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Abstract 

Carbon adsorbents, namely, activated carbons and carbon molecular sieves, can be 

variously applied in the purification and separation of gaseous and liquid mixtures, e.g., in the 

separation of nitrogen or oxygen from air; often, carbon adsorbents also serve as catalysts or 

catalyst supports. The formation of carbon adsorbents entails the modification of the original 

internal surfaces of carbonaceous substrates by resorting to a variety of chemical or physical 

methods, thereby augmenting the carbonaceous substrates’ adsorbing capacity. The formation of 

carbon adsorbents proceeds randomly, which is mainly attributable to the discrete nature, 

mesoscopic sizes, and irregular shapes of the substrates utilized as well as to their intricate 

internal surface configuration. Moreover, any process of carbon-adsorbent formation may 

fluctuate increasingly severely with time. It is desirable that such a process involving discrete 

and mesoscopic entities undergoing complex motion and behavior be explored by means of the 

statistical framework or a probabilistic paradigm. 

 

This work aims at probabilistic analysis, modeling, and simulation of the formation of 

carbon adsorbents on the basis of mechanistic rate expressions. Specifically, the current work has 

formulated a set of linear and non-linear models of varied complexity; derived the governing 

equations of the models formulated; obtained the analytical solutions of the governing equations 

whenever possible; simulated one of the models by the Monte Carlo method; and validated the 

results of solution and simulation in light of the available experimental data for carbon-adsorbent 

formation from carbonaceous substrates, e.g., biomass or coal, or simulated data obtained by 

sampling them from a probability distribution. It is expected that the results from this work will 

be useful in establishing manufacturing processes for carbon adsorbents. For instance, they can 

be adopted in planning bench-scale or pilot-scale experiments; preliminary design and economic 

analysis of production facilities; and devising the strategies for operating and controlling such 

facilities. 
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Abstract 

Carbon adsorbents, namely, activated carbons and carbon molecular sieves, can be 

variously applied in the purification and separation of gaseous and liquid mixtures, e.g., in the 

separation of nitrogen or oxygen from air; often, carbon adsorbents also serve as catalysts or 

catalyst supports. The formation of carbon adsorbents entails the modification of the original 

internal surfaces of carbonaceous substrates by resorting to a variety of chemical or physical 

methods, thereby augmenting the carbonaceous substrates’ adsorbing capacity. The formation of 

carbon adsorbents proceeds randomly, which is mainly attributable to the discrete nature, 

mesoscopic sizes, and irregular shapes of the substrates utilized as well as to their intricate 

internal surface configuration. Moreover, any process of carbon-adsorbent formation may 

fluctuate increasingly severely with time. It is desirable that such a process involving discrete 

and mesoscopic entities undergoing complex motion and behavior be explored by means of the 

statistical framework or a probabilistic paradigm. 

 

This work aims at probabilistic analysis, modeling, and simulation of the formation of 

carbon adsorbents on the basis of mechanistic rate expressions. Specifically, the current work has 

formulated a set of linear and non-linear models of varied complexity; derived the governing 

equations of the models formulated; obtained the analytical solutions of the governing equations 

whenever possible; simulated one of the models by the Monte Carlo method; and validated the 

results of solution and simulation in light of the available experimental data for carbon-adsorbent 

formation from carbonaceous substrates, e.g., biomass or coal, or simulated data obtained by 

sampling them from a probability distribution. It is expected that the results from this work will 

be useful in establishing manufacturing processes for carbon adsorbents. For instance, they can 

be adopted in planning bench-scale or pilot-scale experiments; preliminary design and economic 

analysis of production facilities; and devising the strategies for operating and controlling such 

facilities. 
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CHAPTER 1 - Introduction 

 

Carbon adsorbents, specifically, activated carbons (ACs) and carbon molecular sieves 

(CMSs), are highly porous materials that can be applied in the purification and separation of 

gaseous and liquid mixtures,1-7 e.g., in the separation of nitrogen or oxygen from air. Various 

carbon adsorbents can also be effective as catalysts or catalyst supports.8-19 The formation of 

carbon adsorbents entails the modification of the original internal surfaces of carbonaceous 

substrates by resorting to a variety of chemical or physical methods, thereby augmenting the 

carbonaceous substrates’ adsorbing capacity.20 

 

Activated carbons (ACs) can be manufactured from many varieties of carbonaceous 

substrates such as agricultural residues,21-23 asphalt,24 coal,25-35 coffee bean husks,36 corn and 

corn cobs,37, 38 oil-palm and walnut shells,39, 40  sorghum and wheat,41, 42 and waste tire.43 The 

activation of these carbonaceous substrates is carried out by physical or chemical methods, 

thereby leading to the formation of porosities on their internal surfaces. Physical activation of a 

carbonaceous substrate is usually performed by carbonizing it in an inert atmosphere at a 

temperature below 700 C, and subsequently activating it in the presence of steam, carbon 

dioxide, and/or air at a temperature between 800 C and 1000 C.23, 44-49 Similarly, chemical 

activation of a carbonaceous substrate is generally carried out by impregnating it with a strong 

dehydrating agent, e.g., phosphoric acid, and subsequently heating this mixture to a temperature 

between 400 C and 800 C.42, 50-54 The porosities on ACs can roughly be classified as micropores 

(< 2 nm), mesopores (2 – 50 nm), and macropores (> 50 nm)20, 55 depending on the lengths of 

their diameters. Carbon molecular sieves (CMSs) are a special form of ACs whose pores have 

diameters of the order of molecular dimensions (0.4 – 0.9 nm);56 they can be produced in two 

stages. In the first stage, ACs are manufactured from carbonaceous substrates as described 

earlier. In the second stage, very fine carbon particles are deposited on the pores’ mouths of ACs 

to narrow them; some of the narrowed pores will eventually become blocked.57-60 The carbon 
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particles are generated by decomposing gaseous organics of low-molecular weights, for instance, 

methane,61 propylene and isobutylene,62, 63 or benzene.64-66 

 

Because of the discrete nature, mesoscopic sizes, irregular shapes, and intricate internal 

surface configuration of the carbonaceous substrates as well as the highly convoluted motion of 

the participating materials including reacting chemical species and carbon particles, the 

formation of carbon adsorbents tend to occur irregularly and randomly. 

Objectives 

It is natural or even desirable that the analysis and modeling of a process involving 

discrete and mesoscopic entities with convoluted motion and behavior, such as the formation of 

carbon adsorbents, be explored via the statistical framework or a probabilistic, i.e., stochastic 

paradigm. In fact, stochastic analysis and modeling are capable of revealing inherent 

fluctuations, or internal noises, of the phenomenon or system of interest.67-69 Among various 

classes of stochastic processes, the birth-death process and its subclasses, the pure-birth and 

pure-death processes, have been most widely adopted.69-72 

 

The work presented in this dissertation aims at stochastic analysis and modeling of the 

formation of carbon adsorbents on the basis of mechanistic rate expressions. Specific objectives 

of this work are as follows: 

 

a. To formulate a series of linear and non-linear stochastic models of increasing 

sophistication based on the pure-birth and pure-death processes. In the pure-birth process, the 

population of interest only increases temporally; in other words, this population does not 

decrease, thereby indicating the absence of the death process. Naturally, the opposite is the case 

for the pure-death process, i.e., the population of concern only decreases as time progresses. 69, 71, 

72 

b.  To derive the governing equation for each of the models formulated, which is termed 

the master equation in the parlance of stochastic processes.71, 73, 74 

c. To solve analytically or semi-analytically the master equations of the models derived. 

d. To simulate one of the models by the Monte Carlo method.74, 75 
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e. To validate the results of solution and simulation in light of the available 

experimental data for carbon-adsorbent formation from carbonaceous substrates, such as biomass 

or coal, or simulated data obtained by sampling them from a probability distribution. 

Rationale 

As indicated earlier, the process of formation of carbon adsorbents tends to proceed 

randomly or stochastically. The randomness or stochasticity of the process is attributable to a 

variety of causes. For the formation of ACs, the causes of stochasticity include the following. 

First, the discreteness and mesoscopic nature of the carbonaceous substrates whose shapes are 

highly irregular and their internal surface configurations extremely intricate.20, 76 Second, the 

random encounters between the activation agent, e.g., carbon dioxide or phosphoric acid, and the 

carbon atoms on the surfaces of the carbonaceous substrate: This is a chemical reaction, which is 

known to occur randomly.77-85 Third, the random distribution of the pores formed on the 

carbonaceous substrate’s internal surfaces whose sizes and shapes are also highly irregular.20 A 

schematic of these phenomena is presented in Figure 1.1. 

 

For the formation of CMSs, the causes of stochasticity include the following. First, the 

decomposition of a gaseous carbon source, e.g., methane or benzene, which is a randomly-

occurring chemical reaction as mentioned above. Second, the generation of fine carbon particles 

from the decomposed carbon source; these carbon particles are discrete and mesoscopic in size 

and their motion in the gas phase is extremely convoluted. Third, the formation of large carbon 

clusters, or packets, through random collisions between these fine carbon particles. Fourth, the 

deposition of these carbon packets onto the pores’ mouths of ACs, which progresses temporally 

and occurs as a consequence of random encounters between the depositing carbon packets and 

pores. A schematic of these phenomena is presented in Figure 1.2.  



 

4

 

 

 

 

  

ACTIVATION
AGENT

OPEN PORE

t = 0 t = s

CARBONACEOUS
SUBSTRATE

PORE BEING
FORMED

t = t

ACTIVATED CARBON  
 

Figure 1.1.  Schematic of the progression of activated-carbon (AC) formation: side view. 
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Figure 1.2.  Schematic of the progression of carbon-molecular-sieve (CMS) formation: side view. 
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The randomness or stochasticity of any discrete or particulate system or process 

manifests itself in the form of incessant fluctuations in the macroscopic variables describing the 

system or process, which are inherent to it. These inherent fluctuations impede the prediction 

with certainty of any temporal or spatial variation in the evolution of the process. Such 

uncertainty can be accommodated by taking into account the probability distribution of the 

variables describing the process, thereby giving rise to the definition of random variables.69, 71 

Hence, the analysis and modeling of a process described by random variables must be performed 

in light of a stochastic paradigm. Unlike a deterministic model, a stochastic model renders it 

possible to predict the inherent fluctuations of a system or process; moreover, the mean 

component of the stochastic model is equivalent to the deterministic model.67-69, 71 

 

The formation of ACs is essentially a fluid-solid reaction for which various mathematical 

models have been formulated;86-93 their complexity ranges from linear88 to highly non-linear.90 In 

such models, the experimentally measurable variable is usually the conversion of the solid 

material as it reacts with the chemical species present in the fluid phase. Naturally, the kinetics of 

formation of ACs has been formulated in light of these models;40, 94-101 nevertheless, they are 

deterministic in nature. So far, the stochastic formulation of the rate of formation of ACs has not 

been attempted; this work aims at providing it in the form of a linear stochastic model. Similarly, 

the formation of CMSs closely parallels the coke deposition process onto the pores of catalysts, 

thereby giving rise to their deactivation. A substantial number of works have been published on 

the deterministic analysis and modeling of coke deposition on catalysts.102-108 These models have 

served as the starting point for the stochastic formulation of the rate of formation of CMSs on the 

basis of linear kinetic expressions.109, 110 Hitherto, no effort has been made on the stochastic 

formulation of the formation of CMSs based on non-linear rate expressions, which is attempted 

in this work. 

 

Stochastic analysis and modeling constitute viable tools that can greatly facilitate the 

development of an effective control strategy for randomly behaving systems and processes, e.g., 

the formation of carbon adsorbents. The mean component of the resultant stochastic model can 

be the basis for scaling up or designing the process; in addition, the inherent fluctuations 

predicted by the model are the limit of accuracy achievable by any control strategy.  
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Description of the Systems 

To formulate the stochastic models for the formation of carbon adsorbents, including 

ACs and CMSs, the systems of concern must be properly identified; this is elaborated below. 

Formation of activated carbons (ACs) 

Figure 1.1 depicts the system of concern comprising the pores on the internal surfaces of 

a carbonaceous substrate being activated. The formation of pores is considered to be attributable 

exclusively to the chemical reaction between the carbon atoms constituting the carbonaceous 

substrate and the activation agent. Naturally, the number of pores being formed through the 

activation process increases temporally. In addition, these pores are randomly distributed over 

the internal surfaces of the carbonaceous substrate, thereby giving rise to a convoluted pore 

network. It is assumed that the reaction terminates prior to the collapse of the internal structure 

of the activated substrate. 

Formation of carbon molecular sieves (CMSs) 

Figure 1.2 exhibits the system of interest comprising carbon packets, or simply packets, 

and pores on ACs. These carbon packets are aggregates or clusters of fine carbon particles, 

which are generated by the decomposition of a gaseous carbon source. At the outset, the pores’ 

mouths are completely open; subsequently, they are narrowed as time progresses by the 

deposition of packets onto them to a size suitable for effecting molecular sieving. Naturally, the 

number of narrowed pores increases and that of open pores decreases temporally. It is considered 

that a pore is narrowed by a single packet; moreover, the fraction of narrowed pores that become 

blocked by one packet is assumed to be negligible. The process of formation of CMSs as 

described herein is termed pore-narrowing for brevity.  
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Besides the current chapter, this dissertation contains four additional chapters, i.e., 

Chapters 2 through 5. Chapter 2 presents the analysis and modeling of the kinetics of formation 

of ACs as a pure-birth process with a linear intensity of transition, or intensity function, based on 

a single random variable. Chapter 3 focuses on the kinetics of formation of CMSs by carbon 

deposition, which is analyzed and modeled as a pure-birth process with a non-linear intensity 

function, based on a single random variable; in contrast, Chapter 4 views the formation of CMSs 

by carbon deposition as a pure-death process. Finally, the major conclusions are drawn and 

recommendations for possible extensions are proposed in Chapter 5.  
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CHAPTER 2 - Formation of Activated Carbons: Pure-Birth Process 

with a Linear Intensity of Transition Based on a Single Random 

Variable 

 

As indicated in the introductory chapter, the formation of activated carbons (ACs) is 

analyzed and modeled in the current chapter as a pure-birth process with a linear intensity 

function based on a single random variable. In general, it is reasonable to consider that the 

driving force, or potential, of the formation of ACs is a function of the number of pores that have 

formed on the internal surfaces of a carbonaceous substrate being activated, which temporally 

increases. Naturally, one of the simplest forms of such a function is of the first-order. Thus, the 

corresponding intensity function is linear in the number of pores that have formed on the 

carbonaceous substrate’s internal surfaces. 

 

It is expected that the resultant model constitutes an insightful preliminary exploration of 

the stochastic nature of the formation of ACs. This exploration would improve the conceptual 

design of a reactor for manufacturing ACs of superior quality. 

Identification of Random Variable and State Space 

The available experimental data for the formation of ACs are given in terms of the 

conversion of a carbonaceous substrate into ACs at different temperatures.40 It would be 

reasonable to equate the weight loss due to the reaction between the carbonaceous substrate and 

the activation agent to the number of pores that have formed on the carbonaceous substrate’s 

internal surfaces. Thus, the number of pores that have already formed on the carbonaceous 

substrate’s internal surfaces per unit weight of the activated substrate at time t is taken as the 

random variable of the process, N(t), whose realization is n. All possible values of N(t) are the 

states of the process and their collection, { 0, 1, 2, …, nL – 1, nL }, is its state space where nL is 

the maximum number of pores that could form on the carbonaceous substrate’s internal surfaces 

per unit weight of the activated substrate. Note that the random variable, N(t), in the current 
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model exclusively accounts for the number of pores that have already formed on the 

carbonaceous substrate’s internal surfaces at any time t; hence, the analysis of the change in the 

pores’ sizes or lengths would require the formulation of models with different variables 

designated as the random variables. 

Transition Diagram 

The transition diagram of the process is presented in Figure 2.1. The circles indicate the 

system’s possible states, which have already been identified in the preceding section, and the 

arrows describe transitions of the system at any moment. 

Definition of Intensity of Transition 

 The intensity of transition, or simply intensity function, is defined as the instantaneous 

rate of change of the transition probability.71 The intensity function for the pure-birth process of 

interest, which is termed intensity of birth, is given by 

n L
dn(t) (n n)
dt

λ = = κ −   (2.1) 

where κ is a proportionality constant whose dimension is inverse time (t–1). 

Master Equation 

For the pure-birth process, the probability balance around state n leads to  

n n 1 n 1 n n L L
d p (t) (t)p (t) (t)p (t), n 0,  1,  2,...,  n 1,  n
dt − −= λ − λ = −   (2.2) 

which is the master, i.e., governing, equation of the process;71, 73 its derivation is detailed in 

Appendix A. The term, pn(t), in the above expression denotes the probability that n pores have 

formed at time t. Inserting the expression for the intensity of birth, λn(t), into the above 

expression yields 

n L n 1 L n
d p (t) { [n (n 1)]}p (t) [ (n n)]p (t)
dt −= κ − − − κ −   (2.3) 

Clearly, this equation is dependent on realization n but independent of time t. 
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Figure 2.1.  Transition diagram of the pure-birth process representing the formation of pores on a carbonaceous 
substrate: The symbols, 0, 1, 2, …, (n – 1), n, (n + 1), …, (nL – 1), nL, are the states of the process; p0(t), 
p1(t), …, pn–1(t), pn(t), pn+1(t), …, 

Ln 1p (t)− , 
Lnp (t) , are the corresponding state probabilities; and 

n L(t) (n n)λ = κ −  is the intensity of birth, which is a linear function of n for each transition. 
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Mean and Variance 

The mean, i.e., and higher moments about the mean can be computed from the master 

equation of the pure-birth process, Eq. (2.3). Among these higher moments, the second moment 

about the mean, i.e., the variance, is of special importance: It signifies the fluctuations or 

scatterings of the random variable about its mean,69, 111 which should be the focus of any 

stochastic analysis and modeling.  

Mean 

As detailed in Appendix B, the mean, or expected value, of N(t) is obtained as 

Lm(t) n [1 exp( t)]= − −κ  (2.4)   

where κ is a proportionality constant. From this expression, the normalized form of the mean, 

denoted by η(τ), is given by 

L

m( )( ) [1 exp( )]
n

τ
η τ = = − −τ  (2.5) 

where ( t)τ = κ  is the dimensionless time. Note that this expression is solely a function of τ. 

Variance 

The variance, Var[N(t)] or σ2(t), of N(t), which is also derived in Appendix B, is given by 
2

L(t) n [1 exp( t)]exp( t)σ = − −κ −κ  (2.6) 

In terms of dimensionless time τ, this expression becomes 
2

L( ) n [1 exp( )]exp( )σ τ = − −τ −τ  (2.7) 

The standard deviation, σ(t), is the square root of the variance, σ2(t); thus, 

{ }1/ 21/ 2
L(t) n [1 exp( t)]exp( t)σ = − −κ −κ  (2.8) 

From this equation, the normalized form of the standard deviation, ζ(τ), is obtained as 

{ }1/ 2
1/ 2

L L

( ) 1( ) [1 exp( )]exp( )
n n

σ τ
ζ τ = = − −τ −τ  (2.9)  

Note that this expression is a function of τ and nL. The standard deviation relative to the mean, 

termed the coefficient of variation, is defined as112 
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(t)CV(t)
m(t)
σ

=  (2.10) 

Inserting Eqs. (2.4) and (2.8) for m(t) and σ(t), respectively, into the above equation yields the 

coefficient of variation, CV(t), of the pure-birth process as 
1 2

L

exp( t)CV(t)
n [1 exp( t)]

⎧ ⎫−κ
= ⎨ ⎬− −κ⎩ ⎭

 (2.11) 

or in terms of τ, 
1 2

L

exp( )CV( )
n [1 exp( )]

⎧ ⎫−τ
τ = ⎨ ⎬− −τ⎩ ⎭

 (2.12) 

Note that this expression is also a function of τ and nL. 

Analysis of Experimental Data 

The available experimental data are presented in terms of the temporal evolution of the 

conversion of oil-palm shell char, a carbonaceous substrate, into ACs via physical activation 

with carbon dioxide at five temperatures.40 The data are illustrated in  

Figure 2.2, and also listed in Table 2.1. Naturally, the model derived in this work is 

validated with these data. To fit the model to the data, the random variable, N(t), i.e., the number 

of pores that have already formed on the carbonaceous substrate’s internal surfaces per unit 

weight of the activated substrate, needs to be related to the experimentally measurable variable, 

Y(t), signifying the conversion of the carbonaceous substrate into ACs, which is defined as 

L

W(t)Y(t)
W

=   (2.13) 

where W(t) is the amount of carbon that has reacted with the activation agent at any time t, and 

WL, the maximum amount of carbon that reacts before the internal structure of the carbonaceous 

substrate collapses. By assuming that the formation of pores on the carbonaceous substrate’s 

internal surfaces is only attributable to the reaction between the carbon in the substrate and the 

activation agent, we have 

W(t) N(t)= δ  (2.14) 

where δ is the amount of carbon that reacts, thereby giving rise to the formation of a single pore. 

In light of this equation, WL can be related to nL as 
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Figure 2.2.  Experimentally measured conversion of a carbonaceous substrate into ACs at different 

temperatures.* 
 
 

* Data were obtained with oil-palm-shell char.40 
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Table 2.1.  Experimentally Measured Fractional Conversion of a Carbonaceous Substrate 
into ACs at Different Temperatures* 

Carbon Conversion  
time, min 

T = 973 K T = 1023 K T = 1073 K T = 1123 K T = 1173 K 
0.0 0.000 0.000 0.000 0.000 0.000 
2.0 0.029 0.054 0.098 0.168 0.123 
4.0 0.076 0.121 0.197 0.311 0.460 
6.0 0.125 0.186 0.285 0.426 0.667 
8.0 0.179 0.252 0.364 0.519 0.753 

10.0 0.234 0.316 0.431 0.590 0.798 
12.0 0.285 0.374 0.487 0.644 0.821 
14.0 0.333 0.426 0.538 0.685 0.837 
16.0 0.379 0.470 0.577 0.715 0.846 
18.0 0.420 0.515 0.615 0.737  
20.0 0.456 0.551 0.647 0.756  
22.0 0.487 0.583 0.670 0.772  
24.0 0.519 0.612 0.699 0.782  
26.0 0.545 0.633 0.712 0.792  
28.0 0.567 0.656 0.720   
30.0 0.587 0.673 0.733   
32.0 0.603 0.689 0.740   
34.0 0.617 0.704 0.747   
36.0 0.633 0.715    
38.0 0.644 0.721    
40.0 0.654 0.731    
42.0 0.667 0.737    
44.0 0.673 0.740    
46.0 0.679 0.747    
48.0 0.686 0.750    
50.0 0.689 0.753    
52.0 0.692     
54.0 0.696     
56.0 0.699     
58.0 0.702     
60.0 0.705     

* Data were obtained with oil-palm shell char.40 
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L LW ( n )= δ  (2.15) 

The mean value of Y(t), denoted by mY(t), is obtained from this equation in conjunction with 

Eqs. (2.13) and (2.14) as follows: 

Y

L
Y

Y
L

m (t) E[Y(t)]

W(t)E
W

m (t)

m (t 1 E[ N(t)]
W

)

=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

= δ

 

or 

Y
L

m (t) E[N(t)]
W
δ

=   

or 

Y
L

m (t) m(t)
W
δ

=   

Substituting Eq. (2.4) for m(t) into this equation yields 

Y L
L

m (t) n [1 exp( t)]
W

⎛ ⎞δ
= − −κ⎜ ⎟

⎝ ⎠
 

Because L LW ( n )= δ , this expression reduces to 

Ym (t) [1 exp( t)]= − −κ  (2.16) 

In terms of dimensionless time τ, the above equation can be rewritten as 

Ym ( ) [1 exp( )]τ = − −τ  (2.17) 

Note that this expression is identical to Eq. (2.5) for η(τ). Similarly, the variance of Y(t), denoted 

by 2
Y (t)σ , is obtained from Eqs. (2.13), (2.14), and (2.15) as 

2
Y

L

L

2

2

2
Y

L

Y

W(t)(t) Var
W

N(t)(t)

(t)

Var
W

Var[N(t)]
n

⎡ ⎤
σ = ⎢ ⎥

⎣ ⎦
⎡ ⎤δ

= ⎢ ⎥
⎣ ⎦

⎛ ⎞δ
= ⎜ ⎟δ⎝ ⎠

σ

σ

 

or 



 17

2 2
Y 2

L

1(t) [ (t)]
n

σ = σ  

Substituting Eq. (2.6) for σ2(t) into the above expression yields 

{ }2
Y L2

L

1(t) n [1 exp( t)]exp( t)
n

σ = − −κ −κ  

or 

2
Y

L

1(t) [1 exp( t)]exp( t)
n

σ = − −κ −κ  

Naturally, the standard deviation of Y(t), i.e., σY(t), is given by 

{ }1/ 2
Y 1/ 2

L

1(t) [1 exp( t)]exp( t)
n

σ = − −κ −κ   (2.18) 

In terms of τ, this equation can be transformed into 

{ }1/ 2
Y 1/ 2

L

1( ) [1 exp( )]exp( )
n

σ τ = − −τ −τ  (2.19) 

Note that this expression is identical to Eq. (2.9) for ( )ζ τ . From Eqs. (2.16) and (2.18), the 

coefficient of variation, CVY(τ), is obtained as 
1/ 2

Y
Y

Y L

(t) exp( t)CV (t)
m (t) n [1 exp( t)]

⎧ ⎫σ −κ
= = ⎨ ⎬− −κ⎩ ⎭

  (2.20) 

or in terms of τ 
1/ 2

Y
L

exp( )CV ( )
n [1 exp( )]

⎧ ⎫−τ
τ = ⎨ ⎬− −τ⎩ ⎭

  (2.21) 

Note that this equation is identical to Eq. (2.12) for CV(τ). 

Results and Discussion 

The model formulated, in terms of Ym ( )τ  as given in Eq. (2.16), has been regressed on 

the available experimental data40 by resorting to the adaptive random search procedure.113, 114 

The regression has resulted in the values of κ, which are listed in Table 2.2. These values have 

rendered it possible to evaluate the dimensionless time, ( t)τ = κ , as well as the mean, Ym ( )τ , 

from Eq. (2.17), whose values are plotted in Figure 2.3 as a function of τ. The corresponding 

experimentally measured values of the fractional conversion of the carbonaceous substrate into 
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Table 2.2.  Values of  κ  for the Formation of ACs at Different Temperatures. 

temperature, K (C) κ, s–1 · 104  (min–1) 

973 (699.85) 4.38 (0.026) 

1023 (749.85) 5.94 (0.036) 

1073 (799.85) 8.36 (0.050) 

1123 (849.85) 13.16 (0.079) 

1173 (899.85) 24.93 (0.150) 
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Figure 2.3.   Mean fractional conversion Ym ( )τ  and standard deviation envelope [ Y Ym ( ) ( )τ ± σ τ ] as functions 
of dimensionless time τ for the formation of ACs. 
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ACs, denoted as Xc(τ), are superimposed in the same figure for comparison. Clearly, Ym ( )τ  

increases and asymptotically approaches to 1 as τ progresses; this asymptotic value for Ym ( )τ  

can be discerned from Eq. (2.17). The normalized standard deviation, Y ( )σ τ , as computed by 

Eq. (2.19), signifies the deviations attributable to the internal or characteristic noises of the 

process as predicted by the stochastic model.109 The standard deviation envelope, i.e., 

Y Ym ( ) ( )τ ± σ τ , is plotted in Figure 2.3. Note that the majority of the experimental data40 lie 

appreciably beyond the expected variation, or scattering; this is almost always the case: The 

overall deviations of the experimental data include not only those attributable to the internal 

noises of the process as predicted by the model, but also to the external noises due to 

unavoidable measurement errors and instrumental deficiencies that can never be totally 

eliminated. The coefficient of variation, CV(t), as defined by Eq. (2.11), provides a more 

meaningful relative measurement of the variability or dispersion of the values of a random 

variable about their mean than the standard deviation, σ(t). In general, the smaller the values of 

random variable N(t), i.e., the population size, the greater the extent of the expected fluctuations 

about their mean. 

 

Clearly, Eq. (2.19) for Y ( )σ τ  depends on nL, i.e., the maximum number of pores that 

could form on the carbonaceous substrate’s internal surfaces per unit weight of activated 

substrate. The number of pores on ACs is profoundly large;115, 116 thus, it is reasonable to expect 

that the value of nL be enormous. The order of magnitude estimate of nL is obtained by dividing 

the total volume of pores per unit weight of ACs by the volume of a single pore. The former can 

be obtained from the experimental characterization of ACs produced from a carbonaceous 

substrate under specific activation conditions, and the latter can be computed under the 

assumption that the shape of the pore is perfectly cylindrical. For illustration, the total volume of 

pores for ACs prepared at 873 K is 0.96 cm3 per gram of ACs.40 Moreover, the volume of a 

single pore is given by 
2

pv ( r )= π   (2.22) 

where r  and  are the pore’s average radius and the pore’s length, respectively. For a perfectly 

cylindrical pore, r  can be expressed as117 
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s

s g

2r
S
ε

=
ρ

  (2.23) 

where εs, ρs, and Sg are structural properties of ACs, specifically, their porosity, apparent density, 

and surface area per unit weight of ACs, respectively. For ACs prepared at 873 K, the 

corresponding values of these properties are 0.66, 0.69 g ⋅ cm–3, and 1,366 m2 ⋅ g–1, 40 thereby 

yielding r  as 1.40 nm. By changing  from 1 nm to 50 nm, the volume of a single pore, vp, 

varies from 6.16 ⋅ 10–21 cm3 to 3.08 ⋅ 10–19 cm3 as computed from Eq. (2.22). Thus, the value of 

nL falls within the range between 3.12 ⋅ 1018 and 1.56 ⋅ 1020 pores per gram of ACs. 

 

 The parameter, κ, in Eq. (2.16) has the connotation of kinetic constant. Thus, it is 

temperature dependent and varies according to the Arrhenius law; hence, 

a
0

Eexp
RT

⎛ ⎞κ = κ −⎜ ⎟
⎝ ⎠

  (2.24) 

where κ0 is the frequency factor and Ea the activation energy. 

Figure 2.4 exhibits the Arrhenius plot of the values of κ against their corresponding values of 

inverse temperature for the available experimental data.40 From this plot, κ0 and Ea are computed 

as 7.88 s–1 and 80.2 kJ · mol–1, respectively. These values differ from those obtained by Guo and 

Lua40 of 1.26 ⋅ 10–3 s–1 and 38.7 kJ · mol–1, respectively, on the basis of a non-linear kinetic 

model. 

Summary 

A stochastic model has been derived for the formation of ACs from carbonaceous 

substrates. Specifically, the model is based on a pure-birth process with a linear intensity of 

transition. The mean and variance of the conversion of a carbonaceous substrate into ACs, have 

been computed from the master equation of the pure-birth process. The model has been validated 

by fitting it to the available experimental data. The mean values of the model at various times 

follow the general trend of these data. As expected, the data’s fluctuations around the mean 

values are more noticeable than those predicted by the model: In addition to the process’ internal 

noises, the deviations of the experimental data also account for the external noises due to 

unavoidable measurement errors. 
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Figure 2.4.   Arrhenius plot for the kinetic constant, κ. 
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Notation 

m(t) =  mean of the random variable, N(t) 

mY(t) =  mean of the experimental measurable variable, Y(t), mg C 

N(t) =  random variable representing the number of pores that have already formed 

on the internal surfaces of ACs at time t 

n = realization of the random variable, N(t) 

pn(t) =  probability that n pores have formed at time t 

t =  time 

Y(t) =  experimentally measurable variable representing the conversion of a 

carbonaceous substrate into ACs 

 

Greek letters 

κ = kinetic constant in the intensity of birth, (t)–1  

λn(t) =  intensity of birth for the pure-birth process in state n at time t 

σ2(t) = variance of the random variable, N(t) 
2
Y (t)σ = variance of the experimentally measurable variable, Y(t) 

τ =  dimensionless time 
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CHAPTER 3 - Formation of Carbon Molecular Sieves by Carbon 

Deposition: Pure-Birth Process with a Non-Linear Intensity of 

Transition Based on a Single Random Variable 

 

As indicated in the introductory chapter, the formation of CMSs due to the narrowing of 

pores by carbon deposition is analyzed and modeled herein as a pure-birth process with a non-

linear intensity of transition based on a single random variable. In general, it is reasonable to 

consider that the driving force, or potential, of the pore-narrowing process by carbon deposition 

is a function of the number of carbon packets, or packets, that deposit onto the pores’ mouths, 

which increases with time.109 In this chapter, the form of such a function is of the second-order, 

thereby incorporating into the model the effect of collisions or interactions between pairs of 

carbon packets as they deposit onto the pores’ mouths of ACs. Hence, the corresponding 

intensity function is non-linear in the number of packets to be deposited. For brevity, the pore-

narrowing process under consideration is referred to as pore-narrowing hereafter. 

 

Identification of Random Variable and State Space 

The available experimental data for formation of CMSs are usually given in terms of the 

weight of carbon aggregates, or packets, deposited on ACs.8, 65, 118, 119 It would be plausible to 

equate the weight gain due to the deposition of carbon packets to the number of such packets.109, 

110 In this connection, the number of packets that have already deposited onto the pores’ mouths, 

thereby causing them to narrow, at time t is taken as the random variable of the process, N(t), 

whose realization is n. All possible values of N(t) are the states of the process and their 

collection, { 0, 1, 2, …, nM – 1, nM }, is its state space where nM is the number of packets that 

would deposit onto the maximum number of pores susceptible to narrowing. Note that the 

random variable, N(t), in the current model exclusively accounts for the number of packets that 

have already deposited onto the pores’ mouths at any time t; hence, the analysis of the change in 
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the pores’ sizes or lengths would require the formulation of models with different variables 

designated as the random variables. 

Transition Diagram 

The transition diagram of the process is presented in Figure 3.1. The circles indicate the 

system’s possible states as identified in the preceding section, and the arrows describe transitions 

of the system at any moment. 

Master Equation 

For the pure-birth process, the probability balance around state n leads to  

n n 1 n 1 n n M M
d p (t) (t)p (t) (t)p (t), n 0,  1,  2,...,  n 1,  n
dt − −= λ − λ = −   (3.1) 

which is the master, i.e., governing, equation of the process;71, 73 see Appendix A. The term, 

pn(t), in the above expression denotes the probability that n carbon packets, or packets, have 

deposited at time t. Moreover, the intensity of birth, λn(t), in Eq. (3.1) is given by 

2
n M

dn(t) (n n)
dt

λ = = α −  (3.2) 

where α is a proportionality constant. In this equation, the term, M(n n)− , is the number of 

packets yet to deposit onto the pores’ mouths at time t. Inserting Eq. (3.2)  into Eq. (3.1) yields 

 n
d p (t)
dt

 

2 2
M n 1 M n M M{ [n (n 1)] }p (t) [ (n n) ]p (t), n 0,  1,  2,...,  n 1,  n−= α − − − α − = −   (3.3) 

Clearly, the above equation depends on realization n but is independent of time t. 
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Figure 3.1.   Transition diagram of the pure-birth process representing pore-narrowing on ACs: The symbols, 0, 1, 
2, …, (n – 1), n, (n + 1), …, (nM – 1), nM, are the states of the process; p0(t), p1(t), …, pn–1(t), pn(t), pn+1(t), 
…, 

Mn 1p (t)− , 
Mnp (t) , are the corresponding state probabilities; and 2

n M(t) (n n)λ = α −  is the intensity of 
birth, which is a non-linear function of n for each transition. 
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Mean and Variance 

The mean and variance of the process are evaluated by solving the process’ master 

equation, Eq. (3.3). Clearly, the intensity of birth, n (t)λ , is embedded in the master equation; for 

the process of concern, n (t)λ  is non-linear as given by Eq. (3.2). The non-linearity arising from 

the intensity of birth renders the solution of the master equation exceedingly complex to obtain. 

Nevertheless, this complexity can be circumvented by resorting to a rational approximation 

method, the system-size expansion of the master equation; see Appendix C. The system-size 

expansion entails that the random variable, N(t), be expressed as the sum of the macroscopic 

term, Ωϕ(t), and the fluctuation term, Ω½Ξ(t). The symbol, Ω, is the system’s size, which is nM 

in this work. Hence, the system-size expansion of the master equation yields the macroscopic 

equation in terms of ϕ(t) governing the overall, i.e., mean, behavior of the process, and the 

equation in terms of Ξ(t) governing the fluctuations of the process around the macroscopic 

values. Integration of the macroscopic equation results in an explicit expression for ϕ(t). This 

expression, in turn, yields the mean of N(t), E[N(t)] or m(t), of the pore-narrowing as 

M
' tm(t) n

' t 1
α⎛ ⎞= ⎜ ⎟α +⎝ ⎠

 (3.4) 

where α′ = (αnM). From this expression, the normalized form of the mean, η(τ), is 

M

m( )( )
n 1

τ τ⎛ ⎞η τ = = ⎜ ⎟τ +⎝ ⎠
 (3.5) 

where τ = (α′t) is the dimensionless time. Similarly, from the equation governing the 

fluctuations, the variance of N(t), Var[N(t)] or σ2(t), of the pore-narrowing is 

2 M
3

n 1(t) 1
3( ' t 1) ( ' t 1)

⎡ ⎤
σ = −⎢ ⎥α + α +⎣ ⎦

 (3.6) 

or in terms of dimensionless time τ, 

2 M
3

n 1( ) 1
3( 1) ( 1)

⎡ ⎤
σ τ = −⎢ ⎥τ + τ +⎣ ⎦

 (3.7) 

The standard deviation, σ(t), is the square root of the variance, σ2(t); thus, 
1 2

M
3

n 1(t) 1
3( ' t 1) ( ' t 1)

⎧ ⎫⎡ ⎤
σ = −⎨ ⎬⎢ ⎥α + α +⎣ ⎦⎩ ⎭

 (3.8) 
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From this equation, the normalized form of the standard deviation, ζ(τ), is obtained as 
1 2

3
M M

( ) 1 1( ) 1
n 3n ( 1) ( 1)

⎧ ⎫⎡ ⎤σ τ
ζ τ = = −⎨ ⎬⎢ ⎥τ + τ +⎣ ⎦⎩ ⎭

 (3.9)  

Note that this expression is a function of τ and nM. The standard deviation relative to the mean, 

termed the coefficient of variation, is defined as112 

(t)CV(t)
m(t)
σ

=  (3.10) 

Inserting Eqs. (3.4) and (3.8) for m(t) and σ(t), respectively, into the above equation yields the 

coefficient of variation, CV(t), of the pore-narrowing as 
1 2

3
M

1 ( ' t 1) 1CV(t) 1
( ' t) 3n ( ' t 1)

⎧ ⎫⎡ ⎤α +
= −⎨ ⎬⎢ ⎥α α +⎣ ⎦⎩ ⎭

 (3.11) 

or in terms of dimensionless time τ, 
1 2

3
M

1 ( 1) 1CV( ) 1
3n ( 1)

⎧ ⎫⎡ ⎤τ +
τ = −⎨ ⎬⎢ ⎥τ τ +⎣ ⎦⎩ ⎭

 (3.12) 

Note that this expression is also a function of τ and nM. 

Analysis of Experimental Data 

As illustrated in Figure 3.2, the available experimental data are presented in terms of the 

temporal increase in the amount of carbon deposited per unit weight of ACs at eleven 

temperatures. Specifically, they are given in the unit of milligrams of carbon per milligram of 

ACs, i.e., mg C/mg AC,65 as listed in Table 3.1. The model derived in this work is validated with 

these data. To fit the model to the data, the number of carbon packets that have narrowed the 

pores, which is the random variable, N(t), needs to be related to the experimentally measurable 

variable, W(t), representing the weight of carbon already deposited on ACs. At any time t, W(t) 

should be proportional to N(t); thus, 

W(t) N(t)= ω   (3.13) 

where ω is the weight of a single packet of carbon. The mean value of W(t), denoted by mW(t), is 

obtained from the above expression as follows: 
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(b) 

Figure 3.2.   Experimentally measured weights of carbon deposited 
(C) on activated carbon (AC) at different temperatures: 
(a) 1 – 873 K, 2 – 923 K,   3 – 948 K, 4 – 973 K,               
5 – 1023 K, and 6 – 1048 K; (b) 1 – 1073 K, 2 – 1098 K,    
3 – 1123 K, 4 – 1173 K, and 5 – 1223 K.* 

 
* Data were obtained with activated carbon ACW.65
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Table 3.1.  Experimentally Measured Weights of Carbon Deposited (C) on Activated 
Carbon (AC) at Different Temperatures* 

T = 873 K T = 923 K T = 948 K T = 973 K 
t, min mg C/mg AC t, min mg C/mg AC t, min mg C/mg AC t, min mg C/mg AC

    
0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 
3.75 0.005 1.50 0.004 1.50 0.007 0.38 0.002 
7.50 0.009 3.00 0.008 3.00 0.013 0.75 0.004 
11.25 0.011 4.50 0.013 4.50 0.021 1.13 0.007 
15.00 0.013 7.50 0.020 6.00 0.026 1.50 0.011 
18.75 0.016 10.50 0.027 7.50 0.032 1.88 0.013 
22.50 0.018 13.50 0.034 9.00 0.039 2.25 0.016 
26.25 0.020 16.50 0.040 10.50 0.044 2.63 0.019 
30.00 0.022 19.50 0.046 12.00 0.051 3.38 0.024 
33.75 0.024 22.50 0.052 15.00 0.062 4.13 0.029 
41.25 0.027 26.25 0.058 18.00 0.072 4.88 0.034 
48.75 0.030 30.00 0.066 21.00 0.083 5.63 0.039 
56.25 0.034 33.75 0.072 24.00 0.093 6.38 0.044 
63.75 0.037 37.50 0.079 27.00 0.104 7.13 0.048 
71.25 0.040 41.25 0.084 30.00 0.114 7.88 0.053 
78.75 0.043 45.00 0.091 33.00 0.122 9.00 0.059 
86.25 0.045 48.75 0.097 36.00 0.130 9.40 0.062 
93.75 0.048 52.50 0.103 39.00 0.139 10.20 0.067 

101.25 0.051 56.25 0.108 42.00 0.147 11.20 0.073 
104.25 0.051 60.00 0.113 45.00 0.155 12.20 0.079 

  63.75 0.119 48.00 0.161 13.20 0.084 
  67.50 0.124 51.00 0.168 14.20 0.089 
  71.25 0.129 54.00 0.174 15.20 0.094 
  75.00 0.134 57.00 0.179 16.20 0.100 
  78.75 0.138 60.00 0.185 18.20 0.110 
  82.50 0.143 63.75 0.192 20.20 0.120 
    67.50 0.197 22.20 0.129 
    71.25 0.203 24.20 0.138 
    78.00 0.211 26.20 0.145 
      28.20 0.154 
      30.20 0.161 
      32.20 0.167 
      34.20 0.173 
      36.20 0.179 
      38.20 0.184 
      40.20 0.189 
      44.20 0.196 
      48.20 0.203 
      52.20 0.209 
      56.20 0.215 
      60.20 0.218 
      64.20 0.220 
      68.20 0.222 
      69.40 0.223 
        

* Data were obtained with activated carbon ACW.65 
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Table 3.1.  (Cont’d.) 
T = 1023 K T = 1048 K T = 1073 K T = 1098 K 

t, min mg C/mg AC t, min mg C/mg AC t, min mg C/mg AC t, min mg C/mg AC
    

0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 
1.13 0.007 0.75 0.006 1.13 0.010 1.13 0.013 
2.25 0.017 1.50 0.013 2.25 0.027 2.25 0.029 
3.38 0.027 2.25 0.020 3.38 0.044 3.38 0.048 
4.50 0.038 3.00 0.028 4.50 0.059 4.50 0.067 
5.63 0.049 3.75 0.035 5.63 0.074 5.63 0.085 
6.75 0.058 4.50 0.043 7.50 0.100 6.75 0.100 
7.88 0.068 5.25 0.052 9.38 0.119 7.88 0.116 
9.00 0.077 6.00 0.059 11.25 0.139 9.00 0.129 
10.13 0.086 6.75 0.066 13.13 0.155 10.13 0.142 
11.25 0.094 7.50 0.073 15.00 0.168 11.25 0.156 
13.13 0.108 8.25 0.081 18.75 0.187 13.13 0.174 
15.00 0.121 9.00 0.088 24.38 0.201 15.00 0.188 
16.88 0.134 9.75 0.095 30.00 0.210 18.75 0.206 
18.75 0.145 10.50 0.098 37.50 0.217 22.50 0.217 
20.63 0.156 11.25 0.108 45.00 0.225 26.25 0.227 
22.50 0.164 12.00 0.114 52.50 0.231 33.75 0.239 
26.25 0.178 12.75 0.120 60.00 0.235 41.25 0.248 
30.00 0.189 13.50 0.127 67.50 0.240 48.75 0.258 
33.75 0.195 14.25 0.132 82.50 0.246 56.25 0.267 
37.50 0.202 15.00 0.138   63.75 0.275 
43.13 0.208 15.75 0.143   71.25 0.285 
48.75 0.213 16.50 0.148   79.88 0.293 
54.38 0.217 17.25 0.152     
60.00 0.223 18.00 0.157     
65.63 0.225 19.88 0.169     
71.25 0.229 21.75 0.178     
74.25 0.231 23.63 0.184     

  25.50 0.191     
  29.25 0.199     
  33.00 0.206     
  40.50 0.212     
  48.00 0.218     
  55.50 0.221     
  63.00 0.225     
  70.50 0.228     
  75.38 0.231     
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Table 3.1.  (Cont’d.) 
T = 1123 K T = 1173 K T = 1223 K 

t, min mg C/mg AC t, min mg C/mg AC t, min mg C/mg AC 
   

0.00 0.000 0.00 0.000 0.00 0.000 
0.80 0.014 0.60 0.009 0.50 0.006 
1.60 0.029 1.20 0.019 1.00 0.013 
2.40 0.045 1.80 0.030 2.00 0.029 
3.20 0.060 2.40 0.040 3.00 0.046 
4.00 0.075 3.00 0.051 4.00 0.061 
5.00 0.093 3.60 0.060 5.00 0.075 
6.00 0.108 4.20 0.072 6.00 0.085 
7.00 0.125 5.20 0.087 7.00 0.095 
8.00 0.138 6.20 0.099 8.00 0.103 
10.00 0.158 7.20 0.111 10.00 0.118 
12.00 0.173 8.20 0.119 12.00 0.129 
14.00 0.182 9.20 0.127 14.00 0.142 
16.00 0.192 11.20 0.138 16.00 0.150 
20.00 0.204 13.20 0.148 18.00 0.160 
24.00 0.214 15.20 0.156 20.00 0.168 
28.00 0.225 17.20 0.163 22.00 0.178 
32.00 0.234 19.20 0.169 24.00 0.186 
36.00 0.242 21.20 0.176 26.00 0.193 
40.00 0.250 24.00 0.184 28.00 0.202 
44.00 0.259 28.00 0.196 30.00 0.211 
48.00 0.266 32.00 0.208 32.00 0.219 
54.00 0.278 36.00 0.218 36.00 0.237 
60.00 0.290 40.00 0.228 40.00 0.255 
66.00 0.300 44.00 0.240 44.00 0.271 
72.00 0.310 48.00 0.251 48.00 0.289 
78.00 0.321 52.00 0.261 49.60 0.295 
83.80 0.329 56.00 0.272 54.10 0.314 

  60.00 0.282 57.85 0.331 
  64.00 0.292 61.60 0.349 
  68.00 0.303 65.35 0.368 
  72.00 0.312 69.10 0.385 
  72.60 0.314 71.73 0.397 

      
 

 

 

 

 

 

 

 



 33

W

W

W

m (t) E[W(t)]
E[ N(t)]m (t)

m (t N )]) E[ (t

=
= ω

= ω
 

or 

Wm (t) m(t)= ω   

Substituting Eq. (3.4) for m(t) into this equation yields 

W M
' tm (t) n

' t 1
α⎛ ⎞= ω ⎜ ⎟α +⎝ ⎠

 

or 

W M
' tm (t) W

' t 1
α⎛ ⎞= ⎜ ⎟α +⎝ ⎠

 (3.14) 

where WM, or (ωnM), is the weight of carbon that would deposit onto the maximum number of 

pores susceptible to narrowing. In terms of dimensionless time τ, the above equation can be 

rewritten as 

W Mm ( ) W
1

τ⎛ ⎞τ = ⎜ ⎟τ +⎝ ⎠
 (3.15) 

From this expression, the normalized form of the mean, W ( )η τ , is, 

W
W

M

m ( )( )
W 1

τ τ⎛ ⎞η τ = = ⎜ ⎟τ +⎝ ⎠
 (3.16) 

Note that this expression is identical to Eq. (3.5) for η(τ). Similarly, the variance of W(t), 2
W (t)σ , 

is obtained from Eq. (3.13) as 
2
W

2

2
W
2
W

(t) Var[W(t)]

Var(t)

(t)

[ N(t)]

Var[N(t)]

σ =

= ω

= ω

σ

σ

 

or 
2 2 2
W (t) [ (t)]σ = ω σ  

Substituting Eq. (3.6) for σ2(t) into the above expression yields 
2

2 M
W 3

n 1(t) 1
3( ' t 1) ( ' t 1)

⎡ ⎤ω
σ = −⎢ ⎥α + α +⎣ ⎦
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From this equation, the standard deviation of W(t), σW(t), is,  
1 2

M
W 3

n 1(t) 1
3( ' t 1) ( ' t 1)

⎧ ⎫⎡ ⎤
σ = ω −⎨ ⎬⎢ ⎥α + α +⎣ ⎦⎩ ⎭

 

or 
1 2

W M 3
M

1 1(t) W 1
3n ( ' t 1) ( ' t 1)

⎧ ⎫⎡ ⎤
σ = −⎨ ⎬⎢ ⎥α + α +⎣ ⎦⎩ ⎭

 

In terms of dimensionless time τ, this equation can be transformed into 
1 2

W M 3
M

1 1( ) W 1
3n ( 1) ( 1)

⎧ ⎫⎡ ⎤
σ τ = −⎨ ⎬⎢ ⎥τ + τ +⎣ ⎦⎩ ⎭

 (3.17) 

From this expression, the normalized form of the standard deviation, W ( )ζ τ , is, 

1 2

W
W 3

M M

( ) 1 1( ) 1
W 3n ( 1) ( 1)

⎧ ⎫⎡ ⎤σ τ
ζ τ = = −⎨ ⎬⎢ ⎥τ + τ +⎣ ⎦⎩ ⎭

 (3.18) 

Note that this equation is identical to Eq. (3.9) for ζ(τ). From Eqs. (3.15) and (3.17), the 

coefficient of variation, CVW(τ), is obtained as 
1 2

W
W 3

W M

( ) 1 ( 1) 1CV ( ) 1
m ( ) 3n ( 1)

⎧ ⎫⎡ ⎤σ τ τ +
τ = = −⎨ ⎬⎢ ⎥τ τ τ +⎣ ⎦⎩ ⎭

 (3.19) 

Note that this equation is identical to Eq. (3.12) for CV(τ). 

Monte Carlo Simulation 

The master equation of the pure-birth process, Eq. (3.1), is stochastically simulated by 

means of the Monte Carlo method. The two basic procedures to implement the method, one 

resorting to the event-driven approach74, 79, 120-127 and the other resorting to the time-driven 

approach,124, 128 are described in detail; these two approaches differ in the manner of updating the 

simulation clock of the process’ temporal evolution. 

Event-driven approach 

The event-driven approach advances the simulation clock by a random waiting time, ν, 

which has an exponential distribution.74, 122 No event takes place during the time interval, 

(t, t )+ ν , and only one event occurs at the end of this time interval at which the state of the 
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system is specified by the probability of transition corresponding to each event. For the pure-

birth process of interest, the series of steps to perform the Monte Carlo simulation via the event-

driven approach is given below. 

 

Step 1.  Define the initial number of carbon packets, n0, the total number of simulations, Zf, and 

the length of each simulation, tf. Initialize the simulation counter as Z ← 1. 

Step 2.  Initialize clock time t, data-recording time θ,129 the realization of N(t) at time t for 

simulation Z, nZ(t), and the realization of N(θ) at time θ for simulation Z, nZ(θ), as 

follows: 

0t t←  

0 0tθ ←  

Z 0 0n (t ) n←  

Z 0 Z 0n ( ) n (t )θ ←  

Step 3.  Sample a realization u from the uniform random variable, U, on interval (0, 1). 

Estimate ν according to the following expression; [74] 

2
M

1 n(1 u)
[ (n n) ]

−
ν = −

α −
  (3.20)  

with n = nZ(t). Note that the denominator on the right-hand side of this expression is the 

intensity of birth, n (t)λ , as given by Eq. (3.2); see Appendices E and F. 

Step 4.  Advance clock time as t (t )← + ν . 

Step 5.  If (θ < t), then continue to the next step; otherwise, continue to Step 8. 

Step 6.  Compute the sample mean, variance, and standard deviation at time θ as follows: 

a. Record the value of realization at θ: 

 Z Zn ( ) n (t )θ ← − ν  

b. Store the sum of realizations at θ: 

  
Z

Z Z
Z 1

( ) n ( )
=

Ξ θ ← θ∑  

c. Store the sum of squares of realizations at θ: 

  
Z

2
Z Z

Z 1

( ) n ( )
=

Φ θ ← θ∑  
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d. Store the square of sum of realizations at θ: 

  [ ]
2Z

2
Z Z Z

Z 1

( ) n ( ) ( )
=

⎡ ⎤
Ψ θ ← θ = Ξ θ⎢ ⎥

⎣ ⎦
∑  

e. Compute the sample mean at θ: 75, 122, 123 
Z

Z Z Z
Z 1

1 1m ( ) n ( ) ( )
Z Z=

θ ← θ = Ξ θ∑   (3.21) 

f. If 1 < Z ≤ Zf, then compute the sample variance and standard deviation at θ: 75, 122, 

123 
2Z Z

2 2
Z Z Z Z Z

Z 1 Z 1

1 1 1 1s ( ) n ( ) n ( ) ( ) ( )
(Z 1) Z (Z 1) Z= =

⎧ ⎫⎡ ⎤⎪ ⎪ ⎧ ⎫θ ← θ − θ = Φ θ − Ψ θ⎨ ⎬ ⎨ ⎬⎢ ⎥− − ⎩ ⎭⎣ ⎦⎪ ⎪⎩ ⎭
∑ ∑  (3.22) 

  
2 1 2

Z Zs ( ) [s ( )]θ ← θ  (3.23) 

Step 7.  Advance θ by a conveniently small Δθ as ( )θ ← θ + Δθ . If (θ ≤ tf), then return to Step 5; 

otherwise, continue to Step 10. 

Step 8. Determine the state of the system at the end of time interval (t, t )+ ν . At this juncture, 

a birth event occurs, i.e., the population of carbon packets increases by one; thus, 

Z Zn (t) [n (t ) 1]← − ν +  

Z Zn ( ) n (t)θ ←  

Step 9.  Repeat Steps 3 through 8 until tf is reached. 

Step 10. Update simulation counter as Z ← (Z + 1). 

Step 11. Repeat Steps 2 through 10 until Zf is reached. 

 

Given in Appendix G is the computer code for performing Monte Carlo simulation of the pure-

birth process via the event-driven approach as presented above. 

Time-driven approach 

As briefly indicated at the outset of this section, the time-driven approach124, 128 differs 

from the event-driven approach: It advances the simulation clock by a fixed time increment of 

Δt, which is sufficiently small so that at most one or no event occurs during time interval 

(t, t t)+ Δ . At the end of this interval, the state of the process is determined by the probability of 
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transition corresponding to each event. For the pure-birth process of interest, the series of steps 

to perform the Monte Carlo simulation via the time-driven approach is given below. 

 

Step 1.  Define the initial number of carbon packets, n0, the total number of simulations, Zf, and 

the length of each simulation, tf. Initialize the simulation counter as Z ← 1. Compute 

time increment Δt as follows: 

M
n

1t
[ (t)]

Δ =
λc 

  (3.24) 

where c is a constant greater than 1,124 and M
n (t)λ , the maximum possible value of the 

intensity of birth; for the pure-birth process, M 2
n M(t) nλ = α . 

Step 2.  Initialize clock time t, and the realization of N(t) at time t for simulation Z, nZ(t), as 

follows: 

0t t←  

Z 0 0n (t ) n←  

Step 3.  Compute the sample mean, variance, and standard deviation at time t as follows: 

a. Record the value of realization at t: 

  Z Zn (t) n←  

b. Store the sum of realizations at t: 

  
Z

Z Z
Z 1

(t) n (t)
=

Ξ ← ∑  

c. Store the sum of squares of realizations at t: 

  
Z

2
Z Z

Z 1

(t) n (t)
=

Φ ← ∑  

d. Store the square of sum of realizations at t: 

  [ ]
2Z

2
Z Z Z

Z 1

(t) n (t) (t)
=

⎡ ⎤
Ψ ← = Ξ⎢ ⎥

⎣ ⎦
∑  

e. Compute the sample mean at t: 
Z

Z Z Z
Z 1

1 1m (t) n (t) (t)
Z Z=

← = Ξ∑   (3.25) 

f. If 1 < Z ≤ Zf, then compute the sample variance and standard deviation at t: 
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2Z Z
2 2
Z Z Z Z Z

Z 1 Z 1

1 1 1 1s (t) n (t) n (t) (t) (t)
(Z 1) Z (Z 1) Z= =

⎧ ⎫⎡ ⎤⎪ ⎪ ⎧ ⎫← − = Φ − Ψ⎨ ⎬ ⎨ ⎬⎢ ⎥− − ⎩ ⎭⎣ ⎦⎪ ⎪⎩ ⎭
∑ ∑  (3.26) 

  
2 1 2

Z Zs (t) [s (t)]←  (3.27) 

Step 4.  Advance time as t (t t)← + Δ . 

Step 5. Estimate the probability of transition for the birth event as n{[ (t)] t}λ Δ  with n = nZ(t). 

Step 6.  Determine the state of the system at the end of time interval (t, t t)+ Δ . In this 

connection, sample a realization u from the uniform random variable U on interval     

(0, 1) and compare it with n{[ (t)] t}λ Δ . If nu {[ (t)] t}< λ Δ , then a birth event occurs; 

thus, 

Z Zn (t) [n (t t) 1]← − Δ +  

Otherwise, no event occurs; hence, 

Z Zn (t) n (t t)← − Δ  

Step 7. Repeat Steps 3 through 6 until tf is reached. 

Step 8. Update the simulation counter as Z ← (Z + 1). 

Step 9. Repeat Steps 2 through 8 until Zf is reached. 

 

Given in Appendix G is the computer code for performing Monte Carlo simulation of the pure-

birth process via the time-driven approach as presented above. 

Results and Discussion 

The model formulated, in terms of mW(t) as given in Eq. (3.14), has been regressed on the 

available experimental data65 by resorting to the adaptive random search procedure;113, 114 it has 

resulted in the values of WM and those of α′ listed in Table 3.2. These values have rendered it 

possible to evaluate the dimensionless time, (α′t), i.e., τ, and the normalized mean, W ( )η τ , from 

Eq. (3.16), the values of which are plotted in Figure 3.3 as a function of τ. The corresponding 

experimentally measured weights in milligrams of carbon deposited per milligram of ACs are 

normalized by dividing them by WM; the values of the resultant quantity, denoted as w(τ), are 

superimposed in the same figure for comparison. Clearly, W ( )η τ  increases and asymptotically 
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Table 3.2.  Values of  α′ and WM for the Pore-narrowing at Different Temperatures. 

temperature, K ( C ) α′, s–1 · 104  (min–1) WM (mg C) 

873 (599.85) 1.48 (0.009) 0.105 

923 (649.85) 1.04 (0.006) 0.419 

948 (674.85) 1.62 (0.010) 0.501 

973 (699.85) 3.70 (0.022) 0.385 

1023 (749.85) 6.68 (0.040) 0.322 

1048 (774.85) 8.25 (0.050) 0.312 

1073 (799.85) 12.21 (0.073) 0.296 

1098 (824.85) 11.13 (0.067) 0.346 

1123 (849.85) 11.17 (0.067) 0.362 

1173 (899.85) 7.73 (0.046) 0.378 

1223 (949.85) 2.77 (0.017) 0.680 
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Figure 3.3.   Normalized mean W ( )η τ  and normalized standard deviation envelope W W[ ( ) ( )]η τ ± ζ τ  as 
functions of dimensionless time τ for the pore-narrowing. 
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approaches to 1 as τ progresses; this asymptotic value for W ( )η τ  can be discerned from Eq. 

(3.16). The normalized standard deviation, W ( )ζ τ , as computed by Eq. (3.18), signifies the 

deviations attributable to the internal or characteristic noises of the process as predicted by the 

stochastic model.109 The normalized standard deviation envelope, i.e., W W( ) ( )η τ ± ζ τ , is plotted 

in Figure 3.3. Note that many of the experimental data65 lie appreciably beyond the expected 

variation, or scattering; this is almost always the case: The overall deviations of the experimental 

data include not only those attributable to the internal noises of the process as predicted by the 

model, but also to the external noises due to unavoidable measurement errors and instrumental 

deficiencies that can never be totally suppressed. The coefficient of variation, CV(t), as defined 

by Eq. (3.11), provides a more meaningful relative measurement of the variability or dispersion 

of the values of a random variable about their mean than the standard deviation, σ(t). In general, 

the smaller the values of random variable N(t), i.e., the population size, the greater the extent of 

the expected fluctuations about their mean. 

 

As evident from Eqs. (3.18) and (3.19), the value of nM must be estimated in view of the 

uncertainty involved in its actual value. The order of magnitude estimate of nM is obtained by 

dividing the weight of carbon that would deposit onto the maximum number of pores susceptible 

to narrowing, WM, at a temperature of reference by the weight of a single packet of carbon, ω. 

For illustration, the temperature of reference is selected as 973 K, and thus, the value of WM is 

0.385 mg C as listed in Table 3.2. The order of magnitude estimate for ω is obtained by 

multiplying the volume of a single ideal carbon packet by the density of carbon. The former is 

assumed to be equivalent to that of a single ideal mesopore, which has been estimated 

approximately as 3 · 10–17 cm3,109 and the latter is 2.1 g · cm–3;130 thus, the value of ω is 

estimated as 0.63 · 10–13 mg C. These values of WM and ω yield the estimate of nM as 6.12 · 1012 

packets per milligram of ACs.  

 

 

Figure 3.4 shows the normalized mean, W ( )η τ , and the normalized standard deviation 

envelope, W W( ) ( )η τ ± ζ τ , resulting from Monte Carlo simulation via the event-driven and time-

driven approaches; these values have been computed by averaging 200 iterations, i.e., Z = 200. 
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Figure 3.4.   Normalized mean W ( )η τ  and normalized standard deviation envelope W W[ ( ) ( )]η τ ± ζ τ  as 

functions of dimensionless time τ at the early stage of the pore-narrowing at 973 K: The 
average of 200 Monte Carlo simulations via the event-driven and time-driven approaches 
are compared with the analytical solutions resulting from the system-size expansion of the 
master equation. 
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As an example, the simulation has been carried out until the time when approximately 100 

carbon packets have deposited onto the mouths of an equal number of open pores on activated 

carbons at 973 K; this time has been estimated as 7.44 · 10–10 min; see Appendix H. Thus, the 

time span of the simulation corresponds to the very outset of the pore-narrowing where the 

number of carbon packets is small, thereby magnifying the fluctuations of the process about its 

mean value. Figure 3.4 also presents simulated experimental data to illustrate the process’ 

inherent fluctuations; they have been generated according to the procedure outlined in Appendix 

H. Moreover, the values of W ( )η τ  and [ W W( ) ( )η τ ± ζ τ ] computed analytically from the system-

size expansion of the master equation are superimposed in the same figure for comparison. Note 

that the results from Monte Carlo simulation are in accord with the corresponding analytical 

results.  

Summary 

A stochastic model has been derived for the formation of CMSs by carbon deposition on 

ACs. Specifically, the model is based on a pure-birth process with a non-linear intensity of 

transition. The complexity in solving the resultant master equation has been circumvented by 

resorting to a rational approximation method, system-size expansion. The mean and variance of 

the amount of carbon deposited onto the open pores of ACs have been computed on the basis of 

expressions derived from the system-size expansion of the master equation. The model has been 

validated by fitting it to the available experimental data. The mean values of the model at various 

times are in good accord with these data. As expected, the data’s fluctuations around the mean 

values are more noticeable than those predicted by the model: In addition to the process’ internal 

noises, the deviations of the experimental data also account for the external noises due to 

unavoidable measurement errors. Moreover, the non-linear master equation of the model based 

on the pure-birth process has been simulated by the Monte Carlo method via the event-driven 

and time-driven approaches at the very outset of the pore-narrowing. The model’s mean and 

variance resultant from Monte Carlo simulation are in line with those obtained analytically based 

on the system-size expansion of the master equation. 
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Notation 

m(t) =  mean of the random variable, N(t) 

mW(t) =  mean of the experimental measurable variable, W(t), mg C 

N(t) =  random variable representing the number of carbon packets that have already 

deposited onto the pores’ mouths of ACs at time t 

n = realization of the random variable, N(t) 

pn(t) =  probability that n carbon packets have deposited at time t 

t =  time 

W(t) =  experimentally measurable variable representing the weight of carbon already 

deposited on ACs, mg C 

 

Greek letters 

α =  proportionality constant in the intensity of birth, (number)–1⋅ (t)–1  

λn(t) =  intensity of birth for the pure-birth process in state n at time t 

σ2(t) = variance of the random variable, N(t) 
2
W (t)σ = variance of the experimentally measurable variable, W(t) 

τ =  dimensionless time 
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CHAPTER 4 - Formation of Carbon Molecular Sieves by Carbon 

Deposition: Pure-Death Process with a Non-Linear Intensity of 

Transition Based on a Single Random Variable 

 

In this chapter, the formation of CMSs due to the narrowing of pores by carbon 

deposition is analyzed and modeled as a pure-death process with a non-linear intensity of 

transition based on a single random variable. This is in contrast to Chapter 3, where the 

formation of CMSs has been analyzed and modeled as a pure-birth process.  In this chapter, it is 

considered that the driving force of the pore-narrowing process by carbon deposition is a 

function of not only the number of pores susceptible to narrowing, or open pores, but also of the 

number of pores that have already been narrowed at any time. Herein, the form of such a 

function is of the second-order; as a result, the corresponding intensity function is non-linear. 

 

Identification of Random Variable and State Space 

As discerned from the prologue, the random variable of the process, N(t), with realization 

n is identified as the number of pores susceptible to narrowing, i.e., the open pores, at time t. All 

possible values of N(t) are the states of the process and their collection, { n0, n0  – 1, …, 2, 1, 0 }, 

is its state space where n0 is the initial number of open pores, i.e., n at t = 0. Note that the random 

variable, N(t), in the current model exclusively accounts for the number of open pores at any 

time t; thus, the analysis of the change in the pores’ sizes or lengths would require the 

formulation of models with different variables designated as the random variables. 

Transition Diagram 

Figure 4.1 illustrates the transition diagram of the pure-death process under 

consideration. Note that the transitions of the system in the pure-death process occur in the 

opposite direction of those in the pure-birth process as presented in Figure 3.1. 
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Figure 4.1.   Transition diagram of the pure-death process representing pore-narrowing on ACs: The symbols, n0, 
(n0 – 1), …, (n + 1), n, (n – 1), …, 2, 1, 0, are the states of the process; 

0np (t) , 
0n 1p (t)− , …, pn+1(t), pn(t), 

pn–1(t), …, p1(t), p0(t), are the corresponding state probabilities; and n 0(t) kn k 'n(n n)μ = + −  is the 
intensity of death, which is a non-linear function of n for each transition. 
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Master Equation 

For the pure-death process, the probability balance around state n leads to 

)t(p)t(p)t(p
dt
d

nn1n1nn μ−μ= ++ ,    n = n0, n0 – 1, …, 2, 1, 0 (4.1) 

which is the master, i.e., governing, equation of the process;71, 73 see Appendix I. The term, pn(t), 

in the above expression denotes the probability that n pores are open at time t. Moreover, the 

term, μn(t), is the intensity function or intensity of death, which is given by 

n 0
dn(t) kn k 'n(n n)
dt

μ = − = + −  (4.2) 

where k and k' are proportionality constants. In this equation, the term, 0(n n)− , i.e., the 

difference between the maximum number of open pores and the number of open pores at any 

time t, is the number of pores that have already been narrowed at time t. Thus, the intensity of 

death, Eq. (4.2), is a function of not only the number of open pores but also the number of pores 

that have already been narrowed at time t. Inserting Eq. (4.2) into Eq. (4.1) gives rise to 

{ }
n

0 n 1

d  p (t)
dt
k(n 1) k '(n 1)[n (n 1)] p (t)+= + + + − +

  

0 n   [kn k 'n(n n)]p (t)− + − ,                          n = n0, n0 – 1, …, 2, 1, 0   (4.3) 

Clearly, this equation depends on realization n but is independent of time t. 

Mean and Variance 

The intensity of death, n (t)μ , as given by Eq. (4.2) is non-linear, thereby rendering the 

solution of the master equation, Eq. (4.3), exceedingly complex. Thus, the mean and variance of 

the process need be evaluated via the system-size expansion of the master equation; see 

Appendix J. Upon expansion, the mean of N(t), E[N(t)] or m(t), for the pore-narrowing is 

obtained from Eq. (4.3) as 

0
1m(t) n

1 [exp( t) 1]
⎧ ⎫

= ⎨ ⎬+β α −⎩ ⎭
 (4.4) 
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where 0(k k 'n )α = +  and 1
0k(k k 'n )−β = + . From this expression, the normalized, or 

dimensionless, form of the mean, ( )η τ , is 

0

m( ) 1( )
n 1 [exp( ) 1]

τ
η τ = =

+ β τ −
 (4.5) 

where ( t)τ = α  is the dimensionless time. Similarly, the variance of N(t), Var[N(t)] or σ2(t), of 

the pore-narrowing is 

{ }
2

0 4
exp( t)(t) n

1 [exp( t) 1]
β α

σ =
+ β α −

  

{ }( )22 1 exp( t) 1 2 [1 ( 1)( t)] 2 sinh( t)⋅ β − + α − β + β − α + β α               (4.6) 

or in terms of dimensionless time τ, 

{ }
2

0 4
exp( )( ) n

1 [exp( ) 1]
β τ

σ τ =
+β τ −

  

{ }( )22 1 exp( ) 1 2 [1 ( 1) ] 2 sinh( )⋅ β − + τ − β + β − τ + β τ               (4.7) 

From Eq. (4.6), the standard deviation, σ(t), is obtained as 

{ }

1/ 2
1/ 2
0 2

[ exp( t)](t) n
1 [exp( t) 1]

β α
σ =

+β α −
  

{ }( )1/ 222 1 exp( t) 1 2 [1 ( 1)( t)] 2 sinh( t)⋅ β − + α − β + β − α + β α               (4.8) 

The normalized form of the standard deviation, ζ(τ), is obtained from Eq. (4.7) as 

{ }

0
1/ 2

21/ 2
0

( )( )
n

1 [ exp( )]
n 1 [exp( ) 1]

( )

σ τ
ζ τ =

β τ
= ⋅

+ β τ −
ζ τ

  

{ }( )1/ 222 1 exp( ) 1 2 [1 ( 1) ] 2 sinh( )⋅ β − + τ − β + β − τ + β τ             (4.9) 

 

 

 

 

 



 49

From Eqs. (4.4) and (4.8), the coefficient of variation, CV(t), is 

{ }
1/ 2

1/ 2
0

(t)CV(t)
m(t)
1 [C exp( t)]

n 1 [exp( t) 1
V

]
(t)

σ
=

β α
= ⋅

+ β α −

  

{ }( )1/ 222 1 exp( t) 1 2 [1 ( 1)( t)] 2 sinh( t)⋅ β − + α − β + β − α + β α                (4.10) 

or in terms of τ, 

{ }
1/ 2

1/ 2
0

1 [ exp( )]CV( )
n 1 [exp( ) 1]

β τ
τ = ⋅

+ β τ −
  

{ }( )1/ 222 1 exp( ) 1 2 [1 ( 1) ] 2 sinh( )⋅ β − + τ − β + β − τ + β τ                (4.11) 

Note that this expression is a function of n0. 

Analysis of Experimental Data 

The available experimental data65 are listed in Table 3.1 and also exhibited in Figure 3.2 

in the preceding chapter; they are given in the unit of milligrams of carbon per milligram of ACs, 

i.e., mg C/mg AC. The model derived in this chapter is also validated with the same set of data; 

this validation is carried out by relating the number of open pores at time t, which is the random 

variable, N(t), to the experimentally measurable variable, W(t). This variable represents the 

weight of carbon already deposited on ACs at time t. Accordingly, it is assumed that a fixed 

amount of carbon, δ, deposits onto an open pore and its surroundings, thus causing the pore to 

narrow. Hence, at any time t, 

0W(t) [n N(t)]= δ −  (4.12) 

where the term, [n0 – N(t)], is the number of narrowed pores at any time t. The mean value of 

W(t), denoted by mW(t), is obtained from the above expression as follows: 

{ }
{ }

W

0

0

W

W

m (t) E[W(t)]
E [nm (t)

m (t

N

)

(t)]

n E[N(t)]

=

= δ −

= δ −

 

or 

W 0m (t) [n m(t)]= δ −  (4.13) 
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Substituting (4.4) for m(t) into this equation gives 

W 0
1m (t) n 1

1 [exp( t) 1]
⎧ ⎫

= δ −⎨ ⎬+ β α −⎩ ⎭
  

or 

W 0
[exp( t) 1]m (t) W

1 [exp( t) 1]
⎧ ⎫β α −

= ⎨ ⎬+ β α −⎩ ⎭
 (4.14) 

where W0, or (δn0), is the weight of carbon that would deposit onto the initial number of open 

pores. From the above expression, the dimensionless form of the mean, W ( )η τ , is 

W
W

0

m ( ) [exp( ) 1]( )
W 1 [exp( ) 1]

τ β τ −
η τ = =

+ β τ −
 (4.15) 

Note that W ( ) 1η τ →  as τ → ∞ . Multiplying both sides of this equation by { }1 1 [exp( ) 1]−β + β τ −  

gives rise to 
*
W ( ) exp( ) 1η τ = τ −  (4.16) 

where { }* 1
W W( ) 1 [exp( ) 1] ( )−η τ = β + β τ − η τ . Note that *

W ( )η τ → ∞  as τ → ∞ .  

 

Similarly, the variance of W(t), 2
W (t)σ , is obtained from (4.12) as 

2
W

0

2

2
W

2
W

(t) Var[W(t)]

Var{ [n N(t)]( }

Var[N(t

t)

(t) )]

σ

=

=

= δσ

σ

δ −  

or 
2 2 2
W (t) [ (t)]σ = δ σ  (4.17) 

Substituting (4.6) for σ2(t) into the above expression leads to 

{ }
{ }( )

2 2
W 0 4

2

exp( t)(t) n
1 [exp( t) 1]

2 1 exp( t) 1 2 [1 ( 1)( t)] 2 sinh( t)

β α
σ = δ

+ β α −

⋅ β − + α − β + β − α + β α              
 (4.18) 
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From this equation, the standard deviation, σ2(t), is 

{ }

{ }( )

1/ 2
1/ 2

W 0 2

1/ 22

[ exp( t)](t) n
1 [exp( t) 1]

2 1 exp( t) 1 2 [1 ( 1)( t)] 2 sinh( t)

β α
σ = δ

+ β α −

⋅ β − + α − β + β − α + β α              

 (4.19) 

The dimensionless form of 2
Wσ , i.e., W ( )ζ τ , is given by 

{ }

W
W

0
1

W

/ 2

21/ 2
0

( )( )
W

1 [ exp( )]
n 1 [ex ( ) 1

(
]

)
p

σ τ
ζ τ =

β τ
= ⋅

+ β τ
ζ τ

−

 

{ }( )1/ 222 1 exp( ) 1 2 [1 ( 1) ] 2 sinh( )⋅ β − + τ − β + β − τ + β τ               (4.20) 

Note that this equation is identical to (4.9) for ζ(τ); moreover, W ( ) 0ζ τ →  as τ → ∞ . By 

multiplying both sides of this equation by { }1 1 [exp( ) 1]−β + β τ − , we have 

{ }
1/ 2

*
W 1/ 2 1/ 2

0

1 1 [exp( )]( )
n 1 [exp( ) 1]

τ
ζ τ = ⋅ ⋅

β + β τ −
 

{ }( )1/ 222 1 exp( ) 1 2 [1 ( 1) ] 2 sinh( )⋅ β − + τ − β + β − τ + β τ               (4.21) 

where { }* 1
W W( ) 1 [exp( ) 1] ( )−ζ τ = β + β τ − ζ τ . Note that *

W ( )ζ τ → ∞  as τ → ∞ . The coefficient of 

variation, CVW(τ), is obtained as 

W
W

W

( )CV ( )
m ( )
σ τ

τ =
τ

 

{ }
1/ 2

1/ 2
0

W
1 [ exp( )]

n [exp( ) 1] 1 [exp( ) 1
V ( )

]
C β τ

= ⋅
β τ − + β τ −

τ    

{ }( )1/ 222 1 exp( ) 1 2 [1 ( 1) ] 2 sinh( )⋅ β − + τ − β + β − τ + β τ                   (4.22) 

Note that this equation is also a function of n0. 

Results and Discussion 

The model formulated, in terms of the temporal mean given in Eq. (4.14), has been fitted 

to the available experimental data65 through regression without linearization via the adaptive 
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random search procedure.113, 114 The regression has resulted in the values of W0 and those of α 

and β, which are listed in Table 4.1. These values have rendered it possible to evaluate the 

dimensionless time, (αt), i.e., τ, as well as the dimensionless mean, W ( )η τ , from Eq. (4.15). The 

values of *
W ( )η τ  computed from Eq. (4.16) as a function of τ  are presented in Figure 4.2 at the 

eleven temperature levels. The corresponding experimentally measured weights in milligrams of 

carbon deposited per milligram of ACs are rendered dimensionless by dividing them by W0 and 

multiplying them by { }1 1 [exp( ) 1]−β + β τ − ; the values of the resultant quantity, denoted as w*(τ), 

are superimposed in the same figure for comparison. As indicated earlier, note that *
W ( )η τ  

increases boundlessly as τ progresses. 

 

The standard deviation signifies the deviations attributable to the internal or characteristic 

noises of the process as predicted by the stochastic model.110 The values of *
W ( )ζ τ  around 

*
W ( )η τ , i.e., * *

W W( ) ( )η τ ± ζ τ , are also plotted in Figure 4.2. As expected, many of the 

experimental data65 lie appreciably beyond the expected variation, or scattering, which is almost 

always the case: The overall deviations of the experimental data include not only those 

attributable to the internal noises of the process as predicted by the model, but also to the 

external noises due to inevitable measurement errors and instrumental deficiencies that can never 

be totally eliminated. As evident from Eq. (4.21), the expression for *
W ( )ζ τ  depends on the initial 

number of open pores per milligram of ACs, i.e., n0, whose order of magnitude estimate is 1.67 ⋅ 

1013 pores.110 
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Table 4.1.  Values of α, β, and W0 for the Pore-narrowing at Different Temperatures. 

temperature, K ( C ) α, s–1 · 104  (min–1) β, ( – ) W0 (mg C) 

873 (599.85) 2.73 (0.016) 0.817 0.064 

923 (649.85) 2.90 (0.017) 0.683 0.206 

948 (674.85) 4.00 (0.024) 0.698 0.267 

973 (699.85) 8.65 (0.052) 0.569 0.235 

1023 (749.85) 13.45 (0.081) 0.485 0.226 

1048 (774.85) 17.75 (0.107) 0.397 0.225 

1073 (799.85) 16.83 (0.101) 0.637 0.235 

1098 (824.85) 12.13 (0.073) 0.916 0.277 

1123 (849.85) 6.85 (0.038) 1.862 0.308 

1173 (899.85) 1.78 (0.011) 4.712 0.344 

1223 (949.85) 1.10 (0.007) 2.950 0.577 
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Dimensionless time, τ
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Figure 4.2.   Normalized mean *

W ( )η τ  and normalized standard deviation envelope * *
W W[ ( ) ( )]η τ ± ζ τ  as 

functions of dimensionless time τ for the pore-narrowing: The values on both axes are presented 
in logarithmic scale to facilitate their visualization. 
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Summary 

A stochastic model has been derived for the formation of CMSs by the deposition of 

carbon particles on ACs as a pure-death process based on a non-linear intensity function. The 

complexity in solving the resultant master equation of the process has been circumvented by 

resorting to a rational approximation method, system-size expansion. The mean and variance of 

the amount of carbon deposited onto the pores susceptible to narrowing, i.e., the open pores, 

have been computed from the master equation. The model derived has been validated by fitting it 

to the available experimental data. The mean value of the model is in excellent accord with these 

data. As expected, the data’s fluctuations around their mean are more noticeable than those 

predicted by the model: In addition to the process’ internal noises, the deviations of the 

experimental data also account for the external noises due to unavoidable measurement errors. 

Notation 

k = proportionality constant in the intensity of death, (t)–1  

(k'n0) = proportionality constant in the intensity of death, (t)–1 

m(t) =  mean of the random variable, N(t) 

mW(t) =  mean of the experimental measurable variable, W(t), mg C 

N(t) =  random variable representing the number of pores susceptible to narrowing, 

i.e., the number of open pores, at time t 

n = realization of the random variable, N(t) 

pn(t) =  probability that n pores are open at time t 

t =  time 

W(t) =  experimentally measurable variable representing the weight of carbon already 

deposited on ACs, mg C 

 

Greek letters 

α =  constant 0(k k 'n )+ , (t)–1 

β =  dimensionless constant, 1
0k(k k 'n )−+  

µn(t) =  intensity of death for the pure-death process in state n at time t 
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σ2(t) = variance of the random variable, N(t) 
2
W (t)σ = variance of the experimentally measurable variable, W(t) 

τ =  dimensionless time 
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CHAPTER 5 - Conclusions and Recommendations for Future Work 

 

In this dissertation, the formation of carbon adsorbents, including activated carbons 

(ACs) and carbon molecular sieves (CMSs), has been analyzed and modeled by resorting to 

stochastic processes. What follows are the significant conclusions reached as well as 

recommendations for future work. 

 

Conclusions 

The formation of activated carbons (ACs) from a carbonaceous substrate has been 

stochastically analyzed and modeled as a pure-birth process with a linear intensity function based 

on a single random variable. The solution of the master equation of the process yields the mean 

and variance of the number of pores that have been formed on the internal surfaces of the 

carbonaceous substrate; this number is regarded as the process’ random variable. The model has 

been validated with the available experimental data for the formation of ACs from a 

carbonaceous substrate. In general, the model’s mean value follows the trend of these data; 

moreover, the model’s kinetic constant obeys the Arrhenius law. It is expected that the linear 

stochastic model for the formation of ACs be an insightful preliminary exploration of the process 

of concern. 

 

Subsequently, two stochastic models for the formation of carbon molecular sieves 

(CMSs) on ACs have been derived; each of them is based on a single random variable. The first 

of the two models has been formulated as a pure-birth process with a non-linear intensity 

function. The random variable of the process is identified as the number of packets that have 

already deposited onto the pores’ mouths of ACs, which increases temporally. Naturally, the 

resultant master equation is non-linear; the complexity in solving it is circumvented via a rational 

approximation method, the system-size expansion. The mean and variance of the amount of 

carbon deposited onto the pores’ mouth of ACs have been computed from expressions obtained 

from the system-size expansion of the master equation. In general, the model is in accord with 
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the available experimental data for the formation of CMSs on ACs. Moreover, the non-linear 

master equation of the process has been simulated with the Monte Carlo method via the event-

driven as well as time-driven approaches. The simulation has been carried out at the process’ 

early stage where the number of carbon packets depositing onto the pores of ACs is exceedingly 

small, thereby magnifying the fluctuations of the process around its mean. The mean and 

variance computed from simulation are in line with their corresponding analytical results. 

Simulating the process’ non-linear master equation with the Monte Carlo method is of special 

significance: In some instances, this might be the only viable avenue for reliably estimating the 

means and variances of highly non-linear processes. In contrast, the second of the two models 

has been formulated as a pure-death process; its random variable is the number of open pores on 

ACs, which decreases temporally as they are narrowed. The non-linear intensity function 

accounts for the number of pores that have already been narrowed as well as that of open pores. 

Because the resultant master equation is non-linear, it has also been solved by resorting to the 

system-size expansion, thereby resulting in expressions for the process’ mean and variance. The 

model’s mean values at various times are in good accord with the available experimental data. 

Recommendations 

The stochastic analysis and modeling of the kinetics of formation of ACs is far from 

complete. A natural sequel of the linear stochastic model presented in this dissertation would be 

a stochastic model with a non-linear intensity function based on single random variable. Various 

forms of such an intensity function could be investigated by including a second-order function or 

an exponential-like function. It would be desirable that the non-linear intensity function 

incorporates several structural parameters of the carbonaceous materials from which ACs are 

manufactured. An expression in light of the random pore model for fluid-solid reactions might 

offer an alternative for the definition of the non-linear intensity function. 

 

The stochastic analysis and modeling of the formation of CMSs could be further 

extended by formulating a stochastic model that couples the pore-narrowing with the subsequent 

pore-blocking. Naturally, the resultant model including both pore-narrowing and pore-blocking 

would involve two random variables and two intensity functions. For a given stochastic model, 

these two intensity functions could be linear, non-linear, or their combination thereof. 
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Appendix A - Derivation of the Master Equation of a Pure-Birth Process 

 

Suppose that a system comprising a population of particulate or discrete entities in a 

given space is to be stochastically modeled as a pure-birth process. The random variable 

characterizing this process is denoted by N(t) with realization n; moreover, the intensity of birth 

is denoted by n (t)λ . Thus, one of the following two events is considered to occur during time 

interval (t, t t)+ Δ . First, the number of entities increases by one, which is a birth event, with 

conditional probability n{[ (t)] t o( t)}λ Δ + Δ . Second, the number of entities changes by a number 

other than one with conditional probability o(Δt), which is defined such that 

0
t

)t(oim
0t

=
Δ
Δ

→Δ
  (A.1) 

Naturally, the conditional probability of no change in the number of entities during this time 

interval is n(1 {[ (t)] t o( t)})− λ Δ + Δ . 

 

Let the probability that exactly n entities are present at time t be denoted as 

np (t) Pr[N(t) n]= = , where ( )n 0,1, 2, ..., n 1, n∞ ∞∈ − ; n∞ is the maximum possible number of 

entities in the system. For the two adjacent time intervals, (0, t) and (t, t t)+ Δ , the occurrence of 

exactly n entities being present at time (t t)+ Δ  can be realized in the following mutually 

exclusive ways; see Figure A.1. 

 

(1) With a probability of n 1 n 1{[ (t)] t o( t)}p (t)− −λ Δ + Δ , the number of entities will increase 

by one during time interval (t, t t)+ Δ , provided that exactly (n 1)−  entities are present at time t. 

(2) With a probability of o(Δt), the number of entities will change by exactly j entities 

during time interval (t, t t)+ Δ , provided that exactly (n j)−  entities are present at time t, where 

2 j n∞≤ ≤ . 

(3) With a probability of n n(1 {[ (t)] t o( t)})p (t)− λ Δ + Δ , the number of entities will remain 

unchanged during time interval (t, t t)+ Δ , provided that n entities are present at time t. 
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Figure A.1.  Probability balance for the pure-birth process involving the mutually 

exclusive events in the time interval, (t, t + Δt). 
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Summing all these probabilities and consolidating all quantities of o(Δt) yield 

n n 1 n 1 n np (t t) {[ (t)] t}p (t) {1 [ (t)] t}p (t) o( t)− −+ Δ = λ Δ + − λ Δ + Δ   (A.2) 

Rearranging this equation, dividing it by Δt, and taking the limit as Δt → 0 yield the master 

equation of the pure-birth process as71, 73 

n n 1 n 1 n n
d p (t) (t) p (t) (t) p (t)
dt − −= λ − λ   (A.3) 

This is Eq. (2.2) in Chapter 2 with ( )L Ln 0,1, 2, ..., n 1, n∈ − , and also Eq. (3.1) in Chapter 3 with 

( )M Mn 0,1, 2, ..., n 1, n∈ − . 
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Appendix B - Formation of Activated Carbons: Derivation of Mean and 

Variance of the Pure-Birth Process with Linear Intensity of Transition Based 

on a Single Random Variable 

 

 

The master equation of the pure-birth process of interest is given by Eq. (2.2) in the text 

as 

n n 1 n 1 n n L L
d p (t) (t)p (t) (t)p (t), n 0,  1,  2,...,  n 1,  n
dt − −= λ − λ = −   (B.1) 

The mean and variance of the pure-birth process can be computed from this equation by 

resorting to the one-step operator, E. This operator is defined by its effect on an arbitrary 

function, f(n), as 

f (n)  f (n 1)= +E   and  1f (n)  f (n 1)− = −E   (B.2) 

In light of this definition, Eq. (B.1) becomes 

1
n n n n n

d p (t) (t) p (t) (t) p (t)
dt

−= λ − λE   

or 

1
n n n

d p (t) ( 1) (t) p (t)
dt

−= − λE   (B.3) 

For any arbitrary functions, f(n) and g(n), of integer n, the following expression holds 
L Ln 1 n

1

n 0 n 1
[g(n) f (n)] [f (n) g(n)]

−
−

= =

=∑ ∑E E   

When g(–1) = f(nL + 1) = 0, this equation becomes 
L Ln n

1

n 0 n 0
[g(n) f (n)] [f (n) g(n)]−

= =

=∑ ∑E E   (B.4) 
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This property of E facilitates the evaluation of the mean and variance of the pure-birth process of 

interest from its master equation. 

 

Mean  

The mean, E[N(t)] or m(t), which is the expected value (first moment) of the distribution 

of random variable N(t) is defined as 

n
E[N(t)] np(n; t)= ∑  (B.5) 

The mean or expected value, E[N(t)], is the weighted sum of the realizations of random variable 

N(t) where the weights are the corresponding probabilities to those realizations.[111] By 

multiplying both sides of Eq. (B.3) by n and summing over the state space of N(t), i.e., all values 

of n, we have 
L Ln n

1
n n n

n 0 n 0

dn p (t) n( 1) (t) p (t)
dt

−

= =

= − λ∑ ∑ E   

By virtue of Eq. (B.4), this equation can be rewritten as 
L Ln n

n n n
n 0 n 0

dn p (t) (t) p (t)( 1) n
dt= =

= λ −∑ ∑ E  

or 
L Ln n

n n n
n 0 n 0

dn p (t) (t) p (t)
dt= =

= λ∑ ∑  (B.6) 

Inserting Eq. (2.1) in text for n (t)λ  into the above equation gives 

L Ln n

n L n
n 0 n 0

dn p (t) (n n) p (t)
dt= =

= κ −∑ ∑  (B.7) 

or 
L L Ln n n

n L n n
n 0 n 0 n 0

dn p (t) n p (t) n p (t)
dt= = =

= κ − κ∑ ∑ ∑  (B.8) 

By definition, 
Ln

n
n 0

p (t) 1
=

=∑  (B.9) 
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Moreover, the mean of N(t), E[N(t)] or m(t), is given by 
Ln

n
n 0

E[N(t)] n p (t)
=

= ∑  (B.10) 

and thus, 
Ln

n
n 0

d dE[N(t)] n p (t)
dt dt=

= ∑  (B.11) 

By virtue of Eqs. (B.9) through (B.11), Eq. (B.8) reduces to 

L
d E[N(t)] n E[N(t)]
dt

= κ − κ  

or 

L
d E[N(t)] E[N(t)] n
dt

+ κ = κ  (B.12) 

From the initial conditions for the pure-birth process, 

n

0 if n 0
p (0)

1 if  n 0 ,

≠⎧
⎪= ⎨
⎪ =⎩

 (B.13) 

and the definition of E[N(t)], Eq. (B.10), we have 

E[N(0)] 0=  (B.14) 

Integrating Eq. (B.12) subject to this initial condition yields 

LE[N(t)] n [1 exp( t)]= − −κ  (B.15) 

or 

Lm(t) n [1 exp( t)]= − −κ ,  (B.16) 

This is Eq. (2.4) in the text. 

Variance 

The variance, Var[N(t)] or σ2(t), is the second moment of the distribution of random 

variable N(t) about the mean, E[N(t)]; thus, 
2 2Var[N(t)] (t) E[{N(t) E[N(t)]} ]= σ = −  

or 
2 2

n
(t) {n E[N(t)]} p(n; t)σ = −∑   (B.17) 



 78

By expanding the above equation, σ2(t) can be related to the mean, E[N(t)], as follows: 
2 2 2(t) E[N (t)] {E[N(t)]}σ = −  (B.18) 

In this expression, E[N2(t)] is the second moment of N(t), i.e., 
2 2

n
E[N (t)] n p(n; t)= ∑   (B.19) 

By multiplying both sides of Eq. (B.3) by n2 and summing over all values of n, we obtain 
L Ln n

2 2 1
n n

n 0 n 0

dn p (t) n ( 1) (t) p(n; t)
dt

−

= =

= − λ∑ ∑ E   (B.20) 

By virtue of Eq. (B.4), this equation can be transformed into 
L Ln n

2 2
n n n

n 0 n 0

dn p (t) (t) p (t)( 1)n
dt= =

= λ −∑ ∑ E  

or 
L Ln n

2
n n n

n 0 n 0

dn p (t) (t) p (t)(2n 1)
dt= =

= λ +∑ ∑  

Expanding and rearranging the right-hand side of this expression yield 
L L Ln n n

2
n n n n

n 0 n 0 n 0

dn p(n; t) 2 [ (t)]n p (t) [ (t)]p (t)
dt= = =

= λ + λ∑ ∑ ∑   (B.21) 

Inserting Eq. (2.1)  in text for n (t)λ  into the above equation gives rise to 

L L Ln n n
2

L n L n
n 0 n 0 n 0

dn p(n; t) 2 [ (n n)]n p (t) [ (n n)]p (t)
dt= = =

= κ − + κ −∑ ∑ ∑   (B.22) 

or 
L L L Ln n n n

2 2
n n L L n

n 0 n 0 n 0 n 0

dn p (t) 2 n p (t) (2 n 1) np(t) n p (t)
dt= = = =

= − κ + κ − + κ∑ ∑ ∑ ∑   (B.23) 

By definition, 
Ln

n
n 0

p (t) 1
=

=∑  (B.24) 

and 
Ln

n
n 0

E[N(t)] n p (t)
=

= ∑  (B.25) 
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Moreover, 
Ln

2 2
n

n 0
E[N (t)] n p (t)

=

= ∑  (B.26) 

and thus, 
Ln

2 2
n

n 0

d dE[N (t)] n p (t)
dt dt=

= ∑  (B.27) 

In light of Eqs. (B.24) through (B.27), Eq. (B.23) can be transformed into 

2 2
L L

d E[N (t)] 2 E[N (t)] (2n 1)E[N(t)] n
dt

= − κ + κ − + κ  

or 

2 2
L L

d E[N (t)] 2 E[N (t)] (2n 1)E[N(t)] n
dt

+ κ = κ − + κ  (B.28) 

The expression for E[N2(t)], Eq. (B.26), in conjunction with the initial conditions for the birth-

death process, Eq. (B.13), lead to 
2E[N (0)] 0=  (B.29) 

Inserting Eq. (B.15) for E[N(t)] into Eq. (B.28) and integrating the resulting expression subject to 

the initial condition given above yield 
2 2 2 2

L L L L LE[N (t)] n 2n exp( t) n exp( t) n exp( 2 t) n exp( 2 t)= − −κ + −κ + − κ − − κ   (B.30) 

Consequently, this equation in conjunction with Eqs. (B.15) and (B.18) give rise to 
2

L(t) n [1 exp( t)]exp( t)σ = − −κ −κ   (B.31) 

This is Eq. (2.6) in the text. 
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Appendix C - Formation of Carbon Molecular Sieves: System-Size Expansion 

of the Master Equation of the Pure-Birth Process with a Non-Linear Intensity 

of Transition Based on a Single Random Variable 

 

The master equation of the pure-birth process of interest is given by Eq. (3.1) in the text 

as 

n n 1 n 1 n n M M
d p (t) (t)p (t) (t)p (t), n 0,  1,  2,...,  n 1,  n
dt − −= λ − λ = −    (C.1) 

In light of the one-step operator, E, as defined by Eq. (B.2), this equation can be transformed into 

1
n n n

d p (t) ( 1) (t)p (t)
dt

−= − λE ,    n = 0, 1, 2, …, nM – 1, nM   (C.2) 

The intensity of birth, n (t)λ , in this expression is given by Eq. (3.2) in the text as 

2
n M

dn(t) (n n)
dt

λ = = α −   (C.3) 

where α is a proportionality constant. Substituting the above expression into Eq. (C.2) yields 

1 2
n M n

d p (t) ( 1)[(n n) ]p (t)
dt

−= α − −E  (C.4) 

It is expected that at later time t, the probability distribution of N(t), pn(t) or p(n;t), exhibits a 

sharp peak at some position of order Ω, while its width is of order Ω1/2; see Figure C.1. The 

symbol, Ω, signifies the system’s size, which is nM in this case. To formulate this formally, N(t) 

is expressed as the sum of the macroscopic term, (t)Ωϕ , and the fluctuation term, 1/ 2 (t)Ω Ξ  as 
1/ 2N(t) (t) (t)= Ωϕ + Ω Ξ   

or 
1/ 2

M MN(t) n (t) n (t)= ϕ + Ξ  (C.5) 

whose realization is 
1/ 2

M Mn n (t) n= ϕ + ξ    (C.6) 
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p(n;0) 

p(n;t) 

p(n; ∞) 

Ωϕ(0) Ωϕ(t) Ωϕ(∞) 

Ω½ξ 

 
 

Figure C.1.  Temporal evolution of the probability distribution, pn(t) or p(n;t). 
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The function, ϕ(t), in these two equations is adjusted to follow the motion of the peak in time; 

consequently, p(n;t) is transformed into function π(ξ;t), which depends on realization ξ of Ξ(t), 

as 

p(n; t) ( ; t)= π ξ  (C.7) 

where ( ; t) Pr[ (t) ]π ξ = Ξ = ξ . From Eq. (C.6), we have 
1/ 2 1/ 2

M Mn(n ) n (t)−ξ = − ϕ  (C.8) 

Given that n is fixed, the time derivative of the above expression is obtained as 

1/ 2
M

d dn
dt dt
ξ ϕ

= −  (C.9) 

where (t)ϕ = ϕ . Differentiating Eq. (C.7) with respect to time leads to 

d p(n; t) ( ; t)
dt t

∂
= π ξ

∂
 

or 

d dp(n; t)
dt t dt

∂π ∂π ξ⎛ ⎞= + ⎜ ⎟∂ ∂ξ ⎝ ⎠
 (C.10) 

where ( ; t)π = π ξ . By inserting Eq. (C.9) into this equation, we obtain 

1/ 2
M

d dp(n; t) n
dt t dt

∂π ϕ ∂π⎛ ⎞= − ⎜ ⎟∂ ∂ξ⎝ ⎠
 (C.11) 

In light of the one-step operator, E, we have 

1n n 1− = −E   

Substituting Eq. (C.6) for n on the right-hand side of this equation gives rise to 
1 1/ 2

M M
1/ 2 1/ 2 1/ 2

M M M M
1

n [n (t) n ] 1

[n (t) n ] [n nn ]−

−

−

= ϕ + ξ −

= ϕ + ξ −E
E

 

or 
1 1/ 2 1/ 2

M M Mn n (t) n ( n )− −= ϕ + ξ −E  

In other words, E–1 transforms n into (n 1)− , and therefore, ξ into 1/ 2
M( n )−ξ − ; as a result, from 

Eq. (C.7), 
1 1p(n; t) ( ; t)− −= π ξE E  
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or 
1/ 2

Mp(n 1; t) ( n ; t)−− = π ξ −  (C.12)  

The Taylor expansion of 1/ 2
M( n ; t)−π ξ −  about ξ, is obtained as 

2
1/2 1/2 1/2 2

M M M 2

1( n ;t) ( ; t) ( n ) ( ; t) ( n ) ( ; t) ...
2!

− − −∂ ∂
π ξ− = π ξ + − π ξ + − π ξ +

∂ξ ∂ξ
  

or 
2

1/2 1/2 1
M M M 2

1( n ;t) 1 n n ... ( ; t)
2

− − −⎛ ⎞∂ ∂
π ξ− = − + − π ξ⎜ ⎟∂ξ ∂ξ⎝ ⎠

 (C.13) 

In view of Eqs. (C.7) and (C.12), the above expression can be transformed to 
2

1/2 1
M M 2

1p(n 1;t) 1 n n ... p(n;t)
2

− −⎛ ⎞∂ ∂
− = − + −⎜ ⎟∂ξ ∂ξ⎝ ⎠

 

or 
2

1 1/2 1
M M 2

1p(n;t) 1 n n ... p(n;t)
2

− − −⎛ ⎞∂ ∂
= − + −⎜ ⎟∂ξ ∂ξ⎝ ⎠

E   

By comparing both sides of this expression, we have 
2

1 1/2 1
M M 2

11 n n ...
2

− − −∂ ∂
= − + −

∂ξ ∂ξ
E  (C.14) 

Substituting this expression in conjunction with Eqs. (C.6), (C.7), and (C.11) into the master 

equation, Eq. (C.4), leads to 

1/ 2
M

dn
t dt

⎛ ⎞∂π ϕ ∂π
− ⎜ ⎟∂ ∂ξ⎝ ⎠

 

2
2 1/2 1 1/2 2
M M M M2

1n n n ... [1 ( n )]
2

− − −⎛ ⎞∂ ∂
=α − + − − ϕ+ ξ π⎜ ⎟∂ξ ∂ξ⎝ ⎠

  (C.15) 

Absorbing the system’s size, nM, into the time variable, t, as 

Mn t = γ    

and truncating the terms after the second-order derivative for large nM give 
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1/ 2
M

dn
d

⎛ ⎞∂π ϕ ∂π
− ⎜ ⎟∂γ γ ∂ξ⎝ ⎠

  

( )
2 21/2 1 1/2

M M M M2

1n n n 1 n
2

− − −⎛ ⎞∂ ∂
= α − + −ϕ− ξ π⎜ ⎟∂ξ ∂ξ⎝ ⎠

  (C.16) 

By expanding the right-hand side of this equation and collecting the resultant terms of orders 
1/ 2
Mn  and 0

Mn  separately, we have 

1/ 2
M

dn
d

⎛ ⎞∂π ϕ ∂π
− ⎜ ⎟∂γ γ ∂ξ⎝ ⎠

 

2
0 2
M 2

1n 2 (1 ) ( ) (1 )
2

⎡ ⎤∂ ∂ π
= α − ϕ ξπ + α − ϕ⎢ ⎥∂ξ ∂ξ⎣ ⎦

 

1/ 2 2
Mn (1 )

⎡ ⎤∂π
− α − ϕ⎢ ⎥∂ξ⎣ ⎦

 

2 2 2
1/ 2 2 1/ 2 2

M M2 2 2

1n ( ) ( ) ( ) n ( )
2

− −⎡ ⎤∂ ∂ ∂ ∂
+α − ξπ − ξ π + ϕ ξπ + ξ π⎢ ⎥∂ξ ∂ξ ∂ξ ∂ξ⎣ ⎦

  (C.17) 

Comparing both sides of the above expression gives rise to 

2d (1 )
d
ϕ

= α − ϕ
γ

 (C.18) 

and 
2

2
2

12 (1 ) ( ) (1 )
2

∂π ∂ ∂ π
= α −ϕ ξπ + α −ϕ

∂γ ∂ξ ∂ξ
  (C.19) 

Of these two equations, the former is the macroscopic equation governing the overall behavior of 

the process, and the latter is a linear Fokker-Plank equation governing the fluctuations of the 

process around the macroscopic values and whose coefficients depend on t through ϕ, i.e., ϕ(t). 
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Appendix D - Formation of Carbon Molecular Sieves: Derivation of the Mean 

and Variance for the Pure-Birth Process with a Non-Linear Intensity of 

Transition Based on a Single Random Variable 

 

For convenience, Eq. (C.5) for random variable N(t) is rewritten below 
1/ 2

M MN(t) n (t) n (t)= ϕ + Ξ   (D.1) 

As defined earlier, the mean, E[N(t)] or m(t), is the expected value, or first moment, of the 

distribution of random variable, N(t); thus, from the above equation, we obtain 
1/ 2

M M
1/ 2

M ME[N(t)]

E[N(t)] E[n (t) n (t)]

n E[ (t)] n E[ (t)]

= ϕ + Ξ

= ϕ + Ξ
  

or 
1/ 2

M Mm(t) n (t) n E[ (t)]= ϕ + Ξ  (D.2) 

Similarly, the variance, Var[N(t)] or 2 (t)σ , which is the second moment of the distribution of 

N(t) about the mean, E[N(t)], is obtained as 
1/ 2

M M
2
M MVar[N(t)

Var[N(t)] Var[n (t) n (t)]

n Var[ (t)] n Var[ (t)]]

= ϕ + Ξ

= ϕ + Ξ
  

or 
2

M(t) n Var[ (t)]σ = Ξ   

In light of Eq. (B.18), this equation can be rewritten as 

( )2 2 2
M(t) n E[ (t)] {E[ (t)]}σ = Ξ − Ξ  (D.3) 

where E[ (t)]Ξ  and 2E[ (t)]Ξ  are the first and second moments of the random variable, (t)Ξ . 

Clearly, the functions, (t)ϕ , E[ (t)]Ξ , and 2E[ (t)]Ξ , need be evaluated prior to obtaining the 

expressions for m(t) and 2 (t)σ ; their derivation is detailed in what follows. 
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At the outset of the process, i.e., at t = 0, N(0) = 0; moreover, no fluctuations arise around 

0, which implies that  (0) 0Ξ = . Hence, from Eq. (D.1), 

(0) 0ϕ =   (D.4) 

The macroscopic equation governing the overall behavior of the process is given by Eq. (C.18) 

as 

2d (1 )
d
ϕ

= α − ϕ
γ

   

Because nMt = γ, this equation can be rewritten as 

2
M

d n (1 )
dt
ϕ

= α − ϕ    

Integration of this equation, Eq. (C.18), gives 

M

1(t) 1
( n )t c

ϕ = −
α +

  

In view of Eq. (D.4), the constant, c, in the above expression is 1; thus, 

M

M

( n )t(t)
( n )t 1

α
ϕ =

α +
 (D.5) 

As indicated in Appendix B, for any arbitrary functions f and g which take integers, the 

following expression holds71 
M Mn 1 n

1

n 0 n 1
[g(n) f (n)] [f (n) g(n)]

−
−

= =
=∑ ∑E E   (D.6) 

When g(–1) = f(nM + 1) = 0, this equation becomes 
M Mn n

1

n 0 n 0
[g(n) f (n)] [f (n) g(n)]−

= =
=∑ ∑E E   (D.7) 

If functions f and g take real numbers, the central-difference approximation gives 

f (x x) f (x)f (x)
x x

∂ + Δ −
≈

∂ Δ
  (D.8) 

and 
2

2 2

f (x x) 2f (x) f (x x)f (x)
x ( x)

∂ + Δ − + − Δ
≈

∂ Δ
  (D.9) 
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Hence, 

x x

f (x x) f (x)g(x) f (x) g(x)
x x

⎡ ⎤ ⎧ ⎫∂ + Δ −⎡ ⎤≈∑ ∑ ⎨ ⎬⎢ ⎥ ⎢ ⎥∂ Δ⎣ ⎦⎩ ⎭⎣ ⎦
 

or 

[ ] [ ]{ }
x x x

1g(x) f (x) g(x)f (x x) g(x)f (x)
x x

⎡ ⎤∂
≈ + Δ −∑ ∑ ∑⎢ ⎥∂ Δ⎣ ⎦

  (D.10) 

By extending the property of the one-step operator, Eq. (B-7), to the domain of the real numbers, 

the right-hand side of the above expression can be transformed to 

x
g(x) f (x)

x
⎡ ⎤∂

∑ ⎢ ⎥∂⎣ ⎦
 

[ ] [ ]{ }
x x

1 g(x)f (x x) g(x)f (x)
x

≈ + Δ −∑ ∑
Δ

 

[ ] [ ]{ }
x x

1 g(x) f (x) g(x)f (x)
x

= −∑ ∑
Δ

E  

or 

x
g(x) f (x)

x
⎡ ⎤∂

∑ ⎢ ⎥∂⎣ ⎦
 

[ ]{ }1

x x

1 f (x) g(x) g(x)f (x)
x

−⎡ ⎤= −∑ ∑⎣ ⎦Δ
E  

[ ] [ ]{ }
x x

1 f (x)g(x x) f (x)g(x)
x

= − Δ −∑ ∑
Δ

 

or 

x
g(x) f (x)

x
⎡ ⎤∂

∑ ⎢ ⎥∂⎣ ⎦
 

x

g(x x) g(x)f (x)
x

⎧ ⎫− Δ −⎡ ⎤= ∑ ⎨ ⎬⎢ ⎥Δ⎣ ⎦⎩ ⎭
 

x

g(x) g(x x)f (x)
x

⎧ ⎫− − Δ⎡ ⎤= −∑ ⎨ ⎬⎢ ⎥Δ⎣ ⎦⎩ ⎭
  (D.11) 

In light of Eq. (D.8), this expression reduces to  

x x
g(x) f (x) f (x) g(x)

x x
⎡ ⎤ ⎡ ⎤∂ ∂

= −∑ ∑⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦
  (D.12)  
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Similarly, 
2

2
x

g(x) f (x)
x

⎡ ⎤∂
∑ ⎢ ⎥∂⎣ ⎦

 

2
x

f (x x) 2f (x) f (x x)g(x)
( x)

⎧ ⎫⎡ ⎤+ Δ − + − Δ
≈ ∑ ⎨ ⎬⎢ ⎥Δ⎣ ⎦⎩ ⎭

 

[ ] [ ] [ ]{ }2
x x x

1 g(x)f (x x) 2 g(x)f (x) g(x)f (x x)
( x)

≈ + Δ − + − Δ∑ ∑ ∑
Δ

  (D.13) 

By virtue of Eq. (D.7), we obtain 
2

2
x

g(x) f (x)
x

⎡ ⎤∂
∑ ⎢ ⎥∂⎣ ⎦

 

[ ] [ ]{ }1
2

x x x

1 g(x) f (x) 2 g(x)f (x) g(x) f (x)
( x)

−⎡ ⎤= − +∑ ∑ ∑ ⎣ ⎦Δ
E E    

[ ] [ ]{ }1
2

x x x

1 f (x) g(x) 2 g(x)f (x) f (x) g(x)
( x)

−⎡ ⎤= − +∑ ∑ ∑⎣ ⎦Δ
E E   

or 

 
2

2
x

g(x) f (x)
x

⎡ ⎤∂
∑ ⎢ ⎥∂⎣ ⎦

  

[ ] [ ] [ ]{ }2
x x x

1 f (x)g(x x) 2 f (x)g(x) f (x)g(x x)
( x)

= − Δ − + + Δ∑ ∑ ∑
Δ

   

2
x

g(x x) 2g(x) g(x x)f (x)
( x)

⎧ ⎫⎡ ⎤+ Δ − + − Δ
= ∑ ⎨ ⎬⎢ ⎥Δ⎣ ⎦⎩ ⎭

   

or in view of Eq. (D.9),  
2 2

2 2
x x

g(x) f (x) f (x) g(x)
x x

⎡ ⎤ ⎡ ⎤∂ ∂
=∑ ∑⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

  (D.14)  

The linear Fokker-Plank equation governing the fluctuations of the process around the 

macroscopic values is given by Eq. (C.19) as 
2

2
2

12 (1 ) ( ) (1 )
2

∂π ∂ ∂ π
= α −ϕ ξπ + α −ϕ

∂γ ∂ξ ∂ξ
  (D.15) 
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Because nMt = γ, this equation can be rewritten as 
2

2
M M 2

12 n (1 ) ( ) n (1 )
t 2

∂π ∂ ∂ π
= α −ϕ ξπ + α −ϕ

∂ ∂ξ ∂ξ
  (D.16) 

Multiplying both sides of the above equation by ξ and summing over all values of ξ yield 
2

2
M M 2

1[2 n (1 )] ( ) [ n (1 ) ]
t 2ξ ξ ξ

⎡ ⎤⎡ ⎤∂ ∂ ∂
ξ π = α − ϕ ξ ξπ + α − ϕ ξ π∑ ∑ ∑⎢ ⎥⎢ ⎥∂ ∂ξ ∂ξ⎣ ⎦ ⎣ ⎦

  (D.17) 

By virtue of Eqs. (B-12) and (B-14), the right-hand side of this expression can be transformed to 
2

2
M M 2

1[2 n (1 )] [ n (1 ) ]
t 2ξ ξ ξ

⎡ ⎤⎡ ⎤∂ ∂ ∂
ξ π = α − ϕ − ξπ ξ + α − ϕ π ξ∑ ∑ ∑⎢ ⎥⎢ ⎥∂ ∂ξ ∂ξ⎣ ⎦ ⎣ ⎦

   

or 

M[2 n (1 )]
tξ ξ

∂ ⎡ ⎤ξ π = − α − ϕ ξπ∑ ∑⎢ ⎥∂ ⎣ ⎦
  (D.18) 

The first moment of random variable (t)Ξ , i.e., E[ (t)]Ξ , is defined as 

E[ (t)] ( ; t)
ξ

Ξ = ξπ ξ∑  

or 

E[ (t)]
ξ

Ξ = ξπ∑   (D.19) 

and thus, 

d E[ (t)]
dt tξ

∂
Ξ = ξ π∑

∂
  (D.20) 

In light of the above two equations, Eq. (D.18) reduces to 

M
d E[ (t)] [2 n (1 )] E[ (t)]
dt

Ξ = − α − ϕ Ξ   (D.21) 

Inserting Eq. (D.5) for (t)ϕ  into this equation and integrating the resulting expression yield 

[ ]2
M

c 'E[ (t)]
( n )t 1

Ξ =
α +

  (D.22) 

From the initial conditions for the transformed probability distribution, π(ξ;t), 

1 if 0
( ;0)

0 elsewhere

ξ =⎧
⎪π ξ = ⎨
⎪
⎩

  (D.23) 



 90

and the definition of E[ (t)]Ξ , as given by Eq. (B-19), we have 

E[ (0)] 0Ξ = ,  (D.24) 

thereby indicating that 

c ' 0=   (D.25) 

Hence, 

E[ (t)] 0Ξ =   (D.26) 

As discerned from this equation, the mean of random variable Ξ(t) signifying the fluctuations of 

the process around their mean values is null. 

 

Similarly, multiplying both sides of Eq. (D.16) by ξ2 and summing over all values of ξ 

yield 
2

2 2 2 2
M M 2

1[2 n (1 )] ( ) [ n (1 ) ]
t 2ξ ξ ξ

⎡ ⎤⎡ ⎤∂ ∂ ∂
ξ π = α − ϕ ξ ξπ + α − ϕ ξ π∑ ∑ ∑⎢ ⎥⎢ ⎥∂ ∂ξ ∂ξ⎣ ⎦ ⎣ ⎦

  (D.27) 

By virtue of Eqs. (D.12) and (D.14), the right-hand side of the above expression can be 

transformed to 
2

2 2 2 2
M M 2

1[2 n (1 )] [ n (1 ) ]
t 2ξ ξ ξ

⎡ ⎤⎡ ⎤∂ ∂ ∂
ξ π = α − ϕ − ξπ ξ + α − ϕ π ξ∑ ∑ ∑⎢ ⎥⎢ ⎥∂ ∂ξ ∂ξ⎣ ⎦ ⎣ ⎦

  

or 

2 2 2
M M4[ n (1 )] [ n (1 ) ]

tξ ξ ξ

∂ ⎡ ⎤ ⎡ ⎤ξ π = − α − ϕ ξ π + α − ϕ π∑ ∑ ∑⎢ ⎥ ⎢ ⎥∂ ⎣ ⎦ ⎣ ⎦
  (D.28) 

For the transformed probability distribution, π(ξ;t), the following property must hold 

( ; t) 1
ξ

π ξ =∑    

or 

1
ξ

π =∑   (D.29) 

Thus, Eq. (D.28) can be rewritten as 

2 2 2
M M4[ n (1 )] [ n (1 ) ]

tξ ξ

∂ ⎡ ⎤ξ π = − α − ϕ ξ π + α − ϕ∑ ∑⎢ ⎥∂ ⎣ ⎦
  (D.30) 

The second moment of random variable (t)Ξ , i.e., 2E[ (t)]Ξ , is defined as 
2 2E[ (t)] ( ; t)

ξ
Ξ = ξ π ξ∑   
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or 
2 2E[ (t)]

ξ
Ξ = ξ π∑   (D.31) 

and thus, 

2 2d E[ (t)]
dt tξ

∂
Ξ = ξ π∑

∂
  (D.32) 

In view of the above two equations, Eq. (B-30) reduces to 

2 2 2
M M

d E[ (t)] 4[ n (1 )] E[ (t)] [ n (1 ) ]
dt

Ξ = − α − ϕ Ξ + α − ϕ   (D.33) 

Inserting Eq. (D.5) for (t)ϕ  into this equation and integrating the resulting expression yield  

[ ] [ ]
2

4 4
M M

1 c"E[ (t)]
3 ( n )t 1 ( n )t 1

Ξ = +
α + α +

 (D.34) 

From the aforementioned initial conditions for the transformed probability distribution, π(ξ;t), as 

given by Eq. (D.23), and the expression of 2E[ (t)]Ξ  as defined by Eq. (D.31), we have 
2E[ (0)] 0Ξ = , (D.35) 

thereby indicating that 

1c ''
3

= −   (D.36) 

Hence,  

[ ] [ ]
2

3
M M

1 1E[ (t)] 1
3 ( n )t 1 ( n )t 1

⎧ ⎫⎪ ⎪Ξ = −⎨ ⎬α + α +⎪ ⎪⎩ ⎭
  (D.37) 

 

 

The mean, E[N(t)] or m(t), is obtained by substituting Eqs. (D.5) and (D.26) into (D.2) as 

M
M

M

( n )tm(t) n
( n )t 1

⎡ ⎤α
= ⎢ ⎥α +⎣ ⎦

  

or 

M
'tm(t) n

't 1
⎛ ⎞α

= ⎜ ⎟α +⎝ ⎠
 (D.38) 
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where M' ( n )α = α ; this is Eq. (3.4) in the text. Similarly, the variance, Var[N(t)] or σ2(t), is 

obtained by inserting Eqs. (D.26) and (D.37) into Eq. (D.3) as 

[ ] [ ]
2

M 3
M M

1 1(t) n 1
3 ( n )t 1 ( n )t 1

⎛ ⎞⎧ ⎫⎪ ⎪⎜ ⎟σ = −⎨ ⎬⎜ ⎟α + α +⎪ ⎪⎩ ⎭⎝ ⎠
  

or 

2 M
3

n 1(t) 1
3( ' t 1) ( ' t 1)

⎡ ⎤
σ = −⎢ ⎥α + α +⎣ ⎦

 (D.39) 

This is Eq. (3.6) in the text. 
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Appendix E - Formation of Carbon Molecular Sieves: Derivation of the 

Probability Density Function and the Cumulative Distribution Function of 

Waiting Time for the Pure-Birth Process with a Non-Linear Intensity of 

Transition Based on a Single Random Variable 

 

Let Tn be a random variable representing the waiting time between events for the pure-

birth process of interest with the intensity of birth, n (t)λ ; a realization of Tn is denoted by ν. 

Given that it is in state n at time t, the system is assumed to remain in this state during time 

interval (t, t )+ ν ; at the end of which, i.e., at (t )+ ν , a transition occurs and the state of the 

system changes. The probability that a transition occurs during time interval (t, t )+ ν  is specified 

by the cumulative distribution function, cdf, of Tn with realization ν. This function is denoted by 

Hn(ν) and defined as 

n nH ( ) Pr[T ]ν = ≤ ν    (E.1) 

By definition, Hn(ν) is within the range from 0 to 1. Moreover, the probability that no transition 

occurs during time interval (t, t )+ ν  given that the system is in state n at time t, Gn(ν), is72 

n n nG ( ) Pr[T ] 1 H ( )ν = > ν = − ν  (E.2) 

For the succeeding small time interval [(t ), (t ) ]+ ν + ν + Δν ,74, 122 

n nH ( ) [ (t )] o( )Δν = λ + ν Δν + Δν  (E.3) 

where o(Δν) is defined such that 

0

o( )im 0
Δν→

Δν
=

Δν
, 

Note that the intensity of birth, n (t)λ , in Eq. (E.3) is evaluated at the time at which a transition 

occurs, i.e., at (t )+ ν . On the basis of Eq. (E.2), we obtain 

n nG ( ) {1 [ (t )] } o( )Δν = − λ + ν Δν + Δν  (E.4) 

The Markovian property implies that disjoint time intervals are independent of one another; 

therefore,72 
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n n nG ( ) G ( )G ( )ν + Δν = ν Δν  (E.5) 

Inserting Eq. (E.4) into the above equation results in 

n n nG ( ) G ( ){1 [ (t )] } o( )ν + Δν = ν − λ + ν Δν + Δν  (E.6) 

Expanding and rearranging this expression yield 

n n n nG ( ) G ( ) [ (t )]G ( ) o( )ν + Δν − ν = − λ + ν ν Δν + Δν  (E.7) 

Dividing both sides of this equation by Δν and taking the limit as Δν → 0 give rise to 

n n n
d G ( ) [ (t )]G ( )

d
ν = − λ + ν ν

ν
 (E.8) 

By integrating this ordinary differential equation subject to the initial condition,72, 74, 122 

nG (0) 1= , 

we have 

n n
0

G ( ) exp [ (t ')]d '
ν⎧ ⎫⎪ ⎪ν = − λ + ν ν⎨ ⎬

⎪ ⎪⎩ ⎭
∫  (E.9) 

Equation (D.2) in conjunction with the above equation leads to 

n n
0

H ( ) 1 exp [ (t ')]d '
ν⎧ ⎫⎪ ⎪ν = − − λ + ν ν⎨ ⎬

⎪ ⎪⎩ ⎭
∫  (E.10) 

Differentiating both sides of this equation with respect to ν gives 

n n n
0

d H ( ) [ (t )] exp [ (t ')]d '
d

ν⎧ ⎫⎪ ⎪ν = λ + ν − λ + ν ν⎨ ⎬ν ⎪ ⎪⎩ ⎭
∫  (E.11) 

The probability density function, pdf, of Tn given that the system is in state n at time t, hn(ν), is 

defined as 

n n
dh ( ) H ( )

d
ν = ν

ν
 (E.12) 

Naturally, 

n n
0

H ( ) h ( ') d '
ν

ν = ν ν∫  (E.13) 
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In light of Eq. (E.12), Eq. (E.11) can be rewritten as 

n n n
0

h ( ) [ (t )] exp [ (t ')]d '
ν⎧ ⎫⎪ ⎪ν = λ + ν − λ + ν ν⎨ ⎬

⎪ ⎪⎩ ⎭
∫  (E.14) 

The above equation in conjunction with Eq. (E.10) reveal that the pdf of Tn is exponential.74, 122 

Clearly, the parameter of this pdf depends on the form of the intensity of birth, n (t)λ . Inserting 

Eq. (3.2) in the text for n (t)λ  into Eq. (E.10) yields 

2
n M

0

H ( ) 1 exp [ (n n) ]d '
ν⎧ ⎫⎪ ⎪ν = − − α − ν⎨ ⎬

⎪ ⎪⎩ ⎭
∫  (E.15) 

Upon integration of this expression, we obtain 

{ }2
n MH ( ) 1 exp [ (n n) ]ν = − − α − ν  (E.16) 

In light of Eq. (E.12), 
2 2

n M Mh ( ) [ (n n) ]exp{ [ (n n) ] }ν = α − − α − ν  (E.17) 

These two equations indicate that the pdf of random variable nT  is exponential with parameter 

2
M(n n)α − , i.e., the intensity of birth, n (t)λ , of the pure-birth process of concern, which is 

dependent only on realization n but independent of time t. 
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Appendix F - Formation of Carbon Molecular Sieves: Estimation of Waiting 

Time for the Pure-Birth Process with a Non-Linear Intensity of Transition 

Based on a Single Random Variable 

 

As indicated in the preceding appendix, the random variable, Tn, with realization ν 

represents the waiting time between successive events for a birth-death process. Equation (E.1) 

repeated below defines Hn(ν), i.e., the cdf of Tn, as 

n nH ( ) Pr[T ]ν = ≤ ν   (F.1) 

This cdf signifies the probability that the system undergoes a transition during time interval 

(t, t )+ ν  given that it is in state n at time t. 

 

Let U be a random variable defined as 

n nU H (T )=  (F.2) 

Thus, u, which is a realization of U, is 

nu H ( )= ν  (F.3) 

By definition, any realization u is within the range from 0 to 1. Naturally, the cdf of U with 

realization u, i.e., FU(u), is given by 

UF (u) Pr[U u]= ≤  (F.4) 

Substituting Eqs. (E.2) and (E.3) into this equation yields 

U n n nF (u) Pr[H (T ) H ( )]= ≤ ν  (F.5) 

The inverse function of any given function, y f (x)= , is defined as 1x f (y)−= , or 1x f [f (x)]−= , 

provided that f(x) is continuous and strictly increasing.[131, 132] In other words, the inverse 

function, 1x f (y)−= , reverses what the original function, y f (x)= , performs over any value x of 

its domain, thereby returning x. Note that the inverse function of f(x) is not its reciprocal or 

multiplicative inverse, which is given by [1/f(x)] or [f(x)]–1. Herein, y f (x)=  stands for U = 

Hn(Tn) on the basis of Eq. (F.2); thus, its inverse function is given by 
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1
n nT H (U)−=   

Inserting Eq. (F.2) into the above equation yields 
1

n n n nT H [H (T )]−=  (F.6) 

and therefore, 
1

n nH [H ( )]−ν = ν  (F.7) 

Given that the functions, Hn(Tn) and Hn(ν), are continuous and strictly increasing, they can be 

substituted by 1
n n nH [H (T )]−  and 1

n nH [H ( )]− ν , respectively, in the inequality within the bracket on 

the right-hand side of Eq. (F.5) without altering the inequality[111]; hence, 

{ }1 1
U n n n n nF (u) Pr H [H (T )] H [H ( )]− −= ≤ ν  (F.8) 

In light of Eqs. (F.6) and (F.7), this equation reduces to 

U nF (u) Pr[T ]= ≤ ν  (F.9) 

Note that the right-hand side of this expression is Hn(ν) as defined by Eq. (F.1); thus, 

U nF (u) H ( )= ν  (F.10) 

Because of Eq. (F.3), 

UF (u) u=  (F.11) 

This is the expression for the cdf of U with realization u; by definition, its pdf is 

U U
df (u) F (u)

du
=   

Substituting Eq. (F.11) into the right-hand side of this equation gives 

U
df (u) (u)

du
=  

or 

Uf (u) 1=  (F.12) 

This equation in conjunction with Eq. (F.11) imply that U is the uniform random variable on 

interval (0, 1).[111] As a result, a realization of Tn, i.e., ν, can be estimated by sampling a 

realization of U, i.e., u, on interval (0, 1), and solving Eq. (F.3) for ν as[74] 
1

nH (u)−ν =  (F.13) 

Figure F.1 illustrates this scheme to estimate waiting time ν. For the pure-birth process of 

interest, Eq. (F.3) is 
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{ }2
Mu 1 exp [ (n n) ]= − − α − ν  (F.14) 

Clearly, the right-hand side of this expression is nH ( )ν  as given by Eq. (E.16). By solving the 

above equation for ν, we obtain 

2
M

1 n(1 u)
[ (n n) ]

−
ν = −

α −
 (F.15) 

This is Eq. (3.20) in the text. Note that ν is dependent on realization n but independent of time t.
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Figure F.1.    Schematic for estimating realization ν of the random variable, Tn, representing the waiting time on 
the basis of realization u of the uniform random variable, U, on interval (0,1). 
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Appendix G - Formation of Carbon Molecular Sieves: Computer Codes for 

Performing Monte Carlo Simulation of the Pure-Birth Process with a Non-

Linear Intensity of Transition Based on a Single Random Variable via the 

Event-Driven and Time-Driven Approaches 

 

Two computer codes have been written in Microsoft Visual Basic for simulating the 

pure-birth process of interest through the Monte Carlo method via the event-driven and time-

driven approaches on two separate spreadsheets of Microsoft Excel for Windows. The resultant 

codes for the event-driven approach as well as for the time-driven approach are listed in Tables 

G.1 and G.2, respectively. 
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Table G.1.  Computer Code in Microsoft Visual Basic for Performing Monte Carlo 

Simulation of the Pure-Birth Process via the Event-Driven Approach. 

 

 

Sub EventDriven() 

'MONTE CARLO SIMULATION VIA EVENT-DRIVEN APPROACH 

'CMS FORMATION AS A PURE-BIRTH PROCESS WITH A NON-LINEAR 

'INTENSITY FUNCTION BASED ON A SINGLE RANDOM VARIABLE 

 

Randomize 

 

Dim OutputData As Integer 

     

    OutputData = 19 

     

    Range("B" + CStr(OutputData)).Select 

     

Range(Selection, Selection.End(xlToRight).End(xlDown)).ClearContents 

         

Range("B" + CStr(OutputData)).Select 

     

     

'Constants 

     

    alfa = Range("c3").Value 

    nM = Range("c4").Value 

    n0 = Range("c5").Value 

    t0 = Range("c6").Value 

    tf = Range("c7").Value 

    dtheta = Range("c8").Value 

    Zf = Range("c9").Value 
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For Z = 1 To Zf 

 

    OutputData = 19 

    Range("B" + CStr(OutputData)).Select 

 

     

    t = t0  ' Initial value of clock time  

    theta = t0  ' Initial value of data-recording time 

    n = n0  ' Initial value of random variable N(t) 

             

     

    Do While t <= tf 

     

           

          u = Rnd(1)    ' Uniform random number 

           

          lambda = alfa * (nM - n) ^ 2  ' Intensity function 

           

           

          If lambda > 0 Then 

              

             nu = (-1 / lambda) * Log(1 - u) ' Random waiting time 

              

          Else 

              

             Exit Do 

           

          End If 

                     

          t = t + nu 
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          Do While (theta < t) 

                    

                ' Column of data-recording time 

                Range("B" + CStr(OutputData)).Value = theta 

 

     ' Column of realizations of N(t)   

                Range("C" + CStr(OutputData)).Value = n 

                 

                ' Column of sum of realizations 

                Range("D" + CStr(OutputData)).Value = Range("D" + CStr(OutputData)).Value + 

Range("C" + CStr(OutputData)).Value 

                 

     ' Column of means 

                Range("E" + CStr(OutputData)).Value = Range("D" + CStr(OutputData)).Value / Zf 

                 

    ' Column of sum of squares of realizations 

                Range("F" + CStr(OutputData)).Value = (Range("F" + CStr(OutputData)).Value) + 

(Range("C" + CStr(OutputData)).Value) ^ 2 

                 

                ' Column of variances 

                Range("G" + CStr(OutputData)).Value = (1 / (Zf - 1)) * (Range("F" + 

CStr(OutputData)).Value - (1 / Zf) * (Range("D" + CStr(OutputData)).Value) ^ 2) 

                  

     ' Column of means plus standard deviations 

                Range("H" + CStr(OutputData)).Value = Range("E" + CStr(OutputData)).Value + 

Sqr(Range("G" + CStr(OutputData)).Value) 

             

 

    ' Column of means minus standard deviations 
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                Range("I" + CStr(OutputData)).Value = Range("E" + CStr(OutputData)).Value - 

Sqr(Range("G" + CStr(OutputData)).Value) 

             

                OutputData = OutputData + 1 

                     

                If theta <= tf Then 

                 

                    theta = theta + dtheta 

                 

                Else 

                 

                    Exit Do 

                 

                End If 

           

          Loop 

                                    

           

          n = (n + 1) 

                                   

    Loop 

 

 

Next Z 

 

End Sub 
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Table G.2.  Computer Code in Microsoft Visual Basic for Performing Monte Carlo 

Simulation of the Pure-Birth Process via the Time-Driven Approach. 

 

 

Sub TimeDriven() 

'MONTE CARLO SIMULATION VIA TIME-DRIVEN APPROACH 

'CMS FORMATION AS A PURE-BIRTH PROCESS WITH A NON-LINEAR 

'INTENSITY FUNCTION BASED ON A SINGLE RANDOM VARIABLE 

 

Randomize 

 

Dim OutputData As Integer 

     

    OutputData = 18 

     

    Range("B" + CStr(OutputData)).Select 

     

    Range(Selection, Selection.End(xlToRight).End(xlDown)).ClearContents 

     

    Range("B" + CStr(OutputData)).Select 

 

    OutputData = 18 

    Range("B" + CStr(OutputData)).Select 

 

    ' Constants 

 

    alpha = Range("c3").Value 

    nM = Range("c4").Value 

    n0 = Range("c5").Value 

    t0 = Range("c6").Value 

    tf = Range("c7").Value 
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    dt = Range("c8").Value 

    Zf = Range("c9").Value 

     

 

For Z = 1 To Zf 

 

    OutputData = 18 

     

    'Range("B" + CStr(OutputData)).Select 

     

    t = t0   ' Initial value of clock time  

    n = n0   ' Initial value of random variable N(t) 

     

        Do Until t >= tf 

     

      ' Column of time 

       Range("B" + CStr(OutputData)).Value = t 

        

       ' Column of realizations of random variable N(t) 

       Range("C" + CStr(OutputData)).Value = n 

                        

        ' Column of sum of realizations 

       Range("D" + CStr(OutputData)).Value = Range("D" + CStr(OutputData)).Value + 

Range("C" + CStr(OutputData)).Value 

                

       ' Column of means 

       Range("E" + CStr(OutputData)).Value = Range("D" + CStr(OutputData)).Value / Zf 

 

       ' Column of sum of squares of realizations 

       Range("F" + CStr(OutputData)).Value = (Range("F" + CStr(OutputData)).Value) + 

(Range("C" + CStr(OutputData)).Value) ^ 2 
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       ' Column of variances 

       Range("G" + CStr(OutputData)).Value = (1 / (Zf - 1)) * (Range("F" + 

CStr(OutputData)).Value - (1 / Zf) * (Range("D" + CStr(OutputData)).Value) ^ 2) 

                     

       ' Column of means plus standard deviations     

       Range("H" + CStr(OutputData)).Value = Range("E" + CStr(OutputData)).Value + 

Sqr(Range("G" + CStr(OutputData)).Value) 

             

       ' Column of means minus standard deviations 

       Range("I" + CStr(OutputData)).Value = Range("E" + CStr(OutputData)).Value - 

Sqr(Range("G" + CStr(OutputData)).Value) 

        

        

       OutputData = OutputData + 1 

        

        

       t = t + dt 

        

        

       u = Rnd(1)        ' Uniform random number 

        

        

       lambdadt = alpha * (nM - n) ^ 2 * dt    ' Probability of occurrence for the birth event 
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       If u <= lambdadt Then 

                     

            n = n + 1 

        

       Else 

                       

            n = n 

               

       End If 

           

        

    Loop 

 

 

Next Z 

 

 

End Sub 
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Appendix H - Formation of Carbon Molecular Sieves: Simulation of 

Experimental Data for the Pure-Birth Process with a Non-Linear Intensity of 

Transition Based on a Single Random Variable

 

At the outset, or early stage, of the pore-narrowing, the number of carbon packets 

depositing onto the pores’ mouths is minute. Consequently, the random variable, N(t), with 

realization n can be assumed to obey a Poisson probability distribution given by110, 132, 133 
n( t)Pr[N(t) n] exp[ ( t)]

n!
β

= = − β  (H.1) 

where the positive parameter, ( t)β , corresponds to the distribution’s mean, Pm (t) ; thus, 

Pm (t) t= β  (H.2) 

Naturally, this is the equation of a straight line whose slope is β; hence, 

P f P 0

f 0

[m (t ) m (t )]
(t t )

−
β =

−
 (H.3) 

where t0 and tf are the initial and final times of an experiment performed at certain temperature. 

An estimate of β, which is denoted by β , can be computed in view of Eq. (H.3) as 

f 0

f 0

(n n )
(t t )

−
β =

−
 (H.4) 

where n0 and nf are the realizations of N(t) at t0 and tf, respectively. In terms of β , Eq. (H.2) can 

be rewritten as 

Pm (t) t≅ β  (H.5)  

At any time t, the random variable, W(t), representing the amount of carbon already deposited on 

ACs is given by Eq. (3.13) in the text as 

W(t) N(t)= ω   

where ω is the weight of a single packet of carbon; naturally, a realization of W(t) is  

w ( n)= ω  (H.6) 
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Moreover, the mean weight of carbon deposited per unit weight of ACs, Wm (t) , is expressed by 

Eq. (3.14) in the text as 

W M
' tm (t) W

' t 1
α⎛ ⎞= ⎜ ⎟α +⎝ ⎠

 (H.7) 

Solving this equation for t gives 

W

M

W

M

m (t)
W1t

' m (t)1
W

⎡ ⎤
⎢ ⎥

⎛ ⎞ ⎣ ⎦= ⎜ ⎟α ⎧ ⎫⎡ ⎤⎝ ⎠ ⎪ ⎪−⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

 (H.8) 

At the outset of the pore-narrowing, W Mm (t) W<< , and thus, this expression reduces to 

W

M

m (t)1t
' W

⎡ ⎤⎛ ⎞= ⎢ ⎥⎜ ⎟α⎝ ⎠ ⎣ ⎦
  

By assuming that Wm (t) w≅ , this equation can be rewritten as 

M

1 wt
' W

⎡ ⎤⎛ ⎞= ⎢ ⎥⎜ ⎟α⎝ ⎠ ⎣ ⎦
 (H.9) 

For illustration, n0 = 0 and nf = 100; thus, from Eq. (H.6), we have 

0w 0=  (H.10) 

and 

fw (100 )= ω  (H.11) 

respectively. The values of t0 and tf corresponding to w0 and wf are obtained from the above two 

equations in conjunction of Eq. (H.9) as 

0t 0=  (H.12) 

and 

f
M

1 100t
' W

⎡ ⎤ω⎛ ⎞= ⎢ ⎥⎜ ⎟α⎝ ⎠ ⎣ ⎦
 (H.13) 

By assuming that the experiment is performed at 973 K; the values of WM and 'α  have been 

recovered from the experimental data65 as 0.385 mg C and 0.022 min–1, respectively, in Chapter 

3. Moreover, the weight of a single packet is estimated to be 0.63 ⋅ 10–13 mg C; thus, tf is 
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computed from the above equation as 7.44 ⋅ 10–10 min. Clearly, this value of tf verifies that the 

simulated experiment is being performed at the very outset of the pore-narrowing.  

 

Inserting the values of n0, nf, t0, and tf into Eq. (H.4) gives β  as                        

1.36 ⋅ 1011 packets ⋅ min–1. With this value of in β , a realization of N(t), i.e., n, at any time t can 

be simulated by sampling a random number, or deviate, from a Poisson distribution whose mean 

is given by Eq. (H.5). A set of j Poisson deviates constitutes a set of simulated experimental data 

at the temperature of interest. Given in Table H.1 is the computer code written in R for 

generating these deviates. 
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Table H.1.  Computer Code in R for Generating Simulated Experimental Data as 

Poisson Deviates for the Pure-Birth Process. 

 

 

 

function(j, betahat, t0, tf){ 

 

 # This function generates j Poisson deviates 

 # on time interval (t0, tf). The proportionality 

 # constant is denoted by betahat.  

 

 timestep<-(tf-t0)/j 

  

 times<-seq(t0, tf, by=timestep) 

 

 means<-betahat*times 

 

 devs<-rpois(j+1,means) 

 

 solution<-cbind(times, devs) 

 

 plot(times,devs) 

 

 solution 

 

} 
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Appendix I - Derivation of the Master Equation of a Pure-Death Process 

 

Suppose that a system comprising a population of particulate or discrete entities in a 

given space is to be stochastically modeled as a pure-death process. The random variable 

characterizing this process is denoted by N(t) with realization n; moreover, the intensity of death 

is denoted by n (t)μ . Thus, one of the following two events is considered to occur during time 

interval (t, t t)+ Δ . First, the number of entities decreases by one, which is a death event, with 

conditional probability n{[ (t)] t o( t)}μ Δ + Δ . Second, the number of entities changes by a number 

other than one with conditional probability o(Δt), which is defined such that 

0
t

)t(oim
0t

=
Δ
Δ

→Δ
   (I.1) 

Naturally, the conditional probability of no change in the number of entities during this time 

interval is n(1 {[ (t)] t o( t)})− μ Δ + Δ . 

 

Let the probability that exactly n entities are present at time t be denoted as 

np (t) Pr[N(t) n]= = , where ( )0 0n n , n 1, ..., 2,1, 0∈ − ; n0 is the initial number of entities in the 

system. For the two adjacent time intervals, (0, t) and (t, t t)+ Δ , the occurrence of exactly n 

entities being present at time (t t)+ Δ  can be realized in the following mutually exclusive ways; 

see Figure I.1. 

 

(1) With a probability of n 1 n 1{[ (t)] t o( t)}p (t)+ +μ Δ + Δ , the number of entities will decrease 

by one during time interval (t, t t)+ Δ , provided that exactly (n 1)+  entities are present at time t. 

(2) With a probability of o(Δt), the number of entities will change by exactly j entities 

during time interval (t, t t)+ Δ , provided that exactly (n j)−  entities are present at time t, where 

02 j n≤ ≤ . 

(3) With a probability of n n(1 {[ (t)] t o( t)})p (t)− μ Δ + Δ , the number of entities will remain 

unchanged during time interval (t, t t)+ Δ , provided that n entities are present at time t. 
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Figure I.1. Probability balance for the pure-death process involving the mutually 
exclusive events in the time interval, (t, t + Δt). 
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Summing all these probabilities and consolidating all quantities of o(Δt) yield 

n n 1 n 1 n np (t t) {[ (t)] t}p (t) {1 [ (t)] t}p (t) o( t)+ ++ Δ = μ Δ + − μ Δ + Δ   (I.2) 

Rearranging this equation, dividing it by Δt, and taking the limit as Δt → 0 yield the master 

equation of the pure-death process as;73, 134 

n n 1 n 1 n n
d p (t) (t) p (t) (t) p (t)
dt + += μ − μ   (I.3) 

This in Eq. (4.1) in the text. 
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Appendix J - Formation of Carbon Molecular Sieves: System-Size Expansion 

of the Master Equation for the Pure-Death Process with a Non-Linear 

Intensity of Transition Based on a Single Random Variable 

 

As derived in the preceding appendix, the master equation of the pure-death process, Eq. 

(I.3), is given by 

n n 1 n 1 n n
d p (t) (t)p (t) (t)p (t)
dt + += μ − μ ,    n = n0, n0 – 1, …, 2, 1, 0   (J.1) 

In light of the one-step operator, E, this equation is reduced to 

n n n
d p (t) ( 1) (t)p (t)
dt

= − μE ,    n = n0, n0 – 1, …, 2, 1, 0   (J.2) 

The intensity of death, n (t)μ , in this expression is given by Eq. (4.2) in the text as 

n 0
dn(t) kn k 'n(n n)
dt

μ = − = + −    

where k and k' are proportionality constants. By expanding and rearranging the right-hand side of 

this expression, we obtain 

2
n 0

dn(t) (k k ' n )n k ' n
dt

μ = − = + −   (J.3) 

Substituting the above equation into Eq. (J.2) yields 

2
n 0 n

d p (t) ( 1)[(k k 'n )n k 'n ]p (t)
dt

= − + −E  (J.4) 

As elaborated in Appendix C, the random variable, N(t), is expressed as the sum of the 

macroscopic term, (t)Ωϕ , and the fluctuation term, 1/ 2 (t)Ω Ξ  as 
1/ 2N(t) (t) (t)= Ωϕ + Ω Ξ   

For the pure-death process of interest, the system’s size, Ω, in this expression is identified as n0; 

thus, 
1/ 2

0 0N(t) n (t) n (t)= ϕ + Ξ  (J.5) 
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whose realization given by 
1/ 2

0 0n n (t) n= ϕ + ξ    (J.6) 

Accordingly, pn(t) or p(n;t) is transformed into function π(ξ;t) as 

p(n; t) ( ; t)= π ξ  (J.7) 

Differentiating this expression with respect to t gives rise to 

1/ 2
0

d dp(n; t) n
dt t dt

∂π ϕ ∂π⎛ ⎞= − ⎜ ⎟∂ ∂ξ⎝ ⎠
 (J.8) 

where ( ; t)π = π ξ . In light of the one-step operator, E, we obtain 

n n 1= +E   

Substituting Eq. (J.6) for n on the right-hand side of this equation yields 
1/ 2

0 0
1/ 2 1/ 2 1/ 2

0 0 0 0

n [n (t) n ] 1

[n (t) n ] [nn n ]−

= ϕ + ξ +

= ϕ + ξ +

E
E

 

or 
1/ 2 1/ 2

0 0 0n n (t) n ( n )−= ϕ + ξ +E  

In other words, E transforms n into (n 1)+ , and therefore, ξ into 1/ 2
0( n )−ξ + ; as a result, from Eq. 

(J.7), 

p(n; t) ( ; t)= π ξE E  

or 
1/ 2

0p(n 1; t) ( n ; t)−+ = π ξ +  (J.9)  

The Taylor expansion of 1/ 2
0( n ; t)−π ξ +  about ξ, is obtained as 

2
1/2 1/2 1/2 2

0 0 0 2

1( n ;t) ( ; t) n ( ;t) (n ) ( ; t) ...
2!

− − −∂ ∂
π ξ+ = π ξ + π ξ + π ξ +

∂ξ ∂ξ
  

or 
2

1/2 1/2 1
0 0 0 2

1( n ;t) 1 n n ... ( ; t)
2

− − −⎛ ⎞∂ ∂
π ξ+ = + + + π ξ⎜ ⎟∂ξ ∂ξ⎝ ⎠

 (J.10) 

In view of Eqs. (J.7) and (J.9), the above expression can be transformed to 



 118

2
1/2 1

0 0 2

1p(n 1;t) 1 n n ... p(n;t)
2

− −⎛ ⎞∂ ∂
+ = + + +⎜ ⎟∂ξ ∂ξ⎝ ⎠

 

or 
2

1/2 1
0 0 2

1p(n;t) 1 n n ... p(n; t)
2

− −⎛ ⎞∂ ∂
= + + +⎜ ⎟∂ξ ∂ξ⎝ ⎠

E   

By comparing both sides of this expression, we have 
2

1/2 1
0 0 2

11 n n ...
2

− −∂ ∂
= + + +

∂ξ ∂ξ
E  (J.11) 

Substituting this equation in conjunction with Eqs. (J.6), (J.7), and (J.8) into the master equation, 

Eq. (J.4), leads to 

1/ 2
0

dn
t dt

⎛ ⎞∂π ϕ ∂π
− ⎜ ⎟∂ ∂ξ⎝ ⎠

 

2
1/2 1 1/2 1/2 2

0 0 0 0 0 0 02

1n n n ... [(k k'n )( n ) k'n ( n ) ]
2

− − − −⎛ ⎞∂ ∂
= + + + ϕ+ ξ − ϕ+ ξ π⎜ ⎟∂ξ ∂ξ⎝ ⎠

  (J.12) 

Absorbing the system’s size, n0, into the time variable, t, as 

0n t = γ    

and truncating the terms after the second-order derivative for large n0 give 

1/ 2
0

dn
d

⎛ ⎞∂π ϕ ∂π
− ⎜ ⎟∂γ γ ∂ξ⎝ ⎠

  

2
1/2 1 1/2 1/2 2

0 0 0 0 0 02

1n n [(k k'n )( n ) k'n ( n ) ]
2

− − − −⎛ ⎞∂ ∂
= + + ϕ+ ξ − ϕ+ ξ π⎜ ⎟∂ξ ∂ξ⎝ ⎠

  (J.13) 

Expanding the right-hand side of this equation and collecting the resultant terms of orders 1/ 2
0n  

and 0
0n  separately give 

1/ 2
0

dn
d

⎛ ⎞∂π ϕ ∂π
− ⎜ ⎟∂γ γ ∂ξ⎝ ⎠

 

2
0
0 2

0 0

k 1 kn (2 1)k ' ( ) k ' ( 1)
n 2 n

⎧ ⎫⎡ ⎤ ⎡ ⎤∂ ∂ π⎪ ⎪= − ϕ − + ξπ + − ϕ ϕ − + ϕ⎨ ⎬⎢ ⎥ ⎢ ⎥∂ξ ∂ξ⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
 

1/ 2
0

0

kn k ' ( 1)
n

⎧ ⎫⎡ ⎤ ∂π⎪ ⎪− ϕ ϕ − − ϕ⎨ ⎬⎢ ⎥ ∂ξ⎪ ⎪⎣ ⎦⎩ ⎭
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2 2
1/ 2 1 2 1/ 2 2

0 0 02 2

1 1 1n kn k ' k ' ( ) k ' ( ) k 'n ( )
2 2 2

− − −⎡ ⎤∂ ∂ ∂⎛ ⎞+ + − ϕ ξπ − ξ π − ξ π⎢⎜ ⎟ ⎥∂ξ ∂ξ ∂ξ⎝ ⎠⎣ ⎦
  (J.14) 

Comparing both sides of the above expression gives rise to 

0

d kk ' ( 1)
d n
ϕ

= ϕ ϕ − − ϕ
γ

 (J.15) 

and 
2

2
0 0

k 1 k(2 1)k' ( ) k ' ( 1)
n 2 n

⎡ ⎤ ⎡ ⎤∂π ∂ ∂ π
= − ϕ− + ξπ + − ϕ ϕ− + ϕ⎢ ⎥ ⎢ ⎥∂γ ∂ξ ∂ξ⎣ ⎦ ⎣ ⎦

  (J.16) 

Of these two equations, the former is the macroscopic equation governing the overall behavior of 

the process, and the latter is a linear Fokker-Plank equation governing the fluctuations of the 

process around the macroscopic values and whose coefficients depend on t through ϕ(t). 
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Appendix K - Formation of Carbon Molecular Sieves: Derivation of the Mean 

and Variance of the Pure-Death Process with a Non-Linear Intensity of 

Transition Based on a Single Random Variable 

 
 

For convenience, Eq. (A-6) for the random variable, N(t), is rewritten below 
1/ 2

0 0N(t) n (t) n (t)= ϕ + Ξ   (K.1) 

From this equation, the mean of N(t), i.e., E[N(t)] or m(t), is obtained as 
1/ 2

0 0
1/ 2

0 0E[N(t)]

E[N(t)] E[n (t) n (t)]

n E[ (t)] n E[ (t)]

= ϕ + Ξ

= ϕ + Ξ
  

or 
1/ 2

0 0m(t) n (t) n E[ (t)]= ϕ + Ξ  (K.2) 

Similarly, the variance, Var[N(t)] or 2 (t)σ , is 
1/ 2

0 0
2
0 0Var[N(t)

Var[N(t)] Var[n (t) n (t)]

n Var[ (t)] n Var[ (t)]]

= ϕ + Ξ

= ϕ + Ξ
  

or 
2

0(t) n Var[ (t)]σ = Ξ  (K.3) 

As indicated by Eq. (B.18), for any arbitrary random variable N(t), σ2(t) can be related to E[N(t)] 

as 
2 2 2(t) E[N (t)] {E[N(t)]}σ = −  (K.4) 

In view of this expression, Eq. (K.3) can be rewritten as 

( )2 2 2
0(t) n E[ (t)] {E[ (t)]}σ = Ξ − Ξ  (K.5) 

Because N(0) = n0 and (0) 0Ξ = , we have, from Eq. (K.1) 

(0) 1ϕ =   (K.6) 

The macroscopic equation governing the overall behavior of the system is given by Eq. (J.15) as 

0

d kk ' ( 1)
d n
ϕ

= ϕ ϕ − − ϕ
γ
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Because n0t = γ, this equation can be rewritten as 

0
d k 'n ( 1) k
dt
ϕ

= ϕ ϕ − − ϕ   (K.7) 

Upon integration, this expression yields 

[ ]
0

0 0

(k k 'n )(t)
c exp (k k 'n )t k 'n

+
ϕ =

+ +
  

In view of Eq. (K.6), the constant, c, in the above expression is k; thus, 

0

0 0

(k k 'n )(t)
k exp[(k k 'n )t] k 'n

+
ϕ =

+ +
 (K.8) 

For convenience, Eqs. (D.12) and (D.14) are rewritten below 

x x
g(x) f (x) f (x) g(x)

x x
⎡ ⎤ ⎡ ⎤∂ ∂

= −∑ ∑⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦
  (K.9)  

and 
2 2

2 2
x x

g(x) f (x) f (x) g(x)
x x

⎡ ⎤ ⎡ ⎤∂ ∂
=∑ ∑⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

  (K.10)  

The linear Fokker-Plank equation governing the fluctuations of the process around the 

macroscopic values is given by Eq. (J.16) as 
2

2
0 0

k 1 k(2 1)k ' ( ) k ' ( 1)
n 2 n

⎡ ⎤ ⎡ ⎤∂ ∂ ∂
π = − ϕ− + ξπ + − ϕ ϕ− + ϕ π⎢ ⎥ ⎢ ⎥∂γ ∂ξ ∂ξ⎣ ⎦ ⎣ ⎦

  (K.11) 

Because n0t = γ, this equation can be transformed into 
2

0 0 2

1[ (2 1)k 'n k] ( ) [ k 'n ( 1) k ]
t 2

∂ ∂ ∂
π = − ϕ − + ξπ + − ϕ ϕ − + ϕ π

∂ ∂ξ ∂ξ
  (K.12) 

Multiplying both sides of the above equation by ξ and summing over all values of ξ yield 
2

0 0 2

1[ (2 1)k 'n k] ( ) [ k 'n ( 1) k ]
t 2ξ ξ ξ

⎡ ⎤⎡ ⎤∂ ∂ ∂
ξ π = − ϕ − + ξ ξπ + − ϕ ϕ − + ϕ ξ π∑ ∑ ∑⎢ ⎥⎢ ⎥∂ ∂ξ ∂ξ⎣ ⎦ ⎣ ⎦

  (K.13) 

By virtue of Eqs. (K.9) and (K.10), the right-hand side of this expression can be transformed to 
2

0 0 2

1[ (2 1)k 'n k] [ k 'n ( 1) k ]
t 2ξ ξ ξ

⎡ ⎤⎡ ⎤∂ ∂ ∂
ξ π = − ϕ − + − ξπ ξ + − ϕ ϕ − + ϕ π ξ∑ ∑ ∑⎢ ⎥⎢ ⎥∂ ∂ξ ∂ξ⎣ ⎦ ⎣ ⎦
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or 

0[ (2 1)k 'n k]
tξ ξ

∂ ⎡ ⎤ξ π = − − ϕ − + ξπ∑ ∑⎢ ⎥∂ ⎣ ⎦
  (K.14) 

The first moment of random variable (t)Ξ , i.e., E[ (t)]Ξ , is defined as 

E[ (t)] ( ; t)
ξ

Ξ = ξπ ξ∑  

or 

E[ (t)]
ξ

Ξ = ξπ∑   (K.15) 

and thus, 

d E[ (t)]
dt tξ

∂
Ξ = ξ π∑

∂
  (K.16) 

In light of the above two equations, Eq. (K.14) reduces to 

0
d E[ (t)] [ (2 1)k 'n k] E[ (t)]
dt

Ξ = − − ϕ − + Ξ    (K.17) 

Inserting Eq. (K.8) for (t)ϕ  into this equation and integrating the resulting expression yield 

{ }
0

2
0 0

c ' exp[(k k 'n )t]E[ (t)]
k exp[(k k 'n )t] k 'n

+
Ξ =

+ +
   (K.18) 

From the initial conditions for the transformed probability distribution, π(ξ;t), 

1 if 0
( ;0)

0 elsewhere

ξ =⎧
⎪π ξ = ⎨
⎪
⎩

   (K.19) 

and the definition of E[ (t)]Ξ , as given by Eq. (K.15), we have 

E[ (0)] 0Ξ =    (K.20) 

thereby indicating that 

c ' 0=    (K.21) 

Hence, 

E[ (t)] 0Ξ =   (K.22) 

 

Similarly, multiplying both sides of Eq. (K.12) by ξ2 and summing over all values of ξ 

yield 
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2
2 2 2

0 0 2

( ) 1[ (2 1)k 'n k] [ k 'n ( 1) k ]
t 2ξ ξ ξ

⎡ ⎤⎡ ⎤∂ ∂ ξπ ∂
ξ π = − ϕ − + ξ + − ϕ ϕ − + ϕ ξ π∑ ∑ ∑⎢ ⎥⎢ ⎥∂ ∂ξ ∂ξ⎣ ⎦ ⎣ ⎦

  (K.23) 

By virtue of Eqs. (K.9) and (K.10), the right-hand side of the above expression can be 

transformed to 
2

2 2 2
0 0 2

1[ (2 1)k 'n k] [ k 'n ( 1) k ]
t 2ξ ξ ξ

⎡ ⎤⎡ ⎤∂ ∂ ∂
ξ π = − ϕ − + − ξπ ξ + − ϕ ϕ − + ϕ π ξ∑ ∑ ∑⎢ ⎥⎢ ⎥∂ ∂ξ ∂ξ⎣ ⎦ ⎣ ⎦

  

or 

2 2
0 02[ (2 1)k 'n k] [ k 'n ( 1) k ]

tξ ξ ξ

∂ ⎡ ⎤ ⎡ ⎤ξ π = − − ϕ − + ξ π + − ϕ ϕ − + ϕ π∑ ∑ ∑⎢ ⎥ ⎢ ⎥∂ ⎣ ⎦ ⎣ ⎦
  (K.24) 

For the transformed probability distribution, π(ξ;t), the following property must hold 

( ; t) 1
ξ

π ξ =∑    

or 

1
ξ

π =∑   (K.25) 

Thus, Eq. (K.24) can be rewritten as 

2 2
0 02[ (2 1)k 'n k] [ k 'n ( 1) k ]

tξ ξ

∂ ⎡ ⎤ξ π = − − ϕ − + ξ π + − ϕ ϕ − + ϕ∑ ∑⎢ ⎥∂ ⎣ ⎦
  (K.26) 

The second moment of random variable (t)Ξ , i.e., 2E[ (t)]Ξ , is defined as 
2 2E[ (t)] ( ; t)

ξ
Ξ = ξ π ξ∑   

or 
2 2E[ (t)]

ξ
Ξ = ξ π∑    (K.27) 

and thus, 

2 2d E[ (t)]
dt tξ

∂
Ξ = ξ π∑

∂
  (K.28) 

In view of the above two equations, Eq. (K.26) reduces to 

2 2
0 0

d E[ (t)] 2[ (2 1)k 'n k] E[ (t)] k 'n ( 1) k
dt

Ξ = − − ϕ − + Ξ − ϕ ϕ − + ϕ   (K.29) 

Inserting Eq. (K.8) for (t)ϕ  into this equation and integrating the resulting expression give rise 

to 
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2E[ (t)]Ξ  

{ }
0

0 4
0 0

exp[(k k 'n )t]k(k k 'n )
k exp[(k k 'n )t] k 'n

+
= +

+ +
  

{
}

2 2 2
0 0 0 0

2
0 0

k exp[2(k k 'n )t] (k 'n ) 2k k 'n t exp[(k k 'n )t]

2k(k 'n ) t exp[(k k 'n )t]

⋅ + − + +

+ +  
 

{ }
0

4
0 0

c" exp[2(k k 'n )t]
k exp[(k k 'n )t] k 'n

+
+

+ +
 (K.30) 

From the aforementioned initial conditions for the transformed probability distribution, π(ξ;t), as 

given by Eq. (K.19), and the expression of 2E[ (t)]Ξ  as defined by Eq. (K.27), we have 
2E[ (0)] 0Ξ = , (K.31) 

thereby indicating that 
2 2

0 0c '' k(k k 'n )[(k 'n ) k ]= + −   (K.32) 

Hence, 
2E[ (t)]Ξ  

{ }
0

0 4
0 0

exp[(k k 'n )t]k(k k 'n )
k exp[(k k 'n )t] k 'n

+
= +

+ +
 

{ }2 2
0 0 0 0 0 0k exp[2(k k 'n )t] (k 'n ) (k k 'n )[k 'n k(2k 'n t 1)]exp[(k k 'n )t]⋅ + − + + + − +  

  

  (K.33) 

 

The mean, E[N(t)] or m(t) is obtained by substituting Eqs. (K.8) and (K.22) into Eq. 

(K.2) as 

0
0

0 0

(k k 'n )m(t) n
k exp[(k k 'n )t] k 'n

⎧ ⎫+
= ⎨ ⎬+ +⎩ ⎭

 (K.34) 

By defining 0(k k 'n )α = +  and 1
0k (k k 'n )−β = + , this expression becomes  

0
1m(t) n

1 [exp( t) 1]
⎧ ⎫

= ⎨ ⎬+ β α −⎩ ⎭
 (K.35) 
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This is Eq. (4.4) in the text. Similarly, the variance, Var[N(t)] or σ2(t), is obtained by inserting 

Eqs. (K.22) and (K.33) into Eq. (K.5) as 
2 (t)σ  

{ }
0 0

0 4
0 0

k(k k 'n )exp[(k k 'n )t]n
k exp[(k k 'n )t] k 'n

+ +
=

+ +
 

{ }2 2
0 0 0 0 0 0k exp[2(k k 'n )t] (k 'n ) (k k 'n )[k 'n k(2k 'n t 1)]exp[(k k 'n )t]⋅ + − + + + − +  

  

 (K.36) 

In terms of α and β, this expression can be transformed into 

{ }
2

0 4
exp( t)(t) n

1 [exp( t) 1]
β α

σ =
+ β α −

  

{ }( )22 1 exp( t) 1 2 [1 ( 1)( t)] 2 sinh( t)⋅ β − + α − β + β − α + β α               (K.37) 

This is Eq. (4.6) in the text. 


