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1. INTRODUCTION

Suppose X is a random variable representing the service life to
* failure of a specified material, structure, or device. Such a "failure
distribution" represents an attempt to describe mathematically the length
of life of the material. On the basis of actual observations of times to
failure, it is difficult to distinguish among various nonsymmetrical prob-
ability distributions. Differences among the gamma, Weibull, and lognormal
distribution functions become significant only in the tails of the distri-
bution, where actual observations are sparse because bf limited sample
sizes. In order to discriminate among probability functions that cannot
be distinguished from each otﬂer within the range of actual observationm,
it is necessary to appeal to a concept that permits differentiétion among
distribution functions based on physical considerations, namely the hazard
rate (Barlow and Proschan, 1965, pp. 9-10).

The hazard rate-is defined for a random variable with distribution

function F and density f as

q(x) = T-F@ ° for x such that F(x) < 1.

For a "failure distribution" as described above, q(x)dx represents the con-
ditional probabilify that an item of age x will fail in the interval
(x, x + dx). To see this, let h = dx and note that

o(h)
h

f(x)h = F(x+h) - F(x) + o(h), where lim =0,

h+0
[ ]
Because of this interpretation F will be assumed throughout this paper to

be the distribution function of a positive random variable, although for



many of the results this is not necessary.

The hazard rate is known by a variety of names in various appli-
cations. It is used by actuaries under the name of "force of mortality"
to compute mortality tables. Its reciprocal for the normal distribution
is known as "Mill's ratio." Papers in extreme value distribution theory .
call it the intensity function, while in reliability theory both hazard
rate and failure rate are used. |

Most 5: the properties discussed in this paper are due to the mono-
tonicity of the hazard rate. The assumption that the life of a unit has
inc;easing hazard rate is usually easy to accept; wear out intuitively
would cause older units to haye greater chance of failing in the next unit
of time. Decreasing hazard rate could conceivably correspond to some
physical characteristic of improvement with age, so that older units have
less chance of failure in the next unit of time. Theorems given in this
paper will explain other cases of decre;siug hazard rate, where no process
of improvement is involved. Proschan (1963) discusses such a case. Also
bounds on survival probabilities based on the assumption of monotone
hazard rate will be presented, as well as statistical tests for monotonicity

of hazard rate.

2. BASIC PROPERTIES OF THE HAZARD FUNCTION

Let F(x) be the distribution function corresponding to an absolutely
continuous random variable X and let f(x) be its probability density
function. The hazard rate of X is defined for F(x) < 1 by

L
___f(x)
(=) = 1-F(x) °



The following relationship holds between F(x) and the hazard function

X
1-F(x) = (1 -F(x))) exp(- [ q(z)dz),
X

0

where X, is an arbitrary value of x. To see this, note that

& 10g1 - PO - TR
_ X
Thus log(l - F(x)) = f -£(2)/(1 - F(z))dz + "constant",
% >
o

where the constant is log(l - F(xo)).

X
Thus 1 - F(x) = (1 - F(x))) exp(- [ q(2)dz) .

X
0

If there is a lower bound ¢ to the distribution (i.e., F(e) = 0), then

X
1l - F(x) = exp(~ f q(z)dz) for x > €.
: €

A lower bound € = 0 will be assumed in this paper unless otherwise specified;

this assumption gives

.
1 - F(x) = exp(- f q(z)dz) for x > 0.
0

Also it will be assumed throughout this paper that

F(0-) = 0, F(4+=) = 1, and that F is right continuous.

The above property can be used to verify that a conftant hazard function



q(x) = A for x > 0
gives rise to an exponential distribution, since

: b
F(x) = 1 - exp(- f Adz) = 1 - exp(- Ax),
: 0

which is the distribution function of an exponential distribution with
mean 1/X. Distributions often assumed as failure laws are listed below,
along with their hazard rates (when simple expressions are available).

(Barlow and Proschan, 1965, p. 13).

(i) The exponential:

=)

£(t) = xe M, q(t) =, t> 0

(ii) The gamma:

Aatu—le—ht ,
f('t)=—-]:,—za-')-_--— l,a?ﬂ,t?_ﬂ
(iii) The Weibull:
a-1 -at™ 1

£(t) = aat® e T, q(t) =Arat®™T, A, a>0,t>0
(iv) The modified extreme value distribution:

! i t
f£(t) = I exp C—I——— +t), q(t) =e /2, 2 >0,t>0

(v) The truncated normal:

2
exp (- LE_-ZE-Z_),

f£(t) =
acv2r 20

o
A
rr
A
B

where a is a normalizing constant.



(vi) The log normal:

—W<u<m

£(t) = exp (- =5 (log t - WP, o> 0

tov2m 20
t>0

The exponential has constant hazard rate, but the gamma and Weibull have
increasing hazard rate for o > 1 and decreasing hazard rate for o < 1. |
For a > 1 the hazard rate of the gamma is bounded above by A, while the
hazard raté of the Weibull is unbounded. For a = 1, both coincide with
the exponential. The modified extreme value distribution and truncated
normal have increasing hazard rate. The log normal distribution has a

decreasing hazard rate in the long life range; i.e., its hazard rate in-

creases at first and then eventually decreases to zero.

The hazard rate of a discrete distribution'{pk} k:ﬂ is defined as

follows:
P
k
q(k) = — .

P
jzk ]

In the discrete caée, q(k) < 1. Among typical discrete failure distri-
butions, the binomial and Poisson distributions have increasing hazard
rate, the geometric family (pk = p(1 - p)k, 0<p<l1l, k=20,1,2,:.+)

has constant hazard rate and the negative binomial distributiomns

k
o= () p* 0, p=1-9q>0,a20, k=0,1,2,-:)
]

have increasing hazard rate for o > 1 and decreasing hazard rate for

a <1, For ¢ = 1, the negative binomial corresponds to the geometric and



thus has constant hazard rate. (Barléw and Proschan, 1965, p. 18).

The hazard rate as defined for continuous distributions assumes the
existence of the probability density function of the distribution. A
more general definition of increasing (decreasing) hazard rate distributions
‘will now be given, one that does not assume the existence of the density
function, but that will reduce to increasing (decreasing) q(t) in case 7
the density exists. In this paper the words "increasing"” and "decreasing"
will not be used in the strict sense; i.e., increasing is used as non?
decreasing, decreasing as non-increasing. Thus the exponential distribution
is both an increasing hazard rate distribution and a gecreasing hazard
rate distribution. Also, the symbol THR will denote an iﬁcreasing hazard
rate distribution, similarly for DHR.

Definition: A nondiscrete distribution F is THR (DHR) 1ff

F(t + x) - F(t)
1 - F(t)

is increasing (decreadsing) in t for x > 0, t > 0 such that

F(t) < 1. (Barlow and Proschan, 1965, p. 23).

Of course, no generality is lost by considering discrete diétributions to
be IHR (DHR) when q(k) is increasing (decreasing).

The next result will show the equivalence of IHR (DHR) distributions
and distributions for which q(t) is increasing (decreasing).

Theorem: Assume F has a density f with F(0-) = 0 as usual. Then

F is IHR (DHR) iff q(t) is increasing (decreasing).

F(t + x) - F(t) .

x(1 - F(t)) °

Proof: Since q(t) = lim
x>0



it suffices to show q(t) increasing (decreasing) in t implies

F(t + x) - F(t)
1 - F(t)

increasing (decreasing) in t.’

Without loss of generality, consider the case of q(t) increasing.

Then for t, < t

1 2
q(t;) < q(t,)
x x
Thus - f q(ty + u)du < f q(t, + u)du.
0 0
Let v =1t +u, w=t,+u. 7 ' i .
Then
'tl'l"'x t2+x
[ awav < [ qwaw .
kB £
This implies
t2+x : tl+x
exP[‘f Q(W)dW] iexP[- f q(v)dv]
t2 tl
t
But 1-F(t) = exp[-‘f q(x)dx] .
, -0
So
1 - F(t2 + x) 1 - F(t1 + x)

<
1- F(tz) — 1 - F(tl)

Adding one to both sides,



1- F(tl) F(tl +x) -1 1 - F(tZ) F(t2 +x) -1

+ < + .
1 - F(tl) 1 - F(tl) | - 1 - F(tz) 1 - F(tz)

and rewriting, gives

I-'(t1 + x) - F(tl) ) F(t2 + x) - F(tz)
1 - F(tl) - 1 - F(t2)

Q.E.D
(Barlow and Proschan, 1965, p. 23).
Further properties of the Hazard function depend on mathematical
properties of convex functions, Polya frequency functions, and totally‘
positive functions. The following definitions will be useful:
Definition: Let u be a function defined on an open interval I,
and P = (£, u(g)) a point on its graph. A line L passing
through P is said to support u at £ if the graph of u lies
entirely above or on L. (Thi§ excludes vertical lines.)
(Feller, 1966, p. 151).

Definition: The function u is called convex in I if a supporting
line exists at each point of I. (The function u is concave
if -u is convex). (Feller, 1966, p. 151).

Definition: A function p(x) defined for x in (-~,®) is a Polya

frequency function of order 2 (PFZ) iff p(x) > 0 for all x and

p(xl = Yl) P(xl = Yz)

v
o

p(x, - ¥;) p(x, = ¥,)

.
whenever - <Xy 2 Xy <@ and - = < ¥y LYy < = (Barlow and'

Proschan, 1965, p. 24).



Theorem: A necessary and sufficient condition that £ be a PF2

density is that the ratio

f(t)
F(t + A) - F(t)

be incréasing in t for all A. For proof, see Barlow and Proschan
(1965, p. 229).
Definition: A function p(x,y) defined for x€X and y€Y (X and Y

linearly ordered sets) is totally positive of order -3 ('I‘Pz)

iff p(x,y) > 0 for all x¢X, y€Y and

p(x;5 ¥;) p(x,, y25
>0
p(x,y, ¥7) p(x,, ¥,)

whenever .3 < x2 and Yy < YZ (Xl; 32 ¢ X, Yl’ Y2¢Y)

(Barlow and Proschan, 1965, p. 25).
The next theorem gives two necessary and sufficieu&: conditions for
a distribution to be IHR (DHI_{) which will prove useful later.
Theorem: The following statements are equivalent:
(a) F is an IHR distribution. (F is a DHR distributiom.)
(b) Log (1 - F(t)) is concave for t in (t|F(t) <1, t > 0)
(Log (1 - F(t)) is comvex for t in (t|F(t) <1, t > 0))

(L-F(x+y) is TP, in x and y for

(¢) 1 - F(t) is PF 5

2.
x+y>0)

-R(t) for some function R

e -

Proof: (a)&(b). Let 1 - F(t) = e

(i.e., R(t) = -log (1 - F(t))). Then
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F(t + %) - F(t) _1-F(t) -1+ F(t+x) _(1-F(t) - (1 -F(t+x) _
1 - F(t) 1 - F(t) 1-F(t) -

_1-F(t+x)_ 1 - e—(R(t + x) - R(t))

1 1l - F(t)

Thus F is IHR iff 1 - e (R(t + x) - R(£))

is increasing in t for all x > 0,
i.e. iff R(t + x) - R(t) is increasing in t for all x > 0.
Thus F is IHR iff R(t) is convex iff -log(l - F(t)) is convex iff log (1-F(t))

is concave. Similarly for DHR.

In the case F has a density, this result is immediate, since

a(t) = - S log(1 - F(t)).

(a)¢£?(c): F is IHR iff for t, f_tz and x > 0.

[1-F(t)) - (1 - F(e, +x)1Q1 - F(t,))

- [ - F(ty) - (1 - F(e,y + x))1C - F(e)) < 0

i.e. iff

1-F(ep) - - Fley +%) 1= Fley - (L= F(E, + 0)
<0

l- F{tl) 1 = F(tz)

Subtracting the second row from the first, we see that this is the condition

that 1 - F(t) be PF,. (Barlow and Proschan, 1965, p. 25).

Q.E.D.

I ] .
In the case of DHR distributions, it is not possible that q(x) is

decreasing for all x, since q(x) decreasing at x = t implies the density
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f(x) is_also decreasing at x = t, If the sﬁpport of F is bounded below,
say by zero, then q(x) may be decreasing for x > 0. Barlow, Marshall,

and Proschan (1963, p. 377) show that the support of a DHR distribution

F cannot be a finite interval. Thus the support of a DHR distribution must
be [0,»), where q(x) is decreasing for x > 0. Another interesting result
obtained in this article is that F is IHR (DHR) iff there exists a non-
negative comvex (concave) increasing function h such that F(x) = G(h(x)),
where - |

G(x) =1 - e_y, y > 0.

Also if F is IHR and h is a non-negative convex incréésing function, not
identically constant, then F(h(x)) is IHR.

Barlow and Proschan (1965, p. 25) remark that, due to a méasurable
convex function being continuous in the interior of the region of its
definition, F cannot have a jump in the interior of its support if F is
IHR or DHR. If F is_iHR, F may possess a jump only at-the right-hand end
of its interval of support (which implies F(0-) = 0 = F(0)). If F is
DHR, F may possess a jump only at the origin. We may, in fact, show thaé
the continuous part of F in either the IHR or DHR case is absolutely con-
tinuous. Recall that a function £(x) is absolutely continuous on a closed
interval [a,b] if for all € > 0 there exists n > 0 such that if (al,bl),
(az,bz), i W B (an,bn) is any finite set of nonoverlapping intervals such
that the sum of the lengths of the intervals is less than n, then

n

1£1|f(ai) - f(bi)| < E . o
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To show that the continuous part of an IHR distribution function F is ab-
solutely continuous, let € > 0. Then choose z such that
u(z) = ~log(l - F(2)) < =

< B, < a < ses € g < B < 2z

Let 0 < o4 1 2 < By % m

be points satisfying

m
) (B, -a,) < £ , Where
j=. T gt
wheey = g 2825 0 -ulE) .. g
SN0
since U is convex. Then
% | | ? u(Bi) - u(ai)
U(B,) - Ula,)| = (B, - a,)
1=1 i i 121 Bi - Gi i i
+ ? -
< U (2) (B, - a,) < E.
-_ j=1 i i

Thus U is absolutely convergent on [0,z], as was to be_shown; Similarly
if F is DHR. (Barlow and Proschan, 1965, p. 26)
Similar results hold in the discrete case. Barlow, Marshall, and

Proschan (1963, p. 379) state that
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is a PF2 sequence (where, of course, a PF2 sequence is simply a PF2

function defined on a set of integers):. This is equivalent to an analog
of the condition that log(l - F(x)) be concave, namely, that there exist
two integers a, B,-O <a < B < = such that Pj >0 iff a < j < B and the

polygonal line of vertices x = k,

y = log Z%.aikis,mcmuw.
I=k

3.  PRESERVATION OF MONOTONE HAZARD RATE

The next property of monotone hazard rate distributions to be con-
sidered is their behavior under convolﬁtion and convex co;bination,

Barlow, Marshall, and Proschan (1963, p. 380) prove that if é and G
are IHR, then their convolution H, given in the continuous case by

H(t) = [ F(t - x)d6(x), is also IHR. _

-0

This result also holds in the discrete case. But the DHR property is not
preserved undér convolution. For a counter example consider gamma densi;ies
f and g with 1/2 < o < 1 (Barlow, Marshall, and Proschan, 1§63, p. 380).
Mixtures of DHR distr{butions are however, DHR. The following result
is given in Barlow, Marshall, and Proschan (1963).
Theorem: If F(t,$) is a DHR distribution in t for each ¢ in ¢ ,

then G(t) = f F(t,$)du(¢) is DHR where p is a probability
]

measure in ¢.
¢ .
A similar theorem given. in Proschan (1963), states that convex combin-

ations of DHR distributions are DHR:



Theorem: If Fi(t) is DHR for i = 1, 2, ..., n, then

7 n
G(t) = } piFi(t) is DHR where each p,>0, ) p, = l.
i=1 ! =1

Proof: Suppose Fi(t) has differentiable density fi(t), 1=1,2,¢ 0. 00

Since the density of any DHR distribution must be a decreasing function,

. we have —fi(t) > 0 so that by the Schwarz inequality

n n n ] 1/2 2 _
Lp@-m© 1 epgfien {izlpi[(l - F (0) (€] (D] } ;

£, (1)

Since i—:_§;f€7 is decreasing in t,

4 { £,(t) } R ACIICERAD

b = <0.
dt |1 - Fi(t) e Fi(t)]z

Thus (1 - By (£)E](E) < RO

) i e ) 2
Thus p.(1 - F_(t)) (-p,E!(t)) 3_{ p.f (t)} .
1=1 * = T 1,1 11

) I ) B
i.e., p, (1 - F (t)) } p,E:(0) j_-{ P f.(t}} .
1=1 i i jop 1 i =1 ii
n n n n 2
This implies [ 3 P; - ) piFi(t)] leifi(t) 5_-{ ) pifi(t)} !
i=1 i=

i=1 i=1

and so (1 - 6(E)g'(t) < -g(b). ‘ -

14
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But

d (t) = ! 2
EE{T%?;'(U} = [1-G(r)]g"(t) + g (t) < 0.

(t)

Thus the ratio I_:EETEY is decreasing, which means G is DHR.

If the Fi do not have differentiable densities, Proschan remarks that
the same results may be obtained by limiting arguments. (Proschan, 1963,
p. 382)

Q.E.D.

However mixtures of IHR distributions are not necessarily THR. As
a counter example, comsider two distinct exponentials, A mixture of two
distinct exponentials must be DHR by the above theorem. But such a mixture
is obviously not eﬁpcnential. Thus it cannot be IHR, since a constant
hazard rate (which must be the case if a distribution is both IHR and DHR)
gives rise to an exponential distribution.

Proschan (1963) uses the above results to give a theoretical explan-
ation of decreasiug.hazard rate in situations where no physical character-
istic of improvement with age is present. His specific example concerns
the distribution of failure intervals for the air conditioning systems of
a fleet of jet airplanes.. Using the test for monotone hazard rate developed
by Proschan and Pyke (to be presented later in this paper), Proschan con-
cludes that it seems safe to accept the exponential distribution for each
plane in his experiment, although to each plane may correspond a different
hazard rate. Applying this test to the pooled data, he concludes that the
failure distribution for the entire fleet is DHR. Since pooling of
failure intervals in this situation may be shown to cor;;spond approximétely

to forming convex combinations of the individual exponential distributions,



16

the above theorem gives a theoretical explanation of the observed DHR.

A number of commonly occurring situations of life diétributions with DHR
could arise in the same way. For example, a reasonable explanation for
the DHR property of semiconductors would be that units within a given pro-
duction lot exhibit a constant hazard rate since semiconductors do not
seem to wear out, but that the hazard rate varies from lot to lot as a
result of inescapable manufacturing variability. Thus the life distri-

bution of units for the various lots combined would be DHR.

4. BOUNDS FOR DISTRIBUTIONS WITH MONOTONE HAZARD RATE

This section will be primarily concerned with giving bounds on the
quantity 1 - F(t) for distributions F such that F(0') = 0. If F is a
failure distributi&ﬁ, then 1 - F(t) is the survival probability, i.e.

1 - F(t) is the probability of survival until time t.

Many of the results will be improvements on Markov's Inequality,
which states that for a probability distribution F such that F(0') = 0,
and for |

®

W= f xrdF(x) < @ , r, t >0, that
0

0<1-F(t)<ulth

(This result is incorrectly stated in Barlow and Marshall (1964,

p. 1234).) To prove the above form, first note that in the case r = 1,

- -] L--] - -] [ -] u
1-F(t) =PX>t) = [ dF(x) = [ £ dP(x) < & [ xdF(x) < = [xdF(x) = —= , -
t -t = e t
t ¥ t 0
For r > 1, let Y = X'. -
r H
ThenP(Y:-t)f_—Es

t
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which implies

u
1 -F(t) =P(X>t) =P(Y > tr)_g—f
t

since X is a positive valued random variable. Barlow and Marshall (1964,
P. 1234) remark that Markov's inequality is sharp in the sense that with-
out strengthened hypotheses, no tighter bounds can be given. In fact, for
each positive r and t there exist distributions which attain equality. of
course, the added hypothesis which will be added here will be that of
monotone hazard rate.

The exponential distribution with constant.hazard rate, being the
boundary distribution between IHR and DHR distributions, provides natural
bounds on the survival probability of IHR and DHR distributions. It can be

shown that if F is IHR with mean Hys then 1 - F(t) must cross e_t/ul

exactly
énce, and the crossing is necessarily from above (Barlow and Proschan, 1965,
P. 26). This implies that 1 - F(t) taiis off exponentially fast. A more
precise statement of this exponential rate of decrease is contained in the
following lemma.

Lemma: If F is IHR (DHR), then

[1 - r(e)1/t

is decreasing (increasing) in t.

Proof: Suppose F is IHR. Then log(l - F(t)) is concave in t, so

log [1 - F(t)] - log [1 - F(0)]
t- 0

is decreasing in t., Thus
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log [1 - F(t)]

¢ _ Jlog 11 - F()1V/°

e

It is decreasing in t.

is decreasing in t, which implies [1 - F(t)]1
Similarly for DHR.'Barluw and Proschan (1965, p. 27)
Q.E.D.

This lemma also provides a proof of the fact that IHR distfibutions
have finite moments of all orders. To see this, we need the following |
proposition,

ProEosition: If X is a non-negative random variable and if o

exists, then
©
wo=r [x70 - B lax.
0
Proof: Result is immediate if X has a density f.

Then

@ < <0 mu
T f xr-l [1-FE)]dx=1r f xrﬁl f f(u)du dx = r f ff(u)xr-l dx du =
0 : 0 b4 00

f u f(u)du = p_.
0 T

If X has no demsity, recall that if o and f are complex functions of

bounded variatioms on [a,b], and f is also continuous, then

b b
[fda = £(b)a(b) - £(a)a(a) - [ adf
a a

(Rudin, 1964, p. 122)

Thus
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T T

T T
[x"aF(x) = T'F(T) - [ F()A(x") = TF(t) + r [(1 - F(x)) x* ldx - rfx" Lax
0o . 0 0 0

T

- F (L-F@®) 41 [ - Fx) =" L
: 0

X

But

T" [1 - F(t)] = T" fdF(x) < [x"dF(x) for T>1-+0as T
T T

Thus

[£5aF(x) = r [ [1 - F(x)] x* ldx. (Feller, 1966, pp. 148-149)
0 0

Q.E.D.

Since if F is IHR, [1 - F(t)]llt is decreasing in t, 1 - F(x)

x/t

< [1 - F(t)] for x > t.

Then

r [ £ - F@)) ax <r fxr—l -re) ¥ ax<e
t t

when 1 - F(t) < 1 and r > 0. Hence, IHR distributions have finite moments
of all orders. (Barlow and Proschan, 1965, p. 27)
Bounds on surv;val pfobabilities depending on percentiles and means
will be presented next. |
Theorem: If F is IHR and F(EP) =p (i.e., Ep is a pth perpentile),
then

1-F(t) > eF



where a = - log(l - p)

Similarly, if F is DHR and F(§ ) = P

then

1-F@) <e™ <

‘Proof: If t, < and F is IHR, then

p ® &y

1/t llé

1
[1 - F(t,)]

> 11 -FE)] 2

So if t 5;gp, then

[1- 1?-‘(1:)]”t = (1 = p)llgﬁ

or

t/E (t/5_) (log(1-p))
1-F)>@1-p P=e P =

Similarly for the other cases . (Barlow and Proschan, 1965, p. 27)
Q.E.D.

To get a lower bound on 1 - F(t) when F is IHR, the following lemma

is needed.

20
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Lemma: (Jensen's Inequality) Let F be a probability distribution
concentrated on an open interval I with finite mean E(X).

If u is a convex function defined on I, then
E(u(X)) > u(E(X)).

Proof: In analytical terms the definition of a convex function u
requires that u(x) > u(€) + A(x - £) for all x in I, where (g, u(g)) 1is
a point on the graph of u and A is the slope of the support line at

(£, u(£)). Letting &= E(X) and taking expectations, we get

E(u(X) > E [u(EX)] + AE[x - EX)] = u(E®)..
(Feller, 1966, p. 152) Q.Elb.

Theorem: If F is IHR with mean Hys then

1 -F(t) >e t < Hy

0 t2>u

(The inequality is sharp.)

Proof: Barlow and Proschan (1965, p. 27) state that since an IHR
distribution can always ge approximated arbitrarily closely by a continuous
IHR distribution, it can be assumed WLOG thatrF is continuous. Lex X be
a random variable with distribution F. Then log [1 - F(t)] is concave in

t and Jensen's inequality shows that
E(-log(l - F(X)) > -log(l - F(ul)) or shat

E(log(l - F(X)) < log[l - F(up)].
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Since F is continuous, F(X) is uniformly distributed on the unit interval
(Hogg and Craig, 1965, p. 178). Then

P(1 - F(X) <x) =P(F(X) >1-x) =1-P(F(X) <1-x) =.1 - (1=x) = x.
Thus 1 - F(X) is uniformly distributed on the unit interval. So

1 1 1
f log x dx = x log x | - f dx, integrating by parts.
0 0 0

n

E[log (1 - F(X))]

Thus E. [log (1 - F(X))] = -1, which implies

log [1 - F(ul)] >=1, or 1 - F(ul) 3_3-1.

/t llﬁl

For t<uy, (L-FOIYE2m-Fepr L. -

Thus
—t/ul i
1-F(t) >e for t < u,.

(Barlow and Proschan, 1965, p. 27)

Q.E.D.
Barlow and Proschan (1965, p. 28) point out that the expomnential
distribution with mean M1 attains the lower bound for t < ui, while the
degenerate distribution,coﬁcentrating at By attains the lower bound for -

t Z_ul; Also,_the'inequality-is actually strict for 0 < t < My unless

-t/u;
F is the exponential e .

The next thecrem gives upper bounds for IHR distributions, given

the mean Hye

‘Theorem: If F is IHR with mean Hyo then .
&s t <y
1 - F(t) <
-wt
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where w depends on t and satisfies 1 - Wy = e_Wt.

For proof of this theorem, see Barlow and Proschan (1965, p. 29).

Similar theorems can be given for DHR distributions. The following
sharp upper bound on 1 - F(t) ié given in terms of a single moment, whereas
the sharp lower bbund on 1l - F(t) is zero for DHRldistriButions,

Theorem: If F is DHR with mean Hys then
e_t/u1 ] t _<_ 111

1-F(t) <

t>u .

For proof; see Barlow and Proschan (1965, p. 32).

Various generalizations of the above theorems concerning bounds on
survival probabilities for monotone haz;rd rate distributions have been
derived by Barlow and Marshall (1964). However, many of them can be
characterized only through solutions of transcendental equations and are
therefore inaccessible directly. Barlow and Marshall (1965) give a listing
of these results along with tables for those without explicit forms. It
should be noted that the conditions under which non-vacuous hypotheses can

be made are limited by the inequalities

ui 2y, 5_2ui for IHR distributions

oo
and uz_i Zui for DHR distributions, where Wy = f xidF(x) for i = 1,2,
0 o .

(These inequalities will be proved later in this section.)
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Upper and lower bounds for survival probabilities of monotone hazard rate
distributions are given for the case ﬁr known for some r and for Fhe
_ case ﬁl and ﬁz known. For those cases in which no explicit'eﬁpression
is available, tables are given for some values of the parameters. An
example is the upper bound for 1 - F(t) in the IHR case with ﬁl_aud ﬁz
known. Table IV of Barlow and Marshall (1965) gives an upper bound for
"
of , from 1.05 to 1.50.

1 - F(t) for the case = 1 for values of t from .30 to 1.25 and values

The following four theorems give‘bounds on the survival probability
assuming a variety of conditions on the hazard rate function q(t).

o0

Theorem: If q(t) > o for all t 3'0 and f xf (x)dx = u.l,

0
then

ok s t < =(1/a)log(l - aul) =t
1-F(t) <

uule_at

-ot g B E tc>

l-e

uu1—1+re.at ,t_<_t°
1 - F(t) >

0 » £t

These inequalities are sharp.

For proof, see Barlow and Marshall (1964, p. 1247). They remark that

- q(t) > o implies auy < 1 so ty is well defined.

‘Theorem: If F is THR, q(t) < Bfor all t > 0, and
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, f xf(x)dx = #1’ then
0

where v, is the unique solution of

- _‘_-t(l -w) W
¥ log w +B »

-t/u .
. e . ’ tf_ul
1 - F(t) > ’

These inequalities are sharp.

For proof, see Barlow and Marshall (1964, p. 1251).

Theorem: If q(t) < B <= forallt>0 and

«©

[ xf(x)dx = p

2
0 1
then
: —Bzo
e . t >y - 1/8
1-F(t) <
1 § t<ug - 1/8
where z, is the unique solution of (t - z)e“Bz =y - 1/8

satisfying 0 < z, < t;
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I - E(t) > F

These inequalities are sharp.

For proof, see Barlow and Marshall (1964, p. 1250).

- -]

Theorem: If F is IHR, q(t) > o for all x > 0 and fxf(x)dx = Hy»
’ , 0
then
| ae t < -(1/a)log(l - apy) = ¢t
1-F(t) < " &
e’ , t>t,
where y is determined by .
1l - e-yt -
y l-lls
e
1 - F(t) > e-(az +1) . Hp<t<t
0 ; £5 E

where z is determined by 1 - apy = [1 - a(t-2)] SR

These inequalities are sharp.
For proof, see Barlow and Marshall (1964, p. 1248).

The next theorem will present bounds on percentiles in terms of the

mean.



Theorem: Assume F is IHR. If p <1 - eul, then

[-log(1 - p)] u; = ’r;p < [— }-95-%-:-&] uyps

ifprl- e_l, then

Mg < [- oell -~ p) (1P_ )Jul,

where Ep = sup {t|F(t) <p}.

The inequalities are sharp.

Proof: To obtain the upper bound, use the fact that [1 - F(t)]1
is decreasing in t since F is IHR.

Then for x < gp,

x/E
1 - F@®) 2 [1-FE)] P,

Then
@ EP x/E EP x/Ep
wp=[I1-F@lax>[ [1-FE)] Pax=[ Q-0p
0 . 0 P 0
E .
(1 - P)XIEP P Ep(l = ) EP
1 Togtl — 1) log(1-p) log(1-p)
Ep 0
Thus

-1 - N L ]
Ep Sy 1°(§ ) for ali 1> p > 0.

/t

27
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To obtain the lower bound, for p < 1 - e—l, note that if

-£_/u
- Pl
Ep < My then 1 P 1 F(Ep) >e

(This is the lower bound for an IHR distribution with mean ul.) This implies

-£
—P < log(1-p), or E_> uy [-log(l - p)l.
31 | e
And if
-g_/fu
-1 1
g 2ups 1-FE)=1-p2e2e 7 .
So
log(l - p)'_>_—up- , oOr EP > Wy [-log(l - p)] where p < 1 - e-l.
1
-1
In the case p > 1 - e =, assume gp < My
Then
1-Fu) >el>1-p=1-F(E)
17 - - P p’
so
F,P > His which is a contradictiom.
Thus

e
Barlow and Proschan remark that IHR distributions with the prescribed

percentiles attaining the bounds can be easily constructed. (Barlow and



29

Proschan, 1965, p. 30)

Q.E.D.
This theorem also gives bounds on the mean of IHR distributions in
terms of percentiles. For example, if M is the median,
then

M M
Z71og 2 ~Y"1ZTog 2z °*

The final result of this section gives some useful moment inequalities
such as those stated earlier to limit the conditions under which non-vacuous
hypotheses can be made (i.e. ui A PN §_Zui for IHR distributions and

b, > 2us for DHR distributions).
Lemma: If

—X/l—ll
(2) F is IHR with mean Hy and 1 - G(x) = e .

(b) ¢(x) is increasing (decreasing),

then

[ o) [1-Fx)]dx< [ ¢(x) [1-6(x)]dx.
0 @o

A similar theorem is true for DHR distributions with all inequalities
reversed.

Proof: Suppose ¢ is increasing and F is not identically equal to G.
Since F is IHR, 1 - F(x) crosses 1 - G(x) exactly once from above at, say,

t, (f.e., 1= F(t) =1 -6(t)],

Then

]
«©

e [1 - FG)] dx - [ 6(x) [1 - 6(x)] dx
0 -0

= [ I8G) - 8t )] [ -FX) - (1 -6(x))] dx <0
0



since

Cu, = f (- F®)dx = [ (1 - 6(x))dx.
1% 0

To prove for ¢ decreasing, replace $ by - ¢,

(Barlow and Proschan, 1965, p. 32)
Q.E.D.

Theorem: If F is IHR (DHR) with rth moment W, then

ﬁr - r'(r + 1)ui , r>1
)

Pr+u; , 0<rc<l
(<)

- Proof: Let ¢(x) = xr'l in lemma. Then ¢ is increasing for r > 1,

80
pomr [ -F@lax < [ (1 - 6] dx.

N 0
For 0 < r <1, ¢(x) is decreasing so inequality is reversed.

Thus it suffices to ncterthat

™y =y —=lu
r f x° o [1-G(x)] dx =71 f x L e 1 dx = rr(r)ui
0 : 0
=T(xr + 1)u1 since 1 = f —F e dx for o, >0 .
0 ra)B
(Barlow and Proschan, 1965, p. 33) ¢ -

Q.E.D.

30
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Thus for an IHR distribution,

2

2
STy = 2up,

Ha

and for a DHR distribution
2
Hy 2 2uys

as stated earlier.

Also
2 2 \
o g_ul in a IHR distribution since
2 _ 2 2 2 _ 2
0" =y = Uy 2 Ay T Wy T Hy

Thus the coefficient of variation c/ul is less than or equal to.oné.
The inequality is reversed for DHR distributionms.

A related topic which will not be éiscussed in detail here is that of
tolerance limits for the class of distributions with monotone hazard rate.

A lower tolerance limit is a function L of sample data
X= (X, X2, - Xn) such that PF [1-FOLX) >1-4ql21-a,

where Xl' Xz, cany Kn comprise a random sample from the distribution F.
Then 1 - q is the pﬁpulation coverage for the interval [L(X), =) and
1 - o is the confidence coefficient. An upper tolerance limit is a
function U(X) such that P [F(U(X)) >q} 21 -a.

Distribution-free tolerance limits exist based on order statistics,
but these have the unfortunate disadvantage that for givé&n'a, q, k, there

is a minimum sample size N(d, q, k) such that PF[1 - F(Yk) >1-ql>1-aqa
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is true only if N > N(a, q, k), where Yk is the kth order statistic.
Hanson and Koopmans (1964) obtain upper tolerance limits of the form.

YN k- § + b(YH -k YN -k - j) for IHR distributions which are valid

for all N> 2 and al1 0 <1-q, 1-@a < 1. Barlow énd Proschan (1966)
obtain upper and lower confidence limits for IHR and DHR distributionms,
along with confidence intervals for means and percentiles. The tolerance
limits obtained by Barlow and Proschan are conservative and are of greatest
value when the sample size is small enough so that the distribution-free
tolerance limits do not exist. For very large sample size the distribution-
free tolerance limit is close to the percentile providing the covering

desired, whereas the conservative limit they obtain is not,

5, TESTS FOR MONOTONE HAZARD RATE

This paper has thus far been concerned exclusively with probabilistic
arguments concerning monotone hazard rate pFobability distributions. A
related statistical‘problem is that of testing if a sample comes from a
population with monotone hazard rate. Perhaps the best known such test
is a rank test based on normalized spacings derived by Prﬁschan and Pyke
(1967). Bickel and Doksum (1967) and Nadler and Eilbott (1968) show,
however, that a uniform conditional test is asymptotically superior to the
Proschan-Pyke test, while Barlow (1968) useé results cﬁtained by Marshall
and Proschan (1965) to derive a likelihood ratio test, concentrating
primarily on small sample results. Only the tests derived by Proschan-
éyke and Nadler-Eilbott will be discussed here.

[ ]

Suppose that F(x) is a continuous distribution function satisfying

F(0) = 0. A random sample of size n from F(x) is denoted by X;,X,,...,X ,
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and the order statistics formed from such a sample are written as

X <X . The normalized sample spacings D » D PR
1 5% 2,n

< X < L
l,n="2,n— —"n,n n n,n

are defined by D =(n-1i+ 1)(Xi

in s using the convention
]

n Xi-l,n)

XO 5i = 0. Only the problem of testing for increasing hazard rate will be
3
discussed here; the case of decreasing hazard rate can be treated by analogy.

The hypothesis to be tested is
-AX
HD: F(x) =1-¢e for some (unknown) A > 0
against the alternative
Hl: F(x) is strictly IHR.
Proschan and Pyke (1967) use a rank test based on the normalized
n,n

spacings D » D s wees D . The test statistic is as follows:
1,n* "2,n

vo= 11 V14

1<i<j<n
where
1, €Dy >Dy .
vij =
0 otherwise

The null hypothesis is rejected at the o level of significance if Vn>vn «?

where v is determined so that P[V >v lH ] = a. To give a heuristic
S 'n,a n n,a' o

justification of this procedure, observe that under the null hypothesis

D D are independent and

E ] l'.’
2,n n,n

that the normalized spacings D1 o’
]

identically distributed with density Ae-lt for some A > 0, so that

P[ =1 IHO] = % for 1< i < j < n (Proschan and Pyke‘, 1967, p. 293).

Vij

Also D . is stochastically larger than D

under H, when i<j; thus
i, 1

j,m
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P[Vij = llﬂll >-%ffor these values of i and j. Each V,, and, therefore,

1]

Vn tend to be larger under Hl’ so that rejection of the null hypothesis

occurs. for large values of Vn.

The authors show that this test is unbiased

(i.e., P(Vn_g_vn’a | B)) >afor0<a<l, n=2,3,...),

give references to tables of P[Vn < k] for n < 10, and prove that Vn,
suitably normalized, is asymptotically normal under both the null hypothesis

and a large class of alternatives. They show that the exact distribution

n(n - 1)

of Vn_is independent of A and has mean ~———zf——-and variance (2 (n=Din

72 '

Examples of the use of this test in an actual industrial situation
can be found in Proschan (1963). Here use is made of the asymptotic
normality of the test statistic to compute the rejectiog region. Also it
can be seen from this article that the same procedure as outlined above can
be used to test for decreasing hazard rate, except that the null hypothesis
is rejected for small values of the test statistic.

Nadler and Eilbott remark that despite the several nice properties of
the Proschan-Pyke test, it suffers from the shortcoming that it does not
fully utilize the distributional properties of the Di,n under the null
hypothesis ‘(Nadler and Eilbott, 1968, p. 7). Since the independence of
xl,n and 50 " xl,n characterizes the exponential distribution, Vn uses
the properties of the null distribution of F only insofar as it requires
the normalized sample spacings to be independent and identically distributed.
They improve upon the power of Vn by a procedure which uses the fact that

under the null hypothesis the D are exponentially distributed as well

i,n
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as the property that they comprise a random sample. The test statistic

to be used is the following:

n n
Ja-vn . lae-ox,
E = — =2 i=1
n ] 1{1 If ]
D X
1=1 i,n 1=1 i

where Ho is rejected for large values of En (as before the alternative
hypothesis is IHR). The heuristic justification given for considering

this statistic is that the fact that under Hl Di % tends to be larger than
3

Dj " for i < j should be reflected by a positive slope in the linear
L]

regression of the D on the values i - 1. Under Ho’ this regression

n—-i+l,n

has zero slope. To make the statistic scale invariant, the slope is divided

12_ - Bifn, — 13

nz -1

by the average of the Di n’ giving The statistic En
3

is discussed for simplicity (Nadler and Eilbott, 1968, p. 8).
| Theorem 1 and its corollaries in Nadler and Eilﬁott (1968) provide
the critical values of En' They are as follows:
Theorem 1: Let X

10 "o Xn be a random sample from some exponential

population. Then

n
I d-1x
_1=1

n X

Y
n

is distributed as the sum of n - 1 independent uniform random

variasbles. .
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For proof, see Nadler and Eilbott (1968, p. 10).
Corollary 1: Under HO the statistic En has the same distribution
as Y .
n
For proof, see Nadler and Eilbott (1968, p. 10).
Corollary 2: Under Ho the limiting distribution of vn - 1 (En/(n—l)

- 1/2) is a normal with mean zero and variance . (Nadler and

12
Eilbott, 1968, p. 10)

In practice the limiting normal distribution is approached so rapidly

that the distribution of En is well approximated by a normal distributiom

; n - : n- ; ;
with mean 5 and variance 17 using sample sizes as small as n = 10.

The critical value of a size —a test of H_ vs. H, is thus 4 S zZ s .
g e By Z %N 12

where Zy is the 1 - a percentile of the standard normal.

Nadler and Eilbott present Monto Carlo studies which suggest that their
procedure is more powerful than the Proschan—Pyke procedure. They estimated
the power of the two tests for sample sizes of n = 15 and n = 50 under gamma
and Weibull (IHR) alternatives. In every case in which a difference betwgen
the power functions was found significant at the .05 level, the estimated
power of the En criterion was greater than that of the_Vn criterion. It
was also calculated that with large samples a test using the Vn criterion
requires 33% more obéervations to achieve the power attained by the Nadler-
Eilbott procedure (in the event that F(x) is.actually a gamma or Weibull
IHR distribution). The En test also has the properties of unbiasedness and
consistency possessed by the Proschan-Pyke test and is asymptotically normal

for a wide range of THR altermatives. g
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Suppose X is a random variable representing the service life to failure
of a specified material, structure, or device. Such a "failure distribution"
represents an attempt to describe mathematically the length of life of the
material. If X is a continuous random variable with distribution function

F and density f, then the hazard rate q(x) of X is defined as

f(x)

q(x) - T-FG) ° for x such that F(x) < 1.

Thus q(x)dx represents the conditional probability that an item of age x
will fail in the interval (x, x + dx).

It has been found that the hazard rate of many failure distributions
is either monotone increasing or monotone decreasing. This paper presents
basic properties of the hazard function, and these properties are used to
obtain results applicable to probability distributions with monotone
hazard rate, The preservation of monotone hazard rate under convolution
and convex combination is examined and b'ounds for the survival probability
1 - F(t) are obtained under the assumption of monotone hazard rate.
Finally, two statistical hypothesis tests are presented to test the null
hypothesis of constant hazard rate versus the alternative hypothesis of

increasing (or decreasing) hazard rate,



