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INTRODUCT ION

The split—plot design is used in two-factor experiments where one
factor requires larger experimental units than the other. Suppose that we
wish to compare several levels of furnaces and moulds for making alloys. A
fairly large amount of material is made from each furnace, and the material
is then poured (split) into different types of mould. With, say, 3 levels of
furnaces (A) and 4 levels of moulds (B), a split—-plot design with 3
replications might look as follows, after randomization. Each replication is
made up of 3 large units, each unit representing a type of furmace, and each

large unit is split into 4 'plots’', each plot representing a type of mould.

Replication 1 Replication 2 Replication 3

In field experiments, this design can arise when an extra factor is
introduced into the experiment by dividing each block of a field into a
number of parts. Suppose that the experiment is planned originally to test
factor A with 3 levels. The division of each unit for A into 4 parts permits
the inclusion of an extra factor B at four levels. Within each unit for A
the four levels of B are allocated at random to the four plots. The plan

after randomization might appear as the above plan.
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In the terminology of split designs, the larger units are called main
plots and the smaller units are called sub—plots. The randomization takes
place in two stages ——— the allocation of the whole plot treatments to the
whole plots, and the allocation of the sub—plot treatments to the sub-plots
within each main plot (random assignment). In the classical split plot
design the whole plots are arranged in Randomized Complete Blocks. Other
popular designs for the whole plots are Completely Random and Latin Squares.
The development below will be for the Randomized Complete Block arrangement
of whole plots.

The mathematical model for this experiment is

yijk =p+p, ¢ aj + E’ij + ﬁk + (uB)jk + Bijk (1)

i=1.2,....r j=1,2.....a k=1.21---.|b

where il = overall mean
Py < block/replication effect
aj = whole plot treatment effect
ij = residual main plot effect [error (a)]
ﬁk = sub-plot treatment effect
(aB)jk = whole plot treatment*sub-plot treatment interaction effect
s = random sub-plot error [error (b)]

ijk
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In the analysis of this type of design, sources which are part of the

whole-plot variation are usually grouped separately from those which are
part of the sub—-plot variation,

The model of eguation (1) can then be expressed in terms of each size

of experimental unit:

Yijk =pn + Py + aj + Bij 1 whole plot of the model

t B ¢ (uﬂ)jk + ®iik 1 sub-plot of the model



II. DESIGN CONSIDERATION

{1) Classical Split Plot Design.

Even when one factor does not require larger plots than the other, the
split-plot design still may be appropriate. We might have started the
experiment to compare the main plot treatments only. The sub-plot treatments
might have arisen as an afterthought, or might even be suggested by the
experiment already in progress. Another situation is where we are not too
interested in one factor (we might already have sufficient information on
the effects of this factor) and we are much more interested in the effect of
the other factor as well as interactions. In the simple Randomized Complete
Block design, any two treatments are compared equally precisely while in
the split-plot design, we sacrifice precision of the comparison among the
main plot treatments to increase the precision of the comparison among the
sub-plot treatments. This is intuitively clear, since the sub-plot
treatments are compared on more homogeneous experimental units than the main
plot treatments. Also, the sub—plot treatments are more highly replicated
than the main plot treatments.

Several examples of the use of this design are as follows:

(i) Comparison of several recipes of cake mix and baking temperatures.

A sufficiently large amount of cake mix is made using each recipe.
The batter from each recipe is then poured into several cake pans
for baking at different temperatures.

(ii) Comparison of several milking machines (main plot) and several

methods of pasteurizing the milk (sub-plot).



(iii) In Phytopathology, plants make natural plot and leaves within a
plant form the sub-plots.

(iv) In organoleptic testing, we may be comparing several brands of
orange juice. A can from each brand may be split into several
aliquots for judging by a taste panel. The replication of main
plots treatments will be provided by conducting the tasting on each
of several days.

In consideration of the relative merits of randomized complete block
design and split plot design, Cochran and Cox (8) pointed out that the
following points are relevant.

(i) With the use of split-plot design, usually the B and the AB
effects are estimated more precisely than the A effects. Moreover,
the number of degrees of freedom available for the experimental
error mean square is smaller for the whole plot comparisons than
for the sub-plot comparisons.

(ii) The increase precision on B and AB effects is obtained by the
sacrifice of precision on A effects using the split-plot design.
However, for tests of significance or the comnstruction of
confidence limits, the randomized complete block design holds a
slight advantage on the average since it provides more degrees of

freedom for the estimate of the single error variance (assuming
that experimental error can be controlled equally well in both
designs).

(iii) The chief practical advantage of the split-plot arrangement is
that it enables factors that require relatively large amounts of
materials and factors that require only small amounts to be

combined in the same experiment. If the experiment is planned to



investigate the first type of factor, so that large amounts of
material are going to be used anyway, factors of the second type
can often be included at very little extra costs and some

additional information can be obtained very cheaply.

(2) Assumptions

Assume that we have r number of blocks, a levels of factor A, b levels
of factor B and one observation per cell. The model for the yield of the ith
block from the jth level of factor A on the kth level of factor B is given
by model (1). To carry out the analysis of variance, we make several
assumptions on the parameters of the given model. The assumptions and

restrictions imposed on the model are:

1) 5.. ~ N(0,6°)
ij d

2) e, ~ N(O,u:)

ijk

3) Bij and g,., are independent

ijk
4) Factor A and Factor B are fixed
5) Blocks are random

6) Ta, =XB, =2 (ap).,, = E(ep), =0
i 9k k i ik o jk
The total sum of squares of the deviations of Yijk from the overall

mean can be subdivided into six independent parts by means of the following

identity.
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¥ (y... -y )
$5E ijk A
=35 My, -y VY+(y,-5 V+(3,.-y. -y.+5% )
ijk . e s e s ] .e J les .Jo P
+(y..k- y..Q)+(y. k- Ylj.— y..k+ y.l.)
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- - - 2 2
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- - 2
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e Vijx Tij. y.;k y.J_) zero cross—products
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i J k
+ Uy, -y, -y 47 G - -7 47 )
e T hEs Ydas Tads ik 7.3, 0B T e
ij .- jk
* BIF Uygeer ¥ps = ¥ 3% 7 )2
iik ij ij. o j .

The quantity on the left hand side of the equation is nothing but the
total sum of squares (SST) and the guantities on the right hand side are the
subdivision or partitioning of the total sum of squares into its components,
namely the sum of squares due to blocks (SSR), sum of squares due to
wholeplot treatment (SSA), sum of squares due to whole plot error (SSE(a)),
sum of sguares due to sub-plot treatment (SSB), sum of squares due to the
interaction of whole plot treatment and sub—-plot treatment (SSAB) and the
sum of squares dune to random error (SSE(b)). Hence, we have the relation

SST = SSR + SSA + SSE(a) + SSB + SSAB + SSE(b). (2)
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Likewise, the total degrees of freedom which is (abr-1) is also
partitioned into its components, that is,
(abr-1) = (r-1) + (a-1) + (r-1)(a-1) + (b-1)
+ (a-1) (b-1) + a(b-1)(r-1). (3)
Corresponding to each source of variation, the mean square is obtained
by dividing the sum of squares by its corresponding degrees of freedom.
An analysis of variance table for split plot design is shown in
Table 1, where A denotes the whole plot treatment with a levels, B denotes
the sub-plot treatment with b levels, and r denotes the number of

replications.

Table 1. Analysis of Variance Table for Split—Plot Design

Source df SS MS E(MS)
. . 2 2 2
Replication =1 SSR HSR S, + bad + abur
2 2 2
A a-1 SSA MSA S, + bod + rbZAujf(&—I)
2 2
Error(a) (a=-1)(r-1) SSE(a) MSE(a) v, + bsd
2 2
B b-1 SSB MSB o, + arX ka(b—l)
2 2
A*B (a-1)(b-1) SSAB MSAB Ue + ri¥ (aﬁljkf(a—l)(b-l)
2
Error(b) a(b-1)(r-1) SSE(b) HSE(b) Ge

Total abr-1 SST



(3) Derivation of Expected lMean Squares.

The expected mean squares are derived algebraically by using the model
assumptions, that is, we use the mean squares obtained from the analysis of
the given model and evaluate the average value for each source of variation.
They are as follows:

a) Expected mean squares of Factor A.

E(MSA) = E [rbX (y i - } )zf(a-l)] , where the guantities inside the

J

parethesis sign can be expressed as:
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[mj + (s; aij - ?? 6ij)lar + (aXZ &iix 33X eijk)iabr]

i ij ik ijk
2
= a% + (a2£ 8.% - ZaI.Bi? + Ei.ai%)fa r2
2 2.2 2
+ (azii ai.k - 2al} si'k + I2% zi.k)/a br
ix ix M ijk M

+ cross products of independent mean zero terms.

Taking the expectations, we get

2.2 12
u? + di(azr - 2ar + ar)/a2r2 + ai(azrb — 2arb + arb)/a' b r

=
Can
< |
|
[
~
I

a% + dz(a—l)lar + azia-l)labr
i | d e



Thus, E[rbX (¥ i ¥

J

1271a-131 = 4% % H® * 2BE ol la=1]
. e d J

b) Exzpected mean squares for main plot residual term
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E[MSE(a)] = E[bZZ (;ij -y, -y .+ v )zf(a-l)(r—l)]. where each

IJ LTeos -J- L]

quantites inside the parethesis sign can be expressed as

]
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1
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2
+ (arlX eijk- rix Bi.jkﬂ a¥y aijk+ IIT aijk)/abr]

k Jjk ik ijk

. J 1 1]

2
+ 2ar5?. -2rY 82.. - 2ax 62..)1'52:2] + [(a2r2£ e, ,
ij , 1] ;13 ijk

J i k

+ aZIZ ai.k + 3L s%.k - 2a2rZ Ei'k - 2ar22 Bzi'k
ik M ijg M k M xk

2
+ 2ar¥ ei’.k - 2r3¥ Bi‘k - 2a3¥ ei.k)la hzrzl
r jk ix

+ cross products of independent mean zerc terms.
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+ 22562 + alT sl + 3560 - 2arbo, - 2a°rb;, + daré,,
o ij © U ij L ij ij ij ij

2
+tf}:82..

jk

2
+ 2arX eijk

k

ijk



Taking the expectations

+ ci(azrzb + rzab + a2rb + abr - 2arzb - 2azrb + 2arb + 2arb

- 2arb - Zarb)/azbzrz

ci(a-l)(r—l)lar + ci(a-l)(r-l)/abr

- - - - .2 2 2
Thus, E[bf? (yij.— Y. y_j.+ y.") /(a=1)(r-1)] = o, * ba;

¢) Expected mean squares for Factor B.

E(MSB) = ElarX (y s ¥ )zlb-ll, were each quantities inside the
k . e . e

parenthesis sign can be expressed as follows

Tiik : .

|
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+
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+
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+
=]
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]

p +5 +e

o
L}
=
+

Substituting this guantities, we get

- - - - .2
(y oY )2 = (Bk + 8 g™ 8 )
2
= [ﬁk + (b?; Bijk - ??i eijk)/abr]
ij ijk
= Bz + (bZIZ e?. + 333 e?. - 2bXX s%. )!azbzr2
k ij ijk ijk ijk ij ijk

Taking the expectations

2 2
ﬁi + Ui(abzr + abr — 2abr)/a bzr

il

E(;. ' ;...}

]

2 2
Bk + oe(b-l)fabr

aziazrz + r2a + ra2 + ra - 2ar2 - 2a2r + 2ar + 2ar - 2ar - 2ar)!a2r2

11
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Thus, ElarZ (y

12 1p-11 = &° + arl Ao/ (b~1)
k . e k

Lk Y.

d) Expected mean squares of the interaction

E(MSAB) = E[riX (y kT Y_j_“ Y..k+ y

)2f(a~1)(b—1)], where each
ik g y

quantites inside the parethesis sign can be expressed as follows

¥ = + + + + + &
Yy =E*P ¥o, ¥8  vf Flapl v E g
Y. =p+p +ta, +5 , +e

Yda =7 F 5 Caf | Tsjs

¥ pmarp ¥Yh FhetE 4

Yy =p+p +5 +e¢e

Substituting the terms, we get

(F0mF7 . -F +5 )2
V5 Y. Y

[(aﬁ)jk + (s_jk - E.j. -e 4 + s.._)]

2
[(cp). + (abS e.. — a3¥e, . —b3¥e,  + 23X e . )/abrl
jk i ijk ik ijk i ijk ijk ijk

2 2.2 2 2 2 2 2 2
(aB)jk + [a"D ? 8ijk + a 33 e, +D0 F? eijk + IiZ-ei.

i k
i ik ijk ij ijk J
2 2 2 2 2 2
- - + 2 + 2ab . .
2a b?'sijk 2ab ? aijk ab?‘eijk a ; lek
i i i i
22
- 2al} e?. - ZbIIle%. ]/azb T
: ijk .. 1jk
ik ij

+ cross products of independent mean zero terms.



Taking expectations

E(y

]

Thus, ElrIz {y.jk- y.j.- Y--k+ y

.k

5 = - 2
LT SRS AR

(aB)?k + Gi(azbzr + azbr + abzr + abr —Zazbr -2br2 + 2abr

+ 2abr - 2abr - 2abr)/a2b2r2

(aa)ik + Gi(a-l)(b-l)/abr

y2/(a=1) (b-1) ]

ik

= ui + rIE.(uﬁ)jkI(a-l}{b-l)

e) Expected mean squares of random error

E[MSE(b)] = E[DY (y

- - T
ijk. Yig.” Y. Y.

ijk

gquantities inside the parethesis sign can be expressed as follows

= + + + E..
Yigp =Bt Py tay ¥ 0, v B ¥ (aBliy t ey
v =pu + + + + g
Vig, =Bty tey ¥ b8y,
¥y . =p+p +8 ,+a, + + (aB),, + e .
Y.Jk 2 p. .J aJ ﬂk B jk .jk

13

2 }2la(h—1)(r~1)]. where each
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Substituting the terms, we get

- - - 2
(Fi5 ™ Vi, " Vo T Y.5)
- - - .2
= = - +
(lek 5 1 g.Jk E.J.)
2
= [(brs..k - X & ip T b e, ip t iy si.k)lbr]
k J i J ik J
= (bzrzs?. 22 rzx s?. + bziis?. + FX 32. - 2br28?. - 2b2rs%.
ijk ijk . ijk ; ijk ijk ijk
k i ik
+ 2bre?. + 2bre?. - 2:212%. - ZbZ.s?. )/bzr2
ijk ijk X ijk i ijk

+ cross products of independent mean zero terms.

Taking the expectations

- - - 2
Ely 50 Yi5.7 Y50 V..

—
I

= 62(b2r2 + br2 + bzr + b2r2— 2b2r - Zbr2 + 2br

+ 2br - 2br - 2br)/br

1l

ci(h—l)(r—l)lbr

- - .2 2
Thus, E[fﬁi (yijk - yij. " Yk + y'j.) /a(b-1)(r-1)] = o

<1

f) Expected mean squares of the blocks

E(MSR) = E[abX (}i -y )2I(r—1)], where each quantites inside the

L] .«
1

parethesis sign can be expressed as follows

+ + +
ptp, b e,

9l
0

«
]
e
+
o
+
ol
+
®
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Substituting the terms, we get

(}. -y )

1.. LR

_ _ _ 2
[(rpi ?Ipi)/r + (r?:.&ij i}.'. Bij)/ar + (rIZ €y b33 eijk).’abr]

i J ij jk . ijk
2 2 2
= (7p, + L p, - 2rp%)/r2 + (rZI.G%. + 52.6?. - 2rIZ&%.)/a2r2
1 £ 1 1 5 1) 5 1] - 1]
i j ij j
§ (o5 ei.k + 555 ¢F - 2033 ai.k)lazbzrz
jr M ijg M jrk M

+ cross products of independent mean zero terms.

Taking the expectations

Ely. -y )

1.. L )
= ai(rz + r - 21‘)/:2 + ui(arz + ar - Zar)/azr2

+ ai(abr2 + abr - 2abr)la2b2r2

az(r—l)lr + uz(r—l)lar + az(r-l)fabr
T d e

Thus, E[abI'(;ri -3 )zl(r—l)] = ai + bci + abai

As can be seen from the expected mean squares, the comparisons between
factor A effects is a between whole plot experimental unit comparison. Thus,
the proper F-statistic for comparing equal factor A effects is MSA/MSE(a).
The comparisons between factor B effects and the interaction of factors A
and B are between sub-plot experimental unit comparisons. Thus, the proper
F-statistics for comparing equal factor B effects and for comparing the

interactions are MSB/MSE(b) and MSAB/MSE(b), respectively.



16
Moreover, if the allocation of the whole plot treatments is done either

in completely random fashion or Latin Square arrangement, then it can be
shown that the expected mean sqguares for the source of variation due to the
main effects and the interaction effects are exactly the same. Likewise, the
F-statistic to test the significance of the main effects and interaction
effects is also the same, Table 2 shows the various expected mean squares
for experiments laid out in split-plot design where the whole plot

treatments are arranged in a completely randomized design.

Table 2. Analysis of Variance Table for Split-Plot Design
(whole plot units arranged in CRD)

—

Source df SS MS E(MS)
A a-1 SSA HSA ai + bsi + brE'ai/(a—l)

2 2

Error(a) a(r-1) . SSE{a) MSE(a) o, + bcd
2 2

B b-1 SSB MSB o, t ar¥ ﬁj/(b—l)
A*B (a-1) (b-1) SSAB  MSAB ok + £3% (amfjua-n (b-1)
Error(s) a{b-1) (r=1) SSE()  MSE() o
Total abr-1 SST

For a split plot design where the whole plot treatments are arranged in

Latin Square design, the analysis of variance is shown in Table 3.
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Table 3. Analysis of Variance Table for a Split Plot Design
(whole plot units arranged in Latin Square)

Source af ss MS E(MS)
Rows a-1 SSR MSR 02 + bcz + a'oe:'2
e d o
Columns a-1 SS§C HMSC ai + bai + abci
2 2 2
A a-1 SSA MSA o + bo, + abl a,/(a-1)
e d k
2 2
Error(a) (a=1) (a=-2) SSE(a) MSE(a) o, + bad
B b-1 SSB MSB 0‘2 & B°F Bff(b—n
A*B (a-1) (b-1)  SSAB MSAB o> + alE (aB)2 /(a-1) (b-1)
Error(b) a(a-1)(b-1) SSE(b) MSE(b) ai
2
Total a b-1 SST

(4) Multiple Comparisons,

Once the F-tests have been made to determine if there are significant
differences between means, the next step is to carry out multiple
comparisons to determine where the differences occur. The usual least
significant differences test (LSD) can be employed. Hence, results will be
derived for finding the appropriate standard error to use.

To compare the difference between two A means, that is,

Ho: ”j - Ej' =0 versus Ha: my, ;j'. # 0 for j # j' , we

determine the corresponding variance.
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V( -y ., )=V(i, +p +5 . +e . -p, -p -8 ., - )
Y.J. Y.J # By, P, ej E-J. PJ . P, oj’ E.J'.
=V(6 ., -5 ,, +e, -¢ .,)
.j ] o i’
=V ,-8.,) + Ve, ~¢g ., )
'J 'J -Jo -J-
= V(Bij - Sij,)/t + V(eijk - eij,k)/br

= Zczlr + 262/rb
d e

2(b52 + uz)lrb
d e

It follows from the table of expected mean squares that

N

Wy, - ¥

i ) = 2 MSE(a)/rb

it

To compare the difference between two B means, that is,

=0 versus Ha: - n X’ # 0 for k# k', we

Hx

determine the corresponding variance.

VWY o= F gl m Wiy h #8 w8 =W =p =8 =6 4.0
- V(E..k - E..k'}
= V(Bijk - eijk,)/ar
= Zazlar
e

It follows from the table of expected mean squares that

PN

vc}nk - }_.k,) = 2 MSE(b)/ar

When there is a significant A*B interaction, comparisons must be based
on the set of two-way cell means, There are two different types of

comparison one must consider when comparing the 2 cell means, The first type
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arises when two sub—plot treatment means are compared at the same level of a

whole plot treatment. That is,

Ho: ij - “jk' =0 versas BHa: Mg T “jk' # 0 for all j and kK # k
The corresponding variance is
VO e = ) = Ve v p 8 s e g Tk T T8 e gl
= V(a.jk - s.jk‘)
= V(eijk - sijk,)/r
= 2621r
e

Thus, the estimate of this variance is

vG.jk - }.jk,) = 2 MSE(b)/r

The second type of comparison occurs when the two whole plot treatments
are compared at the same level or different levels of the sub-plot
treatments. That is,
=0 versus

Ho: =0 or Ho:

“jk = pj'k ujk = "j'k'
: - PR, MRy, ¥0

Ha: ujk Hj'k # 0 or Ha ka pJ X

for all k and k' and j # j'

The corresponding variance for this comparison (which turms out to be the

same for the two types of hypothesis) is

v - g = p 3 = . -p - . - cee ]
VOV e = Vg0 T VIRt P B g e g T My TP T 0 T Bk
B V{S.J - a.J' N a.jk B B.J'k)
= V(S_J = 6.,,} + V(a.jk - e J'k)
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V(&6,. - 5..,)/r + V(e,,. - e,
1] 1] 1]

]

Zuzlr + ZUzir
d e

2(u§ + )it
e

Thus, the estimate of this variance is

V(y'jk - Y.j'k) = 2[MSE(a) + (b-1)MSE(b)]/br
Given the estimates of the variance for each effects, the LSD can be
computed in the usual manner, that is,

LSD (SE).

a tu!Z, error df
For each comparisons, the LSD can be written as
(a) difference between two A means

v 2MSE(a)/br

LSDa = tal2, (r-1)(a-1)

(b) difference between two B means

v 2MSE(b)/ar

LSDa = tulz, a(b-1)(r-1)

(¢c) difference between two A*B means
i) different levels of B with the same level of A

J 2MSE(b)/r

LSD, = t /2, a(b-1)(r-1)

ii) different levels of A with the same or different levels of B

LSDa = ¢t J 2IMSE(a) + (b-1)MSE(b)]1/br
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e Tt (am1) (1) SE@) * toyn, 4 (p-1) (e (BTVMSE)

MSE(a) + (b-1)MSE(b)

where t

is an approximation to correct the degrees of freedom furmished by

Satterthwaite (21).
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III. VARIATIONS OF SPLIT-PLOT DESIGN

(1) Two factors whole ot and single factor sub—plot

Suppose the experiment is originally planned to test the effects of 2
factors, say factor A and factor B, as well as their interaction. The
experiment is then laid out using a Randomized Complete Block arrangement
where each plot receives a combination of factor A and B. The division of
each plot into several sub—plot permits the inclusion of an extra factor C.
Thus within each level of the treatment combination A*B, the levels of C are

allocated at random. The plan after randomization might appear as follows:

Replication I Replication II Replication III
a1b3 5 cy a1b1 ) 5 '251 1 )
a1b1 cy 21 alb2 cy cy albz Cy 4
a2b3 ¢y c,y “2b1 2 c, albs cy q
a2b1 2 4 a2b3 1 c, azba 4 <,
a1b2 4 c,y a2b2 cy N alb1 ) €y
a2b2 cl c2 81b3 cy 5 azb2 4 cy

where factor A consists of 2 levels, factor B with 3 levels, factor C with 2

levels and three replications.
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The model to describe this type of experiment is also a split-plot
design where the main plot treatments consists of the combinations of
factors A and B and the sub-plot treatments are the levels of factor C. The

mathematical model can be written as

Vijer ~ Bt Py oy v By v (el v 8t T
+ (u.'r)j1 + (By)k1+ (aﬂy)jk1+ eijkl (4)

i=1,2,...,r j=1,2,...,a k=1,2,,..,b 1=1,2,...,¢

where yijkl = an individual observation taken on the ith block of the 1th

level of factor C on the jkth level of factor A and B.

il = overall mean
Pi = block effect
Gj = factor A effect
Bk = factor B effect

(aﬁ)jk = jnteraction of factor A and B effect
§... = residual main plot effect [error(ab)]
7 = sub-plot treatment effect
(uT)jl = interaction of factor A and C effect
(By)kl = interaction of factor B and C effect
(u.B'r)jk1 = interaction of factors A,B and C effect

eijkl = random error sub-plot [error(c)]
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To carry out the analysis for this experiment, the usual assumptions

2

2) ¢

2
ijkl N(O.ae}

3) aijk and gijkl are independent

4) Factors A, B and C are fixed
5) Blocks are random

6) Za, =
. J

B, =Ly, = I (ap),, = X (ap), = Y (ay),, = £ (ay),
i x k 1 1 i jk X jk . jl j1

j 1

=5 (py)., = Z(BY),, = Z (aPy),, = % (afy) .., = Z(afy), ., =0
x kl 1 k1l i jkl k jkl1 1 jEkl

The analysis of variance is given in Table 4.



235

Table 4. Analysis of Variance Table for a Split Plot Design
(two whole plot factor and single sub-plot factor)

Source df

55

E(MS)

Replication r-1

A a-1
B b-1
A*B (a=-1) (b-1)

Error(ab) (ab-1)(r-1)

C c-1
A®C (a=1)(c-1)
B*C {b-1) (c-1)

A*B*C (a-1)(b-1)(c-1)

Error(c) ab(c-1) (r-1)

SSR

SSA

SSB

SSAB

SSE(ab)

SsC

SSAC

S8BC

SSABC

SSE(c)

co'z + abr.:ts2
d r

caz + berX a%/(a-l)
d J

cc2 + ach’ﬁi/(b—l)

d

cdi + cril (aﬂ)?k/(a—l)(b-l)

cu‘d

abrX Ti/(c-l)
2
brfi.(av)jll(a—l)(c-l)

ar'is (By)ilf(b-ll (c-1)

2

jkll(a-l)(b-l)(c—l)

rX3¥ (apy)

Total aber-1

SST

A lengthy but straightforward derivation of the expected mean squares

can be obtained by following the procedure of the classical split-plot

design.
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The variance for the various comparisons are:

a) Between two A means

Ho: B, TS 0 versus Ha: ;j.. - Ej'.. #0 for j # j§'
W . -5., )=V(§, +p +5 ,+e  -p, -p=-5 ., -¢
Yt_].l y.J'.I p].o pn OJI elJll PJ"' p' 'J" e'j"')
=v(s .-5.,)+V (e, - . )
eJ. O e Joe 0] e

2021br + 2a2/bcr
d e

= 2((:r2 + caz)/bcr
e d

The estimate of this variancg is
-y ., ) = 2MSE(ab)/ber

b) Between two B means

Ho: p . ~— M 4w = 0 versus Ha: ;.k. - ;.k'. #0 for k # k'
VO T Vop) = Ve o P Lty T T PeT 8 T e R
= VG -8 ) Ve e )

202 lar + 2621acr
d e

1]

2(02 + cuz)lacr
e d

The estimate of this variance is

Viy = ¥ L) = 2MSE(ab)/acr



c) Between two A*B means

Ho: pjk.- uj'k'. =0 versus Ha:
V(y.jk.- Y.j'k'.) = V(pjk.+ p.+ a.jk"'
=V gx By ¢

262ir + ZUzlcr
d e

2(62 + ccz)/cr
e d

The estimate of this variance is

kT y.j'k'.) = 2MSE(ab)/cr

d) Between two C means

Ho: p 1 ;_-1, = 0 versus Ha:

1
<
—~
=I

V(;...1 - ;...1') -

]
=
o |
I
[+]

Zozlabr
e

The estimate of this variance is

V(}. - }. (1) = 2MSE(c)/abr
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e) Between two A*C means

i) same level of A with different levels of C

= PR, &M, = 11 j |
0 versus Ha pJ_l "J.l' 0 for all j and 1 #

.- p-=-8.-¢8 . .,)
3.17 P05 Bl Prae BT % Pl

e
I

<

—
=

1}
-
-
o |
]
(1]
b

|

Zczlbr
e

The estimate of this variance is

N

V(Y.j.l- y.j.l'} = 2MSE(c)/br

ii) different A levels with different (or same) levels of C

- -

Ho: Ej.l— "j'.l = 0 or Ho: “j.l_ pj'.l' =0 versus
Ha: Ej.l— pj'.l # 0 or Ha: pj.l_ uj'.l' #0 for all 1, 1’ and j # j'
IR 3 J S N DRRN- oS S
Yy - Fge) SV PP B e T BT P Ry Bt
=B o =B o ) A WE, T e 5.1

[}

2 2
Zudlbr - Zaalbr

n

2(02

2
4 + ce)fbr

The estimate of this variance is

™

-y * ) = 2[MSE(ab) + (¢c-1)MSE(c)]1/ber



f) Between two B¥*C means

i) same level of B with different C levels

Ho: B Rxrr 0 versus Ha: p /= K 444 #0 for 1#1'
VG, = Vo) =Vt P Bt B g BT P8 T ¢ g1
=V T )
= Zdzlar
e
The estimate of this variance is
N
V(;..kl— §..k1') = 2MSE(c)/ar
ii) different levels of B with different (or same) levels of C
Ho: E.kl_ ;.k'l =0 or Ho: ;.klﬂ ;.k'l' =0 versus
Ha ;.kl- E.k'l # 0 or Ha: ;.kl- ;.k’l' #0 for all 1, 1'
and k # k'
VY n Voer) T VO gyt B DRt B °- 8 k™ CRTIL
=V -8 ) H VG gt ey

2¢2far + Zazfra
d e

2(62 + uz)lar
d e

The estimate of this variance is

N

o ® ;..k'l) = 2[MSE(ab) + (c-1)MSE(c)]/acr

29



(g) Between two A*B*C means
i) same level of A*B with different C levels

Ho:

“jkld pjk1'= 0 versus Ha: ujkl_ ”jkl'

Viy

1l

Vie sn1™ %)

]

Zuzlr
e

The estimate of this variance is

P

V(y.jkl- y.jkl') = 2MSE(c)/zx

ii) different A*B levels with different (or same) C levels
Ho: pjkl— uj'k'l =0 or Ho: ijl_ Pj'k'l' =0 vs

Ha: ”jkl_ Mirgeg # 0 or Ha: Mig1” pj'k'l' #0

for all 1 and 1’ and j # j' and k # k'

p -y = $p &8 & 5
VY i y.j'k'l) V@t e,

)

V(B.jk- B.j'k') + V(a_j

k1~ %.j'k'1

I

253/: + Zailr

= 2(63 + ci)lr

The estimate of this variance is

™

V(y.jkl- y.j'k'l) = 2[MSE(ab) + (c-1)MSE(c)]/rc

#0 forlé# 1

Grn” Tograr) T VOt R R e T BT PTG %k

)

T T T L W S O L)

)

30
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The LSD value can be obtained by using the above estimates of the

variance, that is,

a) difference between two A means

Lsnu = Y 2MSE(ab)/ber

tu/Z,(ab-l)(r—l)

b) difference between two B means

LSDG = Y 2MSE(ab)/acr

talZ,(ab—l)(r—l)

¢) difference between two C means

LSDu = Y 2MSE(c)/abr

tas2,ab(c-1) (r-1)

d) difference between two A®*B means

Lsna = Y 2MSE(ab)/cr

ta/2, (ab-1) (£-1)
e) difference between two A*C means
i) different levels of C with same level of A

LSD v 2MSE(c) /br

a talZ.ab(c-l)(r—l)

ji) different levels of A with different (or same) level of C

Lsna = t' { 2[MSE(ab) + (c-1)MSE(c)]/ber

f) difference between 2 B*C means
i) different levels of C with same level of B

v 2MSE(c)/ar

LSDa = talz.ub(c—l)(r—l)

ii) different levels of B with different (or same) level of C

LSDu = t. J 2[MSE(ab) + (c-1)MSE(c)]/acr



where

g) difference between 2 A*B*C means

i) different levels of C with same level of A®*B

LSD v 2MSE(c)/r

a ta./2,ab(c--1){r—1)

ii) different levels of A*B with different (or same) level of C

LSD_ = ¢ / 2[USE(ab) + (o-1)MSE(c)1/er

MSE(ab) + t (c-1)MSE(c)

* _ _‘a/2,(ab-1) (£-1) a/2,ab(c-1) (r-1)

MSE(ab) + (c-1)MSE(c)

t

32
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(2) Single factor whole plot and 2 factors sub—plot.

Suppose we plan the experiment where the whole plot treatments coasist
of a levels of factor A and the sub-plot treatments consist of the b¥*c

levels of factors B and C. The model of this experiment is

Vg™ B H Pyt oyt B vy v laB)y,
+ (a71j1+ (ﬁr)k1+ (aﬂr}jk1+ eijkl (5)

i=1’2’o¢0’r j=1;2....;a k=1,2,---;b 1=1!2ll0'lc

where Yy = an observation on the ith block of the klth sub-plot on the

jkl
jth plot.
n = overall mean
Py = block effect
uj = main plot treatment effect
ij = main plot residual effect [error(a)]
Bk = factor B effect

7 = factor C effect

interaction of A*B effect

—
=]
=™
'
G
w
Il

(av)jl = interaction of A*C effect

(By)kl interaction of B*C effect

(aﬁy)jkl interaction of A®*B*C effect

e, = random sub-plot error [error(bec)l]
ijkl



34

The analysis of variance table for this field arrangement is given

below.
Table 5. Analysis of Variance Table for a Split Plot Design
(single factor whole plot and two factors sub-plot)
Source daf SS MS E(MS)
4 ; 2 2 2
Replication r-1 SSR MSR Ue + bcad + abccr
2 2 2
A a-1 SSA MSA g = bccd + bch:aj/(a—l)
2 2
Error(a) (a-1) (b-1) SSE(a) MSE(a) o, *+ beoy
2 2
B b-1 SSB MSB s, * acrX ﬁki(b—l)
2 2
C c-1 §sC MSC o, + abr!iyll(c-l}
B*C (b-1)(c-1) SSBC  MSBC o> + ar3E (By)3,/(b-1) (e-1)
A*B (a-1)(b-1) SSAB  MSAB o> + erSE (aﬁ)jk/(a—l)(b-l)
2 2
A*C (a-1)(b-1) SSAC MSAC o, + brXx (GT)jlf(a—l)(c—l}
A*B*C (a-1) (b-1) (c-1) SSABC HSABC o'i + 3% (uB‘r)?kll(a-l}(b—l)(c-ﬂ

Error(bc) al(be-1) (r-1)

SSE(bc) MSE(be) ui

Total abcr-1

SST

The estimates of the variance for the various comparisons are:

a) Difference between two A means

Ho: p. - ;,, =0 wversus Ha: p. - ;.,

Jeo J .-

#0 for j # j'
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L]

V(g -5 .)+Ve. -8 ., )
«] o] o]

2azlr + 202/bcr
d e

2(02 + bcoz)/bcr
e d

The estimate of this variance is

P

Wy . -y T ) = 2MSE(a)/ber

ljll

b) Difference between two B means

L] —— = = - - k'
Ho: M. Bopr, 0 versus Ha: g, Bogr, #0 for k #
V(yﬂ.k.— Yllk") = V(“.kl+ p'+ 6..+ sl.ki— llI.Ik'l- p. - 8"_ e‘.k'l)
=Vle o~ % pr
= 252Iacr
e
The estimate of this variance is
V(Y..k._ y__k,.) = 2MSE(bc)/acr
¢c) Difference between two C means
Ho: By TR = 0 versus Ha: BT H g #£ 0 for 1 # 1'
Wy 5 g =W e B v kB RELS e 1)
=Vle - 3o

1

Zozlabr
€



The estimate of this variance is

5 a

V(y_ =¥, 1) = 2MSE(be)/abr

d) Difference between two A*B means

i) same level of A with different levels of B

Ho: pjk. T Bl = 0 versus Ha: Mg, T Mg, # 0 for all j

J

1

Zczlcr
e

The estimate of this variance is

PN

V(y.jk._ y.jk'.) = 2MSE(bc)/cr

-p -5 ,-

and k # k'

. a.jk'.)

ii) different levels of A with different (or same) level of B

Ho: ujk. N pj'k. =0 or Ho: ujk. - pj'k'.

Ha: ujk. R I # 0 or Ha: ujk. = Byege,

¥ -y = g +8 * & - -
VY ik, Y. ik, Vipgp * o ¥ 8 4% & 5x.” Byrx,

=VE =80 VG - gy

Zazlr - Zczlcr
d e

2 2
= 2(0e + ccd)/cr

The estimate of this variance is

™

V(Y.jk._ Y.j'k.

=0 versus

# 0 for all k, k'
and j # j'

) = 2[MSE(a) + (b-1)HSE(be)]/ber

36
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e) Difference between two A*C means

i) same level of A with different levels of C

0 — - . — - r
Ho "j.l uj.l' 0 versus Ha: "j.l pj.l'# 0 for 1 #1
VO 5 Yo =V gt et B e gty T P T8 T )
=Vle ; 17851
= Zazlbr
e
The estimate of this variance is
V(y.j.l_ y.j.l') = 2MSE(bc)/br

ii) different levels of A with different (or same) level of C

Ho uj.l_ pJ,.1= 0 or Ho: "J.l— “j'.l' =0 versus
Ha: p, .~ n., #O0orHa: p, - p., ., #0 for all 1 and 1’
j.1 f.1 j.l1 j'.1 and j # §'
TR R 3+8 4% ~Ri m BB ,mF )
V(y.j.l y.j'.l) V(HJ.1+ P, e e._1.1 u_1'.1 P, o3’ B.J'.l
=V(s ., -5 ,,) + V(e - )

I

Zuzlt + 252/br
d e

]

2(52 + buz)/br
e d

The estimate of this variance is

N

V(y 3.0 y g = 2[MSE(a) + (c-1)MSE(be)]/ber



f) Difference between two B*C means

Ho: E.kl - E.k'l'= 0 versus Ha: E.kl— E.k'1'¢ 0 fork#k', 1#1

) = V(i +p+ B +% 5

LIRS WS TS U e xr1r)

V(;..kl— Y. . k'1

n

Vie 17 & k1)

Zuzlar
e

The estimate of this variance is

R

™ }"k,l,) = 2MSE(bc)/ar

V(iy

g) Difference between two A*B®*C means
i) same level of A with different levels of B*C

Ho: k...~ = 0 or Ho:

Bik1™ Pjxrre = 0 or Ho: Bix1” Higye™ 0 s

Bik1~ Hjxr1

: = : - - T T I 0
Ha: ikt "jk'l'# 0 or Ha: Mix1 “jk'l# 0 or Ha Bkl qul,#

for all j and k # k' and 1 # 1'

=P =8 e )

VY s Vo) T Vgt et 8 ;% &.im” Mk

V(e )

1

g1 %Lkl

Zdzlr
e

The estimate of this variance is

N

V(Y.jkl- y.jk'l') = 2MSE(bc)/r
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ii) different levels of A with different (or same) levels of B*C

Ho: pjkl_ pj'ki = 0 or Ho: "jkl- "j'k'l =0 or
Ho: "jkl_ pj'k1'= 0 or Ho: ujkl- uj'k'1'= 0 versus
Ha: ujkl_ e # 0 or Ha: “jkl_ Birgrd # 0 or
Ha: pjkl_ pj'k1'$ 0 or Ha: “jkl_ pj'k'1'+ 0
for j # j' and for all k, k', 1 and 1’
VY g Ve’ = VOt P8 e T BT P8 ey
= V{E_j - E-j,) + V(E_jkl - ;.j'kl)

262lr + 262lr
d e

Sa® + o0) fx
e d

The estimate of this variance is

V(y.jkl- y.j'kl) = 2[MSE(a) + (bc-1)MSE(bc)]/ber
Using the estimates of the variance above, the LSD value can be
evaluated as follows:

a) between two A means

LSD ) J 2MSE(a)/ber

e~ tal2,(a-1) (-1

b) betweeen two B means

LSD J 2MSE(bc)/acr

a tall,a(bc-l)(r-l)

¢c) between two C means

LSD J 2MSE(bc)/abr

a tu./2.a(bc—1){r-1)



d) between two A*B means

i) with same level of A

LSD Y 2MSE(bc)/cr

a talz.a(bc—l)(r—l)

ii) with different levels of A

LSDa =t J 2[MSE(a) + (b-1)MSE(bc)]/ber

e) between two A*C means

i) with same level of A

LSD ) v 2MSE(bc) /br

a tu12,a(bc—1)(r—1

ii) with different levels of A

LSDa = ity Y 2[MSE(a) + (c-1)MSE(bc)]/ber

f) between two B*C means

LSD v 2MSE(bc)/ar

e = Ya/2,a(be-1) (r-1)
g) between two A*B*C means

i) with same level of A

LSD v 2MSE(bc)/r

a talz,a(bc-l){r—l)

ii) with different levels of A

LSDa = t.  2[MSE(a) + (be-1)MSE(bc)]/ber

3

(b-1)MSE(bc)

vhere:  _ ta/3, (1) (=)™ T fa/2,a(bect) (o)
4 MSE(a) + (b-1)MSE(be)

40



_ fa/2,(a-1) (£-1)

M3Eta) =+ ta/l.a(bc—ll(r—l)

{(c-1)MSE(be)

_ fas2,(a-1) (1)

MSE{a) + (c=1)MSE(bc)

MSE(a) *+ t /3, (be=1) (x-1)

(ab-1)MSE(bc)

MSE(a) + (ab-1)MSE(bc)

41
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IV. EFFECT OF INCORRECT ANALYSIS ON EXPERIMENT ARRANGED IN SPLIT PLOT.
(1) Using sub—plot error to test whole plot eff

Consider an experiment involving r nﬁmbar of blocks, a levels of factor
A (whole plot treatments) arranged in a randomized complete block design and
b levels of factor B (sub-plot treatments) arranged at random with respect
to the experimental units within each whole plot. The mathematical model for
this experiment is defined by equation (1).

The expected mean squares (Table 1) enables us to determine the
appropriate error term to be used as the denominator in testing the
significance of the main effects and interaction effects. Under the null

hypothesis of no factor A effects (aj = 0) the two expected mean squares
2 '
A I + bad + Q(A) and

Error(a): 02 + bcz
e d

are identical and hence a valid test is possible.
Suppose that we ignore the presence of the whole plot error term and
instead we use the sub—plot error term as our demominator to test for the

significance of factor A. Then, the two expected mean squares
A :62+62+Q(A)
e d
Error(b): ui

will form the ratio (oi + buz + Q(A))/ai. If there is no whole plot

2 2 2 . ;
treatment effects (a, = 0) the ratio simply becomes {ce + bad)lce which is

j

just the ratio of MSE(a) to MSE(b). Thus, the severity of the whole plot
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treatment effects basically depend on the magnitude of the whole plot error

variance relative to the magnitude of the sub-plot error variance. A rough
calculation will serve to illustrate how a relatively small value of ai can

grossly inflate Type I error rate of the whole plot effect. To this end,
note that the ratio of mean squares which form the test statistic will have
roughly 50 per cent chance of falling above the ratio of expected mean
squares since the latter ratio will be near the center of the distribution
of the test statistic.

Thus, an analyst who uses the sub-plot error term to test whole plot
treatment effects will find critical values from the F-table with (a-1) and
a(b-1)(r-1) degrees of freedom for the numerator and the denominator,
respectively. If there are no whole plot treatment effect (aj = 0), the
2
e

value of uilc that causes the ratio of the expected mean squares to be

equal to the 5 percent critical value in the F—-table will be the value that
causes the Type I error rate to be inflated from the stated 5% level to the

50% level, roughly. We find

(3]

o F -1
- .05 (6)

o 0.

o
where F 05 is the 5 % critical value from the F-table with (a=1) and

a(b-1)(r-1) degrees of freedom for the numerator and denominator,

respectively.

For simplicity, assume that there are 5 blocks, 3 levels of factor A

and 4 levels of factor B, then

= 0.565

ol
GNIFHN
|



44
This shows that if the component of variance due to whole plot is
about 56% the sub-plot error variance, the Type I error rate will be

inflated from 5% to around 50%. Similarly, if there are 3 levels of factor
A, r »5 and b » 10, then the value of ci just 20% of ai will cause a gross
inflation of Type I error rate.

(2) Apalyzing split-plot experiments using Randomized Complete Block
analysis.,

If we carry out the analysis of the experiment using the randomized
complete block design instead of a split—plot design as specified in the
given model, that is, ignoring the whole plot error term, then the following

changes in the expected mean squares will follow:

Table 6. Analysis of Variance table of RCB when the model is Split-Plot.

Source daf SS MS E(MS)
. . 2 2 2
Replication r-1 SSR MSR o, + bud + abar
2 2
A a-1 SSA MSA o, + bud + Q(A)
B b-1 SSB MSB ui + Q(B)
A®B (a-1)(b-1) SSAB MSAB Gi + Q(AB)
2 2
Error (ab-1)(r-1) SSE MSE o, + b(a—l)adf(ab-i)

Total abr-1 SST
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From the above table and forming the ratio to test for the significance

of the main effects and interaction effects, we use the error mean square as

the denominator. The critical values from the F-table will be (a-1) and

(ab-1) (r-1), (b-1) and (ab-1)(r-1), and (a-1)(b-1) and (ab-1)(r-1) degree

of freedom for the numerator and denominator for factor A effects, factor B

effects and interaction effects, respectively. Likewise, looking closely o

the effect of factor A, assuming that there is no factor A effect (aj = 0)

then the ratio of factor A to the error term or correspondingly the whol
plot comparison would inflate the Type I error rate. That is, the ratio of

E(MSA)/E(MSE), under the null hypothesis of no A effect, would be

uz + l:cl'2
e d

2 ) (7)
o + bla-1)¢./(ab-1)

e d

b(a-1)

Note that b > ——————— so that the expected mean squares is greater

(ab-1)

than 1. Setting this value egual to the 5% critical value and solving for

02102 we find
d e

F. . -1

b -F os(a-llbl(ab-ll

|
nquQ-qM
I

where F 05 is the 5% critical value from the F-table with (a=1) and

(ab-1) (r-1) degrees of freedom for numerator and denominator, respectively.

n

»

€
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Suppose we have 5 replications, 3 levels of factor A and 5 levels of

factor B, then ,

2
o F -1
g =22.2,64 = 0.79
o 4 - (10/14)F
€ .05,2,64

This shows that if the component of variance due to whole plot is about
79% the error variance, then the Type I error rate will be inflated from 5%
to around 50%.

Similarly, if there are 3 levels of factor A, r » 5 and b » 10, then

the value of ci just 22% of ai will cause a gross inflation of Type I error

rate.
For comparisons of Factor B and the interaction effects, however, there
is a decrease in efficiency using this type of analysis when the

experimental design is a split-plot. This is to be expected since the error
s o 2
variance for an RCB analysis is increased by an amount b(a—l)cd/ab—l hence

causing too few rejections of the null hypotheses of no B effects and

interaction effects.

(3) Computer Simulation,

Using the Scientific Subroutine Package (SSP) and Statistical Analysis
System (SAS), a computer simulation was conducted where the defined model is
a split-plot design model. Five replications, 3 levels of factor A and 4

levels of factor B were considered in this study. The main effects and the
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interaction effects were assumed to be insignificant in gemerating the
observations., The data was generated using SSP and the analysis was done
using SAS, The procedure was run 40 times.

a) Usin b— or to test the whole plot effects
Using the data gemerated, analysis was dome using the split plot model

but uses the sub-plot error term to test for the significance of factor A.
Results shows that a ratio of czdlcri of about 0.56 inflates the Type I error

rate from 5% to 47.5%. This indicate that using the sub-plot error term to
test the whole plot effects would lead to an incorrect results.
b) Using RCB analysis.

Using the same data generated from a split plot design experiment, a
Randomized Complete Block analysis was done. Results shows that using the
'weighted' error variance to test for the whole plot effects inflates the
Type I error rate from 5% to 35%.

In general, analyzing experiment using the inappropriate error term
from experiment which are of a split plot arrangement will cause factor A to
be significant at most 50% of the time and thus would lead to an erroneous

conclusion about the real effect of factor A,
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V. REPEATED MEASURES DESIGN

(1) Repeated Measures Design Defined.

An experimental design in which experimental units are used repeatedly
by exposing them to a sequence of different or identical treatments is
called a repeated measurement design. These types of design are exteasively
used in agricultural, industrial and psychological research.

Several types of experiment which are of a repeated measures design are
as follows.

a) Suppose we have two levels of factor A and two levels of factor B
and we are interested on the effects of A, B, and A*B on an individual
(experimental units). We select, say 4 individuals, and then give all the
four treatment combinations to an individual in a random order ome at a

time. The experimental lay-out, after randomization, might look as

: AB,  AB, AB,  AB,

2 AB;  AB,  AB, Ay

Subject

3 AB, AB, AB, A,

4 AB, AB, AB AB

Treating the subjects as blocks, then we might analyze this experiment just

like a Randomized Complete Block.
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b) The second type of experiment can be illustrated as follows. Suppose
we would like to evaluate the effect of two treatments, say treatment A and
treatment B, and also we would like to include possible order effects. If
there are 10 subjects, then we can assign treatment A followed by treatment
B to 5 subjects and the remaining subjects receiving treatment B first

followed by treatment A. The lay-out might look like as follows:

Subjects
1 2 3 4 5 6 7 8 9 10
1 A B A B B A B A B A
Order
2 B A B A A B A B A B

This experiment is an example of a two—period Cross—over design.

c) The third type of repeated measures is of a split—plot type. Suppose
we have a levels of factor A and b levels of factor B. The experimental
subjects are assigned randomly to one and only one level of factor A, After
the subject is assigned to a particular level of factor A, then all levels
of factor B will be assigned ome after another in random order to that
subject.

Considering this type of arrangement, we might analyze this experiment
using a split plot analysis where subjects and time periods are the main
plot and sub-plots and factor A and factor B as the main plot treatments and
sub-plot treatments, respectively.

d) The fourth type are experiments in which measurements are obtained
over time. Suppose we have t treatments and r experimental units. By

measuring the experimental units at several times, the experimental wunit is
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essentially being 'split’ into parts (time interval) and the response is
being measured on each part. The larger experimental unit is the subject or
the collection of time intervals while the smaller experimental unit is the
interval of time during which the subject is exposed to a treatment or an
interval just between time measurements. The treatment is the main plot
treatments and the time is the sub-plot treatments.

So far, we have defined some experiments where we can make use of the
repeated measures design. The need for these designs can be justified in
several ways.

a) Due fo budget limitation, the experimenter has to use each

experimental uwnit for several tests.

b) In some experiments the treatment effects do not have a serious
damaging effect on the experimental unit and therefore these
experimental units can be used for successive experiments.

¢) In some experiments, the experimental units are human beings or
animals and often the nature of the experiment is such that it calls
for special training over a long period of time. Therefore, due to
time limitation, ome is forced to use these experimental units for
several tests.

d) One of the objectives of the experiment is to find out the effects
of the different sequences as in drug, nutrition, or learning
experiments.

e) Sometimes the experimental units are scarce, therefore the

experimental units have to be used repeatedly.
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(2) Split Plot Type Repeated Measures Design

In comparison to the usual split plot, repeated measurement design may
not allow randomization of one of the experimental units. If one of the
factors is time, then the levels of time cannot be randomly assigmned to the
time intervals and thus the usual analysis of variance for split plot may
not be valid. Because of this non random assignment, the errors
corresponding to the experimental unit may have a covariance matrix that
does not conform to those for which the usual split plot analysis is valid.

Suppose there are p levels of some treatment, with r subjects exposed
to the ith level and each subject measured on some characteristics (say
time) periodically for t times post treatment. This experiment can be
described as having two experimental units where the larger size of
experimental unit is the subject and the smaller experimental unit is the
time interval.

A model to describe the response that reflects the two sizes of
experimental unit is

y =p+ta + aj{i) + Bk + (aB)ik + &, (9)

ijk ijk

i=1,2.---'p j=1.2p.oa.|r k=132100-:t

where B = overall mean
a, = effect of the ith treatment level
Bj(i) = effect of the jth individual within the ith treatment level
Bk = kth time effect
(uﬁ)ik = treatment by time interaction effect

= time interval errors within subject



52

The assumptions often made for an analysis of the above model are

2
(1) aij it N(O.ad)

(2) e..
i

2
ik N(O.ue)

(3) 5,. and &,
ij ijk

are independent
(4) Treatments and time factors are fixed

(5) a, =Xp, =X (ap),, =X (ﬁﬂ). =0
i i x k i ik K ik

From the above equation, p + a. + 61j represent the subject part of the

model and Bk + (aB)ik + e represent the time interval part of the model.

ijk

In any statistical analysis, account must be taken of the fact that the
observation from different sub—units in the same unit may be correlated.
To carry such an analysis, assume that a correlation, p, exists between the
experimental error for any 2 sub-units in the same unit and that the
experimental error for any two sub-units in different units are assumed to
be uncorrelated. Hence, define the covariance (k # k')

E( ) = constant for all pairs k, k'

Bijx%ijk’
and the variance for each sub—plot treatment

E(szj ) = Bla,. ) = & (10)
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then the correlation can be written as

e, x®ijxr) Ble;ix®ijxe’
- - (11)
2 2 2
\/E(eijk) E(sijk') o
thus E(e.. . e ) = pcz (12)
: ijESijx’

Using this relationship, then the covariance matrix for observationms

within a subject is thus assumed to have the form

[ 2 2 {
[+ 3 il po ses PO
2
po ¢ pa ... po
Z = pJ pg f ”.pg (13)
2 2 2 2
p6. pd PG ..s O

Likewise, for a random variable which is assumed to have a normal

Tijx

distribution with mean zero, the variance from model (9) is found to be

ui + ci and the covariance is

= oz + ai i=1i’ j=13' k=k'
2 2 . . . i ;
= = = k# k' (14)
Cov (yijkyijk') G, + po i=i i=

= 0 otherwise
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It can be shown (Curnow,1957, Greenhouse and Geisser, 1959, Danford,
Hughes and McNee, 1960) under this kind of covariance matrix that the usunal
F-tests for split-plot design is valid.

However, before doing the anmalysis part, we must be sure that the
validity of the assumption that the variances and covariances are the same
over the various treatments are checked for each experimental condition. The
procedure for testing this assumption has been given by Box (1950) as an
extension to the multivariate situation of Bartlett's homogeneity of
variance test (see Box, 1949)., To test the hypothesis that the covariance

matrices Sl' Sz. e Sp are random samples for populations in which the
covariance matrices are egqual, that is, 21=22= ces = zp=z , one uses

the statistic

Nin ISl - =« 1n|si| (15)

th + 3t -1
C = £ [(1/r ) - 1/N] (16)
6(t+1) (p-1) '

h
Il

t(t+1)(p-1)/2 (17)

where N = X r , the total number of subjects
S = pooled covariance matrix
Si = matrix of covariances for level a,
t = number of time inteval

number of levels of factor A

-
]
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Under the hypothesis that the multivariate normal populations have

equal covariances then the statistic

2
X = (1 -cCny

(18)

has a sampling distribution which is approximated by a chi-square

distribution having f1 degrees of freedom.

A matrix having compound symmetry has the form of Eqn.{(13). The

compound symmetry condition implies that the random variables are equally

correlated and have equal variances. Huynh and Feldt (1970) gave a more

general form of the covariance matrix. The Huynh and Feldt condition

specifies that the elements of a covariance

= i = v
where, Btt' 1 ift=1t

= 0 if t# t'

or in terms of matrices

™M
"

AL + 7§’ + jv'

where I isatzxt identity matrix

j is a t x 1 vector of omes

matrix Z be expressed as

(19)

(20)

(21)

' = (11. Ypseves vt) are unknown parameters
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variances of the

are equal for al
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and Feldt condition is equivalent to specifying that the

difference between pairs of errors, such as Eijk - Bijk"

1 k and k', k # k'. If the variances are all equal, then the

condition is equivalent to compound symmetry.

To test the hypothesis that the covariance matrix, Z , satisfies the

Huynh and Feldt

u2=

where v =

where o, .
1]

condition, one uses the following statistic.

—v 1n(8) (22)

t(e+1) 2 (2¢-3)

(23)
6(v) (t-1) (t2+t-4)
2
(t“ +t - 4)/2 (24)
a(r-1) (t-1)
tz(Ei. =5 1
1 . (25)

(t=1)[ 55 o2 - 2t5 5.2 + (ta )21
ij | A

are the elements of Z

o =3¥o .ftz
s ij

o. =Xo,. It
ie ij
0.4 = 3 aiift
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An estimate of E: can be obtained using the relation

mo= [I - (1/6)3) ) (I, - (1/t)7] (26)

where It = is a t x t identity matrix

Tt

is at xt matrix of ones

Because of the form of # , the value of © is simplified as

t (Eii}
e = (27)

(t-1) 55 n°,
ij

where Eii is the mean of the diagonal elements of n and

“ij is the ijth element of the matrix =

Under the null hypothesis that EE has the specified form, the statistic
X2 =(1-c)H (28)
2 2" 2

has a sampling distribution which can be approximated by a chi-square

distribution having f2 degrees of freedom.
2
Thus, we say that z: has a compound symmetry if Xi { xa,fz af and we

proceed to analyze the data just like a split plot design. However, if

X2 > X2 then the usual analysis for split plot design is not valid.

2 a.f2 df

Hence an appropriate solution is the one suggested by Box (1954) , That is,

use € as a correction factor for adjusting the degrees of freedom to those
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sources of variation that are based on the within—subject comparisons. No
adjustment is necessary for the between—subject comparisons. Box shows that
for all t ) 2 the range of © is 1/(t-1) { ® {( 1 with © = 1 when
};.satisfies the Huyn and Feldt condition.

Computing the value of @ in order to adjust the degrees of freedom is
not an easy task. Greenhouse and Geisser (1959) developed a three-step
procedure that can prevent having to compute the value of ©. The procedure
are as follows.

a) Compare the F-ratio in question to the percentage point with the
usual degrees of freedom. If it is not significant, stop. The
adjusted degrees of freedom test will also be not significant.

b) Compare the F-ratio in gquestion to the percentage point with the
Conservative Box correction degrees of freedom. If it is
significant, stop. The adjusted degrees of freedom test will also
be significant. (where the Conservative Box correction degrees of
freedom is to divide each of the respective usual degrees of freedom
by (t-1).

c) If the F-ratio is significant with the usuval degrees of freedom and
not significant with the conservative Box correction degrees of
freedom, then the © adjusted degrees of freedom must be estimated
to make a decision.

Table 7 shows the analysis of variance table for repeated measures

design when the covariance matrix has the form of compound symmetry.
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Table 7. Analysis of Variance Table for Repeated Measures Design
(Split-plot type analysis)

Source af SS MS E(MS)
A a-1 SSA MSA o2(1 + 23) + tos + Q(A)
Erzor(a) r(a-1)  SSE(a)  MSE(a) oo(1+21) + toy
Time t-1 SST MST o7 + Q(T)
A*Time (a-1) (t-1) SSAST MSA®T ai + QUA®T)
Error(b) a(z-1)(t-1) SSE(b)  MSE() o
Total atr - 1 SSTotal

The term A occurs because the variance of ;ij , the mean of the errors

of subject j assigned to the ith level of factor A, is
Var(s,, ) = o2(1 + 20) /¢ (29)
ije e

(3) Autocorrelated errors,

Now, suppose that the covariance matrix does not conform to a compound
symmetry but instead the errors are correlated through an autocorrelated
structure, thenm the assumption corresponding to the within—subject error

structure will be changed. Further, suppose that the error structure follows
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a first—-order autoregressive model, that is,
®ijk - Peijx-1 T Zijk 2

then the model for a split-plot repeated measure design will just be the

same model as before with an added assumption that

e ~ N[O.Uil(l—pz)] and

ij0

2
zijk N(O,az)

The corresponding covariance matrix for the errors associated with the
within subject data obtained in a repeated measures design having a first-

order autocorrelated error will be,

2 3 t-1
1 p p p sew p

2 t-2
P 1 p P ese P

2 t-3
P P 1 P eee P

2
a L L] - . -
> = - (31)
2 - - . - .
(1-p™)

t-1 t-2 t-3 t—4
p P p p eee 1 i

This topic will be limited at this point and will not be discussed

further. For different types of time series models which might be
appropriate for describing the within-subject error structure, readers are
advised to consult the book of Box and Jenkins on Time Series Analysis.

In particular see Albohali’s (1) result for the first order

autocorrelation error structure.



61

(4) Numerical Example.

Suppose we are given the following data:

Time
Treat Subject T1 T2 T3
1 4 7 3
2 3 5 1
1 3 7 9 6
4 6 6 2
5 5 5 1
6 8 2 5
7 4 1 1
2 8 6 3 4
9 9 5 2
10 7 1 1

First we test the hypothesis,

%:Zl=zz=“,=zp=
Ha:p  #0 ,# n #2 #2

We compute the sample covariance matrix for each level of factor A and the

pooled covariance matrix, that is,

T1 2,50 1.75 2.50

S, = T2 2.80 3.30 Isll=1.os

T3 4.30



T1
1  3.70
S2 = T2
T3
T1
T1 3.10
S = T2
T3

2.10

2,80

1.92

2.80

1.15

0.70

3.30

1.82

2.00

3.80
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I52| = 17.51

Is| = 11.28

The statistics defined in equation 15 to equation 18 are obtained as follows

My =
2(3)%43(3)1

c, =
6(3+1) (2-1)

£, = 3(3+1) (2-1) /2

x% = (1-0.325)9.53 = 6.43

2 _

x.os'ﬁ - 12.6

101n(11.28) - 51n(1.08) - 51n(17.51) = 9.53

[(1/5 + 1/5) - (1/10)] = 0.325

Since 6.43 12,6 then the hypothesis of homogeneity of covariances

are accepted.

Next, we test the hypothesis that zz

has the form of compound

symmetry. Using the estimate of E: that is n , we obtain the following

quantities:
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T1 T2 T3
T1 0.8933 -0.2467 —0.6465
n = T2 0.6733 -0.4267
T3 1.0733

From this estimate of the covariance matrix, we obtain

o = 9(0.88)2/2(3.7253) = 0.9354

n

0
I

-161n(.9354) = 1.0685

3(3+1)2(2#3-3)
C. = = 0,0938

2 2
6(16) (3-1) (3%+3-4)
2
£, = (3%43-4)/2 =4
%% = 0.97
2 _
gL &

Since 0.97 ¢ 9.5, then we accept the hypothesis that the covariance
matrix follows the form of a compound symmetry.

Now, since we cannot reject the hypothesis that the covariance matrix
has the form of a compound symmetry, then we analyze the set of data using

the usual split-plot analysis. The following table follows:
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Table 8. Analysis of Variance Table of the Data Set.

Source daf Sum of Squares Mean Squares F-value
A 1 3.33 3.33 1,95
Error(a) 8 13.67 1.71
Time 2 58.07 29,04 7.26%
A*Time 2 44,87 22.44 5.61%
Error(b) 16 63.94 4.00

From the table note that there is a significant A®*Time interaction,

thus, we need to compare the times at each level of factor A and the levels

of factor A at each time.

To compare times at each

difference of the two means is

)

see (3 1= Yy g

[}

1,63

and a 5% LSD value is

LSD (s.e)

.05 ~ t.025,16
= 2.120(1.63)

= 3.46

level of factor A, the standard error of the

v 2MSE(b) /1
v 2(4.00)/3

A comparison of the time means within a level of Factor is shown in

Table 9.
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Table 9. Comparisons of Time means at same level of factor A.

Factor A
Time 2y 2,
T1 5.00(ab) 6.80(a)
T2 6.40(a) 2.40(b)
T3 2.40(b) 2.60(b)

Note: Means within a column with the same letter are not significantly
different at 5% level.

Suppose that 2: does not follow the compound symmetry form, then &
adjusted degrees of freedom should be applied to test for the significance
of the sub-plot treatment effects and the interaction effcts. Box showed

that F_. is approximately distributed as an F-distribution with 6(t-1) and

T
o(a)(t-1)(r-1) degrees of freedom for the numerator and denominator,
respectively. Table 10 shows the actual and © adjusted degrees of freedom

for the given data, assuming that E: is not of a form of compound symmetry.
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Table 10. Actual and Adjusted Degrees of Freedom.

Source Actual © adjusted df (8 = 0.9357)
Py
A 1 1
*
Error(a) 8 8
Time 2 1.87
A*Time 2 1.87
Error(b) 16 14.97

*Unchanged (between—person comparison)

Notice that using the © adjusted degrees of freedom results in the same

conclusion as before.
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VI. SUMMARY

Occasionally some factors in an experiment can be applied
differentially to smaller units than can others. Dietary comparisons must be
made on whole animals, whereas drugs can sometimes be compared by injection
at different sites on one animal., The comparison of soil-cultivation
techniques that employ unwieldy implements may demand large plots, but tests
of fertilizers or other agronomic factors may be made simultaneously on
subdivision of these areas. An experiment in which some treatments are
applied to large units, or whole plots, each of which are divided into two
or more sub—plots for other treatments, is said to have a split—plot design.

Split-plot experiments will usually assess the effects of sub-factors
and their interaction with whole plot factors more precisely than the
effects of whole plot factors alome. Thus, split-plot designs are adopted in
order to obtain higher precision on comparisons of greater importance.

The split-plot design lends itself readily to various modifications.
Two whole plot factors with single sub-plot factor and single whole plot
factor with two sub—plot factors were comsidered in this study.

The expected values of sample mean squares in terms of population
parameters were derived such that appropriate error terms are used for
testing various hypotheses. Likewise, standard errors were determined to be
used in different treatment comparisons

A simulation study was also conducted to find out the effect of an

incorrect analysis on experiment arranged in split-plot. Results show that
2,2
even a small ratio of adlce that causes the expected mean squares to be

equal to the 5% in the F-table will be the value that camses the Type I

error rate to be inflated from the stated 5% to the 50% level roughly when
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the incorrect error term is used to test the effect of the whole plot
factor.

Experiments where the experimental units are used repeatedly can also
be analyzed using the usual split-plot analysis provided that the covariance
matrix for observations within a subjct has a compound symmetry form.
However, if the covariance matrix do not conform to compound symmetry, then
the © adjusted degrees of freedom should be applied to test for the

significance of the sub—plot treatment effects and the interaction effects.
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APPENDIX



Program to generate observations from a Normal Distribution

DIMENSION A(3),B(4),AB(3,4)

IX=585226667

IY=610986963

S=SQRT(0.565)

v=1.0

AM=0.0

DO 5 I

DO 5 J

A(J)=8

CALL GAUSS (IX,S,AM,X1)

DO 5 E=1,4

B(K)=8

AB(J,K)=8

CALL GAUSS (IY,V,AM,Z1)

Y1=A(J)+X1+B(X)+AB(J,K)+Z1
5 WRITE (15,500) I,J,K, Y1
500 FORMAT (1X,312,1X,F7.2)

STOP

END

1,5
1,3
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This subroutine computes a normally distributed random numbers with a
given mean and standard deviation.

SUBROUTINE GAUSS (IX,S,AM,V)
A=0.,0

Do 50 I=1,12

CALL RANDU (IX,IY,Y)

IX=IY

A=A+Y

V=(1-6.0) *S+AM

RETURN

END



SAS Program for Split Plot Design

DATA ONE,
INPUT REP WP SP OBS;
CARDS;

data cards

PROC ANOVA,

TITLE USUAL SPLIT-PLOT ANALYSIS OF VARIANCE,

(LASSES REP WP SP;

MODEL OBS=REP WP REP*WP SP WP*SP,

* RESULT OF THIS PROCEDURE GIVES US THE TEST OF THE
WHOLE PLOT EFFECT USING THE SUB-PLOT ERROR TERM¥;

TEST E=WP E=REP*WP,

* USING THE OPTION TEST H=WP E=REP*WP THE WHOLE PLOT EFFECT IS TESTED
BY THE APPROPRIATE ERROR TERM (WHOLE PLOT ERROR)*;

PROC ANOVA,

TITLE USING RCB ANALYSIS FOR EXPERIMENT LAID OUT IN SPLIT-PLOT DESIGN,

CLASSES REP WP SP;

MODEL OBS=REP WP SP WP*SP;
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ABSTRACT

Split-plot designs are used in two—-factor experiments where ome factor
requires larger experimental units than the other. These kind of experiments
will assess the effects of sub-factors and its interactions more precisely
than the effects of whole plot factors.

Expectation of mean squares were derived for the simple split-plot
design and two of its variants., Likewise, standard errors for multiple
comparisons were determined.

Two types of incorrect amalysis, namely, (1) sub-plot error used for
whole plot tests and (2) Randomized Complete Block analysis instead of Split
Plot analysis were considered in this study to find out the effects on
Type I error when the experiment is arranged in Split Plot Design. Using
both ratios of expected mean squares and simulation, results showed that
ignoring the whole plot error, even if it is small, can cause substantial
inflation of Type I error rate.

Split-plot type repeated measures design can be analyzed using the
usual split-plot analysis provided that the covariance matrix for
observations within a subject has a compound symmetry form. However, an
adjusted degrees of freedom should be applied when this covariance matrix
does not have a compound symmetry. An example of a repeated measures

analysis is given in which a preliminary test of compound symmetry is made.



