COMMON N
MINR=N(I,1)
$D \approx 100 \mathrm{~J}=2, \mathrm{M}$
$\operatorname{IF}(N(I, J)-M I N R) 90,100,100$
$90 \operatorname{MINR}=\mathrm{N}(\mathrm{I}, \mathrm{J})$
100 CONTINUE
RETURN
END

SUBPROGRAM MINC

BCP MINC
FUNCTION MINC(J,M)
DIMENSION N(50,50)
COMMON N
MINC=N(1,J)
DC $200 \mathrm{I}=2, \mathrm{M}$
IF(N(I,J)-MINC) $190,200,200$
190 MINC=N(I,J)
200 CONTINUE
RETURN
END

SUBPRこGRAM MINER

BCP MINER

FUNCTION MINER(I,M,K)
DIMENSION N(50,50)
COMMOR N
MINER $=9999$
DO $10 \mathrm{~J}=1, \mathrm{M}$
IF $(J-K) 5,10,5$
5 IF (MINER-N(I,J)) $10,10,8$
8 MINER=N(I,J)
10 CONTINUE
RETURN
END

SUBPRこGRAM MINEC

BOP MINEC
FUNCTICN MINEC(J,M,K)
DIMENSICN $N(50,50)$
COMMON N
MINEC $=9999$
DO $20 \mathrm{I}=1, \mathrm{M}$
IF (I-K) $15,20,15$
$15 \operatorname{IF}($ MINEC $-N(I, J)) 20,20,18$
18 MINEC=N(I,J)
20 CONTINUE
RETURN
END
MAP OF ILLUSTFATED ROUTE:

Scale: $1^{\prime \prime}=400 \mathrm{ft}$.

COMPUTERIZED OPTIMIZATION OF POSTAL ROUTES

by

VINUBHAI CHHOTABHAI PATEL

B.E. (M.E.), Maharaja Sayajirao University Baroda, India, 1962

```
    AN (ABSTRACT OF A MASTER'S REPORT
    *
submitted in partial fulfillment of the
    requirements for the degree
    MASTER OF SCIENCE
Department of Industrial Engineering
```

The purpose of this report was to study and find out some method (algorithm) which can be used to minimize the distance travelled by a postman while delivering mail. It was the purpose of this paper to computerize the algorithm so that the problem can be solved scientifically.

The problem of postal route was a symmetrical problem i.e. the distance to be travelled by a postman from block i to j is same as the distance from j to i. If there are M points or blocks to be considered then it will give a square matrix (distance matrix) of size MxM. The problem will be to find a subset of M elements $N_{p q}, N_{q r}, \ldots N_{v p}$, where $p, q, \ldots{ }_{q}, \quad$ vare some permatations of integers, 1, 2, ... M, such the the sum of the elements of the subset shall be a minimum. In matrix i stands for rows and j stands for columns.

The basic method will be to break up the distance matrix into smaller and smaller size as the algorithm procecds.

The first step will be the reduction of the original matrix. Original distance matrix will be reduced by subtrac $\overline{2}+\mathrm{c}_{\mathrm{c}}$ minimum element of row (i) from each elements of row, contiauisg this for all rows. Then subtract minimum element from each col (j). This will give a new reduced matrix having at least or zero element in each row and column.

The next step is to select from these elements, the best one which gives the minimum distance to be travelled. Take element $\mathrm{N}(\mathrm{X}, \mathrm{Y})$ which has value zero. Select minimum amount from row X excluding $N(X, Y)$. Select from colunn Y the minimum
amount excluding $N(X, Y)$. Sum these two elements and call it L. Similarly calculate L for all zero elements. Our required pair (X, Y) is that which gives the largest L.

Since the pair (X, Y) is now committed to the route, row X and column Y are no longer needed and should be deleted from the matrix. Now (X, Y) will be a part of a connected path. Suppose the path starts at point f and ends at point g i.e. if we get path (f, g), the connecting of g to f should be forbidden for it would create a subroute - a circuit with less than M points and no subroute can be a point of a final route. So (Y, X) should be substituted as infinity i.e. the largest possible number.

This process is continued till matrix is reduced to $2 x 2$ matrix. By the time M is $2 x 2$ matrix, there are only two feasible ($1, j$) leff and they complete the route.

It can be observed that crossing out of the row and the column and the blocking of the corresponding subroute creates a new postman route problem having one fewer point each time. The program was written in Fortran II for IBM 1620 to implement algorithm. The program was modified for IBM 1410.

Ten point problem solved by hand requires aproximately an hour. The computer requires hardly few minutes to solve the problem. The time grows exponentially, however, and by 30 points is beginning to appreciable on IBM 1620. As a rule of thumb, adding ten points to the problem multiplies time by a factor of 3 .

This technique can be more useful for rural areas and newly added areas.

