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Abstract 

The feasibility of restoration, which traditionally targets historical conditions, is 

questionable in the context of global change. To address this, my dissertation investigated 

(Chapter 2) the patterns of restoration establishment along a chronosequence of restored prairies 

with respect to nearby remnant prairies, (Chapters 3-4) responses of plant communities in 

restorations initiated using different methods (levels of species richness and sowing density) to 

drought, which is projected to increase in frequency, and (Chapters 5-6) the effects of propagule 

source and variation (mixing among sources) on restoration establishment and the generality of 

restoration outcomes across variable environments using reciprocal common gardens of multi-

species restoration seedings. Chapter 2, published in Restoration Ecology, showed that 

restoration led to the recovery of desirable characteristics within several years, but restorations 

utilizing primarily fall-collected seeds likely diminished the representation of early phenology 

species, so biodiversity may be further enhanced by including early phenology species in seeding 

mixes. Chapters 3 and 4, published respectively in Ecological Applications and Applied 

Vegetation Science, examined the establishment of native plant communities after seeding and 

their responses to experimentally imposed drought. Both high seed mixture richness and high 

density seeding resulted in greater establishment of native, seeded species compared to low 

richness and low density treatments, and exotic species were less prevalent in high richness and 

high density treatments. However, we found little evidence of differential drought resistance, 

recovery, and resilience among treatments. This result coupled with increases in exotic species 

following drought suggest that other forms of active management may be needed to produce 

restored plant communities that are robust to climate change. Chapter 5 (published in Ecosphere) 



 

 

and Chapter 6 found that seed source affects individual species establishment, community 

structure, and productivity. However, there was no consistent advantage for any source, 

including local sources, across sites or species. This suggests that source effects on single species 

or effects observed at single locations should not be broadly generalized. Together, this 

dissertation shows that restoration can recover many characteristics of native prairies and that 

manipulation of seeding practices (seed mixture richness, seeding density, seed source) influence 

grassland establishment in terms of productivity, community structure, invasion, and the 

abundance and survival of individual species.  
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utilizing primarily fall-collected seeds likely diminished the representation of early phenology 

species, so biodiversity may be further enhanced by including early phenology species in seeding 

mixes. Chapters 3 and 4, published respectively in Ecological Applications and Applied 

Vegetation Science, examined the establishment of native plant communities after seeding and 

their responses to experimentally imposed drought. Both high seed mixture richness and high 

density seeding resulted in greater establishment of native, seeded species compared to low 

richness and low density treatments, and exotic species were less prevalent in high richness and 

high density treatments. However, we found little evidence of differential drought resistance, 

recovery, and resilience among treatments. This result coupled with increases in exotic species 

following drought suggest that other forms of active management may be needed to produce 
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and Chapter 6 found that seed source affects individual species establishment, community 

structure, and productivity. However, there was no consistent advantage for any source, 

including local sources, across sites or species. This suggests that source effects on single species 

or effects observed at single locations should not be broadly generalized. Together, this 

dissertation shows that restoration can recover many characteristics of native prairies and that 

manipulation of seeding practices (seed mixture richness, seeding density, seed source) influence 

grassland establishment in terms of productivity, community structure, invasion, and the 

abundance and survival of individual species.  
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Chapter 1 - Introduction 

Humankind is causing an unprecedented manipulation of Earth’s climate, land cover, and 

species distributions.  Observed and projected consequences of this era dominated by human 

activity, informally called the “Anthropocene” (Zalasiewicz et al. 2010), are prompting societal 

concern and action within the management and scientific research communities. This has been 

especially true for temperate grasslands, where Hoekstra et al. (2005) described the disparity 

between habitat loss and protection as “stark”. Agriculture, urban development, invasive species, 

and woody encroachment continue to replace or transform native temperate grassland 

ecosystems, and restoration has become increasingly critical for the conservation of biodiversity 

and ecosystem functioning (Ries et al. 2001, Baer et al. 2002, Fletcher and Koford 2003, Walker 

et al. 2004). However, the feasibility of restoration, which traditionally targets historical 

conditions (e.g. native vs. exotic species), is questionable in the context of anthropogenic 

alteration of biophysical conditions (Harris et al. 2006). This is the focus of my dissertation, 

which investigates (1) the establishment of grassland plant communities in restorations with 

respect to nearby remnant grasslands using a chronosequence approach, (2) responses of plant 

communities in restoration plots initiated using different methods (levels of seed mixture 

richness and sowing density) to drought, which is projected to increase in frequency over the 

coming decades (Strzepek et al. 2010), and (3) the effects of propagule source and variation 

(mixing among sources) on restoration establishment and the generality of restoration outcomes 

across variable environments using reciprocal common gardens in three states (NE, KS, OK), 

which differ markedly in their biophysical conditions.     
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I conducted my research in the tallgrass prairie region of central North America. 

Tallgrass prairie once covered over 68-million ha between Canada and Texas and Nebraska and 

Indiana, but most of this has been converted for agricultural purposes, and less than one-tenth of 

one percent of original tallgrass prairie remains in some states and provinces: Iowa, Illinois, 

Indiana, Manitoba, North Dakota, and Wisconsin (Samson and Knopf 1994).  Remaining 

grasslands are economically important for grazing, provide critical habitat for flora and fauna 

(Allen-Diaz 1996, McKee 1998, Wolken 2001), and deliver ecosystem services, including 

carbon storage and enhanced water quality (Kemp and Dodds 2001, Derner et al. 2006). 

Biophysical changes in Central North America are ubiquitous. Invasions of exotic species 

(Jordan et al. 2008), changes in vegetation type (Linneman and Palmer 2006, Norris et al. 2007), 

increases in mean annual temperature and the frequency and intensity of summer droughts 

(Meehl et al. 2007, Strzepek et al. 2010), observed and continuing increases in atmospheric CO2 

concentrations, and N deposition all have consequences for grassland plant communities and 

ecosystem processes (Zaveleta et al. 2003, Stevens et. al. 2004). These changes collectively place 

restoration science on an unsteady footing. 

Restoring diverse grassland plant communities in areas where most native species have 

been eliminated requires seed addition, because dispersal limits the colonization of disturbed 

sites by most grassland species, and many grassland species do not maintain long-term seed 

banks (Rabinowitz and Rapp 1980). Seed mixtures, then, represent much of the available species 

pool (sensu Zobel 1997) for plant communities in grassland restoration. This underscores the 

importance of restoration seed mixture composition and planting methods in the context of 

global change, because human decisions should determine whether or not grassland restorations 

contain plant species or genotypes suitable for environments that are likely to deviate markedly 
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from historical references. In species- or functionally-rich plant communities, ecosystem 

functioning may be enhanced as a result of complementary patterns of resource use or greater 

likelihood of the presence of species that compete for resources across temporal and spatial 

gradients (Huston 1997; Marquard et al. 2009). Species-rich plant communities can also diminish 

establishment of invasive species and enhance drought resistance, recovery and resilience, if 

resultant communities possess greater richness and associated trait variation (Loreau et al. 2001). 

Trait variation associated with genetic variation within species can have similar ecological 

effects (Hughes et al. 2008). There are many documented examples where ecotypes of plant 

species (derived from different locations and assumed to be genetically distinct) exhibit 

differential responses to common environments (e.g. Clausen et al. 1940, Knapp and Rice 2008). 

Restoration seed mixture composition, then, is critical for the establishment of plant communities 

and their associated properties in restoration. Seed mixtures determine whether or not the traits 

needed to pass through abiotic and biotic filters (e.g. climate, substrate, competition, trophic 

interactions) for establishment and future environmental variation are present within and among 

species (Hobbs and Norton 2004). There are many publications on the effects of restoration 

practices, the structure of plant communities and ecosystem functioning in restorations, and the 

effects of many dimensions of global change on community and ecosystem processes. Yet there 

remains a scarcity of research that unites these to inform restoration in a changing world. My 

dissertation describes how plant communities in restorations develop, and how variable 

environments can act as ecological filters and interact with restoration practices that influence 

species pools and dispersal to affect plant community structure and productivity. 
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Chapter 2 - Recovery of Native Plant Community Characteristics on 

a Chronosequence of Restored Prairies Seeded into Pastures in 

West-Central Iowa
1
 

 Abstract 

Restored grasslands comprise an ever-increasing proportion of grasslands in North America and 

elsewhere. However, floristic studies of restored grasslands indicate that our ability to restore 

plant communities is limited. Our goal was to assess the effectiveness of restoration seeding for 

recovery of key plant community components on former exotic, cool-season pastures using a 

chronosequence of six restoration sites and three nearby remnant tallgrass prairie sites in West-

Central Iowa. We assessed trends in Simpson’s diversity and evenness, richness and abundance 

of selected native and exotic plant guilds, and mean coefficient of conservatism (mean C). 

Simpson’s diversity and evenness and perennial invasive species abundance all declined with 

restoration site age. As a group, restoration sites had greater richness of native C3 species with 

late phenology, but lower richness and abundance of species with early phenology relative to 

remnant sites. Total native richness, total native abundance (cover), mean C, and abundance of 

late phenology C3 plants were similar between restoration and remnant sites. Observed declines 

in diversity and evenness with restoration age reflect increases in C4 grass abundance rather than 

absolute decreases in the abundance of perennial C3 species. In contrast to other studies, 

restoration seeding appears to have led to successful establishment of tallgrass prairie species 

                                                 

1
 Reprinted with permission from Wiley Publishing: “Recovery of Native Plant Community Characteristics on a 

Chronosequence of Restored Prairies Seeded into Pastures in West-Central Iowa” by D.L. Carter & J.M. Blair, 

2012. Restoration Ecology, 20, 170-179.  
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that were likely to be included in seeding mixtures. While several floristic measures indicate 

convergence of restoration and remnant sites, biodiversity may be further enhanced by including 

early phenology species in seeding mixes in proportion to their abundance on remnant prairies. 

 Introduction 

Hoekstra et al. (2005) describe the disparity between habitat loss and protection in 

temperate grasslands as “stark” and classify temperate grasslands among the most critically 

endangered ecoregions globally. In North America, tallgrass prairie once covered over 68-

million ha, but tallgrass prairie extent has declined dramatically since the 1800s with increased 

agricultural land use. One-tenth of 1% or less of original tallgrass prairie remains in Iowa, 

Illinois, Indiana, Manitoba, North Dakota, and Wisconsin (Samson & Knopf 1994). Work in 

temperate grasslands (Foster et al. 2007; Jiang et al. 2010; Kiehl et al. 2010) has demonstrated 

dispersal limitation in grassland establishment. In North American grasslands, dispersal and 

establishment may take centuries without intervention (Foster et al. 2007). The first researched 

attempts at grassland restoration via the introduction of seeds or transplants began in the 1930s 

with the J.T. Curtis prairie at the University of Wisconsin Arboretum (Cottam & Wilson 1966), 

and in recent decades there have been increased efforts to restore prairie for both conservation 

and research purposes (Mlot 1990). While remnant prairies are of critical conservation concern, 

small-scale restoration efforts and large projects like the Neil Smith National Wildlife Refuge, 

Iowa (US Fish and Wildlife), and projects undertaken by the Nature Conservancy have increased 

the relative importance of restored tallgrass prairies for harboring biodiversity and performing 

ecosystem functions. Restoration can serve as an “acid test” of our understanding of community 

assembly (Bradshaw 1987). While restoration of some grassland and forest systems has met with 
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some success (Hellstrom et al. 2009; Bruel et al. 2010; Mackenzie & Naeth 2010), reestablishing 

plant diversity in tallgrass prairie remains elusive (Camill et al. 2004). Kindscher and Tieszen 

(1998), Sluis (2002), Martin et al. (2005), McLachlan and Knispel (2005), and Middleton et al. 

(2010) investigated floristic patterns on ex-arable sites restored by seed addition with respect to 

remnant sites and found that restorations were floristically impoverished after as many as 35 

years relative to remnant prairies. These authors concluded that restorations using seeds do not 

recover floristic patterns typical of remnant prairies, at least in the near term. A number of 

studies have indicated that older restorations exhibit a shift toward excessive C4 grass 

dominance (Baer et al. 2002; Camill et al. 2004; McLachlan & Knispel 2005) at the expense of 

floristic diversity. It is unclear why C4 grasses collected from local remnant prairies appeared to 

exclude other native species more in restorations than nearby remnant prairies, and Camill et al. 

(2004) speculated that this may result from altered burn regimes, pressures from primary 

consumers, and problems with restoration practices. Soil resource heterogeneity can also 

influence patterns of C4 grass dominance in restorations (Baer et al. 2005). The degree to which 

restored plant communities successfully exclude exotic species is unclear. In several studies, 

increases in native plant cover, largely C4 grasses, coincided with decreases in the cover of 

weeds (both native and exotic ruderal species) as restorations age (Baer et al. 2002; Camill et al. 

2004; McLachlan & Knispel 2005). However, there has been little focus on trends in the 

abundance of exotic perennials with restoration age (but see McLachlan & Knispel 2005 for 

trends in exotic, cool-season grasses) despite the threats that exotic perennial species pose to the 

diversity and functioning of prairies in Central North America (Symstad 2004; Woods et al. 

2009). Our first objective was to assess trends in several key characteristics of prairie plant 

communities restored by seeding in the context of former exotic, cool-season pastures. Most 
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other studies have assessed prairie restorations on ex-arable lands, and conclude that seeding 

alone is insufficient for establishing plant communities similar to remnant prairie. Restoration in 

the context of cool-season pastures is seldom studied, and could have consequences for patterns 

of ruderal and exotic abundance and the establishment of native richness and abundance that 

differ from those on ex-arable lands. Our second objective was to present and compare trends in 

several underlying plant community characteristics. Many studies of plant community dynamics 

across restoration chronosequences (Kindscher & Tieszen 1998; Sluis 2002, Camill et al. 2004; 

McLachlan & Knispel 2005) or comparisons of restored to remnant plant communities (Martin et 

al. 2005) do not explicitly consider differences in native species characteristics (i.e. whether 

restored communities consist of the same native species that tend to be found in remnant 

prairies), and few track guild-specific trends (Camill et al. 2004). Instead, most authors have 

reported changes in native plant richness and diversity or evenness. Here, we report mean 

coefficient of conservatism (mean C) values, defined in the Methods section, which Taft et al. 

(2006) indicate may better capture qualitative differences among sites by differentially weighting 

ruderal versus conservative components of native plant communities. We also report temporal 

trends in richness and abundance within selected native and exotic plant guilds, temporal trends 

in plant community summary variables (native diversity, evenness, and mean C), associations 

between community summary variables and the abundance of different plant guilds, and 

differences between grouped restoration and remnant sites. Analysis of subgroups highlights 

characteristics that might underlay broader measures (richness, evenness, etc.) and identify 

pitfalls in restoration for further exploration. 
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 Methods 

Study Sites 

Tallgrass prairie restorations were located at Diversity Farms, Inc. (41
◦
53’ N, 94

◦
47’ W), 

approximately 100-km west-northwest of Des Moines, IA. Remnant prairie sites were located 

within a 25-km radius. All locations were designated as prairie by the General Land Office 

survey of Iowa that occurred from 1836 to 1859. Prairie restoration sites were enrolled from row-

crop agriculture into the Conservation Reserve Program (CRP) in 1986 and seeded to Bromus 

inermis (smooth brome) pasture. Beginning in 1998, Diversity Farms, Inc. applied glyphosate to 

portions of the original (CRP) fields and subsequently burned them to remove standing litter. 

Restorations were then planted by broadcast seeding over uncultivated soil using bulk, 

unprocessed seed harvested in the fall by combine and small amounts of seed harvested by hand 

from prairie remnants within a one-county radius (approximately 80-km), including the remnant 

prairies sampled for this study. Bulk seeding rates (including hand harvest) for forbs were double 

those for grasses (1.4- to 1.8-kg/ha forb; 0.7- to 0.9-kg/ha grass), and reflected seed production of 

species bearing seeds at bulk harvest dates in autumn. All prairie restorations were contiguous, 

occupied a similar upland rolling topography, and were burned in spring on an annual basis after 

their first burn. Restorations were also mowed as needed to reduce competition from weeds. All 

remnant sites were managed by Diversity Farms, Inc. with a spring fire return interval of 2 or 3 

years and utilized for seed collection. Table 2-1 contains additional site and management 

information. 

Vegetation Sampling 

 



13 

 

In both mid-May and early August, 2009, a fixed-location, modified Whittaker sampling 

scheme was used within each site to (1) sample both species richness and species-specific total 

canopy cover in ten 0.5 × 2–m subplots arrayed around a 20 × 50–m rectangle and (2) sample 

only species richness in two 2 × 5–m subplots, one 5 × 20–m plot, and an inclusive 20 × 50–m 

plot (Stohlgren et al. 1995). All modified Whittaker plots were located at least 10-m from site-

edge transitions, and situated along maximum available gradients of slope. Benefits of this 

sampling method included the minimization of codependence among subplots, better estimates 

of site richness, and standardization of sampling area across sites (Stohlgren et al. 1995). 

Vegetation Analyses 

We assessed species richness at 1-m
2
 (n = 10), 10-m

2
 (n = 2), 100-m

2
 (n = 1) and 1,000-

m
2
 (n = 1) spatial scales at each site. At the 1- and 10-m

2
 scales, we calculated richness as the 

mean number of species across subplots encountered on at least one of the two sampling 

occasions; at the 100- and 1,000-m
2
 scales, richness was the total number of species encountered. 

We assessed abundance by species as peak total canopy cover attained on each subplot across 

sampling occasions. Unless otherwise stated, reported values reflect total percent cover. Peak 

total cover values could be greater than 100% because of multilayered vegetation canopies or 

replacement among species from May to August. We assessed abundance of both ruderal (annual 

and biennial) and perennial native and exotic species and patterns of richness and abundance for 

several native perennial guilds. These included Asteraceae, Fabaceae, C4 graminoids, and C3 

graminoids, which were defined previously as functional groups with slight variations because 

they respectively represent the greatest richness component, nitrogen fixers, and two carbon 

fixation pathways among dominant perennial graminoids (Kindscher & Wells 1995, Tilman 

1997, Camill et al. 2004). We also assessed early and late phenology guilds of perennial C3 
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species independently, because C3 species with early phenologies had high abundance on studied 

remnants and disperse seeds prior to bulk seed collections at these sites. These phenology guilds 

are analogous to Kindscher and Wells’ (1995) C3 grasses and sedges, ephemeral spring forbs, 

and spring forbs combined (early phenology) and summer/fall forbs and legumes combined (late 

phenology). Phenology, native/exotic, and perennial/biennial/annual guild designations for 

species and site presence for species are given in Appendix A. Plant species nomenclature 

follows the United States Department of Agriculture Plants Database. We calculated mean 1-m
2
 

Simpson’s diversity and evenness (Simpson 1949; Magurran 2004) using peak total cover as the 

measure of abundance for each species. Trends in the site presence of native species that tend to 

be restricted to relatively undisturbed, native prairie were assessed using the coefficient of 

conservatism (CC), which weights species on a scale from 1 to 10, with greater values assigned 

to species that tend be restricted to relatively undisturbed remnant sites (Swink & Wilhelm 

1994). Taft et al. (2006) found that CC explained more variation among tallgrass prairie sites 

than conventional plant community measures. We used CC values developed for Iowa, available 

through the Ada Hayden Herbarium at Iowa State University, and calculated the mean C 

weighted by species’ relative abundances for each site: 

 

Mean C = Σ CCi • Ai 

 

where A is the relative abundance (based on peak values) for the ith species in each subplot. We 

also present the analysis used by Taft et al. (2006), which divides the sum of CC values by native 

richness without weighting by abundance. 
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Statistical Analyses 

We used permutational multivariate analysis of variance (MANOVA) to perform global 

tests of the difference among all sites at the 1-m
2
 scale based on the 10 subplots within each site 

and the difference between pooled restoration (n = 6) and remnant (n = 3) sites to assure the 

existence of site differences when performing univariate analyses. Refer to Anderson (2001) for 

an introduction to permutational MANOVA. We also performed canonical variates analysis 

(CVA) on multivariate data to visualize the distance between and among plant communities at 

restoration and remnant sites in a reduced dimensional space (Johnson 1998). This analysis 

illustrates similarity among communities with respect to all plant guild and community summary 

variables. This was preferred to community similarity analyses based on the presence and 

abundance of individual species. We used two-sample permutation tests based on means (10,000 

iterations) to assess differences in plant community structure variables between restoration sites 

(n = 6) and remnant sites (n = 3) where Dobs is the observed difference in means between 

restorations and remnants. 

We explored changes in plant community structure with age across the restoration 

chronosequence using Spearman rank correlation (approximate permutation method, 10,000 

iterations). We assessed relationships between the response variables Simpson’s diversity, 

Simpson’s evenness, and mean C and the predictor variables native C4 abundance, native 

perennial C3 abundance, and ruderal species abundance using linear multiple regression. 

Permutational tests were used in cases where assumptions of parametric tests were violated or for 

consistency where parametric statistics were appropriate for only a minority of tests. Spearman 

correlations were used to assess trends with respect to restoration age, because Spearman 

correlations do not assume that trends are linear. Permutation MANOVA, univariate tests, and 
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tests of association were performed in Program R version 2.10.1 (2009), including the coin 

(Hothorn et al. 2008) and vegan (Oksanen et al. 2010) packages. CVA was performed with SAS 

version 9.2 (2000–2008) using the PROC GLM procedure. All analyses of trends with 

restoration age utilized subsamples as separate observations within each restoration site. This 

approach is common in grassland chronosequence studies because of constraints in the 

replication of treatments at large spatial scales (Matamala et al. 2008). 

 Results 

Multivariate Analyses 

Permutation MANOVAs indicated significant differences among individual restoration 

and remnant sites (pseudo-F=14.616, p<0.001) and between pooled restoration and remnant sites 

(pseudo-F=16.954, p<0.001).  All restored plant communities significantly differed from all 

remnant communities, but were similar to one-another with respect to the first canonical variate 

(CVA), and all remnant sites differed from one-another (Figure 2-1).  Restored and remnant 

communities also differed with respect to the second canonical variate, with the greatest 

differences among plant communities at restored sites (Figure 2-1).   The first canonical variate 

was positively associated with measures of early phenology richness and abundance, and the 

second canonical variate was negatively associated with several variables that reflect ruderal or 

exotic character and positively associated with variables that represent native components of the 

plant community seeded into the restorations (Table 2-2).   

Native and Exotic Richness 

Native species richness did not differ significantly between restoration and remnant sites 

at any scale, and showed no significant correlation with restoration age. Exotic richness 



17 

 

decreased with restoration age at all scales sampled (1,000-m
2
, rs=-0.786, p=0.007; 100-m

2
, rs=-

0.926, p=0.015; 10-m
2,
 rs=-0.747, p=0.004; 1-m

2
, rs=-0.786, p<0.001).   

Simpson’s Diversity and Evenness 

Both Simpson’s diversity and evenness for native species declined with restoration age 

(Figure 2-2). Fits of linear multiple regression models containing C3 and C4 native, perennial 

abundance and native ruderal abundance as predictors were not significantly different from 

models with C4 abundance as the sole predictor and yielded similar coefficients of determination 

for both indices (Table 2-3), suggesting that values for both indices across restoration sites were 

explained by increases in C4 grass abundance rather than absolute declines in C3 perennial 

abundance.  There were no significant differences in Simpson’s diversity or Simpson’s evenness 

between grouped restoration and remnant sites, although older restoration sites had low Simpson 

values with respect to two of three remnant sites.  

Mean C 

Native mean coefficient of conservatism (mean C) weighted by relative abundance 

increased with restoration age, although the increase appears nonlinear, and un-weighted native 

mean C showed no association with restoration age (Figure 2-3).  For both forms of mean C, 

linear multiple regression model fits containing  C4 and C3 native, perennial abundance and 

native ruderal abundance as predictors were not significantly different from models with 

perennial C3 and ruderal abundance as predictors and yielded similar coefficients of 

determination (Table 2-3), suggesting that perennial C3 and ruderal species rather than C4 grasses 

predict mean C.   

Native and Exotic Abundance 
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Abundance of native species increased non-linearly with restoration age (Figure 2-4a), 

and exotic abundance decreased with restoration age (Figure 2-4b) and was lower in the oldest 

three restorations compared to the three remnant prairies (Dobs=1.569, n=m=3, p=0.045). 

Declines in abundance also occurred among exotic perennial species (Figure 2-4b).    

Abundance and Richness for Selected Native Plant Guilds 

Native C4 grass abundance increased with restoration age, and both ruderal and early 

phenology richness and abundance decreased (Table 2-4). Early phenology richness and 

abundance were trivial in comparison to late phenology richness and abundance across 

restoration sites (Figure 2-5), so trends for early phenology species had little influence on overall 

richness and abundance at restoration sites. Overall, C3 richness and abundance did not 

significantly decline with restoration age. 

Both richness and abundance for early phenology C3 species were greater on remnant 

sites than on restorations (Figure 2-5a,b). However, no differences were detected between 

restorations and remnants in abundance of late phenology C3 species, and 1-m
2
 late phenology 

C3 species richness was greater in restored prairies than remnants (Figure 2-5c,d). Richness for 

C4 species was marginally higher in restored prairies (D.obs=0.487, p=0.056).      

Discussion 

While the thesis that restoration of tallgrass prairie from seed does not successfully 

establish communities similar to remnant sites (e.g. Sluis 2002; Camill et al. 2004; Middleton et 

al. 2010) appears to be supported by observed patterns in Simpson’s diversity and evenness and 

multivariate analyses, restoration sites in this study developed and maintained several aspects of 

native plant community structure similar to nearby remnant prairies. We found no significant 
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differences in native species richness between restored and remnant prairies, no evidence for a 

negative association between native richness and restoration age at any sampling scale, and no 

evidence for a difference in mean C between restored and remnant prairies. The finding that 1-m
2
 

richness for late phenology perennial forbs was higher on restoration sites than remnant sites 

contradicts the general conclusions of many previous studies.   

Simpson’s measures and mean C showed conflicting trends, because Simpson’s diversity 

and evenness were predicted by different underlying components of the plant communities than 

both weighted and unweighted mean C. Declines in Simpson’s diversity and evenness with 

restoration age were not associated with declines in total C3 perennial abundance, but rather an 

increase in C4 abundance similar to that observed by Baer et al. (2002) and Camill et al. (2004).  

Hence, Simpson’s diversity and evenness were poor metrics for C3 presence on these restoration 

sites. Conversely, mean C showed a strong positive relationship with perennial C3 abundance 

and negative relationship with C3 ruderal abundance.   

Explicit differences between the results of this study and those of Sluis (2002) and others 

are primarily confined to overall richness and may have multiple causes. Prolonged perennial 

cover, the lack of cultivation to prepare the seed bed, or differences in nutrient availability on 

former cool-season pastures relative to ex-arable lands may have favored native perennial over 

ruderal species on our restoration sites (e.g. Blumenthal et al. 2003; Rashid & Reshi 2010).   

Establishment of richness and abundance patterns on restorations may have also been facilitated 

by mowing on multiple occasions to prevent the development of closed weed canopies (Wilson 

& Clark 2001), or by the prescription of fire, which can have negative effects on seed viability 

(Vermeire & Rinella 2009) and promotes prairie vegetation (Anderson 1990). Germination for 

many forbs is encouraged with cold stratification (Shirley 1994), so fall seeding on most 
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restoration sites may have favored early forb establishment. Also, the seeding ratio of forbs to 

grasses was high, which has been shown experimentally to promote the establishment of forb 

richness (Dickson & Busby 2009).   

Mean C provided insight into the process of community establishment across the 

chronosequence. Weighted mean C on restored prairies was positively associated with 

restoration age while un-weighted mean C showed no association. These mean C patterns and 

overall species richness patterns were consistent with initial floristics succession (sensu Egler 

1954), where prairie species (with high mean C) established early in the restoration 

chronosequence and subsequently increased in abundance as richness remained relatively 

constant. This suggests that weighted mean C captures successional changes better than un-

weighted Mean C and that high mean C species can increase in abundance after initial 

establishment without subsequent seeding.     

The overall increase in native abundance across the chronosequence was consistent with 

trends reported by Baer et al. (2002) and Camill et al. (2004), and corresponded to decreases in 

exotic richness and abundance. Exotic perennials decreased with restoration age and were less 

abundant on older restorations than remnant prairies, despite initiation of restorations on ground 

formerly dominated by these exotic, sometimes invasive, perennials. Observed patterns of 

perennial exotic richness and abundance may be explained complementarity or sampling effects 

from an enhanced pool of species in restoration seeding mixes drawn from varied remnant sites, 

if species in seed mixes more completely utilized limiting resources (Fargione & Tilman 2005; 

Marquard et al. 2009). High fire frequency on restorations, which can have negative effects on 

C3 species (Howe 1994; 2000), may also explain these patterns. All perennial exotic species 

observed possess the C3 photosynthetic pathway. Native C3 species in the restorations may have 
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responded differently, because most possess later phenology than observed exotic perennial C3 

species, and prescribed burns occurred early in the growing season. This is consistent with the 

observation that early phenology native C3 species declined across the chronosequence (although 

initial richness and abundance of early phenology native species was low) while late phenology 

C3 species did not.   

Representation of early versus late phenology species was an important difference 

between restoration and remnant sites in both multivariate (CVA) and univariate analyses.  

Restorations were relatively poor in early phenology C3 species, which agrees with qualitative 

observations by Kindscher and Tieszen (1998) and Martin et al. (2005). Low early phenology 

species richness in restorations appears to be offset by high late phenology C3 species richness.   

Late phenology species were likely to be represented in fall bulk seed harvests, and restorations 

were planted with seeds from multiple remnant sites, which may explain late phenology presence 

and abundance patterns. For example, four blazing star species (Liatris aspera, L.  punctata, L. 

pycnostachya and L. squarrosa) were not observed together on any one remnant site, but all were 

observed on restorations under similar conditions. Most early phenology C3 species encountered 

on restorations were the focus of hand-collection efforts or retain mature seeds into the fall. The 

importance of these patterns should not be understated, because they suggest that observed 

floristic differences between restorations and remnants may not be due to an inability of sown 

species to establish under the management regime employed, but by underrepresentation of early 

phenology species in seed mixtures. Establishment of plants is often limited by dispersal in 

tallgrass prairie and elsewhere (eg., Tilman 1997; Foster et al. 2007; Uiarte et al. 2010), so 

seeding mixtures may represent the available species pool (sensu Zobel 1997) for many 

restoration projects. Reduced functional diversity resulting from underrepresentation of early 
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phenology species or other groups could have consequences for ecosystem functioning (Tilman 

1997; Marquard et al. 2009), consumers (Symstad et al. 2000), and invasion (Fargione & Tilman 

2005). Future restoration studies should explore patterns among functional groups so potential 

mechanisms underlying restoration outcomes may be identified for manipulation. These patterns 

and potential causes may not be revealed by analyses of only one or a few community indices or 

overall species richness. Our study suggests that manipulation of early phenology species 

abundances in tallgrass prairie restorations and manipulation of conditions that influence early 

phenology species establishment would be informative. 

Implications for Practice 

• Seed from remnant grasslands may be used to establish prairie vegetation on former cool-

season pastures. 

• Increased representation of early phenology species in seed mixes should be explored as 

a way of enhancing biodiversity on tallgrass prairie restorations.   

• Vegetation monitoring programs concerned with the establishment of biodiversity on 

restorations should consider the use of weighted mean C.   
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Figures and Tables 

 

Figure 2-1. Ordination of means for first two canonical variates with 95% confidence intervals 

for six restoration (denoted by age) and three remnants sites (denoted by site name). Correlation 

between CAN1 and CAN2 did not significantly differ from zero, and CAN1 and CAN2 account 

for 67.43% of the variation among sites. ANOVA F-statistic and p-values for differences among 

sites: CAN1 (F=165.8, p<0.0001), CAN2 (F=81.48, p<0.0001). Letters indicate significant 

(p≤0.05) pair-wise differences (Fischer) where significant CAN1 and CAN2 scores are 

represented by upper- and lower-case letters respectively. 
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Figure 2-2. Boxplots for change in a) Simpson’s diversity (D = Simpson’s D) and b) Simpson’s 

evenness (S = richness) with restoration age with Spearman rank correlation coefficients rspearman 

and associated permutation p-values based on n=10 subsamples for each restoration age.   

Simpson’s diversity and evenness values for the three remnant prairies are given for reference. 
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Figure 2-3. Boxplots for change in a) native mean C weighted by proportional abundance (white 

boxes) and un-weighted native mean C (grey, patterned boxes) with restoration age and 

Spearman rank correlation coefficients rspearman and associated permutation p-values based on 

n=10 subsamples for each restoration age. Values for three remnant prairies are given for 

reference.   
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Figure 2-4. Boxplots for a) change native abundance (% cover) with restoration age. b) Change 

in both total exotic abundance and exotic perennial abundance with restoration age. Spearman 

rank correlation coefficients rspearman and associated permutation p-values based on n=10 

subsamples for each restoration age. Values for three remnant prairies are given for reference. 
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Figure 2-5. Boxplots for a) mean early phenology richness (1-m
2
) on restorations vs. remnants, 

b) mean early phenology abundance on restorations vs. remnants, c) mean late phenology species 

richness (1-m
2
) on restorations vs. remnants, and d) mean late phenology species abundance 

restorations vs. remnants. All comparisons are given with observed mean difference (D.obs) and 

permutation p-values for n=6 restorations and n=3 remnants.   
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Table 2-1. Restorations: age (number of growing seasons) and size (nearest whole hectare), time 

of seeding, year of first burn, number of growing seasons mowed at least one time (to 

approximately 20-cm with a sickle mower) after initial planting, and soil series of sampled areas; 

remnants: name and size (nearest whole hectare), history prior to Diversity Farms, Inc. 

acquisition or management (>10 years prior to study) (pasture = possibility of intermittent 

grazing, prairie hay = cut annually for hay, set aside = set aside for conservation by landowners 

at time of European settlement without history of intensive use), whether remnant had been 

burned since the growing season prior to sampling, and soil series. 

 

Age (Area ha) Year Seeded Month Year of First 

Burn 

Years Mowed Soil Series 

11 (7) 1998 July 2000 3 Burchard-Adair 

clay loam / Ida 

silt loam 

10 (3) 1999 November-

January 

2000 3 Marshall silty 

clay loam 

9 (7) 2000 November-

January 

2002 3 Ida silt loam 

7 (8) 2002 November-

January 

2004 3 Burchard-Adair 

clay loam 

6 (6) 2003 November-

January 

2005 3 Ida silt loam / 

Marshall silty 

clay loam 

4 (3) 2005 November-

January 

2007 4 Marshall silty 

clay loam 

Remnants History  Burned   

Judson (7) Pasture __ No __ Hesch sandy 

loam 

Owens (2) Set aside __ Yes __ Sharpsburg silty 

clay loam 

Tuel (5) Prairie hay __ No __ Clarion loam 
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Table 2-2. Spearman correlation coefficients and p-values for all significant correlations 

(p<0.05) between CAN1 and CAN2 and variables used in canonical variates analysis (20 of 24 

variables) in descending order of absolute value. The remaining variables (native richness, C4 

richness, late phenology abundance, and Asteraceae abundance) were not significantly correlated 

with either canonical variate.   

Variable CAN1 Corr.
 

p-value Variable CAN2 Corr. p-value 

Early Phenology Richness 0.831 <0.0001 Simpson’s Evenness -0.718 <0.0001 

C3 Graminoid Abundance 0.806 <0.0001 Exotic Abundance -0.523 <0.0001 

Early Phenology Abund. 0.802 <0.0001 Mean C (un-weighted) 0.517 <0.0001 

Other Forb Abundance  0.629 <0.0001 Perennial Exotic Abund. -0.504 <0.0001 

Late Phenology Richness -0.577 <0.0001 Native Cover 0.503       <0.0001 

Asteraceae Richness -0.505 <0.0001 C4 Cover 0.493 <0.0001 

C4 Abundance -0.472 <0.0001 Ruderal Richness -0.487 <0.0001 

C3 Abundance 0.426 <0.0001 Mean C (weighted) 0.465 <0.0001 

Simpson’s Evenness 0.439 <0.0001 Ruderal Abundance -0.450 <0.0001 

Simpson’s Diversity 0.401 <0.0001 Simpson’s Diversity -0.432 <0.0001 

Fabaceae Richness -0.223 0.0326 Fabaceae Abundance 0.323 0.0019 

. .        . Late Phenology Abund. 0.282 0.0071 

. .        . C3 Richness 0.257 0.0145 

. .        . Fabaceae Richness 0.241 0.0222 

. .        . Other Forb Abundance -0.238 0.0241 
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Table 2-3. Multiple regression output for Simpson’s diversity (D = Simpson’s D), Simpson’s 

evenness (S=richness), and mean C (weighted by proportional abundance and un-weighted) on 

restoration sites. Model specifies predictor variable(s) used: C4 = native perennial C4 cover, C3 = 

native perennial C3 cover, rud = native ruderal cover. ANOVA tests H0 that model fits for 

specified models are equal to the model: C4+C3+rud. 

 

Response Variable Model 
 

p-Value Adj. R
2 

F-Statistic p-Value
 

1/D 1: C4+C3+rud <0.001 0.484 … … 

 2: C4+C3 <0.001 0.481 1.360 0.249 

 3: C4 <0.001 0.456 2.485 0.092 

1/D/S 1: C4+C3+rud <0.001 0.551 … … 

 2: C4+C3 <0.001 0.559 <0.001 0.993 

 3: C4 <0.001 0.564 0.159 0.853 

Mean C 1: C4+C3+rud <0.001 0.484 … … 

(weighted) 2: C3+rud <0.001 0.480 1.402 0.240 

 3: C3 0.004 0.120 21.434 <0.001 

Mean C 1: C4+C3+rud <0.001 0.267 … … 

(un-weighted) 2: C3+rud <0.001 0.278 0.148 0.702 

 3: C3 <0.001 0.181 4.859 0.017 
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Table 2-4. Spearman rank-order correlation between site age and both abundance  (% cover) and 

richness by guild. Correlation is restricted to native species. All guilds, with the exception of 

‘ruderal’, include only perennial species.   Significant p-values (alpha≤0.05) are in bold. 

             Abundance               Richness 

Guild rspearman p-value rspearman p-value 

C4   0.612 < 0.001   0.195  0.138 

C3  - 0.052  0.657 - 0.211  0.103 

Asteraceae - 0.139  0.296 - 0.110  0.395 

Fabaceae   0.109  0.395 - 0.049  0.707 

Early phenology - 0.344  0.008 - 0.444 < 0.001 

Late Phenology - 0.020  0.868  0.093  0.487 

Ruderal - 0.349  0.004 - 0.357  0.006 
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Chapter 3 - High richness and dense seeding enhance grassland 

restoration establishment, but have little effect on drought response
2
 

 Abstract 

Restorations commonly utilize seed addition to formerly arable lands where the development of 

native plant communities is severely dispersal limited. However, variation in seed addition 

practices may profoundly affect restoration outcomes. Theory and observations predict that 

species-rich seed mixtures and seeding at high densities should enhance native plant community 

establishment, minimize exotic species cover, and may promote resistance and resilience to, and 

recovery from, environmental perturbations. We studied the post-seeding establishment of native 

plant communities in large grassland restoration plots, which were sown at two densities crossed 

with two levels of species richness, on formerly arable land in Nebraska, USA, and their 

responses to drought. To evaluate drought resistance, recovery, and resilience of restored plant 

communities, we erected rainfall manipulation structures and tracked the response of seeded 

species cover and total plant biomass during experimental drought relative to controls and in the 

post-drought growing season. High seed richness and high-density seeding treatments resulted in 

greater richness and cover of native, seeded species per 0.5 m
2
 compared to low-richness and 

low-density treatments. Cover differences in response to seed mixture richness were driven by 

native forbs. Richness and cover of exotic species were lowest in high-richness and high-density 

treatments. We found little evidence of differential drought resistance, recovery, and resilience 

among seeding treatments. Increases in exotic species across years were restricted to drought 

                                                 

2
 Reprinted with permission from the Ecological Society of America: “High richness and dense seeding enhance 

grassland restoration establishment, but have little effect on drought response” by D.L. Carter & J.M. Blair, 2012. 

Ecological Applications, 22, 1308-1319. Data behind all figures may be found in Ecological Archives: 

http://esapubs.org/archive/appl/A022/068/ 
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subplots, and were not affected by seeding treatments. Grassland restoration was generally 

enhanced and exotic cover reduced both by the use of high-richness seed mixtures and high-

density seeding. Given the lack of restoration treatment effects on the resistance, recovery, or 

resilience of seeded species exposed to drought, and the increases in exotic species following 

drought, other forms of active management may be needed to produce restored plant 

communities that are robust to climate change. 

 Introduction 

As agriculture, urban development, invasive species, and woody encroachment continue 

to replace or transform native ecosystems, restoration has become increasingly critical for 

conserving biodiversity and maintaining ecosystem functioning. Restored grasslands can support 

native flora and fauna, suppress exotic species at local scales, and enhance the population 

viability of at-risk species at larger scales when they enhance connectivity within fragmented 

landscapes (Ries et al. 2001, Baer et al. 2002, Fletcher and Koford 2003, Walker et al. 2004, 

McIntire et al. 2007, Matamala et al. 2008, Carter and Blair 2011). This may be especially 

critical for temperate grasslands, where Hoekstra et al. (2005) described the disparity between 

habitat loss and protection as ‘‘stark.’’ Climate change will also affect temperate grasslands, as 

mid-continental regions are predicted to experience increased drought risk by the late 21
st
 

century (Meehl et al. 2007). While the grassland region of Central North America has 

experienced drought regularly over the past millennium on both annual and decadal time scales 

(Stambaugh et al. 2011), the frequency of extreme drought events is expected to increase 

substantially in coming decades (Strzepek et al. 2010). Given drought’s historical importance, 

projected increases in drought frequency, and the increasing area of restored grasslands relative 

to native grasslands, research on the effects of drought on restored grasslands warrants priority.  
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Restoring diverse grassland plant communities in areas where most native species were 

eliminated usually requires seed additions, because dispersal limits colonization and many 

grassland species do not maintain long-term seed banks, even in remnant grasslands (Rabinowitz 

and Rapp 1980, Pywell et al. 2002, Donath et al. 2007, Foster et al. 2007). The cost of seed 

available for restoration is often thousands of U.S. dollars per hectare and varies among species 

(Kline 1997, Dickson and Busby 2009). Propagule limitation and costs underscore the 

importance of decisions concerning seed mixture richness and seeding methods for restoration. 

In species or functionally rich plant communities, ecosystem functioning may be enhanced as a 

result of complementary patterns of resource use or greater likelihood of the presence of species 

that compete for resources across temporal and spatial gradients (Huston 1997, Fornara and 

Tilman 2009, Marquard et al. 2009). In an analysis of the responses of 147 grassland species 

across 17 biodiversity experiments, Isbell et al. (2011) found that 84% of species examined 

contributed to ecosystem functioning at least once across years, locations, and different 

environmental conditions. Species-rich restoration seed mixtures may also yield plant 

communities that diminish establishment of invasive species and enhance drought resistance, 

recovery, and resilience, if resultant communities possess greater richness and associated trait 

variation (Loreau et al. 2001). However, the relationship between richness and invasibility, or 

response to drought and other disturbances, is equivocal. In separate experiments, Fargione and 

Tilman (2005) and Biondini (2007) reported richness-mediated suppression of invasion. 

Richness has also been reported to stabilize the productivity of grassland experimental plots over 

time and in response to drought (e.g., Tilman 1996, Allan et al. 2011). In contrast, other studies 

report positive associations between richness and invisibility and negative associations between 

richness and stability in response to drought (e.g., Stohlgren et al. 1999, Kennedy et al. 2003). 
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This contradiction may be an artifact of spatial scale, because at larger scales disturbance is not 

controlled for and may co-vary with invasion (Loreau et al. 2001). Also, Lloret et al. (2007) 

showed that the relationship between diversity and stability of Catalonian forests varied along an 

aridity gradient where relatively moist locations supported both higher tree species richness and 

higher proportions of drought-sensitive species, leading to diminished resistance. 

Complementary patterns of resource use or greater aboveground productivity may increase stress 

and mortality in response to drought, leading to negative diversity–resistance relationships (Van 

Peer et al. 2004, Wang et al. 2007, Zavalloni et al. 2008), but these do not preclude positive 

associations between diversity and recovery (Wang et al. 2007). Kreyling et al. (2011) showed 

that extreme events can also interact with site history to influence successional dynamics, such 

that the determinism of community assembly does not increase along a diversity gradient. Within 

the constraints and caveats raised by the above studies and others, richness generally is expected 

to enhance resistance to invasion at the local scale, but the effects of drought on plant 

communities, particularly successional communities like those in restorations, are less clear.  

Initial planting density can also affect establishment of native vs. exotic vegetation in 

restoration. With low seeding density, exotic and weedy species are more likely to arrive first at 

small scales through emergence from seed banks or dispersal from adjacent sites. Once 

established, weeds strongly suppress the establishment of target native species (Blumenthal et al. 

2003). With high seeding density, the emergence of desired species will more likely be 

antecedent or concurrent with weeds, mitigating the negative competitive effects of weedy 

species in young restorations. Dickson and Busby (2009) showed that high seeding densities 

enhance the establishment of some species over others in a grassland restoration experiment. In 

species mixtures seeded at high densities, seeds of more species are expected to be applied at 
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small spatial scales, even when seed mixture richness is held constant. For this reason, relatively 

high seeding densities and seed mixture richness may have similar effects.  

We utilized large grassland restoration experimental plots initiated by The Nature 

Conservancy (TNC) in early 2006 with a factorial combination of two levels of seed mixture 

richness (high richness, HR; low richness, LR) and seeding density (high density, HD; low 

density, LD) to explore the effects of restoration seeding methods on the establishment of 

grassland plant communities, and on grassland drought resistance and resilience to and recovery 

from (defined in Methods) an intense, simulated drought applied over the course of one growing 

season. Most studies to date have focused on responses to natural or simulated drought in native 

or semi-natural grasslands rather than restored grasslands (e.g., Frank and McNaughton 1991, 

Kennedy et al. 2003, Kahmen et al. 2005, Gilgen and Buchmann 2009) or have assessed 

responses to natural drought in synthetic communities in the absence of concurrent (spatial) non-

drought controls, which assumes a pre-drought equilibrium condition against which the drought 

can be compared (e.g., Tilman 1996, van Ruivjen and Berendse 2010). The latter are the most 

analogous to plant communities restored to formerly arable lands, but richness or diversity 

effects observed in these experiments, where community composition after planting was tightly 

controlled or plot/mesocosm sizes were small (but see Wang et al. 2007), may not be large 

enough to be apparent or substantial in relation to other sources of variation in restoration 

settings that occur over larger spatial scales and experience less human intervention.  

We addressed several questions: (1) Do HR or HD treatments enhance grassland 

establishment by yielding plant communities with greater richness and cover of seeded species, 

lower cover of exotic species, and greater aboveground net primary productivity (ANPP)? (2) Do 

HR or HD treatments enhance seeded communities’ drought resistance, recovery, and resilience 
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relative to LR or LD treatments? (3) Does community structure for native, seeded species or non-

seeded species differ among seed mixture richness or seeding density treatments or shift in 

response to drought? (Non-seeded species are species that were not part of the restoration seed 

mixture.) Changes in community structure for seeded species where overall cover remains 

constant would indicate that differential responses of component species confer stability (e.g., 

Tilman 1996, Wang et al. 2007, Allan et al. 2011). Shifts within non-seeded species communities 

caused by seeding richness treatments independent of density would indicate that biotic 

interactions involving sown species are important for structuring communities of non-seeded 

species. (4) Are effects of seeding richness and density on establishment, resistance, recovery, 

and resilience additive? If seeding treatments are additive, then restoration projects may achieve 

similar properties using a range of seeding practices. However, higher density could diminish 

stability to drought differentially between high- and low-richness plots, if productivity is 

associated with greater drought stress or mortality and covaries with richness (Van Peer et al. 

2004, Zavalloni et al. 2008). Effects of richness (realized through either HR or HD treatments) 

on the establishment of native grasslands and their resistance/resilience to and recovery from 

drought would suggest that the diversity effects detected in more controlled synthetic 

experiments are relevant to restored grasslands and that modulating seeding methods may 

facilitate restoration despite contemporary climate variability and projected climate change. 

 Methods 

The grassland restoration experiment was initiated by TNC in South-Central Nebraska, 

USA (40˚41’ N, 98˚35’ W). The experiment covers 34.4 ha in the Platte River Valley formerly 

utilized for intensive Zea mays (L.) production. Soils are generally loamy sands over deeper 

coarse sands (Bolent-Calamus complex, Caruso loam, Gothenburg loam, Wann loam). The 
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climate is continental with a mean annual temperature of 10.48˚C and mean annual precipitation 

of 629 mm (both 1971–2000 means), 65% of which falls between 1 May and 30 August; 

precipitation totals (nearest station, ~15 km) for 2009 and 2010 were near average (615 and 683 

mm, respectively, United States Historical Climate Network [http://cdiac.ornl.gov/epubs/ndp/ 

ushcn/ushcn_map_interface.html]; National Weather Service [http://www.crh.noaa.gov/gid]). 

 Seeding Experiment and Rainfall Manipulation 

The experiment consisted of 24 square whole plots (0.3 ha each), to which a factorial 

combination of two levels of seed mixture richness (high richness [HR] = 95 species, low 

richness [LR] = 15 species) and two levels of seeding density were applied, for six replicates of 

each richness by density combination. Treatment combinations were applied systematically 

rather than randomly within the plot area to facilitate seeding with a mechanical drop seeder that 

required calibration for changes in seeding density and to minimize changes between different 

mixtures. For this reason, plot row and column were modeled as random effects, but they 

generally provided little or no improvement for model fits (lower AIC). Equal masses of bulk 

seed were sown by TNC in HR and LR plots, but HR plots had slightly higher seeding densities 

of pure live seed than LR plots, because seed test results were not complete until after sowing 

(low density [LD] = 164 or 172 live seeds/m
2
 and high density [HD] = 328 or 344 live seeds/m

2 

for LR and HR, respectively). The magnitude of observed seed mixture richness effects far 

exceeded the small differences in sowing density. The Nature Conservancy collected all seeds 

within the Central Nebraska Platte River region and broadcast seeded over damp soils and 

melting snow using the drop seeder in late March and early April 2006. Proportional 

representation varied among taxa within treatment mixtures, with grass seeds applied at higher 

densities than forb seeds (~8:1). 
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 From mid-March through early October 2009, we simulated severe drought with passive 

rainfall manipulation structures erected at random locations within each seeding treatment plot 

(24 total shelters). The shelter roofs had a distribution of clear plastic slats that intercepted ~80% 

of ambient rainfall using a slight modification of the design proposed by Yahdjian and Sala 

(2002), whose 80% interception shelters permitted > 90% transmittance of the visible spectrum 

(although UV transmittance was reduced), reduced soil volumetric water contents at distances 

0.2 m inside from the outer edge of the shelters, but led to slightly cooler air and soil 

temperatures under the shelters relative to outside. We observed a 30–60% reduction in 

volumetric soil water content (SWC, 30 cm depth, time domain reflectometry methods) under 

the central 1 m
2
 of a shelter relative to SWC measured 1.5 m outside the same shelter edges over 

the course of a 26-day measurement period using CS616 soil moisture probes and CR103 data 

loggers from Campbell Scientific (Logan, Utah, USA) (Appendix B). Reduction in SWC at 30 

cm over this period provides confidence that shelters created a satisfactory drought treatment. 

Shelter roofing material allowed > 90% transmittance of visible light (measured using portable 

spectrophotometer, Analytical Spectral Devices, Boulder, Colorado, USA), consistent with 

Yahdjian and Sala (2002).  

Each shelter consisted of clear Lexan shingles (Saudi Basic Industries, Riyadh, Saudi 

Arabia) bent into V shapes to divert rainfall into a gutter. Shingles were secured to a tubular 

metal frame with spacing for 80% coverage of a 2.5 m × 2.34 m area (not square due to a 15˚ 

tilting of the roof to divert water). These dimensions for the covered shelters were greater than 

those used by Yahdjian and Sala (2002). The shelters were 1.5 m tall on their high side to 

minimize the growth of tall vegetation through spaces between the shingles. We positioned 

subplots (1 m
2
) for sampling under the center of each shelter, paired with control (non-sheltered) 
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subplots located randomly either 1.5 m north or south of each shelter within each whole plot. At 

the cessation of drought in October 2009, we removed shelter roofs and gutter systems, but 

continued to use the same subplots for sampling during the subsequent recovery growing season. 

Vegetation Sampling and Analysis 

In both May and August 2009 and 2010, richness and canopy cover for both seeded and 

non-seeded species (combination of native, non-seeded, and exotic species) were estimated using 

a modified Daubenmire scale (1 equals present but ≤ 1%; 2 is 2–5%; 3 is 6–25%; 4 is 26–50%; 5 

is 51–75%; 6 is 76–95%; 7 is ≥ 96%), within two 0.25-m
2
 quadrats arrayed diagonally within 

each 1-m
2
 sampling area (0.5 m

2
 within each subplot, 1 m

2
 total within each whole plot). Canopy 

cover for each species on each sampling occasion was determined using the midpoint of 

Daubenmire scale values and then averaging across quadrats within subplots. Peak cover for 

species across May and August sampling dates was used in statistical analysis to account for 

species with both early and late phenologies. We lumped cover estimates from three species in 

genus Elymus (L.) that were included in restoration mixtures and several exotic species from 

genus Setaria (L.), because at least two of the Elymus species hybridize (Nelson and Tyrl 1978) 

and we could not reliably separate small individuals of these genera by species in the field. 

Unless otherwise noted, ‘‘seeded species’’ for seeding mixture richness treatments refers to 

species seeded within treatments rather than species seeded within the experiment as a whole. 

Sampling was spatially constrained by the size of the shelters within each plot, so sampling 

provides estimates of small-scale richness rather than estimates of richness for entire seeding 

treatment whole plots. We wish to emphasize that, although our sampling necessarily was 

limited to a small area within each seeding treatment whole plot, our samples were taken from 

the interiors (tens of meters from plot edges) of large plots and should be relatively independent 
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of the responses of other seeding treatments and surrounding environments, unlike many 

experimental studies that manipulated species richness on the order of 1 m
2
 in exchange for 

greater control over species composition (e.g., Tilman 1996, van Ruivjen and Berendse 2010). 

We assessed patterns of cover within sown species groups for C3 grass and sedge (C3 graminoid), 

C4 grass and forb species, which have been defined as functional groups (sometimes ‘‘guilds’’) 

elsewhere (Kindscher and Wells 1995, Tilman 1997, Camill et al. 2004). Species group 

assignments for all species sown and encountered during the study are provided in Appendix C. 

To estimate ANPP as an index of ecosystem functioning, we clipped aboveground biomass to a 

height of 1 cm in September 2009 and 2010 from 0.5-m
2
 quadrats placed where we had 

previously estimated cover and richness. Biomass produced in the current season was sorted in 

the field to remove the previous season’s litter and dried for 48 hours at 60˚C prior to weighing. 

We did not separate biomass by species. In 2010, we sampled quadrats on the remaining 

complementary diagonal within each 1-m
2
 subplot to avoid resampling where biomass harvests 

had occurred. 

Calculation of Resistance, Recovery, and Resilience 

While resistance most often refers to the ability to withstand perturbation relative to 

steady-state conditions, these restorations may not have achieved steady state. Therefore, we 

defined resistance as the difference in seeded species cover or biomass between drought and 

control subplots within seeding treatments during the year of the drought treatment (2009). 

Similarly, we define recovery using differences in seeded species cover or biomass between 

drought (2009) and post-drought years (2010), and resilience, which combines resistance and 

recovery, as the ratio of post-drought (2010) to control (2010) seeded species cover or biomass. 

Hence, these parameters reflect changes with respect to a trajectory of establishment rather than 
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a steady state and integrate vegetation response during drought and the post-drought season, 

respectively. Resistance and recovery were calculated in proportional terms (following van 

Ruijven and Berendse 2010), because absolute resistance and recovery are correlated with pre-

drought values. Proportional resistance was calculated as the difference in natural logs of seeded 

species cover or biomass between drought and control subplots. Proportional recovery was 

calculated as the difference in log seeded cover or biomass between post-drought and drought 

years. 

Statistical Analysis 

We used repeated-measures mixed-model analysis of variance (ANOVA) to test 

responses of cover and richness to seed mixture richness, seeding density, and drought with year 

as a repeated measure on rainfall manipulation subplots within each whole plot. Whole plot 

within seeding treatment combination, plot row, and plot column were random effects. Mixed-

model ANOVAs were performed in SAS version 9.2 (SAS Institute 2010) using PROC MIXED 

with Tukey-Kramer’s adjustment for interaction contrasts and the Kenward-Roger method for 

degrees of freedom estimation. Full model outputs and treatment main effect means are 

presented in Appendix B. Separate treatment variance estimates were used in cases of 

heterogeneous variances (Levene’s test). We used nonmetric multidimensional scaling (NMDS) 

with Ruzicka (quantitative Jaccard) dissimilarity matrices based on peak canopy cover to 

visualize differences in sown and non-seeded community structures separately within years with 

function ‘‘metaMDS.’’ We assessed significance of factors (seed mixture richness, seeding 

density, and drought) in ordinations using permutation tests executed by function ‘‘envfit’’ in the 

VEGAN package (Oksanen et al. 2010) in Program R version 2.11.1 (R Development Core 
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Team 2010). Ordinations represent structural rather than compositional changes, because 

Ruzicka dissimilarity is based on relative cover rather than presence/absence data. 

 Results 

Establishment and Absolute Drought Effects 

Species richness—We encountered 37 seeded species over two seasons of sampling, with 

15, 12, 26, and 26 total seeded species encountered among LR/LD, LR/ HD, HR/LD, and 

HR/HD whole plots, respectively. Seeded species richness at the 0.5-m
2
 scale was greater in HR 

and HD treatments, and there was no evidence for interaction between seed mixture richness and 

seeding density (Fig. 3-1a). There was no significant effect of drought on seeded species richness 

(Fig. 3-1a), nor were there two- or three-way interactions between drought and seeding 

treatments (PROC MIXED; all P ≤ 0.05). Of all the species seeded exclusively to HR plots, 

Helianthus maximiliani Schrad. was the only species encountered on every HR plot in both 

years. Other examples of frequently encountered sown taxa included Sorghastrum nutans (L.) 

Nash, Elymus sp. (L.), Astragalus canadensis (L.), and Andropogon gerardii (Vitman). 

We encountered 28 non-seeded species; 16 were annual or biennial and 16 were exotic 

(11 of 16 exotics were annual or biennial). Exotic richness was lower on HR and HD treatments, 

and there was no interaction between seeding richness and density (Fig. 3-1b). There was no 

significant effect of drought on exotic richness (Fig. 3-1b), nor were there two- or three-way 

interactions between drought and seeding treatments (PROC MIXED; all P ≤ 0.05). Examples of 

frequently encountered exotic taxa included Conium maculatum (L.), Carduus nutans (L.), and 

Melilotus officinalis (L.) Lam. 
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Cover and ANPP— Seeded species cover was greater and exotic species cover was lower 

in HR compared to LR treatments and in HD compared to LD treatments (fig. 3-1c, d). Seeded 

species cover was also greater on subplots not subjected to drought across seeding treatments 

(fig. 3-1c). There was a significant interaction between drought and year for exotic cover and for 

the combined cover of all annual / biennial species (PROC MIXED: Drought × Year, F1,40, both 

p < 0.01), with increases from 2009 to 2010 restricted to the drought treatment (2009 to 2010 

cover differences: control subplots; 2.70exotic%, 4.53ann/bien%, both p > 0.70, drought subplots; 

14.99exotic%, 17.53ann/bienn%, both p < 0.01). No other interactions between seed mixture richness, 

seeding density, drought and year were significant for seeded, exotic and annual/biennial cover 

(Proc Mixed, all p > 0.05). Different components of seeded plant communities exhibited 

divergent responses within the experiment. Forb and C3 graminoid cover were greater on HD 

plots, but only forbs had greater cover on HR plots (Table 3-1). Drought significantly reduced C3 

graminoid cover but not that of other groups (Table 3-1). The high cover of H. maximiliani on 

HR plots was obvious in the field, and H. maximiliani had the highest mean cover among all 

species (cover = 43.8% ± 3.84% [mean ± SE]) on HR plots, which was similar to the combined 

cover of seeded graminoids (cover = 42.3% ± 11.58%) and all non-H. maximiliani forbs 

combined on HR plots (cover = 33.1% ± 6.40%). Despite high cover of H. maximiliani on HR 

plots, the combined cover of other seeded forbs was also greater on HR than LR plots (F1,12 = 

11.01, mean cover difference = 16.9%, P = 0.02). Patterns of ANPP were incongruous with the 

cover of seeded species in response to seed mixture richness, with less aboveground biomass 

produced annually on HR plots (F1,16.9 = 10.90, mean difference = 216.68 g·(0.5 m
2
) 

-1
·yr

-1
, P < 

0.01), while main effects for drought, density, year, and all possible interactions were not 

significant (all P < 0.05). 
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Drought Resistance, Recovery, and Resilience 

There was little evidence for differential proportional resistance, proportional recovery, 

or resilience among seeding treatments for ANPP and seeded cover (Fig. 3-2), although the LD 

treatment had marginally lower seeded cover resistance and resilience (Fig. 3-2b, f ). The LR/LD 

treatment combination exhibited resistance and recovery values significantly different from zero 

for seeded cover and ANPP, respectively (Fig. 3-2b, c), which indicate lack of resistance in 

terms of seeded cover and an increase in ANPP following drought. Resilience, measured within 

whole plots as the ratio of drought to control subplot biomass and seeded cover, was significantly 

less than one for the LR/LD treatment combination for seeded cover (Fig. 3-2f ), so recovery was 

not sufficient on LR/LD plots to bring seeded species cover after drought back to levels observed 

on control subplots in 2010. 

Community Structure 

Community structure for seeded species differed among HR and LR plots, but was not 

affected by drought or seeding density (Fig. 3-3a, c), and drought consistently had no effect on 

community structure when tested within seed mixture richness treatments within years (envfit; 

all P > 0.2). In ordinations, seeded species were those included in either HR or LR mixtures, so 

HR and LR treatments should differ in community structure, because the HR treatment utilized 

additional species. For example, H. maximiliani, which was only included in HR mixtures, was 

negatively correlated with the first axis (envfit; r
2
=0.68 for both 2009 and 2010, P < 0.01 for 

both 2009 and 2010). Seed mixture richness but not drought or seeding density (both among and 

within density treatments) affected non-seeded species (exotics + native weeds) community 

structure in both years (Fig. 3-3b, d). 
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 Discussion 

Our study is among few that demonstrate richness mediated enhancement of native plant 

community establishment and reduction of exotic cover on grassland experimental plots initiated 

using the common restoration practice of broadcast seeding, with neither tight control of 

community composition (e.g., Tilman 1997, Biondini 2007, Fornara and Tilman 2009) nor the 

use of small plots (<10 m
2
, e.g., Piper et al. 2007). Our findings also lend support for the 

applicability to restoration of some, but not all, results from more rigidly controlled experiments. 

For example, Piper et al. (2007) investigated the effects of seeding richness on establishment of 

seeded plant communities, but with a lower species richness gradient (1–16 species) in an 

experiment where mowing was used to control weeds. They reported that the benefits of richness 

saturated at eight species, but our findings suggest that higher levels of species richness may 

considerably enhance the establishment of seeded species cover and reduce exotic species cover 

in restorations, although the incremental benefit of each additional species may be small. Despite 

these benefits, we did not find strong evidence for differential drought resistance, recovery, or 

resilience among seeding treatments, although diminished resistance and resilience were detected 

for restoration plots that were LR/LD. This calls into question the ability of common seeding 

methods to modulate the robustness of restorations to projected climate change absent the 

targeted use of species or ecotypes with drought resistance or resilience traits. 

Seeding treatments and establishment 

The practice of HD seeding and the use of HR mixtures had similar, but not interactive, 

effects on the establishment of seeded and exotic species richness and cover. Both of these 

methods enhanced establishment of seeded species and reduced the establishment of exotic 

species cover and richness. Their similar effects suggest that where available seed richness is 
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limiting, seeding at high density may provide alternative means of achieving desired results and 

vice versa. Because HR and HD plots both had greater small-scale richness than LR or LD plots, 

complementary resource use patterns or sampling effects could explain greater restoration 

establishment and enhanced exotic control from HR and HD mixtures. However, shifts in non-

seeded community structure in response to seed mixture richness, and not seeding density, 

suggest seeded species had differential effects on species within the non-seeded community. 

Greater establishment of seeded species and reduced exotic cover are also consistent with 

priority effects (D’Antonio et al. 2001, Ejrnaes et al. 2006), if more seeded, native vegetation 

was able to establish early over more area relative to exotic vegetation on HD plots. At lower 

seed mixture ratios of grasses to forbs, Dickson and Busby (2009) showed poor forb 

establishment. Here, greater forb cover may have established on HR plots and supported greater 

overall establishment of cover for several non-mutually exclusive reasons. The HR mixture may 

have contained additional forbs that were relatively good competitors for resources with grasses 

in the seed mixtures or with non-seeded species (sampling effect, e.g., Huston 1997), had 

complementary patterns of resource use (e.g., Fornara and Tilman 2009, Marquard et al. 2009), 

or were good colonizers of open space at the outset (e.g., Ejrnaes et al. 2006). For example, a 

large portion of forb cover on HR plots was H. maximiliani, the rhizomatous spread and tall 

stature of which may have contributed to an ability to quickly cover bare ground (e.g., Burke and 

Grime 1996), gather resources, and contribute to the high overall cover of native, seeded species 

and reduced cover of exotic species. 

Taken at face value, low ANPP on HR plots is surprising. However, HR plots had lower 

exotic species cover. Had we separated biomass into seeded and non-seeded species (which 

includes exotics), we may have observed different patterns for the subset of seeded species. We 
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expect that non-seeded species as a group allocated proportionately more of their biomass to 

aboveground structures relative to predominantly perennial seeded species, because most were 

annuals or biennials, whose lifetime fitness depends on the production of aboveground 

reproductive structures in one or two growing seasons (Monk 1966, Hautekéete et al. 2001). In 

contrast, many perennial grassland species, particularly C4 grasses, have high ratios of 

belowground to aboveground biomass allocation (Risser et al. 1981). Using an estimate of ANPP 

as an index of ecosystem functioning may be less informative than an estimate of NPP that 

incorporates both belowground and aboveground allocation where plant above- and belowground 

allocation patterns are divergent (Kahmen et al. 2005, Wilsey and Polley 2006). 

Drought effects 

The lack of clear effects of richness on drought resistance, recovery, and resilience, 

despite concurrent enhanced seeded species cover on HR and HD plots, contrasts with other 

grassland observational and experimental studies (i.e., Frank and McNaughton 1991, Tilman 

1996, Picasso et al. 2010), and could result from several mechanisms. Seed mixture richness and 

seeding density treatments would have similar drought responses if the shelters failed to create 

stressful environments relative to control plots. We believe that the shelters were effective 

because we observed reduced 30-cm volumetric soil water content (see Methods) on drought 

subplots, coupled with reduced seeded cover, and increased exotic and annual/biennial cover 

following drought. However, simulated drought was not intense enough to cause decreases in 

seeded species richness or shifts in plant community structure. Given the reduced absolute cover 

of seeded species we observed in response to drought, the similarity in seeded community 

structure between shelters and controls at both levels of seed mixture richness suggests a lack of 

sufficient differential species responses to stabilize seeded cover, even at high richness. This 
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absence of shifts in community structure, which should occur if drought- tolerant species become 

relatively more abundant, precludes an important potential mechanism for diversity-enhanced 

stability (Tilman 1996, Loreau 2000, De Boeck et al. 2008). Diversity dependent production 

patterns may explain the lack of enhanced resistance to drought on HR relative to LR plots. More 

productive plant communities may have a greater chance of losing their growth potential under 

drought (Pfisterer and Schmid 2002), or have increased water consumption, leading to stress and 

mortality (Van Peer et al. 2004, Wang et al. 2007, Zavalloni et al. 2008). The higher total ANPP 

we observed on LR plots reduces the likelihood that these mechanisms explain our results. While 

there were not significant differences among seeding treatment combinations in terms of ANPP 

and seeded cover stability, the LR/LD seeding treatment combination did exhibit recovery in 

ANPP, but a lack of seeded cover resistance and resilience with respect to controls. There was 

also marginal evidence for reduced seeded cover resistance and resilience from LD plots. This 

could result from lower 0.5-m
2
 seeded richness on LD plots, or suppression of seeded cover 

resilience by exotics. The latter would agree with the uniform resilience observed for ANPP, 

which, unlike seeded cover, included exotic biomass from mostly annual/ biennial species. The 

potential that local trait variation, here trait variation among species establishing from seeding 

mixtures, within either species or ecotypes, may be insufficient to buffer native communities and 

ecosystems against, or promote recovery from, global change generally and climate change 

specifically, has received increasing attention over the past decade (Wilkinson 2001, Seastedt et 

al. 2008), and should be the focus of experimental study. Invasion opportunities have been linked 

to global warming (Walther et al. 2009), but increased cover of exotic species across seed 

mixture richness and seeding density treatments during the year following drought links exotic 

response and climate change more generally. Annual and biennial plants tend to be associated 
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with disturbance (McIntyre et al. 1995), so the increase in annual/biennial cover after drought 

along with the annual/biennial habit of most exotic species at our site may explain their ability to 

respond quickly relative to predominantly perennial-seeded species. In tallgrass prairie, 

recruitment for perennial vegetation draws largely from belowground buds produced during the 

previous growing season rather than seed banks (Benson and Hartnett 2006), which may limit 

the ability of native perennial species to respond to disturbances that occur over relatively short 

time scales. In that sense, exotic species may have enhanced biomass recovery and resilience by 

their presence, because they were capable of rapid demographic response. Van Ruijven and 

Berendse (2010) observed increasing resilience as a function of richness. While we did not 

observe this pattern, our results are less contradictory if the response of exotic species is 

considered. Targeting native annual and/or biennial species for inclusion in seed mixtures may 

be useful for increasing trait variation. This may enhance recovery and resilience over time 

scales similar to that of this study via increases in a native subset of the plant community in the 

post-drought environment, which might otherwise support an enhanced response by exotic 

annual and biennial species. 

Conclusions 

We recommend the use of HR and HD methods and suggest that these may be 

substitutable if either diversity or density alone are limiting, particularly where the establishment 

of small-scale species richness, native species cover, and low exotic species cover are restoration 

targets. Positive effects of high seeding density on native vs. exotic cover and richness were still 

evident four to five years after the initial seeding. We caution, however, that HR plots may have 

greater richness at larger spatial scales than HD plots. Larger-scale richness driven by rare 

species likely represents much of the species pool (sensu Zobel 1997) available for response to 
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long-term biotic and abiotic changes on these plots, and this warrants consideration with respect 

to restoration targets. High richness at greater spatial scales should be more important, 

particularly for sites expected to have greater longevity. Productivity responses, while 

statistically discernible, were unexpected and difficult to interpret in the context of seed mixture 

richness, and would yield inferences opposite to that from patterns of seeded species cover, if 

taken at face value. We recommend separate analysis of seeded species contributions to ANPP or 

estimation of combined above- and belowground NPP for inference of seeding richness effects 

on the restoration of ecosystem function. Neither HR nor HD treatments produced plant 

communities with superior drought resistance, recovery, or resilience, which may be important 

properties for restored grasslands given projected increases in drought frequency and severity. 

The insurance hypothesis predicts that diverse communities should be more likely to contain 

species that will compensate for others in response to perturbation (Yachi and Loreau 1999). In 

our case, greater representation of native annual/biennial species or species known to have 

drought tolerance traits in seed mixtures may confer greater stability to a one-year drought, and 

this should be evaluated in future studies. Trade-offs between resistance and resilience traits may 

be diminished, if resilient species primarily exist in seed banks during non-recovery years. More 

generally, other methods to modulate trait variation or introduce traits (e.g., through managed 

relocation) tailored to stabilizing restored plant communities in response to specific perturbations 

and possible drawbacks of such methods should be foci of restoration research. 
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Figures and Tables 

 

Figure 3-1. Mean species richness by seeding treatment combination on drought (RO) and 

control (NT) subplots for (a) seeded species and (b) exotic species, and mean cover by seeding 

treatment on RO and NT subplots for (c) seeded species and (d) exotic species. Significance 

values are provided for the seeding richness, density, and drought main effects and the richness × 

density interaction. All error bars represent mean ± SE. Treatments are HR, high richness; LR, 

low richness; HD, high density; LD, low density. Means, standard errors, and levels of 

significance are from PROC MIXED repeated-measures ANOVA. 
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Figure 3-2. Proportional resistance (a-b), proportional recovery (c-d), and resilience (e-f) by 

seeding treatment combination for biomass (top row) and seeded species cover (bottom row) ± 2 

standard errors. Treatment coding follows fig. 3-1. Significance values are provided for seeding 

richness and density main effects and their interaction, and significant differences from zero for 

treatment combinations (a-d) and one (e-f) are indicated by dark bars. Means, standard errors, 

and significance values are from Proc Mixed repeated measures ANOVA. 
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Figure 3-3. NMDS ordinations for plant community structure with correlation coefficients and 

p-values (Envfit permutation tests) for single treatment factors explaining fit for seeded species 

only in 2009 (a) and 2010 (c) and for non-seeded species only in 2009 (b) and 2010 (d). Lines 

connect points (both levels of drought and seeding density treatments within HR and LR 

treatments) to HR and LR centroids and form perimeters around HR and LR groups. Symbols: 

gray = HR; white = LR; circle = HD; square = LD; large = drought; small = no drought. Stresses 

(a-d) respectively = 22.45, 22.52, 22.62 and 23.5). 
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Table 3-1. Significance of treatments with mean differences and standard error (where 

significant) for cover of functional groups included in seeding mixtures. 

Functional Group Seed Mixture Richness Seeding Density Rainfall Manipulation 

C4 grasses n.s. n.s. n.s. 

C3 graminoids  n.s. HD>LD *, 11.57(3.84) Control > Drought *, 9.56(3.94) 

Forbs  HR >LR **, 57.74(5.35) HD>LD *, 14.41(5.35)  n.s. 

Notes: Significance coded: p < 0.005, **; p ≤ 0.05, *;  p > 0.05 n.s. Group with greater mean 

value (%) indicated, followed by mean difference and s.e. in parenthesis (Proc Mixed repeated 

measures ANOVA). 
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Chapter 4 - Drought-mediated stem and below-ground bud 

dynamics in restored grasslands
3
 

 Abstract 

Question: Does the below-ground bud bank mediate response to drought in restored grasslands? 

Location: Platte River Valley region of south-central Nebraska, USA.  

Methods: We imposed severe drought for one growing season using rainfall manipulation 

structures and measured the response of above- and below- ground plant communities (ramet and 

below-ground bud densities)with respect to non-drought controls during the drought year and a 

recovery year. 

Results: Drought reduced below-ground bud bank density and above-ground stem density. 

However, bud bank density recovered, and bud production was higher on previously droughted 

subplots relative to controls in the year following drought. The response of below-ground bud 

and above-ground stem density to drought differed according to functional identity (C3 grass, C4 

grass and forb), with forbs least resistant to, but having the greatest recovery from, drought. 

Conclusions: While overall density in restored grasslands was resilient, drought effects on 

below-ground bud banks may have longer-term impacts on plant community structure. Reduced 

density above- or below-ground during the growing season following drought may allow for the 

persistence of species relatively more reliant on recruitment from seed banks in favourable 

micro-sites. 

                                                 

3
 Reprinted with permission from Wiley Publishing: “Drought-mediated stem and below-ground bud 

dynamics in restored grasslands” by D.L. Carter, B.L. VanderWeide, & J.M. Blair, 2012. Applied Vegetation 

Science, 15, 470-478. 
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Introduction 

Habitat loss exceeds protection in remaining temperate grasslands more than in any other 

biome (Hoekstra et al. 2005). In North America, restoration of grasslands via the reintroduction 

of native vegetation to ex-arable lands has gained momentum since the 1960s (Cottam & Wilson 

1966; Mlot 1990). Remnant grassland losses and increasing grassland restoration activities have 

elevated the importance of restored grasslands for the maintenance of biodiversity and ecosystem 

functioning in the future. However, most current research on disturbances in grasslands utilizes 

remnant or semi-natural grasslands (e.g. Noymeir 1995; Hartnett et al. 1996; Baer et al. 2005; 

Yahdjian & Sala 2006; Fiala et al. 2009; Chimner et al. 2010), while responses of young, 

restored grasslands to disturbance remain relatively unexplored and poorly understood. Mid-

continental regions, where most grasslands are found, are generally expected to experience 

increased risk for drought over the coming century (Meehl et al. 2007). Central North American 

grasslands have frequently experienced drought on annual and decadal time scales over the past 

millennium (Stambaugh et al. 2011), and extreme drought events are predicted to increase in 

frequency within decades (Strzepek et al. 2010). The effects of drought in temperate grasslands 

are diverse, including changes in community composition and structure (Weaver et al. 1935; 

Kennedy et al. 2003), decreases in primary productivity (Fay et al. 2003; Kennedy et al. 2003; 

Gilgen & Buchmann 2009) and shifts in biomass allocation patterns within species (Weiβhuhn et 

al. 2011).  

Although drought reduces individual plant growth and alters community structure, some 

effects of drought on grassland plant communities may be explained by responses of the below-

ground bud bank. The below-ground bud bank, first broadly characterized by Harper (1977), 

consists of dormant meristems of perennial grasses and forbs that are produced in the leaf axils 
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of phytomers during the growth of rhizomes and other below-ground stems (Briske 1991; Moore 

et al. 1991). Harper’s definition of buds has more recently been expanded to include ‘all buds 

that can potentially be used for vegetative regeneration,’ including buds that form adventitiously 

from roots (Klimešová & Klimes 2007). Although below-ground bud viability declines 

substantially over time for some grassland species (Henderson & Briske 1997), buds of the 

perennial C4 grass Andropogon gerardii, an abundant native in North American tallgrass prairies, 

may persist on the rhizomes of parent plants for 3 or more years (Ott & Hartnett 2011). As a 

result, bud banks can be an important source for regenerating vegetation above-ground following 

disturbance in perennial-dominated systems (Rogers & Hartnett 2001; Dalgleish & Hartnett 

2006; Klimešová & Klimes 2007). In mesic remnant grasslands in central North America, nearly 

all above-ground stems are recruited from the below-ground population of reserve meristems 

rather than the seed bank (Benson & Hartnett 2006). The bud bank in young, restored grasslands 

may contribute relatively less to recruitment of above-ground stems because the density of native 

perennial species remains low and recruitment micro-sites for seeds are still abundant. Despite its 

low density, the bud bank could still play an important role in the drought response of newly 

restored grasslands by buffering responses of established plants to disturbance and facilitating 

establishment and clonal spread of native vegetation. 

While we are aware of no studies concerning the effects of environmental perturbations 

on bud banks in restored grasslands, several studies have described how the effects of 

disturbances, such as fire and grazing, are mediated through the bud bank in field experiments 

(Busso et al.1989, Dalgleish & Hartnett 2009). Fire removes litter and existing vegetation 

(Hulbert 1969). Removal of phytomass increases the quantity of light that reaches the soil 

surface, warming it (Knapp et al. 1998), and alters the incident red:far-red light ratio 
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(Willems1983). Increased red:far-red light ratios (Tomlinson & O’Connor 2004) and increased 

soil temperatures (Svejcar1990) are potential cues for the growth of buds into tillers. The 

resulting highly productive, dense population of above-ground stems in recently burned areas 

replenishes the bud bank (Benson et al. 2004). Responses to disturbance may differ among 

functional groups, depending on the timing and severity of the disturbance (Klimešová & Klimes 

2007; Dalgleish & Hartnett 2009). This suggests that functional groups that are more able to 

either conserve buds during drought or produce new buds in spite of drought may contribute 

more to post-drought recovery in perennial-dominated grasslands. 

To investigate the effects of drought on stem and bud dynamics in young, restored 

grasslands, we utilized restoration plots sown in 2006 by The Nature Conservancy (TNC) in 

south-central Nebraska, USA. We experimentally imposed severe drought during the 2009 

growing season and tracked below-ground bud densities and aboveground stem densities of 

sown, native species on drought and control subplots during the drought year (2009) and a 

recovery year (2010). The following questions guided our research: (1) does drought affect 

above-ground stem density during the drought year? Emergence of most species may occur 

before the realization of drought stress, causing stem density to be initially independent of 

drought. (2) Are below-ground bud densities and numbers of buds per stem reduced on drought 

subplots relative to controls receiving ambient rainfall? Drought can decrease belowground 

productivity in grasslands (Frank 2007), which may be associated with reduced numbers of 

phytomers and attendant buds, or a reduction in phytomer size with no change in bud numbers. 

(3) Are there lagged effects of drought on above-ground stem and below-ground bud density? (4) 

Do bud and stem dynamics of particular functional groups (C4 grasses, C3 grasses and forbs) 

differ in their responses to drought? Species or functional groups could respond differently to 
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drought because of differences in drought tolerance and growth phenology (Kassioumi et al. 

2002; Tucker et al. 2011). This research will help us better understand the effects of growing 

season drought on grassland restoration establishment and determine if below-ground bud banks 

are involved in response to drought. 

Methods 

Study area 

We imposed drought treatments within a grassland restoration experiment at a TNC site 

in south-central Nebraska, USA (40°41’N, 98°35’W).  The experimental plots cover 34.4 ha in 

an area tilled annually for intensive Zea mays production through 2005, so we assume little, if 

any native vegetation was present prior to initiation of the experiment. Soils consist of loams and 

loamy sands over deeper coarse sands (Bolent-Calamus complex, Caruso loam, Gothenburg 

loam, Wann loam). The climate is continental with a mean annual temperature of 10.4 °C and 

mean annual precipitation of 629 mm (both 1971-2000 means), 65 % of which falls between 1-

May and 30-August (United States Historical Climate Network, USHCN).  Precipitation totals 

for 2009 and 2010 were 615 and 683 mm respectively (USHCN, National Weather Service). 

Seeding and drought treatments 

The 24 experimental plots consist of square plots (0.3 ha each) with a factorial 

combination of two levels of seed mixture richness (high richness, HR = 95 species; low 

richness, LR = 15 species) and two levels of sowing density, yielding six replicates of each 

richness by density combination. Equal weights of bulk seed were sown among HR and LR 

plots, but HR plots had slightly higher sowing densities of pure live seed (tetrazolium test) than 

LR plots (low density, LD = 164 or 172 live seeds·m
-2

 and high density, HD = 328 or 344 live 
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seeds·m
-2

 for LR and HR respectively). All seeds were collected within the central Nebraska 

Platte River region and broadcast sown over damp soil and melting snow in late March and early 

April, 2006. While not the focus of this manuscript, seeding treatments were included as fixed 

effects in statistical analyses. These seeding treatment combinations were applied to plots in a 

systematic rather than random fashion, so we used row and column identifiers for plots as 

random effects in statistical analyses.   

From mid-March through early-October 2009, we simulated severe drought with passive 

rainfall manipulation structures erected at random locations within each of 24 large seeding 

treatment plots. Shelters intercepted approximately 80% of ambient rainfall using a slight 

modification of the design proposed by Yahdjian & Sala (2002), whose shelters permitted greater 

than 90% transmittance of the visible spectrum, reduced soil volumetric water content (SWC) 

under shelters, but led to slightly cooler air and soil temperatures under the shelters. Briefly, 

shelter structures consisted of tubular metal frames with clear Lexan® plastic shingles bent 

lengthwise at 120° and secured to the frames to divert rainfall into a gutter, which carried water 

at least 1.5 m from shelter edges.  Drainage was facilitated by sandy soils. Shingle material 

transmitted greater than 90 % of visible light. Shingles were spaced for 80% coverage of the 2.5 

by 2.34 m
2
 shelter area , which was not square due to a 15° tilting of the roof to divert water. The 

shelters were 1.5 m tall on their high side to minimize growth of tall vegetation through spaces 

between the shingles and each oriented with the high side facing away from prevailing summer 

winds to minimize the lateral intrusion of precipitation. Shelters were erected at least 15 m from 

plot edges within each of the 24 large seeding treatment plots. Drought subplots (1 m
2
) for 

sampling were established under the center of each shelter and control subplots (1 m
2
) receiving 
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ambient rainfall were established randomly either 1.5 m north or south of each shelter within 

each large seeding treatment plot.  

To verify the effectiveness of the shelters, we monitored soil water content (SWC, 30 cm 

depth, time domain refractometry methods, CS616 soil moisture probes with CR10x data loggers 

from Campbell Scientific, Logan, UT, USA) for a 26-d period under the central 1 m
2
 of one 

shelter. We observed a 30–60% reduction in SWC relative to soil measured 1.5 m from the 

shelter edge (side opposite that of gutter outflow) (Appendix B), which corroborates the findings 

of Yahdjian & Sala (2002). Reduced SWC at depth over this prolonged period makes us 

confident that shelters created a satisfactory drought treatment. 

Stem and bud sampling 

We estimated stem density by species in May and August 2009 and 2010 from stem 

counts within two 0.25 m
2
 quadrats arrayed diagonally within each 1-m

2
 subplot sampling area. 

Peak density estimates for species across May and August sampling dates were used in statistical 

analysis. We combined density estimates from three species in the genus Elymus that had been 

included in restoration mixtures because we could not reliably identify small individuals to 

species in the field. To measure the density of the below-ground bud bank, we harvested 10 cm × 

10 cm soil cores to a depth of 15 cm during the pre-drought, immediately post-drought and 1 yr 

post-drought dormant seasons. Sampling during the dormant season avoids the large fluctuations 

in bud densities that occur throughout the growing season, allowing comparison of bud densities 

among years (Dalgleish & Hartnett 2006). Pre-drought cores were taken from a 6-m transects 

adjacent to future locations of drought treatment and control subplots (12 below-ground samples 

per transect taken at 0.5-m intervals, March 2009). Bud densities from these samples are 

presented as pre-drought baselines but not included in statistical analyses of drought effects, 
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because transects were from whole plots rather than subplots. We estimated below-ground bud 

density immediately post-drought (November, 2009) and 1 yr post-drought (November, 2010) 

using eight cores each per drought and control subplot. We used areas within subplots sampled 

the preceding season for stem density, thereby ensuring that the same area was sampled for both 

metrics and avoiding disturbance of areas used for stem counts in the following season. All 

below-ground samples were placed in plastic bags and stored at 4 °C pending processing (within 

1 mo). Processing involved rinsing soil from the below-ground samples (no more than 2 wk prior 

to examination) and examining them using a dissecting microscope, trimming roots as necessary 

to allow thorough examination of the below-ground structures. Below-ground buds were counted 

and assigned to species when possible using bud morphology, phyllotaxy, morphology of the 

attached root system and morphology of any remaining above-ground parts. Buds from the 

genera Helianthus, Solidago, and Elymus were scored to genus, because identification of below-

ground structures to species was not possible. Remaining individuals that could not be identified 

constituted a very small percentage of the total below ground bud bank (0.71%) and were 

excluded from analysis. As outlined in Dalgleish & Hartnett (2006), buds of rhizomatous grasses 

and forbs are found at rhizome nodes and are easily visible. Buds of bunch grasses were counted 

by dissecting the base of each tiller. Most taxa produced buds at nodes, but two legumes 

(Astragalus canadensis and Glycorrhyza lepidota) also produced buds adventitiously from roots. 

A list of species sown into and encountered in the experiment, with functional group 

designations, is given in Appendix B. All nomenclature follows the United States Department of 

Agriculture PLANTS Database (USDA-NRCS). 
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Statistical Analysis 

The TNC’s initial motivation for this experiment was to investigate the consequences of 

two levels of restoration sowing density and two levels of seed mixture richness on the 

establishment of restored grasslands. However, the focus of our study was the response of 

grassland restoration plots to drought across treatments, although we modeled effects of these 

treatments in our analyses. We used repeated-measures mixed model analysis of variance 

(ANOVA) to test effects of drought, seed mixture richness, sowing density and year on bud 

density, stem density and number of buds per stem (bud density·m
-2

/stem density·m
-2

), with year 

as a repeated measure, on rainfall manipulation subplots within each whole plot. We used whole 

plots within seeding richness and sowing density treatment combinations and whole plot row and 

column identifiers as random effects. Repeated-measures mixed model ANOVAs were 

performed using Proc Mixed with Tukey-Kramer’s adjustment to control family-wise error rate 

for interaction contrasts (significant or marginally significant interactions) and Kenward-Rogers 

degrees of freedom estimation. Distributions for all response variables were not significantly 

different from normal (Proc Genmod, chi-square test of fit), with the exception of buds per stem 

combined among functional groups. We modeled the latter, which was fitted by the gamma 

distribution, using a mixed model in Proc Glimmix (dist = gamma), but inference was identical 

to Proc Mixed, so Proc Mixed analysis is presented. We analyzed patterns for stems, buds and 

buds per stem for seeded species for three groups: C3 grass, C4 grass and forb, which have been 

defined as functional groups (sometimes ‘guilds’) elsewhere (Kindscher & Wells 1995; Tilman 

1997; Camill et al. 2004). Analyses of buds per stem utilized only seeded species encountered 

both as buds and as stems over the course of the study. All analyses were performed in SAS® 
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version 9.2 (2002–2008; SAS Institute, Cary, NC, USA). We report all drought × year 

interactions, and both drought and year effects where their interaction is not significant. Effects 

Drought and year effects were not contingent on density or richness for any response variable. 

Results 

We encountered more taxa in our above-ground than below-ground sampling (33 vs 13), 

but 97% of above-ground stems belonged to taxa also encountered below-ground. All taxa 

encountered below-ground were encountered above-ground. Of below-ground buds pooled 

across treatments and years, 10% were from C3 grasses, 31% were from C4 grasses and 59% 

were from forbs. Of stems pooled across treatments and years for taxa also encountered as 

below-ground buds, 34% were from C3 grasses, 40% were from C4 grasses and 26% were from 

forbs. 

Total buds and stems 

Below-ground bud density was reduced in response to drought during the dormant season 

immediately after drought, but there was no significant difference in bud density between control 

and drought subplots 1 yr later (Fig. 4-1a). Stem density increased from 2009 to 2010 on control 

but not drought subplots (Fig. 4-1b). There were no significant differences in stem density 

between drought and control subplots during the drought year, but drought subplots had lower 

stem densities than control subplots in the subsequent year (Fig. 4-1b). The number of buds per 

stem was lower on drought subplots in 2009 (Fig. 4-2). This effect was transient, as the number 

of buds per stem was marginally higher on drought subplots than control subplots during the 

recovery year (Fig. 4-2). 
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C3 grass, C4 grass, and forb responses 

The nature of above-ground stem and bud dynamics across years differed among 

functional groups (Fig. 4-3, Table 4-1). Increases in stem density across years were restricted to 

control subplots for C3 grasses, but increases for forbs were neither contingent on drought 

treatment nor year (Fig. 4-3a,c). Increases in C3 and C4 grass bud density across years were not 

contingent on drought treatment, but the increase in forb bud density was restricted to drought 

subplots (Fig. 4-3d–f). With the exception of C3 grasses, there was no evidence for differences in 

buds per stem either between years or between drought and control subplots for functional 

groups (Table 4-1). The number of buds per stem on drought subplots was higher for forbs than 

C3 grasses in both years and higher than C4 grasses in 2009 (Table 4-1). 

Discussion 

Our study is among the first to demonstrate effects of drought on below-ground bud 

communities in restored grasslands. Below-ground bud density was reduced immediately 

following drought, and this pattern was consistent with the lagged effect on stem densities, which 

were reduced during the recovery growing season. The number of buds per stem on drought 

subplots was high relative to control subplots following the recovery year. This pattern, which 

could result from increased bud production or decreased bud mortality, also contributed to the 

resilience of below-ground bud bank density relative to controls. This suggests that occasional 

droughts of short duration (≤1 yr) may do little to impede the recovery of native density in 

restored grasslands, as long as they do not occur during the initial recruitment of native 

vegetation (e.g. Hallett et al. 2011) or yield recruitment conditions that permit the establishment 

of exotic or other weedy species (Pérez-Fenéndez et al. 2000; Corbin & D’Antonio 2004). Stem 

recruitment was unaffected in the year of the drought, which agrees with the results of Busso et 
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al. (1989) for two desert grass species. This may have occurred because most stems emerged in 

spring before the drought could reduce soil moisture to a stressful level. We observed differential 

effects of drought among functional groups, which likely were important for the response of the 

combined bud bank. While stem densities of C3 grasses, C4 grasses and forbs were not reduced 

relative to controls during the drought growing season, only bud densities of forbs were 

significantly reduced immediately following drought. Reduced bud densities may cause forbs to 

contribute more to vulnerability to environmental change (e.g. Chapin et al. 1997) in this 

restored system. However, forb stem density on drought subplots matched that of controls the 

year following drought, and forb bud density exceeded control subplots following the post-

drought growing season. Post-drought forb stem populations might have relied less on bud banks 

than grasses, because some perennial forbs maintain and utilize seed banks relatively more than 

perennial grasses for annual stem recruitment (Rabinowitz & Rapp 1980; Stampfli & Zeiter 

2004). Seed banks might have buffered forb stem densities following drought, despite the initial 

reduction in forb bud density, contributing to subsequent recovery of both forb bud densities and 

the high bud production per stem at the community level. The observed forb bud density 

response illustrates how resistance and recovery can be divergent within functional groups in 

communities (e.g. Boucher et al. 1994; Bee et al. 2007), such that short- and longer-term shifts in 

community structure are opposite. Unlike forbs, both C3 and C4 grass stem densities were lower 

in 2010 following drought, and grass bud banks were not significantly reduced by drought in 

2009 or 2010. Two explanations could address these patterns. First, smaller proportions of bud 

banks produced in 2009 may have emerged as stems in 2010, and the below-ground buds of 

grasses may persist across years, which would indicate that more species in our system behave 

like the species investigated in Ott & Hartnett (2011) than those investigated in Henderson & 
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Briske (1997). Second, bud production may have increased or mortality decreased following 

drought due to increased nitrogen availability (Cui & Caldwell 1997; Enquist et al. 1998). We 

believe the second explanation is more likely because Dalgleish et al. (2008) reported that bud 

production contributes substantially more to population growth rates in demographic models and 

that nitrogen addition can increase the number of buds produced per stem. However, it is not 

clear to what extent either current bud production or maintenance of and recruitment from older 

buds contributed to stem densities. Regardless, time lags in bud-mediated recovery may allow 

species to establish or persist that are less reliant on budbanks for population maintenance or 

more reliant on seeds for dispersal. 

While the community structure of the below-ground bud bank often more closely 

matches above-ground community structure than the seed bank (Klimešová & Klimes 2007), we 

observed differences in the responses of functional groups above- and below-ground. These 

differences yield insights into the contributions of different functional groups to bud banks and 

the associated capacity of these restored grasslands to respond to perturbation. Tilman (1996) 

showed that differential responses within plant communities could stabilize overall dynamics. 

While the short-term response of forbs increased the effect of drought on overall density, forbs 

also attenuated the effects of drought on below-ground bud banks over longer periods. Both 

forbs and C4 grasses may contribute more in an absolute sense to bud-mediated recovery of stem 

density after drought than C3 grasses, because both make up larger fractions of the below-ground 

bud bank and forbs exhibited relatively high densities of buds per stem both immediately and 1 

yr following drought. 

While the below-ground bud banks of target vegetation recovered following drought in 

these restored grasslands, drought may still have appreciable long-term effects. Reductions in 
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bud density immediately after drought may reduce short-term above-ground recovery upon the 

return of more favorable conditions. Lagged effects on above-ground density could promote 

invasion or the persistence of existing exotic or ruderal species (e.g. Pérez-Fenández et al. 2000). 

Also, differential capacities for bud production or maintenance among functional groups could 

lead to more persistent changes in plant community structure. Here, forb stem density did not 

differ from controls on drought subplots in 2010, despite reduced bud densities immediately 

following drought. This, combined with increases in forb bud density per stem, contributed to the 

resilience of the combined bud bank. Forbs may persist for longer periods, even in the presence 

of superior competitors, if they are more able to pre-empt space following drought or other 

disturbances (e.g. D’Antonio et al. 2001; Ejrnaes et al. 2006). 

The lack of lagged effects of drought on forb stem density also highlights how seed banks 

may be an important means by which vegetation exploits available space and resources in this 

system (e.g. Aboling et al. 2008), but we cannot address whether stem densities for forbs and 

other vegetation in 2010 were driven more by an increase in proportional bud recruitment to 

stems from a depleted bud bank or recruitment from the seed bank. Future work should relate the 

importance of seed vs. bud banks to both timing and extent of recovery, community structure and 

potential impacts for delayed recovery for ecological processes. 
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Figures and Tables 

 

Figure 4-1. (a) Bud densities from the dormant season immediately after drought (2009) and 1 yr 

after drought (recovery, 2010) for control and drought subplots (see legend) with reference pre-

drought (2008) mean bud density ± SE indicated by the solid horizontal and dashed lines, 

respectively. (b) Stem densities from drought (2009) and recovery (2010) growing seasons. (a & 

b) Letters indicate significant (P ≤ 0.05) Tukey-Kramer adjusted interaction contrasts. Drought × 

year interaction statistics: Fixed Effect, F-statistic numerator DF, denominator DF: P-value. 
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Figure 4-2. Bud density divided by stem density for drought (2009) and recovery (2010) years 

for control and drought subplots (means ± SE). The asterisk denotes a contrast with P = 0.064. 

Otherwise, contrasts and statistics follow Fig. 4-1. 
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Figure 4-3. Stem density (a–c) and bud density (d–f) responses for 2009 and 2010 among C3 

(a,d), C4 (b,e) and forb species (c,f) for control and drought subplots, all means ± SE. Horizontal 

lines, contrasts and statistics follow Fig. 4-1. 
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Table 4-1. . Estimated buds per stem means ± SE and indication of significant differences from 

Tukey-Kramer adjusted contrasts within functional groups (uppercase) and among functional 

groups (lowercase) within drought × year combinations. The final row combines years and 

drought treatments within whole plots. Drought × year combinations where buds but not stems 

were encountered were assigned ‘NA’ for analyses due to zeros in denominators (≤ 7/24 values 

for any drought 9 year combination). 

   C3 Grass  C4 Grass  Forb 

Year Drought Mean     S.E.  Mean    S.E.  Mean         S.E. 

2009 No  12.7 (A, a)   2.2 17.2 (A, a)     5.3 18.4  (A, a)    3.8 

2010 No  3.0   (B, a)    2.1  9.9   (A, a)    4.8 12.3  (A, a)    3.7 

2009 Yes  2.4   (B, a)    2.1 2.6   (A, a)     5.1 9.4    (A, b)    3.7 

2010 Yes  4.7   (B, a)    2.1 7.6   (A,ab)    5.6 15.5  (A, b)    3.7 

COMBINED   5.5   (a)         1.4 9.3   (ab)       2.5 13.9  (b)         2.7 
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Chapter 5 - Seed source affects establishment and survival for three 

grassland species sown into reciprocal common gardens
4
 

 Abstract 

The source of plant material can affect the successful establishment and subsequent 

survival of plant species in restoration. Sometimes a local advantage is assumed or advocated, 

but research to date is equivocal on the relative success of local versus non-local plant sources in 

restoration. Global change, which is altering environmental conditions broadly and within local 

sites, raises additional questions regarding whether local sources will consistently perform best 

in the future. We investigated the effects of seed source (local vs. non-local) on the performance 

of three grassland species across variable environments using reciprocal common gardens in 

three states (Nebraska, Kansas, and Oklahoma). In order to mimic the restoration of grassland 

vegetation from seed under realistic conditions where species interact with one-another during 

establishment, we focused on three species (Elymus canadensis, Oligoneuron rigidum, and 

Sorghastrum nutans) that were seeded together into communities with nine additional grassland 

species, simultaneously and identically manipulating source for all species. Both common garden 

site and seed source affected initial (first year) establishment in terms of density and survival, but 

responses differed among seed sources and were not consistent among species. No seed source, 

including local, had a consistent advantage. Effects of seed source on initial density, in addition 

to survival, suggest that experiments utilizing transplants might miss important effects of seed 

source on establishment and that the relative performance of different sources within a single site 

or that of any one species across sites cannot be easily generalized. 

                                                 

4
 Daniel Carter retains copyright. Chapter 4 is published in the open access journal Ecosphere: D.L. Carter & J.M. 

Blair, 2012. Ecosphere, 3(11):art102. http//dx.doi.org/10.1890/ES12-00223.1 
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 Introduction 

While there is broad agreement that the source of plant material used in restoration 

projects matters, the basis for recommendations regarding local vs. non-local sources is often 

unclear. Common garden experiments can provide data on differences among source 

populations, and such experiments have shown that a broad range of plant traits or performance 

measures vary intraspecifically in many plant taxa according to provenance (e.g., Clauson et al. 

1940, Linhart and Grant 1996, Leimu and Fischer 2008, Miller et al. 2011, Weiβhuhn et al. 

2011). Such intraspecific variation is typically explained by spatially heterogeneous selective 

forces acting on trait variation to tune populations to local environmental conditions, although 

other factors (e.g., gene flow) can also influence local differentiation among plant populations 

(Kawecki and Ebert 2004). In many cases, evidence of neutral genetic variation among sites is 

used as a proxy for local adaptation (e.g., Gustafson et al. 2004, Selbo and Snow 2005, Moncada 

et al. 2007). The assumption that observed trait or genetic differences among source populations 

are important often forms the basis for recommending the use of locally sourced plant material 

(Hamilton 2001, Miller et al. 2011), as do concerns regarding the loss of local genetic diversity 

with the introduction of new genotypes (Keller et al. 2000, Wilkinson 2001, Hufford and Mazer 

2003). However, relatively few studies have shown that survival or demographic rates differ 

among sources or between local and non-local sites (e.g., Souther and McGraw 2011, Van der 

Veken et al. 2012). There are also few studies to indicate whether any intraspecific differences 

observed among sources grown in single common gardens are consistent across multiple sites or 

among co-occurring species (e.g., Waser and Price 1985, Bischoff et al. 2006). Further, most 

common garden studies grow plants in isolation from interspecific interactions (e.g., Miller et al. 

2011), but the presence of other species can affect the magnitude of source effects for focal 

species (Bischoff et al. 2006, Rice and Knapp 2008). In reality the restoration of focal plant 
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populations often occurs in the presence of other species, and many restoration projects involve 

the introduction of seeds or transplants representing several or many species to areas where 

native vegetation has been mostly or completely removed (e.g., Cottam and Wilson 1966, 

Middleton et al. 2010, Carter and Blair 2012). Despite this, we are not aware of any studies to 

date that simultaneously manipulate source for more than two species concurrently, though 

Genung et al. (2012) manipulated source for two species. 

The relative advantages of using local vs. non-local sources may be further complicated 

as a result of changing environmental conditions. Global change is likely to affect the suitability 

of even local sources for contemporary and future environments (Broadhurst et al. 2008). 

Landscape fragmentation has reduced many populations to small, isolated relicts, which may 

possess reduced genetic diversity (Ellstrand and Elam 1993, Keller and Waller 2002). 

Anthropogenic climate change (Strzepek et al. 2010, Rahmstorf and Coumou 2011), nutrient 

deposition (Galloway et al. 2004), increases in atmospheric CO2 (Hansen et al. 1981, O’ishi et al. 

2009), and the near ubiquitous presence of introduced producers and consumers (Walther et al. 

2009, Burgiel and Muir 2010) are causing worldwide shifts from historical environments. 

Recognition of the many potential effects of multi-dimensional global change has increased 

debate regarding managed relocation (e.g., McDonald-Madden et al. 2011) and management for 

desirable characteristics in novel ecosystems (Seastedt et al. 2008). 

Harris et al. (2006) call for the use of common garden experiments as ‘‘proactive 

research and action’’ in the context of global change, because common gardens elucidate the 

responses of organisms to environmental variation. Multiple common garden sites can provide 

insights into the relative success of different sources of plant material under a range of 

environmental conditions. In this study, we assessed the effects of seed source on the initial 
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establishment of species commonly used in tallgrass prairie restoration across three common 

garden sites in the Central United States. Rather than grow plants in isolation or monoculture, we 

sowed twelve species into restoration plots in combination and manipulated seed source for all 

species identically and simultaneously. We tracked establishment and survival over one year for 

three species (see Methods). Direct sowing of seeds into common gardens avoids any potential 

for artificial selection for plants that germinate and survive in the greenhouse prior to transplant 

into the field. It also provides the additional advantage of recreating a common grassland 

restoration approach where multiple species are sown and allowed to establish simultaneously. In 

this study, our focal species grew in the context of interspecific interactions, so interpretation of 

differences among sources within sites, or among sites sown with the same source, varies slightly 

from common garden experiments using a single species (e.g., Miller et al. 2011). In this context, 

observed differences reflect a combination of the direct effects of common garden site 

environments on the focal species as well indirect effects of site mediated through site effects on 

the other sown species. Our overarching goal was to assess the effects of seed source and 

environmental variation on the establishment of three common tallgrass prairie plant species 

where multiple species co-occur. Specifically, we ask (1) do plants exhibit greater survival or 

populations exhibit greater establishment densities when they are derived from a particular 

source? (2) Are any observed differences in survival or establishment density among sources 

consistent among sites, or is there a source by site interaction? (3) Do the three species exhibit 

qualitatively similar responses to seed source and common garden sites (i.e., how generalizable 

are the responses?)? Initial establishment in a restoration is important not only for the creation of 

viable populations of sown species, but also because early pre-emption of space should enhance 

priority effects of target vegetation against weeds (e.g., Sutherland 1974). Similar responses 
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among the three species, which belong to different functional groups, would increase confidence 

that responses can be more broadly generalized in tallgrass prairie restoration. 

 Methods 

 Species selection and reciprocal common gardens 

We chose twelve species that occur commonly on native grasslands near all sites and for 

which viable seeds were produced and collected in 2009. Seed mixtures contained warm-season 

grasses and composite forb and legume species that respectively contribute the most to 

dominance and diversity in Central North American grasslands (Howe 1994, Towne 2002). We 

collected seeds for all species from native prairies near (all within 100 km) each common garden 

site and stored them in paper bags at 20–24˚C for between 0.5 and 5 months (depending on when 

seeds matured for different species at different sites). We tested seeds for viability (tetrazolium 

test) at the Kansas Crop Improvement Association seed laboratory to permit the sowing of equal 

weights of live seeds for each species within each mixture to each treatment plot.  

Seeds from the twelve native, grassland species were hand broadcast into ex-arable plots 

in Nebraska (NE), Kansas (KS), and Oklahoma (OK) in late December, 2009, and early January, 

2010 (see Appendix C for site characteristics). These sites were chosen to cover a broad range of 

regional climatic conditions, and because they had areas dedicated to research (especially NE 

and KS), other restoration activities were already occurring at the sites, there were agricultural 

fields available to be restored, and there were locally available native grasslands to serve as seed 

sources. Plots were 9 × 9 m with 0.5 m buffers for each of three seed source treatments and 

arranged in a randomized complete block design at each site (12 total plots/site × 3 sites: NE, 

KS, and OK sources). To ensure uniform dispersal of species within plots, seed additions for all 

treatments contained equal live weights for each of the twelve added grassland species (see 
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Appendix C for sowing details). We assumed that effects of seed banks and dispersal from 

adjacent sites were minimal for sown species (all perennial) due to crop production at all sites 

immediately prior to seed addition. The nearest populations for all species were >20 m away 

from experimental plots. We chose three focal species from among the twelve for this study: 

Elymus canadensis (Canada wild rye, C3 perennial grass), Oligoneuron rigidum (stiff goldenrod, 

C3 perennial forb), and Sorghastrum nutans (indiangrass, C4 perennial grass). We chose these 

species because they represent different functional groups, and they were initially abundant 

across source treatments and common garden sites.  

 Sampling and populations measurements 

In both May (10–30) and August (10–30), 2010, we counted the number of stems for 

each species within six 0.25 m
2
 quadrats placed randomly along each of four equidistant 

transects within each plot (6 × 4 subsamples/plot). Plot-level density for each of the focal species 

on each sampling occasion was determined as the average across all 24 quadrats within each 

plot. May densities reflect primarily initial emergence of seedlings. August densities integrate 

several processes, including any recruitment of seedlings after May sampling, mortality, and the 

production of additional stems by individual plants. We use August density as an index of initial 

establishment for each species, and the relative difference between May and August densities 

[(DensityAugust  –  DensityMay)/DensityMay], which is the intrinsic population growth rate (r), as an 

index of population performance through the course of the first growing season. We also tracked 

the survival of individual plants for the three focal species between May and August, 2010. On 

each plot at each site we marked the first 25 seedlings of each of the three species encountered 

while performing May counts of stems (Fig. 5-1). In many cases, particularly at the OK site, we 

encountered fewer than 25 seedlings with this approach, so we searched the plots haphazardly 
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and added any additional seedlings we could find. We also added a few seedlings that we 

encountered for the first time in June. In several cases, more than 25 seedlings were marked on 

an individual plot, particularly when there was concern that other plots at a particular common 

garden site had < 25 seedlings. Regardless, we retained all plants we marked initially for 

analysis. We surveyed the plants again in August, and we assumed the plants had died, if no live 

tissue was present aboveground. Changes in r (May – August relative differences) inconsistent 

with patterns of survival for individual plants could result from either additional seedling 

recruitment or stem production by surviving plants. 

 Data analysis 

We used generalized linear mixed models to test for differences in density and 

proportional survival for each of the three focal species with seed source treatment and common 

garden site as fixed effects and block within site as a random effect. We performed these 

analyses in SAS version 9.2 (2011, Cary, North Carolina, USA) using Proc Glimmix. For 

density, we used an identity link and Kenward-Roger degrees of freedom estimation. For the 

number of plants surviving in August/plants marked in May we used a logit link and 

Sattherthwaite degrees of freedom estimation. Parameter estimates for survival are odds rather 

than mean proportions, although we present proportions for the sake of interpretability in Fig. 5-

3. 

 Results 

 Density 

 There were significant site effects and at least marginally significant source × site effects 

on E. canadensis May stem density, August stem density, and r, but a significant source effect 
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occurred only for May stem density (Table 5-1). In both May and August, E. canadensis stem 

density was lower in OK than NE for all sources and lower in OK than KS for the NE source, 

and the OK source had lower density in cases where there were differences among sources 

within sites (Fig. 5-2A, B). Stem populations increased for all sources at the NE site, r was not 

significantly different from zero for all sources at the KS site and OK and KS sources at the OK 

site, and populations sourced from NE decreased at the OK site (Fig. 5-2C).  

There were significant site effects on O. rigidum May stem density, August stem density, 

and r, but significant source and at least marginally significant source × site effects occurred only 

for May and August stem densities (Table 5-1). In May, stem density of O. rigidum was higher at 

the NE site than KS and OK sites for the NE source (Fig. 5-2D), but by August stem density was 

greater for all sources at the NE site compared to the KS site and for two of three sources 

compared to the OK site (Fig. 5-2E). Stem populations increased at the NE site, r was not 

significantly different from zero at the KS site, and populations decreased at the OK site across 

seed source treatments (Fig. 5-2F). 

There were significant site effects on S. nutans May stem density, August stem density, 

and r, significant source effects on May and August stem density, and a marginally significant 

source × site effect on August stem density (Table 5-1). In May, the density of S. nutans stems 

across sources was greater at the NE than the OK and KS sites, and density was greater for the 

KS source than the OK source across sites (Fig. 5-2G). In August, stem densities at the NE site 

were greater than those at the KS and OK sites for all sources, and at both the NE and KS sites, 

the density was greater for the KS source than the OK source (Fig. 5-2H). Stem populations 

increased across source treatments at the NE and KS but not the OK site (Fig. 5-2I). 
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 Survival 

There were no significant main effects of source on survival among the three species, but 

there were significant site effects on E. canadensis and O. rigidum survival, and a significant 

source × site effect on E. canadensis survival (Table 5-2). The odds of survival for E. canadensis 

varied by site and by source within the KS and OK sites. The odds of survival were greater in NE 

than OK (Fig. 5-3A). In KS, the NE source had greater odds of survival than the OK source, and 

in OK, the OK source had greater odds of survival than the NE source (Fig. 5-3A).The odds of 

survival for O. rigidum varied by site, with greater odds of survival at the NE and KS sites 

compared to the OK site (Fig. 5-3B). There was no evidence for differential survival odds of S. 

nutans among sites or sources (Fig. 5-3C). 

 Discussion 

Biophysical filters on establishment can act on trait variation to modulate survival (Hobbs 

and Norton 2004). Patterns of early and late season density, density change (r), and survival 

provide insights into the action of biophysical filters on the initial establishment of the focal 

species in our study. Already in May, differences in density for all three focal species existed 

between sites, and the three species also exhibited differences among sources within particular 

sites. Subsequently, stem populations increased, decreased, or remained static, with responses 

depending on common garden site, source, and species. These changes were consistent with 

differences in survival, which was generally lower in OK than in NE and KS (exceptions: S. 

nutans and the OK source of E. canadensis). The environmental difference among sites in our 

study was multivariate, and we will not attempt to identify particular causes for differences in 

density or survival for the focal species among sites or among sources within sites. Nonetheless, 

our results indicate that source can affect species establishment when species are grown in a 
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community setting that is comparable to a real restoration, but the identity of best-performing 

sources in terms of density and survival may differ by site and species. 

Our results do not indicate a general local advantage in initial establishment for the focal 

species. Among all cases where the sources differed among or within sites (significant source or 

source × site effect, respectively), the local source performed best in terms of a statistical 

difference in density or density change (r) for one species at only one site (O. rigidum density in 

NE), and there were no cases where the local source significantly outperformed all others in 

terms of survival. In some cases, the best performing source within a site was not local (e.g., E. 

canadensis density in KS) or a particular source tended to perform well across the three sites 

(e.g., S. nutans density). Such equivocal results regarding local advantage are similar to those 

arrived at from other work (e.g., Bischoff et al. 2006), including a study of several species that 

often co-occur in natural communities (Weißhuhn et al. 2011). While source did not always 

affect survival, it did affect both May and August density for all species at all sites (source effect 

and/or source × site interaction). For example, we did not find differences in survival among 

sources of O. rigidum or S. nutans through the growing season, but we observed differences 

among sources in the densities of plants that established from seed for all three species. Because 

seeds were sown on a unit weight per area basis, the densities we observed do not necessarily 

reflect germination rates. Still, we think this discrepancy is important, because it suggests that 

effects of source, or a lack thereof, based on studies using transplants (e.g., van der Veken et al. 

2012) do not always parallel source effects on germination and emergence. This is of clear, 

practical, importance for restoration projects that depend upon seed inputs (e.g., Martin and 

Wilsey 2006). Delayed coverage of seeded vegetation in restoration could lead to the persistence 
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of weeds through priority effects (Sutherland 1974), which in turn could diminish the 

establishment of desired vegetation (Blumenthal et al. 2003).  

Differential source relationships among sites within species are not surprising, as many 

environmental factors have the potential to interact to create conditions at sites that differ from 

historical conditions to which local sources may be matched (Broadhurst et al. 2008). Lack of 

generality in effects of seed source among species or site locations is unfortunate, because 

predictability is a desired characteristic of restoration projects (Benayas et al. 2009), and variable 

outcomes based on combinations of potential species, sources, and sites for projects present a 

seemingly intractable problem. Our results show that the initial establishment of individual 

species in a community setting varies among distant sites with variable environmental 

conditions. The general conclusion, that the effects of source and site on establishment of 

different species are idiosyncratic applies to both establishment density and seedling survival. 

However, effects of source and site on establishment density highlight the importance of 

measuring responses that integrate the seed to seedling transition, particularly where passive seed 

dispersal or active seeding are important components of restoration efforts. Other authors have 

discussed the merits of managed relocation of sources based on measurements of performance 

(McDonald-Madden et al. 2011). Our results from multiple species in reciprocal common 

gardens suggest a more complex picture, where the location or conditions for which sources are 

evaluated and the identities of focal species matter. Given the lack of generality in responses 

among species or sites, the mixing of multiple seed sources might be explored as a potential 

means of decreasing the chance of poor seedling survival or initial establishment for species 

across variable sites (Broadhurst et al. 2008). 
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 Figures and Tables 

 

Figure 5-1. Typical seedling (O. rigidum) marked in May to track survival through the growing 

season. The width of the nail head is 1.2 cm. 
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Figure 5-2. (A, D, G) May stem density, (B, E, H) August stem density, and (C, F, I), relative 

change (May–August) in stem density (r) for E. canadensis, O. rigidum, and S. nutans ± 2 SE. 

Upper- and lower-case letters respectively indicate significant differences among sites and 

sources (or among sites within sources and sources within sites if interaction p < 0.1) (Table 5-1) 

after alpha adjustment (adjust = simulate, SAS). Asterisks indicate significant differences from 

zero for source 3 site combinations (C) or sites (F, I). 
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Figure 5-3. Proportional survival for (A) E. canadensis, (B) O. rigidum, and (C) S. nutans by 

seed source and common garden site. Upper- and lower-case letters follow Fig. 1. See Table 5-2 

for main effects and interaction statistics 
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Table 5-1. Statistics for source, site, and source×site effects on May stem density, August stem 

density, and Δ relative density (r) by species (Figure 5-1).  

Species               Site           Source      Source × Site 

Elymus canadensis         Fdf                   p         Fdf                 p         Fdf                 p 

—May Stem Density F2,27=26.29, p<0.001 F2,27=9.44, p<0.001 F4,27=5.18, p=0.00 

—August Stem Density F2,27=79.67, p<0.001 F2,18=1.72, p=0.201 F4,18=2.75, p=0.061 

 

—Δ Relative Density  F2,9=22.46, p<0.001 F2,18=1.72, p=0.201 F4,18=2.75, p=0.061 

 

Oligoneuron rigidum    

—May Stem Density F2,27=17.25, p<0.001 F2,27=12.12, p<0.001 

 

F4,27=3.09, p=0.042 

—August Stem Density F2,9=23.82, p<0.001 F2,18=9.40, p=0.002 

 

F4,18=2.67, p=0.066 

—Δ Relative Density  F2,9.29=6.91, p=0.015 F2,17.89=0.43, p=0.656 F4,17.86=0.86, p=0.508 

Sorghastrum nutans    

—May Stem Density F2,27=40.71, p<0.001 F2,27=5.65, p<0.009 

 

F4,27=1.36, p=0.274 

—August Stem Density F2,9.25=27.96, p<0.001 F2,17.57=10.10, p=0.001 

 

F4,17.55=2.31, p=0.098 

 

—Δ Relative Density  F2,9.8.84=10.77, p=0.004 F2,16.26=1.56, p=0.239 F4,16.22=1.66, p=0.208 

 

Note: Statistics are F-statisticnum. df,den. df, p-value (identity link, Proc Glimmix, SAS). 
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Table 5-2. Statistics for source, site, and source×site effects on seedling survival by species 

(Figure 5-3). 

Species                 Site             Source       Source × Site 

          Fdf                   p         Fdf                   p         Fdf                   p 

Elymus canadensis F2,9.70=20.83, p<0.001       F2,27=2.55, p=0.097 F4,27=3.28, p=0.026 

Oligoneuron rigidum F2,6.85=11.75, p=0.006 F2,27=0.28, p=0.757 F4,27=0.88, p=0.487 

 

Sorghastrum nutans F2,9.84=3.02, p=0.095 F2,25=2.45, p=0.107 

 

F4,25=1.31, p=0.292 

Note: Statistics are F-statisticnum. df,den. df, p-value (logit link, Proc Glimmix, SAS). 
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Chapter 6 - Seed source has variable effects on community and 

ecosystem properties of grassland restorations sown into reciprocal 

common gardens 

 Abstract 

 

Research to date has produced equivocal results regarding the relative advantages of local versus 

non-local sources of plant material for restoration.  This research has typically been based on 

assessing the performance of individual species at individual locations and without addressing 

higher order community and ecosystem properties. We investigated the effects of seed source 

(local, non-local, and mixed-source treatments) on species, community, and ecosystem properties 

across variable environments using reciprocal common gardens in three states (Nebraska, 

Kansas, and Oklahoma). In order to mimic the restoration of grassland vegetation under realistic 

conditions where species interact with one another during establishment, we seeded twelve 

species together between December, 2009 and January, 2010 and assessed responses in 2010, 

2011, and 2012. Both common garden location and seed source affected the productivity of 

individual species, but responses were not consistent among species. No seed source had a 

consistent advantage across sites or across species. In a few cases, the local source was most 

productive for a particular species at one location, but no species showed a consistent local 

advantage across locations or years. Rather, in two out of three species that exhibited a local 

advantage at one location, the same source was also the most productive at a non-local site. 

Community structure and species richness differed among locations in all years, but source did 

not significantly affect seeded species richness, and source significantly affected community 

structure only in 2011. Despite source effects on individual species and community structure, 
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seed source had no significant effects on the combined productivity of seeded species.  These 

results do not support the targeted use of local sources when the establishment of sown species 

(seeded species richness) and productivity are restoration objectives. Using mixed-source species 

mixtures may increase chances of restoration success, given the idiosyncrasy of individual 

species’ responses among locations and potential site-specific environmental changes likely to 

occur in the future. 

 Introduction 

Phenotypes and genotypes of plant species vary across spatial and environmental 

gradients (Weißhuhn et al. 2011, Moncada et al. 2007, Gustafson et al. 2004). Such differences 

sometimes form the basis for recommending the use of locally sourced plant material when 

establishing, or restoring, native plant communities (Miller et al. 2011, Hamilton 2001), as do 

concerns regarding the loss of local genetic diversity with the introduction of new genotypes 

(Hufford & Mazer 2003, Wilkinson 2001). However, the presence or direction of source effects 

can vary among species (Carter & Blair 2012, Miller et al. 2011, Rice & Knapp 2008), and there 

is little empirical support to date for the assumption that local sources provide a competitive 

advantage or enhanced restoration outcomes. 

 Variable and changing environmental conditions can also affect the relative success of 

different plant sources. However, projected and realized changes in abiotic and biotic 

environments are seldom considered when assessing the advantages of local ecotypes. This may 

be increasingly important, as  anthropogenic climate change (Rahmstorf & Coumou 2011, 

Strzepek et al. 2010), nutrient deposition (Galloway et al. 2004), increases in atmospheric CO2 

(O’ishi et. al. 2009, Hansen et al. 1981), and the presence of introduced producers and consumers 

(Burgiel & Muir 2010, Walther et al. 2009) continue to cause worldwide shifts from historical 
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environments. Recognition of the many potential effects of such changes has increased debate 

regarding managed relocation, for example (e.g. McDonald-Madden et al. 2011). Seastedt (2008) 

also emphasizes that global change may necessitate management towards novel rather than 

historic communities, if the management goal is ecosystem stability and function. Further, 

landscape fragmentation has reduced many populations to small, isolated relicts, which may 

possess reduced genetic diversity (Keller & Waller 2002, Ellstrand & Elam 1993). This makes it 

more likely that low genetic variation may limit their evolutionary potential to meet 

environmental challenges (Broadhurst et al. 2008), although these effects should be expected to 

vary among species with different traits (e.g. pollination syndromes) or whose populations are 

structured at different spatial scales (Loveless et al. 1984). Where genetic variation is limited, 

increasing or changing available variation may improve or change responses to natural selection 

(Rice and Emery 2003). Broadhurst et al. (2008) and Harris et al. (2006) ask whether the 

exclusive use of local material limits the ability of restoration projects to adapt to predicted 

climate change, and Harris et al. (2006) call for the use of common garden experiments as 

“proactive research and action” in the context of global change. In particular, multiple common 

garden sites can provide insights into the relative success of different sources of plant material 

under a range of environmental conditions.   

In this study, we used three common garden locations in the U.S. Central Plains to assess 

the effects of different seed sources (local, non-local and mixed) on the productivity of 

individual species growing in mixed species communities, species richness and community 

structure, and the combined aboveground productivity of all seeded species. These common 

gardens were established in the context of tallgrass prairie restorations, using native grassland 

species common to all sites. Our experimental approach (common gardens at multiple locations 
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with simultaneous source manipulation of multiple species) was motivated by the fact that few 

common garden studies to date have assessed whether any intraspecific differences observed 

among sources are consistent across multiple locations or among co-occurring species (e.g. 

Bischoff et al. 2006, Waser & Price 1985). Most common garden studies also have grown plant 

species in isolation, precluding any effects of interspecific interactions (e.g. Miller et al. 2011).  

However, the presence of other species can affect the magnitude of source effects for focal 

species (Rice & Knapp 2008, Bischoff et al. 2006). In reality the restoration of focal plant 

populations often occurs in the presence of other species, and most restoration projects involve 

the introduction of native vegetation representing several or many species (e.g. Middleton et al. 

2010, Cottam & Wilson 1966). Despite this, we are unaware of any prior studies that 

simultaneously manipulated sources of multiple species and then evaluated species, community, 

and ecosystem responses concurrently. Filling this gap in knowledge is important, because 

individual species and/or community properties (e.g. richness or dominance) can affect 

productivity (Isbell et al. 2011, Fornara & Tilman 2009, Smith et al. 2003, Huston 1997). Figure 

6-1 presents a framework illustrating how single species responses might affect community and 

ecosystem properties (e.g. productivity). Source effects that are homogenous among species 

(circles) may affect productivity. However, productivity may also vary if source effects exist but 

exhibit different patterns among species, leading to differences in community structure. 

We established common gardens of tallgrass prairie restorations in Kansas (KS), 

Nebraska (NE), and Oklahoma (OK), using seed sources from each location in each of the 

common garden sites.  Each common garden included plots with local sources only, non-local 

sources from two other sites, and a mix of local and non-local sources. Our framework allowed 

us to ask: 1) Are there seed source effects on the productivity of individual seeded species when 
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they are grown in the context of plant communities? 2) Does seed source affect community 

properties such as structure or richness? 3) Does seed source affect the combined productivity of 

seeded species? Both productivity and richness are common measures of restoration success 

(Guo 2007, Ehrenfeld 2001). In addition, we implemented a treatment within each common 

garden where multiple seed sources were mixed together. We predicted that because this mixed 

treatment contains at least some variation from each of the locations for each species, that it 

should not underperform in terms of total productivity or that of its constituent seeded species 

relative to other treatments (Broadhurst et al. 2008). 

 Methods 

 Species selection and reciprocal common gardens 

We chose twelve species that occur commonly in native grasslands near all three 

locations where common gardens were established. We identified many more species that 

occurred in grasslands near all locations, but the twelve species we chose represent the subset of 

species that were both common and that produced adequate amounts of viable seed in 2009.  

These included warm-season grasses and composite forb and legume species, groups that 

respectively contribute the most to dominance and diversity in Central North American 

grasslands (Howe 1994, Towne 2002). We collected seeds from native prairies near each 

common garden location and stored seeds in paper bags at 20-24 °C for between 0.5 and 5 

months. We tested seeds for viability (tetrazolium test) at the Kansas Crop Improvement 

Association seed laboratory to permit the sowing of equal weights of live seeds for each species 

within each mixture to each treatment plot.  

Seeds were hand broadcast into ex-arable plots at locations in Nebraska (NE), Kansas 

(KS), and Oklahoma (OK) in late December, 2009, and early January, 2010. These locations 
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were chosen to cover a broad range of regional abiotic conditions. In particular, long term 

average temperature and precipitation, observed precipitation during this study, and soil texture 

varied among locations (See Appendix C for details).  

Plots were 9 × 9 m with 0.5 m buffers for each of four seed source treatments and 

arranged in a randomized complete block design at each location (16 total plots/location × 3 

locations).  Treatments included seed sourced from single locations (3 treatments; NE, KS, and 

OK) and a treatment that mixed seed from the three sources in equal proportions. To ensure 

uniform dispersal of species within plots, seed additions for all treatments contained equal live 

weights for each of the twelve added grassland species (see Appendix C for sowing details). We 

assumed that seed banks and dispersal from adjacent locations had minimal effects for sown 

species (all perennial). This assumption is supported by histories of crop production at all 

locations immediately prior to seed addition and because nearest populations for all species were 

> 20 m away from plots at each location. 

 Sampling 

We used accumulated aboveground biomass at the end of the growing season as an index 

of aboveground net primary productivity (ANPP). Biomass was harvested to within 1 cm of the 

soil surface in September 4-18, 2010, September 18-26, 2011, and August 18-26, 2012. Harvests 

were timed to occur at or near peak standing crop. In 2010, we harvested aboveground biomass 

from within each of six 0.25 m
2
 quadrats placed randomly within each plot (6 subsamples/plot) 

at each common garden location and sorted it by seeded and adventitious species. Seeded 

biomass was not sorted by individual species in 2010. These methods were repeated in 2011 and 

2012, but we additionally sorted seeded biomass by individual seeded species. Due to a wildfire 

in 2011 biomass could not be collected at the OK location. The OK location was not sampled in 
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2012 either, because seeded species were nearly absent from the location (~1-2 plants / treatment 

plot), possibly due to severe drought. All samples were stored in paper bags for no more than one 

day prior to being dried for 48-72 hours at 60 ˚C. We measured seeded species richness at all 

three locations in 2010 and 2011 and in KS and NE in 2012 as the total number of species 

observed from May and August censuses of 24 randomly placed 0.25 m
2
 quadrats (area 6 m

2
) in 

each plot (plot area 9 m
2
). 

 Data analysis 

We used separate generalized linear mixed models in each year to test for differences in 

biomass for the each of the four most productive species, total seeded biomass, and species 

richness. Seed source treatment and common garden location were fixed effects and block within 

location was as a random effect. We performed these analyses in SAS ® version 9.2 (2012, Cary 

N.C.) using Proc Mixed with Kenward-Roger degrees of freedom estimation. In cases of unequal 

variances among locations, we used the local=exp(trt) option within the REPEATED statement 

to model unequal variances and Satterthwaite degrees of freedom estimation. Family-wise error 

rates were controlled for pairwise contrasts using the Tukey-Kramer alpha adjustment in the 

lsmeans statement (adjust=Tukey).  

Community structure analyses were executed within the VEGAN package (Oksanen et al. 

2012) using Program R version 2.14.2 (R Core Team 2012).  Separate analyses were performed 

for the second (2011) and third (2012) growing seasons. We used non-metric multidimensional 

(NMDS) scaling with Ružička (quantitative Jaccard) dissimilarity matrices based on biomass (all 

seeded species) to visualize differences in seed community structure between NE and KS 

locations and among seed source treatments using function “metaMDS”. We assessed 

significance of source, location, and their interaction for explaining community structure using 
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permutational multivariate analysis of variance on Ružička distance matrices executed with 

function “adonis”. In cases of significant location × source interaction, we tested effects of 

source within individual locations. Ružička dissimilarity is based on relative abundance 

(biomass) rather than presence/absence data, so analyses represent community structure rather 

than composition. 

 Results 

 Species 

In order, the four most abundant species in terms of biomass across years and locations 

were Sorghastrum nutans, Oligoneuron rigidum, Achillea millefolium, and Elymus canadensis 

(hereafter referred to by genus).  We focus on biomass patterns for these species (representing 

92.4% of total seeded species biomass across locations and years), but biomass and associated 

statistics for less abundant species are presented in Appendix C.  Source effects differed among 

locations, species, and years (Fig. 6-2).  

Seed source effects on Sorghastrum biomass differed between locations in both years, 

and the KS source was consistently among the most productive (Fig. 6-2a-b). The OK source 

was more productive than the NE source at the NE location in both years (Fig 6-2a-b), but the 

NE source was more productive than the OK source at the KS location in 2012 (Fig. 6-2b). The 

mixed source treatment was not the most productive at either location in either year, but it was as 

productive as at least one other treatment (Fig. 6-2a-b). 

Productivity was greatest at the NE location for Oligoneuron in both years (Fig. 6-2c-d). 

In 2011, the NE source was more productive than the KS and OK sources at the NE location 

(Fig. 6-2c), but there were not differences among source treatments in 2012 (Fig. 6-2d). In both 
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years the mixed source did not differ significantly in productivity from the most productive and 

least productive source treatments at both locations (Fig. 6-2c-d).  

Productivity for Achillea was greatest at the NE location in 2011 and greatest at the KS 

location in 2012 (Fig. 6-2e-f). There were no seed source effects on Achillea productivity (Fig. 6-

2e-f). 

Seed source affected Elymus productivity similarly at the NE and KS locations in 2011, 

but there was no evidence for seed source effects in 2012 (Fig. 6-2g-h). The NE source was 

consistently among the most productive at the KS and NE locations in 2011 (Fig. 6-2g), and the 

mixed source did not differ significantly in productivity from the most productive and least 

productive source treatments across locations and years (Fig. 6-2g-h).  

 Community properties 

Species richness differed among locations in each year, but there were no significant 

effects of seed source on species richness (Fig. 6-3). Community structure differed among 

locations in 2011 and 2012 and differed among sources in 2011, but source differences in 

community structure were not consistent between NE and KS common garden locations (Fig. 6-

4, Adonis within locations: sourceNE; F3,15 = 2.25,  p = 0.005, sourceKS; F3,15 = 1.95,  p = 0.006). 

 Productivity (ANPP) 

The total aboveground productivity of combined seeded species differed among locations 

in 2010 and 2011with greater productivity at the NE location (Fig. 6-5a, b). However, seeded 

productivity was not significantly different between the KS and NE locations in 2012 (Fig. 6-5c).  

Seeded productivity did not significantly differ among source treatments in any year (Fig. 6-5). 
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 Discussion 

Our results do not indicate a general local advantage in terms of aboveground 

productivity of individual species or the total community. Although there were some significant 

source effects in the productivity of individual species, where the local source for a particular 

species at a particular location performed best, the same source also performed well where it was 

not local (e.g. Sorghastrum sourced from KS, Elymus sourced from NE). The presence of source 

effects or the identity of the source that performed best also differed among species. Such 

equivocal or idiosyncratic results regarding local advantage for different species are not unique 

(e.g. Weißhuhn et al. 2011, Bischoff et al. 2006), suggesting that the assumption of local source 

superiority is not well supported by empirical data. One potential reason is that local 

environments can experience high variability in environmental conditions, which may alter the 

advantages of different ecotypes. For example, conditions in KS and OK were drier than average 

throughout this study, while conditions in NE were wetter than average in 2011 and drier than 

average in 2012 (Appendix C). In addition, the contemporary environments of many sites may 

not reflect past conditions due to prior agricultural use (Tiessen et al. 1982) and larger scale 

environmental changes (e.g. Galloway 2004, Hansen 1981). Such changes have the potential to 

interact to create conditions that differ from historical conditions to which local sources may be 

matched (Broadhurst et al. 2008), which could influence source effects. Source effects were 

more pronounced among the most abundant species in 2011 than 2012, which may explain why 

we detected seed source effects on community structure in 2011 (Fig. 6-1a) but not 2012 (Fig. 6-

1a,c). Productivity may not have significantly differed among sources, even in 2011 when 

community structure differed, because sources did not differ in terms seeded species richness 

(Isbell 2011). This may have maintained the possibility that a species with relatively high 

productivity could compensate for another with lower productivity (e.g. Yachi & Loreau 1999).  
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 Differences in environmental conditions may explain effects of site location on individual 

sown species and their combined productivity. Soil texture, and observed temperature and 

precipitation varied across common garden locations (see Appendix C). The productivity of C4 

grasses in Central Plains grasslands is positively associated with precipitation and sand, but the 

productivity of C3 grasses is negatively associated with soil sand content (Epstein et al. 1997a), 

and varies with temperature when precipitation effects are accounted for (Epstein et al. 1997b).  

Here, identical seed mixtures resulted in different community structures at different locations, 

which suggests that location environmental differences were important determinants of 

community structure (e.g. Myers & Harms 2011, Tilman 1997). Differences in productivity 

among common garden locations may also result from differences in communities, as well as 

differences in the performance of individual species (e.g. Kahmen et al. 2005).  

The lack of generality in effects of seed source on single species is consistent with our 

prior work that focused on the initial establishment and survival of Sorghastrum, Oligoneuron, 

and Elymus within this experiment (Carter & Blair 2012). These patterns are unfortunate when 

viewed in terms of idiosyncratic and variable patterns of source effects among individual species, 

because predictability is a desired characteristic of restoration projects (Benayas et al. 2009). 

However, seed source may be less important for higher order properties like productivity, 

because source effects on combined productivity need not mirror source effects on the 

productivity of single species (Fig. 6-1b). Tilman (1996) showed that instability in productivity 

within species could contribute to the stability of productivity among species.  

While mixtures of the three sources did not significantly outperform single source 

treatments in terms of combined productivity or the productivity of individual species, mixtures 

also never performed significantly worse than the least productive single source treatment. Given 
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the lack of consistent source responses among species or locations, the mixing of multiple seed 

sources may deserve further exploration as a potential means of decreasing the chance of low 

single species or combined productivity across variable locations (e.g. Broadhurst et al. 2008).  

Had we used single species in a single common garden in a single year, or had we 

investigated many species in isolation from interspecific interactions, we may have found 

support for local advantage. In 2011, three of eight, and in 2012, one of eight single species 

responses would have suggested that local sources are best (Fig. 6-2). Conversely, we may have 

found no source effects at all. While we utilized only a subset of the potential diversity in 

tallgrass prairie systems, our results strongly suggest that investigations of source effects on 

single species, particularly if narrow in spatial or temporal scope, have the potential to misinform 

the management or restoration of natural systems.  

Our results from multiple species grown in the more realistic context of interspecific 

interactions do not support the targeted utilization of local sources in restoration. Natural 

selection may still act, or have acted in the past, to tune source populations to their local 

environments (Linhard & Grant 1996). However environmental changes and potential losses of 

genetic diversity (see Introduction) may lead to changes in the relative performance of sources at 

particular locations and may affect whether or not the raw genetic material is present for 

selection in the first place. Managed relocation based on performance measures as an alternative 

approach to relying on local sources for restoration and conservation may address such 

mismatches between genes and environments (McDonald-Madden et al. 2011). However, our 

research suggests that unique species responses will likely make that approach less tractable 

when the restoration of communities is an objective. We may safely bet that environmental 

changes will continue, but there is more uncertainty surrounding the prediction of local than 
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global change (Kerr 2011). Using mixed-source species mixtures, which did not perform 

significantly worse than exclusively locally-sourced species mixtures under present conditions, 

may represent an alternative way of hedging bets in a changing world. 
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Figures and Tables 

 

Figure 6-1. Conceptual framework showing how individual species responses might affect 

productivity at one location (common garden). Solid arrows indicate effects, the dashed arrow 

represents potential effects, and intersecting solid lines indicate no effect. In the first column, 

similar species responses to seed source cumulatively affect productivity. In the second column, 

differential species responses to seed source affect community structure, which may or may not 

affect productivity depending on the substitutability of responses. In the third column, species 

responses differ homogenously among sources, leading to similar community structures. 
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Figure 6-2. Aboveground biomass from 2011 (a, c, e, g) and from 2012 (b, d, f, h) for the four 

most abundant species across years and common garden locations Sorghastrum, Oligoneuron, 

Achillea, and Elymus (mean ± 1 s.e.m.). Lower-case letters indicate significant differences 

among sources within locations (interaction p≤0.05)  or among sources across locations 

(interaction p>0.05) after alpha adjustment (adjust = Tukey, SAS). Statistics (F-statisticnum. df, den. 

df) and significance are provided seed source, location and seed source × location effects from 

Proc Mixed ANOVA. 
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Figure 6-3. Species richness in (a) 2010, (b) 2011, and (c) 2012 for all seeded species combined 

(mean ± 1 s.e.m.). Upper-cases letters indicate significant differences among locations. Statistics 

and significance follow Fig. 2.  
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Figure 6-4. Nonmetric multidimensional scaling (NMDS) ordinations for plant community 

structure with statistics from perMANOVA (R: “Adonis”) and stress (Statistics and significance 

follow Fig. 2). Lines connect points (different seed source treatments within common gardens) to 

common garden location. 
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Figure 6-5. Total aboveground biomass for all seed species combined in (a) 2010, (b) 2011, and 

(c) 2012 (mean ± 1 s.e.m.). Upper-cases letters indicate significant differences among locations. 

Statistics and significance follow Fig. 2. 
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Chapter 7 - Concluding Remarks & Recommendations 

Restoration is an optimistic exercise. It attempts to recreate characteristics of natural 

systems that developed over long periods of time within the space of several years, or perhaps a 

lifetime. Not only that, restoration attempts to achieve outcomes from different starting points 

under different environmental conditions. There are many factors that determine the relative 

success of restoration, of which this dissertation addresses only a small fraction. The 

combinations of variation among species and genotypes that could be utilized, the range of 

environmental conditions that could be encountered across space and through time, and the 

specifics of restoration practices that might be used (timing of seeding, intensity of seeding, 

prescription of fire or grazing, use of biocides, manipulation of soil nutrient status) are difficult 

to fathom. Still, this research points towards substantive recommendations, and adds to 

understanding about how restoration might proceed in a world changing at a pace that rivals or 

exceeds the pace of restoration ecological research. Refereed conclusions and recommendations 

may be sought from the individual chapters. I finish here with my personal sense of what is 

important to take away from this work. 

First, restoration can be successful. This may seem a simple statement, but the scope of 

the problem and the literature reviewed in Chapter 2 suggests the contrary. Chapter 2 

demonstrated that restored prairies can recover many of the characteristics of nearby native 

prairies within several years, including native species cover, low exotic species cover, and mean 

coefficient of conservatism, which is measure of species that are associated with remnant 

grasslands. Restored prairies had relatively fewer species with early flowering phenologies, but 

this may be due to a lack of such species in late season seed harvests. In contrast, richness of 

late-flowering species was greater on restored than remnant prairies. Late-flowering species’ 
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seeds were captured by fall seed harvests and the collected seed was pooled from remnants with 

different species compositions. However, estoration success, measured in terms of richness, 

survival, and productivity clearly depends on environmental conditions, as demonstrated by 

strong differences in establishment and survival among different restoration sites (Chapters 5 & 

6). Investigating methods for increasing the predictability of restoration outcomes across variable 

environments should be a research priority.  

While I did not find that species richness influenced stability to drought in terms of 

seeded species cover or aboveground biomass, relatively rich restoration plantings had greater 

sown species cover and lower cover of adventitious species both with and without drought 

(Chapter 3), and the functional groups that were the most resistant to drought didn’t necessarily 

exhibit the greatest recovery (Chapter 4). Both observations point to the importance of trait 

variation in seed mixtures.  

Seed source had no generalizable effects on restoration outcomes (Chapters 5 & 6). Plant 

communities derived from mixed sources, however, tended to exhibit intermediate responses. 

They were neither composed of solely the worst nor solely the best establishing sources. Hence, 

utilizing seed from multiple, broad-ranging sources of seed may increase the predictability of 

restoration outcomes across sites that differ in environmental conditions.  

Variation, both among species and within species, emerges from these chapters as an 

import factor in restoration establishment and responses of restored grasslands to variable 

environments. Recommendations for restoration are as follows: 1) Utilize as many species as 

practical and appropriate for the site. This generally enhances restoration establishment (Chapter 

3). 2) In the process of designing seed mixtures, include species from a variety of functional 

groups. This may mean including grasses and forbs, for which the responses to drought differ 
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(Chapter 4), or both early- and late-flowering species to maximize richness (Chapter 2).  3) 

Within species, use a variety of sources. This will minimize dependence on single sources, local 

or not, that might perform poorly. While seeds for many species can be difficult and costly to 

acquire, allowing for the use of non-local seed should increase availability of some species for 

particular projects. These practices also comprise an intuitive pre-emptive response to global 

change. We can coarsely predict some environmental changes (e.g. increased temperature, 

increased frequency of drought), but we cannot predict the precise magnitude of changes that 

will result from human activities, nor do we yet have the ability to predict all changes and their 

interactions simultaneously. If restoration outcomes are to be relatively self-sustaining, 

restoration in the present needs to account for both current and future conditions. One simple 

way to do this, when future conditions are unknown, is to equip restored plant communities with 

as much trait variation as possible within and among species.  
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Appendix A - Chapter 2: Species Encountered, Cover, and 

Designations 

Note: Cover data used for analyses in this study was submitted to the Konza LTER Program. 

Table A-1. Species Encountered and Designations: N = native (* indicates native trees not 

included in native analyses), Ex = Exotic (not native to Iowa), An = annual, B = Biennial, P = 

Perennial, E = Early Phenology (most flowering before June, 21), L = Late Phenology (Most 

flowering after June 21). Sites are given by restoration age or remnant where J = Judson, O = 

Owens, T = Tuel with modified Whittaker sampling scale in parentheses. 

 

Species Site and (Smallest Scale Encountered in m
2
) Designations 

Acer saccharinum J(1) N* P E 

Achillea millefolium O(1),T(1),J(1),4(1000),4(10),9(1),10(1) N P E 

Agrostis stolonifera 7(1) Ex P E 

Ambrosia artimisifolia J(1),4(1),7(1),10(1000),11(1) N An L 

Ambrosia trifida O(10) N An L 

Amorpha canescens O(1),T(1),J(1),4(1),6(1),10(1),11(1) N P L 

Amphicarpaea bracteata O(1) N P L 

Andropogon gerardii O(1),T(1),J(1),4(1),6(1),7(1),9(1),10(1),11(1) N P L 

Anemone canadensis O(1) N P L 

Anemone cylindrica T(1),4(1),7(1),9(1),10(1),11(1) N P E 

Antennaria neglecta T(1000),J(1) N P E 

Apocynum cannabium T(1000),J(1),9(10) N P L 

Artemisia ludoviciana T(10),J(1),7(1),9(1),10(1),11(1) N P L 

Asclepias amplexicaulis J(10) N P L 

Asclepias syriaca O(1000),T(100),4(1) N P L 

Asclepias verticillata T(1),J(1),4(1),7(1) N P L 

Astragalus canadensis O(10),4(1000),10(1),11(1) N P L 

Astragalus crassicarpus 4(1),11(1000) N P E 

Baptisia alba 4(1),7(1),9(1),10(1),11(1) N P L 
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Baptisia bracteata O(10),T(1),J(1000),4(1),6(1),7(10),9(1),10(100),11(1) N P E 

Barbarea vulgaris 4(10) Ex B E 

Bouteloua curtipendula T(1),J(1),4(1),6(1),7(1),9(1),10(100) N P L 

Bouteloua hirsuta J(1) N P L 

Brickellia kuhnioides 4(1),7(1000),9(1000),10(1),11(1) N P L 

Bromus inermis O(10),4(1),6(1),7(1000),9(1),10(1),11(1) Ex P E 

Cacalia tuberosa 6(1000),7(10),11(1) N P L 

Caenothus americanus 10(1000) N P E 

Calyophus serrulatus T(100) N P L 

Calystegia sepium O(1),6(1),9(1),11(1000) N P L 

Capsella bursa-pastoris 4(1) Ex An E 

Carex brevior O(10),4(100),6(100),7(10),11(1000) N P E 

Carex davisii O(1) N P E 

Carex haydenii O(1) N P E 

Carex inops  O(1),T(1),J(1) N P E 

Carex meadii O(1),T(1) N P E 

Carex stricta O(10) N P E 

Ceanothus americanus O(1),T(1) N P E 

Chamaecrista fasciculata O(1),J(1),6(1),7(1000),9(1),10(1),11(10) N An L 

Chenopodium album 4(1) Ex An L 

Cirsium arvense 4(1) Ex P L 

Cirsium discolor O(10) N B L 

Cirsium vulgare 4(1) Ex B L 

Comandra umbellata O(1),T(1) N P E 

Conyza canadensis J(100),4(1),7(1) N An L 

Coreopsis palmata O(1),6(1),7(1),9(100),10(1) N P L 

Craetagus sp. J(1) N* P L 

Dalea candida O(100),T(1),4(1),6(1),7(1),9(1),10(10),11(1) N P L 

Dalea purpurea O(1000),T(1),J(10),4(1),7(10),9(1),10(1),11(1) N P L 

Daucus carrota 4(100) Ex B L 
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Delphinium virescens O(1000),J(1),4(1),6(1),9(1),11(1000) N P E 

Desmodium canadense T(1),4(1),6(1),7(1),9(1000),10(1) N P L 

Desmodium illinoense O(10),4(1),10(1),11(1) N P L 

Dicanthelium acuminatum T(1),J(1) N P E 

Dicanthelium oligosanthes O(1),T(10),J(1),4(100),9(100) N P E 

Echinacea pallida O(100),T(1),J(1),4(1),6(1),7(1),9(1),10(1),11(1) N P L 

Eleocharis compressa O(1) N P E 

Elymus canadensis  O(10),T(1),J(1000),4(1),9(10),11(100) N P E 

Equisetum arvense O(1),T(10) N P N/A 

Equisetum hyemale O(1),11(1000) N P N/A 

Erigeron annuus 4(1),11(1) N An L 

Eryngium yuccifolium O(1),6(1),7(1),10(1),11(1) N P L 

Euphorbia corrollata O(1),T(1),6(1),9(100) N P L 

Euthamia graminifolia O(1) N P L 

Festuca aurundinacea 4(1) Ex P E 

Galium boreale O(1) N P L 

Gaura biennis O(10),11(100) N B L 

Gentiana puberulenta O(1000),T(1000),6(1000),11(1000) N P L 

Helianthemum canadense J(1) N P E 

Helianthus grosseserratus O(1),4(10),6(1),7(1),9(1),10(1),11(1) N P L 

Helianthus pauciflorus O(1),6(1),7(1),9(1),10(1),11(1) N P L 

Helianthus tuberosus 9(1) N P L 

Heliopsis helianthoides O(1),T(1),4(1),6(1),7(1),9(1),10(10),11(1) N P L 

Hesperostipa spartea O(1),T(1),J(1) N P E 

Heuchera richardsonii 6(100) N P E 

Hieraceum longipilum O(1) N P L 

Hypoxis hirsuta O(1) N P E 

Koeleria macrantha 4(1),6(1),10(1000) N P E 

Lactuca pulchella T(1000) N B L 

Lactuca serriola 7(1),9(1) Ex B L 
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Lespedeza capitata T(1),J(1),6(1),7(1),9(1),10(1),11(1) N P L 

Liatris aspera J(1),4(10),6(1),7(1),9(1),10(1),11(1) N P L 

Liatris punctata 4(1),11(100) N P L 

Liatris pycnostachya O(1),4(1000),6(1),7(1),9(1),10(1),11(10) N P L 

Liatris squarrosa J(1),4(10),6(1),9(1),10(1),11(1) N P L 

Lillium philadelphicum O(1) N P E 

Lithospermum canescens O(1000),T(100) N P E 

Lobelia spicata O(10),T(1),4(1) N P L 

Melilotus officinalis T(1),4(1),7(1000),9(1000),11(1000) Ex B L 

Monarda fistulosa T(1),4(1),6(1),9(1),10(1),11(1) N P L 

Morus alba T(100),4(10) Ex P L 

Oenothera biennis J(100),4(1),11(100) N B L 

Oligoneuron rigidum O(1),T(1),4(1),6(1),7(1),9(1),10(1),11(1) N P L 

Onosmodium bejariense 4(100) N P L 

Oxalis stricta 4(1) N An E 

Oxalis violacea O(1),T(10),J(1) N P E 

Panicum virgatum O(1),T(1),4(1),6(1),7(1),9(1),10(100),11(1) N P L 

Pastinaca sativa 7(1000) Ex P E 

Pedicularis canadensis O(1) N P E 

Phleum pratense 4(1) Ex P E 

Phlox pilosa O(1),6(1) N P E 

Phalaris arundinacea O(1) Ex P L 

Physalis virginica O(100),T(1),J(1) N P L 

Plantago major 4(1) Ex P L 

Poa pratensis T(1),J(100),4(1),6(1),7(1),9(1) Ex P E 

Polytaenia nuttallii 4(100),6(100) N P E 

Potentilla arguta T(10),4(1),6(100),7(1),9(100),10(1),11(1) N P L 

Prenanthes aspera T(1) N P L 

Prunus americana T(1),4(1) N* P L 

Pycnanthemum tenuifolium O(1) N P L 
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Pycnanthemum virginicum O(1),4(10),11(1) N P L 

Quercus macrocarpa J(1000) N* P L 

Ratibida pinnata O(10),T(1),4(1),6(1),7(1),9(1),10(1),11(1) N P L 

Rosa arkansana O(1),T(1),J(1),9(1000) N P E 

Rudbeckia hirta T(10),4(1),9(1),11(1) N B L 

Rumex crispus 10(10),11(1000) Ex P E 

Schizachyrium scoparium O(1),T(1),J(1),4(1),6(1),7(1),9(1),10(1),11(1) N P L 

Silphium integrifolium O(1),J(1),6(1),7(1),9(1),10(1),11(1) N P L 

Silphium laciniatum O(1),4(100),6(1),7(1),9(1),10(1),11(10) N P L 

Silphium perfoliatum 4(10),9(100),11(100) N P L 

Simphyotrichum ericoides O(1),T(1),J(1),4(1),6(1),7(1),9(1),10(1),11(1) N P L 

Simphyotrichum laevum O(1),T(1),4(1),6(1),9(100),10(10),11(1) N P L 

Simphyotrichum novae-angliae 6(1),7(1),9(1000) N P L 

Simphyotrichum oolentangiense O(1),T(1),4(1),6(1),7(1),10(1),11(1) N P L 

Simphyotrichum pilosum J(1),4(1),6(1),9(1),10(1),11(1) N P L 

Simphyotrichum sericeum 6(100),10(10) N P L 

Sisyrinchium campestre O(1),T(1),4(1),11(1000) N P E 

Solidago canadensis O(1),4(10),7(1),11(100) N P L 

Solidago missouriensis O(1),T(1),6(1),7(1),9(10),10(1) N P L 

Solidago nemoralis 10(1000) N P L 

Solidago speciosa T(1),4(100),6(1),7(1),9(10),10(1) N P L 

Sorghastrum nutans O(1),T(1),J(10),4(1),6(1),7(1),9(1),10(1),11(1) N P L 

Spartina pectinata O(1) N P L 

Sporobolis heterolepis O(1),J(1),4(1),6(1),7(1),10(1),11(1) N P L 

Taraxium officinale 4(1),6(1),9(1000),10(1),11(10) Ex P E 

Tradescantia bracteata O(1),4(10),9(100) N P E 

Tradescantia ohioensis J(1),4(1),6(1),7(1),9(1),10(1),11(1) N P E 

Trifolium pratense T(1) Ex P E 

Ulmus americana T(1000) N* P E 

Verbena stricta J(1),4(1) N P L 
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Verbena urticifolia 4(1) N P L 

Vernonia baldwinii T(1),6(1),7(1),10(1),11(10) N P L 

Veronica peregrina 4(1),7(1) N An E 

Veronicastrum virginicum O(10),4(1000) N P L 

Viola pedata O(100) N P E 

Viola pedatifida O(1),T(1) N P E 

Viola sororia O(1) N P E 

Zizia aurea O(1),4(1),6(1),7(1),9(1),10(10),11(1) N P E 
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Table A-2. Avg. cover by species (among 10 1m
2
 subplots/prairie) for the three remant prairies.  

Judson Species Judson Cover Owens Species Owens Cover Tuel Species Tuel Cover

Achillea millefolium 0.2 Achillea millefolium 0.2 Achillea millefolium 0.2

Ambrosia artemisifolia 9.2 Amorpha canescens 1.1 Amorpha canescens 8.4

Amorpha canescens 1.5 Amphicarpa bracteata 1.6 Andropogon gerardii 24.5

Andropogon gerardii 5.8 Andropogon gerardii 5 Anemone cylindrica 0.9

Antennaria neglecta 0.4 Anemone canadensis 0.8 Antennaria neglecta 0.9

Apocynum cannabium 0.4 Aster azureus 1.1 Apocynum cannabium 0.1

Artemisia ludovisiana 23.5 Aster ericoides 0.7 Asclepias verticillata 0.1

Asclepias verticillata 0.2 Aster laevis 0.2 Aster azureus 0.6

Aster ericoides 11 Calystegia sepium 0.1 Aster ericoides 9.7

Aster pilosa 0.2 carex davisii 9.8 Aster laevis 1

Baptisia bracteata 0.2 Carex haydenii 0.4 Baptisia bracteata 0.7

Bouteloua curtipendula 6.2 Carex inops heliophilia 0.1 Bouteloua curtipendula 0.4

Carex inops heliophila 9 Carex meedii 4.6 Carex inops heliophila 6.5

Chamaecrista fasciculata 1.2 Ceanothus americanus 0.1 Carex meedii 10.9

Delphinium virescens 1.1 Chamaecrista fasciculata 0.7 Ceanothus americanus 0.7

Dicanthelium acuminatum 1.1 Comandra umbellata 6.1 Comandra umbellata 12.2

Dicanthelium oligosanthes 1.3 Coreopsis palmata 1.7 Dalea candida 0.9

Echinacea pallida 2.9 Dicanthelium oligosanthes 3.5 Dalea purpurea 0.5

helianthemum canadense 0.8 Eleocharis compressa 1.2 Desmodium canadense 0.5

Hesperostipa spartea 1.6 Equisetum arvense 0.7 Dicanthelium acuminatum 3.1

Lespedeza capitata 4.7 Equisetum hyemenale 0.1 Echinacea pallida 5.5

Liatris aspera 1.6 Eryngium yuccifolium 0.4 Elymus canadensis 0.9

Liatris squarrosa 2.2 Euphorbia corrollata 0.3 Euphorbia corollata 1.9

Oxalis violacea 0.4 Euthamia graminifolia 0.2 Heliopsis helianthoides 5.2

Physalis virginica 0.2 Galium boreale 0.3 Hesperostipa spartea 4.5

Rosa carolina 1.6 Helianthus grosseserratus 5.1 lactuca pulchellus 0.1

Schizachyrium scoparium 67 Helianthus pauciflorus 15.2 Lespedeza capitata 1.1

Sisyrinchium campestre 0.2 Heliopsis helianthoides 0.5 Lobelia spicata 0.1

Sporobolus heterolepus 1.5 Hesperostipa spartea 3.2 Monarda fistulosa 1.4

Tradescantia ohioensis 2.8 Hieraceum longipilum 0.1 Panicum virgatum 0.4

Verbena stricta 0.3 Hypoxis hirsuta 1.4 Physalis virginica 0.5

Craetagus calpodendron 1.2 Liatris pycnostachya 0.5 Prenanthes aspera 0.3

Acer saccharinum 0.1 Lillium philadelphicum 0.3 Ratibida pinnata 2.3

Oxalis violacea 0.4 Rosa carolina 0.7

Panicum virgatum 1.2 Schizachyrium scoparium 20.1

Pedicularis canadensis 1.9 Sisyrinchium campestre 1

Phlox pilosa 1 Solidago missouriensis 0.2

Pycanthemum tenuifolium 0.5 Solidago rigida 1

Pycanthemum virginicum 1 Solidago speciosa 0.2

Rosa carolina 0.2 Sorghastrum nutans 40

Schizachyrium scoparium 6.3 Vernonia baldwinii 1.2

Silphium integrifolium 2.6 Viola pedatifida 0.3

Silphium laciniata 0.1 Poa prattensis 2.7

Sisyrinchium campestre 0.3 Prunus virginiana 0.1

Solidago canadensis 2 Trifolium sp. 0.5

Solidago missouriensis 0.3 Melilotus alba 0.2

Solidago rigida 0.6

Sorghastrum nutans 1.3

Spartina pectinata 4.3

Sporobolis heterolepis 4.7

Tradescantia bracteata 0.3

Viola pedatifida 0.2

Viola sororia 0.2

Zizia aurea 2.4

Phalaris aurundinacea 1.2  
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Table A-3. Avg. cover by species (among 10 1m
2
 subplots/prairie) for the six restored prairies.  

1998 Species 1998 Cover 2000 Species 2000 Cover 2003 Species 2003 Cover 2005 Species 2005 Cover

Ambrosia artemisifolia 0.6 Ambrosia artemisifolia 0.8 Amorpha canescens 1.9 Achillea millefolium 0.2

Amorpha canescens 1.5 Andropogon gerardii 42.2 Andropogon gerardii 28.5 Ambrosia artemisifolia 2

Andropogon gerardii 24.5 Anenome cylindrica 0.1 Artemisia ludoviciana 1 Amorpha canescens 0.8

Anenome cylindrica 0.2 Artemisia ludovisiana 2.9 Aster azureus 1 Andropogon gerardii 10.8

Artemisia ludoviciana 5.1 Symphyotrichum ericoides 0.6 Aster ericoides 6 Anenome cylindrica 0.1

Aster azureus 0.2 Symphyotrichum pilosum 0.2 Aster pilosus 0.3 Asclepias syriaca 0.5

Aster ericoides 6.1 Baptisia alba 0.5 Aster laevis 0.6 Asclepias verticillata 0.5

Aster laevis 0.1 Baptisia bracteata 0.1 Baptisia bracteata 1.2 Aster azureus 1.7

Aster pilosus 1.3 Bouteloua curtipendula 0.9 Bouteloua curtipendula 0.1 Aster ericoides 0.4

Astragalus canadensis 0.2 Calystegia sepium 0.3 Calystegia sepium 0.1 Aster laevis 0.3

Baptisia alba 0.3 Chamaecrista fasciculata 0.6 Chamaecrista fasciculata 1.7 Aster pilosus 0.6

Baptisia bracteata 0.4 Dalea candida 0.3 Coreopsis palmata 1.3 Astragalus crassicarpus 0.4

Brickellia kuhniodes 1.1 Dalea purpurea 0.5 Dalea candida 0.1 Baptisia alba 0.1

Cacalia tuberosa 0.1 Delphinium virascens 0.3 Delphinium virescens 0.3 Baptisia bracteata 0.3

Coreopsis palmata 0 Echinacea pallida 1.9 Desmodium canadense 0.5 Bouteloua curtipendula 4.9

Dalea candida 1.9 Helianthus pauciflorus 12.7 Echinacea pallida 2.9 Brickellia kuhnioides 0.3

Dalea purpurea 1 Helianthus tuberosus 1.2 Eryngium yuccifolium 4.3 Conyza canadensis 11.6

Desmodium illinoense 0.3 Helianthus grosseserratus 0.3 Helianthus grosseserratus 0.6 Dalea candida 1.2

Echinacea pallida 2.4 Heliopsis helianthoides 0.1 Helianthus pauciflorus 1.9 Dalea purpurea 2.3

Equisetum hyemale 0.1 Lespedeza capitata 0.5 Heliopsis helianthoides 0.4 Delphinium virescens 0.5

Erigeron annuus 0.1 Liatris aspera 0.2 Koeleria cristata 0.5 Desmodium canadense 1.9

Eryngium yuccifolium 0.7 Liatris pycnostachya 0.2 Lespedeza capitata 2.3 Desmodium illinoense 0.5

Helianthus grosseserratus 2.5 Liatris squarrosa 0.5 Liatris aspera 0.5 Echinacea pallida 2.4

Helianthus pauciflorus 0.2 Monarda fistulosa 1.3 Liatris pycnostachya 1.2 Elymus canadensis 2

Heliopsis helianthoides 0.1 Panicum virgatum 0.6 Liatris squarrosa 1.8 Erigeron annuus 5.1

Lespedeza capitata 2.3 Ratibida pinnata 3 Monarda fistulosa 0.3 Heliopsis helianthoides 1.9

Liatris aspera 0.3 Rudbeckia hirta 4.6 Panicum virgatum 0.3 Koeleria macrantha 0.2

Liatris squarrosa 0.1 Schizachyrium scoparium 52.5 Phlox pilosa 0.1 Lespedeza capitata 0.7

Monarda fistulosa 0.2 Silphium integrifolium 0.4 Ratibida pinnata 1.3 Liatris punctata 0.2

Panicum virgatum 0.8 Silphium laciniatum 0.5 Schizachyrium scoparium 36 Lobelia spicata 0.1

Potentilla arguta 0.1 Solidago rigida 9 Silphium integrifolium 1.6 Monarda fistulosa 4.7

Pycanthemum virginicum 1.5 Sorghastrum nutans 11.8 Silphium laciniatum 1 Oenothera biennis 0.2

Ratibida pinnata 3.3 Tradescantia ohioensis 1.1 Solidago missouriensis 1.6 Oxalis stricta 1.7

Rudbeckia hirta 0.1 Zizea aurea 1.7 Solidago nemoralis 0.7 Panicum virgatum 0.4

Schizachyrium scoparium 58 Bromus inermis 0.5 Solidago rigida 29.3 Potentilla arguta 0.1

Silphium integrifolium 0.5 Poa prattensis 0.5 Solidago speciosa 1.8 Ratibida pinnata 2.5

Solidago rigida 1.1 2002 Species 2002 Cover Sorghastrum nutans 20.8 Rudbeckia hirta 0.9

Sorghastrum nutans 13 Andropogon gerardii 13.3 Sporobolus heterolepus 1.2 Schizachyrium scoparium 8.4

Sporobolus heterolepus 1.2 Anenome cylindrica 0.2 Tradescantia ohioensis 0.6 Sisyrinchium campestre 0.4

Tradescantia ohioensis 1.3 Artemisia ludoviciana 4.8 Vernonia baldwinii 0.1 Solidago rigida 2.8

Zizea aurea 0.8 Asclepias verticillata 0.3 Zizea aurea 0.2 Sorghastrum nutans 15.3

Bromus inermis 0.2 Symphyotrichum oolentangiense 1.2 Poa prattensis 2 Sporobolus heterolepus 0.2

1999 Species 1999 Cover Symphyotrichum ericoides 5.7 Bromus inermis 0.2 Tradescantia ohioensis 0.4

Achillea millefolium 0.4 Symphyotrichum novae-angliae 0.3 Taraxium officinale 0.1 Verbena stricta 0.2

Amorpha canescens 12.2 Baptisia alba 2.2 Verbena urtifolia 0.8

Andropogon gerardii 7.7 Bouteloua curtipendula 0.2 Veronica peregrina 0.4

Anenome cylindrica 0.1 Chamaecrista fasciculata 0.3 Zizea aurea 2.5

Artemisia ludoviciana 0.3 Conyza canadensis 0.3 Plantago major 0.2

Aster azureus 1.1 Coreopsis palmata 5.1 Festuca arundinacea 2.4

Aster ericoides 3 Dalea candida 0.3 Cirsium arvense 2.1

Aster pilosus 1.1 Desmodium canadense 0.9 Cirsium vulgare 3

Astragalus canadensis 0.2 Echinacea pallida 5.4 Poa prattensis 3

Baptisisa alba 0.2 Eryngium yuccifolium 3.4 Melilotus alba 0.1

Brickellia kuhnioides 0.5 Helianthus grosseserratus 0.3 Bromus inermis 7.4

Chamaecrista fasciculata 0.6 Helianthus pauciflorus 19.5 Taraxium officinale 0.1

Coreopsis palmata 0.4 Heliopsis helianthoides 0.2 Capsella bursa-pastoris 1.3

Dalea purpurea 0.6 Lespedeza capitata 2.2 Chenopodium album 0.8

Desmodium canadense 10.5 Liatris aspera 0.3 Phleum prattense 0.3

Desmodium illinoisensis 6.2 Liatris pycnostachya 2.8

Echinacea pallida 1.8 Panicum virgatum 0.4

Eryngium yuccifolium 0.2 Potentilla arguta 0.3

Helianthus grosseserratus 0.2 Ratibida pinnata 3

Helianthus pauciflorus 0.7 Schizachyrium scoparium 13

Lespedeza capitata 7.8 Silphium integrifolium 0.5

Liatris aspera 1.7 Silphium laciniatum 0.9

Liatris pycnostachya 0.4 Solidago canadensis 0.3

Liatris squarrosa 1.3 Solidago missouriensis 0.6

Monarda fistulosa 0.6 Solidago rigida 18.8

Potentilla arguta 0.7 Solidago speciosa 0.2

Ratibida pinnata 1.2 Sorghastrum nutans 13.8

Schizachyrium scoparium 79 Sporobolus heterolepus 3

Silphium integrifolium 0.2 Tradescantia ohioensis 1.3

Silphium laciniatum 0.8 Vernonia baldwinii 0.3

Solidago nemoralis 1.6 Veronica peregrina 0.2

Solidago rigida 1.1 Zizea aurea 0.3

Solidago speciosa 3.3 Lactuca serriola 0.1

Sorghastrum nutans 7.5 Agrostis stononifera 1.2

Sporobolus heterolepus 0.4 Poa prattensis 2.1

Tradescantia ohioensis 0.9

Vernonia baldwinii 0.3

Bromus inermis 0.1

Taraxium officinale 0.1  
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Appendix B - Chapters 3 & 4: Volumetric SWC, view of shelters, 

and species list 

 

Figure B-1. 30 cm SWC from 6/27/09 to7/23/09 at five points indicated on inset. Inset orange 

shading represents the area under the shelter and the white square represents the drought 

treatment vegetation sampling area. Line A = SWC at center of rainout shelter.  Lines B and C = 

SWC at corners of vegetation sampling area.  Lines D and E = SWC l.5 m away from opposite 

corners of the rainout shelter. Rainfall events are indicated (estimated from radar precipitation 

estimates).   
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Figure B-2. View of shelters within experimental plots (permission Todd Harders and Shawn 

Harders). 

 

Table B-1. All species encountered (sown and encountered denoted by *, all listed non-seeded 

species were encountered) with native / exotic status, perennial  / biennial  / annual (p / b / a) life 

form and functional group [C4, C3 graminoid ( = C3) or forb] indicated. Nomenclature and life 

forms for taxa follow the United States Department of Agriculture Plants Database 

(www.plants.usda.gov, accessed 6/2011). All Elymus species were definitively observed, but 

these were lumped together for all analyses in the main text (see Methods).  Records were not 

available from TNC for seeding densities at the species level. 

Species    Native/Exotic Seeded    Life Form Funct. Group 

Achillea millefolium*  native  yes   p  Forb 

Allium canadense   native  yes   p  Forb  

Ambrosia psilostachya  native  no   p  forb 

Ambrosia trifida   native  no   a  forb 

Amorpha canescens  native  yes   p  Forb 

Andropogon gerardii*  native  yes   p  C4 

Anemone canadensis  native  yes   p  Forb 

Artemisia ludoviciana*  native  yes   p  Forb 

http://www.plants.usda.gov/
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Asclepias speciosa  native  yes   p  Forb 

Asclepias syriaca*  native  yes   p  Forb 

Asclepias verticillata*   native  yes   p  Forb 

Astragalus canadensis*  native  yes   p  Forb 

Bouteloua curtipendula*  native  yes   p  C4 

Brickellia eupatorioides  native  yes   p  Forb 

Calamagrostis canadensis  native  yes   p  C3 

Callirhoe involucrata   native  yes   p  Forb 

Calylophus serrulatus   native  yes   p  Forb 

Cannabis sativa   exotic  no   a   forb 

Carduus nutans   exotic  no   b  forb 

Carex brevior*    native  yes   p  C3 

Carex duriuscula   native  yes   p  C3 

Carex gravida     native  yes   p  C3 

Chenopodium album  exotic  no   a  forb 

Cirsium discolor   native  no   b  forb 

Conium maculatum  exotic  no   b  forb 

Convolvulus arvense  exotic  no   p  forb 

Conyza canadensis  native  no   a  forb 

Crepis runcinata    native  yes   p  C3 

Cyperus lupulinus  native  yes   p  C3 

Cyperus schweinitzii    native  yes   p  C4 

Dalea candida*     native  yes   p  forb 

Dalea purpurea*   native   yes   p  Forb 

Delphinium carolinianum  native  yes   p  forb 

Desmanthus illinoensus*   native  yes   p  forb 
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Desmodium illinoense   native  yes   p  forb 

Digitara ischaemum  exotic  no   a  C4 

Digitaria cognata  native  yes   p  C4 

Eleocharis elliptica  native  yes   p  C3 

Elymus canadensis*  native  yes   p  C3    

Elymus trachycaulus*  native  yes   p  C3 

Elymus virginicus*  native  yes   p  C3  

Eragrostis spectabilis  native  yes   p  C4 

Eragrostis trichodes  native  yes   p  C4 

Eupatorium altissimum   native  yes   p  forb 

Eustoma exaltatum   native  yes   a  forb 

Euthamia graminifolia  native  yes   p  forb 

Gaura mollis    native  yes   b  forb 

Geum canadense*    native  yes   p  forb 

Geum vernum   native  yes   p  forb 

Glycyrrhiza lepidota*    native  yes   p  forb 

Helianthus annuus  native  no   a  forb 

Helianthus grosseserratus   native  yes   p  forb 

Helianthus maximiliani*   native  yes   p  forb 

Helianthus pauciflorus   native  yes   p  forb 

Helianthus petiolaris   native  yes   a  forb 

Helianthus tuberosus  native  yes   p  forb 

Heliopsis helianthoides   native  yes   p  forb 

Hesperostipa comata   native  yes   p  C3 

Hesperostipa spartea   native  yes   p  C3 

Heterotheca villosa  native  yes   p  forb 
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Juncus dudleyi    native  yes   p  C3 

Koeleria macrantha  native  no   p  C3 

Lactuca serriola   exotic  no   a  forb 

Lepidium campestre  exotic  no   a  forb 

Lespedeza capitata   native  yes   p  forb 

Liatris lancifolia    native  yes   p  forb 

Liatris punctata*    native  yes   p  forb 

Liatris squarrosa   native  yes   p  forb 

Lithospermum caroliniense native  yes   p  forb 

Lithospermum incisum   native  yes   p  forb 

Lotus unifoliolatus*  native  yes   a  forb 

Medicago sativa    exotic  no   a  forb 

Melilotus officinalis  exotic  no   b  forb 

Mimosa nuttallii    native  yes   p  forb 

Mirabilis nyctaginea   native  yes   p  forb 

Monarda fistulosa*   native  yes   p  forb 

Nepeta cataria   exotic  no   p  forb 

Oenothera biennis*     native  yes   b  forb 

Oenothera rhombipetala   native  yes   b  forb 

Oligoneuron rigidum*   native  yes   p  forb 

Onosmodium bejariense  native  yes   p  forb 

Oxalis stricta   native  no   p  forb 

Panicum capillare  native  no   a  C4 

Panicum virgatum*  native  yes   P  C4 

Pascopyrum smithii*  native  yes   P  C3 

Paspalum setaceum native  yes   a  C4 
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Penstemon digitalis*   native  yes   p  forb 

Penstemon gracilis  native  yes   p  forb 

Penstemon grandiflorus*  native  yes   p  forb 

Physalis heterophylla  native  no   p  forb 

Plantago patagonica*   native  yes   a  forb 

Poa prattensis   exotic  no   p  C3 

Potentilla norvegica  native  yes   a  forb 

Prunella vulgaris   native  yes   p  forb 

Pycnanthemum virginianum   native  yes   p  forb 

Ratibida columnifera*    native  yes   p  forb  

Rosa arkansana     native  yes   p  forb (woody)  

Rudbeckia hirta    native  yes   b  forb 

Rumex crispus   exotic  no   p  forb 

Schizachyrium scoparium* native  yes   p  C4 

Senecio plattensis*   native  yes   b  forb 

Setaria sp.   exotic  no   a  C4 

Silphium integrifolium  native  yes   p  forb   

Sisyrinchium campestre    native  yes   p  forb 

Solanum nigrum   exotic  no   a  forb 

Solidago canadensis  native  no   p  forb 

Solidago gigantea*  native  yes   p  forb 

Solidago missouriensis*   native  yes   p  forb 

Sorghastrum nutans*  native  yes   P  C4 

Spartina pectinata   native  yes   p  C4  

Sporobolus compositus  native  yes   p  C4 

Sprobolus asper*   native  yes   p  C4 



155 

 

Symphyotrichum ericoides*  native  yes   p  Forb 

Symphyotrichum lanceolatum   native  yes   p  Forb 

Symphyotrichum novae-angliae  native  yes   p  Forb 

Taraxacum officinale  exotic  no   p  forb 

Teucrium canadense    native  yes   p  forb 

Tradescantia bracteata  native  yes   p  forb 

Tradescantia occidentalis  native  yes   p  forb 

Tridens flavus   native  yes   p  C4 

Verbena hastata*   native  yes   p  forb 

Verbena stricta*    native  yes   p  forb  

Verbena urticifolia  native  no   p  Forb 

Vernonia fasciculata  native  yes   p  forb   

Vitis riparia   native  no   p  forb (woody) 

 

Table B-2. SAS outputs associated with Figure 3-1 grouped by figure panels 

Panel A              

                      

                     Effect                              Num DF  Den DF    F Value  Pr > F 

 

                     density                                 1    17.6       6.26    0.0224 

                     seedrichness                            1      17      14.72    0.0013 

                     density*seedrichness                    1    17.6       0.61    0.4468 

                     rainout                                 1      20       0.84    0.3715 

                     rainout*density                         1      20       0.57    0.4577 

                     rainout*seedrichness                    1      20       1.37    0.2556 

                     rainout*density*seedrichness            1      20       0.12    0.7343 

                     year                                    1      40       9.78    0.0033 

                     density*year                            1      40       0.04    0.8428 

                     seedrichness*year                       1      40       2.77    0.1040 

                     density*seedrichness*year               1      40       0.22    0.6439 

                     rainout*year                            1      40       0.22    0.6439 

                     rainout*density*year                    1      40       3.72    0.0607 

                     rainout*seedrichness*year               1      40       0.00    0.9473 

                     rainout*density*seedrichness*year       1      40       4.26    0.0456 

                Panel B 

 

                     Effect                              Num DF Den DF    F Value   Pr > F 

 

                     Density     1    17.2      19.75    0.0003 

                     Seedrichness    1      17      33.41    <.0001 
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                     density*seedrichness   1    17.2       0.21    0.6521 

                     rainout     1      20       5.61    0.0280 

                     rainout*density    1      20       3.42    0.0792 

                     rainout*seedrichness   1      20       0.75    0.3969 

                     rainout*density*seedrichness  1      20       0.22    0.6466 

                     year     1      40       0.55    0.4641 

                     density*year    1      40       1.67    0.2040 

                     seedrichness*year   1      40       0.09    0.7640 

                     density*seedrichness*year  1      40       1.83    0.1831 

                     rainout*year    1      40       0.07    0.7996 

                     rainout*density*year   1      40       0.00    0.9782 

                     rainout*seedrichness*year  1      40       0.45    0.5064 

                     rainout*density*seedrichness*year 1      40       0.32    0.5764 

 

           Panel C 

       

      Effect                         Num DF Den DF    F Value   Pr > F 

 

                     Density     1    18.4       5.53    0.0300 

                     Seedrichness    1      17      36.31    <.0001 

                     density*seedrichness   1    18.4       1.74    0.1849 

                     rainout     1      20       0.40    0.5350 

                     rainout*density    1      20       0.28    0.6049 

                     rainout*seedrichness   1      20       0.62    0.4396 

                     rainout*density*seedrichness  1      20       0.43    0.5186 

                     year     1      40       3.29    0.0773 

                     density*year                  1      40       1.07    0.3063 

                     seedrichness*year            1      40       6.71    0.0133 

                     density*seedrichness*year  1      40       1.68    0.2026 

                     rainout*year    1      40       1.68    0.2026 

                     rainout*density*year   1      40       2.42    0.1280 

                     rainout*seedrichness*year  1      40       1.07    0.3063 

                     rainout*density*seedrichness*year 1      40       3.29    0.0773 

 

Panel D              

 

                     Effect                             Num DF  Den DF    F Value   Pr > F 

 

                     seedrichness                             1      37      14.75    0.0005 

                     density                                  1    37.7      12.25    0.0012 

                     density*seedrichness                     1    37.7       1.60    0.2140 

                     rainout                                  1      37       1.34    0.2546 

                     rainout*seedrichness                     1      37       0.27    0.6067 

                     rainout*density                          1      37       1.88    0.1790 

                     rainout*density*seedrichness             1      37       0.16    0.6922 

                     year                                     1      40       4.97    0.0315 

                     seedrichness*year                        1      40       2.48    0.1230 

                     density*year                             1      40       1.35    0.2529 

                     density*seedrichness*year                1      40       0.08    0.7754 

                     rainout*year                             1      40      10.29    0.0026 

                     rainout*seedrichness*year                1      40       0.05    0.8218 

                     rainout*density*year                     1      40       0.77    0.3859 

                     rainout*density*seedrichness*year        1      40       1.10    0.3015 
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Table B-3. Least squares means for richness, density, and drought main effects in Figure 3-1. 

Response HR LR HD LD Drought No Drought 

Seeded 

Richness 

7.6 5.5 7.3 5.9 6.5 6.7 

Seeded 

Cover 

118.8 74.2 114.2 78.8 87.6 105.4 

Exotic 

Richness 

2.9 5.2 3.6 4.5 4.0 4.2 

Exotic  

Cover 

10.7 35.0 11.4 34.3 26.5 19.2 
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Appendix C - Chapters 5 & 6: Site characteristics, seed mixture, and 

additional species from Chapter 5 

 

Figure C-1. Soil texture (sand, silt, and clay proportions) at the three common locations ± 1 S.E 

with statistics (F-statisticnum. df, den. df) for location and block(location) effects where 
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significant (Proc Mixed ANOVA). Two 10 cm deep, 2.54 cm diameter cores were taken near the 

center of each plot at each location in April-May, 2012. The two cores for each location were 

combined, dried, sieved, and sent to the Kansas State Agronomy Soil Testing lab for textural 

analysis. 

 

Figure C-2. Aboveground biomass in 2011 (a, c, e, g) and 2012 (b, d, f, h) for the species with 

abundance (biomass) ranks 5-8 between common garden locations Silphium, Vernonia, 
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Desmanthus, and Schizachyrium (mean ± 1 s.e.m.). Statistics (F-statisticnum. df, den. df) and 

significance are provided seed source, location and seed source × location effects from Proc 

Mixed ANOVA. 

 

 

Figure C-3. Aboveground biomass in 2011 (a, c, e, g) and 2012 (b, d, f, h) for the species with 

abundance (biomass) ranks 9-12 between common garden locations Symphyotrichum, 
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Andropogon, Dalea, and Mondarda (mean ± 1 s.e.m.). Statistics (F-statisticnum. df, den. df) and 

significance are provided seed source, location and seed source × location effects from Proc 

Mixed ANOVA where data were sufficient. 

 

Table C-1. Site location, 1981-2010 mean and 2010, 2011, and 2012 observed total precipitation 

and temperature means for meteorological summer (June-August), and history for each common 

garden location.  

Common garden 

location 

1981-2010 

mean ppt (mm), 

T (°C) 

2010 observed 

ppt (mm), T (°C)  

2011 observed 

ppt (mm), T (°C) 

2012 observed 

ppt (mm), T (°C) 

History 

NE, Central 

Platte River 

Valley,  40° 

44’N, 98° 35’W 

272, 23 274, 24 318, 24 162, 25 agricultural 

land: corn 

KS, Konza 

Prairie Biological 

Station, 39° 06’ 

N, 96° 36’ W 

360, 25 142, 25 221, 27 268, 26 agricultural 

land: 

wheat/soy 

OK, J.T. Nichol 

Preserve, 36° 04’ 

N, 94° 49’ W 

342, 26 237, 27 109, 28 NA agricultural 

land: wheat 

(wildlife plots) 

Note: Weather station locations: NE = Hastings 4 mi N, Nebraska (40°39’N, 98°23’W); KS = 

Manhattan 6 mi SSW, Kansas (39°06’N, 96°37’W); OK = Tahlequah, Oklahoma (35°56N, 

94°58W). We obtained climate online from the National Climatic Data Center (URL: 

http://gis.ncdc.noaa.gov/map/cdo/, accessed 12/16/2012) with the exception of observed 

conditions for OK, which were accessed online from Oklahoma Mesonet (URL: 

http://www.mesonet.org/index.php/weather/category/past_data_files, accessed 12/16/2012). 
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Table C-2. Species in seed additions (nomenclature from United States Department of 

Agriculture Plants Database, URL: plants.usda.gov/java, Accessed 3/2012), amount of live seed 

added to each plot (equal among all seed sources), and broad functional groupings.  

Species Grams Live Seed / Plot (9m
2
) Functional Group 

Achillea millefolium 1.104 forb 

Andropogon gerardii  21.760 C4 grass 

Dalea candida  0.878 legume 

Desmanthus illinoense 10.293 legume 

Elymus canadensis 10.900 C3 grass 

Monarda fistulosa 0.096 forb 

Oligoneuron rigidum  8.068 forb 

Schizachyrium scoparium 14.415 C4 grass 

Silphium integrifolium 10.718 forb 

Sorghastrum nutans 36.279 C4 grass 

Symphiotrichum ericoides 0.398 Forb 

Total 115.009 NA 
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7. You shall indemnify, defend and hold harmless WILEY, its Licensors and their respective 
directors, officers, agents and employees, from and against any actual or threatened claims, 

demands, causes of action or proceedings arising from any breach of this Agreement by you.  

 
8. IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR ANY OTHER PARTY 

OR ANY OTHER PERSON OR ENTITY FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, 

INDIRECT, EXEMPLARY OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN 
CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR USE OF THE 

MATERIALS REGARDLESS OF THE FORM OF ACTION, WHETHER FOR BREACH OF CONTRACT, 

BREACH OF WARRANTY, TORT, NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, 

WITHOUT LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE, BUSINESS 
OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER OR NOT THE PARTY HAS BEEN 

ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION SHALL APPLY 

NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY 
PROVIDED HEREIN.  

 

9. Should any provision of this Agreement be held by a court of competent jurisdiction to be 
illegal, invalid, or unenforceable, that provision shall be deemed amended to achieve as nearly 

as possible the same economic effect as the original provision, and the legality, validity and 

enforceability of the remaining provisions of this Agreement shall not be affected or impaired 
thereby.  

 

10. The failure of either party to enforce any term or condition of this Agreement shall not 

constitute a waiver of either party's right to enforce each and every term and condition of this 
Agreement. No breach under this agreement shall be deemed waived or excused by either 

party unless such waiver or consent is in writing signed by the party granting such waiver or 

consent. The waiver by or consent of a party to a breach of any provision of this Agreement 
shall not operate or be construed as a waiver of or consent to any other or subsequent breach 

by such other party.  

 
11. This Agreement may not be assigned (including by operation of law or otherwise) by you 

without WILEY's prior written consent.  

 
12. Any fee required for this permission shall be non-refundable after thirty (30) days from 

receipt.  

 
13. These terms and conditions together with CCC’s Billing and Payment terms and conditions 

(which are incorporated herein) form the entire agreement between you and WILEY concerning 

this licensing transaction and (in the absence of fraud) supersedes all prior agreements and 

representations of the parties, oral or written. This Agreement may not be amended except in 
writing signed by both parties. This Agreement shall be binding upon and inure to the benefit of 

the parties' successors, legal representatives, and authorized assigns.  

 
14. In the event of any conflict between your obligations established by these terms and 

conditions and those established by CCC’s Billing and Payment terms and conditions, these 

terms and conditions shall prevail.  
 

15. WILEY expressly reserves all rights not specifically granted in the combination of (i) the 

license details provided by you and accepted in the course of this licensing transaction, (ii) 
these terms and conditions and (iii) CCC’s Billing and Payment terms and conditions.  

 

16. This Agreement will be void if the Type of Use, Format, Circulation, or Requestor Type was 
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misrepresented during the licensing process.  
 

17. This Agreement shall be governed by and construed in accordance with the laws of the 

State of New York, USA, without regards to such state’s conflict of law rules. Any legal action, 
suit or proceeding arising out of or relating to these Terms and Conditions or the breach 

thereof shall be instituted in a court of competent jurisdiction in New York County in the State 

of New York in the United States of America and each party hereby consents and submits to 
the personal jurisdiction of such court, waives any objection to venue in such court and 

consents to service of process by registered or certified mail, return receipt requested, at the 

last known address of such party.  
 

Wiley Open Access Terms and Conditions  

 
All research articles published in Wiley Open Access journals are fully open access: immediately 

freely available to read, download and share. Articles are published under the terms of 

the Creative Commons Attribution Non Commercial License. which permits use, distribution and 

reproduction in any medium, provided the original work is properly cited and is not used for 
commercial purposes. The license is subject to the Wiley Open Access terms and conditions:  

Wiley Open Access articles are protected by copyright and are posted to repositories and 

websites in accordance with the terms of the Creative Commons Attribution Non Commercial 
License. At the time of deposit, Wiley Open Access articles include all changes made during 

peer review, copyediting, and publishing. Repositories and websites that host the article are 

responsible for incorporating any publisher-supplied amendments or retractions issued 
subsequently.  

Wiley Open Access articles are also available without charge on Wiley's publishing 

platform,Wiley Online Library or any successor sites.  
 

Use by non-commercial users  

 

For non-commercial and non-promotional purposes individual users may access, download, 
copy, display and redistribute to colleagues Wiley Open Access articles, as well as adapt, 

translate, text- and data-mine the content subject to the following conditions:  

  The authors' moral rights are not compromised. These rights include the right of 
"paternity" (also known as "attribution" - the right for the author to be identified as such) 

and "integrity" (the right for the author not to have the work altered in such a way that the 

author's reputation or integrity may be impugned). 

  Where content in the article is identified as belonging to a third party, it is the 

obligation of the user to ensure that any reuse complies with the copyright policies of the 

owner of that content. 

  If article content is copied, downloaded or otherwise reused for non-commercial 
research and education purposes, a link to the appropriate bibliographic citation (authors, 

journal, article title, volume, issue, page numbers, DOI and the link to the definitive 

published version on Wiley Online Library) should be maintained. Copyright notices and 

disclaimers must not be deleted. 

  Any translations, for which a prior translation agreement with Wiley has not been 

agreed, must prominently display the statement: "This is an unofficial translation of an 

article that appeared in a Wiley publication. The publisher has not endorsed this 

translation." 

Use by commercial "for-profit" organisations  

 

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes 

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
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requires further explicit permission from Wiley and will be subject to a fee. Commercial 
purposes include:  

  Copying or downloading of articles, or linking to such articles for further redistribution, 

sale or licensing; 

  Copying, downloading or posting by a site or service that incorporates advertising with 
such content; 

  The inclusion or incorporation of article content in other works or services (other than 

normal quotations with an appropriate citation) that is then available for sale or licensing, 

for a fee (for example, a compilation produced for marketing purposes, inclusion in a sales 

pack) 

  Use of article content (other than normal quotations with appropriate citation) by for-
profit organisations for promotional purposes 

  Linking to article content in e-mails redistributed for promotional, marketing or 

educational purposes; 

  Use for the purposes of monetary reward by means of sale, resale, licence, loan, transfer 
or other form of commercial exploitation such as marketing products 

  Print reprints of Wiley Open Access articles can be purchased 

from: corporatesales@wiley.com 

 

Other Terms and Conditions:  

 

BY CLICKING ON THE "I AGREE..." BOX, YOU ACKNOWLEDGE THAT YOU 

HAVE READ AND FULLY UNDERSTAND EACH OF THE SECTIONS OF AND 

PROVISIONS SET FORTH IN THIS AGREEMENT AND THAT YOU ARE IN 

AGREEMENT WITH AND ARE WILLING TO ACCEPT ALL OF YOUR 

OBLIGATIONS AS SET FORTH IN THIS AGREEMENT.  

 

v1.7 

If you would like to pay for this license now, please remit this license along with your 
payment made payable to "COPYRIGHT CLEARANCE CENTER" otherwise you will be 

invoiced within 48 hours of the license date. Payment should be in the form of a 

check or money order referencing your account number and this invoice number 
RLNK500928235. 

Once you receive your invoice for this order, you may pay your invoice by credit card. 

Please follow instructions provided at that time. 
 
Make Payment To: 

Copyright Clearance Center 
Dept 001 

P.O. Box 843006 

Boston, MA 02284-3006 

 
For suggestions or comments regarding this order, contact RightsLink Customer 

Support:customercare@copyright.com or +1-877-622-5543 (toll free in the US) or +1-978-646-
2777. 

 

Gratis licenses (referencing $0 in the Total field) are free. Please retain this printable license for 
your reference. No payment is required.  
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