
 

 

TRANSCRIPTIONAL ANALYSIS AND PROMOTER CHARACTERIZATION OF TWO 

DIFFERENTIALLY EXPRESSED OUTER MEMBRANE PROTEIN GENES OF  

EHRLICHIA CHAFFEENSIS 

 

 

by 

 

 

LALITHA PEDDIREDDI 

 

 

 

B.V.Sc & A.H., A. N. G. R. A. UNIVERSITY, HYDERABAD, INDIA, 2001 

M.S., PURDUE UNIVERSITY, WEST LAFAYETTE, IN, USA, 2004 

 

 

 

AN ABSTRACT OF A DISSERTATION 

 

 

submitted in partial fulfillment of the requirements for the degree 

 

 

DOCTOR OF PHILOSOPHY 

 

 

 

Department of Diagnostic Medicine/Pathobiology 

College of Veterinary Medicine 

 

 

 

 

 

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

 

 

2009 



Abstract 

  

Ehrlichia chaffeensis is a Gram negative, rickettsial organism responsible for human 

monocytic ehrlichiosis, an emerging disease in people.  E. chaffeensis infection to a vertebrate 

host occurs when the pathogen is inoculated by an infected tick, Amblyomma americanum.  

White-tailed deer is a reservoir host for this pathogen.  The strategies employed by E. chaffeensis 

in support of its dual host adaptation and persistence are not clear.  One of the possible 

mechanisms by which the pathogen adapts and persists, is by altering its gene expression in 

response to its host cell environments.  Recently, we reported that E. chaffeensis protein 

expression including from a 28 kDa outer membrane protein multigene locus (p28-Omp), is 

influenced by macrophage and tick cell environments.  E. chaffeensis expresses p28-Omp gene 

14 product predominantly when it is grown in tick cells and p28-Omp gene 19 protein in 

macrophages.  We hypothesize that E. chaffeensis achieves its host-specific gene expression by 

employing transcriptional regulation by sensing the host cell signals.  In support of this 

hypothesis, transcriptional analysis of genes 14 and 19 was performed utilizing several RNA 

analysis methods.  The results supported our hypothesis that the gene regulation occurs at mRNA 

level in a host cell-specific manner.  This analysis also identified transcription start sites and 

located putative promoters for these genes.   Promoter regions of genes 14 and 19 were mapped 

to identify gene-specific differences, RNA polymerase binding sequences and the putative 

regulatory elements that may influence the promoter activities.  Electrophoretic mobility shift 

assays revealed interaction of E. chaffeensis proteins with gene 14 and 19 promoters.  Several E. 

chaffeensis putative regulatory proteins were expressed as recombinants and their effects on a 

p28-Omp gene promoter activity were evaluated.    



In summary, we demonstrated that the differences in the E. chaffeensis p28-Omp genes 

14 and 19 are the result of their regulation at transcriptional level in response to the host cell 

environment.  We also identified RNA polymerase binding regions and several DNA sequences 

that influenced promoter activity.  This is the first description of a transcriptional machinery of 

E. chaffeensis.  The data from these studies provide important insights about molecular 

mechanisms of gene regulation in E. chaffeensis.  
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Abstract 

Ehrlichia chaffeensis is a Gram negative, rickettsial organism responsible for human 

monocytic ehrlichiosis, an emerging disease in people.  E. chaffeensis infection to a vertebrate 

host occurs when the pathogen is inoculated by an infected tick, Amblyomma americanum.  

White-tailed deer is a reservoir host for this pathogen.  The strategies employed by E. chaffeensis 

in support of its dual host adaptation and persistence are not clear.  One of the possible 

mechanisms by which the pathogen adapts and persists, is by altering its gene expression in 

response to its host cell environments.  Recently, we reported that E. chaffeensis protein 

expression including that from a 28 kDa outer membrane protein multigene locus (p28-Omp), is 

influenced by macrophage and tick cell environments.  E. chaffeensis expresses p28-Omp gene 

14 product predominantly when it is grown in tick cells and p28-Omp gene 19 protein in 

macrophages.  We hypothesize that E. chaffeensis achieves its host-specific gene expression by 

employing transcriptional regulation by sensing the host cell signals.  In support of this 

hypothesis, transcriptional analysis of 14 and 19 genes was performed utilizing several RNA 

analysis methods.  The results supported our hypothesis that the gene regulation occurs at mRNA 

level in a host cell-specific manner.  This analysis also identified transcription start sites and 

located putative promoters for the p28-Omp genes 14 and 19.   Promoter regions of genes 14 and 

19 were mapped to identify gene-specific differences, RNA polymerase binding sequences and 

the putative regulatory elements that may influence the promoter activities.  Electrophoretic 

mobility shift assays revealed interaction of E. chaffeensis proteins with gene 14 and 19 

promoters.  Several E. chaffeensis putative regulatory proteins were expressed as recombinants 

and their effects on a p28-Omp gene promoter activity were evaluated.    

 



In summary, we demonstrated that the differences in the E. chaffeensis p28-Omp genes 

14 and 19 are the result of their regulation at transcriptional level in response to the host cell 

environment.  We also identified RNA polymerase binding regions and several DNA sequences 

that influenced promoter activity.  This is the first description of a transcriptional machinery of 

E. chaffeensis.  The data from these studies provide important insights about molecular 

mechanisms of gene regulation in E. chaffeensis. 
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Vector-borne diseases 

 

An infectious disease is a deviation from normal functioning caused by a pathogenic 

organism.  The disease causing agents are transmitted to a susceptible host by various means.  

Some of the common modes of disease transmission include direct physical contact, inhalation 

(air-borne), ingestion of contaminated food or water (food-borne), or by means of vectors that 

carry the infectious agents (vector-borne).  

 

Vectors of disease transmission 

 

 

A vector is a living organism that transmits a disease causing agent from one host to 

another.  The mode of an infectious agent transmission is said to be mechanical if a pathogen is 

simply physically carried by a vector to its host without the pathogen undergoing any replication 

in it.  An organism that involves in such mechanical transmission of a disease causing agent is 

called mechanical vector.  Sometimes, non-living objects also aid in mechanical transmission of 

a disease agent and are referred to as fomites.  Some of the examples of mechanical vectors 

include arthropods such as housefly (cholera) (119,188), cockroach (toxoplasmosis) (125), horse 

fly (anaplasmosis in horses) (222), mosquitoes (fowl pox) (191), and human body louse 

(relapsing fever) (317). These vectors physically carry the organism in their legs, mouthparts, or 

through other body parts to another host. They may also contaminate food or feed which then 

can serve as a source of infection. Vertebrate animals such as migratory birds and dogs can also 

serve as mechanical vectors in transmitting diseases to a vertebrate host.  For example, 

aspergillosis and toxoplasmosis are transmitted by birds and dogs, respectively (311,410).  An 

organism is considered as a biological vector when it supports the replication of an infectious 

agent and aids in its transmission to a suitable host.  Invertebrate organisms which act as 

biological vectors include mosquitoes, ticks, fleas, snails, and flukes; vertebrate animals like bat, 
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skunk, and dogs also serve as biological vectors.  A few examples of diseases transmitted by 

biological vectors listed above include: yellow fever, malaria (mosquitoes) (70,323); 

anaplasmosis, ehrlichiosis (ticks) (47,289,325).  bartonellosis, plague, murine typhus, feline 

leukemia (fleas) (14,64,144,404); schistosomiasis (snails) (101); neorickettosis (flukes) (127); 

dogs, bats and skunks transmit rabies (403).  

 

   Despite the great advances in human and animal medicine and improved methods of 

vector-based disease prevention and control strategies, vector-borne diseases are responsible for 

a major portion of  infectious diseases burden in the world in animals and people 

(142,148,156,257).  More than half of total morbidity and mortality reported during the last four 

centuries are due to vector-borne diseases. They include plague, malaria, yellow fever, dengue, 

epidemic typhus, trypanosomiasis, filariasis, and leishmaniasis (146).  Among the vector-borne 

infections, the majority of the infectious agents known to date are transmitted by arthropod 

vectors (140,181).  Several important human and animal illnesses transmitted by arthropod 

vectors are listed in Table 1.1.   

 

 The phylum Arthropoda includes the largest number of known species in the animal 

kingdom. This phylum is characterized by jointed legs, rigid cuticular exoskeleton and open 

circulatory system (haemocoel). The phylum Arthropoda consists of several subphyla; Trilobita, 

Crustacea, Uniramia and Chelicerata. The subphylum Trilobita includes extinct group of 

arthropods which were characterized by a three lobed head and body.  Most of the aquatic 

arthropods such as shrimps, crabs, and barnacles are included under the sub phylum Crustacea.  

Although, the majority of the members of subphylum Crustacea are marine in habitat, it also 

includes several freshwater and terrestrial species.  Subphylum Uniramia includes centipedes, 
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millipedes and insects. The class Insecta of Uniramia comprises themajority of all known 

arthropod species. The subphylum Chelicerata includes arthropods with no antennae, but contain 

a pair of chelicerae, a pair of pedipalps, and four pairs of walking legs in adults. A few examples 

of this subphylum are spiders, scorpions, ticks and mites. 

 

Of all known arthropod vectors, blood sucking organisms such as mosquitoes and ticks 

are the major contributors of diseases in vertebrate animals (118,340,358).  The most important 

mosquito-borne illnesses include bacterial diseases (tularemia) (315), viral infections (yellow 

fever, dengue fever, West Nile virus, equine encephalitis), protozoal diseases (malaria) and 

nematodal diseases (filariasis) (156).  Most of the mosquito-borne illnesses are concentrated in 

the tropical regions of the world spanning South and Central America, Asia, and Africa. Malaria, 

a mosquito-borne protozoan disease, is responsible for about 500 million cases and one million 

deaths each year in the African continent alone (355).  Chickengunya virus, responsible for 

severe outbreaks for past half a century in Asia and Africa and recent outbreaks in France and 

other parts of Europe, is transmitted by Aedes species of mosquito (104).  In developed countries 

such as in the United States, improved mosquito eradication strategies resulted in a significant 

decline in mosquito-borne infections (252).  

 

While mosquitoes remain major vectors for the most devastating diseases in animals and 

people for the past few decades ticks have emerged as the 2
nd

 major arthropod vectors in 

spreading infections to animals and people (298,373,405).  Tick-borne illnesses are of emerging 

concern in the United States, Europe and other regions of the world.  More detailed discussion 

about ticks, their role as vectors for several animal and human diseases is presented in following 

sections. 
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Biology of ticks 

 

Ticks are obligate, blood sucking arthropods that parasitize all classes of terrestrial 

vertebrates (358).  Nearly 850 tick species have been identified to date (276,358).  They belong 

to the subphylum, Chelicerata; class, Arachnida; order, Acari; and grouped into three families: 

Ixodidae, Argasidae and Nuttalliellidae.  The members of the family Ixodidae are known as ‘hard 

ticks’.  The name ‘hard ticks’ is given due to their characteristic hard sclerotized dorsal plate.  

The family Argasidae, also known as ‘soft ticks’, have a flexible, leathery cuticular exoskeleton 

(358).  The family Nuttalliellidae is confined to southern parts of Africa and includes only one 

species, namely, Nuttalliella namaqua (185). A detailed diagrammatic representation for 

classification of ticks is presented in Figure 1.1. 

 

Members of Ixodidae and Argasidae differ in their feeding behavior and life cycle. The 

‘hard ticks’ are slow feeders and stay on a host for a very long period of time,  usually for several 

days,  and take blood meals 2-3 times their body weight.  In contrast, ‘soft ticks’ are rapid 

feeders and consume blood meals 5-10 times their body weight in a few minutes to few hours 

(358).  The bite of Ixodid ticks is relatively painless compared to Argasid ticks.  The 

developmental cycle of a tick typically includes 4 stages namely, egg, larva, nymph and adult. 

Ixodid ticks contain only one nymphal stage which develops into an adult.  The life cycle of 

Argasid ticks includes several immature nymphal stages and requires multiple hosts for their 

final maturation into adult ticks.  Soft ticks tend to live longer (occasionally up to 20 years) due 

to their infrequent blood meals, and several nymphal stages in their life cycle.  Lifespan of hard 

ticks is relatively shorter than soft ticks, and they typically live for about 2 to 3 years.  Ixodid 

ticks are most prolific egg layers compared to Argasid ticks (358).  
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The life cycle of a typical Ixodid tick, from the time of hatching of the larvae to an adult 

tick, requires three hosts (three-host life cycle). The female tick, upon mating with the male tick 

and after intake of a blood meal, lays thousands of eggs in a few days.  The eggs hatch into 

larvae under favorable conditions, which then molt into a nymph after obtaining a blood meal 

from a vertebrate host.  The unfed nymphal ticks seek a suitable host to obtain a blood meal. 

Typically, larvae and nymph feed on small mammals.  The adult ticks emerge upon nymphal 

molt, which then parasitize a vertebrate host to feed, mate, and continue the life cycle.  Some 

exceptions of three-host life cycle exist among members of Ixodidae (358).  For example, 

Hyalomma species (H. anatolicum excavatum) life cycle requires only two hosts; the larva upon 

feeding, remain on the host and molt on it to become a nymph.  The nymphal tick, after intake of 

a blood meal from the same host falls onto the ground where it molts to become an adult (two-

host life cycle) (358).  For some Ixodid ticks, such as Dermacentor albipictus, Boophilus species, 

development of a larva to an adult occurs only on one host (one-host life cycle).  Argasid ticks, 

because of the presence of multiple nymphal stages in their developmental cycle, require 

multiple hosts in order for the completion of their life cycle (358).  Figure 1.2 shows a 

diagrammatic illustration of the life cycle of a three-host ixodid tick species.  

  

Ticks, like other members of Arachnida, are characterized by 6 pairs of appendages, 

which include a pair is chelicerae that are used for cutting and tearing the host skin, a pair of 

palps which help to attach to the host skin while feeding, and four pairs of walking legs.  Ticks 

possess some unusual features, which contribute to their vector competency and ability to 

transmit diseases to a wide range of hosts.  These features include their remarkably longer life-

span which can range from few to several years, capacity to withstand prolonged periods of 

starvation, ability to absorb moisture directly from the atmosphere, ability to produce a large 
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number of eggs (2000 to 25,000), ability to take a blood meal much larger than its body size, 

intracellular digestion etc. (358).  Unlike any arthropod vector, ticks are known to transmit a 

diverse group of infectious agents such as bacteria, virus, protozoa, Rickettsiae, fungi, and 

nematodes (160,298,331,357,358).  Moreover, ticks are known to harbor and transmit multiple 

pathogens simultaneously.  

  

Tick-borne infections 

 

Ticks are the vectors to several  known arthropod-borne illnesses of animals and humans.  They 

are the second major arthropod vectors after mosquitoes in spreading infectious agents 

(298,373,405).  Some of the important tick-borne animal and human infections to date include 

Lyme borreliosis, tick-borne encephalitis, Rocky Mountain spotted fever, Colorado tick fever, 

heartwater fever, east coast fever, and tularemia  (358,359).  A list of several tick-borne human 

and animal infections and corresponding causative agents is presented in the Table 1.2.  Ticks 

are also known as the vectors for several recently discovered emerging infectious diseases 

(358,359,378,405).  The number of newly reported tick-borne infections is also on the rise.   

Some of the emerging tick-borne infections are human babesiosis, Master’s disease caused by a 

spirochete with disease manifestations similar to Lyme disease, Alkhurma viral hemorrhagic 

fever, and bartonellosis (58,227,236,337). The list of emerging tick-borne human infections also 

includes several Rickettsial diseases including Rickettsia parkeri infection, human granulocytic 

anaplasmosis, Ehrlichia ruminantium-associated human infections, human ewingii ehrlichiosis, 

and human monocytic ehrlichiosis (3,223,280,358).  
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Tick-borne rickettsial infections 

 

As described above, ticks are vectors for many pathogens that cause diseases in vertebrate 

animals including people.  In recent years, tick-borne rickettsial infections are of a major health 

concern to animals and people.  Rickettsial organisms are a group of obligate intracellular 

bacteria that belong to the order Rickettsiales.  Besides tick-vectored pathogens, the order 

Rickettsiales also includes pathogens that are harbored by several other invertebrate vectors, 

which include lice, mites, fleas, and flukes (97,120).  In the following paragraphs, more 

description about the order Rickettsiales and various diseases of human importance caused by 

the pathogens that belong to this order are provided.  

 

General introduction of the order Rickettsiales:  

  The order Rickettsiales includes a group of intracellular organisms requiring eukaryotic 

cells for their growth and replication (97).  Most recent classification of the order Rickettsiales 

includes two families, Rickettsiaceae and Anaplasmataceae (97,120).  The family Rickettsiaceae 

has two genera Rickettsia and Orientia.  The genus Rickettsia includes twenty five species, 

whereas the genus Orientia has only one species, O. tsutsugamushi (97).  The genus Rickettsia is 

further subdivided into two groups based on the genotypic and phenotypic similarities of the 

organisms, the spotted fever group rickettsiae (SFGR) and typhus group rickettsiae (TGR) 

(97,318).  Rickettsial organism belong to the spotted fever group can polymerize actin filaments 

in the host cell cytoplasm.  The polymerized actin filaments are then utilized by these organisms 

to move into the host nucleus or swim across the cytoplasm to spread to neighboring cells.  

Typhus group of rickettsia, excluding R. typhi, lack the ability to polymerize the host actin 

filaments (153,154).     
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Organisms that are classified under SFGR are vectored by ticks, whereas lice and fleas 

serve as the vectors for TGR (298,318,390,406).   The only member of the genus Orientia, O. 

tsutsugamushi is transmitted to a vertebrate host through the bite of infected mites (332,411).   

The family Anaplasmataceae contains four genera Wolbachia, Neorickettsia, Anaplasma and 

Ehrlichia. Members of the genera Wolbachia are endosymbionts in arthropods and nematodes 

(21,97,176,413). Flukes are the primary vectors for the genus Neorickettsia. Anaplasma and 

Ehrlichia species are primarily transmitted by Ixodid ticks to wide range of vertebrate hosts 

(97,152,318,327,411).  Many organisms that belong to the order Rickettsiales are responsible for 

several important diseases of animals and people.  Some of the well known and recently 

discovered emerging diseases of people caused by the members of Rickettsiaceae and 

Anaplasmataceae are discussed below. 

 

Diseases caused by the organisms of the family Rickettsiaceae:  

Epidemic typhus:  

Epidemic typhus, a louse-borne rickettsial infection caused by Rickettsia prowazekii, was 

a serious disease of humans in the 20
th

 century.  The flying squirrel serves as the reservoir host 

for R. prowazekii (38).  A higher incidence of epidemic typhus is associated with wars, 

particularly where a large number of people are placed in concentration camps, refuge camps, 

prisons, etc. (122).  Unhygienic conditions in such crowded places lead to easy dissemination 

human body louse carrying the pathogen, R. prowazekii, thereby spreading of the disease very 

rapidly.  In 20
th

 century, the number of deaths resulted due to epidemic typhus are far more than 

the fatalities resulted from war related injuries (12).  After gaining entry into a vertebrate host, R. 

prowazekii infects vascular endothelial cells and macrophages where it multiplies by binary 

fission (415).  The symptoms of epidemic typhus are usually non-specific and may vary with the 
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immune status of the infected person.   The most commonly reported symptoms are high chills, 

fever, headache, muscle pains and rashes on chest, trunk and extremities (266).  The mortality 

rate reported for epidemic typhus range from 10 to 60%.   R. prowazekii damages the vascular 

endothelial cells lining the vital organs such as liver, kidney, and lungs resulting in compromised 

blood supply to those organs and death.  In the event of early recognition, the disease can be 

effectively treated with antibiotics such as tetracycline or doxycyline (266).  Although R. 

prowazekii associated infections are not commonly seen in clinics, this pathogen remains a 

serious concern because of its potential as a bioterrorism agent (13).  In fact, R. prowazekii is 

classified as category A pathogen and the research related to this pathogen is carried out under 

very controlled laboratory conditions to avoid potential risk of infections to people.   

 

Rocky Mountain spotted fever (RMSF): 

RMSF is one of the oldest diseases known for more than a century, and is still reported in 

high numbers.  Besides human beings, RMSF is also reported to occur in dogs (12).  R. rickettsii 

is the causative agent for this disease and is transmitted by Dermacentor species of ticks (268).  

As with R. prowazekii associated infections, R. rickettsii infects the vascular endothelium and 

lethal outcome of the disease is mainly due to irreversible damage to endothelial cells lining the 

blood vessels of vital organs (237).  The incidence of RMSF remains high in Southeastern and 

Midwestern regions of the United States (384).   According to a recent report nearly 4,000 cases 

are reported during  1997-2002 in the United States alone (57).  The mortality associated with 

RMSF range from 5-10% (57). Most of the mortalities are associated with this disease are 

primarily due a delay in its diagnosis (237).   
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Mediterranean spotted fever (MSF): 

MSF is a tick-borne rickettsial disease of people caused by R. conori (12).  MSF has the 

highest incidence in the Mediterranean countries including southern Europe, northern Africa, and 

part of Asia, where the disease is endemic (333).  This disease has been reported from other 

regions of the world including central Europe and southern and central Africa (333).  R. conori is 

transmitted to a vertebrate host by Rhipicephalus species of ticks (138).  Like the other rickettsial 

diseases described above, the symptom for MSF are highly non-specific and they include fever, 

severe headache, and maculopapular rash (83,333).  MSF is reported to have a mortality rate 

ranging from 1-3% and a higher mortality rate of ~30% is also reported for patients containing 

other health problems such as liver diseases, diabetes, and deficiency of certain metabolic 

enzymes (319).  If recognized in the initial stages of infection, MSF can be treated effectively 

with antibiotics such as chloramphenicol, tetracycline or doxycyline (333).  

 

Siberian tick typhus: 

Siberian tick typhus is another well known tick-borne Rickettsial disease in people 

caused by R. sibirica (12).  This pathogen was first reported in central Siberia and later it is also 

reported from other parts of the world including Pakistan and northern China (105,112,329).  

Several ticks, including Dermacentor species, Hyalomma species, and Haemaphysalis species 

serve as the biological vectors for this disease (186).  The disease is manifested in a mild clinical 

illness with the exhibition of several non-specific symptoms, which include fever, headache, 

muscular pain, digestive disturbances and rash (318).  Usually the onset of the symptoms occurs 

4-7 days after the infected tick-bite, and they usually disappear in about a week even without 

treatment (318).   
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Scrub typhus:  

Scrub typhus is also one of the oldest known rickettsial diseases of people caused by 

Orientia tsutsugamushi (310).  This pathogen is primarily vectored by infected trombiculid mite 

larvae (310,332,411).  O. tsutsugamushi primarily infects endothelial cells of a vertebrate host.  

Small mammals such as rodents act as reservoir hosts for this pathogen.  This disease is mainly 

endemic to a region spanning Pakistan, Japan, and Australia, which is often referred to as the 

‘tsutsugamushi triangle’ (41,59).  Scrub typhus is not endemic to the United States; however, it is 

often reported in soldiers or travelers who have been to areas that are endemic to the disease 

(155,379).  The most commonly reported symptoms of the scrub typhus are sudden onset of a 

high fever, severe headache, muscle ache, and generalized swelling of lymph nodes.  At the site 

of mite bite, eschar is seen in about 50% of the infected people (175).  An incidence rate of 23% 

is reported for this disease in endemic areas with mortality rate ranging from 1-50%, which 

depends on the immune status of a person and the pathogenic strain involved (59,186).  Mortality 

resulting from scrub typhus is primarily due to multiple organ failure as a result of vascular 

damage.  This disease can be treated effectively, if recognized early, with antibiotics such as 

Doxycyline (387).  

 

Emerging tick-borne diseases by the organisms of the genus Rickettsia:  

The genus Rickettsia also includes several pathogens causing a number of recently 

discovered emerging tick-borne infections in people.  A few examples of emerging human 

infections include African tick bite fever, Japanese spotted fever, Flinders Island spotted fever 

and Astrakhan fever.  A brief description about these diseases and their causative agents is 

provided below.  
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African tick-bite fever: 

African tick-bite fever caused by R. africae was first identified in 1992 in Zimbabwe 

(187).   Amblyomma species ticks are the vectors for this pathogen.  African tick-bite fever is 

more prevalent in southern Africa and the acute form of this disease is primarily reported in 

European and American travelers to this region of Africa (155,173,249,316).  For example, a 

recent study conducted in German travelers returning from Africa indicated that nearly 11% of 

them had a clinical disease associated with R. africae infection (173).  

 

Japanese spotted fever: 

 Japanese spotted fever is another emerging human disease reported for the first time in 

1984 in rural areas of Japan and its causative agent, R. japonica, was isolated in 1985 

(230,388,389).  Ixodes species of ticks serve as vectors for R. japonica and this disease is mostly 

limited to southwestern and central
 
Japan.  Commonly reported symptoms for this disease 

include sudden onset of fever, chills, rashes all over the body and occasionally leading to 

complications such as encephalopathy, respiratory distress and failure of functioning of multiple 

organs resulting form damage to vascular endothelium (194,195,389).   

 

Flinders Island spotted fever: 

Flinders Island spotted fever is reported from Flinders Island near Australia in 1991 

(365).  The etiological agent of this disease, R. honei, was isolated later in 1998 (363,365).  

Various species of Aponomma ticks, which usually parasitize reptiles, serve as vectors for R. 

honei (143).  This disease has also been reported from Tasmania, Thailand, and southeast regions 

of Australia where the vector ticks population is prevalent (395).  The disease is usually less 

severe and associated with symptoms such as headache, muscle ache, joint pains, rash, swelling 
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of lymph nodes, and cough (394).   To date, no fatalities associated with this disease have been 

reported.    

 

Astrakhan fever: 

Astrakhan fever, discovered in 1991, is endemic to Astrakhan region in Russia (80,376).  

The causative agent of Astrakhan fever, R. conori sub species caspeciesia, was identified in 2005 

(446).  Rhipicephalus species of ticks serve as transmitting vectors for this pathogen (318).  A 

recent study demonstrated the presence of this disease in Kosova and Chad (Africa), suggesting a 

broader distribution of this pathogen and its vectors other than Russia (17,121,297).  The disease 

manifestation ranges from asymptomatic to exhibition of symptoms including fever, rash, and 

conjunctivitis (297,376).  To date, no mortalities associated with Astrakhan fevers have been  

reported. 

 

Diseases caused by the organisms of the family Anaplasmataceae:  

  The family Anaplasmataceae initially included only pathogens of veterinary importance.  

The only exception has been Neorickettsia (Ehrlichia) sennetsu, the agent of sennetsu fever in 

people.  N. sennetsu is endemic to Japan and was identified in 1954.  Sennetsu fever is reported 

only from Japan, Malaysia and Thailand (178,254,296,320).  Although not yet confirmed, similar 

to other Neorickettsia species, flukes are suspected to serve as vectors for this organism 

(42,97,162).  Most of the reported cases of sennetsu fever are linked to consumption of raw fish, 

which is suspected to carry fluke containing N. sennetsu (126).  The generalized symptoms of 

Sennetsu fever are fever, myalgia, lack of appetite, constipation, insomnia, swelling of lymph 

nodes and leucopenia (29,42).  The disease occurs very rarely and is not associated with fatalities 

(29).      
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    Several Anaplasmataceae organisms that are responsible for emerging infections in 

people have been  identified over the past three decades (46,78,228,303).  Recent human 

infections caused by Ehrlichia and Anaplasma are vectored by ticks.   Anaplasmataceae 

pathogens diseases in people include human granulocytic anaplasmosis, human ewingii 

ehrlichiosis, and human monocytic ehrlichiosis caused by Anaplasma phagocytophilum, 

Ehrlichia ewingii, and Ehrlichia chaffeensisEhrlichia chaffeensisEhrlichia chaffeensis, 

respectively.  These diseases are emerging as a major public health concern.   The genera 

Ehrlichia and Anaplasma also include several species that are responsible for diseases in 

companion animals and livestock.  Some important animal diseases include canine monocytic 

ehrlichiosis and canine granulocytic ehrlichiosis in dogs, heartwater fever in ruminants, and 

anaplasmosis in cattle.  More detailed description of these animal and human infections with 

their associated pathogens is provided in the following sections.    

 

Canine monocytic ehrlichiosis: 

Canine monocytic ehrlichiosis (CME), a potentially life threatening tick-borne ehrlichial 

infection in dogs, is caused by Ehrlichia canis.  This pathogen is initially identified in 1935 in 

Algeria and later reported from various regions in the world except Australia (145,150,184).  In 

two isolated cases, E. canis infections have also been reported in people (300,301).  These case 

reports are documented by only one group of scientists from Venezuela (300,301).  

Rhipicephalus sanguineus ticks serve as the primary vectors for this organism (145).  

Experimental studies in Dermacentor species of ticks also suggest its possible role as a vector for 

this organism (177).  Manocytes and macrophages infections of a vertebrate host by E. canis 

have been documented (69).  The most commonly reported symptoms for CME include fever, 

depression, lethargy, anorexia, swelling of lymph nodes and haematological abnormalities such 
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as leucopenia, anemia and pancytopenia (149).  The CME is a serious disease and is associated 

with severe mortalities reported in military dogs.  Active surveillance programs and 

chemoprophylaxis measures have lead to a considerable reduction in E. canis associated 

fatalities in dogs (77,416).  CME is fatal in young and immunocompromised dogs (251).  Early 

diagnosis followed by treatment with antibiotics such as doxycyline is proven to be very 

effective in curing the clinical disease (77).  However, even after recovery, dogs remain infected 

with E. canis throughout their life (412).   

 

Canine granulocytic ehrlichiosis:  

 Canine granulocytic ehrlichiosis is a disease of dogs caused by E. ewingii.  Initially, this 

pathogen was thought to be a variant of E. canis and was referred to as canine granulocytic 

Ehrlichia (109,366).  Based on 16s RNA sequence, this pathogen was later classified as E. 

ewingii in 1992 (7).  This pathogen is also known to cause disease in people known as human 

ewingii ehrlichiosis (46).  Amblyomma americanum serve as the vector for this pathogen (10).  

Canine granulocytic ehrlichiosis is generally a milder disease compared to CME and is usually 

characterized by fever, depression, anemia, thrombocytopenia, and polyarthritis (141).  

Doxycyline is widely used to treat the infection.  

 

Heartwater fever: 

 Heartwater fever is an economically important tick-transmitted disease of domestic and 

wild ruminants including cattle, sheep and goats.  This disease is caused by Ehrlichia (Cowdria) 

ruminantium (97,180).  This pathogen is transmitted to a vertebrate host by exotic ticks of the 

genus Amblyomma (31,393).  Although this disease is endemic to sub-Saharan Africa, it is 

widespread in several islands of the Caribbean (26,392,393).  Due to the presence of indigenous 
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Amblyomma species ticks that support the growth of E. ruminantium,  this pathogen poses a 

continuous threat to domestic and wild ruminants of the US mainland (229,391).  This pathogen 

infects vascular endothelial cells of a vertebrate host.  The disease is characterized by high fever 

up to 107°C, depression, anorexia, excessive salivation and various neurological symptoms 

including muscle twitching, seizers and circling (72).  The fatalities associated with the 

heartwater disease in cattle are mainly due to severe encephalitis and hydropericardium resulting 

from destruction of vascular endothelium.  Mortality rate up to 90% is reported in naïve animals 

and animals from non-endemic regions (180,392).  Antibiotics such as tetracycline are shown to 

be effective the initial stages of the clinical disease.  The recovered animals remain as carriers of 

the pathogen for a very long period of time (9).  Isolated cases of human fatalities associated 

with E. ruminantium have been reported recently suggesting its zoonotic potential to people 

(3,223).   

 

An experimental study in goats, involving Amblyomma species ticks collected from the 

Panola Mountain State Park in Georgia, identified a novel Ehrlichia species that is closely 

related to E. ruminantium (216,217).  Later, this new Ehrlichia species, referred to as the Panola 

Mountain Ehrlichia was shown to cause natural infections in goats and white-tailed deer 

(216,217,426). Although, one case of human illness associated with Panola Mountain Ehrlichia 

species is reported recently, its zoonotic potential to people remains unknown (324).  

 

Bovine anaplasmosis: 

 Bovine anaplasmosis is another economically important disease of cattle caused by 

Anaplasmataceae pathogen, Anaplasma marginale.   In the beef cattle industry bovine 

anaplasmosis is estimated to cause an annual loss of nearly $300 millions and it is reported to be 
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even more in Latin American countries (193).  A. marginale also infects wild ruminants such as 

elk, water buffalo, pronghorn, bighorn sheep, deer and antelopes (200).  Dermacentor species 

ticks serve as vectors for this organism.  Biting flies, fomites such as contaminated needles and 

dehorning equipment also aid in mechanical transmission of the A. marginale from an infected to 

naïve animal.   A less virulent species, A. centrale, is also known to cause anaplasmosis in cattle.  

Because of its antigenic similarity and low virulence, A. centrale is used to premunize the cattle 

to prevent the severe disease caused by A. marginale, which is a more virulent species (200).  

Cattle are also immunized against bovine anaplasmosis using inactivated A. marginale antigens 

and infection and tetracycline treatment method.  Erythrocytes are the target sites for A. 

marginale infection which leads to clinical symptoms and disease.  Inside the erythrocytes these 

organisms reside in a host cell derived membrane bound vacuoles where they multiply by binary 

fission.  A. marginale and A. centrale reside at the margin and centre of erythrocytes, 

respectively (201).  The calves are less susceptible to the disease as they develop non sterile 

immunity, whereas an infection in adult cattle may result in a mild to a severe form of the 

disease (192).  Clinical signs of bovine anaplasmosis typically include fever, depression, loss of 

body weight, abortion, anemia and haemoglobinuria.  After a period of parasitemia, the number 

of erythrocytes reduces due to removal of infected RBC by phagocytosis.  As a result of this, the 

infected cattle become persistently anemic (328).   If recovered from an acute form of the 

disease, cattle remains infected for their life (123,189) and acquires lifelong immunity to further 

infection (193).  

 

Human granulocytic anaplasmosis: 

Human granulocytic anaplasmosis (HGA) is an emerging human infection caused by 

Anaplasma phagocytophilum.  This disease was first reported in 1994 in the United States in a 
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human patient from Minnesota and later in Europe in 1997 (18,60,303).  Subsequently, HGA 

cases are reported from many parts of the USA, Europe and Asia (98).   A. phagocytophilum also 

infects horses, cattle, and dogs (69,383).  This pathogen primarily infects neutrophils of a 

vertebrate host (97).  Ixodes species of ticks and white footed mice serve as the vectors and 

reservoir hosts, respectively, for A. phagocytophilum (289,360,377).  HGA cases are mostly 

reported from northeastern and upper midwestern regions of the United States where the Ixodes 

ticks are highly prevalent (85).  Passive surveillance data suggests an incidence rate of 1.4 cases 

of HGA per million people each year with a mortality rate of about 1% (85).  As the passive 

surveillance data usually tend to underestimate the disease, the incidence rate could be much 

higher than what is reported to date.  The most commonly reported clinical and laboratory signs 

for HGA include fever, chills, vomitions, muscle pain, headache, confusion, respiratory distress, 

thrombocytopenia, leucopenia and elevated liver enzymes (18,95,100).  The disease is more 

severe in old and immunocompromised people (85).  If recognized in the initial stages, the 

disease can be treated effectively with antibiotics such as doxycyline.     

 

Human ewingii ehrlichiosis:  

Human ewingii ehrlichiosis (HEE) is another important emerging rickettsial disease 

caused by E. ewingii.  This organism is initially known to cause granulocytic ehrlichiosis in dogs 

(109).  In 1991, E. ewingii associated infections are reported in humans in Missouri (46). 

Transmission of E. ewingii to a vertebrate host occurs through a bite of an infected A. 

americanum tick (10).  White-tailed deer serves as the reservoir host for this organism (207,428).  

The definitive host, dog, can also serve as a reservoir host for this pathogen.  E. ewingii 

associated human infections are reported only in the United States (100).  HEE cases are mostly 

documented in Arkansas, Missouri, Oklahoma, North Carolina and Virginia where A. 
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americanum ticks are prevalent (141,207,261).  E. ewingii exhibits tropism for neutrophils of a 

vertebrate host (46).  Commonly reported symptoms for HEE include fever, headache, 

thrombocytopenia and leucopenia (100).  This disease can be life threatening in immune 

compromised people (278).  HEE can be treated effectively with doxycyline. Often people can 

recover form the infection even without an antibiotic treatment (368).   

 

Human Monocytic Ehrlichiosis: 

Human monocytic ehrlichiosis caused by E. chaffeensis is one among the most important 

emerging tick-borne human infections in the United States and other parts of the world 

(78,228,281).  Initial identification of E. chaffeensis is made over two decades ago in the blood 

smear of a patient who suffered with tick bites (228).   This pathogen is transmitted by A. 

americanum tick to a vertebrate host.  Human monocytic ehrlichiosis distribution in the United 

States and several regions of the world correlates well with the distribution of its vector ticks 

(96,277,414).  Since molecular aspects of E. chaffeensis has been the primary focus of this thesis, 

a more detailed discussion about this organism and its associated disease is provided below.   

 

Ehrlichia chaffeensis, an emerging human infectious disease agent 

 

Epidemiology: 

 

Ehrlichia chaffeensisEhrlichia chaffeensisEhrlichia chaffeensis is a Gram negative, 

obligate intracellular rickettsial pathogen responsible for an emerging infectious disease, human 

monocytic ehrlichiosis (HME) (78,228,281).  This disease when first reported in a human patient 

from Arkansas (228) and was initially thought to be caused by E. canis (228).  In 1991, 

molecular evidence has been presented, which distinguished the HME agent from E. canis and is 
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named as E. chaffeensis (6,78).  This pathogen also infects dogs, coyotes, goats, white-tailed deer 

and raccoons (93,94,428,433).  White-tailed deer and A. americanum tick are identified as the 

primary reservoir host and vector, respectively, for this pathogen (8,79,215,297).  An increased 

incidence of human infections by this pathogen has been reported in recent years (248,277).  

According the most recent report, an average of 600 human cases of HME is reported each year 

in the United States alone (248).  Figure 1.3 contains a graph showing the incidence of HME 

from 1999 to 2006, plotted based on the most recent information (248).  Most of the reported 

HME cases are from south-central and south-eastern regions of the United States where the 

vector tick population is more prevalent (Figure 1.4) (19,20,96,168,248,275,277,361,414).  HME 

is included in the list of nationally notifiable diseases of the United States in 1998 (288). 

 

Clinical signs of HME: 

 

 Incubation period from the time of tick bite to onset of the clinical disease ranges from 

1- 4 weeks (297).  General manifestation of HME range from asymptomatic to mild flu-like 

symptoms, sometimes progressing to a severe life threatening disease.  The most often reported 

symptoms for this disease include fever, headache, muscle aches, chills, nausea and 

lymphadinopathy (100,277).   Complications such as septic shock-like syndrome, meningitis, 

organ damage are also reported in some patients (98,103,278,368).  Most common laboratory 

reports indicate  leucopenia, thrombocytopenia, and an increase in hepatic transaminase levels 

(100,277).  Although people of all ages are susceptible, the most severe form of the disease and a 

fatal outcome is often reported in immunocompromised people, pregnant woman, young children 

and elderly people (134,277).   
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Diagnosis and treatment: 

 

In most of the cases HME diagnosis is difficult as clinical symptoms are not very specific 

to this disease and are often confused with other bacterial and viral illnesses.  History of the tick 

bites followed by some of the clinical signs or laboratory findings (described in the previous 

paragraph) help in presumptive diagnosis of this disease (100).  Routine diagnostic tools used to 

identify the infection include examination of peripheral blood smear, IFA, and PCR.  Culturing 

and identification of the organism is done sometimes for confirmatory diagnosis of E. chaffeensis 

infections (6,57,100,135).  Soon after the presumptive diagnosis is made, treating the infection 

with tetracycline antibiotics is proven to be very effective in clearing the infection (277).  

Doxycyline, a derivative of tetracycline having a better efficacy and tolerated by most patients, is 

currently the drug of choice for treating HME (100).  

 

Life cycle: 

 

 The completion of E. chaffeensis life cycle, like any other tick-borne pathogen, requires 

its propagation in its tick vector and a vertebrate host (Figure 1.5).  Usually larval or nymphal 

ticks acquire infection while feeding on an infected vertebrate animal.  E. chaffeensis is passed 

onto another vertebrate host from nymphal or adult tick carrying the pathogen.   There is no 

evidence reported in the literature to suggest that the pathogen can be transovarially transmitted 

(220).  Maintenance of E. chaffeensis in nature is primarily due to its transmission between its 

tick vector and reservoir host.  Several small mammals and wild animals such as coyotes, 

raccoons and deers serve as vertebrate hosts for E. chaffeensis (93,94,428,433).  White tailed 

deer is reported to be a natural reservoir host for this organism (8,79,215,297).  Humans are 

considered as accidental hosts for this pathogen who usually acquire the infection form a tick-

bite during their outdoor activities in a tick inhabited area.  
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Pathogenesis: 

 

 Initial infection of E. chaffeensis to a vertebrate host occurs when an infected tick takes a 

blood meal.  After the inoculation into a vertebrate host through a tick-bite, the organisms are 

eventually internalized by monocytes in the blood or macrophages in various organs through 

phagocytosis (42).  Though E. chaffeensis exhibits a special tropism towards the macrophages or 

monocytes, it has also been shown to infect lymphocytes, premyelocytes and metamyelocytes, 

and neutrophils (42,277).  E. chaffeensis infection of phagocytic cells of various organs such as 

liver, spleen, bone marrow, lymph nodes and perivascular mononuclear infiltrates of brain and 

visceral organs results in damage to those organs (100).  The histological findings associated 

with such infections include multiple focal necroses in liver, spleen, damage to alveolar tissue of 

lung, interstitial pneumonia, diffuse hemorrhages in various organs, and meningitis.  Such 

multiple organ involvement is most often associated with fatal outcomes in infected patients 

(80,99,235,279).  Pancytopenia and hypocellular bone marrow are rarely reported in patients 

with acute form of the disease (99,291).  Fatal outcomes associated with high bacteremia are 

often reported in immunocompromised people and also in patients receiving prolonged sulfa 

drug therapy for other underlying disease conditions (259,278,291).  Other pathological findings 

associated with HME include hyperplasia and megakaryocytosis of the bone marrow (2433).  In 

an infected individual E. chaffeensis is predominantly seen in spleen, lymph nodes and bone 

marrow that have large proportion of mononuclear phagocytic cells (80,235). E. chaffeensis is 

also seen in perivascular infiltrates of brain, heart, kidney, pancreas and digestive tract (80,235).  

 

Attachment, internalization and intracellular multiplication are critical steps in a path to 

establish infection by an intracellular bacterium, including E. chaffeensis.  Bacterial attachment 

to host cells is usually achieved by specialized structures like pili, flagellum, and capsule 
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(139,334,442).  E. chaffeensis lacks any of these specialized structures.   Although there is no 

firm evidence, outer membrane proteins such as a 120 kDa protein appear to serve for adhesin 

(307).   In a recent study, indirect evidence was presented about the 120 kDa protein of E. 

chaffeensis as adhesion.  E. coli expressing this protein was able to attach and gain entry into 

HeLa cells (307).  Nonetheless, it is unclear how E. chaffeensis is phagocytosed by the host 

monocytes or macrophages. Within the phagosome, E. chaffeensis undergo replication by binary 

fission to produce several organisms (morulae) (306).   It is not clear how E. chaffeensis can 

overcome the phagosomal clearance in support of its survival and replication within the host 

cells.  The reports from literature suggest that E. chaffeensis avoids the phagolysosomal fusion 

by yet unknown mechanisms (326).  

 

Developmental cycle: 

 

 E. chaffeensis has two morphological forms, namely dense-core and reticulate bodies 

(306,441).   Dense-core forms are characterized by highly condensed chromatin, whereas 

reticulate forms contain loosely arranged chromatin.  Transformation of dense-core forms to 

reticulate forms usually occurs after 24 hours of infection (441).   This type of transformation 

from dense-core to reticulate and back to dense-core forms is typical for the pathogens of the 

genera Ehrlichia and Anaplasma.   Chlamydia species also have very similar developmental 

cycle, which progresses from dense-core to reticulate and back to dense-core forms 

(11,157,422,424).   Both forms of E. chaffeensis are shown to divide by binary fission inside the 

host cells.  Similar to Chlamydia organisms, the dense-core bodies of E. chaffeensis are the 

forms that infects naïve cells, whereas the reticulate forms are non infective, metabolically active 

and highly replicative in nature (199,422,441).  The reticulate bodies will transform to dense-

cored forms in the phagosome towards the end of their infectious cycle and released from 
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monocytes or macrophages to start a fresh infectious cycle (441).  Transmission electron 

microscopic studies from our laboratory identified morphological differences in E. chaffeensis 

that are associated with its growth in tick cells and macrophages (DeDonder and Ganta, 

unpublished data).  The striking differences include synchronized growth of reticulate and dense-

core bodies of E. chaffeensis in macrophages compared to pleomorphic, larger dense-core and 

reticulate bodies in tick cell-grown organisms (DeDonder and Ganta, unpublished data).  

 

Molecular biology of E. chaffeensis: 

 

E. chaffeensis was discovered two decades ago and several advances have been made in 

understanding the molecular structure of this pathogen.  They include sequencing of the 

complete genome and annotation and characterization of several gene products at the molecular 

level (162). The genome size of E. chaffeensis is 1,176 kbp and contains 1,115 predicted protein 

coding sequences (162).  Considerably more information about the expressed genes of E. 

chaffeensis has been reported in our recent studies involving global proteome and transcriptome 

analyses methods (Sirigireddy and Ganta, 2007, unpublished data) (347).  Comprehensive 

proteome analysis of E. chaffeensis identified 278 expressed proteins representing functional 

genes for metabolism, structure, transport, and immunogenicity (347).  This analysis also aided 

in the identification of several proteins whose function is yet to be established (347).  

 

Transcriptome analysis utilizing the open reading frame-based microarray also aided in 

the identification of nearly one third of predicted genes from this pathogen and they also 

included several differentially expressed genes by the pathogen in response to its growth in tick 

and macrophage cells (Sirigireddy and Ganta, 2007, unpublished data).  The expressed genes 

identified though microarray analysis are clustered into several groups based on their function.  
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They include genes that are involved in various cellular processes such as cell division and 

chromosome partitioning. The list of expressed genes also include those that are implicated in 

the biosynthesis of amino acids, vitamins and co-factors, metabolism of amino acids, fatty acid 

metabolism,  DNA metabolism, and energy metabolism.  Several genes that encode  hypothetical 

proteins were also identified in this analysis (Sirigireddy and Ganta, 2007, unpublished data).  A 

detailed functional characterization of many of the expressed genes remains to be performed.   

 

As the outer membrane proteins of E. chaffeensis can be a contact point for its interaction 

with the host, host immunity may primarily target to these proteins (206,274,421).  In fact, the 

majority of the immunogenic proteins for which antibodies are made during E. chaffeesnis 

infection are against indeed for the outer membrane proteins (347).  In this regard, the pursuit for 

surface expressed proteins of E. chaffeensis for diagnostic purpose over the past few years 

identified several immunoreactive outer membrane proteins.  The list of immunogenic proteins 

recognized include a variable length PCR target gene (VLPT), a homolog of heat shock protein 

gene (groESL), three glycoproteins (gp47, 120 and 156) and an abundantly expressed p28 kDa 

outer membrane proteins (p28-Omp’s) (135,352,370,371,425,436,437).  The p28-Omp proteins 

are also glycosylated and, in addition, contain a second post-translational modification by 

phosphorylation (352).  Other E. chaffeensis genes reported in the literature include a highly 

conserved 16s rRNA gene, DO/DeqQ family serine proteases, DsbA-like disulfide bond 

formation proteins, quinolinate synthetase A (NAD/A), VirB/D, a hypothetical protein named as 

Esp73, ftsZ gene, and several hypothetical proteins (135,203,246,347,438). A brief description of 

E. chaffeensis partially characterized genes is provided below.  
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16s rRNA:  An identical 16s rRNA gene sequence has been reported from various E. chaffeensis 

isolates (412).  Because of its highly conserved nature within the E. chaffeensis species, the 16s 

rRNA is used for species differentiation and phylogenetic classification of other related 

organisms (6,97). 

 

GroESL: E. chaffeensis homologs of E. coli heat shock genes, groES and groEL (groESL 

operon), are first identified and characterized from a genomic library of E. chaffeensis in 1993 

(372).  The GroESL operon consists of two open reading frames that encode for a 10.3 kDa 

protein (GroES) and a 58 kDa protein (GroEL) comprising 94 and 550 amino acids, respectively 

(372).  Both genes in the GroESL operon are separated by a 100 bp non coding sequence (372).  

In a recent study by Ge and Rikihisa (135), GroEL is identified as a surface exposed protein.  In 

general, bacterial heat shock proteins play a critical role in cellular protection under stressful 

conditions. Their production increases under various types of environmental stresses including 

increase in temperature, nutrient deprivation (174,214).  The precise role of the E. chaffeensis 

groESL genes remains to be evaluated.  

 

Variable Length PCR Target gene (VLPT): VLPT is another immunoreactive protein reported 

in 1999 (370).  VLPT of Arkansas strain of E. chaffeensis is 44 KDa in molecular weight and 

contains four non-identical, 90 bp, direct tandem repeats (370). The number of repeats is variable 

in different isolates of E. chaffeensis, and hence, it is used as a PCR target for strain 

differentiation (62,370).  A homologue of VLPT that encodes for a 19 kDa protein has also been 

identified recently in E. canis (245).  The exact role of VLPT in E. chaffeensis pathogenicity is 

not known. 
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FtsZ: An E. chaffeensis homolog of the ftsZ gene of E. coli was first identified in 2003 (203). E. 

coli ftsZ sequence was utilized for designing degenerate primers to amplify its homolog from E. 

chaffeensis genome.  The length of ftsZ open reading frame in E. chaffeensis is 1263 bp and is 

predicted to encode for a 45.7 kDa protein (203).  FtsZ gene of E. coli has been well 

characterized and was shown to play an important role in cell division (179,225).  The functional 

role of ftsZ in E. chaffeensis, however, is remains to be characterized.  

 

VirB/D: Whole genome sequence analysis of E. chaffeensis identified homologs of the genes 

that encode for type four secretion system (T4SS), virB/D (162).  Typically, in most pathogenic 

organisms the genes that encode for T4SS apparatus are clustered in a single locus (66).  In E. 

chaffeensis, the virB/D genes are present in two separate loci (63,162,273).  The genes virB8-1, 

virB9-1, virB10, virB11, virD4 are present in one locus; whereas, the second locus contains the 

genes virB3, virB4-1, and four paralogous virB6 genes (63,162,273).  All these genes are 

reported to be transcriptionally active in vitro in macrophage (DH82) cultures (63).  A recent 

study by Cheng et al (63), demonstrated that expression of these genes is high in the exponential 

growth phase of the pathogen and drops down prior to their release from host cells.  This study 

also identified a regulatory protein of E. chaffeensis, EcxR, that serves as a transcriptional 

activator for all virB/D genes (63).  The expression of EcxR protein was also shown to be 

autoregualted to allow the stage specific expression of these genes.  The precise role of these 

proteins in E. chaffeensis remains to be investigated. 

 

Glycoproteins: Several immunoreactive glycoproteins (gp) of E. chaffeensis are identified and 

they include gp47, gp120, gp200, and p28-Omp proteins (91,92,244,437).  Brief description of 

these proteins is provided in the following paragraphs.  
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Gp47:  Gp47 is a 47 kDa immunoreactive glycoprotein of E. chaffeensis identified recently 

(91,92).  This protein is characterized by several serine and threonine rich repeats that vary in 

number in various E. chaffeensis isolates.  The glycosylation sites for this protein are present 

within these repeats and the carboxy-terminal repeats contain epitopes for antibodies (92).  Gp47 

protein is shown to be expressed only on the surface of infectious dense-core forms of E. 

chaffeensis (92).  An ortholog of E. chaffeensis’s gp47, which is a serine rich 36 kDa 

glycoprotein (gp36), has also been identified in another closely related Ehrlichia species, E. 

canis (92). The precise role of this glycoprotein in E. chaffeensis pathogenicity remains to be 

studied.   

 

Gp120: Gp120 is a glycoprotein of E. chaffeensis.  Cloning and characterization of the gene that 

encodes for this glycoprotein was first reported in 1997 (437).  The estimated molecular weight, 

based on amino acid sequence of gp120 is 67kDa (247).  It is one of the highly immunoreactive 

membrane proteins and contains four identical, serine-rich, tandem repeat sequences.  The length 

of each repeat is 240 bp and it contains highly hydrophilic domains (437).  A considerable 

variation in the molecular weight for this protein resulting from variation in number of repeats 

was also reported for different E. chaffeensis isolates (63,361).  This glycoprotein was reported 

to be preferentially expressed in dense-core forms of the E. chaffeensis (307).  Analysis of 

glycosylation sites in gp120 revealed 91 O-linked and 2 N-linked glycosylation sites (gp120) 

(247).   The sugars identified at the glycosylation sites of this protein include glucose, galactose 

and xylose (247).  An ortholog of E. chaffeensis gp120, which is referred to as gp140, has also 

been identified in E. canis (247,436).   The immunogenic gp140 of E. canis also contains several 

identical, serine rich tandem repeats, each 108 bp in length (247).   These repeats in E. canis may 
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similarly vary in different isolates, but this has not been reported.  E. coli expressing the 

recombinant E. chaffeensis 120 kDa protein acts as an adherent protein as evidenced by studies 

in HeLa cells under in vitro (307).   

 

Gp200:  Gp200 is another immunoreactive glycoprotein of E. chaffeensis with a predicted 

molecular weight of 156 kDa.  The recombinant gp156 protein exhibited a larger molecular 

weight that is close to ~200 kDa.  The increase in molecular mass is due to the contribution of 

glycan moieties that are post translationally added to this protein (244).  To date,  gp200 is the 

largest of all the immunoreactive glycoproteins identified in E. chaffeensis (244).  An ortholog of 

E. chaffeensis gp200, which is also designated as gp200 has also been identified in E. canis 

(244).  Gp200 of E. canis is shown to be highly reactive to the immune sera obtained from 

natural or experimentally infected dogs (244).  Gp200 of E. chaffeensis and E. canis are 

homologous to AnkA protein of A. phagocytophilum and are also reported to contain several 

ankyrin repeats (53,264,294).  AnkA protein of A. phagocytophilum is shown to be transported 

into the nuclei of vertebrate granulocytes and bind to host cell DNA and nuclear proteins 

(53,294).  A. phagocytophilum AnkA protein is demonstrated to be secreted by T4SS and 

tyrosine-phosphorylation by the host cell tyrosine kinase during its initial stages of infection 

(167,210).  Knockdown or inhibition of host cell tyrosine kinase, or cytoplasmic administration 

of anti-AnkA antibodies effectively inhibited the host cell infection by A. phagocytophilum in 

vitro (210).  These findings demonstrate that tyrosine phosphorylation of A. phagocytophilum 

AnkA protein is critical for its infection of vertebrate host cells (210).  The biological 

significance of AnkA homologues of Ehrlichia species remains to be established.   
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So far, the characterization of genes that encode for glycoprotein genes in several 

Ehrlichia species is limited to their initial analysis for their sequence analysis and presence of 

glycan moieties.  No predictions with regards to importance of these proteins and presence of 

several tandem repeats in these genes have been made to date.  Studies pertaining to other 

bacteria suggest that bacterial glycoproteins may be involve in several important functions such 

as protein stabilization, maintenance of cell structure, adhesion of pathogens to host cells, and 

altering the host immunity (52,250,292,309,343,399).  Glycosylation of outer surface proteins is 

also reported for Anaplasma species pathogens (133,338,385).  Removal of glycan moieties from 

outer surface proteins reduced the binding ability of Anaplasma organisms to host cells in vitro.  

These findings suggest that glycosylation of these outer surface proteins may play a role in 

pathogen adhesion and entry into its host cells (133,293).  Reports from literature also suggest 

that post translational modifications of bacterial proteins alter the ability of T-cells to recognize 

the antigenic epitopes by altering the host immunity against the pathogenic organisms 

(131,171,330).  In a recent study, non-glycosylated synthetic proteins of gp47 of E. chaffeensis 

and its homolog of E. canis (gp36) were shown to be less immunoreactive compared to their 

glycosylated forms (92).  These findings suggest that glycosylation of the proteins plays an 

important role in bacterial pathogenicity. It remains unclear if the glycosylation pattern including 

the number of repeats in the glycoproteins in tick cell background remains the same.  The precise 

role of various carbohydrate moieties added post translationally to the proteins of several 

Anaplasmataceae pathogens is yet to be revealed.   

 

28 kDa outer membrane proteins (p28-Omp):   Several studies reported 28 kDa outer 

membrane proteins encoded by a multigene locus (p28-Omp locus) that contains 22 tandemly 

arranged paralogous genes (62,274,321,322,347,352,436).  Open reading frames of these 



32 

 

paralogous genes are separated from each other with non-coding sequences ranging from 9 to 

603 bp (162).  These genes differ mostly from each other by containing three highly variable 

regions that are hydrophilic in nature (322).  These hyper variable regions also included the 

immunogenic B-cell epitopes (204,206,421).  Considerable variation in the p28-Omp locus genes 

of several E. chaffeensis isolates has also been reported (62,255).  The differences include 

variations resulting from insertion mutations, several nucleotide sequence differences within 

each gene and also included gene deletions (62,255).   

 

E. chaffeensis isolates are organized into three groups (I, II, and III) based on the 

sequence variations within the p28-Omp locus as judged by restriction digestion analysis (62).  

The analysis was performed using 10 different isolates of E. chaffeensis recovered from human 

patients from various regions with in the United States.  Group I included three isolates; 

Arkansas, Osceola, and Lithonia.  Group II was comprised of St. Vincent, Chattanooga, West 

Paces, Heartland, and Wakulla isolates.  Liberty and Jax isolates were included in Group III (62).  

The p28-Omp gene 18 is present only in Group I isolates.  Duplication of the p28-Omp gene 15 

is observed in isolates belonging to Group III.  Loss of gene 18 is also noted in E. chaffeensis 

isolates belonging to Groups II and III (62).  Analysis of E. chaffeensis genome spanning two 

outer membrane protein genes, gp120 and VLPT also revealed differences within the pathogen 

isolates.  They include variation in the length of these genes resulting from the loss or gain of 

240 and 90 bp long repeats with in the gp120 and VLPT genes, respectively.  Grouping of 

isolates based on these variations were not correlated with the p28-Omp based grouping (62).  

Based on these data the authors suggested that variations exist within genomes of different E. 

chaffeensis isolates.  These variations may have resulted from the pathogengrowth in a vertebrate 
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host, particularly to overcome host immune responses for its continued persistence. This 

hypothesis remains to be tested.  

 

  Homologues of the p28-Omp locus genes were also identified in other Ehrlichia species 

(75,147,272,402,439).  The homologues of the p28-Omp locus were referred to as p30-Omp in 

E. canis and Map1 in E. ruminantium (272,402).  In E. ewingii and E. muris, the loci were 

referred with the same name as that for E. chaffeensis (75,147,439).  Similar to E. chaffeensis 

p28-locus, the p-30 locus of E. canis includes 22 tandemly arranged paralogous genes (272).  

The p28-Omp homologous loci of E. ruminantium, E. ewingii, and E. muris were reported to 

contain 16, 19, and 21 paralogous genes, respectively (75,402,439).  The gene numbers in the 

p28-Omp locus may also be variable for Ehrlichia species isolates, including E. chaffeensis 

resulting from the loss or gain of genes as evidenced from the sequencing of a subset of genes 

spanning p28-Omp 14 through 19 (62).   

 

One of the novel observations of the gene structure of the p28-Omp loci of different 

Ehrlichia species is the presence of a  gene that encodes for a putative transcriptional regulator 

and a secA gene positioned at the 5  and 3   ends of the loci, respectively (75,272,402,439).  The 

hypothetical transcriptional regulator of E. ruminantium was shown to be polycistronically 

transcribed along with p28-Omp homologues of this pathogen (402).  Recent studies from our 

laboratory also reported the expression of this putative regulatory protein in E. chaffeensis (347) 

(Sirigireddy and Ganta, 2007, unpublished data).  The secA protein is reported to a play major 

role in translocation of bacterial outer membrane proteins to outer membrane (30).  The 

regulatory role of this transcriptional regulator and the significance of secA in E. chaffeensis 

gene expression and transport, respectively, remain to be studied.  



34 

 

 

The p28-Omp antigens are highly immunoreactive and are recognized by sera from the E. 

chaffeensis infected people (60,274,421).  These antigens are also similarly recognized by the 

murine host, assayed in experimental infection studies (204,206,347,352,353,421).  The p28-

Omp antigens may also serve as protective antigens for use in vaccine development.  For 

example, Map1 DNA based vaccine is protective against E. ruminantium challenge offered a 

partial protection in both natural and experimental hosts (mice and sheep) (270,271).  Similarly, 

monoclonal antibodies against p28-Omp of E. chaffeensis conferred protection against lethal 

disease in SCID mice as long as the antibodies are supplemented (421).  Ohasi et al. (274), 

reported rapid clearance of E. chaffeensis in mice immunized with recombinant p2-Omp 19 

protein compared to control mice.  Similar protective role of p28-Omp 19 proteins has also been 

reported in other Ehrlichia species.  Mice immunized with the Ixodes ovatus ehrlichia-specific 

p28-Omp 19 monoclonal antibodies protected against fatal Ixodes ovatus ehrlichia infection 

(262).  

 

  The immunogenic regions of the p28-Omps are located with in their hypervariable 

regions (204,206,322,421).  The major differences in the p28-Omp paralogues of Ehrlichia 

species are also located with in the hypervariable regions. The presence of multiple genes having 

hypervariable regions where the immunogenic epitopes are located led to considerable interest in 

understanding their possible role in  immune evasion by the pathogen and pathogenicity.  Several 

studies have been performed to determine gene expression profile and proteins made from this 

locus (62,221,274,321,322,436).  Initial transcriptional analysis reported in the literature is 

mostly based on non-quantitative RT-PCR assays.  Although there are differences in the reported 

data by different research groups, the conclusions are consistent that multiple genes of the p28-



35 

 

Omp locus for the bacteria are transcriptionally active in E. chaffeensis originating from 

macrophages (62,221,272,398,436).  Similar analysis for tick cell-derived E. chaffeensis both in 

vitro and in vivo identified the expression from one gene, the p28-Omp 14 (397,398).  Similar 

expression pattern from the p28-Omp homologues has also been reported for other Ehrlichia 

species, E. canis and E. ruminantium (28,272,396,402).  It is not clear why multiple genes of the 

p28-Omp locus are transcriptionally active in macrophages infected with E. chaffeensis under in 

vitro.  One hypothesis is that one or more of these are expressed at higher levels while others are 

not.  Alternatively, not all the transcripts may be translated into mature proteins.  These 

hypotheses require the evaluation of RNA using quantitative methods and identification of 

expressed proteins.   

 

Studies by Ohasi et al. (274) and Long et al. (221) identified one major expressed protein 

from vertebrate macrophages, i.e., the p28-Omp 19.  Similarly, the p28-Omp 14 is the only 

protein expressed from this locus in tick cell grown E. chaffeensis in both in vitro and in vivo 

(221,397).  Recent proteomic analysis of individually picked immunodominant E. chaffeensis 

proteins selected from 2D gels from our laboratory further confirmed the major protein 

expression in macrophages from the p28-Omp 19 and in tick cells from the p28-Omp 14 genes 

(347,352,353).   These differentially expressed p28-Omp proteins of E. chaffeensis are expressed 

in multiple forms as a result of post translational modifications such as glycosylation and 

phosphorylation (352,353).  These findings are also supported by global proteome and open 

reading frame based microarray analysis from our laboratory (Sirigireddy and Ganta, 2007, 

unpublished data) (347).  Tick cell and macrophage-specific expression predominantly from the 

p28-Omp gene 14 and 19 homologs of E. canis, p30-10 and p30, respectively, has also been 

reported in the literature (113,353,396).  The host-specifically expressed p28-Omp homologues 
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of E. canis proteins are also post translationally modified by glycosylation and phosphorylation 

(352,353).  The predominant expression form the p-28 gene 14 homolog of tick cell-grown of E. 

ruminantium, Map 1-1 is also reported both in vitro and in vivo (28).  A cartoon representing the 

p28-Omp multigene locus including the host-specifically expressed genes is shown inFigure 1.6.   

 

The p28-Omp proteins of E. chaffeensis are also homologous to a polymorphic, outer 

membrane protein multigene family, referred to as the major surface protein 2 (msp2/p44) in A. 

marginale and A. phagocytophilum, two closely related tick transmitted rickettsiales (440).  The 

msp2/p44 genes encode for 42-49 kDa, highly immunoreactive proteins that are recognized by 

immune sera from infected animals or human patients (23,102,123,169,261,287).  Several p44 

paralogous genes scattered throughout the genome of Anaplasma species (162,443,444).  The 

msp2 genes differ from the p28-Omp of Ehrlichia species by their size and number of variable 

repeats.  Msp2/p44 genes contain only one variable region, which is flanked by highly conserved 

C- and N-terminal sequences (114,162,212).  T-cell epitopes are located within the variable and 

conserved regions; whereas B-cell epitopes are predominantly found in the hypervariable regions 

of the msp2 antigens (1,43).   Immunization of a vertebrate host with msp2/p44-specific  

monoclonal antibodies is also shown to offer protection against Anaplasma species infections 

(44,45,190).  Generation of antigenic variants from the msp2/p44 genes is documented in 

persistently animals infected with A. marginale (98,102,211,286).  The antigenic variants 

generated from this multigene locus may be one of the important mechanisms of immune 

evasion.  

 

Tick and vertebrate host-specific differential expression from the msp2 locus of 

Anaplasma species, similar to the p28-Omp proteins, has also been reported 
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(123,170,213,219,408,445).  The msp2/p44 proteins of A. pahgocytophilum are also recently 

reported to undergo post-translational modifications such as glycosylation (338,385).  A. 

phagocytophilum msp2 has also been demonstrated to have porin activity and aids in acquisition 

of sugars and metabolic intermediates from the host cell (164).  Adhesin role of a porin-like 

outer surface protein of has also been reported for other bacterial pathogens (159).  For example, 

in a Gram negative human respiratory tract pathogen, Moraxella catarrhalis, the porin-like outer 

surface protein is reported to have adhesin role (159).   In a recent study by Kumagai et al., 

(198), porin structure and activity has been reported for the p28-Omp gene 19 protein of E. 

chaffeensis.  However, the functional importance of this property in these pathogens is yet to be 

determined.   

 

Based on the above discussion it is clear that Ehrlichia and Anaplasma species pathogens 

contain several common features.  They include the presence of orthologous genes in their 

genomes that encode for immunodominant outer membrane proteins.  The commonalities also 

include the presence of multiple homologous outer membrane protein genes that contain hyper 

variable regions which make these paralogous genes differ from each other.  The hyper variable 

regions of the outer membrane proteins contain dominant immunogenic epitopes recognized by 

vertebrate host immune cells.  Loss or gain of genes or number of variable regions within the 

genes from the multigene locus may aid in pathogen adaptation and persistence in its hosts.   In 

fact, the evidence from Anaplasma species, suggest that antigenic variation is possibly 

contributing to pathogen persistence in a vertebrate host.  Other features shared by this pathogen 

with regards to these outer membrane proteins include porin structure and host-specific 

expression.  Presence of multiple outer membrane protein genes in their genome with 

predominant expression from one gene, suggest their possible role in  evasion of host immune 
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responses by the pathogen.  Together, all these data suggest that Ehrlichia and Anaplasma 

pathogens alter their gene expression in support of their survival and possibly adapting to its tick 

and vertebrate host environments.  It is entirely unknown how these pathogens are able to sense 

the host environment to regulate their gene expression. It also remains unclear what are the 

molecular strategies employed by these tick-borne pathogens to achieve their host-specific gene 

expression.  A significant gap of knowledge also exists with regards to the importance of existing  

multiple forms and functions of p28-Omp proteins. The biological significance of host-specific 

expression, post translational modification and their relevance to Ehrlichia infection remains to 

be understood to gain important insightabout the biology of host pathogen interactions.   

 

Host immune responses against  E. chaffeensis infection: 

 

 Immune response of an infected animal against E. chaffeensis infection depends on 

several factors including host species, age, an underlying disease condition, and immune status 

of an infected host.  For example, the HME is reported to be more severe in children, elderly and 

immunocompromised people (134,277,335).  Presence of antibody titers in people from HME 

endemic areas with no apparent clinical signs suggests variation in host responses to the 

pathogen.  The host responses may vary from manifestation of a clinical disease, clearing of 

clinical signs and possibly even clearing the pathogen (233,432).  Similarly, in reservoir hosts, 

pathogen infection does not appear to cause clinical disease, but the persistence of the pathogen 

and antibody titers are documented (76).  

 

Several studies have been carried out since the discovery of E. chaffeensis in 1987, for a 

better understanding of host immunity against this pathogen (24,55,128-130,202,419-421).  In 

recent years, use of murine models has led to a significant progress towards understanding of 
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host immune mechanisms against E. chaffeensis infection (36,128-130,419-421).  Experimental 

infection studies with E. chaffeensis demonstrated that immunocompetent mice are able to clear 

the infection within 10-17 days post infection (129,130,420).  Contrary to these findings, severe 

combined immune deficient (SCID) mice which lack T- and B-cells fail to clear the pathogen 

and exhibit severe illness after 24 days of infection resulting in fatal outcomes (420).  E. 

chaffeensis infection to major histocompatibility complex-II (MHC-II) deficient mice also 

demonstrated the  persistence of the pathogen as long as 92 days (the longest time evaluated in 

these studies) (129,130).  Similar studies in toll-like receptor 4 (tlr4) deficient mice resulted in a 

delay of E. chaffeensis  clearance of up to 30 days (129,130).  Together, these findings suggest 

that T-cells, B-cells, and macrophages are the major contributors of host response in clearing the 

E. chaffeensis infection.  It is also evident that antibodies (made by activated B-cells) alone or T-

cells or macrophage activation independently are not sufficient for complete clearance of the 

pathogen.  Effective clearance of this intracellular bacterium, therefore, appears to be needing 

contributions of all these components of immunity, including T-cells, B-cells and macrophages.  

The contributions of these three components of the immune system are described in the 

following paragraphs.   

 

The significance of antibodies in clearing the severity of infection is well described by 

Winslow et al. using a SCID mouse model (419,421).  The studies involving these mice clearly 

illustrate the inability of antibodies to completely cure the pathogen from a vertebrate host.  

SCID mice are protected from a severe disease and fatal outcome when adaptively transferred an 

immune serum from E. chaffeensis infected immunocompetent mice, prior to or after 

establishment of active infection with E. chaffeensis (421).   Prolonged protection, up to 70 days, 

from fatal infection is observed in SCID mice as long as they receive repeated immune serum 
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(206,421).  E. chaffeensis infected immunocompetent mice are also able to clear the infection 

three days after administration of immune serum (421).  These studies clearly demonstrate that 

antibodies play a critical role in clearing E. chaffeensis infection.  Presence of bacteremia at low 

levels in SCID mice, even after 70 days of antibody administration and complete pathogen 

clearance by BLAB/c mice suggest that antibodies alone are not sufficient and require T-cells 

and possibly macrophage activation for effective clearance of E. chaffeensis  infection (206,421).  

 

The antisera against E. chaffeensis are predominantly made against outer membrane 

expressed proteins (347).  Importantly, very few E. chaffeensis cytoplasmic proteins are 

recognizable by the pathogen immune sera (347).  This is also consistent with the recognition 

and elimination of severity of infection by the polyclonal serum that predominantly reacted with 

the outer membrane proteins (421).  Further detailed analysis of antigens reacted with the 

immune sera aided in the identification of 28 kDa outer membrane proteins (p28-Omps) as the 

predominant immunogens (421).  In fact, studies utilizing a 28 kDa outer membrane protein 

(P28-Omp 19)-specific monoclonal antibodies also offered similar protection to SCID mice from 

E. chaffeensis infection (206,419).   Repeated administration of P28-Omp 19 specific 

monoclonal antibodies at weekly intervals starting 10 days after infection prolonged the 

protection of SCID mice from the severity of E. chaffeensis infection up to 70 days (206).  The 

28 kDa proteins are also shown to be dominant immunogens recognized by immune serum from 

several human patients infected with E. chaffeensis (60,274,421).  Together all these findings 

suggest that outer membrane proteins, particularly the p28-Omp proteins are primary targets for 

the host immune system (204,206).  To date, no evidence is available for antibody- mediated 

intracellular killing of E. chaffeensis.  A recent study by Li and Winslow (205) suggests that the 

Ehrlichia that are released extracellularly from the infected and lysed host cells during its 
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infectious cycle in a vertebrate host are susceptible to antibody-mediated killing (205,419).   This 

may be the most effective way antibodies work against E. chaffeensis.  The precise mechanism 

of action of antibodies in clearing this intracellular pathogen remains to be understood. 

 

Utilization of several laboratory knockout mouse strains with targeted disruption to 

immune system genes led to a considerable understanding of the role of various subsets of T-

cells in host defense against Ehrlichia infection (32-34,55,129,130,172,262).  In a study by 

Ganta et al. (129), it has been demonstrated that MHC II knockout mice, which are deficient in 

helper T-cells, are unable to clear the infection for several months.  CD4
+
 helper T-cell deficient 

mice are able to clear the E. chaffeensis organisms but clearance is delayed by about two weeks 

compared to immune competent mice (129,130).  These findings suggest that CD4
+
 helper T-

cells are critical for pathogen clearance, but CD4
+
 T-cells alone may not necessarily be the only 

cells required for clearing the infection (55,129).   These observations are consistent with those 

made for clearing infection of monocytes with other intracellular bacteria such as 

Mycobacterium tuberculosis and Francisella tularensis (73,74).  Previous studies from the 

literature suggest that a vertebrate host that lacks CD4
+
 T-cells may contain other T-cells 

including CD4
-
 and CD8

- 
T-cells and natural killer T-cells, which may compliment for the CD4

+
 

T-cell deficiency, aiding pathogen clearance (73,74,242,314).    

 

The role of cytotoxic lymphocytes (CD8
+ 

T-cells) in host immunity against E. chaffeensis 

has also been investigated in our laboratory (55,129).   E. chaffeensis infected MHCII knockout 

and/or CD4
+ 

T-cells deficient mice were utilized to evaluate the contributions of CD8
+ 

T-cells in 

clearing the infection.  Both types of mice exhibited a minimal CD8
+ 

T-cells activity after a 

single dose of E. chaffeensis infection; whereas a detectable CD8
+ 

T-cells activity was observed 
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after a second dose of infection with this pathogen (129).   In a separate study, experimental 

infection of E. chaffeensis to β2 microglobulin (β2M) (a structural component of MHC I)-

knockout mice resulted in complete clearance of the infection with a slight delay compared to 

CD4
+ 

positive mice (55).   Together, these findings suggest that CD8
+ 

T-cells are minor 

contributors in pathogen’s clearance.  Similarly, the function of the NKT cells also appears not to 

be critical for E. chaffeensis clearance.  Indirect evidence supports this hypothesis; for example, 

in MHC II deficient mice the NKT cells are functionally normal, yet they are persistently 

infected (56,129,130).   Moreover, the SCID mice that are deficient for T- and B-cells but 

contain functionally normal NKT cells exhibited persistent infection by E. chaffeensis (420).  

These findings suggest that NKT cells can’t override the deficiency of T-cells in clearing the 

infection.  Other subtype of T-cells known as γδ T-cells are present in peripheral blood of E. 

chaffeensis-infected human patients indicating that γδ T-cells may be essential components of 

host immunity against this pathogen (49,50).   The precise role of these T-cell subtypes needs 

further investigation.  

 

The importance of cytokines in mediating E. chaffeensis clearance by a vertebrate host 

has also been investigated by several researchers (24,32,442).  In a study by Zhang et al. (442), 

microarray analysis of total RNA isolated from E. chaffeensis  infected human monocytic cell 

lines (THP1 cells) revealed suppression of several proinflammatory cytokine expression 

including IL-1α, IL-4, IL-6, IL-12, IL-15, and IL-18 compared to uninfected monocytic cells.  

These cytokines are responsible for early inflammatory responses towards an infection (88).   

Suppression of these cytokine expression during initial stages of E. chaffeensis infection may 

help the pathogen to escape from being killed by NKT cells and cytotoxic T-cells and colonize 

inside the macrophages or monocytes (88).   IL-15 and IL-18 are also known to play role in 
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activation of CD4
+
 T-cells that produce IFN-γ to activate macrophage-mediated killing of 

infectious agents (24,32,208).  This is primarily achieved by IFN-γ medicated limiting of iron 

availability that is critical for the growth of Ehrlichia organisms (24).  Therefore, suppression of 

these cytokines may in turn help E. chaffeensis to survive and replicate inside the infected 

macrophages (234,263).  Although cytokines appear to mediate host immunity against E. 

chaffeensis organisms, further studies are required to identify the precise role of these cytokines 

in host defense mechanisms against this intracellular bacterium.   

 

Together all the above discussed findings from various studies utilizing a mouse model 

suggest that a coordinated effort of various components of the immune system may be necessary 

for effective pathogen clearance.  Importantly, components of the immune system including 

antibodies, macrophage activation, involvement of several T-cell sub types and cytokines may 

play a critical role in E. chaffeensis clearance by a vertebrate host (24,129,130,202,420,421).  

This coordinated effort of multiple components of the immune system may be critical for the  

effective clearance of the pathogen during its extracellular stage while infecting the naïve 

macrophages or monocytes and during its survival within them.  

 

Studies utilizing the mouse model clearly show that an immunocompetent vertebrate host 

can clear E. chaffeensis infection in a short period of time.  However, this model fails to explain 

how the bacteria are able to persist in a natural vertebrate host during its life cycle.   The studies 

did not provide any clues about the strategies employed by this pathogen to persist in its 

immunocompetent vertebrate hosts, for example in a white-tailed deer.  It remains to be known 

what really happens in a vertebrate host that aids E. chaffeensis to overcome host immunity to 

successfully complete its lifecycle.  There may be several reasons why we do not see the  
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persistence of the pathogen in an immunocompetent mouse model.  Firstly, most of the infection 

studies up to now are conducted using E. chaffeensis grown in vertebrate macrophage cells 

(24,55,129,130,202,420,421).  Secondly, the infection experiments are always carried out by 

needle inoculation intraperitoneally or subcutaneously but not by tick transmission.  It is possible 

that E. chaffeensis persistence may require its growth in tick cell background, as in the natural 

setting, for persistence in a vertebrate host.  Other possibility may be that the mouse may need a 

natural route of inoculation, which is infection from a tick bite.  These are the two important 

components that may be required to demonstrate theof the pathogen in a mouse model.  They 

include infection of mice through an infected tick-bite or using tick cell-grown E. chaffeensis as 

inoculum.  Recent studies from our laboratory using the mouse model but with the E. chaffeensis 

inoculum originating from the tick cells demonstrated an altered host response (128).  

Comparisons are made between mice that are infected with tick cell or macrophage-grown 

bacteria and the findings from this study are discussed in the following few paragraphs. 

 

Several interesting observations are made from our recent study including delayed 

clearance of tick cell-grown E. chaffeensis by the murine host (128).  An increased bacterial load 

is observed in the livers and spleens of mice infected with tick cell-derived bacteria compared to 

those infected with macrophage-grown E. chaffeensis.  Moreover, although it appeared that 

bacteria are cleared as assessed by the real-time RT-PCR assays, mice infected with E. 

chaffeensis originating from tick cells showed a significant increase in pathogen-specific IgG 

response.  The antibody levels also increased steadily and are more prolonged for tick cell-

derived bacteria compared to macrophage-derived organisms (128).  It is possible that  bacteria 

may be persisting but at a lower level and are undetectable.  
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The predominant IgG response noted in mice infected with macrophage- or tick cell-

derived E. chaffeensis is from IgG2 and IgG3.  However, the concentrations of these IgG 

subtypes is 2-3 times more in mice infected with tick-cell grown E. chaffeensis  compared to 

those infected with macrophage-grown bacteria.  Altered cytokine induction by the host in 

response to the bacterial growth in tick or macrophage cells is also reported (128).  The 

concentrations of IL-1α, IL-4, IL-6, and IL-10 cytokines are considerably low for the mice 

infected with tick cell-originated bacteria compared to those infected with macrophage-grown E. 

chaffeensis (128).  This is another indication suggesting that when the bacteria is originating 

from the tick cells it is suppressing the cytokine-mediated arm of the immune response, which 

may in turn contribute to delayed clearance by the host.  Other interesting observation has been 

that antigens recognized by the host immunoglobulins for the tick cell- and macrophage-grown 

bacteria are significantly different (128).   

 

The above discussed findings clearly suggest that host cell backgrounds in which E. 

chaffeensis is grown may be one of the contributing factors for whether or not the pathogen is 

cleared or persists.  The natural infectious cycle of E. chaffeensis involves transmission of the 

pathogen to a vertebrate host though the bite of an infected tick.   Ticks typically take a blood 

meal on a host for a long period of time ranging from 2-14 days, which depends on the life cycle 

stage of a tick (358).  To prevent rejection by a vertebrate host, it may be necessary for ticks to 

alter the host immune responses.  Several studies described the impact of tick feeding on host 

immunity (116,117,137).  For example, tick saliva is shown to reduce the proliferation of 

salivary antigen-specific T-cells and also reduce macrophage activation (116).  Tick saliva is also 

shown to increase the production IL-10 and reduction of the IFN-γ by splenocytes.   Successive 

tick feeding is also shown to influence T-cell response changing from T-helper type 1(Th1) to T-
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helper type 2 (Th2).  This shift in T-cell response is characterized by an increased cytokine 

profile for IL4, IL-10, and transforming growth factor (TGF)-β and is accompanied with a 

reduction in IL-2, IL-12 and IFN-γ (116).  The Th2 response in turn reduces the IFN-γ mediated 

macrophage activity against the pathogens. This selective promotion of Th2 cell development 

may help a tick for its continued feeding on a host.   TGF-β was previously shown to suppress 

the host immunity by reducing the Th1 cytokine profile (54).   

 

There are two aspects that may influence E. chaffeensis persistence in a vertebrate host.  

Based on the published evidence, discussed above, it is clear that tick feeding influences the host 

immune responses (116,117,137).  The tick induced changes in host immunity may provide a 

favorable environment for tick transmitted pathogenic organisms, such as E. chaffeensis, in 

support of their adaptation and persistence in a vertebrate host (137).  The contributions of 

Amblyomma americanum tick feeding in altering host immunity and E. chaffeensis persistence, 

however, are yet to be determined.  Secondly, the pathogen may also employ strategies to adapt 

to its tick vector.  They may include altering protein expression in support of its survival in the 

invertebrate host cell environment and to overcome tick defenses.  The altered tick-specific 

differences in pathogen may also aid the pathogen to overcome vertebrate host defenses and to 

persist after its transmission from a tick.  This hypothesis is supported by recent studies from our 

group demonstrating that E. chaffeensis  originating from the tick cell environment alters host 

immune response (including delayed clearance) by a vertebrate host (assessed in the murine host 

model, which was discussed in detail above) (128).  It is not clear how E. chaffeensis differs in 

its molecular structure during its survival in its vertebrate and in vertebrate host cell 

environments.  To address this gap of knowledge, our research group also has undertaken several 

approaches to find out what are the differences between the E. chaffeensis  organisms originating 
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from tick and vertebrate host cells.  The approaches include the evaluation of E. chaffeensis by 

proteomic and transcriptomic methods to identify differences in the gene expression profiles.   

Electron microscopic studies are also performed to assess the morphological differences in the 

pathogen.  These studies revealed considerable tick cell- and macrophage-specific variations. 

 

Proteomic analysis of E. chaffeensis originating from tick and macrophage cells revealed 

numerous differences in protein expression patterns of the pathogen (347,352).  Two-

dimensional gel electrophoresis (2DE) analyses revealed several differences in the E. chaffeensis 

proteomes originating from macrophage and tick cell backgrounds.  Many tick cell-specific E. 

chaffeensis proteins are identified on 2DE gels, most of them are resolved on the pH gradient 7-

9.  Similarly, many macrophage-specific proteins are identified in the 2DE gels on a pH gradient 

of 5-7 (352).  Comparisons of the 2DE gels also aided in identification of nearly 50% proteins 

being differentially expressed by E. chaffeensis organisms (352).  A more comprehensive 

analysis to identify proteins of E. chaffeensis proteome is reported recently from our research 

team, utilizing mass spectrometry methods (347).  The analysis aided in identifying 278 E. 

chaffeensis expressed proteins.  These proteins represent nearly one fourth of the predicted genes 

of the E. chaffeensis genome (162,347).  The identified proteins include those involved in 

metabolic pathways, DNA synthesis, protein and energy synthesis, transport functions, and also 

included many hypothetical proteins whose function is unknown (347).  Host cell specifically 

expressed proteins of E. chaffeensis included several outer membrane proteins, cofactor and 

vitamin biosynthesis proteins, and many hypothetical proteins (347).  The mass spectrometry 

analysis also confirmed the differential expression of the major outer membrane proteins of the 

p28-Omp locus.  The P28-Omp gene 14 is the major expressed protein when the pathogen is 

grown in tick cells in vitro and in vivo (347,352,353,397,398).   
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Whole genome microarray analysis of E. chaffeensis total RNA also aided in 

identification of several host specifically expressed genes (Sirigireddy and Ganta, 2007, 

unpublished data).  The analysis aided in the identification of about 350 genes each in E. 

chaffeensis originating from tick and macrophage cells.  These represent nearly one third of the 

total predicted genes for this pathogen (162).   Among these, 263 genes are common for E. 

chaffeensis coming from either host cell background.  Tick cell- and macrophage-grown E. 

chaffeensis uniquely expressed 78 and 118 genes, respectively (Sirigireddy and Ganta, 2007, 

unpublished data).  The host specifically expressed genes by the pathogen predominantly 

included several hypothetical and membrane proteins.  These observations are further confirmed 

by RT-PCR analysis for a subset of genes randomly chosen from this analysis.  Among the 

membrane proteins, the predominant expression is also noted to be the p28-Omp genes 14 and 19 

in E. chaffeensis  cultured in tick and macrophage cells, respectively (128,353) (Sirigireddy and 

Ganta, 2007, unpublished data).    

 

Electron microscopic analysis of E. chaffeensis organisms originating from macrophage 

and tick cells backgrounds also identified several host-specific morphological differences 

(DeDonder and Ganta, unpublished data).  They include synchronized growth of reticulate and 

dense-core forms of E. chaffeensis in macrophage environment, whereas both forms are observed 

in the phagosome of tick cells infected with the organisms are highly irregular in their shape 

during their growth in a tick cell.   Moreover, the reticulate forms of E. chaffeensis are larger in 

size compared to the same in macrophage-grown bacteria (DeDonder and Ganta, unpublished 

data) (Figure 1.7).  Based on all these studies, it is clear that E. chaffeensis organisms originating 

from the tick cells and macrophages are considerably different in their morphology, which is 
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consistent with numerous differences observed in the expressed transcripts and proteins in this 

pathogen.  The host cell-specific proteome and morphological differences may be contributing to 

the observed variation in the murine host immune response for these organisms coming from two 

different host backgrounds.   

 

Previous reports also demonstrate the dominant immunogenic nature of the p28-Omp 

proteins of E. chaffeensis (204,206,419).  The p28-Omp19-specific monoclonal antibodies also 

offer a protective response in SCID mice against E. chaffeensis even after a well established 

infection (204,206,419).   Immunogenic epitopes of the p28-Omp proteins are located within 

highly variable, hydrophilic domains of the proteins referred to as variable regions I to III 

(204,206,419).   Extensive studies from several research groups including from our team 

demonstrated the predominant expression of outer membrane proteins and most notably the p28-

Omp genes 14 and 19 in the tick cell- and macrophage-derived E. chaffeensis, respectively 

(347,352,353).  Host response and clearance is faster when the bacteria are originating from the 

macrophages where the p28-Omp 19 is the major expressed membrane protein (128).  This 

suggests that E. chaffeensis infection from macrophages into a vertebrate host is cleared faster, 

possibly because of the host induced antibody response against the p28-Omp 19 protein.  In fact, 

these data are consistent with a published report where SCID mice with an established infection 

can clear the severity of infection when the p28-Omp-specific antibodies are injected 

(204,206,419).  Given all these data it is evident that the host response can be protective if the 

bacteria is coming from vertebrate macrophages.  It remains to be known whether a vertebrate 

host infected with tick cell-derived bacteria can similarly be protected, if primed with tick- or 

macrophage-specific immunodominant antigens such as the p28-Omp 14 or 19, respectively.   
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Together all the above discussed findings including evidence from a murine host for its 

differential clearance pattern, suggest that the differences in gene expression alone seem to be 

making a difference in the pathogen’s persistence or clearance in a vertebrate host.  Based on the 

intriguing data, our group (128) hypothesized that delayed clearance by mice against E. 

chaffeensis originating from tick cells is the result of a failure of the host to adequately generate 

immune repose to the changing antigen composition of the organism within its macrophages.  

This hypothesis has been supported by indirect evidence that a steady increase in antibody 

response, delayed clearance and a suppressed cytokine responses despite the  effort of the host to 

generate equal levels of immune cell activations (128).  More direct experimental evidence for 

this hypothesis, however, remains to be provided.   It is clear that the origin of bacteria from tick 

cells is an important contributor for pathogen’s adaptation to a vertebrate host environment.  

Importantly, the tick cell-specific differentially expressed pathogen proteins may aid in 

overcoming the host response and support its persistence.  It is, however, not clear how the 

pathogen is able to achieve its host-specific differential expression by sensing the host 

environments.  It is also not known what are molecular strategies employed by this pathogen to 

achieve its host-specific differential gene expression.  The knowledge about differential 

expression, i.e., molecular events leading to altered gene expression, will lead to novel strategies 

to block  transmission of the pathogen.   
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Figure 1.1. Classification of ticks
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Source: http://www.iassistdata.org/images/ticklifecycle.jpg 

Figure 1.2.  A typical three-host life cycle of an Ixodid tick.  

 

 

http://www.iassistdata.org/images/ticklifecycle.jpg


53 

 

 

 

Source: McNabb et al., 2008 

 

 

 

Figure 1.3.  Number of HME cases reported from 1999 to 2006 
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Amblyomma americanum (Lone star tick) 

 

 

 

 

 

 

 

Source:  http://www.cdc.gov/ncidod/dvrd/Ehrlichia/Natural_Hx/Natural_Hx.htm 

 

Figure 1.4.  Distribution of Amblyomma americanum tick (green colored regions in 

the map) 

 

http://www.cdc.gov/ncidod/dvrd/Ehrlichia/Natural_Hx/Natural_Hx.htm
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Source: http://www.cdc.gov/Ncidod/dvrd/ehrlichia/Natural_Hx/nathx1.htm 

 

Figure 1.5.  Proposed life cycle for E. chaffeensis 

 

 

 

 

http://www.cdc.gov/Ncidod/dvrd/ehrlichia/Natural_Hx/nathx1.htm
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Figure 1.6.  A cartoon representing the p28-Omp loci of E. chaffeensis, E. canis and E. 

ruminantium with identified expressed proteins from the p28-Omp genes in vertebrate 

macrophages (hatched boxes) and tick cells (checker board boxes) are presented 

(Reproduced with permission from Frontiers In Bioscinces. 14: 3259-73). 
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Figure 1.7. Transmission electron microscopy analysis was performed on E. 

chaffeensis-infected macrophages (A) and tick cells (ISE6) (B). (N, nucleus; DC, 

dense-cored bodies of Ehrlichia in phagosomes; RC, reticulate bodies of Ehrlichia in 

phagosome) (Reproduced with permission from Frontiers In Bioscinces. 14: 3259-

73). 
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Arthropod vector Disease causative agent Host  Disease 

    Mosquitoes 

       Anopheles species Protozoa 

  

 

Plasmodium species Humans Malaria 

    

 

Nematodes 

  

 

Brugia malayi Humans brugian filariasis 

 

Wuchereria brancrofti Humans Bancroftian filariasis 

Aedes species,  

Culex species Dirofilaria immitis Dogs, cats Heart worm disease 

     

 Virus 

  Aedes species Dengue fever virus Humans Dengue fever  

Aedes aegypti Yellow fever virus Humans Yellow fever 

Aedes species, Culiseta species Eastern equine encephalitis virus Humans, horses, birds Eastern Equine encephalitis  

Culex species Western equine encephalitis virus Humans, birds Western Equine encephalitis  
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Venezuelan equine encephalitis 

virus Humans, horses Venezuelan equine encephalitis 

Culex tritaeniorhynchus  Japanese encephalitis virus Humans, pigs, birds Japanese encephalitis 

Culex species St. Louis encephalitis virus Humans, birds St. Louis encephalitis 

Aedes triseriatus La Crosse virus 

Humans, chipmunks, 

squirrels La Crosse Encephalitis 

Culex species West Nile virus Humans, horses, birds West Nile fever 

Aedes or Culex genera Rift valley fever virus Cattle, sheep, goat, camels Rift Valley fever 

Spilopsyllus cuniculi myxomatosis virus Rabbits Myxomatosis 

Culicoides paraensis Oropouche virus Humans Oropouche fever 

 

 

   Flies 

   
    Chrysops species Bacteria 

  

 

Francisella tularensis Humans, Rabbits, Cats Tularemia 

 

Glossina species Protozoa 
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Trypanosoma brucei Humans African trypanosomiasis 

Phlebotomus species Leishmania species Humans Leishmaniasis 

 

 

Virus 

  

 

Vesicular stomatitis virus Cattle Vesicular stomatitis 

 

Sand fly fever virus Humans Sand fly fever 

 

 

Helminth 

  

 

Onchocerca volvulus Humans, Cattle Onchocerciasis 

    Fleas 

   
    Xenopsylla cheopis Bacteria 

  

 

Rickettsia typhi  Humans Murine typhus 

 

Yersinia pestis Humans Bubonic plague 

 

 

Virus 

  Spilopsyllus cuniculi Myxomatosis virus Rabbits Myxomatosis 
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Mites 

   
    

    Leptotrombidium species Bacteria 

  

 

Orientia tsutsugamushi Humans 

Tsutsugamushi/ 

Scrub typhus 

 

Rickettsia akari Humans Rickettsial pox 

    Lice 

   

    Pediculus humanus humanus Bacteria 

  

 

Rickettsia prowazekii Humans Epidemic typhus 

 

Bartonella Quintana Humans Trench fever 

 

Borrelia recurrentis Humans Louse-borne relapsing fever 

 

 

 

Virus 

  Cattle-sucking lice Pox virus Swine Swine pox 
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Fungal 

Cattle lice Trichophyton verrucosum Cattle Bovine dermatomycosis 

 

 

Helminth 

  Pseudomenopon pilosum Pelecitus fulicacatrae Aquatic birds Avian filariasis 

Trichodectes canis Dipylidium caninum People, dogs Double-pored tapeworm 

    Bugs 

   
    Triatoma infestans Protozoa 

  

 

Trypanosoma cruzii Humans 

American sleeping sickness/ 

Chagas disease 

    Beetle 

       Tribolium species (Flour beetle) Cestode 

  

 

Hymenolepsis nana Humans Hymenolepsis  
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Table 1.1.  Arthropod vector-borne infectious diseases of humans and animals (excluding tick-borne infections) 

Source: G. Mullen and L. Durden (Eds.). 2002.  Medical and Veterinary Entomology. Academic Press, London. 

    Biting Midges 

   
    Culicoides species Virus 

  

 

Blue tongue virus (orbiviruses) Sheep, Cattle Blue toungue disease 

 

BEF virus Cattle Bovine ephemeral fever 

 

Epizootic hemorrhagic virus 

(orbiviruses) Deer Epizootic hemorrhagic disease 

 

African horse sickness virus 

(orbiviruses) Horse African horse sickness 

 

Protozoan 

  

 

Leucocytozoon species Birds Leukocytozoonosis 

 

Nematodes 

  

 

onchocerca cervicalis Horses Equine onchocerciasis 

 

Mansonella ozzardi Humans Mansonellosis 
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Tick Vector Agent Disease           Host 

    

 

Protozoa  

  

Ixodes  and Boophilus 

species 

Babesia microti, B. 

divergens, B. major, and  

 B. bigemina Babesiosis Human, mice, cattle 

    Boophilus species B. equi Equine babesiosis Horses 

    

 

Virus 

  

Ixodes species Flavivirus Tick-borne encephalitis 

Rodents, Insectivores, 

carnivores, Humans etc 

 

 

Ixodes, Dermacentor, and 

Haemaphysalis species Flavivirus Powassan encephalitis Rodents, hares, carnivores 

Dermacentor andersoni Coltivirus Colorado tick fever Rodents, carnivores, humans, 
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domestic animals 

Hyalomma species Nairovirus 

Crimean-Congo 

hemorrhagic fever 

Hares, hedgehogs, small 

mammals, humans 

    

    

 

Bacteria 

  

Ixodes species Borrelia species Lyme disease 

Small mammals, birds, 

humans 

 

 

Dermacentor species Rickettsia rickettsii 

Rocky Mountain spotted 

fever 

small mammals, carnivores, 

rabbits, humans 

 

 

Rhipicephalus and 

Dermacentor species 

 

 

Rickettsia conorii 

 

 

Boutonneuse fever 

 

 

Small mammals, hedge hogs, 

dogs 

 

Many tick species Coxiella burnetii Q-fever 

Large domestic livestock, 

humans 

 Borrelia species Tick-borne relapsing fever Various mammals 
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Ornithodoros species 

 

Haemaphysalis species Francisella tularensis Tularemia 

Lagomorphs, rodents, 

carnivores 

 

Argas  persicus Borrelia anserina  Avian spirochetosis Birds 

 

Rhipicephalus, Dermacentor, 

Amblyomma species Theileria species 

Theileriosis/East Coast 

fever Cattle,  yak, buffaloes 

Dermacentor species 

 

Anaplasma marginale, 

 A. centale Bovine anaplasmosis Cattle 

Dermacentor species A. ovis 

Ovine and Caprine 

anaplasmosis Sheep, goats 

 

Ixodes species Ehrlichia ruminnatium Heartwater fever Ruminants 

Ixodes scapularis A.  phagocytophilum 

Human granulocytic 

ehrlichiosis  Humans, rodents, dogs 
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Table 1.2.  List of tick-borne animal and human infectious diseases  

 

Source: Sonenshine, D. E., Lane, R. S., and Nicholson, W. L  2002. Ticks (Ixodida). Medical and Veterinary Entomology G. 

Mullen and L. Durden (Eds.), pp. 518–556. Academic Press, London. 

Amblyomma americanum 

Ehrlichia 

chaffeensisEhrlichia 

chaffeensisEhrlichia 

chaffeensis 

Human monocytic 

ehrlichiosis Humans, deer, dogs, coyotes 
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In the previous chapter, I have reviewed the current knowledge on rickettsial 

pathogens and the importance of rickettsial diseases to animal and human health.  I have 

also described the emergence of several newly identified tick-borne diseases,  

includeding human monocytic ehrlichiosis (HME) caused by E. chaffeensis.  Moreover, I 

presented a detailed review about the current knowledge of E. chaffeensis epidemiology, 

pathogenesis, molecular biology and immunology.  From the detailed overview 

presented, it is evident that there are several areas where a significant gap of knowledge 

exists.  The primary focus of my research has been addressing some of the important 

missing gaps of knowledge about E. chaffeensis. 

 

 Several immunological studies reported in the literature, including the research 

from our laboratory, aided in understanding of various aspects of host immunity needed 

for clearing E. chaffeensis infection.  These studies suggested that E. chaffeensis 

clearance by a host requires several components of the immune system.  They include the 

activation of macrophages, responses of T- and B-cells and cytokines.  However, to date 

how E. chaffeensis is able to persist despite host efforts to clear infection remains largely 

unknown.  It is also not clear how E. chaffeensis is able to adapt to its tick vector and 

vertebrate hosts.  

 

Recent studies from our laboratory demonstrated significant differences in protein 

expression for E. chaffeensis coming from its tick and vertebrate host cells environments.  

The differentially expressed proteins include several outer membrane proteins such as 

those made from the p28-Omp multigene locus.  Proteins made from genes 14 and 19 of 

the p28-Omp locus are the major expressed membrane proteins when the pathogen is 
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grown in tick cells and vertebrate macrophages, respectively.  In vivo studies also 

confirm the differential expression from these two genes in tick and vertebrate host-

specific manner.  It is not clear how the pathogen is able to sense differences in the tick 

and vertebrate host environments to alter its gene expression.  In a more recent study, 

using the murine host model our group reported that a vertebrate host clears the infection 

at a faster rate for E. chaffeensis originating from macrophage cultures compared to that 

from tick cells.  Taken together, these data suggest that host-specific differences in gene 

expression in E. chaffeensis could be one of the major contributing factors for variations 

in the host immune response against the pathogen.  However, it remains entirely 

unknown how the pathogen is able to sense changes in the host cell environment and 

what molecular mechanisms are employed to alter its gene expression.  It is also not clear 

how the differences in gene expression resulting from vertebrate and tick cell 

environments are impacting the host immune responses.  There is a significant gap of 

knowledge in these fronts which can be better addressed by mapping molecular 

mechanisms associated with differences in gene expression by E. chaffeensis. 

 

Much of the fundamental knowledge about the biology of this tick-borne 

pathogen can be gained by assessing the contributions of host-specifically expressed 

proteins.  The importance of differentially expressed outer membrane proteins and 

several other gene products during E. chaffeensis infectious cycle can be better addressed 

if we have tools that aid in creating mutations targeted to a gene of interest.  Currently, 

these approaches are more complicated to undertake in E. chaffeensis due to lack of an 

established genetic manipulation system.  Research on other members of the 

Anaplasmataceae family in creating mutations is also in progress and is encouraging.  
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For example, a recent report by Felsheim et al. (115) describes an insertion mutation in A. 

marginale.  Similarly, in distantly related rickettsiales of the genus Rickettsia, several 

investigators reported mutations which included the integration of foreign DNA into the 

genome of a Rickettsia species (312,386). Thus, methods for creating mutations in E. 

chaffeensis may be established soon.  Availability of such tools in the future may be 

valuable in studies exploring the functional significance of a gene of interest and also to 

map the molecular events leading to host-specific gene expression differences.  However, 

as these methods are yet to be developed, alternative approaches to map the molecular 

mechanisms of gene regulation are necessary.  One such approach could be to develop 

methods useful in assessing differences in gene expression under in vitro conditions.     

A significant gap of knowledge in understanding the biology and pathogenicity of 

E. chaffeensis can also be bridged by mapping transcriptional differences in the genes of 

the pathogen resulting from its growth in different host backgrounds, characterizing the 

promoters of differentially regulated genes and identifying the regulators that are 

essential to accomplish regulation of gene expression.  To advance these areas of E. 

chaffeensis research, I undertook several research projects as part of my PhD program.  I 

performed experiments to map the transcription of two differentially expressed genes 

from the p28-Omp locus using several independent RNA analysis methods (Chapter 3).  

Molecular tools were also used to define differences in the prompter regions of host-

specifically expressed genes (Chapter 4).  These studies are intended to shed insights on 

what regions of the genome spanning the p28-Omp genes are involved in influencing 

RNA polymerase activity in driving the expression or lack of expression in a host cell-

specific manner.  In an effort to develop methods useful in evaluating host-specific 

differences in gene expression, in vitro transcription and transcription coupled translation 
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systems have also been developed (Chapter 5).  Finally, to learn about what regulatory 

proteins may contribute to differences in gene expression, gene 14 and 19 promoters were 

evaluated for their interactions with E. chaffeensis proteins. In addition, five putative E. 

chaffeensis regulators were cloned and evaluated for their contributions in altering RNA 

polymerase activity (Chapter 6).  These investigations are important in opening the path 

for continued research for furthering our knowledge about E. chaffeensis biology and 

pathogenesis. 
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Chapter 3 

 

Transcriptional Analysis of The p28-Omp Genes 14 and 19 
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Abstract 

 

 Ehrlichia chaffeensisEhrlichia chaffeensisEhrlichia chaffeensis is a Gram 

negative intracellular rickettsial pathogen that causes an emerging infectious disease in 

people, human monocytic ehrlichiosis.  This tick-transmitted pathogen establishes 

persistent infection in its invertebrate and vertebrate hosts, which may be critical for the 

successful completion of its lifecycle.  One of the possible mechanisms by which the 

pathogen may persist is by altering its gene expression in accordance to its host 

background.  In our recent studies, evidence was presented for differential host cell-

specific protein expression.  The host cell-specific protein expression by E. chaffeensis 

includes those from the multigene locus encoding 28 kDa, immunodominant, outer 

membrane proteins (p28-Omps).  The p28-Omp antigens expressed in infected 

macrophage and tick cells are predominantly the products of p28-Omp genes 19 and 14, 

respectively.  Our central hypothesis is that E. chaffeensis exploits host environments in 

achieving unique host cell-specific protein expression via modulating its transcription.  In 

support of this hypothesis, transcriptional activity of a subset of genes from the p28-Omp 

multigene locus was analyzed in vertebrate and tick cell environments.  Specifically, 

RNA isolated from E. chaffeensis grown in macrophage and tick cells was analyzed by 

Northern blot, primer extension, ribonuclease protection assay, and real-time RT-PCR 

methods.  All these experiments identified the major transcripts from the p28-Omp locus 

in macrophage and tick cells to be genes 19 and 14, respectively.  The molecular 

experiments also aided in locating the transcriptional start sites and putative promoters 

for E. chaffeensis p28-Omp 14 and 19 genes.  In addition, E. chaffeensis RNA isolated 

from infected tick and macrophage cells at different times post-infection was also 

analyzed by real-time RT-PCR.  This analysis identified that, independent of time after 
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infection, the p28-Omp gene 14 is the predominantly expressed transcript in E. 

chaffeensis grown in tick cells; whereas the major transcript is from the p28-Omp gene 

14 in macrophage grown pathogen. 

 

Introduction 

 

 

 Ehrlichia chaffeensisEhrlichia chaffeensisEhrlichia chaffeensis, a tick-borne 

pathogen, infects a wide range of vertebrate animals including humans and establishes 

persistent infections in its hosts.  The successful completion of E. chaffeensis life cycle 

requires its adaptation and persistence in its vector and vertebrate hosts.  The molecular 

strategies employed by this pathogen to overcome host immune responses and to achieve 

its dual host adaptation and persistence remain largely unknown.  Several strategies 

employed by intracellular bacteria to overcome host defense mechanisms are reported in 

the literature.  They include prevention of lysosomal fusion with the phagosome in which 

the pathogen resides (25), escape from phagolysosomal fusion (407), export of virulent 

proteins and toxins through specialized secretion system (51), and altering the expressed 

antigens to evade the host immune responses (339,346,400).   

  

Differential gene expression by a pathogen in response to the host environment 

has also been shown to be an important strategy employed by several pathogenic bacteria 

(39,71,106,418).  For example, Borrelia burgdorferi, the agent of Lyme disease, 

differentially expresses its outer membrane proteins in its tick vector and vertebrate hosts 

(81,82,345,369).  This pathogen up-regulates the expression of its outer surface proteins, 

Osp A and Osp C in its tick vector and vertebrate hosts, respectively (81,345,369).  This 

host-specific differential expression of outer surface proteins by B. burgdorferi is 
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essential for the pathogen’s colonization and persistence in its vertebrate and invertebrate 

hosts (81,163,282,284,285).  Similarly, in more closely related pathogens of E. 

chaffeensis, Anaplasma marginale and A. phagocytophilum, differential expression of 

outer surface proteins have been reported in their vertebrate host and tick vector, 

respectively (132,170,219,269,408,445).  Differential expression and antigenic variation 

of the outer membrane proteins in these Anaplasma species pathogens is observed in 

persistently infected vertebrate hosts (124,170,258,269).  Persistence in both arthropod 

and vertebrate hosts may be necessary for tick-borne pathogens as it improves the 

chances of a vector to acquire the organism and transmit to another suitable host, thus 

maintaining the infectious cycle of the pathogen.  

 

 Previous studies from the literature and recent studies from our laboratory 

demonstrated that E. chaffeensis p28-Omp outer membrane proteins are expressed in a 

host cell-specific manner (221,274,347,352,353,397).  The major expressed protein in 

macrophage grown E. chaffeensis organisms is the product of p28-Omp19 gene; where 

p28-Omp14 is predominantly made in E. chaffeensis originating from tick cells 

(221,274,347,352,353,397).  To date, it is not clear whether the pathogen’s regulation of 

its p28-Omp genes is achieved at transcriptional or post transcriptional level.  

Transcriptional analysis performed using non-quantitative RT-PCR assays of the the p28-

Omp locus genes demonstrated the expression of multiple transcripts from this multigene 

locus (108,221,272,398).  Considerable discrepancy was also reported for the transcripts 

identified from the p28-Omp locus (108,221,398).  For example, a study by Long et al. 

(221) reported 16 transcripts of 22 genes from the p28-Omp locus for macrophage-

derived E. chaffeensis and they include all genes but 2, 6, 13, 14, 17, and 21 (221).   
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Unver et al. (398) also identified same number of the p28-Omp transcripts but the 

detected transcripts for the p28-Omp genes are different from those reported by Long et 

al (221).  Similarly, RT-PCR analysis of a subset of genes, spanning the p28-Omp 14 

though 19 in macrophage-derived E. chaffeensis, identified transcripts only for four genes 

(14, 15, 18 and 19) (62).  The transcriptionally active genes identified by Cheng et al (62) 

are consistent with those identified by Unver et al (398) but differ from the transcripts 

reported by Long et al (221).  The findings from all these studies are inconsistent from 

the protein expression data reported for this locus (274,347,352,353). 

 

 Despite the presence of multiple transcripts, only a limited number of proteins are 

expressed from this locus in host cell-specific manner (347,352,353).  These 

differentially expressed proteins are present as multiple forms due to post-translational 

modifications including glycosylation and phosphorylation (352,353).  The presence of 

transcripts as assessed by non-quantitative RT-PCR methods for 16 of 22 genes in 

macrophage derived E. chaffeensis RNA is contradictory to protein expression data, 

where only major protein was detected (p28-Omp 19) (108,221,274,347,352,353,398).  

Non-quantitative RNA analysis, however, for tick or tick cell derived E. chaffeensis 

detected only one major transcript, i.e., for the p28-Omp gene 14 (397,398).  This data is 

also consistent with protein expression identified only for gene 14 in tick-cell grown E. 

chaffeensis organisms (347,352).  The differences in RNA data and protein data suggest 

that the pathogen may be employing two levels of regulation; transcriptional and 

translational.  Importantly, not all transcripts made are used by the protein synthesis 

assembly to make proteins.  Alternatively, there may be quantitative differences in 
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transcription and translation, where only a subset of genes are transcribed and translated 

in higher levels.   

 

 In this study, we carefully evaluated the transcripts for a subset of genes by 

several quantitative RNA analyses methods.  Specifically, we evaluated expression for 

the p28-Omp genes 14 and 19 in E. chaffeensis in infected macrophages and tick cells.  

The reason for our selection of these two genes is that the protein expression data for the 

p28-Omp locus genes demonstrated host cell-specific differential protein expression of 

the p28-Omp genes 14 and 19 in tick and vertebrate host cells, respectively.  Several 

independent quantitative RNA analyses methods such as Northern blot, primer extension, 

ribonuclease protection assay, and real-time RT-PCR are utilized for this analysis.  We 

also extended our analysis to RNA isolated from infected tick cell and macrophage 

cultures at various time intervals after infection. To further evaluate if the transcription is 

influenced by the host environment, we infected the macrophage cultures with the E. 

chaffeensis organisms that are previously grown in tick cell or macrophage cultures.  

Following the final infection, total RNA from the infected cultures is evaluated by real-

time RT-PCR method.  Similarly, RNA extracted from mice that were infected with E. 

chaffeensis organisms grown in tick cells or macrophages, was also analyzed by real-time 

RT-PCR analysis. Overall, this study identified that the p28-Omp genes 14 and 19 are 

regulated at transcription level and their expression levels remained the same independent 

of time after infection.  Expression of these outer membrane protein genes is influenced 

by the host environment.   
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Materials and methods 

 

In vitro cultivation of E. chaffeensis: The Arkansas isolate of E. chaffeensis was 

cultivated in vitro in the canine macrophage cell line (DH82) at 37°C and the tick cell 

lines (ISE6 or AAE2) at 34°C, by following the protocols established previously 

(61,260).   

 

Isolation of total RNA: About 20 ml of confluent monolayers of DH82 or ISE6 cell 

cultures with about 80-100% infection of E. chaffeensis were recovered from a T-150 

flask and used for isolation of total RNA.  Total RNA was isolated from the infected 

cultures using Tri-reagent method by following the manufacturer’s recommendations 

(Sigma-Aldrich, St. Louis, MO) (A more detailed description about this method is 

provided in the Chapter 8).  RNA was also isolated from 5 ml of the infected tick and 

macrophage cultures and 5 ml of peritoneal wash cells (peritoneal macrophages) from E. 

chaffeensis infected mice, at various time points post-inoculation. The RNA pellets 

recovered were resuspended in 100 μl of nuclease-free water containing 40 units of 

RNase inhibitor, RNasin, (Ambion Inc., Austin, TX) and stored at -70°C until use.  

Quality and concentration of RNA was assessed by spectrophotometry using an ND-1000 

spectrophotometer (Nanodrop Technologies, Wilmington, DE) and by calculating the 

ratio between the optical densities at 260 nm and 280 nm.  RNA quality was further 

confirmed by resolving samples on 1.5% formaldehyde agarose gels. 

 

Northern blot analysis: E. chaffeensis total RNA was assayed by Northern blot method 

by following the standard procedures described in Sambrook and Russell (336).  About 

10 µg of total RNA of E. chaffeensis isolated from infected macrophage or tick cell lines 
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was resolved on a 1.5% denaturing formaldehyde agarose gel.  The RNA from the gel 

was then transferred to a Hybond-N
+
 nylon membrane (Amersham Pharmacia Biotech, 

Piscataway, NJ) by the capillary transfer method (336).  The nylon membrane containing 

transferred RNA was hybridized with 
32

p-labelled probes specific for genes p28-Omp 14 

or 19.  To generate specific probes for the genes 14 and 19, a 0.86 kb and 0.77 kb 

segments of the genes, respectively, were amplified from E. chaffeensis genomic DNA 

using the primers listed in Table 3.1.  PCR condition for amplification included initial 

denaturation at 94°C for 2 min, followed by 40 cycles of 94°C
 
for 30 s, 50°C (for gene 14 

probe) or 55°C (for gene 19 probe) for 30 s, and 72°C for 50 s, and one final extension at 

72°C for 2 min.  Positive controls for this experiment included genomic DNA hybridized 

with the above synthesized probes.   Labeling of the probes with α-
32

p [dATP] was done 

by random primer labeling of gene-specific PCR amplicons utilizing random primer 

labeling kit (Stratagene, La Jolla, CA) and by following manufacturer’s protocol.  

Hybridization of the labeled probes to the RNA was performed overnight at 68°C in a 

buffer containing 6× SSC (1× SSC is 0.15 M NaCl and 0.015 M sodium citrate), 10 mM 

sodium phosphate buffer (pH 6.8), 0.5% SDS, 1 mM EDTA, 10× Denhart's solution and 

100 µg ml
−1

 sheared and denatured salmon sperm DNA.  The blots were washed once 

each for 30 min at 68°C with 6× SSC containing 0.1% SDS, 2× SSC containing 0.1% 

SDS, 1× SSC containing 0.1% SDS and 0.2× SSC containing 0.1% SDS.  After the final 

stringent wash, the membranes were exposed for about 24 h or longer (to obtain signals 

with desired intensity) to an X-ray film at −80°C with an intensifying screen, and the film 

was developed using a Konica film processor (Wayne, NJ).  The experiment was 

repeated for three independent times using independently isolated RNA samples.  
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Primer extension:  Primer extension analysis was performed by utilizing a Primer 

Extension System AMV Reverse Transcriptase kit (Promega, Madison, WI).  Briefly, 

oligonucleotides complementary the p28-Omp genes 14 and 19 transcripts (Table 3.1) 

were end labeled with  γ-
32

p [ATP] using T4 polynucleotide kinase (Promega, Madison, 

WI) at 37°C for 10 min.  The kinase reaction was stopped by heat inactivation at 90°C for 

2 min.  The end labeled primers (one ρ mole each) were annealed to E. chaffeensis RNA 

(~10 μg) by incubating at 58°C for 20 min in 11 μl reactions containing AMV primer 

extension buffer that was provided in the kit.  To reverse transcribe RNA into cDNA, 1 μl 

of AMV reverse transcriptase (1 unit) was added and the reaction was incubated at 42
o
C 

for 30 min.  The reaction products were then concentrated by ethanol precipitation and 

resolved a 6% polyacrylamide gel containing 7 M urea.  The gel containing the primer 

extended products was then transferred to a Whatman paper, dried and exposed to an X-

ray film.  The primer extended products were detected after developing the film using a 

Konica film processor (Wayne, NJ).  

 

Ribonuclease protection assay (RPA):  RPA was performed for macrophage culture-

derived E. chaffeensis total RNA using the riboprobes specific for the 5' and 3' ends p28-

Omp gene 19 sequences.  Gene-specific complementary DIG-labeled RNA probes were 

generated by in vitro transcription strategies.  To prepare in vitro transcripts that are 

complementary to the predicted gene 19 transcripts, initially gene-specific segments were 

prepared by PCR  (primers used for this experiment were listed in the Table 3.1).  The 

amplicons (a fragment each spanning the 5' and 3' ends of the p28-Omp genes 19) 

included a T7 promoter sequence at the 3' end.  The DIG labeled in vitro transcripts 

(riboprobes) were then synthesized for the complementary strands of genes 19 amplicons  
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using a DIG RNA labeling kit and T7 RNA polymerase as per the kit protocol (Cat # 

1175025, Roche Applied Sciences, Indianapolis, IN).   

 

RPA was performed to detect the presence of transcripts by following the 

manufactures protocol (Cat# 1427580, Roche Applied Sciences, Indiana police, IN).  

Briefly, 300 pico grams of DIG labeled riboprobes were allowed to hybridize with 10 µg of 

macrophage derived E. chaffeensis total RNA at 45°C overnight. The hybridization reactions 

were then subjected to RNase T1 digestion for 30 min at 30°C to remove all unbound, single 

stranded RNA with the exception of protected parts of the mRNA.  Following this reaction, 

proteinase K digestion was performed for 15 min at 37
°
C.  The protected products were then 

purified by standard phenol: chloroform: isoamylalcohol (25:24:1) method, followed by 

ethanol precipitation.  One μg of yeast transfer RNA was added as a carrier to support RNA 

precipitation (336).  The products were resuspended in 5 μl of sample loading buffer 

(provided in the kit), denatured by heating at 95°C for 5 min and then resolved on a 6% 

polyacrylamide gel containing 7M urea. Subsequently, the resolved products were 

transferred to a nylon membrane and incubated with antidigoxigenin alkaline phosphatase 

conjugate and chemiluminescent substrate, CSPD, as specified by the kit protocol (Roche 

Applied Sciences, Indiana police, IN).  Chemiluminescent signals from protected fragments 

were then detected by exposing an X-ray film for one hour developing it using a Konica film 

processor (Wayne, NJ). 

 

Real-time RT-PCR analysis:  Quantitative differences in the transcripts for the p28-Omp 

genes 14 and 19 were assessed by a TaqMan-based diplex real-time RT-PCR assay using the 

Smart Cycler system (Cepheid, Sunnyvale, CA).  The TaqMan probes and primer sets for 
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genes 14 and 19 utilized in this assay were designed from the variable regions of their 

coding sequences (Table 3.1).  For analyzing 16S rRNA expression, previously reported 

primers and probe were utilized (354).   The specificity of the primers and probes was 

confirmed in initial control experiments prior to their use in a diplex real-time RT-PCR 

assay.   Initial RT-PCR analysis was performed on E. chaffeensis total RNA isolated form 

approximately 90% infected macrophage or tick cell cultures.  Subsequently, to evaluate the 

influence of host background on transcription from genes 14 and 19 at different time 

intervals after infection, several T25 flasks containing uninfected cultures of macrophages 

(DH82) or tick cells (ISE6) were infected with E. chaffeensis and total RNA was isolated at 

various time intervals.  They included 12h, 24h, 48h, 96h, and 120h post infection. The 

quantitative gene expression differences for the genes 14 and 19 obtained by real-time RT-

PCR for post-infection samples are presented per 10
6 
E. chaffeensis organisms.    

 

For the post-inoculation experiments E. chaffeensis grown in ISE6 cells are 

purified and cell-free Ehrlichia are then used as inoculum to infect ISE6 cells or DH82 

cells.  Similarly, DH82-derived cell free Ehrlichia were used to infect DH82 cultures.  In 

a separate study, E. chaffeensis infected tick cell and macrophage cultures are used to 

infect two mouse strains (B6 and C2D) (128).  Total RNA samples isolated form the 

peritoneal macrophages, collected from normal and E. chaffeensis infected mice at 

various points post-infection, were utilized to determine p28-Omp genes 14 and 19 

expression.  

 

The RNA samples described above were assessed for the presence of transcripts 

and genome copies for genes 14 and 19.  To assess the true presence of transcripts, the 
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contaminating genomic DNA of E. chaffeensis in RNA preparations were analyzed by 

diplex real-time RT-PCR in the presence or absence of reversetranscriptase. Typically, 

the reaction was carried out in a 25 µl volume which included 2 µl of RNA, 5 n mol of 

dNTP’s, 125 n mol of
 
MgCl2, 5 p mol each of the TaqMan forward

 
and reverse primers 

for both the genes, 3.75 pmol of each of gene-specific TaqMan
 
probe for both the genes, 

and 1 µl of SS-III and Taq mix (SuperScript-III,
 
One-Step RT-PCR system with platinum 

Taq DNA polymerase; Invitrogen
 
Technologies, Carlsbad, CA). The thermal cycling 

conditions used in this assay included one cycle each at 48°C for 30 min and 95°C
 
for 3 

min, followed by 45 cycles of 95°C for 15 s, 50°C
 
for 30 s, and 60°C for 60 s. 

Quantitative data relative to the number of E. chaffeensis organisms was calculated by 

following procedures described in (354).  

 

Statistical analysis:  Statistical analysis of real-time RT-PCR data for measuring the 

quantitative differences in the p28-Omp genes14 and 19 gene expression was performed 

by unpaired Student t-test.  The values presented represent an average of three 

independent experiments. GraphPad InStat Software (La Jolla, CA) was used in 

performing these analyses.  P values less than 0.05 were considered as significant.   

 

Results 

 

Northern blot analysis:  To evaluate the gene expression at transcriptional level, 

Northern blot analysis was performed for the p28-Omp genes 14 and 19 utilizing 

macrophage and tick cell-derived E. chaffeensis total RNA.  Approximately 0.9 kb 

transcript for the p28-Omp 19 gene was detected in macrophage-grown E. chaffeensis 

RNA.  In contrast, RNA from tick cell-grown E. chaffeensis contained similar sized 
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transcript for the p28-Omp gene 14 (Figure 3.1).  Similar results were obtained from all 

three independent experiments.  

 

Primer extension analysis:  Host cell-specific gene expression from the p28-Omp genes 14 

and 19 identified by Northern blot analysis was verified by primer extension analysis 

(Figure 3.2, A and B).  Consistent with the Northern blot data, the primer extended products 

for the p28-Omp gene 14 were detected only in tick cell-derived E. chaffeensis, whereas 

macrophage cells-derived E. chaffeensis RNA contained primer extended products only for 

the p28-Omp gene 19 (Figure 3.2, A and B).  Transcription start sites for the p28-Omp genes 

14 and 19 were also identified in this experiment. They are located at 34 and 26 nucleotides 

upstream to ATG for genes 14 and 19, respectively (Figure 3.2).  For both the genes the 

nucleotide identified at the transcription start sites is adenosine. 

 

Ribonuclease protection assy (RPA):  Transcription start sites of gene 19 for macrophage-

derived E. chaffeensis RNA was further validated by ribo nuclease protection assay.  A 

riboprobe, targeted to 5' end of gene 19 was utilized in this analysis.  Protected fragments 

was evident and the transcription start site estimated form the 5' end protected fragment 

migrated at a similar location as predicted from the primer extension analysis (Figure 3.3, B) 

 

RNase protection assay was also performed to map the transcription termination site 

for the p28-Omp gene 19 using a 3' end gene specific riboprobe.  The 3' end probe included 

sequence downstream to stop codon of the gene 19.  The entire riboprobe used in this 

experiment was protected suggesting that the transcription termination site is further 

downstream to the gene 19 stop codon (Figure 3.3, B).    
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Real-time RT-PCR analysis: Transcriptional analysis by direct RNA analysis methods 

(discussed above) revealed the expression of gene 14 in tick cells and gene 19 in 

macrophage-grown E. chaffeensis.   Previous studies by three independent research 

groups, by non-quantitative RT-PCR analysis of E. chaffeensis RNA from macrophage 

grown organisms, identified expression from multiple genes from the p28-Omp locus 

(108,221,398).  The RNA expression for gene 14 in tick cells by previous reports, 

however, is consistent with the results in this study (397,398).  The presence of multiple 

transcripts as assessed by non-quantitative RT-PCR methods is inconsistent to our 

present observations by direct RNA analysis methods for macrophage-derived pathogen’s 

RNA in this study.  The Northern blot and primer extension data, however, supports the 

protein expression data from this locus for gene 14 in tick cells and gene 19 in 

macrophages for both in vitro and in vivo analysis (274,347,352,398).   To resolve the 

conflicting observations, we developed diplex real-time RT-PCR assay for use in 

mapping expression for the p28-Omp genes 14 and 19.  Transcripts for both the genes 14 

and 19 were detected in E. chaffeensis RNA isolated from both macrophage and tick cell 

derived E. chaffeensis, but expression levels were different (Figure 3.4).  The diplex 

assay detected predominant expression for the p28-Omp gene 19 in macrophage-derived 

E. chaffeensis (as assessed by low Ct values) and for gene 19 in tick cell grown E. 

chaffeensis (Figure 3.4).   

 

The diplex real-time RT-PCR analysis was also carried out to assess influence of 

bacterial growth on the p28-Omp genes 14 and 19 expression at different times post 

infection including its progression from dense-cored cells to reticulate cells and reverting 

back to dense-cored cells for their subsequent infection to naïve cells.   E. chaffeensis RNA 
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harvested at different times post infection from macrophages and tick cells was investigated.  

At all times post-infection, transcripts for both the genes 14 and 19 were detected in RNA 

isolated from both the host cell backgrounds (Figure 3.5, A and B).  Independent of the time 

post infection the major expression from the tick cell derived E. chaffeensis remained the 

same i.e., from the gene 14 (P ≤ 0.05) (Figure 3.5, A).  Similarly, major expression from the 

gene 19 was steadily observed at all time points after infection in macrophage-derived E. 

chaffeensis RNA (P ≤ 0.05) (Figure 3.5, B).   

 

To verify if the differences in gene expression are truly the result of host cell 

environment E. chaffeensis organisms were purified from tick cell cultures and used to 

infect several macrophage or tick cell cultures.  Similarly, macrophage culture-derived E. 

chaffeensis was purified and used to infect macrophage cultures.  Total RNA isolated 

from the infected cell cultures at several times post-inoculation was evaluated for the 

p28-Omp genes 14- and 19-specific real-time RT-PCR assay.   For RNA samples isolated 

form macrophage cells infected with E. chaffeensis from tick cells, the expression levels 

of the gene 14 was high for the initial harvest time points.  The expression was slowly 

switched to gene 19 by day 5 (Figure 3.6).  Infection of macrophage cell line with E. 

chaffeensis organisms that were previously grown in macrophage cells maintained 

predominant expression form the gene 19.  Similarly, E. chaffeensis maintained 

consecutively in tick cell lines retained high levels of expression from the p28-Omp gene 

14 (Figure 3.6).  

 

To determine if the similar shift in gene expression occurs in E. chaffeensis in 

vivo, transcriptional analysis of the p28-Omp 14 and 19 was also performed in mice 
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experimentally infected with pathogens originating from tick cells or macrophages.  Two 

mouse stains, Immunocompetent C57BL6 (B6) mice and MHC II deficient (C2D) mice 

were used for this analysis.  The bacteria are cleared in about 14 days in B6 mice, 

whereas they persist in C2D mice (129,130,420). E. chaffeensis total RNA isolated form 

the peritoneal macrophages of the infected mice was observed for different post infection 

days.  Predominant expression of gene 14 transcripts was observed for days 1 and 3 post 

infections in B6 mice infected with E. chaffeensis organisms from tick cells.  The 

expression was then reversed to gene 19 from day 7 and remained unchanged till 17 post 

infection.  B6 mice infected with macrophage-grown E. chaffeensis organisms showed 

major expression for gene 19 from day 1 onwards and remained unchanged until the 

pathogen was cleared by the host (day 7) (Figure 3.7).   C2D mice infected with E. 

chaffeensis from tick cells revealed predominant expression from the gene 14 up to 3 

days after infection.  The expression was then slowly switched back predominantly to 

gene 19 from day 5 until day 25 after infection (Figure 3.8).   

 

Discussion 

 

It may be necessary for arthropod transmitted pathogens to use novel adaptation 

strategies in support of their growth in vector and vertebrate host backgrounds, each 

representing a diverse environment, for their successful maintenance in nature.  Very 

little is known about the vector-borne pathogens adaption strategies.  Differential gene 

expression may be one of the important strategies employed by pathogenic organisms in 

support of their adaptation and persistence in their vectors and vertebrate hosts 

(81,113,163,218,269,282-285,396).  Studies from ours and other research teams 

demonstrated host-specific protein expression from several E. chaffeensis pathogen genes 
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including from the p28-Omp locus.  The host-specific expression in both in vivo and in 

vitro included the predominant protein expression from the p28-Omp gene 14 in tick cells 

grown pathogens and p28-Omp gene 19 in macrophages (221,274,347,352,353,397).  

Immunological studies utilizing mouse model demonstrated that the host clearance is 

slower for E. chaffeensis originating form tick cells (128).  Secondly, considerable 

differences in host responses against tick cell-derived pathogens have been documented, 

particularly at B-cell, T-cell, macrophage and cytokine responses (128).  These findings 

suggest that host environment influences the pathogen’s protein expression and the host-

specific protein expression may be an important contributor for the pathogen’s extended 

survival in a vertebrate host.  

 

In the current study, we have utilized several independent RNA analysis methods; 

Northern blot, primer extension, RPA and real-time RT-PCR for assessing the 

transcription from the p28-Omp genes 14 and 19.  The analysis was performed to 

determine if the differences in protein expression reported earlier (274,347,352,397,398) 

are the result of regulation of gene expression at the level of transcription or due to 

differences in the protein stability influenced by host cell environments.  The results from 

these experiments support the host cell-specific differences in protein expression 

paralleled differences in the transcripts made from the p28-Omp genes.   Importantly, the 

major expression of p28-omp gene 19 protein in E. chaffeensis originating from 

macrophages (347,352) is consistent with the abundance of its transcripts.  Similarly, the 

major transcription seen for gene 14 in tick cells is consistent with the observation of 

protein expression reported earlier (397,398). 
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The Northern blot, primer extension and ribonuclease protection analyses also 

suggested that the genes 14 and 19 are expressed as monocistronic messages.  Primer 

extension experiments were valuable in identifying the transcription start sites and for 

locating the putative promoter regions for these genes.  The base identified at the 

transcription start site for both the genes 14 and 19 is adenine.   Previous studies from 

several other rickettsial organisms belonging to the genera Rickettsia and Anaplasma also 

identified adenine as the most common base at the transcription start sites 

(22,290,313,349).  

 

Real-time diplex RT-PCR assays were useful in identifying quantitative 

differences in the transcripts and also to examine if the p28-Omp genes 14 and 19 are 

transcriptionally active.  The analysis confirmed that both the p28-Omp genes are 

transcriptionally active independent of the host cells in which the organism is replicating.  

These observations are consistent with the previous reports of non-quantitative RT-PCR 

analysis (108,398).  However, the current study demonstrated that the host cell 

environments influence the gene expression leading to altered transcription levels.  The 

real-time diplex RT-PCR assay is effective in identifying quantitative differences in gene 

expression.  This is the first study which resolved the confusion existed due to differences 

in the gene expression assessed by non-quantitative RT-PCR methods and protein 

analysis data.  In particular, the current study demonstrated that the major expression of 

gene 19 protein in macrophages and gene 14 protein in tick cells is the results of 

quantitative differences in their transcription.    
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In vivo experiments using the murine host model strengthen our in vitro 

observations that the host cell environment is indeed influencing the gene expression in 

E. chaffeensis.  It is well documented that E. chaffeensis progresses from its infectious 

dense-core form to non-infectious reticulate form during its replication and reverts back 

to dense-core form in a phagosome of infected tick cells and macrophages (306,441).  

Similar dense-core and reticulate forms are also reported for Chlamydia species 

(11,158,424).  The gene expression in Chlamydia trachomatis is driven by three sigma 

(σ) factors, σ66 (homolog of σ70), σ54 and σ28, of the RNA polymerase (196,364,435).  

σ66 and σ54 subunits are constitutively expressed in both the morphological forms of C. 

trachomatis, whereas the expression of σ28 is dependent on the morphological forms 

(241,348).  Stress response genes and late stage dense-core from-specific gene expression 

appears to be regulated by σ28 of RNA polymerase (40,110,350,435).   

 

To assess if the genes 14 and 19 expression is altered during E. chaffeensis 

progression through the dense-core and reticulate forms, real-time RT-PCR analysis was 

performed on pathogen’s RNA harvested at different times post infection.  The analysis 

was also carried out using RNA recovered from both the tick cells and macrophages.  

These data suggest that the p28-Omp gene expression is not influenced by the 

morphological changes in the bacterium form dense-core to reticulate forms.  These data, 

together with the in vivo analysis from mouse infection studies suggest that the 

differences in gene expression are primarily the result of the impact of host cell 

environment.  The constitutive higher expression for the p28-Omp gene 14 in E. 

chaffeensis grown in tick cells and gene 19 in macrophages may have resulted from the 

RNA polymerase containing σ70 subunit.  This is based on the assumption that sigma 



92 

 

factors in E. chaffeensis are functionally similar to those of C. trachomatis.  The 

differences in E. chaffeensis gene expression, therefore, may have resulted alterations in 

RNA polymerase binding by sensing the host cell environments.  This exciting 

hypothesis, however, requires considerable understanding of E. chaffeensis promoters 

and their detailed characterization. 

  

  In summary, the current study identified that host cell-specific differential 

expression of the p28-Omp genes 14 and 19 in E. chaffeensis is occurring primarily at 

transcriptional level.  All the experiments undertaken in this study clearly demonstrate 

that transcriptional regulation of these genes is influenced by the host cell environments.  

The host-specific differential gene expression may be an important step in the process of 

E. chaffeensis immune evasion and adaption to its diverse host backgrounds.  

Identification of the precise mechanism of gene regulation and the molecular events 

involved in this process are important for a better understanding of strategies employed 

by this and other tick transmitted organisms. The data reported in this study leads to the 

investigation of characterizing promoters of the p28-Omp genes 14 and 19. 
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Figure 3.1.  Northern blot analysis of the p28-Omp genes 14 and 19.  About 10 µg 

each of two independent batches of E. chaffeensis RNA isolated from cultures grown in 

macrophage cell line, DH82 (lanes 1 and 2), and tick cell line, ISE6 (lanes 3 and 4), were 

resolved in duplicate sets on a denaturing RNA gel and assessed by Northern blot 

analysis using p28-Omp 14 or 19 gene-specific 
32

p-labelled probes. RNA molecular 

weight markers were resolved in lane M (Reproduced with permission from Cell 

Microbiol. 8, 1475-87, 2006, Wiley-Blackwell Publishing). 
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Figure 3.2.  Primer extension analysis (PE) of the p28-Omp genes 14 and 19.  Panel 

A has a cartoon spanning all 22 genes (221). This panel also has an expansion of genes 

14 and 19 cartoons with predicted transcripts, the primers used for the PE analysis and 

sequences of the primer extended products with transcription start sites identified with 

asterisks.  PE analysis products resolved on a sequencing gel are shown in panel B.  Blots 

on the left and right represent the data for the genes 14 and 19 transcripts, respectively.  

Sequence ladder for the gene 14 analysis was created using the same primer used for the 

PE analysis, but using a DNA template spanning the gene 14 sequence.  For the gene 19, 
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PE analysis was performed using RRG 44 primer and the sequencing ladder was 

generated using RRG20-PEXT primer with a gene 19 DNA template. (Lane 1, E. 

chaffeensis RNA from tick cells; lane 2, E. chaffeensis RNA from macrophages) 

(Reproduced with permission from BMC Microbiology, In press). 
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Figure 3.3.  Ribonuclease Protection Assay.  RPA was performed on macrophage-

derived E. chaffeensis RNA using 3′ and 5′ end gene-specific riboprobes for the p28-Omp 

gene 19.  The p28-Omp locus cartoon spanning the genes 14 -21 and a schematic 

representation of the experiment were shown in panel A.  The 3′ and 5′ protected 

fragments for gene 19 resolved on a sequencing gel was shown in panel B.   
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Figure 3.4.  TaqMan-based diplex real-time RT-PCR analysis was performed three 

independent times using total RNA isolated from infected macrophages (DH82) (A) 

or tick cells; ISE6 (B) and AAE2 (C). The amplification cycles are plotted against 

fluorescence emission for the analysis performed in the presence or absence of reverse 

transcriptase. A horizontal solid line in panel on the x-axis depicts the line for threshold 
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fluorescence. Fluorescence emission crossing this line at an amplification cycle is 

regarded as the Ct value. Gene 14-NEG and Gene 19-NEG represent data derived for 

reaction negative control diplex assay that included all assay components but no 

template; Gene 14-RTPCR and Gene 19-RTPCR represent data derived for a reaction 

containing RNA in the presence of reverse transcriptase; Gene 14-PCR and Gene 19-PCR 

represent data generated for RNA from the diplex assay that did not include reverse 

transcriptase (Reproduced with permission from Cell Microbiol. 8, 1475-87, 2006, 

Wiley-Blackwell Publishing).  
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Figure 3.5.  A TaqMan-based diplex real-time RT-PCR analysis is performed using 

RNA isolated from tick-cell (A) and macrophage (B) cultures harvested at different 

times post infection. Transcript numbers are estimated and presented per million E. 

chaffeensis organisms. Data are presented with SE values calculated from three 

independent experiments (P ≤ 0.05) (Reproduced with permission from BMC 

Microbiology, In press). 
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Figure 3.6.  Real-time RT-PCR analysis of in vitro gene expression of p28-Omp locus 

genes 14 and 19.  A TaqMan-based, diplex real-time RT-PCR analysis was performed to 

assess the expression for p28-Omp multigene locus genes 14 and 19 in RNA isolated 

from in vitro cultures infected with tick cell- or macrophage culture-derived E. 

chaffeensis. CT value differences (i.e., the gene 14 CT value – the gene 19 CT value) in 

the amplification cycles were plotted for analyzed RNA samples collected at different 

times after infection.  The negative values refer to high-level transcription of gene 14 

relative to gene 19, whereas the positive values indicate that the transcription of gene 19 

was higher. MQ into MQ refers to E. chaffeensis organisms grown in macrophages that 

were used to infect macrophages; TC into MQ indicates that tick cell-grown bacteria 

were used to infect macrophage cells, whereas TC into TC represents tick cell culture-

derived E. chaffeensis that was used to infect tick cells (Reproduced with permission 

from Infect Immun.75, 135-45, 2007, ASM).  
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Figure 3.7.  TaqMan-based, diplex real-time RT-PCR analysis of in vivo gene 

expression of p28-Omp locus genes 14 and 19 in B6 mice.  The analysis was performed 

on the RNAs isolated from the B6 mice infected with macrophage- or tick cell-derived E. 

chaffeensis. CT value differences (i.e., the gene 14 CT value – the gene 19 CT value) in 

the amplification cycles were plotted for analyzed RNA samples collected at different 

times after infection.  The negative values refer to high-level transcription of gene 14 

relative to gene 19, whereas the positive values indicate a higher transcription of gene 19. 

MQ into B6 mice indicates that macrophage-grown bacteria were used as the inoculum to 

infect B6 mice; TC into B6 represents B6 mice infected with tick cell culture-derived E. 

chaffeensis (Reproduced with permission from Infect Immun.75, 135-45, 2007, ASM). 
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Figure 3.8.  TaqMan-based, diplex real-time RT-PCR analysis of in vivo gene 

expression of p28-Omp locus genes 14 and 19 in C2D mice.  RNA was isolated from 

C2D mice infected with macrophage- or tick cell-derived E. chaffeensis. CT value 

differences (i.e., the gene 14 CT value – the gene 19 CT value) in the amplification cycles 

were plotted for analyzed RNA samples collected at different times after infection.  The 

negative values refer to high-level transcription of gene 14 relative to gene 19, whereas 

the positive values indicate that the transcription of gene 19 was higher. MQ into C2D 

mice indicates that macrophage-derived bacteria were used as the inoculum to infect C2D 

mice; TC into C2D represents C2D mice infected with tick cell culture-grown E. 

chaffeensis(Reproduced with permission from Infect Immun.75, 135-45, 2007, ASM).  
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Primer name              Sequence                                                      Orientation 

Annealing temperature 

                (°C)    

NORTHERN BLOT    

Gene 14 probe    

 RRG28  5’   gaaagaaattttatattctagacttgc  Forward 50 

 RRG71  5’   gagctccttctaatactac Reverse  

    

Gene 19 probe    

 VSA 5EF  5’   gacccagcaggtagtggtattaacgg  Forward 55 

 VSA 5ER  5’   caatctttcgtttggaaggagg Reverse  

    

PRIMER EXTENSION ANALYSIS    

Gene 14    

 RRG 14- 5’  rev  5’   gccttctctgctgtcgttgattcc Reverse 52 

    

Gene 19    

 RRG 20-PEXT  5’   cgttaataccactacctgctgggtcg  Reverse 58 

 RRG 44  5’   cgcttccgtcccaattttgcttc Reverse  

    

RIBONUCLEASE PROTECTION ASSAY   

 

Gene 19-3'     

 ROR 73  5’   gtttgaagctacaaatcc Forward 58 

 RRG18-T7  5’   gtaatacgactcactataggaactaataattacaatgtgt Reverse  

 

    

Gene 19- 5’       

 RRG185  5’   gactctagacttttaattttattattgccacatg  Forward 55 

 Gene20-PEXT-T7  5’   gtaatacgactcactatagggcgttaataccactacctgctgggtcg  Reverse  
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Table 3.1.  List of primers used in this study 

 

 

 

 

 

 

 

  

Real-Time RT-PCR 

    

Gene 14    

 RRG215  5’   gacactaatagcggtgac Forward 48 

 RRG216  5’   atgccttcatttttaaggac  Reverse  

 RRG217  5’   FAM/tactttggactatctcgtgaagac/BHQ TaqManProbe  

Gene 19     

 RRG220   5’   aaattgggacggaagcg                  Forward 48 

 RRG221  5’   gcaaaac ctaaaaacggg  Reverse  

 RRG222  5’   TET/tcctccccaaacgatgtattca/BHQ TaqManProbe  
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Chapter 4 

 

Promoter Characterization of Host-specifically Expressed p28-Omp 

Genes 14 and 19 of Ehrlichia chaffeensis 
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Abstract 

 

Ehrlichia chaffeensisEhrlichia chaffeensisEhrlichia chaffeensis, the agent of human 

monocytic ehrlichiosis, requires its adaptation and persistence within its tick vector and 

vertebrate hosts for the successful completion of its lifecycle and maintenance in nature.  In 

the previous Chapter, I described studies demonstrating the host-specific differences in gene 

expression from the p28-Omp genes 14 and 19 of E. chaffeensis.  It is not clear how gene 

regulation by E. chaffeensis is accomplished in response to its host cell environments.  Also, 

very little is known about the promoters of differentially expressed genes and their role in 

regulating gene expression.  In this study, we evaluated the sequences upstream to the 

transcription start sites of the p28-Omp genes 14 and 19 for their promoter activity in E. coli 

and identified their functional promoters.  Promoter deletion analysis was also performed, 

which aided in mapping several DNA sequences that influenced promoter activity.  Putative 

RNA polymerase binding sites that are similar to those of E. coli consensus sequences were 

also identified for the p28-Omp genes 14 and 19.  Furthermore, deletion analysis 

experiments were performed to confirm the location of the RNA polymerase binging 

regions, -10 and -35.  This is the first study to identify and characterize functional promoters 

for E. chaffeensis genes.  The data reported in this study provide information about 

sequences that are important for gene expression.  The strategies utilized in this study to 

assess the promoter activity are novel and have broader implications to perform similar 

studies for other E. chaffeensis genes and in other Anaplasmataceae pathogens.    
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Introduction  
 

Tick-borne pathogenic organisms belong to the family Anaplasmataceae 

including E. chaffeensis can’t be transovarially transmitted by ticks (220).  Persistent 

infection in their vertebrate and tick hosts is reported for all known Anaplasmataceae 

pathogens including E. chaffeensis, which may be essential for their successful 

completion of life cycle.  Molecular mechanisms that aid in pathogens adaptation and 

persistence in its tick vector and vertebrate hosts are not clear.  Studies in other tick-borne 

pathogenic bacteria revealed host-specific differential gene expression as one of the 

strategies employed by the organisms for their colonization in tick hosts and 

dissemination into a vertebrate host during tick feeding (81,82,136,344,345,431).  Our 

recent proteomic and transcriptomic data and reports form other research laboratories, for 

a subset of genes, demonstrated tick and vertebrate cell-specific expression of E. 

chaffeensis genes including from two outer membrane protein genes (discussed in 

Chapter 3; Sirigireddy and Ganta, 2007, unpublished data) (128,353).  Control of gene 

expression at transcription level appears to be a common regulatory strategy employed by 

several pathogenic bacteria (Discussed in Chapter 3) (113,218,231,283,349,408,409).  As 

described in the previous Chapter, we also demonstrated the first and convincing 

evidence that E. chaffeensis gene expression is also regulated at the transcription level. 

 

Differential gene expression of outer surface protein (OspC) of B. burgdorferi is 

shown to be regulated by a two component regulatory system involving two alternative 

sigma factors, RpoN and RpoS (136,165,429).  Regulation of OspA gene of B. 

burgdorferi is influenced by interaction of a repressor protein with its promoter (232).  

Environmental signals such as temperature and pH also influence the expression of these 
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genes (4).  For example, relaxation of super coiled DNA in the promoter regions of OspA 

and OspC in response to an increase in temperature from 25°C to 34°C also alters the 

promoter activity and influence the gene expression in B. burgdorferi (4).  In a closely 

related rickettsial pathogen, Rickettsia rickettsii, differential expression of two outer 

membrane proteins is demonstrated to be the result of variations in their promoters’ 

activities (305).   

 

To date very little is known about transcriptional regulation of E. chaffeensis 

genes.  The primer extension analysis of host cell-specific differentially expressed the 

p28 Omp genes 14 and 19 identified the transcription start sites and also aided in location 

of their putative promoter regions (discussed in Chapter 3).   Understanding the 

molecular basis for the differential gene expression requires a detailed characterization of 

the promoters of the differentially expressed genes (22,63,90,408,409).   

 

Genetic manipulation in E. chaffeensis has been a difficult task because of its 

strict host cell requirement and intraphagosomal growth inside the host cells (306,441).  

Genetic manipulation system for transforming the E. chaffeensis organisms remains to be 

established. Therefore, promoter studies of the differentially expressed genes in vivo in E. 

chaffeensis are not feasible at this time.   In the current study, we utilized E. coli as a 

surrogate host to evaluate the promoter activity of the p28-Omp genes 14 and 19.  We 

also described deletion analysis to map various regulatory elements and to locate RNA 

polymerase binding sites of the p28-Omp genes 14 and 19 promoters. 
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Materials and Methods 

 

Cell cultures:  Arkansas isolate of E. chaffeensis is cultivated in vitro in canine macrophage 

(DH82) cell line at 37°C by following earlier established protocols (61).  E. coli strains 

DH5α (Stratagene, La Jolla, CA) and Top 10 (Invitrogen Technologies, Carlsbad, CA) are 

cultured in Luria-Bertani (LB) liquid medium or agar plates.  

 

Standard molecular methods:  Most of the standard molecular protocols utilized in this 

study such as cloning, transformation, sequencing and restriction enzyme digestion were 

described in detail under General molecular methods chapter (Chapter 8). 

 

DNA isolation:  Genomic DNA is isolated from 1.5 ml of 90-100% infected E. chaffeensis 

confluent monolayer cultures by the sodium dodecyl sulfate (SDS), proteinase K, phenol, 

chloroform, isoamyl alcohol method (336).  Final purified DNA is resuspended in 100 μl of 

TE buffer (pH 8.0); concentration is assessed by spectrophotometry using an ND-1000 

spectrophotometer and stored at -20°C.  Quality of DNA is further confirmed by resolving 

about 5 μl  (~50 ng) on a 0.9% agarose gel (336).  Plasmid DNA from the E. coli strains is 

isolated by boiling preparation method by following the protocol described in Sambrook and 

Russell (336) (discussed in Chapter 8).  

 

Bioinformatics analysis:  Sequences upstream from the protein coding regions of E. 

chaffeensis p28-Omp 14 and 19 are obtained from the GenBank data base (GenBank 

accession #CP000236) and aligned using the GCG programs, PileUp and Pretty (87).  Direct 

repeats and palindromic sequences in the upstream sequences were identified using the GCG 

programs, Repeat and StemLoop, respectively.  E. coli σ70 promoter consensus sequences (-
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10 and -35) (342) are utilized to locate similar elements in the p28-Omp genes 14 and 19 

sequences upstream to the transcription start sites. 

 

Oligonucleotides:  Oligonucleotides used for the experiments described in this study are 

custom synthesized from Integrated DNA Technologies (Coralville, IA) and are listed in 

Table 4.1. 

 

Promoter constructs:  The promoter activities of complete non-coding sequences located 

upstream to the start codon of the genes 14 and 19 were evaluated utilizing two independent 

promoterless reporter vectors, pPROBE-NT (253) and pBlue-TOPO (Invitrogen 

Technologies, Carlsbad, CA).  The pPROBE-NT vector contains a green fluorescent protein 

(GFP) gene as the reporter gene.  This vector was the kind gift from Dr. Steven E. Lindow, 

Department of Plant and Microbial Biology, University of California, Berkeley.  The use of 

pPROBE-NT vector in evaluating the promoter activity for Anaplasma marginale is recently 

reported by Barbet et al., (22).   This promoterless reporter vector contains a cassette with 

multiple cloning sites and GFP as a reporter gene.  It also contains four transcriptional 

terminator sequences upstream to multiple cloning sites to prevent transcription of GFP in a 

non specific manner (253).  The reporter gene in pBlue-TOPO vector is a lacZ gene, which 

encodes for β-galactosidase enzyme (cat #K4831-01; Invitrogen Technologies, Carlsbad, 

CA).   

 

Promoter constructs using GFP as a reporter gene:   Full length putative 

promoter region of gene 14, which includes sequences downstream to termination codon 

of gene 13 to upstream of gene 14 initiation codon,  was amplified using sequence 
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specific forward and reverse primers (listed in Table 4.1).  Similarly, the sequence 

upstream to gene 19 start codon to sequence immediately downstream to gene 18 

termination codon, (representing full length putative gene 19 promoter), was amplified 

using a primer pair listed in Table 4.1.  To aid in directional cloning into pPROBE-NT 

vector, the forward and reverse primers were designed to contain XbaI and SacI 

restriction enzyme sites at the 5' end, respectively.  The PCR products and pPROBE-NT 

vector were digested with XbaI and SacI restriction enzymes and ligated (the cloning 

strategy is outlined in Figure 4.1, A) and transformed into E. coli DH5α strain 

(Stratagene, La Jolla, CA) by following standard molecular cloning methods (336).  The 

transformed E. coli were then plated onto LB agar plates and transformants were selected 

using kanamycin antibiotic.  The clones were verified for the presence of the inserts and 

their sequence accuracy by restriction enzyme digestion and sequence analysis. 

 

 Promoter constructs using lacZ as a reporter gene:  The putative promoter regions 

of the p28-Omp gene 14 were similarly amplified for generating recombinants in pBlue-

TOPO vectors.  Here, the primers did not include the restriction sites.  This is to select the 

clones with promoter insert in both the orientations.  The primer pairs utilized for generating 

these constructs were listed in Table 4.1.  The PCR products were ligated in pBlue-TOPO 

vector and recombinant clones were selected in Top10 strain of E. coli (Invitrogen 

Technologies, Carlsbad, CA) by following the standard procedures (336).  One clone each in 

forward and reverse orientations were selected for the gene14 (pBlue-TOPO14F or R) and 

19 (pBlue-TOPO19F or R).  In addition, a promoterless self ligated plasmid was selected to 

serve as a negative control (the cloning strategy is outlined in Figure 4.2, A).  The presence 



112 

 

of inserts and their orientations were verified by performing restriction enzyme digestion 

and sequencing analyses.  

 

Generation of deletion constructs of theP28-Omp genes 14 and 19 promoters:  To 

identify the regions containing the regulatory sequences, various deletion fragments lacking 

parts of the 5' or 3' end promoter segments of the genes 14 and 19 were generated by PCR.  

The 5' deletions fragments were made by utilizing different 5' primers and same 3' primer 

specific to each promoter (listed in Table 4.1).  The length of the 5'deletion fragments for the 

p28-Omp gene 14 and 19 promoter ranged from 80 to 410 bp and 70 to 180 bp, respectively.   

For making deletion constructs lacking part of the 3' end sequence for the p28-Omp genes 

14 and 19 promoters were also generated utilizing the primer pairs listed in Table 4.1.   The 

PCR amplicons were then cloned into pBlue-TOPO plasmid and transformed into TOP 10 

strain of E. coli as described above.   The presence of inserts, their orientation and accuracy 

in the recombinants were verified by restriction digestion and sequencing reactions.  Table 

4.2 contained the list of all promoter clones prepared and utilized in this study. 

 

Generation of promoter deletion constructs lacking -10, -35, or both sequences:  

Deletion constructs of gene 14 and 19 promoters lacking the predicted -35 or -10 alone or 

the regions spanning from -35 to -10 were generated using Phusion site-directed 

mutagenesis kit and by following the manufacturers recommendations (New England 

Biolabs, MA).  Primers used for these deletion experiments are also listed in Table 4.1.   

Presence of correct inserts for the clones was verified by sequence analysis. 
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Assessing the promoter activity: 

Western Blot analysis to measure GFP expression:  The GFP expression resulting from 

the p28-Omp genes 14 and 19 promoter activity was verified by Western blot analysis.  The 

assay was performed on total cell lysates prepared from the green color colonies of E. coli 

transformed with pPROBE-NT recombinant plasmids containing either gene 14 or 19 

promoter.  About 10 µg of proteins from cell lysates were resolved on a 12% 

polyacrylamide gel and transformed on to a nitrocellulose membrane and the GFP protein 

was detected using polyclonal antibody raised against this protein (Cat# 600-101-215, 

Rockland Immunochemicals, Inc., Gilbertsville, PA). 

 

β-galactosidase Assay:   The E. coli colonies transformed with pBlue-TOPO constructs 

containing full length promoters and various deletions of the p28-Omp genes 14 and 19 

promoters and no insert controls were evaluated for promoter activity by measuring β-

galactosidase activity.   To accomplish this, E. coli colonies containing the recombinant 

plasmids were grown to an optical density of 0.4 assessed by spectrophotometer set at 600 

nm.  Cells were lysed using the cell lysis buffer, centrifuged at 12000 g and supernatant 

containing soluble proteins were collected.  Protein concentrations were estimated by BCA 

method (Cat # #23225, Pierce, IL).  About 2.5 and 5 µg of protein preparations were utilized 

to assay the β-galactosidase activity using Ortho-Nitrophenyl-β-D-Galactopyranoside 

(ONPG) as the substrate and by following the manufacturer’s instructions (Cat # K1455-01, 

Invitrogen Technologies, Carlsbad, CA).  The experiments were repeated four independent 

times using independently isolated protein preparations. Each sample was assayed three 

times and an average value obtained from three measures was utilized in the data analysis.    
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Specific activity of β-galactosidase was calculated as described in β -gal assay kit protocol 

(Cat # K1455-01, Invitrogen Technologies, Carlsbad, CA). 

 

Specific activity = nmoles of ONPG hydrolyzed/t/mg of protein 

nmoles of ONPG hydrolyzed = (OD420) (8x 10
5
 nanoliters)/(4500nl/nmoles-cm)(1cm) 

Where t = the time of incubation in minutes at 37
o
C 

 

Statistical Analysis:  Statistical analysis for the experimental data was performed using 

repeated measures of ANOVA method.  Bonferroni method was used to adjust for multiple 

comparisons.  GraphPad InStat Software (La Jolla, CA) is used in performing these 

analyses.
 
 P values of less than 0.05 were considered significant. 

 

 

Results 

 

 

Evaluation of promoter activities of the p28-Omp genes 14 and 19 upstream sequences:  

Transcription analysis assessed by direct RNA mapping and real-time RT-PCR methods 

revealed quantitative differences in gene expression for the p28-Omp 14 and 19 genes 

influenced by invertebrate and vertebrate host cell environments.  The promoter activities of 

the 5' non-coding sequences of these geneses were evaluated in E. coli.  Sequences upstream 

to coding regions of the p28-Omp genes 14 or 19 cloned in front of the GFP reporter gene in 

pPROBE-NT were positive for green fluorescence as visualized by the presence of green 

colonies (Figure 4.1B, a and d).  E. coli transformed with pPROBE-NT plasmids alone are 

negative for the green fluorescence (Figure 4.1B, b and c).  The GFP protein expression was 

further verified by Western blot analysis (Figure 4.2).  
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Promoter activity for the genes 14 and 19 was further confirmed by another 

independent method using lacZ gene as the reporter in pBlue-TOPO plasmid and by 

assessing the β-galactosidase activity.  The E. coli transformants with recombinant plasmids 

having gene 14 or 19 putative promoter sequences  in correct orientation had significantly 

more β-galactosidase activity (P ≤ 0.001) than the baseline activity observed for constructs 

with no promoter sequences or when the sequences inserted in reverse orientation (Figure 

4.3B).  

 

Bioinformatics analysis:   The entire non-coding sequences upstream to genes 14 and 19 

were evaluated to identify sequences similar to the consensus E. coli RNA polymerase 

binding site sequences, -10 and -35, and for the presence of ribosome binding sites (RBS) 

(Figure 4.4).  Consensus -10 and -35 elements are identified upstream to the transcription 

start sites mapped by primer extension analysis (Figure 4.4).  Relative distances of the 

consensus -10 and -35 sequences from transcription start sites also remained the same for 

both the genes (Figure 4.4C).  Similarly, putative RBS (362) were identified 7 and 4 

nucleotides upstream to the initiation codon of genes 14 and 19, respectively.  Genes 14 and 

19 sequences upstream to the predicted -10 and -35 sequences differed considerably in their 

lengths and homology (Figure 4.4 A and B).  The gene 14 sequence is 581 bp in length 

which is 273 bp longer than the gene 19 upstream sequence (308 bp).  The sequences 

included several gene-specific direct repeats and palindromic sequences.  In addition, a 

unique 14 nucleotide-long ‘G’ rich sequence was detected in the gene 19 sequence. The 

consensus -35 sequences were identical for both the genes, while the -10 and RBS sequences 

differed by one nucleotide each (Figure 4.4C).   
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Promoter deletion analysis:    To assess if the promoter activities are influenced by the 

sequences upstream to the transcription start sites of genes 14 and 19, deletion constructs 

were prepared in pBlue-TOPO plasmid and analyzed. β-galactosidase activity for several 

pBlue-TOPO plasmid constructs with segments deleted from 5' end for both the genes were 

evaluated (Figure 4.5).  Deletions to the sequences ranged from 60 to 476 bp for the p28-

Omp gene 14 and 69 to 183 bp for gene 19.  All deletion constructs for the gene 14, except 

for deletions having 461 and 350 bp segments, had significantly higher β-galactosidase 

activity compared with negative controls lacking no insert and the insert in the reverse 

orientation.  The first 60 bp deletion from the 5' end resulted in no significant change (P ≥ 

0.05) in the β-galactosidase activity compared with that observed for the full length insert, 

whereas a deletion of an additional 60 bp caused a decline of about 90% of the enzyme 

activity (P ≤ 0.001).  The β-galactosidase was restored completely by an additional 61 bp 

deletion.  Further deletion of another 50 bp also resulted in another near complete loss of 

activity.  Subsequent deletions by 64 bp each caused a stepwise restoration of the enzyme 

activity to 54% and 91%, respectively.  Deletion of another 53 bp caused another drop in β-

galactosidase activity to 24% which remained unaffected with an additional deletion of 64 

bp fragment (Figure 4.5, panels A and B).  Similar deletion analysis performed for the gene 

19 upstream sequence also resulted in altered β-galactosidase activity compared with the full 

length sequence.  The 5' end deletions of 69 and 120 bp resulted in 20 and 30% decline in 

enzyme activity.  These declines, however, were not statistically significant (P ≥ 0.05).  

Deletion of an additional 63 bp for gene 19 sequence caused an increase of about 60% more 

β-galactosidase activity.  The increase in the β-galactosidase activity was unique to the gene 

19 deletions.  The deletion analysis data for both the genes promoters also confirm that the 

minimal promoter for RNA polymerase binding was unaffected by the step-wise deletions 
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performed in this study.  To confirm that the RNA polymerase binding regions are located 

within the sequences spanning up to the consensus -35 sequences, 3' end deletion constructs 

lacking sequences up to the -35 region for genes 14 and 19 (65 bp and 57 bp, respectively) 

were prepared and assessed for β-galactosidase activity.  These deletions led to the complete 

loss of β-galactosidase activity (P ≤ 0.001) (Figure 4.5 A-B lane 11 and C-D lane 6).  

 

Location of -10 and -35 regions:  To determine if the consensus -35 and -10 represented 

true RNA polymerase binding site regions, constructs lacking either predicted -35 or -10 

alone or the regions spanning from -35 to -10 were generated and the impact of the loss of 

these sequences on promoter activity was evaluated by measuring β-galactosidase activity.  

Deletion of the predicted -35 regions alone or in combination with the -10 for both the genes 

14 and 19 resulted in decline of β-galactosidase activity to the background levels observed 

for negative controls.  Deletion of the consensus -10 regions alone for both the genes had no 

significant impact on the promoter activity (Figure 4.6). 

 

Discussion 

 

 

Proteome and transcriptome analysis of E. chaffeensis demonstrated host-specific 

differential expression of several E. chaffeensis genes including those form the p28-Omp 

outer membrane protein multigene locus (183,274,347,352,398) (Sirigireddy and Ganta, 

2007, unpublished data; Discussed in Chapter 3).  Our detailed transcriptional analysis of 

the p28-Omp genes 14 and 19 further confirmed the host cell-specific differences in gene 

expression and also suggested that that E. chaffeensis regulates expression of these genes 

by sensing the host cell signals (discussed in Chapter 3).   To date, very little is known 

about the molecular basis of differences in gene expression in E. chaffeensis.  A better 
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understanding of the molecular mechanisms leading the alterations in gene expression by 

E. chaffeensis can be achieved by characterizing the sequences located to upstream to the 

transcription start sites of these genes.  This is the first and detailed investigation, which 

evaluated the promoters of two differentially expressed E. chaffeensis genes, the p28-

Omp genes 14 and 19.   

 

Initial analysis of complete 5' non-coding sequences of the genes 14 or 19, ligated 

in front of a reporter gene (GFP or lacZ) of two promoters less reporter vectors, 

demonstrated that E. chaffeensis promoters are functional in E. coli.   In addition, 

comparisons of genes 14 and 19 promoters with those of E. coli σ70 RNA polymerase 

binding sequences aided in identification of consensus -10 and -35 and ribosomal binding 

sites in these sequences.  The consensus -10 and -35 sequences of the p28-Omp genes 14 

and 19 promoter contained similar sequences.  This observation suggests that RNA 

polymerase may have similar binding preference for these sequences and differences in 

transcription may be influenced by the sequences upstream to the -10 and -35.   

Bioinformatics analyses of the genes 14 and 19 promoters identified considerable 

differences between them.  The differences included variations in the length of the 

upstream sequences, presence of several gene-specific direct repeats, inverted repeats, 

palindromic sequences and the presence of a 14 base-long ‘G’ rich region that is found 

only in the gene 19 sequence.  Regulatory role of direct and inverted repeats in E. 

chaffeensis is unknown but are reported to play a role in transcriptional regulation for 

several bacterial pathogens (16,48,68,84,226,265).  For example, in a closely related 

rickettsial pathogen, Rickettsia prowazekii, the presence of a palindrome sequence in the 

citrate synthase and its possible role in transcriptional regulation has been reported (48).   
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Similarly, transcription factors, such as Zinc finger proteins that influence the gene 

expression via interacting with G-rich sequences is well-established in the literature for 

both prokaryotes and eukaryotes (65,86,182,209,299,367,401).  E. chaffeensis genome 

contains homologs of zinc finger proteins (Genbank #s ECH_0057 and ECH_0746) 

(162).  It is of interest to investigate if the E. chaffeensis zinc finger proteins act as a 

transcription regulators for the p28-Omp gene 19.   

 

This is the first study for an Anaplasmataceae pathogen, E. chaffeensis, where the 

importance of various putative regulatory sequences including direct repeats and inverted 

repeats of two promoters were assessed.   Sequential deletions in the gene 14 upstream 

sequences from the 5' end, whereby some of the direct repeats and palindrome sequences 

were deleted, resulted in variations in the promoter activity.  The alteration in promoters’ 

activity fluctuated from complete or partial loss of activity compared with that observed 

for the full length upstream sequences.  Additional deletions caused the restoration of 

100% activity and subsequent additional deletions again led to decline in promoter 

activity.  Similarly, deletion analysis in the gene 19 promoter region caused loss or gain 

of promoter activities relative to the inclusion of full length upstream sequence as a 

promoter.  These data suggest that genes 14 and 19 promoter regions contain sequence 

domains that influence binding affinity of RNA polymerase to the respective promoters.  

Altered promoter activities observed in deletion analysis experiments  may have resulted 

from the deletions in upstream sequences involved in altering DNA topology   making 

RNA polymerase less or more accessible to its binding domains.  Influence of 5' 

sequences altering the DNA topology for RNA polymerase binding has been well-

established for promoters of several bacterial organisms, such as Bacillus subtilis, C. 
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tracomatis, E. coli, Klebsiella pneumonia  (107,240,243,256,267,302,304).  Previous 

reports also suggest that the inverted and direct repeats contribute to the DNA curvatures 

thus impacting RNA polymerase binding to the -35 and -10 regions (240,265).  Although 

less likely, the presence of E. coli regulators that are homologues of E. chaffeensis may 

also bind and influence the promoter activity.  Homologues of R. prowazekii 

repressors/enhancers in E. coli have been reported for the 16S rRNA gene (290).   

 

Previous studies in other bacteria led to the identification of RNAP binding sites 

for several genes, which are located at -10 and -35 regions.  To evaluate the consensus 

RNAP binding sequences identified in the p28-Omp genes 14 and 19 promoter regions of 

E. chaffeensis, deletion constructs spanning putative -10 and -35 were prepared and 

evaluated in E. coli.   Deletion of the consensus -35 region alone or in combination of -10 

region, but not -10 region alone, reduced the promoter activity to background levels.  

These data suggest that the -35 region identified indeed contributes to the RNA 

polymerase binding.  It is unclear why deletion of the predicted -10 regions for both the 

genes had little effect in altering the promoter functions.  Greater tolerance to changes or 

deletions of to the -10 regions compared to -35 regions has been reported for other 

prokaryotes as well (151,161,356,381). It is, however, possible that the -10 regions we 

predicted are not accurate and may be present at a different location.  Alternatively, the -

10 regions may be less important in E. chaffeensis.  This hypothesis is too premature at 

this time as more detailed mapping of the -10 region is needed. 

 

The novel strategies utilized in this study to assess the promoter activity opens up 

similar line of research in other tick-transmitted bacteria that belong to the family 
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Anaplasmataceae and other intracellular bacteria that are difficult to manipulate genetically.   

Although, this study provide information about contribution of several sequence elements to 

variations in promoter activity, it is important to note the fact that these observed variations 

could be limited to E. coli environment.  It is possible that the variations in the promoters’ 

activities in E. coli may be due to involvement of regulatory proteins that are specific to E. 

coli and may or may not be present in E. chaffeensis.     

 

In conclusion, we have reported a detailed characterization of two E. chaffeensis 

promoters utilizing novel molecular methods.   Experimental evidence has been provided 

that sequences located upstream to the transcription start sites influences the activities of 

the p28-Omp genes 14 and 19 promoters.   The deletion analysis data reported for E. 

chaffeensis genes in this study demonstrate that the molecular evaluation in E. coli serves 

as a good system to map the regulatory regions of E. chaffeensis genes.  This is 

particularly important as it is not possible, at this time, to carryout transformational 

analysis within E. chaffeensis in support of characterizing the transcription apparatuses of 

its genes.   Presence of several promoter-specific putative regulatory sequences in the 

promoter regions of these genes suggests that E. chaffeensis regulatory proteins, which 

may be made by the pathogen in response to host environment, bind to these regions and 

influence the gene expression.   More detailed investigations are needed to map the 

mechanisms controlling gene expression in E. chaffeensis and how host cell 

environments influence the gene regulation by this pathogen.   
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Figure 4.1.  Construction of GFP expressing plasmids containing the genes 14 and 

19 promoters (A).  Two sets of primers are designed for amplifying the putative 

promoter regions of genes 14 and 19.  Restriction sites for XbaI and SacI are engineered 

into the primers to aid in the directional cloning.  The primers are used to amplify the 

promoter regions using E. chaffeensis genomic DNA as the template.  The amplicons are 

double digested with SacI and XbaI and ligated into the SacI and XbaI double digested 

pPROBE- NT plasmid. The plasmids containing inserts are selected after transformation 

into E. coli strain, XL1Blue (Stratagene, La Jolla, CA). GFP positives are detected for 

recombinants in E. coli for the promoter constructs (B).  Green fluorescent protein (GFP) 

constructs evaluated for the promoter activity of the p28-Omp genes 14 and 19. The 

pPROBE-NT plasmid containing promoterless GFP gene (b and c) and genes 14 and 19 

upstream sequences cloned in front of the GFP coding sequence (a and d, respectively) 

are evaluated for the GFP expression in E. coli (Reproduced with permission from BMC 

Microbiology, In press). 
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Figure 4.2.  Western blot analysis to determine the GFP expression in E. coli 

containing genes 14 and 19 promoters constructs. E. coli lysates are prepared to 

examine the GFP expression in E. coli containing gene 14 promoter containing plasmid 

(pPROBE-NT14) (lane 1), promoterless GFP plasmid (pPROBE-NT) (lane 2), and gene 

19 promoter containing plasmid (pPROB-NT19) (lane 3).  Approximately 25 µg of 

protein is resolved on a 12 % polyacrylamide gel, transferred to a nitrocellulose 

membrane and assessed for the presence of GFP using polyclonal sera against the GFP 

protein (Rockland, Gilbertsville, PA).  A 25 kDa GFP protein is detectable only in the E. 

coli lysates containing genes 14 and 19 promoter plasmids.  Molecular weight markers 

are shown to identify the size. 
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Figure 4.3.  A. Construction of lacZ plasmids containing gene 14 and 19 putative 

promoters.  Two primers are designed and used to amplify the promoter regions of genes 
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14 and 19. The amplicons are ligated into pBlue-TOPO plasmid having T over hang.  

Plasmid containing inserts are selected after transforming into E. coli strain, TOP10. As 

the PCR products contained over hand we expect to get the inserts ligated into both 

orientations. Transformants in E. coli containing recombinant plasmids with both 

orientations are selected and sequenced.  LacZ plasmids containing correct orientation 

inserts for gene 14 and 19 can serve as the promoters to drive the expression of β-

galactosidase protein if E. coli RNA polymerase recognizes Ehrlichia promoter and the 

sequences represent promoters. Promoter region ligated into the opposite orientation are 

not expected to serve the promoters to drive β-galactosidase expression. B, LacZ 

constructs evaluated for the promoter activity of the p28-Omp genes 14 and 19.  The 

pBlue-TOPO vector containing promoterless lacZ gene (pBlue-TOPO), genes 14 and 19 

upstream sequences inserted in forward (14-F and 19-F) and reverse orientations (14-R 

and 19-R) are evaluated for the β-galactosidase activity in E. coli. Data are presented with 

SD values calculated from four independent experiments (P ≤ 0.001) (Reproduced with 

permission from BMC Microbiology, In press). 
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Figure 4.4.  P28-Omp genes 14 and 19 promoter region sequence analysis.  Genes 14 

(panel A) and 19 (panel B) upstream sequences were evaluated for the presence of direct 

repeats (red text), palindromic sequences (pink text) and for the presence of unique 

sequences (G-rich region), consensus -35 and -10 regions (green text) and ribosome 

binding sites (blue text).   Panel C has the comparison of -10, -35 and ribosome binding 
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sites of the genes 14 and 19 with the E. coli consensus sequences.  Transcription start 

sites for the genes mapped by primer extension analysis are identified with bold and grey 

color highlighted text.  Dashes were introduced in the p28-Omp gene 19 sequence to 

create alignment with the gene 14 sequence (Reproduced with permission from BMC 

Microbiology, In press). 
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Figure 4.5.  Deletion analysis of the genes 14 and 19 promoter regions.  β-

galactosidase activity of extracts prepared from E. coli cultures of bacteria 

transformed with various deletion constructs was determined.  Panels A and C have 

cartoons depicting deletion constructs and their orientations for the genes 14 and 19, 

respectively.  Panels B and D contained the β -galactosidase activity analysis data.  Data 

are presented with SD values calculated from four independent experiments (P ≤ 0.001) 

(Reproduced with permission from BMC Microbiology, In press). 
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Figure 13: Deletion analysis of the gene 14 promoter construct. Deletion co nstructs for gene 14 promoter were 

prepared by PCR and cloning strategies using primers internal to the gene 14 upstream sequences.  β-galctosidase 

gene expression in the extracts prepared from the E. coli cultures of bacteria transformed with different constructs were 

determined by ELISA assays with 5 µg of protein each, specific activity for each construct was esti mated.  Percent of 

activity for each construct was expressed relative to the enzyme activity detected for the full length construct (activity for 

full length is taken as 100%).  Deletion constructs and their or ientations were illustrated as a cartoon on the left and the 

relative enzyme activities were presented as bar graphs on the r ight.
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Figure 14: Deletion analysis of the gene 19 construct.  Preparation of de letion constructs and the analysis were performed 

as described above in Figure 13.  The gene 19 construct had fewe r deletion constructs as the full length insert size is about 

280 bases smaller.
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Figure 4.6.  Deletion analysis spanning the -35 and -10 regions of the genes 14 and 

19.  β-galactosidase activity of extracts prepared from E. coli cultures of bacteria 

transformed with -35 or -10 deletions or deletions spanning from -35 to 10 were 

determined.  Panels A and C have cartoons depicting deletion constructs and their 

orientations for the genes 14 and 19, respectively.  Panels B and D contained the β-

galactosidase activity analysis data.  Data are presented with SD values calculated from 

four independent experiments (P ≤ 0.001) (Reproduced with permission from BMC 

Microbiology, In press). 
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           Primers                    Sequnece Orientation 

Annealing 

temperature  

      (°C)  

PROMOTER ANALYSIS   

 

Gene 14-upstream sequence primer pairs for PCR   

 

For cloning into pPROBE-NT   

  

 RRG 183 5' gactctagattgctcaacccataaaataatg Forward 50 

 RRG 184 5' agtgagctctttataaaagataataaaaatttaag  Reverse  

    

 

For cloning into pBlue-TOPO   

  

 RRG 217 5' attgctcaaccataaaataatggga  Forward 48 

 RRG 218 5' gttaataaaccttttataaaag  Reverse  

    

 RRG 267 5' cagttaactttctgtaaacttc  Forward 48 

 RRG 218*  Reverse  

    

 RRG 268 5' atcataagtttacaataatgtc  Forward 48 

 RRG 218*  Reverse  

    

 RRG 269 5' cgttttctgctttattagaatg  Forward 48 

 RRG 218*  Reverse  

    

 RRG 270 5' gttccgtatttattaatatatg  Forward 48 

 RRG 218*  Reverse  

    

 RRG 271 5' catgtactgaatttgtgatttg  Forward 48 
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 RRG 218*  Reverse  

    

 RRG 272 5' ggataagtactttagcaagtgg  Forward 48 

 RRG 218*  Reverse  

    

 RRG 273 5' taagtagtaaagttaactatag  Forward 48 

 RRG 218*         Reverse  

    

 RRG 274 5' acttttgttgtaaatttgaaag  Forward 48 

 RRG 218*          Reverse  

    

 RRG 217*  Forward 50 

 IG14-35 del R 5' (PO4) gtctagaatataaaatttctttc         Reverse  

    

 IG14-10 del F 5' (PO4) taaatttttattatcttttataaaaggtttattaac Forward 56 

 IG14-10 del R 5' (PO4) atgaaagaaataaagaaaagcaagtctag Reverse  

    

 IG14-35 del F 5' (PO4) ttctttatttctttcattattc Forward 48 

 IG14-35 del R*  Reverse  

    

 IG14-10 del F*  Forward 51 

 IG14-35 del R*  Reverse  

 

 

    

Gene 19-upstream sequence primer pairs for PCR   

 

 

 For cloning into pPROBE-NT   

  

 RRG 185 5' gactctagacttttaattttattattgccacatg  Forward 61 

 RRG 186 5' agtgagctcaatagtgacaaataaattaacaatag  Reverse  
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 For cloning into pBlue-TOPO   

  

 RRG 185*  Forward 60 

 RRG 445 5' atataacctaatagtgacaaataaattaac Reverse  

    

 RRG 275 5' gtggcaaaagaatgtagcaataag  Forward 50 

 RRG 445*  Reverse  

    

 RRG 276 5' gtgctgtttttctcacctttacac  Forward 63 

 RRG 445*  Reverse  

    

 RRG 277 5' ctgacgtaatatattaaattttcc  Forward 55 

 RRG 445*  Reverse  

    

 RRG 185*  Forward 50 

IG19-35 del R 5' (PO4) gtcagaatataaatttttgtataaaatatcg Reverse  

    

IG19-10 del F 5' (PO4) taatttatttgtcactattaggttat Forward 56 

IG19-10 del R 5' (PO4) gtagaagtgtcatataaaagcaag Reverse  

    

IG19-35 del F 5' (PO4) ttatatgacacttctactattgttaatttatttg Forward 61.5 

IG19-35 del R*  Reverse  

    

IG19-10 del F*  Forward 58 

IG19-35 del R*  Reverse  

        

 

Table 4.1.  Primers used for cloning into pPROBE-NT and pBlue-TOPO vectors 
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Promoter deletion     clones 

     Primer pair  

(Forward/Reverse) Deletion type 

Promoter 

orientation 

Amplicon 

length(bp) 

 

     

Gene 14 promoter deletion clones    

 

     

pPROBE-NT clones RRG183/RRG184  Full length Forward 596 

     

     

pBlue TOPO clones     

           1 RRG217/RRG218  Full length Forward 581 

            

           2 RRG217/RRG218  Full length Reverse 581 

            

           3 RRG267/RRG218  5' deletion Forward 521 

            

           4 RRG268/RRG218  5' deletion Forward 461 

            

           5 RRG269/RRG218  5' deletion Forward 400 

            

           6 RRG270/RRG218  5' deletion Forward 350 

            

           7 RRG271/RRG218  5' deletion Forward 286 

            

           8 RRG272/RRG218  5' deletion Forward 222 

            

           9 RRG273/RRG218  5' deletion Forward 169 

           

          10 RRG274/RRG218  5' deletion Forward 105 

           RRG217/IG14-35 del R  3' deletion Forward 516 
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          11 

 

   -10 deletion IG14-10 del F/IG14-10 del R  -10 deletion Forward 8366 

 

   -35 deletion IG14-35 del F/IG14-35 del R  -35 deletion Forward 8366 

      

  -10 to -35 del IG14-10 del F/IG14-35 del R    -10 to -35 del Forward 8343 

         

                                          

 

 

Gene 19 promoter clones     

 

 

     

pPROBE-NT clones RRG185/RRG186 Full length Forward 334 

     

     

pBlue TOPO clones     

           

          1 RRG185/RRG445 Full length Forward 308 

          

          2 RRG185/RRG445 Full length Reverse 308 

           

          3 RRG275/RRG445 5' deletion Forward 239 

           

          4 RRG276/RRG445 5' deletion Forward 188 

           

          5 RRG277/RRG445 5' deletion Forward 125 

           

          6 RRG185/IG19-35 del R 3' deletion Forward 267 
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-10 deletion IG19-10 del F/IG19-10 del R -10 deletion Forward 8112 

 

-35 deletion 

 

IG19-35 del F/IG19-35 del R 

  

-35 deletion 

 

Forward 

 

8112 

 

-10 to -35 deletion IG19-10 del F/IG19-35 del R  -10 to -35 del Forward 8088 

  

  

       

 

 

Table 4.2.  List of the p28-Omp genes 14 and 19 promoter clones 
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Chapter 5 

 

Establishment of in vitro transcription and transcription coupled 

translation systems for Ehrlichia chaffeensis 
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Abstract 

 
Host-specific differential gene expression in response to host cell environments has been 

reported for a tick-borne rickettsial pathogen, Ehrlichia chaffeensisEhrlichia 

chaffeensisEhrlichia chaffeensis.  Molecular characterization of E. chaffeensis promoters 

and identification of proteins that regulate gene expression will provide important 

insights about the pathogen strategies in support of its survival and persistence.  Study of 

the molecular events that aid in accomplishing the differential gene expression in vivo in 

E. chaffeensis is not possible at the present time due to lack of an established DNA 

delivery and mutational analysis methods.  Development of in vitro transcription assays 

to study the mechanisms of gene regulation will be a desirable alternative to carryout 

genetic analysis for this intracellular pathogen.  Experiments discussed in Chapter 4 and 

studies reported in the literature for other closely related rickettsial pathogens suggest that 

E. coli RNA polymerase (RNAP) can recognize the promoters of these organisms.  

Compressions of amino acid sequences of RNAP subunits (α, β, β', ω and σ70) of E. 

chaffeensis with those of E. coli revealed close similarities.  Here, we described the 

heterologous cell free in vitro transcription and transcription coupled translation assays to 

drive transcription from E. chaffeensis promoters.  These in vitro assays were validated 

for their use in assessing the activities of the p28-Omp genes 14 and 19 promoters.  The 

molecular assay systems established in this study will be useful in detailed promoter 

characterization in vitro and to identify E. chaffeensis regulators that contribute to 

alterations in gene expression in response to the pathogen’s growth in its tick vector and 

vertebrate hosts.  
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Introduction 

 
 

Ehrlichia chaffeensisEhrlichia chaffeensisEhrlichia chaffeensis is a tick-

transmitted bacterial pathogen that causes emerging illnesses in people and animals 

(78,93,94,281,302,427,433).  The pathogen requires its adaptation and propagation in a 

tick vector and vertebrate hosts for the completion of its life cycle (8,79,215,297).  Host 

cell-specific gene expression for several E. chaffeensis genes including from the 28 kDa 

outer membrane protein multigene locus has been reported for this pathogen 

(221,274,347,352,398).  Biological significance of differentially expressed E. chaffeensis 

genes can be better understood by functional disruption of target gene though alteration 

of its sequences and then studying its impact in vivo.  Similarly, mutations to regions 

spanning promoter sequences of a gene of interest may aid in defining role of various 

regulatory elements that may influence the gene expression.   Studies pertaining to 

introduction of genetic mutations and defining their effect in vivo for E. chaffeensis is not 

possible due to the lack of an established genetic transformation system.   

  

Mutational analysis is also challenging for other intracellular bacteria such as 

Rickettsia species and Chlamydia species.   To overcome this challenge, several studies 

reported the use of in vitro transcription and translation assays (2,22,341,351,375,434).  

In vitro transcription methods were extensively used to map the promoters and regulatory 

proteins of gene expression for several Chlamydial genes (2,238,239,341,351,375,434).  

The assays are also useful in mapping differences in Chlamydial gene expression during 

different developmental stages.  In vitro transcription assays are similarly used for 

characterizing several genes of Rickettsia species, which are closely related organisms to 

Ehrlichia species (5,89,290,305).   Here, we utilized similar strategies to develop in vitro 
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transcription assays for use in mapping the E. chaffeensis promoters and regulatory 

proteins.  The establishment of in vitro transcription and in vitro transcription coupled 

translation assays are described.   

 

Material and Methods 

 
 

Bioinformatics analysis of RNA polymerase subunits of E. coli, E. chaffeensis, and 

C. trachomatis:  To identify sequence homologies protein coding sequences of the RNAP 

subunits of E. chaffeensis (GenBank #CP000236), E. coli (GenBank #CP000247) and C. 

trachomatis (GenBank #NC010287) were compared using the GCG program, 

OldDistances (87). 

 

Assessment of promoter activity in vitro:  For use in in vitro assays, promoter region and 

reporter gene segments were amplified by PCR using pBlue-TOPO promoter constructs as 

the templates.  The amplicons were then used for in vitro transcription reactions.  The entire 

gene 14 promoter region in forward or reverse orientation or a segment lacking a 180 bp 

portion at the 5' end in forward orientation along with a 301 bp of lacZ gene fragments were 

amplified from the pBlue-TOPO recombinant plasmid constructs utilizing primers described 

in Table 5.2.  Amplicons containing a shorter gene 14 promoter and 196 bp lacZ segment 

were also prepared by using a different 3' primer (Table 5.2).  Similar strategy was also 

followed to generate p28-Omp gene 19 promoter region templates for use in in vitro 

transcription analysis.  For gene 19 promoter templates, the complete upstream sequence 

inserted in forward and reverse orientations and a shorter segment in forward orientation 

which lacks 183 bp from the 5' end were used.  The PCR products were purified using the 

QIAquick PCR Purification Kit (Quiagen, Valencia, CA). 
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In vitro transcription analysis was performed by following protocol described 

previously (418) with minor modifications.  Briefly, the assays were performed in a 10 µl 

reaction containing 50 mM Tris-acetate (pH 8.0), 50 mM potassium acetate, 8.1 mM 

magnesium acetate, 27 mM ammonium acetate, 2 mM dithiothreitol, 400 µM ATP, 400 µM 

GTP, 400 µM UTP, 1.2 µM CTP, 0.21 µM [α-
32

P] CTP, 18 U of RNasin, 5% glycerol, 100 

ng of purified PCR templates and 0.03 U of E. coli RNAP holoenzyme saturated with σ70 

(Epicentre, Madison, WI).  The reaction was incubated at 37°C for 15 min and then 

terminated by adding 4 µl of stop solution (95% formamide, 20mM EDTA, 0.05% 

bromophenol blue, 0.05% xylene cyanol).  Four micro liters of reaction contents each were 

resolved in a 6% polyacrylamide gel containing 7 M urea.  The gel was transferred to a 

Whatman paper, dried, and exposed to an X-ray film and the in vitro transcripts were 

detected after developing the film using a Konica film processor (Wayne, NJ). 

 

In vitro transcription coupled translation assay:  In vitro transcription coupled 

translation assay was performed using E. coli S30 extracts (Promega, Madison, WI).  The 

p28-Omp gene 19 complete upstream sequences in forward orientation plus the complete 

GFP coding sequence was amplified from a pPROBE-NT recombinant plasmid 

(described above).  PCR products were purified using a QIAquick PCR purification kit 

(Cat# 28104, Quiagen, Valencia, CA) and the in vitro transcription coupled translation 

reaction was performed in a 50 µl mixture containing 20 µl of S30 linear extracts, 15 µl 

of S30 premix without amino acids, 5 µl of amino acid mixture and 1.5 µg of DNA 

template.  The assay controls included all of the reagents except amino acid mixture or all 

of the reagents except S30 extracts or templates.  The assays were performed by 
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incubating at 37°C for 90 min and then the reaction was stopped by transferring the assay 

mixtures to 4°C.  Reaction products were assessed for the presence of GFP by performing 

Western blot analysis using a GFP polyclonal antibody (Rockland Immunochemicals, 

Inc., Gilbertsville, PA). 

 
 

Results 

 
 

Sequence analysis of RNA polymerase subunits of E. coli, E. chaffeensis, and C. 

trachomatis:  Promoter analysis of the differentially expressed genes, p28-Omp 14 and 19, 

in E. coli demonstrated that E. coli RNAP can recognize and initiate transcription from the 

E. chaffeensis promoters (Discussed in Chapter 4).  Amino acid sequences of all four 

subunits, α, β, β’, and σ70, of E. chaffeensis RNAP were compared with E. coli. The 

analysis also included the C. trachomatis RNAP subunits (Table 5.1) as this is also an intra 

phagosomal pathogen similar to E. chaffeensis.  Moreover, E.coli similarly recognizes C. 

trachomatis promoters.  .  The homology between E. chaffeensis and E. coli RNAP subunits 

ranged from 56 to 64%, which is grater than that observed for the C. trachomatis and E. coli 

RNAP subunits (48 to 62%).  The homology between the RNAP subunits of E. chaffeensis 

and C. trachomatis (46-59%) is also lesser as compared to the homology observed between 

E. chaffeensis and E. coli or E. coli and C. trachomatis polymerases.   

 

In vitro transcription analysis:  Comparative analysis of amino acid sequences reveled 

that E.coli RNAP complex proteins have greater homology with those of E. chaffeensis.  

E. chaffeensis promotes are recognized by E.coli RNAP in vivo.   In vitro transcription 

assays were performed using complete promoter regions or a segment of the promoter 

having similar promoter activity.  Predicted in vitro transcripts, as estimated from the 
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transcription start sites mapped by primer extension and RNase protection assays were 

detected only when the p28-Omp 14 and 19 complete upstream sequences were present 

in the forward orientation (Figure 5.1A).  In vitro transcripts were absent for the reactions 

contained the complete gene 14 and 19 promoter regions ligated in reverse orientation 

(Figure 5.1A).  Similar results were obtained when shorter lac Z segments were used in 

the analysis with shorter segments of genes 14 and 19 upstream sequences (Figure 5.1B).   

 

In vitro transcription coupled translation assay:  To further verify the promoter activity in 

vitro, the full length gene 19 upstream sequences tagged to the complete GFP coding 

sequence was utilized in the in vitro transcription coupled translation assay (Figure 5.2).  

The in vitro translated products were detected, as judged by the presence of GFP using GFP-

specific sera, only when the reaction contained all the reagents and the template, but not in 

the assays that contained all the reagents except amino acids or a DNA template or a 

reaction containing only the DNA template but no other assay reagents. 

 

Discussion 

 

Studies described in Chapter 3 and our recent proteome analysis demonstrated 

differential gene expression by E. chaffeensis, including from the p28-Omp genes 14 and 19, 

in a host cell-specific manner (347,352).  Data reported in the previous Chapter also 

demonstrate that deletions from the p28-Omp genes 14 and 19 promoters altered their 

activities in E. coli (Chapter 4).  Although it is possible to assess the impact of one protein at 

a time, the analysis in E. coli will not provide the flexibility to assess the contributions of 

coordinated regulation of multiple E. chaffeensis regulatory proteins influencing the gene 

expression.   This can be best addressed using an in vitro assay similar to the one described 

in this study.   
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Bioinformatics analysis of RNA polymerase subunits of E. chaffeensis, E. coli and 

C. trachomatis suggested that E. chaffeensis has greater homology to E.coli RNAP, 

compared to that of C. trachomatis.  This is encouraging because E.coli RNAP can be used 

to drive expression from E. chaffeensis promoters.  E. coli RNAP has also been extensively 

used to understand the regulation of gene expression for several C. trachomatis genes 

(2,90,238,239,341,351,374,375,434).  Moreover, recognition of E. coli promoters by C. 

trachomatis RNAP has also been reported (239).  Considering these data, we anticipated that 

E. coli RNAP can similarly be useful in mapping the regulation of gene expression in E. 

chaffeensis.  Indeed our deletion analysis reported in the previous Chapter demonstrates that 

E. coli is a good system to use in mapping E. chaffeensis promoters.  As reported for C. 

trachomatis, in vitro transcription assays may be developed and used to study the activity in 

vitro for E. chaffeensis genes of interest.  In vitro assay will be particularly useful in 

assessing the impact of host cell environments.   

 

In this study, precisely for this reason, we developed in vitro transcription and in 

vitro transcription coupled translation assays using E. coli RNAP.   The methods described 

are similar to those reported for R. prowazekii and C. trachomatis and utilized E. coli 

RNAP.    In particular, our studies clearly demonstrated that in vitro assays using E. coli 

RNAP identify the same transcription start sites as observed for the transcripts in E. 

chaffeensis (reported in Chapter 3).  This is consistent with the reports that E.coli RNAP 

supports transcription, including initiating the transcription from the same transcription start 

sites as described for Rickettsia species and Anaplasma species (5,22,89,290,305).  These 

assays can now be used to assess the impact of host cell environments or to study how 
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various regulatory proteins of E. chaffeensis interact with the pathogen’s gene promoters.  

Similar assays have extensively used to study regulatory mechanisms for several C. 

trachomatis genes.  C. trachomatis studies also compared in vitro assays using E. coli 

RNAP and C. trachomatis RNAP (2,90,238,239,341,351,374,375,434).  E. coli RNAP 

functioned very similar to that of C. trachomatis for several Chlamydia genes 

(111,239,375).  These observations are encouraging for E. chaffeensis studies as at this time 

we do not have purified or recombinantly expressed E. chaffeensis RNAP.  However, the in 

vitro methods described here may need to use E. chaffeensis RNAP.  The efforts to purify E. 

chaffeensis RNA polymerase and recombinantly express various subunits of this enzyme are 

currently in progress in our laboratory.   
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Figure 5.1.  In vitro transcription analysis.  In vitro transcription analysis was 

performed for the A) complete upstream sequences of the genes 14 and 19 in forward and 

reverse orientations ligated to a lacZ segment (301 bp); B) The analysis was also 

performed using shorter segments of the gene 14 and 19 upstream sequences ligated to a 

shorter lacZ segment (196 bp).  Genes 14 and 19 sequence segments (straight arrow) and 

the predicted transcripts (wiggled arrow) were shown as cartoons on the left and the 

observed transcripts were shown on the right of the panels.  Puc18 plasmid DNA was 

used as the template to generate sequence ladder using the M13 forward primer.  (1, 2, 1' 
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and 2' refer to the constructs for in vitro transcription for gene 14 and 3, 4, 3', and 4' refer 

to in vitro transcription templates for gene 19) (Reproduced with permission from BMC 

Microbiology, In press). 
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Figure 5.2.  In vitro transcription coupled translation assay.  In vitro transcription 

coupled translation assay was performed using PCR product containing the gene 19 

upstream sequence with the complete GFP coding sequence.  FP, forward primer; RP, 

reverse primer. Lanes: 1, template with reagents only for transcription using E. coli 

RNAP; 2, template with transcription and translation assay reagents; 3, contained only 

the template, but no enzyme and reagents were added; 4, contained all of the assay 

reagents, but no template was added;  5, lysates prepared from E. coli transformed with 

pPROBE-NT plasmid containing the complete gene 19 upstream sequences in forward 

orientation (positive control); 6, lysates prepared from E. coli containing the pPROBE-

NT plasmid alone (negative control). 
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Table 5.1:  RNA polymerase subunits' comparisons were made using the GCG programs 

PileUp and OldDistances.  Similarity values shown in the Table are the number of 

matches between each sequence pair divided by the length of the shorter sequence. 
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Promoter DNA interactions of the Ehrlichia chaffeensis p28-Omp gene 

14 and 19 Promoters 
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Abstract 

 
 

Host-specific gene expression including from the p28-Omp genes 14 and 19 by E. 

chaffeensis has been reported during the pathogen’s growth in tick and vertebrate host 

cells, respectively.  Analysis of the p28-Omp genes 14 and 19 promoters of E. chaffeensis 

identified several putative regulatory sequences that influenced the promoter activity.  

Identification of proteins that interact with these putative regulatory elements of the p28-

Omp genes 14 and 19 promoters will be important to map gene regulatory mechanisms of 

E. chaffeensis.  In the current study, electrophoretic mobility shift assays (EMSA) were 

performed utilizing protein lysates of cell free E. chaffeensis, to evaluate their interaction 

with the promoters of the p28-Omp 14 and 19 genes.   The protein extracts were prepared 

from the tick cell- and vertebrate macrophage-grown E. chaffeensis organisms.   The 

EMSA experiments demonstrated the interaction of E. chaffeensis proteins with promoter 

sequences of both the p28-Omp 14 and 19 genes.  Sequence analysis of E. chaffeensis 

genome identified five open reading frames that encode for putative regulatory proteins.   

These proteins were recombinantly expressed in E. coli and their interactions with the 

p28-Omp genes 14 were evaluated.  The analysis revealed a minor trend for decline in the 

gene 14  promoter activity, although these changes were not statistically significant (P ≥ 

0.05).  More detailed investigations are needed to map regulation of the p28-Omp genes 

14 and 19 promoters of E. chaffeensis.  
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Introduction 

 
 
 Ehrlichia chaffeensisEhrlichia chaffeensisEhrlichia chaffeensis, similar to other 

tick-transmitted pathogenic bacteria, requires its survival and persistence in tick vector 

and vertebrate hosts for its continued maintenance in nature.  To date, strategies 

employed by E. chaffeensis for its dual host adaptation and persistence are not known.  

Differential host cell-specific expression for several E. chaffeensis genes including two 

outer membrane protein genes (the p28-Omp 14 and 19) is well documented (discussed 

in Chapter 3; Sirigireddy and Ganta unpublished data, 2007)  (347,352).  The molecular 

mechanisms employed by E. chaffeensis to achieve host cell-specific gene regulation 

remain unclear.   Bioinformatics analysis of the p28-Omp genes 14 and 19 promoters 

identified several promoter-specific putative regulatory sequences.  Deletion analysis 

involving the elimination of one or more of the putative regulatory sequences has been 

shown to alter the activity of p28-Omp genes 14 and 19 promoters (reported in the 

Chapter 4).  These findings suggest that the host-specific expression of the p28-Omp 14 

and 19 genes may be regulated with the involvement of these sequences.   

 

Pathogenic organisms adapt to changes in the environment they reside by sensing 

those signals and by modulating their gene expression accordingly.  Regulatory proteins 

are shown to play an important role in the process of altering the gene expression in 

support of pathogen’s survival and persistence in a host 

(15,37,63,67,166,197,224,295,308,417).  For example, studies in Anaplasma 

phagocytophilum, a close relative of E. chaffeensis, identified a transcription regulator 

(ApxR) that has a regulatory role in p44-Omp genes transcription (408).   Involvement of 

a two component regulatory system comprising of two alternate sigma factors and a 
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response regulatory protein in the regulation of two host-specifically expressed outer 

membrane proteins in B. burgdorferi is well documented (35,165,430).  In Chlamydia 

trachomatis, an  intraphagosomal organism, developmental stage-specific gene regulation 

is accomplished by involvement of various transcription regulators (27,197,423).  Thus, 

identification of E. chaffeensis proteins that interact with the promoters of host-

specifically expressed genes will provide important insight into mechanisms of gene 

regulation by this bacterium.    

 

We hypothesized that the differential gene expression in E. chaffeensis is 

accomplished by the involvement of regulatory proteins made by the pathogen in 

response to the hose cell signals.  In the current study, we performed electrophoretic 

mobility sift assay (EMSA) to examine if any of the E. chaffeensis proteins interact with 

the p28-Omp genes 14 and 19 promoters.  We also recombinantly expressed five putative 

regulatory proteins of E. chaffeensis and their interaction with the p28-Omp gene 14 

promoter was tested.  

 

 

 

Materials and Methods 

 

E. coli strains: XL1Blue and BL21 (DE3) strains of E. coli were obtained from 

commercial vendors (Stratagene, La Jolla, CA; Novagen Inc., Madison, WI; 

respectively).   XL1-Blue strain of E. coli were cultured in Luria-Bertani (LB) liquid 

medium or agar plates in the presence of tetracycline antibiotic, whereas, BL21 (DE3) 

cells were  grown in plain LB medium or agar plates without any antibiotic.  
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Preparation of E. chaffeensis soluble protein lysates: E. chaffeensis organisms were 

cultivated in vitro in canine macrophage (DH82) cell lines at 37°C by following the 

protocols described earlier (61).   Twenty five ml of about 80-100% E. chaffeensis 

infected macrophage cultures were harvested with the help of glass beads.  The cultures 

were centrifuged at 15,560 x g for 15 min to recover infected host cells and cell free 

Ehrlichia.  To release Ehrlichia organisms from host cells, the cell pellet was 

resuspended in 10 ml SPK buffer (0.5 M K2HPO4, 0.5 M KH2PO4, and 0.38
 
M sucrose) 

and sonicated twice for 30 sec
 
at a setting of 6.5 in a Sonic Dismembrator

 
(Fisher 

Scientific, Pittsburgh, PA).  To collect the host cell debris, the cell lysates were 

centrifuged at 400 x g for 5 min at 4°C.  The supernatant containing the cell free E. 

chaffeensis was collected and filtered through a 5 μm and 3 μm sterile isopore membrane 

filters (Millipore, Billerica, MA).  The filtrate was collected and cell free organisms were 

concentrated through centrifugation at 15,560 x g for 15 min at 4°C.  The resulting cell 

pellet containing the E. chaffeensis organisms was washed twice with 1.5 ml of lysis 

buffer (150 mM Tris-HCl pH 8.0, 100 mM KCl, 10 mM Magnesium Acetate, 1 mM 

EDTA, 2 mM DTT and 10% glycerol) and the pellet was resuspended in 1ml of lysis 

buffer containing protease inhibitors (Roche Diagnostic Labs, Indianapolis, IN).  The cell 

suspension was sonicated four times at 8.5 setting, 30 sec each time to lyse the E. 

chaffeensis organisms.  The cell lysates were centrifuged at 15,560 x g for 15 min at 4°C 

to pellet out the insoluble fractions and the supernatant containing soluble proteins of E. 

chaffeensis was collected into sterile micro centrifuge tubes as 25 μl aliquots and stored 

at -80°C until use.  
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Electrophoretic mobility shift assay (EMSA):  The full-length promoter fragments of 

the p28 Omp 14 and 19 genes were released from the pBlueTOPO recombinant plasmids 

(described in Chapter 4) by performing HindIII restriction enzyme digestion.   The 

resultant promoter fragments containing 5' overhang were end-labeled with Klenow DNA 

polymerase (Promega; Madison, WI) using α-
32

p [dATP] by performing fill in reaction.  

Binding of E. chaffeensis soluble proteins (5 μg) with 1 ng of the end-labeled p28-Omp 

genes 14 and 19 promoter fragments were performed in a 20 μl reaction by following 

previously established protocols (321).  Fifty nano grams of unlabelled (cold) DNA was 

used to serve as a competitor in binding reactions.  Ten microliters of the assay products 

from each reaction were resolved on a 3.5% nondenaturing polyacrylamide gel by 

subjecting to 250V current for 90 min.  The gel was dried and exposed to X-ray film for 

at least 24 h at −80°C and the film was developed using Konica film processor (Wayne, 

NJ).  

 

 For use in subsequent EMSA experiments, partial promoter fragments that 

contained one or more putative regulatory sequences (discussed in Chapter 4) were 

amplified using sequence specific forward primer and 5' end biotin labeled reverse primer 

listed in Table 6.1.  About 1 ng of biotin label containing partial promoter fragments were 

evaluated for their binding ability in the presence of 5 μg E. chaffeensis soluble proteins 

prepared from macrophage derived bacteria.  About 50 ng of unlabeled gene 14 or 19 full 

length promoter DNA was used as a competitor in binding reactions.  The binding 

experiments were performed utilizing LightShift Chemiluminescent EMSA Kit 

containing streptavidin-HRP conjugate and by following the manufacturer’s instructions 

(Cat # 20148, Pierce Biotechnology, Rockford, IL). 
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Genome analysis:   E. chaffeensis whole genome sequence was obtained from GenBank 

(accession number, CP000236) and searched for the presence of genes that encode for 

putative regulatory proteins (162). 

 

Oligonucleotides:  The oligonucleotides used in this study were custom synthesized 

from a commercial vendor (Integrated DNA Technologies, Coralville, IA).  The 

oligonucleotides used for amplifying the p28-Omp genes 14 and 19 partial promoter 

fragments were listed in Table 6.1.  The primers used to amplify the putative regulatory 

coding sequences were listed in the Table 6.2.   

 

Cloning and expression of putative regulatory proteins of E. chaffeensis:  Coding 

sequences of putative regulatory sequences were amplified utilizing sequence specific 

forward and reverse primers listed in Table 6.2.  The forward and reverse primers were 

engineered to include NcoI and XhoI restriction enzymes sites at their 5' ends, 

respectively.  This is to aid in the directional cloning into the pET32a (+) expression 

vector (Novagen Inc., Madison, WI).  The PCR amplicons and pET32 vector were 

digested with NcoI and XhoI restriction enzymes and recombinant clones were generated 

by following the standard molecular cloning procedures (336) (outlined in Figure 6.1).  

Initial amplification of the recombinant plasmids was performed in XL1-Blue strain of E. 

coli (Stratagene, La Jolla, CA) and recombinant proteins were expressed after 

transforming the plasmids into in BL21 (DE3) strain of E. coli (Novagen Inc., Madison, 

WI).   
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Sodium dodecyl sulfate polyacrylamide gel electrophorosis (SDS PAGE):  BL21 

(DE3) cells containing the recombinant pET32 plasmids were grown in LB medium 

containing ampicillin (50 µg/ml) to 0.6 OD (at 562 nm) and the recombinant protein 

expression was induced with 1 mM of isopropyl-β-D-thiogalactopyranoside (IPTG).   To 

assess the expression of recombinant proteins, total protein lysates were prepared from E. 

coli cultures obtained at various time points (0h, 1h, and 3h) following induction with 

IPTG.  Approximately, 10% of the protein preparations were resuspended in 1x SDS poly 

acrylamide gel electrophorosis buffer and resolved on a 12% SDS PAGE gel by 

subjecting to 90V current for 60 min.  To visualize the presence of recombinant protein, 

the gels were stained with 0.01% Coomassie G-250 stain (J. T. Baker Chemical Co., 

Phillipsburg, NJ), prepared in 50% methanol and 10% acetic acid.   Excess stain was 

removed by de-staining with a solution containing 10% methanol and 1.4% acetic acid.  

The presence of recombinant proteins was assessed by comparing proteins made from 

non recombinant pET32 plasmids in E. coli.  

 

Preparation of the p28-Omp 14 promoter-lacZ constructs:  Full length lacZ coding 

sequence along with the p28-Omp gene 14 promoter was obtained after Pme I restriction 

enzyme digestion of pBlueTOPO recombinant plasmid containing p28-Omp gene 14 

promoter clones (described in Chapter 4).   The Pme I restriction enzyme sites, located at 

both the 5' end of the p28-Omp gene 14 promoter and 3' end of the lacZ coding sequence 

in the pBlue-TOPO recombinant plasmid (Figure 2).  The promoter lacZ fragments were 

then cloned into EcoRV site of pACYC184 plasmid (New England Biolabs, Beverly, 

MA) as both Pme I and EcoRV digestion produce blunt ended products.   Figure 6.2 

illustrates the molecular cloning procedure and construction of recombinant plasmid.  
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The recombinant clones were selected after transforming into XL1-Blue strain of E. coli 

by following the standard molecular procedures (336).  The recombinant pACYC184 

plasmids containing the p28-Omp gene 14 promoter and lacZ fragments (pACYC184-

14F-lacZ) were verified by restriction enzyme digestion analysis.   

 

Co-transformation:  BL21 (DE3) strain of E. coli containing the pET32 plasmid alone 

or containing putative regulatory protein coding sequences were transformed with 

pACYC 184 promoter-lacZ fusion plasmids.   To allow the plasmids compatibility for co-

expression in the same E. coli host, the vectors for cloning the desired inserts were 

selected to contain different origins of replication and having different antibiotic 

resistance genes (382).   E. coli clones expressing both the recombinant plasmids were 

selected after confirming the resistance to ampicillin and chloramphenicol antibiotics.   

Figure 6.3 describes the strategy used to clone two plasmids into E. coli.  The presence of 

the both plasmids was verified after isolating the plasmid DNA and subsequent 

evaluation by agar gel electrophorosis and restriction enzyme digestion analysis.   

 

Evaluation of β-galactosidase enzyme activity in E. coli clones expressing the 

recombinant regulatory proteins:  E. coli transformants containing both the 

recombinant plasmids (pET32 and pACYC184-14FlacZ) were cultured overnight in the 

LB medium containing 50 µg/ml ampicillin and 25 µg/ml chloramphenicol antibiotics.  

The following day, E. coli transformants were subcultured in the presence of antibiotics 

to 0.5 OD (at 562 nm) and recombinant putative regulatory proteins expression was 

induced using 1 mM IPTG at 37°C for 2 h.  Following induction, β-galactosidase activity 
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of soluble protein lysates prepared from the E. coli cultures was assessed by following 

the methods described in the Chapter 4.  

Statistical analysis:  Statistical analysis for the promoter activity data were performed using 

repeated measures of analysis of variance method utilizing GraphPad  InStat Software (La 

Jolla, CA).   Multiple comparisons were adjusted by Bonferroni method.  P-value of ≤ 0.05 

was considered significant.  

 

Results 

 

Electrophoretic mobility shift analysis of complete p28-Omp 14 and 19 genes 

promoter regions:  Promoter deletion analysis described in the previous Chapter 

demonstrated the presence of several putative DNA regulatory sequences, which 

influenced the promoter activity of the p28-Omp genes 14 and 19 (discussed in the 

Chapter 4).  Electrophoretic mobility shift assay was performed with full length promoter 

sequences of these two genes in the presence of E. chaffeensis soluble proteins prepared 

from macrophage and tick cell-derived organisms.  Both the gene 14 and 19 promoter 

probes migrated at a slower rate in the presence of 5 μg of macrophage- or tick cell-

derived E. chaffeensis proteins (Figure 6.4; A, lanes 1, 3 and B, 2, and 4) compared to 

control reactions that contained probe alone (Figure 6.4; A, lane 5 and B, lane 1).   The 

shift in probe migration was abolished when 50 ng of unlabelled promoter probe was 

added as a competitor (Figure 6.4; A, lanes 2, 4 and B, 3, 5).   

 

EMSA utilizing short promoter segments of the p28-Omp genes 14 and 19 

promoters: EMSA experiments utilizing the complete promoter regions of the p28-Omp 

genes 14 and 19 of E. chaffeensis revealed promoter-specific binding of tick cell or 
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macrophage-derived Ehrlichia proteins.  The probes used for the above described EMSA 

experiments included sequences for RNA polymerase binding sites. To assess the impact 

of various putative regulatory sequences present upstream to the RNA polymerase 

binding sites, six biotin labeled short promoter fragments (P1-P6) for the p28-Omp genes 

14 and 2 for gene 19 (P7-P8) were utilized in the binding assays (Figure 6.5, A and B).  

All 6 probes for the p28-Omp gene 14 promoter exhibited a slower migration in the 

presence of E. chaffeensis proteins compared to probes migration in the absence of 

Ehrlichia proteins or in the presence of non-specific protein, bovine serum albumin 

(BSA) (Figure 6.6, A-F).  Addition of 50 fold excess of unlabeled full length promoter 

DNA in the binding reactions significantly reduced the shift in the probes migration 

(Figure 6.6, A-F).  Similarly, both the p28-Omp gene 19 promoter probes migrated at a 

slower rate in the presence of E. chaffeensis proteins compared to migration of probe 

alone, or probe in the presence of BSA (Figure 6.6, G-H).  Addition of 50 ng competitor 

DNA also significantly abolished the shift in probe 8 migration but not for probe 7 

(Figure 6.6, G-H).  

 

Genome analysis:  Gel mobility shift experiments demonstrated the binding of E. 

chaffeensis proteins to both the p28-Omp gene 14 and 19 promoter sequences.  E. 

chaffeensis genome was searched to identify open reading frames that encode for putative 

regulatory proteins (162).  The analysis aided in identification of five putative regulatory 

protein coding sequences, which included; a transcription regulator of MerR family 

(GenBank accession number, YP_506990.1),  a DNA binding response regulator 

(GenBank accession number, YP_507798.1),  a putative transcriptional regulator (tr1) 

located upstream to the p28-Omp multigene locus (GenBank accession number, 
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YP_507902.1),  a DNA-binding histone like protein, HU (GenBank accession number, 

YP_507602.1),  and a homolog to the transcription regulator of A. phagocytophilum, 

ApxR (GenBank accession number, YP_507593.1) (115,162,408) (Table 6.3). 

 

Expression of recombinant putative regulatory proteins of E. chaffeensis: The 

putative regulatory protein coding sequences were cloned into pET32 expression vector 

and the expression of recombinant proteins in E. coli was assessed by SDS PAGE 

analysis (Figures 6.7, 6.8, and 6.9).  The expression of recombinant proteins was visible 

in total E. coli cell lysates for all five clones from 1 and 3 h of IPTG induction.  No 

recombinant protein expression was observed in the absence of IPTG induction.  IPTG 

induction of E. coli transformants that contained pET32 plasmid without any insert 

expressed ~20 kDa histidine-tagged thioredoxin protein, which served as a control for 

comparison of other recombinant proteins (Figures 6.7, 6.8, and 6.9).  The predicted 

recombinant proteins size for the genes YP_506990.1 (ECH_0163), YP_507798.1 

(ECH_1012), YP_507902.1 (ECH_1118), YP_507602.1 (ECH_0804), and YP_507593.1 

(ECH_0795) are 29.5 kDa, 45 kDa, 39.2 kDa, 26.2 kDa, and 27.7 kDa, respectively.  

Two of the five clones were expressed predominantly as inclusions (YP_507798.1, 

YP_507602.1), while the remaining three were expressed in both soluble and insoluble 

forms (YP_506990.1, YP_507902.1, YP_507593.1).   

 

Co-transformation:  Interaction of a putative regulatory protein with a gene promoter 

can be tested by inducing its protein expression in E. coli containing recombinant 

promoter plasmid and then assessing its impact by measuring the reporter gene 

expression driven by that promoter (115,197,408).  BL21 (DE3) strain of E. coli 
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transformants containing the pET32 alone or recombinant plasmids expressing putative 

regulatory protein were assessed after transforming with a second plasmid, pACYC184-

14F-lacZ, containing E. chaffeensis’s p28-Omp gene 14 promoter driving the expression 

of lacZ.  This is to examine if the regulators have a role in influencing the p28-Omp gene 

14 promoter activity.  E. coli containing two plasmids was confirmed by growing in 

presence of both ampicillin and chloramphenicol antibiotics.  The presence of double 

plasmids was further verified by agarose gel electrophorosis (Figure 6.10) and restriction 

enzyme analysis.   

 
 

Induction of recombinant putative regulatory protein expression and assessment of 

β-galactosidase assay:  The effect of putative regulatory proteins on the p28-Omp gene 

14 promoter activity to drive the lacZ gene expression was assessed by measuring the β-

galactosidase specific activity.  The clones expressing regulatory proteins had slightly 

lower β-galactosidase activity compared to controls containing gene 14 promoter plasmid 

(pACYC184-14F-lacZ) co-transformed with the non-recombinant pET32 plasmid 

(Figures 6.11, A-E).  A reduction in the β-galactosidase activity in the presence of 

putative regulators ranged from 9-23%.  This reduction is consistent with both IPTG 

induced and non-induced samples. However, the decline the β-galactosidase activity was 

not statistically significant (n=3, P ≥ 0.05).   

 

Discussion 

 

Transcriptional differences in the p28-Omp genes 14 and 19 of E. chaffeensis in 

response to host cell environment was described in detail in the Chapter 3.  

Bioinformatics analysis of the p28-Omp genes 14 and 19 promoter sequences and their 
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subsequent deletion analysis in E. coli suggested the presence of regulatory domains that 

influenced the promoter activity (Chapter 4).  These findings suggest that E. chaffeensis 

proteins may interact with these putative regulatory domains and influence the gene 

expression in a host cell-specific manner.  Identification of the proteins interacting with 

the promoters of p28-Omp 14 and 19 genes and mapping their regulatory role will be 

important in defining pathogen’s molecular strategies to achieve its dual host adaption 

and persistence. 

 

In this study, EMSA experiments were performed to determine binding of E. 

chaffeensis proteins to the promoter sequences of p28-Omp 14 and 19 genes.  A shift in 

the probe migration is anticipated when complete promoter regions are used in the gel 

mobility shift assay, as E. chaffeensis RNA polymerase (RNAP)  is expected to bind to 

both the p28-Omp genes 14 and 19 promoter regions.  Consistent with this hypothesis, 

we did observe shift for both genes 14 and 19 complete promoter sequences.  We also 

anticipate a shift when there is a binding of E. chaffeensis regulatory proteins to 

sequences within the gene 14 and 19 promoter regions upstream to RNAP binding 

regions.  In subsequent experiments, short fragments of E. chaffeensis p28-Omp genes 14 

and 19 promoters spanning one or more putative regulatory sequences, but lacking RNA 

polymerase binding regions, were utilized.  All the gene 14 and 19 promoter probes 

interacted with E. chaffeensis proteins as evidenced by shift of probes in EMSA 

experiments. The probes shift is specific to Ehrlichia proteins as addition of unlabelled 

specific competitor DNA in 50 fold excess abolished the shift and non-specific protein, 

BSA, did not cause any shift.  These results indicate that one or more of E. chaffeensis-

specific proteins interact with its promoters and they may possibly influence promoter 
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activity.  This is consistent with other rickettsial pathogens, including E. chaffeensis, 

where the regulatory proteins have been shown to interact with the promoters of several 

genes (63,115,380,408).  More detailed experiments are needed to identify the specific 

proteins involved in causing the shift in E. chaffeensis promoter probes migration in a 

gel.  

 

Establishing the identity of E. chaffeensis proteins interacting with the gene 14 

and 19 promoters is somewhat challenging as it may require purification of large 

quantities of E. chaffeensis proteins that are binding to the promoters. Another approach 

to test the interaction of E. chaffeensis proteins with its promoters is to evaluate the 

interaction of or more putative regulators, which are likely candidates for gene regulation. 

In this study, we took the later approach, where we searched the entire genome of E. 

chaffeensis for the presence of genes that encode for putative regulatory proteins.  Our 

analysis identified five genes encoding putative regulatory proteins sequences.   One of 

them is a transcription regulator (tr1) (YP_507902.1) located upstream to the p28-Omp 

locus of E. chaffeensis (162), whose homolog was also found in E. canis, E. 

ruminantium, A. phagocytophilum, and A. marginale pathogens (212,218,272,402).  This 

is a logical choice to include in our analysis as it is located upstream to the p28-Omp 

multigene locus.  Similarly, E. chaffeensis homolog (YP_507593.1) of A. 

phagocytophilum transcription regulator, ApxR, which has been recently reported to have 

a regulatory role in tr1 expression and p44 mRNA expression (115,408) was also 

included in this analysis.  In C. trachomatis, a homolog of A. phagocytophilum ApxR, 

CpxR, was demonstrated to have a regulatory role in the pathogen’s developmental stage-

specific gene expression (197).  Other E. chaffeensis putative regulatory genes included 
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in this analysis are; a MerR family transcription regulator (YP_506990.1), histone-like 

DNA binding protein (YP_507602.1), and a putative response regulator DNA binding 

protein (YP_507798.1).   

 

 Influence of these five putative regulatory proteins on the p28-Omp gene 14 

promote activity was tested by following methods previously described for A. 

phagocytophilum and C. trachomatis (197,408,408,409).  Our analysis in E. coli 

identified a minor decline in gene 14 promoter activity, which ranged from 9-23%. This 

decline is, however, statistically not significant (P ≥ 0.05).  It is possible none of these 

proteins may have a regulatory role in the p28-Omp gene 14 expression.  Alternatively, 

coordinated binding or interaction of two or more of the putative regulatory proteins may 

be required for the gene 14 regulation.  It is also possible that there may be yet 

unidentified E. chaffeensis proteins that influence the p28-Omp gene 14 promoter 

activity.  The effect of these proteins on gene 19 promoter activity remains to be studied.  

Additional experiments are needed to map the regulatory proteins that are binding to the 

promoter regions of p28-Omp genes 14 and 19 promoters.  As discussed previously, use 

of short promoter fragments containing putative regulatory sequences in binding 

experiments and protein purification using affinity column chromatography and mass 

spectrometry methods may aid in identification of E. chaffeensis proteins interacting with 

these promoter sequences.  Subsequent analysis of bound E. chaffeensis proteins by mass 

spectrometry methods will help in identification of these proteins.    
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Figure 6.1.  Cloning of putative transcription regulator coding sequence into pET 32 

a (+) expression vector 
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Figure 6.2.  Construction of lacZ and p28-Omp 14 promoter fusion plasmids 
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Figure 6.3.  Co-transformation of recombinant pET32 and pACYC 184 plasmids 
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Figure 6.4.  Electrophoretic gel mobility shift assay:  Binding assay was performed 

with p28-Omp gene 14 and 19 full length promoter sequences in the presence of E. 

chaffeensis soluble proteins.  A, Lanes 1 to 5 contained 1 ng of 32p-labeled, p28-Omp 
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gene 14 complete promoter fragments; B, lanes 1 to 5 contained 1 ng of 32p-labeled, 

p28-Omp gene 19 complete promoter fragments.  Shifted probe in the presence of E. 

chaffeensis proteins is indicated with arrows.   MQ-Ehr protein, macrophage derived E. 

chaffeensis proteins; TC-Ehr protein, tick cell derived E. chaffeensis proteins.  Addition 

of E. chaffeensis proteins and unlabeled promoter DNA as a competitor are indicated in 

captions at the bottom of the Figure.  

  



171 

 

  

A 

ttgctcaacccataaaataatgggaaattaccttttctaggaagtttctcattatttaacagttaactttctgtaaacttctaataa

cagtattttgttcactcttccccttaataaaaatcataagtttacaataatgtcaaaaagatttctttttaaacacatttaaaatgg

ctaaaccgttttctgctttattagaatgattcccaaataaattttaattaattactgttccgtatttattaatatatgttataatgt 

aattaaataaggatactagatttgctcataatgcatgtactgaatttgtgatttgaaataacaagacttaaatgtcgaatttagctt

ctgtcctagtggataagtactttagcaagtggtaaaagcaagtctactcatatttttattaattaagtagtaaagttaactatagat

tttattaaaatttttattctaatcactttaaatatcaattacttttgttgtaaatttgaaagaaattttatattctagacTTGCTTt

tctttatttctttcatTATTCTtaaatttttattatcttttataaaaggtttattaac

-35

-10 RBS*

P1

P2

P3

P4

P5

P6

B 

ttttattattgccacatgttaaaaataatctaaacttgtttttattattgctgcaggtaaataaaaatagtggcaaaagaatgtagc

aataagaggggggggggggggactagtttataagtgctgtttttctcacctttacacatgatactatacttaaccagtttttttgct

attacttacctgacgtaatatattaaattttccttacaaaagttaccgatattttatacaaaaatttatattctgacTTGCTTttat

atgacacttctacTATTGTtaatttatttgtcactattaggttatat

-35

-10

P7

P8

RBS*
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Figure 6.5.  Sequences of the p28-Omp genes 14 and 19 partial promoter probes 

utilized in the EMSA experiments:  Biotin labeled short probes spanning the promoter 

sequences containing one or more putative regulatory sequences were amplified utilizing 

sequence specific primers.  P1 to P6, partial promoter probes amplified from the p28-Omp 

gene 14 promoter sequences (A).  P7-P8, partial promoter probes amplified from the p28-

Omp gene 19 promoter sequences (B).  The sequences of each probe were underlined with 

different colored lines and listed under each panel.   Putative regulatory sequences were 

identified in the Figure as different colored text; direct repeats (red text), palindromic 

sequences (pink text) and for the presence of unique sequences (G-rich region), consensus -

35 and -10 regions (uppercase, italics) and ribosome binding sites (bold text). The 

transcription start sites for the genes mapped by primer extension analysis are identified with 

bold letter and with an asterisk.  
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Figure 6.6. 
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Figure 6.6.  EMSA experiments utilizing biotin labeled short segments of the p28-

Omp genes 14 and 19 promoters: Short promoter fragments were amplified using 

sequence specific forward primer and 5' end biotin labeled reverse primer and evaluated 

for their interaction with the E. chaffeensis protein lysates prepared from macrophage-

derived Ehrlichia organisms.  Panels A-F, represent the EMSA experiments using p28-

OMP genes 14 promoter probes (P1-P6); Panel G-H, represent EMSA experiments using 

p28-OMP genes 19 promoter probes (P7-P8).  MQ-Ehr P, soluble proteins prepared from 

macrophage grown E. chaffeensis organisms.  Shifts in the probe migration are indicated 

by arrows.  Details about the addition of E. chaffeensis proteins, unlabelled probe DNA 

as competitor, and BSA to a reaction are presented under each panel. 

 

 

 

1        2         3       4

P8

1        2         3       4

Probe DNA ( 1 ng )     +          +        +         +             +        +         +      +     

Competitor (50 ng)   - - +             - - - +       -

MQ -Ehr P     (5 µ g)      - +         +              - - + +      -

BSA              ( 5 ug )     - - - +        - - - +       

G
P7

H
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Figure 6.7.  SDS PAGE gel showing the recombinant protein expression from 

ECH_0163 and ECH_1012 clones.  The expression of recombinant regulatory proteins 

is indicated with arrows.  The details of samples loaded in each well are provided at the 

botton of gel picture.  

 

 



176 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8.  SDS PAGE gel showing the recombinant protein expression from 

ECH_1118 and ECH_0804 clones. The expression of recombinant regulatory proteins is 

indicated with arrows.  The details of samples loaded in each well are provided at the 

botton of gel picture. 
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Figure 6.9.  SDS PAGE gels showing the recombinant protein expression from 

ECH_0795 clone. The expression of recombinant regulatory protein is indicated with 

arrows.  The details of samples loaded in each well are provided at the botton of gel 

picture. 
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Figure 6.10.  Plasmid DNA extracted from double transformants of E. coli and 

comparison with plasmid DNA extracted from E. coli transformed with single 

plasmid. Lanes 1-6  contain plasmid DNA extracted from E.coli containing two plasmids 

double plasmids. Lanes 7-14 contain PLASMID dna extracted from E. coli containing 

single plasmid. Gene 14 promoter plasmid, which is present in all double transformants 

of E. coli is indicated with an arrow.  The details of  Plsmid DNA samples loaded in each 

well are presentd at the botton of gel picture.  
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Figure 6.11.  

 

A. 

 

 

 

 

 

 

 

 

 

 

B. 

 

 

 

 

 

 

 

 

 

 

 

 β-galactosidase activity in the presence of ECH_0163 (pET32 RRG613/614) clone 

21% 

β-galactosidase activity in the presence of ECH_1012 (pET32 RRG615/616) clone 

18% 
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C. 

 

 

 

 

 

 

 

 

 

 

 

D.  

 

 

 

 

 

 

 

 

 

 

14% 

β-galactosidase activity in the presence of ECH_1118 (pET32 RRG617/618) clone 

23% 

β-galactosidase activity in the presence of ECH_0804 (pET32 RRG619/620) clone 
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E. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.11.  Effect of recombinant putative transcriptional regulatory proteins of 

E. chaffeensis on the p28-Omp gene 14 promoter activity.  Putative regulatory 

proteins expression was induced in BL21 strain of E. coli transformants containing 

recombinant pET32 plasmid and pACYC184-14F-lacZ plasmid.  β-galactosidase activity 

of protein extracts prepared from double transformants of E. coli cultures was 

determined.  Panels A and E contained the β -galactosidase activity analysis data obtained 

from double transformants of E. coli,  induced for protein expression from ECH_0163, 

ECH_1012, ECH_1118, ECH_0804, and ECH_0795 clones, respectively.  Data were 

presented with SD values calculated from three independent experiments (P ≥ 0.05). 

9% 

β-galactosidase activity in the presence of ECH_0795 (pET32 RRG 621/622) clone 
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  Primers used          Sequence Orientation Amplicon size  

 

   Annealing 

      (bp) temperature (°C) 

p28-Omp gene 14 promoter EMSA probes 

 

        Probe 1 (P1)  

          RRG217 5' attgctcaaccataaaataatggga  Forward 181 50 

 RRG623-rev-5’-Biotin   5' ggtttagccattttaaatgtg Reverse 

  
      

Probe 2 (P2)  

          RRG267 5' cagttaactttctgtaaacttc Forward 122 50 

 RRG623-rev-5’-Biotin   5' ggtttagccattttaaatgtg Reverse 

  
      

Probe 3 (P3)  

          RRG268 5' atcataagtttacaataatgtc Forward 133 45 

 RRG624-rev-5’-Biotin   5' catatattaataaatacggaac Reverse 

  
      

Probe 4 (P4)  

    
      RRG269 5' cgttttctgctttattagaatg Forward 121 55 

 RRG625-rev-5’-Biotin   5' gtacatgcattatgagcaaatc Reverse 

  
     Probe 5 (P5)  

    
      RRG270 5' gttccgtatttattaatatatg Forward 203 50 

 RRG626-rev-5’-Biotin   5' ctatacttaactttactactta Reverse 
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Table 6.1.  List of primers used to amplify short fragments for the p28-Omp genes 14 and 19 promoters for use in 

EMSA experiments 

 

 

 

 

 

 

Probe 6 (P6)  

      RRG272 5' ggataagtactttagcaagtgg Forward 157 50 

 RRG627-rev-5’-Biotin   5' gtctagaatataaaatttctttc Reverse 

   

 

    p28-Omp gene 19 promoter EMSA probes 

   
      

Probe 7 (P7)  

          RRG185 5' gactctagacttttaattttattattgccacatg Forward 150 50 

 RRG628-rev-5’-Biotin    5' gcacttataaactagtccc Reverse 

   

 

    Probe 8 (P8)  

    
      RRG276 5' gtgctgtttttctcacctttacac Forward 96 50 

 RRG629-rev-5’-Biotin   5' cttttgtaaggaaaatttaatata Reverse 
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Primers used              Sequence Orientation Amplicon size 

Annealing 

temperature 

 

    (bp) (°C) 

     Clone: BL21-ECH 0163 

(pET32 RRG613/614)  

             RRG613 5' gtaccatgggtgaaaagaaaatattac Forward 394 50 

    RRG614 5' agtctcgagctacattccgttaaacttc Reverse 

   

 

    Clone: BL21-ECH 1012 

(pET32 RRG615/616)  

    
         RRG615 5' gtaccatggctatgcgtatattattaatag Forward 818 45 

    RRG616 5' agtctcgagttatgcttcctcaacatac Reverse 

   

 

    Clone: BL21-ECH 1118  

(pET32 RRG617/618)  

    
         RRG617 5' gtaccatggctatgtctacacatgcgaaaaac Forward 662 45 

    RRG618 5' agtctcgagttactgtttgttatctaaag Reverse 

   

 

 

 

    Clone: BL21-ECH 0804 

(pET32 RRG619/620) 

             RRG619 5' gtaccatggctatgagtaaggatatggtagtta Forward 305 50 

    RRG620 5' agtctcgagttaattatctaaaaggttaa Reverse 
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Clone: BL21-ECH 0785 

(pET32 RRG621/622)  

         RRG621 5' gtaccatggctatgacaacaataagtaaccaaa Forward 347 52 

RRG622 5' agtctcgagttaatcttctttttgtatta Reverse 

    

         

 

 

 
Table 6.2.  List of primers used for cloning putative transcription regulator coding sequences of E. chaffeensis into pET 

32a (+) expression vector 
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Table 6.3.  Details of E. chaffeensis transcription regulators recombinantly expressed in E. coli 

 

 

 

 

    Clone 

Primers 

(Forward/reverse) Putative regulatory protein  Protein ID Gene ID 

  

 

 

  ECH_0163 RRG613/RRG614 Transcriptional regulator, MerR family YP_506990.1 3927338 

     

     ECH_1012 RRG615/RRG616 DNA-binding response regulator YP_507798.1 3927952 

     

     ECH_1118 RRG617/RRG618 Putative transcriptional regulator YP_507902.1 3927407 

     

     ECH_0804 RRG619/RRG620 DNA-binding protein HU YP_507602.1 3927490 

     

     ECH_0795 RRG621/RRG622 Hypothetical protein YP_507593.1 3927528 
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Chapter 7 

 

Major Conclusions and Future Directions 
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1. Transcriptional analysis of E. chaffeensis RNA revealed host cell-specific gene 

expression for the p28-Omp gene 14 in tick cells and gene 19 in macrophages.  

 

2. Quantitative RT-PCR analysis of E. chaffeensis RNA isolated at various time 

points post-infection also reveled similar host-specific gene expression for these 

two genes.  

 

3. The major expression was reversed from gene 14 to gene 19, when tick cell 

grown bacteria were inoculated into vertebrate macrophages both in vitro and in 

vivo.  These data are consistent with our previous protein data demonstrating 

switch in expression of these genes in response to bacterial growth in tick cells 

and macrophages. 

 

4.  These findings confirm that host cell-specific protein expression for the p28-Omp 

genes 14 and 19 are the result of differences in their transcription.    

 

5. Primer extension analysis and ribonuclease protection assays aided in identifying 

the transcription start sites and in locating the putative promoter regions for the 

p28-Omp gene 14 and 19. 

 

6. Transcription is initiated for both the genes at adenine nucleotide, which is 

located at 34 and 26 nucleotides upstream of ATG for the p28-Omp 14 and 19 

gene. 

 

7. Both the putative promoters of the p28-Omp genes 14 and 19 are functional in E. 

coli. 
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8. Analsyis of the p28-Omp gene 14 and 19 promoter regions revealed several 

promoter-specific differences, which included variation in their length, presence 

of several direct repeats, palindromic sequences and a unique 14-bp long ‘G-rich’ 

sequence specific to gene 19 promoter. 

 

9. Deletion of one or more putative regulatory sequences significantly altered the 

p28-Omp genes 14 and 19 promoter activity.  

 

10. The fluctuations in gene 14 promoter activity ranged from partial or complete loss 

to restorations in promoter activity. 

 

11. For gene 19, the 5' end deletions up to 120 bp upstream of ATG resulted in a 

minor decline in promoter activity, which was further increased to 60% with an 

additional 60 bp deletion. The increase in the β-galactosidase activity was unique 

to the gene 19 deletions.   

 

12. Promoter region sequence comparisons with those of E. coli consensus sequences 

aided in the identification of putative -10, -35 and ribosomal binding sequences. 

 

13. Subsequent deletion analysis experiments suggested that those sequences conatin 

RNA polymerase sites.   

 

14. Promoter characterization studies demonstrated that E. coli RNA polymerase 

recognizes E. chaffeensis gene 14 and 19 promoters. 
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15. In vitro transcription assays utilizing E. coli RNA polymerase were developed for 

use in driving the expression from the p28-Omp gene 14 and 19 promoters of E. 

chaffeensis. 

 

16. E. coli RNAP recognized the same transcription start site in vitro for both the 

p28-Omp genes 14 and 19 promoters as that recognized by E. chaffeensis in vivo. 

 

17.  Electrophoretic mobility shift assays of the p28-Omp genes 14 and 19 full length 

promoters revealed interaction of E. chaffeensis proteins with these sequences. 

 

18. Partial promoters spanning one or more putative regulatory sequences but lacking 

the RNAP binding regions also demonstrated interaction of E. chaffeensis 

proteins with these sequences.   

 

19. E. chaffeensis genome was searched to identify genes that encode for putative 

regulatory proteins, which aided in the identification of five putative regulatory 

protein coding sequences. 

 

20. These proteins were expressed in E. coli and assessed for their possible role in 

gene 14 promoter activity. 

21. All five proteins showed a minor trend for a decrease in  gene 14 promoter 

activity. The decline promoter activity ranged from 9-23% but the data is not 

statistically significant (P ≥ 0.05) 
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Future directions 

 

 
1. Promoter characterization of p28-Omp genes 14 and 19 in vivo in E. chaffeensis 

may help in identifying the sequences that are involved in gene regulation. 

2. Promoter characterization using in vitro transcription sytems in the presence of 

native or recombinant E. chaffeensis RNA polymerase may also provide 

important information about sequences that are critical for promoter activity 

3. Evaluation of the impact of five putative regulatory proteins identified in this 

study on the p28-Omp gene 19 promoter activity to identify they have any 

regulayory role in its expression.  

 

4. Identification of E. chaffeensis proteins interacting with the p28-Omp gene 14 and 

19 promoter sequences and assessing their precise role in gene regulation. 
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Chapter 8 

 

General Molecular Biology Methods Used in Study 
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Polymerase chain reaction (PCR): All PCR‘s were performed in final reaction volume 

of 25 μl.  Each reaction contains a final concentration of 1X PCR reaction buffer, 50 

nmoles of MgCl2, 10 nmoles of dNTP's, 10 pico moles each of forward and reverse 

primers, about 1ng of template DNA, and 1 unit of taq DNA polymerase (Invitrogen 

technologies, Carlsbad, CA).  For PCR reactions that require proof reading, the PCR 

conditions are; 1x Pfx amplification buffer, 1 U of platinum Pfx DNA polymerase 

(Invitrogen Technologies, Carlsbad, CA), 5 nmoles of dNTP's, and rest of the reagents 

concentrations are maintained same as in above described reaction.  The PCR 

temperature cycles include an initial heating to 95°C for 2 min, followed by 40 cycles of 

95°C denaturation for 30 sec, primer annealing for 30 sec and carried out at appropriate 

temperatures calculated for each primer set, 72 °C extension for 30 sec.  The extension 

temperature for platinum Pfx DNA polymerase is 68 °C.   The extension temperatures 

were increased to 1min per each kb of expected amplicons length.  Each reaction set 

included a negative control, which lacked a template but contained all the other reaction 

components.  After reaction is complete the products were resolved on agarose gels 

containing ethidium bromide and visualized under UV light.  

 

Restriction enzyme digestions:  Typically restriction enzyme digestion reaction is 

performed in a 20 μl volume.  The reaction included 1x restriction enzyme reaction 

buffer, 1 μg of DNA, 1-5 units of enzyme, 0.5 μl of BSA (10 μg/ μl), and water to a final 

volume of 20 μl.  Typically the restriction enzyme digestion is carried out at 37°C for 2 h 

unless an enzyme requires a specific temperature.  For all the reactions that utilized two 

restriction enzymes, a buffer optimal for both the enzymes is utilized.  
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Blunt ending of 3'or 5' overhangs:  The 3' ‘A’ overhangs of DNA fragments resulted 

from a PCR reaction using taq DNA polymerase or a 3' overhang producing restriction 

enzyme digestion products are blunt ended by performing a T4 DNA polymerase 

reaction. This reaction typically includes approximately 100 ng of template DNA, 1 unit 

of T4 DNA polymerase, and 1x reaction buffer containing 100 μM dNTP's (New England 

Biolabs, Ipswich, MA).  The reaction is usually performed for 15 minutes at 12°C.  The 

reaction is stopped by adding 10 mM EDTA and enzyme is inactivated by heating at 

75°C for 20 min.  To create blunt ends of DNA fragments containing 5' overhangs, a fill-

in reaction is performed using large fragment (Klenow) of DNA polymerase I.  This 

reaction is carried at 25°C for 15 min and includes 1 unit of Klenow enzyme, and 1X 

reaction buffer containing 0.33 μM each of dNTP's (New England Biolabs, Ipswich, 

MA).  The reaction is terminated by adding EDTA to a final concentration of 10 mM 

followed by heat inactivation of enzyme at 75°C for 10 min.  The blunt ended products 

are purified by following a standard phenolchloroform, ethanol precipitation method 

described below.  The final products after purification are suspended in 10 μl of TE 

buffer (10 mM Tris-HCl, pH,8.0  and 1 mM EDTA). 

 

Phenol purification of DNA:   DNA fragments from PCR, restriction enzyme digestion, 

and filling-in reactions are purified phenol purification method. Typically, 3 M sodium 

acetate is added to final concentration of 0.3 M into a microcentrifuge tube containing 

DNA and final volume was adjusted to 200 μl with TE buffer.  Two hundred micro liters 

of phenol (pH, 8.0) is added, vertexed to mix and centrifuged at 15,000 g for 15 min at 

4°C.  The top aqueous layer is transferred into a clean microcentrifuge tube and added a 

200 μl of phenol:chloroform:isoamylalcohol (25:24:1) mixture. The contents are mixed 
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by vertexing and centrifuged at 4°C at 15,000 g for 15 min.  The top layer is transferred 

into another clean microcentrifuge tube.  Thease steps were repeated with 

pheol:chloroform:isoamylalacohol and then with chloroform:isoamylalacohol. To the 

final removed aqueous layer, 0.5 ml absolute cold ethanol is added, incubated at -20°C 

for 15 min followed by centrifugation at 15,000g for 15 min.  The DNA pellet is washed 

with 0.5 ml of 70% ethanol.  Final pellet was air dried, resuspended in 20 μl TE buffer 

and stored at -20 °C until use. 

 
 

Ligation reactions:  A typical ligation reaction included approximately 25 ng of 

linearized purified plasmid vector DNA, 5 to10 molar excess of insert DNA, 1x ligation 

buffer, 5 units of T4 DNA ligase (Promega Corporation, Madison, WI) in a 20 μl reaction 

volume.  The ligation reaction is carried out by incubating the contents at 15°C for 16 h.  

Following the ligation, 1 μl of ligation mix is used for transformation by chemical 

method. Alternatively, for use in transformation by electroporation method, the DNA  is 

purified by phenol:choloform:isoamyl alcohol method described above.   

 
 

Preparation of E. coli cells for use in chemical transformation methods:  The E. coli 

strains utilized to prepare competent cells included Top 10 cells (Invitrogen 

Technologies, Carlsbad, CA), DH5α (Stratagene, La Jolla, CA), and BL21 (DE3) 

(Novagen Inc., Madison, WI).  Top 10 stain of E. coli is always grown in the presence of 

streptomycin (35μg/ml).  DH5α and BL21 (DE3) stains are grown in a plain LB medium.  

To prepare chemical competent cells, an E. coli colony of a desired strain is cultured in 3 

ml of LB medium overnight in a 37°C incubator, shaking at 250 rpm.  Subsequently, E. 

coli culture is re-inoculated into 100ml LB medium and grown in a 37°C incubator.   

After the cells are grown to 0.4 OD (measured at 600nm), the cultures are harvested by 



196 

 

centrifuging at 2,500 g for 5 min at 4°C.  The cell pellet is resuspended in 10 ml of 

freshly prepared 10 mM Tris-HCl (pH, 7.5) and 50 mM CaCl2, and incubated on ice for 

30 min.  The cultures was centrifuged again at 2,500 g for 5 min at 4°C and the pellet is 

suspended in 2 ml of 10 mM Tris-HCl (pH, 7.5) and 50 mM CaCl2 and stored at 4°C.  

The competent cells made by this procedure are utilized within 24 h after their 

preparation.  

 

Electro competent E. coli cells preparation:   For use in transformation by 

electroporation method, a desired strain of E. coli is cultured in 5 ml LB medium 

overnight at 37°C shaker incubator set at 250 rpm.   The overnight grown E. coli cultures 

are used to re- inoculate into 500 ml of LB medium and are grown to a 0.4 OD (measured 

at 600 nm) at 37°C.   For the rest of the procedure, the E. coli cells and the reagents used 

for making the electro competent cells are maintained at 4°C.  After reaching to 0.4 OD, 

the cultures are transferred into 125 ml capacity and incubated in the ice for 30 min.  The 

E. coli cells are harvested by centrifugation at 1000 g for 20 min at 4°C.  Cell pellet in 

each tube is resuspended in 100 ml of ice cold de-ionized water and centrifuged at 1000 g 

for 20 min at 4°C.  The cell pellet in each centrifuge tubes is resuspended in 50 ml of ice 

cold water.  The E. coli suspension from two tubes were combined into one tube and 

centrifuged at 1000 g for 20 min at 4°C.   After discarding the supernatant, the cell pellet 

is resuspended in 20 ml of ice cold 10% glycerol and centrifuged at 1000 g for 20 min at 

4°C.  The final pellet was resuspended in 0.5 ml of ice cold 10% glycerol, 55 μl of the E. 

coli suspension is aliquoted into pre-chilled sterile microcentrifuge tubes and frozen 

immediately by placing the tubes in liquid nitrogen.  The cells are stored at -80°C until 

use.  
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Transformation:  Transformation of ligated products into E. coli cells is achieved either 

by a chemical method or through an electroporation procedure.   To transform by 

chemical method, 200 μl of chemical competent E. coli cells are mixed with 50 of 

100mM CaCl2 and 49 μl of sterile water.  One μl of ligation products are added to this 

suspension and mixed by gentle tapping of the tube.  The contents are then incubated in 

ice for 15 min, followed by a heat shock at 42°C for 2 min. The cells are incubated at 

room temperature for 10 min, added 1 ml of LB medium, and incubated at 37 °C in a 

shaker incubator set at 200 rpm for 1h.  To transform by electroporation method, 100 mm 

gap electroporation cuvetts are used.  Fifty microliters of electrocompetant cells and 1 μl 

of purified ligation mix suspension are transferred into a pre-chilled electroporation 

cuvette (Eppendorf, Hamburg, Germany) and subjected to an electric shock at 1800 V 

using an elecroporator (Model # 2510, Eppendorf, Hamburg, Germany).  The cells are 

then transferred into a culture tube containing 200 μl of LB medium and grown at 37 °C 

in a shaker incubator for 1h.    

 

Preparation of Luria-Bertani (LB) media:  The LB liquid medium and LB agar plates 

were utilized to grow E. coli cultures. To prepare 1 lit of LB liquid medium, 15 g 

tryptone, 10 g of yeast extract and 10 g of sodium chloride were dissolved in 1 lit of 

double distilled water and pH of the solution was adjusted to 7.0 with the help of 10N 

NaOH.  The LB medium was autoclaved at a liquid cycle.  LB agar plates preparation 

included similar preparation as described above but 15 g of cell culture grade agar 

powder was added to the medium prior to autoclaving.  After autoclaving, the LB agar 

medium was allowed to cool to nearly 60°C and a desired concentration of appropriate 
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antibiotic was added to the medium.  Approximately 15 ml of medium was poured into 

sterile agar plates.  After solidification of the agar medium, the plates were wrapped and 

stored at 4°C until use. 

 

Selection of recombinant clones:  Two hundred micro liters of transformed bacterial 

cultures are transferred onto LB plates containing appropriate antibiotic specific to a 

recombinant plasmid.  The culture is uniformly dispersed onto the agar plate using a 

bacterial culture spreader.  To grow the transformed E. coli the plates were incubated 

overnight in a 37°C incubator.  The presence of transformants is assessed by comparing 

plates containing appropriate controls (ligation controls, no transformation controls).  

Subsequently, several colonies are selected, inoculated in a culture tube containing LB 

medium with appropriate antibiotic and are grown overnight at 37 °C in a shaker 

incubator to isolate the plasmid DNA.   

 

Isolation of Plasmid DNA:  From overnight grown E. coli cultures plasmid DNA is 

isolated by following boiling preparation method (336).  To isolate plasmid DNA, 1.5 ml 

of overnight grown bacterial cultures are transferred into a  micro centrifuge tube and 

centrifuged 12,000 g for 5min.  The supernatant was aspirated carefully with the help of a 

vacuum device and cell pellet is resuspended in 0.4 ml plasmid lysis buffer (10mM Tris-

HCl pH 8.0, 0.1 M NaCl, 1mM EDTA, 5% v/v Triton X-100) with the help of a tooth 

pick.  Twenty five micro liters of freshly prepared lysozyme (10 mg/ml) is added.  

Lysozyme was prepared by dissolving 10mg of lysozyme powder in 1 ml of 10 mM Tris-

HCl buffer (pH, 8.0) to get a final concentration of 10 mg/ml.  The contents of the tube 

are vertexed to mix, placed in a boiling water bath exactly for 40 sec, and centrifuged at 
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12,000 g for 15 min at 4°C.  The pellet containing cell debris is removed with the help of 

a tooth pick.  Four hundred and twenty μl of 100%, cold (-20°C), isopropanol is added to 

the supernatant and mixed by vertexing, incubated at room temperature for 5 min and 

centrifuged at 12,000 g for 15 min to recover plasmid DNA.  Supernatant is discarded 

and the DNA pellet is washed with 70% ethanol and dried in a speed-vac system 

(Labconco Centrivap Concentrator, Kansas City, MO) typically for about 5 min.  Final 

pellet is resuspended in 100 μl of TE buffer and contaminating bacterial RNA was 

removed by treating with 1 μl of RNase A (1 mg/ml) at 37°C for 5 min.  The presence 

and quality of the plasmid DNA was checked by agarose gel electrophoresis (described 

seperately). 

 

Isolation of genomic DNA:  Genomic DNA of E. chaffeensis grown in tick or 

macrophage cultures is isolated by sodium dodecyl sulfate-proteinase K-phenol, 

chloroform-isoamyl-alcohol method (336).  Briefly, 1.5 ml of E. chaffeensis cultures are 

harvested by centrifugation at 12,000 g for 15 min and the cell pellet is resuspended in 

0.5 ml of DNA extraction buffer (10 Mm Tris-Cl pH 8.0, 0.1 M EDTA, and 0.5% SDS) 

containing 0.5 mg/ml proteinase K (Sigma Chemical Co., St. Louis, MO).  The contents 

are mixed by vertexing and incubated for 2 h at 60°C.  Phenol:chloroform:isoamyl 

alcohol extraction method is used to remove proteinecious material  and ethanol is added 

to concentrate DNA as described previously. DNA pellet is air dried and resuspended in 

100 of TE buffer.  To remove the contaminating RNA, the DNA is treated with 1 μl 

RNase A (10 mg/ml) at room temperature for 10 min.  The DNA samples were stored at -

20°C until use.  
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Agarose gel electrophoresis:  Plasmid DNA, restriction digestion products or PCR 

products are analyzed by resolving them on a 0.9% agarose gels by subjecting to 

electrophoresis.  The agarose gels are prepared after dissolving agarose powder in 1x 

TAE buffer (40 mM Tris-acetate, 1 mM EDTA; final pH 8.0) containing 0.1 μg/ml of 

ethidium bromide. The contents are poured on a gel holding device and are allowed to 

solidify at room temperature. The gel is placed in an electrophoresis chamber containing 

1X TAE buffer with 0.1 μg/ml of ethidium bromide dissolved in it.  About 5 μl of DNA 

is loaded into the wells. Molecular weights markers are also loaded in a separate well and 

resolved to help in determining the approximate molecular weight of the DNA. The DNA 

is subjected to electrophoresis in the agarose gel at 70 V for 60-90 minutes and is 

visualized under UV illumination.  The imahges are captured using Kodak gel imaging 

system. 

 
 

Automated sequencing:  Recombinant DNA clones were sequenced to verify the 

accuracy and orientation of the insert DNA using CEQ Genetic Analysis System and by 

following the manufacturer’s recommendation (Beckman & Coulter, Fullerton, CA).  

Prior to performing a sequencing reaction, the recombinant plasmid DNA is purified by 

phenol:chloroform:isoamyl alcohol (25:24:1) method as described above.  Following the 

purification, the concentration of the DNA was estimated by Nanodrop method. The 

purified plasmid DNA is sequenced using a forward or reverse primer (plasmid derived 

sequence primers) specific to a sequence upstream or downstream to insert DNA, 

respectively.  Sequencing reaction is performed utilizing DTCS sequencing kit by 

following the manufacturer’s recommendations (Beckman and Coulter, Fullerton, CA).  

Sequence analysis is performed using Genetics Computer Group (GCG) (87) or Vector 
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NT programs (Invitrogen Technologies, Carlsbad, CA) or by performing BLAST search 

analysis.  

 

Manual sequencing:  The DNA ladders utilized in primer extension, ribonuclease 

protection assay and in vitro transcription assays were synthesized by manual sequencing 

reaction is perfomed on a PCR product or on a recombinant plasmid DNA.  The 

sequencing reaction is performed utilizing Thermo Sequenase Radiolabeled
 
Terminator 

Cycle Sequencing kit and by following the manufacturer’s recommendations (USB 

Corporation, Cleveland, Ohio).   

 
 

RNA isolation: Total RNA from E. chaffeensis infected canine macrophages or tick cell 

cultures was isolated using Tri-reagent method (Sigma Chemical Corporation, St. Louis, 

MO).  Briefly, 1.5 ml of E. chaffeensis infected tick cell or macrophage cultures are 

harvested by centrifuging at 12,000 g for 5 min at 4 °C.  To the cell pellet, 1ml of tri 

reagent is added and vertexed to mix.  The lysates are incubated at room temperature for 

5 min.  Two hundred microliters of chloroform is added to the cell suspension, mixed by 

vertexing and incubated at room temperature for 10 min.  Subsequently, the samples are 

centrifuged at 12,000 g for 15 min at 4°C.  The top aqueous layer containing RNA was 

transferred into a clean microcentrifuge tube, mixed with 0.5 ml of cold isopropanol (-20 

°C) and incubated at room temperature for 10 min.  The contents are centrifuged at 

12,000 g for 15 min at 4°C.  The RNA pellet recovered is rinsed with 70% ethanol and 

then resuspended in 100 μl of nuclease free water.  To prevent the degradation of RNA, 

40 U RNase inhibitor (Ambion Corporation, Austin, TX) is added and stored at -80°C 

until use.  
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DNAse treatment of RNA samples: To remove the contaminating genomic DNA,  RNA 

samples are subjected to DNase treatment using RQ1 RNase-free DNase enzyme 

(Promega Corporation, Madison, WI).  Typically, the reaction is carried out in a 20 μl 

volume which included 5-10 μg of RNA, 1X RQ1 DNase buffer, 1 unit of RQ1 RNase-

free DNase enzyme, and nuclease free water to a final volume of 20 μl.  The reaction is 

incubated at 37°C for 1 hour followed by inactivation of enzyme at a temperature of 70°C 

for 10 min.  The DNase treated RNA samples were stored at -80°C until use.  

 

Real time PCR and RT-PCR:  RNA analysis by TaqMan based real-time PCR or RT-

PCR was performed by utilizing SmartCycler system (company) and utilizing 

SuperScript-III
 
One-Step RT-PCR with platinum Taq DNA polymerase kit (Invitrogen

 

Technologies, Carlsbad, CA).  Real-time RT-PCR reaction is performed in a 25 μl 

reaction containing 2 µl of RNA, 1x reaction buffer, 5 pmols each of gene specific 

TaqMan forward and reverse primers, 3.75 pmol of gene specific TaqMan
 
probe, 5 nmol 

of dNTP’s, 125 nmol of
 
MgCl2, and 1 µl of SS-III RT and Taq DNA polymerase mix 

(Invitrogen
 
Technologies, Carlsbad, CA).  The temperature cycles for the reaction include 

an initial reverse transcription step at 48°C for 30 min,  heating at 95°C for 3min,  

followed by 45 cycles of 95°C denaturation for 15 sec, annealing  for 30 sec at 50°C
 
, and  

a 60 sec extension at 60°C.  The product amplification was detected in the SmartCycler 

machine by measuring the fluorescence emitted during the extension phase of a PCR 

cycle.  A reaction considered as positive for the presence of a template when 

amplification of the product causes 10 fluorescent units.  The Cycle at which a positive 

signal is obtained is called cycle threshold (Ct) value and it is concentration dependent.  

High concentration of a template results in a low CT value and vice versa.  
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