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Abstract

Simulations were performed using MCNP5 to optimize the geometry of a neutron spec-

trometer. The cylindrical device utilizes micro-structured neutron detectors encased in

polyethylene moderator to identify sources based on energy spectrum. Sources are iden-

tified by comparison of measured detector responses to predetermined detector response

templates that are unique to each neutron source. The design of a shadow shield to account

for room scattered neutrons was investigated as well. For sufficient source strength in a

void, the optimal geometric design was able to detect all sources in 1000 trials, where each

trial consists of simulated detector responses from 11 unique sources. When room scatter

from a concrete floor was considered, the shadow shield corrected responses were capable of

correctly identifying 96.4% of the simulated sources in 1000 trials using the same templates.

In addition to spectrometer simulations, a set of neutron multiplicity experiments from a

plutonium sphere with various reflector thicknesses were simulated. Perturbations to nuclear

data were made to correct a known discrepancy between multiplicity distributions generated

from MCNP simulations and experimental data. Energy-dependent perturbations to the

total number of mean neutrons per fission ν of 239Pu ENDF/B-VII.1 data were analyzed.

Perturbations were made using random samples, correlated with corresponding covariance

data. Out of 500 unique samples, the best-case ν data reduced the average deviation in the

mean of multiplicity distributions between simulation and experiment to 4.32% from 6.73%

for the original data; the average deviation in the second moment was reduced from 13.87%

to 8.74%. The best-case ν data preserved keff with a root-mean-square deviation (RMSD) of

0.51% for the 36 Pu cases in the MCNP validation suite, which is comparable to the 0.49%

RMSD produced using the original nuclear data. Fractional shifts to microscopic cross

sections were performed and multiplicity and criticality results compared. A 1.5% decrease

in fission cross section was able to correct the discrepancy in multiplicity distributions greater

than the ν perturbations but without preserving keff .
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Chapter 1

Introduction

This thesis discusses results of simulations related to two unique applications of neutron

measurements: neutron spectrometry and multiplicity counting. Chapter 2 provides the

necessary statistics and theory of radiation to understand the computations and modeling

for the spectrometer and nuclear data studies. A summary of previous methods and designs

in neutron spectrometry are given in Chapter 3. Chapter 4 focuses on the spectrometer design

methodology for this work, as well as presenting optimization results. Finally, nuclear data

perturbations and simulated multiplicity distribution results are discussed in Chapter 5.

1.1 A Neutron Source Identification Spectrometer

As nuclear safeguards become increasingly important, a method for quickly discriminating

among different types of neutron sources is vital. The measurement and rapid identification

of the distribution of the kinetic energy of neutrons has seen broad study and application

since the 1960s with the invention of portable neutron spectrometers. The primary utility

of neutron spectrometry has been the ability to estimate the dose experienced by radiation

workers. Neutron spectrometry has seen resent resurgence in the field of nuclear safeguards.

The control and identification of special nuclear material is important for global security,

and the ability to quantify fissionable materials is crucial for fuel reprocessing and modern

reactor designs to be viable. Research in design of spectrometers for dosimetry has provided

a framework of methods for determining neutron energy spectra based on the theory of

unfolding the original spectra from a set of energy-dependant measurements. However,

unfolding is a complex, subjective, and generally unstable numerical process. A spectrometer

that does not depend on unfolding neutron spectra has been developed at Kansas State

University. The device and methodology has been demonstrated to be effective at identifying

neutron sources based on direct analysis of energy-dependent measurements [Cooper et al.,
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2011]. This neutron source identification spectrometer is optimized and evaluated via Monte

Carlo simulations in this work.

The neutron source identification spectrometer design in this thesis uses micro-structured

semiconductor neutron detectors (MSNDs) described by Shultis and McGregor [2009]. These

MSNDs are efficient at detecting thermal-energy neutrons (with kinetic energy near 0.025

eV) and are capable of 43% efficiency through summation of the output from two stacked, off-

set detection volumes [Bellinger et al., 2010]. The thickness of the detection volume (parallel

to the direction of irradiation) for a double-stacked device is around 0.1 cm deep, a desir-

able feature for creating a compact spectrometer. The cross sectional area of the devices

can be increased to the necessary areas by placing multiple MSNDs together and summing

their outputs. In addition to the small thickness and high efficiency, the semiconductor de-

tectors are made primarily of silicon, which has a relatively low neutron interaction cross

section. This results in detectors that cause minimal perturbance of the neutron field at

non-thermal energies. The low perturbance allows multiple detectors to be placed within

the same moderator and provide multiple energy-dependent data points from a single geo-

metric configuration and measurement. Not needing multiple time-consuming measurements

significantly improves the overall speed of source identification.

The geometry of the spectrometer consists of an array of MSNDs placed along the axis of a

cylinder of high density polyethylene (HDPE) moderator. A sheet of Cd is placed behind each

detector to prevent backscattered thermal neutrons from being detected. Figure 1.1 depicts

the basic geometric features of a spectrometer consisting of 11 thermal neutron detectors;

Detail View A provides an illustration of materials and possible neutron trajectories through

the spectrometer. As neutrons travel through the moderator, they lose kinetic energy through

scattering collisions. If a neutron slows to thermal energies within a detection volume, the

probability of absorption and identification at position is extremely high. For neutrons with

higher initial energies, more scattering collisions are required to reach thermal energy, on

average. This leads to higher energy neutrons having a higher probability of being absorbed

at deeper positions in the spectrometer. Thus, each detector position has a particular energy

of incident neutrons on the spectrometer that it is most likely to detect. It is noted that

because of the stochastic behavior of neutron scattering, each detector is sensitive to a range

of energies, i.e., a fast, mono-energetic source would produce counts in multiple detectors.

The sheets of Cd help to limit the range of energies each detector is sensitive to by preventing

backscattered thermal neutrons from entering detector volumes from the back.

Because each detector position is sensitive to a particular energy, with some distribution

about that energy, the set of detector responses are unique for a particular energy distribution

of incident neutrons. Because all bare neutron sources have a particular energy distribution,
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Fig. 1.1: Cylindrical neutron spectrometer with illustration of materials and possible neutron
paths
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the expected response in each detector per incident neutron is unique to a source. By

normalizing the responses in all of the responses to one detector position, the dependence

on source strength can be removed. Thus, if room scatter can be accounted for, a library

of normalized responses for different sources can be created. An experimental measured

response is then compared to the different responses in the library to identify the most likely

source. The source library can be created from either experimental measurements or accurate

simulations. Comparison of a measured response to the library templates is computationally

very efficient and simple, which leads to rapid source identification by a low-power on-board

microprocessor; post-processing of measured data and user input required for unfolding is

not needed with this template matching method.

First, this work develops a method to quantify the quality of a neutron spectrometer via

an objective function based on the statistical confidence of neutron source identifications.

This objective function is then applied to the spectrometer through many Monte Carlo

simulations to optimize the geometry of the device. The Monte Carlo N-Particle (MCNP5)

code was used for these simulations. Simulation studies are also performed to determine

the design and effect of location of a shadow shield to account for roomshine. The shadow

shield is a known method for calibrating neutron spectrometry experiments that attempts to

remove the effect of room-scattered neutrons. Remarks and considerations for future work

for the source identification spectrometer are then discussed.

1.2 Simulations of Multiplicity Distributions

The second main focus of this work applies MCNP simulations to a different field of neutron

measurements. In particular, use of time dependent data from neutron measurements to

construct multiplicity distributions is investigated. A neutron multiplicity distribution de-

picts the probability of a particular number of neutrons created within a multiplying system

being measured over some fixed short amount of time, and is discussed more thoroughly in

Chapter 5. Multiplicity distributions are based on coincident events, and they are used to

quantify neutron multiplication parameters in a system. Multiplicity distributions have seen

their main application in the passive assay of subcritical multiplying systems, specifically

quantifying the fissionable material in a device. The validation of simulation tools for mod-

eling such measurements is of great importance to nuclear safeguards and control of special

nuclear materials. Monte Carlo modeling is known to inaccurately recreate a particular set of

relatively simple multiplicity experiments of reflected plutonium spheres, consisting mostly

of the isotope 239Pu [Mattingly, 2009]. The cause of this discrepancy has been narrowed

down to the nuclear data [Miller et al., 2010].
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Investigation of these experiments has an arguably more important auxiliary benefit.

When nuclear data are tabulated for use in simulation codes, there are adjustments performed

to the original experimental data with the interest of matching the results of benchmark

criticality experiments. The data are not well validated against subcritical experiments.

The results in this work demonstrate that subcritical results need to be considered when

nuclear data evaluations are performed to create simulation tools that can correctly model

such systems. The framework for the work herein can be applied to develop a set of data for

a specific task, in this case highly multiplying, fast, subcritical systems.

For this work, perturbations are made to nuclear data to correct the discrepancy between

experimental and simulated multiplicity experiments. The focus of perturbations is correctly

preserving statistical correlations and uncertainties from experimental measurements of the

nuclear data. The primary nuclear data type of interest is the average number of neutrons

produced per fission ν. Energy-dependent perturbations are made to help conserve the

overall balance of neutrons in the system, as increases at one energy may be compensated

by decreases at another energy. Additionally, energy-averaged shifts to cross sections are

analyzed to determine the sensitivity of the system to ν , relative to cross section alterations.

In Chapter 5, a brief overview of neutron multiplicity distributions is given. Then,

the experiments to be analyzed and previous simulation work are described. The methods

for generating correlated, perturbed nuclear data and comparing the results of multiplicity

simulations for the perturbed data sets are discussed. Perturbations were made to nuclear

data for 239Pu and simulations of multiplicity distributions performed to determine the effect

and correction caused by the individual perturbations. Simulations were performed using

the sets of perturbed data as the input for the MCNP5 code with special subroutines for

studying subcritical systems. The reflected plutonium spheres are modeled explicitly and

neutron multiplicity distributions are generated using a post-processing script. Results are

discussed and compared.
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Chapter 2

Theory

2.1 Relevant Probability and Statistics

2.1.1 Random Variables and Probability Distribution Functions

A continuous random variable is a variable that maps the occurrence of a particular event

onto a set of real numbers, in a one-to-one manner [Hogg et al., 2013]. The value of the

random variable is in general unknown until a realization (i.e., an observation or sampling) of

the variable occurs. Typically upper-case characters are used to indicate a random variable,

whereas lower-case is used to indicate the value of a sample on the variable. It is noted that

samples are a random variable themselves until realization occurs [Hogg et al., 2013], but in

this work samples refer to the value of realizations on a random variable. The probability

of the random variable taking on a particular value can be known in advance and is defined

using probability distribution functions. The cumulative distribution function (CDF) is a

non-decreasing, positive function F (x) whose values lie between 0 and 1. For a random

variable X with CDF F (x), the value of F (x) represents the probability that X will have a

value less than or equal to x (in standard notation F (x) = P (X ≤ x)). Related to the CDF,

is the probability density function (PDF). The PDF f(x) is defined as

f(x) =
dF (X)

dx
. (2.1)

Explicitly, the value f(x) dx represents the probability of finding X in dx about x. Therefore,

normalization requires ∫ ∞
−∞

f(x) dx = 1. (2.2)
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From the above definitions, it is straightforward that the PDF can be used to compute the

probability of finding X between a and b, where a < b and a, b ∈ SX , as

P (a < x < b) =

∫ b

a

f(x) dx. (2.3)

It is noted that the PDF and CDF are defined for all real numbers by definition, even though

the random variable may be defined for some subset of all real numbers. The support (SX

above) of a random variable is defined as the points in the domain of a random variable for

which the probability is positive; in this work the supports of random variables are given to

identify their domain; it is assumed the PDF is zero elsewhere. The discussion in this section

is for continuous random variables but can be easily extended to discrete random variables,

as discussed in literature [Hogg et al., 2013; Shultis and Dunn, 2011].

2.1.2 Expectation Values and Moments

An expectation value for a function g(x) is defined as

E[g(x)] =

∫ ∞
−∞

g(x)f(x) dx, (2.4)

where f(x) is the PDF for the random variable X. The expected value of a function rep-

resents the mean, or average, value of the function that would be calculated using repeated

observed values of x. Some special expectations are useful to define the shape and behavior

of a distributions, in particular the moments and their combinations. The n-th moment of

a PDF is defined as

Mn = E(xn) =

∫ ∞
−∞

xn, f(x) dx. (2.5)

The first moment is the mean value of the random variable X, notated as µ. A particularly

useful combination of moments is defined as the variance, σ2, which can be shown to be [Hogg

et al., 2013]

σ2 =

∫ ∞
−∞

(x− µ)2 f(x) dx = M2 − (M1)2. (2.6)

The square root of the variance is defined as the standard deviation. The standard deviation

is useful in defining statistical confidence intervals about the mean.
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2.1.3 Covariance and Correlation Matrices

Consider a set of N dependent random variables Xi : i = 1, 2, . . . , N . The covariance

between two of any variables in this set, Xi and Xj, is

Cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj). (2.7)

From the above definition of variance, Cov(Xi, Xi) = σ2(i). From the covariance between

each all pairs of terms, a covariance matrix Σ is formed as

Σij = Cov(Xi, Xj) : i = 1, 2, . . . , N ; j = 1, 2, . . . , N. (2.8)

The syntax here is Σij is the matrix element of the i-th row and j-th column of a matrix Σ.

Directly related to a covariance matrix Σ is its correlation matrix, C, with elements, known

as correlation coefficients,

Cij =
Σij√
ΣiiΣjj

: i = 1, 2, . . . , N ; j = 1, 2, . . . , N. (2.9)

The correlation matrix provides a measure of the interdependence between the i-th and j-th

variable, i.e., on average if the value of one variable is observed, the correlation coefficient

provides the expected behavior of the second. All values of the correlation matrix are between

-1 and 1. A negative value indicates that if the probability of observing large values of the i-

th variable is high, then the second variable is expected to be small, on average; the converse

is also true. Positive correlation coefficients indicate that if the probability of observing

a large value of a variable is high, then the probability of observing large values of the

second variable is also high; again, the converse is also true. The magnitudes of the values

indicate the strength of the correlation, with the diagonal terms being the strongest at 1

(the correlation of a variable with itself is perfect). A set of independent variables would

have zero for all off-diagonal terms of C.

2.1.4 Sample Mean and Variance

Often, the exact moments of a distribution (population moments) are unknown because the

CDF and PDF can be complicated or unknown; population moments can also be undefined

if the integrals in the previous section diverge. However, samples from a distribution can

be used to estimate the population moments. Here, a set of samples is formally a set of

independent, random observations of a random variable with some distribution. The sample

mean X is simply the average of a set of N discrete samples {xi : i = 1, 2, . . . , N} on the
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random variable X with PDF f(x), i.e.,

x =
1

N

N∑
i=1

xi. (2.10)

Similarly, the sample variance s2 is given by

s2 =
1

N − 1

N∑
i=1

(xi − x)2. (2.11)

The subtraction of one from N in the above equation comes as a result of a loss of a

degree of freedom by approximating the population mean with the sample mean [Shultis

and Dunn, 2011]. The sample mean and variance can be shown to be unbiased estimates of

the population mean and variance, respectively [Hogg et al., 2013]. An estimator T is an

unbiased estimator of Y if E(T ) = Y ; an estimate is just the realization of an estimator T .

It can also be shown that as N →∞, the sample mean and variance converge in probability

to the population mean and variance [Hogg et al., 2013]. It is noted that the notation for

sample and population statistics is poor (particularly for the variance), where population

statistics are discussed and notated, where sample statistics are actually applied.

2.1.5 Useful Distributions

Several distributions are used throughout this work. The PDFs for these distributions are

stated here with justification for application. In all cases, the random variable of interest is

X with PDF f(x; θ), where θ is one or more distribution parameters required to fully define

the distribution. Derivations, sampling methods, and other relations for these distributions

can be found in literature [Shultis and Dunn, 2011; Press et al., 1992].

Binomial Distribution

The binomial distribution has application for a sequence of discreet, independent random

trials which have a binomial outcome, i.e., either the outcome occurs or does not occur, with

the same probability of success p for each trial. Radiation counting measurements have a

binary outcome, i.e., either a count was made or not, so the number of counts observed in a

detector can be modeled as a binomial distributed variable. The number of successes X in

N independent trials, with probability of success in each trial p, is described as

f(x; p,N) =
N !

(N − x)!x!
px(1− p)N−x x = 0, 1, . . . , N. (2.12)
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Poisson Distribution

The Poisson distribution is a discreet distribution that is useful for describing independent,

identical trials that have a low probability of success in each trial, where the number of trials is

large (usually the number of trials occurs over some relatively large, fixed time interval). For

a binomial distributed variable, if the value of N is very large with a small value of p, then the

Poisson distribution is a good approximation for the binomial distribution; the approximation

is applicable for N & 20, provided that Np < 5 [Shultis and Dunn, 2011]. Radiation counting

measurements can be appropriately modeled as a Poisson process [Tsoulfanidis, 1995]. The

distribution is fully-defined by the mean, µ, of the distribution, which is also the rate of

successful trials occurring. The number of successful trials X has the distribution:

f(x;µ) =
µxe−µ

x!
x = 0, 1, . . . . (2.13)

Unit Uniform Distribution

The unit uniform distribution is for a continuous random variable X between 0 and 1 ex-

clusive, with equal probability of occurrence at each X. The unit uniform distribution has

utility in sampling pseudo-random numbers from other distributions. The unit uniform

distribution has no distribution parameters and PDF

f(x) = 1 x ∈ (0, 1). (2.14)

Chi-squared Distribution

The χ2 distribution is for continuous random variables X defined over (0,∞). The distribu-

tion has application in optimization schemes and hypothesis testing. The degrees of freedom,

r, is the mean of X and used to fully define the distribution as

f(x; r) =
1

Γ(r/2)2r/2
x

r/2−1 e−x/2 x ∈ (0,∞), (2.15)

where Γ is the standard gamma function [Hogg et al., 2013]; for integers α, Γ(α) = (α− 1)!.

Gaussian (Normal) Distribution

The Gaussian (normal) distribution is for continuous random variables X ∈ (∞,∞). Al-

though it has many applications, its primary use in this work is for confidence intervals

based on the central limit theorem, as discussed in Hogg et al. [2013]. It can also used to

approximate binomial and Poisson distributions accurately in some cases. The distribution
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is fully-defined by its mean µ and variance σ2, notated as N(µ, σ2), with PDF

f(x;µ, σ2) =
1√
2πσ

e−(µ−N)2/(2σ2) x ∈ (−∞,∞). (2.16)

The multivariate normal distribution is more complicated, but can be used to fully described

the distribution of multiple variables which have normal distributions with different means,

variances, and correlation between variables; the mean of each variable and the correlation

matrix fully defines the multivariate normal distribution.

2.1.6 Generating Random Samples from a Distribution

In any Monte Carlo simulation, it is necessary to sample random numbers from various

distributions. There have been many algorithms developed for efficiently sampling pseudo-

random numbers from a unit uniform distribution [Shultis and Dunn, 2011; Press et al.,

1992]. The unit uniform distribution for a random variable U has a PDF defined as fU(u) =

1, u ∈ [0, 1]. The CDF of this distribution is given by FU(u) = u, u ∈ [0, 1]. Since numbers

can efficiently be sampled from this distribution, it is useful to know the transformation

between random variables that allows for a variable with a uniform distribution to take on

any other distribution.

To determine the transformation, consider a continuous random variable X defined to be

the transformation X = F−1(U), where F−1(y) is the solution to the equation F (x) = y, for

any continuous CDF F (x). The goal is to determine the distribution of X, i.e. FX(x), and

if it is F (X), then the transformation performs the desired goal. Because F is a CDF, it

is a monotonically non-decreasing function between 0 and 1, therefore the relation between

X and U is one-to-one. Transformations between variables without a one-to-one relation

require regions of the support to be analyzed individually, as demonstrated in [Hogg et al.,

2013]. Since the transformation is one-to-one, the distribution of X is given by

FX(x) = P (X ≤ x) = P (F−1(U) ≤ x). (2.17)

Applying F to both sides of the inequality in the right most term yields

FX(x) = P (F [F−1(U)] ≤ F (x)) = P (U ≤ F (x)). (2.18)

But the probability of U being less than some value is simply the CDF of U . The CDF of

U is FU(u) = u, therefore:

FX(x) = P (U ≤ F (x)) = FU [F (X)] = F (X). (2.19)
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Hence, the distribution of X is the CDF of interest F , which had no constraints other

than continuity. Since samples from a distribution are distributed with that distribution,

samples from the unit uniform distribution can be transformed to create samples from an-

other distribution by simply applying the inverse CDF. There are many efficient sampling

techniques developed for when the inverse does not exist [Hogg et al., 2013; Shultis and

Dunn, 2011].

2.1.7 Generating a Set of Correlated Random Samples

Normally-distributed, independent random variables, and samples of them, can be correlated

using data from a corresponding covariance matrix (with corresponding correlation matrix).

In general, to correlate a vector of normally distributed random variables using a N × N

correlation matrix C, a decomposition of the form [Rousseuw and Molenberghs, 1993]

VVT = C. (2.20)

is needed. Here V, with transpose VT , is any matrix that obeys the above equation, and C

is the correlation matrix associated with the set of data that is being sampled.

Once a matrix V is found, a vector R of n independent, normally-distributed random

numbers is correlated via [Rousseuw and Molenberghs, 1993]

R̃ = VR. (2.21)

where R̃ is the vector of correlated random numbers. The vector R is sampled from the

standard normal distribution, i.e., N(0, 1), and then modified to match the desired mean

and variance after correlation [Rousseuw and Molenberghs, 1993].

There are multiple types of decomposition that produce a V that is valid for Eq. (2.20).

Two common decompositions for correlated sampling are Cholesky and eigenvalue decom-

positions; the latter is more robust. For the Cholesky decomposition of a matrix C, V in

Eq. (2.21) is a lower-triangular (or symmetric upper-triangular) matrix. In an eigenvalue

decomposition of a matrix C, V of Eq. (2.21) takes the form

V = QD. (2.22)

Here, Q is a matrix where the j-th column vector represents the orthonormal eigenvector

corresponding to the j-th eigenvalue, λj, of the matrix C. The matrix D is a diagonal

matrix with the j-th diagonal element Djj =
√
λj. The eigenvalue decomposition may

require orthogonalization after decomposition if C contains degenerate (repeated) eigenval-
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ues [Rousseuw and Molenberghs, 1993]. For an intuitive understanding of how these methods

sample from the correlation matrix, consider that the matrix Q is an orthonormal basis for

C. Thus, the multiplication VR is transforming the vector R into the basis of Q, such that

the distribution of variables in R̃ is now the multivariate normal distribution with correlation

matrix C.

Cholesky decomposition is only valid for symmetric, positive-definite (PD) matrices, but

the eigenvalue decomposition described above is valid for (at least) positive-semidefinite

(PSD) matrices [Rousseuw and Molenberghs, 1993]. A matrix A is PD if XTAX > 0, for

all real vectors X; the matrix A is PSD if XTAX ≥ 0. For the eigenvalue decomposition, if

C is non-PSD the eigenvalues will be negative, resulting in non-real elements of D. A true

covariance matrix is PD, but the statistical techniques used to estimate covariance matrices

from observed data can lead to PSD and non-PSD matrices [Rousseuw and Molenberghs,

1993]. A fix-up method can be applied to correct non-PSD matrices using the eigenvalue

decomposition method. The fix-up method generates a modified C that is PSD given by

C ′ = (QD ′)(QD ′)
T
. (2.23)

In the above equation, D′ is a diagonal matrix with matrix elements: D′jj =
√
|λj|. Q is the

same orthonormal eigenvector matrix from the initial decomposition in Eq. (2.22).1

The now PSD matrix C ′ is then transformed into a correlation matrix such that the

diagonal elements are all unity, i.e.,

C̃ij =
C ′ij√
C ′ii C

′
jj

(2.24)

The new correlation matrix, C̃, has different off-diagonal (co-relation) values than the original

correlation matrix. However, for a C with negative eigenvalues relatively small in magnitude,

the new off-diagonal elements change minimally from the original values. The new matrix

C̃ can then be decomposed to find a V for sampling.

2.1.8 Error Propagation Formula

It is often of interest to determine the uncertainty, stochastic or systematic, in a computed

result. The uncertainty in a computed result comes directly from the uncertainty in the

1Although the elements of D in the original decomposition are complex, numerical eigenvalue decom-
position methods (e.g. those in Press et al. [1992]) determine the eigenvalues (i.e., λi = (DTD)ii) and
eigenvectors of a matrix, rather than the decomposition given in Eq. (2.22). Thus, the matrix of eigenvectors
Q and eigenvalues can be obtained from a non-PSD matrix.
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observed values of the variables used to calculate it. If a functional relation between the

observed variables and the final result is known, then the error propagation equation provides

a method of approximating the uncertainties in the result, based on the independent variables

the result depends on [Dunn, 2005].

The following derivation of the general error propagation equation is for independent

distributed statistical errors, but the result can be directly applied to independent systematic

errors; the requirement in both cases is that the observed variables are generally distributed

near the observed values (e.g., normally distributed) [Dunn, 2005].

Consider a result f that is a function of a vector of n independent random variables

X = {Xi : i = 1, 2, . . . , n}, i.e., f = f(X). A random variable is simply a variable whose

value is unknown before observation and follows some distribution. Although there are some

special cases [Dunn, 2005], in general the exact relation between uncertainties of independent

observed variables and a functional result is unknown. An approximation is introduced by

expanding f as a first order Taylor polynomial [Dunn, 2005], i.e.,

f(X) ≈ f(Xobs) +
n∑
i=1

∂f

∂Xi

(Xi −Xi,obs). (2.25)

In the above equation, the vector Xobs represents the observed values of each variable Xi

used to compute the result f . For a linear combination of independent random variables,

T =
∑n

i=1 aiYi, with combination coefficients {ai}, the variance can be shown to be [Hogg

et al., 2013]

σ2(T ) =
n∑
i=1

a2
iσ

2(Yi) (2.26)

With the assumption all variances are defined.

In Eq. (2.25), f(X) is written as a linear combination with ai = ∂f/∂Xi and a constant

term f(Xobs). The constant term does not contribute to the variance σ2[f(X)]. Combining

these results with Eq. (2.26) yields the result for any X near Xobs (to first order):

σ(f) =

√(
∂f

∂X1

σ(X1)

)2

+

(
∂f

∂X2

σ(X2)

)2

+ · · ·+
(
∂f

∂Xn

σ(Xn)

)2

, (2.27)

where the square root has been taken to yield the standard deviation of f , σ(f), about

the observed value Xobs. The above equation is referred to as the general formula for error

propagation and can be applied to determine the uncertainty about any observed value; lower

case variables have been used to indicate that this result applies to any observed variables,

not exclusively to stochastic errors. The truncation error introduced by the first order Taylor
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approximation is relatively small because the uncertainties are generally assumed to be small.

This approximation may be very poor, depending on the functional form of f [Taylor, 1997].

2.1.9 χ2 Goodness-of-Fit Statistic

A chi-squared goodness-of-fit statistic can be used to compare the accuracy of a set of

statistical observed data to some reference set of data (e.g. an exact solution or experimental

data). A statistic is simply a function of a set of random samples on random variables that

provides information about those random variables [Hogg et al., 2013]. Consider the random

variable Y specified as

Y =
N∑
i=1

(
Xi − µi
σi

)2

, (2.28)

where µi and σi are respectively the mean and variance of the i-th random variable Xi.

Random samples of the random variable Y are defined as the χ2 goodness-of-fit statistic. If

the set of n random variables {Xi : i = 1, 2, . . . , N} are normally distributed, i.e., Xi ∼
N(µi, σ

2
i ), then Y has a χ2 distribution with n degrees of freedom (labeled as χ2(n)) [Hogg

et al., 2013]. The set of random variables {Xi} will take on a χ2 distribution for various

other distributions of Xi as well.

An approximate chi-squared goodness-of-fit statistic can be used to compare the accuracy

of a set of statistical observed data to some reference set of data (e.g. an analytical solution,

expected value, or experimental data). The true mean and variance of the distribution may

not be known and there may be statistical uncertainty in the estimated mean that needs to be

accounted for as well. To account for these statistical uncertainites one uses the chi-squared

statistic

χ2 =
N∑
i=1

(Ri − Si)2

σ2(Ri) + σ2(Si)
, (2.29)

where Ri and Si are the observed and reference value of the i-th of N measurements, with

their respective sample variances σ2(Ri) and σ2(Si). The two sample variances may be

approximated as the square of the standard errors of Ri and Si, respectively. The value

of χ2 gives a measure of the accuracy of each observed data point as compared to the

corresponding reference data point, weighted by the uncertainty in each. For comparing the

quality of unique sets of observed data (or multiple sets of reference data), the set with the

lowest χ2 value produces a result that is closest to the reference measurements.

Application of the standard error propagation formula and ignoring the variance of the
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variances, the standard error for χ2, σ(χ2), is given by

σ( χ2) = 2
√
χ2. (2.30)

The above equation is used to determine if sets of observed data whose chi-squared values

are near each other produce distinguishable results. It is of note that this is not the true

variance of the statistic, but an approximation which can be very poor depending on the

functional behavior of the values of Ri and Si.

A reduced chi squared value can also be used for goodness of fit tests. The reduced

chi-squared value, χ2
red, is given as

χ2
red =

χ2

η
. (2.31)

Here η is the number of degrees of freedom and the remaining variables are as before. The

approximate uncertainty in χ2
red is similar for χ2, i.e.,

σ( χ2
red) = 2

√
χ2
red

η
. (2.32)

The utility of the reduced chi-squared value is that it normalizes for the number of data

points. The normalization allows for a comparison to multiple sets of data, allowing for each

set of data to carry equal weight in the comparison. It is noted that a χ2
red statistic is not

distributed as χ2(1), as might be expected [Hogg et al., 2013].

2.2 Nuclear Data and Radiation Interactions

2.2.1 Attenuation of Neutral Particles

Consider a uniform beam of neutrons I0 (n cm−2 ) incident upon an infinite slab of an

isotropic medium, as depicted in Fig. 2.1. The total probability of interaction per unit

differential length is defined as the macroscopic cross section, Σt (cm−1). The probability of a

neutron interacting in a differential pathlength dx is Σt dx [Shultis and Dunn, 2011]. Defining

x to be the coordinate along the transverse axis of the slab, the intensity of uncollided

neutrons I0(x) at a distance x into the slab is of interest. The rate of change of I0(x) with

respect to x at some value of x is proportional to the amount of uncollided particles at x,

therefore

dI0(x)

dx
= −P (Interaction in dx) ∗ I0(x) = −ΣtI

0(x). (2.33)
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Fig. 2.1: Neutrons incident upon an infinite slab of thickness T .

The solution to the above differential equation yields

I0(x) = I0e
−Σtx. (2.34)

Therefore, the intensity of uncollided neutrons is attenuated exponentially. The PDF for

the probability of interacting at x is easily shown to be f(x) = Σte
−Σt x [Shultis and Dunn,

2011]. The probability of a neutron interacting in the slab is thus

P (Interaction) = 1− e−Σt T . (2.35)

2.2.2 Microscopic Cross Section

The primary form of interaction for neutrons is with the nucleus of atoms in the medium.

The rate of interaction per differential length, Σt above, is proportional to the density of

atoms. The density of atoms per unit volume (or number density) N for a medium composed

of a single elemental isotope is given by

N =
ρNa

A , (2.36)

where Na is Avogadro’s number, ρ is the mass density, and A is the atomic weight of the
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element. With the above definition, the definition of Σt becomes

Σt ∝ N = σtN. (2.37)

The proportionality constant σt (cm2) is defined as the microscopic cross section and in-

dependent of N . The value of σt represents the total probability of interaction per unit

differential path length, normalized to a single target atom [Shultis and Faw, 2000]. Because

the values of σ are very small, the unit of barns is typically used, defined as 1b = 10−24cm2.

For an isotropic medium, the microscopic cross section is typically a function of the energy of

neutron and the particular isotope of nuclei present. In general, cross sections are relatively

larger at lower energies.

Cross sections are typically tabulated for each fundamental type of interaction, and the

occurrence of types of interactions are mutually exclusive events, therefore

σt =
n∑
i=1

σi, (2.38)

where σi is the cross section for the i-th of n types of interactions. The main interactions

for neutrons are absorption, fission, and elastic and inelastic scattering, which are discussed

thoroughly in [Shultis and Faw, 2000]. The terminology of absorption and capture can vary in

literature. Often absorption includes the fission and capture cross section, whereas capture

usually refers to (n, γ) reaction; the notation is target nucleus(incident particle, outgoing

particle)resulting nucleus, where the two nuclei are often omitted in a general case. For

clarity, herein neutron capture cross section is used to refer to any interaction in which a

neutron is absorbed without reemission of any neutrons (sometimes called a removal cross

section), i.e. σc = σn,γ + σn,p + σn,α + · · · .
For a composite medium of isotopes, the total macroscopic cross section is given by

Σt =

niso∑
j=1

Njσt, j, (2.39)

where the subscript j represents the j-th of niso isotopes.

2.2.3 Neutron Flux Density

An important property used to quantify a field of neutrons in a medium is the neutron

fluence. Consider a hypothetical sphere of volume ∆V with a field of neutrons traversing

the volume in any direction over some time t. The neutron fluence is defined as [Shultis and
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Faw, 2000]

Φ = lim
∆V→∞

[∑
i si

∆V

]
, (2.40)

where si is the path length traversed through the volume by the i-th neutron track. In an

alternative definition, the neutron fluence (units of cm−2) is the number of particles that

have traversed a sphere of differential cross-sectional area, at a point. The neutron flux

density (abbreviated as flux) is the time-derivative of the fluence, i.e.,

φ =
dΦ(t)

dt
(2.41)

which is constant in time for steady-state applications. In general, the steady-state flux is a

function of neutron energy, direction, and position; respectively, φ = φ(E,Ω, ~r). The scalar

flux is the angular integrated flux, i.e., φ(E,~r), and in many detection application cases

the energy dependence is also integrated out. The flux can be defined alternatively as the

product of the neutron density per volume and the neutron speed. The flux is referring to

the scalar flux throughout this work.

The utility of the neutron flux is to directly calculate the reaction rate density using the

macroscopic cross section. The reaction rate density is the average number of interactions

occurring per unit volume, per unit time. Using the definition of flux as the differential

total path length traversed by all neutrons at a point, per unit time, and the macroscopic

cross section Σt as the differential probability of interaction per unit length, the reaction

rate density is

R(~r) = Σt(~r)φ(~r). (2.42)

Another useful parameter is the neutron current. The neutron current is the first angular

moment of the directionally dependent neutron flux. The current is useful because it provides

a measure of the net number of particles per unit area entering a surface.

2.2.4 Effective Neutron Multiplication Factor

In a system in which fission is present, the criticality of the system can be quantified by the

effective neutron multiplication factor, keff . Here, fission is referring to the process of an

unstable nucleus decomposing into two or more fragments. Fission can occur spontaneously

from unstable isotopes (e.g. 240Pu), or it can be induced by an incident neutron. When fission

occurs, multiple neutrons can be released. Thus, induced fission allowing for a self-sustaining

chains of neutron reactions to occur. Such a system is said to be critical. Quantifying the

sustainability of the population neutrons in a system is the value of keff defined as [Shultis

19



and Faw, 2008]

keff =
# neutrons produced from fission in one generation

# of neutrons removed from the system in preceding generation
. (2.43)

The value of keff is a product of the material properties and geometry of the system. A

system which produces a value of keff of unity is critical. In a critical system, the fission

process allows for the population of neutrons to remain constant in time. If keff > 1, then

the system is said to be supercritical. If keff < 1, the system is subcritical.

2.2.5 Neutrons Released per Fission ν

Typically, when fission occurs, one or more neutrons of varying energy are released from

the excessively energetic fission products, effectively instantaneously. The number of free

neutrons produced per fission, ν, is a vital parameter in modeling systems in which fission

occurs. In this work, ν is used to refer to the mean number of neutrons produced from induced

fission only, as it is the main interest. It is also noted that typically ν is divided into prompt

(induced fission) and delayed (fission fragments releasing neutrons through radioactive decay

at a later time) components. For this work, ν is referring to the sum of the prompt and

delayed neutrons, i.e., the total number of neutrons released per fission.

The parameter ν is formally a discrete random variable. The distribution of ν is de-

pendent upon the energy of incident neutron (i.e., ν = ν(E)) and the isotope of the target

nucleus. The distribution of ν(E) at an energy E is in general binomial, but it is known

to be well-approximated by shifted Gaussian distributions [X-5 Monte Carlo Team, 2003].

Typically, the mean of the distribution, ν , and variance σ2 are used to quantify unique dis-

tributions for each energy and isotope. Typical values of ν range from 1-4 for fissile isotopes,

generally increasing with the energy the of incident neutron.

For Monte Carlo simulations that investigate criticality, only sampling of ν(E) is needed

to properly recreate average macroscopic quantities (such as tallies or the neutron multi-

plication factor keff ) [X-5 Monte Carlo Team, 2003]. This is due to the large number of

neutrons present in the system. To sample ν , such criticality simulations typically sample

the integer values that bracket ν(E), such that the mean of the sampled values is ν(E). For

subcritical simulations, the distribution of ν(E) must be more accurately sampled. The typ-

ical sampling method is to sample integer values of ν(E) based on a Gaussian distribution

that properly identifies the distribution of ν(E) for a particular isotope and energy. The

Gaussian distribution has ν(E) as a mean at each energy E, but the value of the variance is

typically a constant for each isotope.
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2.3 Monte Carlo Transport Code

2.3.1 The Monte Carlo Method and MCNP

The Monte Carlo method is a stochastic method, which can be used estimate average values

of physical parameters by simulating realistic behavior of the system of interest. In short, the

Monte Carlo method is to generate a large number of simulated trials (known as histories),

and then look at the average behavior of the histories. For radiation transport, a history

consists of creating and tracking a particle through a medium, using appropriate radiation

physics, until the particle terminates through leakage or absorption. The simulation uses

appropriate probability distributions (based on nuclear data) to simulate interactions and

trajectories of particles. Tallies are used to estimate some aspect of the radiation field.

Tallies are an estimate of the mean of some random variable (e.g. the neutron fluence).

A tally is estimated by taking the average of the contributions to some physical feature of

the neutron field of all particle histories. The statistical error associated with tallies is also

estimated, typically using the sample standard deviation of the tally of interest. The theory

behind the Monte Carlo method is discussed in detail in literature [Shultis and Dunn, 2011].

The majority of raw data in this work are generated from the Monte Carlo N-Particle

(MCNP) code (primarily version 5.1.51). The MCNP code is a general-purpose, fully 3-

dimensional transport code that allows for simulations of coupled neutron, photon, and

charge particle phenomena [X-5 Monte Carlo Team, 2003]. The code contains tabulated

nuclear data for all isotopes of interest. MCNP performs simulations by interpreting user-

created text input files which specify geometry, material properties, and physics and simula-

tion parameters. MCNP uses a Monte Carlo method that is continuous in phase space, i.e.,

particle tracks are continuous in energy, direction, and location. Tallies allow estimates of

the neutron flux, current, and reaction rate densities, as well as their respective statistical

uncertainties. MCNP6 is capable of accurate estimation of charge deposition by charge par-

ticles in a radiation detector. Along with the uncertainty in tallies, MCNP performs a series

of ten statistical tests to determine the statistical validity and convergence of tally scores

and uncertainties. A full description of specific features of the code, as well as an overview

of Monte Carlo modeling of radiation physics, can be found in the manual [X-5 Monte Carlo

Team, 2003].

2.3.2 Non-Analog Variance Reduction in MCNP

Various non-analog simulation techniques are available to reduce the uncertainty in tallies

and to help pass the ten statistical tests without increasing the number of particle histories.
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Several of these techniques used in design of the spectrometer to improve the efficiency of

simulations are discussed here. There are other analog truncation methods (such as particle

energy cut-offs) implemented implicitly, which are straight forward and discussed in Shultis

and Faw [2004].

The basic goal of variance reduction techniques is to decrease the uncertainty in a tally,

without increasing the number of histories. Additionally, variance reduction helps to improve

convergence of the problem and pass the ten statistical tests provided by MCNP. Passing

these tests provides assurance that the central limit theorem (see Shultis and Dunn [2011])

is valid for the tally of interest. When the central theorem is valid, the tally has a Gaussian

distribution with a mean and standard deviation given by the tally’s reported value and

sample standard deviation. To ensure that variance reduction techniques do not introduce

bias into the mean, the techniques must also operate on the so-called weight, or importance,

of the particle history. When tallies sum a property of a particle during a history, the partic-

ular properties are multiplied by the corresponding weight of the particle in the summation.

This prevents biasing of results [X-5 Monte Carlo Team, 2003].

Implicit Capture

Implicit capture is a feature that is turned on by default in MCNP5. When a particle

undergoes an absorption event, rather than terminating the history, the history is continued

with the particle’s weight reduced by a factor equal to the conditional probability of non-

absorption (1− σc/σt). This feature cannot be used in charge deposition simulations, where

the exact location of absorption is of importance [X-5 Monte Carlo Team, 2003].

Cell-Based Splitting

MCNP geometry is divided into contiguous geometric regions known as cells, which have

an importance assigned to them. Non-void cells that are closer to a tally are generally

considered more important to the problem. The importance in these cells can be increased

as the position gets closer to tallies of interest as a form of variance reduction.

If a particle crosses from one cell to another with higher importance, the particle is

divided into n particles with the same velocity as the original particle; the weight of each

new particle is the original particle weight reduced by a factor of 1/n. The factor n is the

ratio of the importance of the cell the particle is entering to the importance of the cell the

particle is exiting. A form of uniform random sampling is performed to produce an integer

number of new histories. If a particle enters a cell with lower importance than its current

cell, then the history is either terminated with a probability proportional to the ratio of the
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importances, or it is continued with the weight increased by a factor equal to the inverse of

the ratio. It is noted that the ratio is independent of the weight of the particle traversing

the surface; it is only dependent upon the two cell importances.

Cell splitting can cause a bias in results by truncating the model if the splitting being

performed is too extreme. As a good rule of thumb, it is ideal to have the number of particles

in each cell to be approximately equal [X-5 Monte Carlo Team, 2003]. It is also important

that adjacent cells should not increase or decrease in importance by more than a factor of 4.

Russian Roulette

Similar to splitting is the Russian roulette technique. Russian roulette is performed to

terminate histories that are very unlikely to contribute to a tally, based on the weight of

the particle. When the weight of a particle drops below a certain threshold value during a

history (the weight is reduced by other variance reduction techniques), the history is either

terminated or continued. The probability of terminating the history is inversely proportional

to weight of the particle. If the history continues, then it is continued with a weight increased

by a factor equal to the inverse of the weight.

Directional Source Biasing

Biasing the emission direction of created source particles can produce very effective results

in MCNP. This is typically useful for isotropic point sources. To illustrate the technique,

consider a point source and a detector in a void. Then, only neutrons traveling directly at

the detector volume would be detected. The remaining histories would terminate without

interacting or contributing to the tally. To improve efficiency, the simulation should only

sample source particles with directions that will contribute to the tally. Assuming some

reference direction is specified, source biasing is typically performed based on the cosine

of the polar angle between the reference and particle emission directions. Emission over

the azimuthal angle as measured from the reference direction is assumed to be isotropic.

To prevent biasing, the weight of each emitted source particle is reduced by the fractional

subtended solid angle. If particles are only emitted between polar angles with cosines between

µmin and µmax, the weights are given by (assuming all particles would otherwise start with

a weight of 1) (µmax−µmin)/2. In other cases, source particles in a particular direction may

be required to back-scatter from a distant wall before reaching the tally. Performing source

biasing in this case introduces modeling truncation error, essentially replacing that region of

the problem with a void. This truncation error may be negligible in many cases to the mean,

but the loss of those rare events will significantly improve the convergence of the problem.
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Chapter 3

Review of Neutron Spectrometry

This chapter reviews current and previous methods for neutron spectrometry. Only portable,

relatively quick discriminating spectrometer designs are of interest, so methods (e.g. time of

flight) used for discerning neutron energies for precise needs are not discussed, but can be

found in the literature [Tsoulfanidis, 1995; Brooks and Klein, 2002]. The general unfolding

problem and solution methods are developed, then designs utilizing this method, as well as

others, are discussed.

3.1 The Unfolding Problem

3.1.1 The Unfolding Equation

The general approach of spectrum unfolding is to identify a source spectrum from a series of

measured responses that represent different unique energy ranges. The general relation for

an unfolding problem for an energy spectrum can be stated as [Tsoulfanidis, 1995]

M(E) =

∫ ∞
0

R(E,E ′)S(E ′) dE ′, (3.1)

where M(E) is the measured distribution function with respect to energy E, S(E ′) is the

distribution of the number of source particles emitted as a function of E ′, and R(E,E ′) is a

kernel that represents the probability an emitted source neutron at energy E ′ is measured at

energy E and is known as the response function. Often response functions are adjusted to

account for dose. The general term dose refers to some measure of the correlation between

biological effect and an observed response based on deposited energy and type of radiation,

as a function of incident particle energy. Although the focus of this work is in identifying the

type of neutron sources based on energy spectrum, most spectrometry designs and research
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focus on estimating radiation dose. The primary difference between unfolding a dose and an

energy spectrum is in the definition of the response functions.

Eq. (3.1) is a Fredholm integral equation of the first kind [Twomey, 1963]. The general

method is to solve for S(E ′), assuming the response function is known via measurement or

simulations, by inverting the measured responses M(E). The function M(E) is generally

not continuous. Rather, discrete values are measured which represent the energy-integrated

response over a certain energy range, i.e.,

M(E) ≈Mi, Ei < E < Ei+1, (3.2)

where

Mi =

∫ Ei+1

Ei

M(E) dE, i = 1, 2, . . . , Ndet. (3.3)

Here Ndet is the number of unique energy-dependent detector measurements. The response

function R(E,E ′) can be determined by experiment or simulation.

The inverse problem of Eq. (3.1) can be discretized by application of some appropriate

numerical quadrature scheme, i.e.,

∞∫
0

f(E ′) dE ′ '
Nerg∑
j=1

wjf(E ′j), (3.4)

where f(E ′) is any continuous function of E ′, and Nerg is the number of discrete energy

groups of the solution. Application of this numerical quadrature to the right hand side

of Eq. (3.1), with the substitution of Eq. (3.3) for M(E), yields the set of linear algebra

equations

Mi =

Nerg∑
j=1

RijSj, i = 1, 2, . . . , Ndet, (3.5)

where R(E,E ′) has been discretized to form a response matrix with elements

Rij = wj

∫ Ei+1

Ei

R(E,Ej) dE, j = 1, 2, . . . , Nerg and i = 1, 2, . . . , Ndet. (3.6)

The desired solution is the discretized source energy spectrum, i.e., Sj = S(Ej) for j =

1, 2, . . . , Nerg. Typically in neutron detection measurements, primarily only thermal neutrons

are detected directly because of higher absorption probabilities in detection materials at lower

energies. Higher energy neutrons are lowered to thermal energies for detection by adding

moderator to the system. Therefore, a unique detector-moderator arrangement is needed for
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each value Mi, so generally the number of measurements is limited.

3.1.2 Regularizing the Set of Algebraic Equations

As neutron energies are typically continuous, inferring a neutron energy spectrum from a

limited number of detector measurements is a difficult problem. For continuous energy

sources, unfolding the discrete measured spectrum usually leads to an underdetermined

system of linear equations (i.e., Nerg > Ndet). An underdetermined problem is one in which

there are more unknowns than equations, which leads to an infinite number of solutions or

no solution. An underdetermined set of equations is an ill-posed problem mathematically.

In the case of unfolding, there are typically an infinite number of solutions so that some a

priori information must be input into the solution method. The additional information is

applied to achieve a unique and realistic (e.g., non-negative) solution.

The general approach of solving an underdetermined system is to regularize the set of

equations. Regularization is a process that introduces assumptions about the solution that

provide additional equations. After regularization, the total number of equations equals the

number of variables, leading to a solvable set of linear equations. The general approach of

regularization is to minimize the expression [Press et al., 1992]

A[S] + λB[S], (3.7)

where S is a column vector containing the desired solution spectrum {Sj : j = 1, 2, . . . , Nerg},
A[S] is a positive functional that measures how well the solution S satisfies Eq. (3.5), and

B[S] is a positive functional that measures how well S satisfies some a priori information

applied to regularize the system. Here, the weighting factor λ is a parameter of the solution.

For increasing values of λ, between 0 and ∞, the solution S(λ) provides a trade-off of the

minimization of A and B. The choice of λ is determined by the user. Although the choice

of λ is subjective, a common choice is to determine λ such that A[S] ensures S agrees with

the values of Mi within one standard deviation, for all i [Press et al., 1992].

The forms of A and B vary with solution method, in some cases leading to non-linear

equations [Press et al., 1992]. A common choice for A is a χ2 goodness-of-fit statistic.

The functional B provides a numerical measure of the smoothness of each of the Sj(E) or

their derivatives. For linear regularization, B = STHS, where H is a smoothing matrix.

The smoothing matrix is chosen such that the functional form of the Sj is assumed (e.g.,

quadratic or cubic). The matrix H applies finite differencing to the derivatives of the Sj

such that the minimization of B produces the desired shape of the solution. The specific

form of smoothing matrices, as well as higher-order and non-linear regularization methods,

26



can be found in [Press et al., 1992].

3.2 Solution Methods

Many methods and computer codes have been developed to regularize equations and un-

fold the source energy spectrum. Often the methods of constraining the solution are semi-

empirical and subjective, requiring the user to have substantial experience. Smoothing of

data after unfolding is often applied [Tsoulfanidis, 1995]. Historically, a constrained linear-

least-squares method was utilized, but suffered from numerical instability [Twomey, 1963].

The linear-least-squares method is a zeroth-order regularization method, i.e., there is no

constraint on the smoothness of the derivatives of the solution [Press et al., 1992]. Itera-

tive solution methods are far more common and have been used and studied extensively.

The class of iterative solution methods involved in underdetermined problems are often nu-

merically instable and computationally demanding (relative to an on-board processor for

real time spectrometry). Also, an estimated solution from the user is typically required,

so the user must have a good estimate of what the source is to begin with. Two of the

more common commercial codes which modern codes have adapted and improved upon are

SPUNIT [Brackenbush, 1983] and BUNKI [Miller, 1993]. Neural-networking and genetic

based algorithm codes have been developed more recently to unfold spectra that have the

potential to be more efficient and portable [Fayegh, 1993; Mukherjee, 2002]. To simplify

the process of unfolding, recently a more user-friendly rendition of SPUNIT has been devel-

oped by Vega-Carrillo et al. [2012], as well as a user interface compilation of unfolding codes

by Sweezy et al. [2002].

Although smoothing of calculated data is generally not desired, it has been shown in

application to improve unfolding results [Tsoulfanidis, 1995]. Data smoothing attempts to

make the spectrum more continuous and physically realistic based on an expected solution

and behavior of the data curve. The general approach to smoothing is to estimate the

expected average behavior of the true spectrum, at some point in the unfolded spectrum,

based on the behavior of surrounding energy points and fitting some form of a polynomial

between those points. This is repeated in a pointwise manner, essentially removing distortion

from statistical noise. A brief overview of smoothing methods can be found in [Grissom and

Koehler, 1971].
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3.3 Neutron Spectrometer Designs

In this section, neutron spectrometer designs are divided into two categories. The first set of

designs are those that use a single energy-averaged measurement to estimate the response or

dose from a multiple-energy neutron field. The second are those which use multiple energy-

dependent observations to calculate the response or dose, typically through unfolding. The

latter are more comparable in application to the design in this work, while the former is

discussed briefly because it is the most commonplace use of neutron spectrometry in study

and application [Thomas and Alevra, 2002].

3.3.1 Single Detector Response Systems

Detection systems used for estimating a dose from a variable energy neutron field via a sin-

gle detector response are the most commonplace application of energy-dependent neutron

data Brooks and Klein [2002]. The Bonner sphere [ICRU, 2001] is the most commonly used

device to estimate neutron dose. The basic design of a Bonner sphere is a thermal neutron de-

tector surrounded by a sphere of polyethylene moderator. The encapsulated detector demon-

strates a similar energy-dependent response function to that of a human phantom [ICRU,

2001]. Thus, a single measurement from a Bonner sphere is directly comparable to the ex-

pected dose experienced by a human in the same neutron field. Many models of spherical

and cylindrical designs have been implemented since Bonner sphere was introduced in 1960,

as discussed by Thomas and Alevra [2002]. Modifications to the design over the last decade

have focused on reducing weight (e.g. the WENDI design [Olsher, 2000] and [Yoshida et al.,

2011]). For neutron dose measurements near high-energy particle accelerators, several recent

designs [Biju et al., 2012; McLean and Justus, 2012; Yoshida et al., 2011] utilize a heavy

metal, e.g. tungsten or zirconium, to convert very high energy neutrons (10 MeV–1 GeV)

into multiple neutrons at lower energies via (n, xn) reactions.

3.3.2 Multiple Detector Response Systems

The historical method of gathering energy dependent information about a neutron field is

through measurements from multiple Bonner spheres of differing diameters, first proposed

in Bramblett [1960]. The Bonner sphere spectrometry (BSS) system is based on taking

individual measurements with a thermal neutron detector surrounded by spheres of vary-

ing radius of polyethylene. The measurements are typically unfolded to estimate either

the energy spectrum or an energy-dependent dose. The number of measurements needed

to identify an energy spectrum correctly may vary, but usually a minimum of around six
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measurements is needed [Thomas and Alevra, 2002]. Additionally, although each sphere is

primarily sensitive to a single range of neutron energies, there is overlap of response func-

tions in different energy ranges (i.e., multiple spheres demonstrate a measurable response

from a monoenergetic source) [Brooks and Klein, 2002]. This is the fundamental difficulty

in unfolding energy spectra from a BSS system. Overall, BSS systems are able to cover a

wider range of energies with a higher efficiency than most other systems, but the unfolded

spectrum has poor energy resolution [Thomas and Alevra, 2002]. A BSS system is not ideal

for identification of special nuclear material because of the requirement of individual device

measurements, large moderator weight, and poor resolution.

An alternative design that has been studied extensively is proton recoil spectrometers.

Proton recoil spectrometers are based on interactions of a neutron with a proton (in the form

of hydrogen within the detection volume), and the measurement of the kinetic energy of the

resulting recoil proton after the collision. As the proton is of similar mass as the neutron,

it can potentially absorb all of the kinetic energy of an interacting neutron. All the data

to determine the spectra can be obtained from a single measurement using a multichannel

analyzer [Flaska and Pozzi, 2007a], rather than the multiple individual measurements needed

with a BSS system. Organic scintillators are favorable for recoil spectrometers because they

allow discrimination of gamma and neutron signal through pulse-shape analysis of the time-

dependent detector output voltage [Brooks and Klein, 2002].

The application of recoil spectrometers for quick source identification is limited by their

relatively small energy range and low efficiency. Proton recoil spectrometers are typically

only effective within the range of 50 keV – 4 MeV [Brooks and Klein, 2002]. PRESCILA is a

current mixed detector design that is capable of unfolding dose estimates over a much wider

energy range [Olsher, 2004]. PRESCILA utilizes a proton recoil and cadmium coated thermal

neutron detector to measure fast, epithermal, and thermal neutrons simultaneously. The

device provides wide-range dose in a single measurement, but demonstrates large inaccuracies

in some energy ranges (as high as 300%) [Caruso et al., 2011].

For the specific application of source identification, a neutron scatter camera using recoil

spectrometers and time of flight measurements has been used to distinguish among different

neutron sources [Brennan et al., 2011]. The device utilizes 32 liquid scintillator sections where

proton recoils are measured and time of flight is coupled to scattering events to determine

the angle and energy of incident neutrons; the resulting spectra are then unfolded. The

device has been shown to identify individual sources correctly, but is not portable and the

required neutron population for identification is not discussed in the article.

A different method utilizing proton recoil which does not depend on energy unfolding has

been studied previously by Flaska and Pozzi [2007b]. The method utilizes a well-developed
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method for discriminating gamma rays from neutrons based on the difference in the magni-

tude and shape of detector output pulse heights, relative to the pulse tails. In addition to

no unfolding, another favorable attribute of the method is the potential ability to identify

sources in the presence of shielding, as the pulse height shapes showed minimal change [Flaska

and Pozzi, 2007a]. Another advantage of this method is that it potentially will require far

fewer neutron counts than other methods. Experiments and simulations have been per-

formed, demonstrating proof of concept. The robustness and applicability of the method

have not been studied beyond identification of 252Cf, americium-beryllium, and americium-

lithium sources.

Some recent spectrometer designs have used multiple detectors encased in a single large

moderator. The appeal of this design is to obtain the efficient, wide-range energy measure-

ments of a BSS system in a single measurement. Having all the detectors in the moderator

and making the measurements simultaneously requires detectors that provide high efficiency

for minimal volume and perturb the neutron flux minimally. A design using three 3He po-

sition sensitive thermal neutron detectors in a sphere of polyethylene was built and tested

by Toyokawa et al. [1997]. The device was able to estimate dose over a wide energy range,

but it was not as accurate as BSS systems (typically underestimating at most energies), and

dose estimates were directionally dependent. A design similar in construction to that of this

work has been implemented which utilizes an array of pixelated detectors embedded in a

cylinder of HDPE by Caruso et al. [2011]. The pixelated detectors consist of a hexagonal

array of high-efficiency perforated neutron detectors [Shultis and McGregor, 2009]. The pix-

elated detectors allow radial information about the neutron field to be measured, making

spectrum unfolding more accurate and efficient. Unfolded dose estimates were able to match

dose curves to within 15% for several sources over a large energy range; these dose estimates

are more accurate than designs currently available utilizing a single detection measurement.
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Chapter 4

Simulations of a Neutron Source

Identification Spectrometer

The focus of this chapter is the optimization and design of a new type of neutron spectrom-

eter [Cooper et al., 2011]. Although it is referred to as a spectrometer, the device discussed

herein identifies the type of a neutron source based on measurements which implicitly de-

pend on the neutron energy spectrum. The actual energy spectrum of a source is never

explicitly determined from the detector measurements. However, any unfolding techniques

used by other spectrometers could, in principle, be applied to measurements made with this

spectrometer.

First, the methodology for the source identification technique used by the spectrometer

being studied is presented. Then, the geometry and the MCNP model is discussed. After

that, methodology and results for optimizing the geometry of the system are given. A method

utilizing a neutron shadow shield to correct measurements for room-scattered neutrons is also

investigated. Finally, closing remarks and suggestions for future design work are given.

4.1 Methodology

4.1.1 Overview

As discussed in Chapter 1, the spectrometer consists of cylindrical sections of HDPE with

high efficiency thermal neutron detectors contained within. A sheet of Cd is placed behind

each detector to reduce the effect of backscattered neutrons. A large library of unique

spectrometer responses, known as templates, is pre-generated. On page 33, Fig. 4.1 plots

several example spectrometer responses for different types of bare neutron sources that were

simulated with the MCNP5 model discussed later in Section 4.2.1; the detector responses
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are given as counts per neutron incident upon the front of the spectrometer. The detector

responses are then normalized by dividing the response at each detector position by the

response in the second detector position, as demonstrated in the figure. The normalization

removes dependence of the detector responses on the intensity of incident neutrons. Each

set of normalized detector responses forms a template. As discussed in Chapter 1, each

template is unique to an incident neutron energy spectra. Ideally, templates are generated

for all possible neutron sources for the particular spectrometry application. To identify a

neutron source, a measured spectrum of detector counts (normalized to the second detector

position) is compared against each template in the library. The template which is most

similar to the measured spectra identifies the most likely neutron neutron source.

Although there are relatively few neutron sources (e.g., AmBe, PuBe, and spontaneous

fission sources) compared to the number of different radioisotopes, the neutron spectra emit-

ted by these sources can be many as a consequence of inert material surrounding the source

material perturbing the original source spectrum. The effect of shielding materials must be

accounted for in application by including templates for different source and shielding com-

binations. The required robustness of templates to account for the effect of shielding on

spectrometer responses is not considered in this work.

4.1.2 Source Identification Based on a FOM

To determine the most likely source for a set of observed detector measurements (herein

referred to as a detector spectrum), the individual measurements at each detector position

are compared to corresponding reference values for different sources. Comparisons are made

using an approximate χ2 statistic as a figure of merit (FOM). As discussed above, the

reference spectra are unique to each neutron source1. For a particular measured spectrum,

a FOM is calculated for each template. The template that produces the lowest FOM is

identified as the most likely source.

For a spectrometer with Ndet detectors irradiated by neutrons with some unknown energy

distribution, a set of measurements {Ci : i = 1, 2, . . . , Ndet} is observed. Here, Ci is the

counts recorded by the detector in the i-th position (position indices are indexed with 1

being nearest the source, and Ndet being farthest from the source). To remove dependence

in these values on the strength of the neutron source under investigation, the set of counts

is normalized such that one of the detector’s counts is unity. Then, the logarithm of each

normalized value is taken to simplify error propagation calculations later on. The set of

1Although only bare neutron sources are considered in this work, templates could account for factors such
as shielding. Thus, a particular energy distribution of incident neutrons is all that is specified by a unique
“neutron source” in this chapter.
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Fig. 4.1: Simulated spectrometer responses from various
sources, followed by the normalized spectra, where the counts
in each detector is divided by the counts in the second detec-
tor. The relative standard error for all data points is < 0.5%.
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observed, normalized detector counts is {Ri : i = 1, 2, . . . , Ndet}, where the response Ri

from the i-th detector is given as

Ri = ln

(
Ci

Cnorm

)
. (4.1)

The value Cnorm is the counts in the chosen normalization position in the spectrometer. The

normalization position used in this work is the second detector location. This position was

chosen because it typically yields the highest count rate.

A set of reference spectra (templates) for each neutron source must be pre-generated for

source identification. A unique template is needed for each of Nsrc neutron sources to be

identified. The set of template responses is

{
Sji : i = 1, 2, . . . , Ndet; j = 1, 2, . . . , Nsrc

}
. (4.2)

Here, Sji is the response from the i-th detector that is expected from the j-th reference

neutron source, given by

Sji = ln

(
r ji
r jnorm

)
, (4.3)

where r ji is the reference detector measurement for the i-th detector, from the j-th neutron

source. Because these detector measurements are normalized, they can be taken as tallies

from a simulation which are normalized to per source neutron. Restated for clarity: the j-th

template contains the spectrum of normalized Ndet responses
{
Sji : i = 1, 2, . . . , Ndet

}
, for

the j-th source.

The approximate χ2 goodness of fit statistic, given by Eq. (2.29), is used to determine

the most likely neutron source for an experimentally observed spectrum. The approximate

χ2 statistic is used as a FOM to determine which template matches the observed responses

most accurately. The FOM for the j-th template is defined as

FOM j =

Ndet∑
i=1

(Ri − Sji )2

σ2(Ri) + σ2(Sji )
. (4.4)

Application of the standard error propagation formula, given in Eq. (2.27), to Ri and Si and

yields the approximate variances

σ2(Ri) =
σ2(Ci)

C2
i

+
σ2(Cnorm)

C2
norm

σ2(Sji ) =
σ2(r ji )(
r ji
)2 +

σ2(r jnorm)(
r jnorm

)2 .

(4.5)
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Because the distribution of observed counts in a detector usually follows a Poisson dis-

tribution, as described in Section 2.1.5, the observed counts is used as the mean of the

Poisson distribution, and the uncertainty for a particular observed measurement is taken as

σ2(Ci) = Ci. When this result is substituted into Eq. (4.5), the uncertainties above reduce

to

σ2(Ri) =
1

Ci
+

1

Cnorm

σ2(S j
i ) =

σ2(r ji )(
r ji
)2 +

σ2(r jnorm)(
r jnorm

)2 .
(4.6)

The lower the value of FOM j, relative to the FOM of other sources, the more accurately

the j-th template spectrum matches the observed spectrum. Thus, the FOM corresponding

to the template which is most likely the source is given by

FOMmin = min {FOM j : j = 1, 2, . . . , Ntemp}, (4.7)

where Ntemp is the number of templates and FOMmin is the minimum of the set of FOM

values. It is noted that typically a system is optimized by increasing the FOM, unlike here,

where lower values are preferred. The FOM nomenclature was chosen to prevent confusion

with χ2 hypothesis testing (as well as other χ2 values in this work) and to emphasize that

the FOM statistic is approximate and not necessarily sampled from a χ2 distribution.

The random variables, from which the values {FOM j} are sampled, follow distributions

that are generally unknown. As a result, the source corresponding to FOM(0) is not nec-

essarily the correct source (particularly when there are insufficient counts in the detectors).

To give a measure of how uncertain a source identification is, an approximate standard devi-

ation of the FOM values is used. From Eq. (2.30), the standard deviation in a FOM value

is approximated as

σ(FOM) = 2
√
FOM. (4.8)

It is of note that Eq. (4.8) is not the true standard deviation; it is an approximation based

on the standard error propagation formula, which predicts the behavior of FOM values from

uncertainty in the counting and template measurements. The error propagation formula uses

a first order Taylor series approximation, which can be very inaccurate for some functions.

It is also noted that because FOM ∈ [0,∞), the confidence intervals are asymmetrical. In

general, standard Gaussian confidence intervals are not applicable here.

The degrees of freedom of the FOM value is Ndet − 1. The reduction by one degree is

because the detector spectra are normalized to the counts in one detector; the values Rnorm

and Snorm will always be 1, and thus that detector never contributes to the FOM .
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4.2 MCNP5 Model

4.2.1 Geometry and Neutron Sources

An MCNP model of the spectrometer described in this chapter was developed to optimize

design parameters. In the base model, the spectrometer is placed in a void. A disk source of

the same radius as the spectrometer irradiates the front of the device. The intensity of the

source is uniform over the frontal area, and all source neutrons are created with direction

equal to the inward normal of the front surface of the spectrometer.

The energy spectrum of the source is dependent on the simulation. The input file used

by automation scripts, labeled source list.txt, containing all of the MCNP format source

energy spectra and can be found in Appendix B on page 144. The spectra are tabulated in

different formats which are described in the MCNP5 manual [X-5 Monte Carlo Team, 2003].

A description of the neutron sources and the nomenclature used to identify the sources in

source list.txt is given in Table 4.1. The literature reference for each of the distributed-energy

neutron sources is also given in Table 4.1.

Table 4.1: Neutron sources used for spectrometer simulations.

Identifier Reference Description

cfd2O Ryan [1998] A 252Cf spontaneous fission source, moderated by
a 30-cm diameter sphere of D2O.

pube Ryan [1998] A 238Pu-Be coupled (α, n) neutron source.

ambe IAEA Report 403 [2001] An Am-Be couple (α, n) neutron source.

cf252mcnp X-5 Monte Carlo Team [2003] A bare 252Cf spontaneous fission source. Energy
spectrum follows a Watt’s distribution [X-5 Monte
Carlo Team, 2003], which is a predefined distribu-
tion in MCNP.

pubers IAEA Report 403 [2001] A 238Pu-Be coupled (α, n) neutron source, with
room scattered neutrons included, softening the
energy spectrum.

triga Ryan [1998] A measured spectrum from a TRIGA reactor.

puo2 Ryan [1998] A measured spectrum from a PuO2 source.

fusion X-5 Monte Carlo Team [2003] A monoenergetic 14.1 MeV source from a 2H +
3H reaction fusion neutron source.

50kev — A 50 keV monoenergetic neutron source.

1mev — A 1 MeV monoenergetic neutron source.

100ev — A 100 eV monoenergetic neutron source.
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The geometry of the spectrometer is created in contiguous cylindrical sections, as depicted

in Fig. 1.1. Each section contains a MSND with printed circuit board (PCB), backed by a

0.1 cm thick cylinder of Cd and a section of HDPE. With the exception of the first detector,

the front and side faces of each MSND is surrounded by HDPE of the previous detector

section. The MSND has a cross sectional area of 2 cm × 2 cm square and a 0.1 cm depth.

The PCB is a slightly larger in area at 2.1× 2.1 cm2, with a depth of 0.157 cm. The number

of sections, the cross-sectional area of the spectrometer, and the thickness of HDPE in each

section is a variable, dependent on the particular simulation. An example input file can be

found in Appendix C on page 176.

4.2.2 Simplified Model of Perforated Neutron Detectors

The neutron spectrometer design being studied uses an array of double-stacked, perforated

Si semiconductor detectors backfilled with LiF. The concept of the double-stacked, straight

trenched devices is shown in Fig. 4.2. Thermal neutrons are absorbed by 6Li through
6Li(n, t)α interactions. The semiconductor volume collects charge from the triton and alpha

ions to create a detection pulse. Modeling the complex structure and charge collection of

the devices would require considerable effort and loss of calculation efficiency. A simplified,

artificial model of the perforated neutron detectors was used that preserves the thermal neu-

tron absorption detection efficiency of the devices. The model was verified, as detailed in

Section 4.2.6.

Heading

Offset Bottom 
Detector

LiF (Neutron 
Absorber)

Top 
Detector

Si (Semiconductor 
Material)

PCB

Thermal Neutron
Streaming 
Neutron

Fig. 4.2: Illustration of section of double-stacked straight-trenched detector concept, not to scale.

In the artificial model, the total volume of the double-stacked detector is unchanged. The

37



detector volume is modeled in MCNP as 6Li at a reduced density that produces the same

probability of absorbing a thermal neutron as the thermal neutron absorption detection effi-

ciency of the device. Here, detection efficiency is defined as the probability of an absorption

event depositing enough charge to be an observable event. In the artificial model, the Si

and F are ignored as they have minimal effect on thermal neutron interactions relative to

the high absorption in 6Li. Although Si and F have larger interaction coefficients at higher

energies, relative to the moderator they have a minimal effect.

Because interactions besides absorption are negligible in 6Li at thermal energies, expo-

nential attenuation of neutrons via the absorption cross section can be assumed. For a

normally-incident beam of thermal neutrons, the probability of neutron absorption in a slab

of thickness T of 6Li is

εthermal = 1− exp

[
−ρ(6Li)Na

A(6Li)
σn,t(

6Li)T

]
, (4.9)

where Na is Avagadro’s constant, σn,t(
6Li) is the thermal-averaged cross section, ρ(6Li) is

the effective density, and A(6Li) is the atomic weight of 6Li. Solving for ρ(6Li) required to

achieve a given efficiency ε produces

ρ(6Li) = − ln(1− ε)A(6Li)

Naσn,t(6Li)T
. (4.10)

The thermal (2200 m s−1) cross section σn,t(
6Li) is 940 b [Chart of the Nuclides, 16th Ed.].

The (n, t) cross section is assumed to have a 1/
√
E behavior with respect to incident neutron

energy E over the thermal energy range. With this assumption, and the assumption that

the thermal neutrons are in equilibrium at room temperature, the thermal-averaged cross

section becomes [Stacey, 2007]

σn,t(
6Li) =

√
π

2
σn,t(

6Li) = 833 b. (4.11)

The detection region for each module of the spectrometer consists of a 2 × 2 array of 1

cm2 devices, with a total detector thickness of 0.1 cm. The region was modeled in MCNP

as a 2 cm × 2 cm, 0.1 cm thick rectangular box (a detector volume, Vd, of 0.4 cm3). The

intrinsic detection of efficiency of the devices was taken as 50%; this is an achievable detection

efficiency of a dual-stacked device with this thickness [Shultis and McGregor, 2009]. Although

this may not be the actual efficiency of the devices, it will not affect the optimization results

of the spectrometer. As long as the efficiency of the devices is uniform, the results will not

be affected because a different detection efficiency can be compensated for by increasing the
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total count time. The effective density of 6Li given by Eq. (4.10) for a rectangular box that

is 0.1 cm thick with a 4 cm2 face was found to be ρ(6Li) = 0.08353 g cm−3.

4.2.3 Detector Response in MCNP5

The FM card (text input parameters in MCNP are referred to as cards) in MCNP5 was

used to convert the F4 cell-volume averaged flux tally to counts per source neutron [X-5

Monte Carlo Team, 2003]. The FM card was used with 2 options: the reaction id, rid, for

the interaction of interest and the constant multiplier C. The FM card with these options

modifies an F4 response to be

R (counts per source neut.) = C

∫ ∞
0

σn,t(E)Φ(E) dx, (4.12)

where R is the simulated detector response and Φ(E) is the average fluence over the detector

volume Vd per source particle (the result of the F4 tally). For the detection volume discussed

in Section 4.2.2, C is given by

C = Vd
ρ(6Li)Na

A(6Li)
× 10−24. (4.13)

The rid for the (n, t) reaction is 105, and for ε = 50%, Eq. (4.13) reduces to C = 0.0083216Vd.

For the particular case of the detectors modeled here with Vd = 0.4 cm3 for each artificial

double-stacked detector volume, the value is C = 0.0033286. It should be noted that the FM

card in this case is specific to a material card, but also specific to the volume of the cells

of the F4 tally. The use of the FM card in this manner determines the expectation value

of a particular reaction rate in a volume by integrating the product of the energy-depedent

neutron flux and cross section of the reaction over all neutron energies. Thus, the result of

this tally is approximating the number of neutrons, per source particle, that would deposit

at least 300 keV of energy in an explicit model of a detector.

The tallies for the response from each detectors are grouped into a single input tally

card. MCNP then multiplies the individual responses for the F4 tallies by the necessary

multiplier. The detector volume cells in the model begin at cell 10, increasing by 10 with

increasing detector depth. For example, the tally specification for a spectrometer with 5

detectors would be

F4:N 10 20 30 40 50

FM4 0.0033286 2 105

where 2 is the detection material number and 105 is the rid. The TF input parameter was then
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used to modify how MCNP checks statistical convergence. The deepest detector position for

any particular spectrometer is the most likely tally to have poor statistics because particle

histories are less likely to reach it. As an example input, to get the statistical tests for the

last cell for the above F4 tally, the TF4 input would be

TF4 5 7j

where 5 indicates to use the fifth entry on the tally card F4 for statistical convergence tests,

and 7j simply skips the remaining optional inputs for the card.

4.2.4 Boron in Circuit Boards

The PCBs on the back of perforated semiconductor detectors used in the spectrometer are

placed on contain neutron absorbers, namely B and Br used for flame retardant purposes, as

well as other materials such as Cu and C. The thermal neutron absorption cross section of
10B is large (3,840 b [Chart of the Nuclides, 16th Ed.]). The concentration of these materials

in PCBs is proprietary to manufacturers, and thus generally unknown.

To include the amount of 10B in the models, an equivalent atom density of 10B over the

volume of the PCB board was modeled. The amount of 10B in the device was determined

based on thermal neutron absorption efficiency of the board, as measured by experiments

performed at Kansas State University. The determined atom density is 5.3×1020 10B atoms

cm−3. Although other materials may be accounting for thermal absorption, this should

result in the thermal absorption of the board being modeled accurately. Other materials

were not included. With the exception of Br, the other materials should have minimal effect

on the non-thermal energy spectrum. Because the PCB is so thin, scattering interactions at

higher energies are minimal, relative to the HDPE moderator. Although Br has absorption

resonances at epithermal energies, it is not included because it can not be estimated easily

through absorption efficiency experiments. The added B in PCBs had negligible effect on

results because the Cd sheets prevent thermal neutrons backscattering into detectors anyway.

4.2.5 Variance Reduction and MCNP5 Parameters

Several variance reduction techniques, discussed in Section 2.3.2, were employed for all the

MCNP simulations of the spectrometer in this chapter. Implicit capture (a default setting

in MCNP) was used. Also, cell splitting was performed over the region of the spectrometer.

The goal of splitting in the spectrometer simulation is to increase the likelihood of particles

reaching the detectors deeper in the spectrometer. Cell splitting was automated with a

script because the ideal cell importances will vary depending on the source and geometry.
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Cell splitting is performed with the intent of uniform population in the individual cells

representing sections of the spectrometer (including particles created from the process of

splitting). Rather than performing this balancing on all cells within the spectrometer, the

HDPE sections of the spectrometer were analyzed. The Cd, PCB, and detection volume cells

were then adjusted to the importance that the corresponding HDPE section was increased

to. This is because the volume of the detectors is so small that the importance increase,

based on particle balance, would be excessively large. The importance in the front detector

is not adjusted.

A short simulation was performed for each file using 30,000 particle histories. The number

of particle tracks entering each HDPE section is then tallied. Each cell’s importance is then

adjusted in the actual input file to be

IMPj =
Tmax
Tj

(4.14)

where Tj is the number of tracks entering the j-th HDPE section, IMPj is the new importance

of all cells in the j-th detector section, and Tmax is the largest number of tracks entering

any of the HDPE sections in the spectrometer; the original importance of all cells is 1.

This process could be repeated multiple times, but one iteration was sufficient for these

simulations.

For the base model described above, MCNP simulations were performed for 2×108 par-

ticle histories (denoted by “NPS” in MCNP). The default neutron physics parameters were

used. The script which handles running simulations of MCNP input files, hydra run.py,

had a built in automation routine to ensure that all 10 statistical tests were passed. If the

tests were failed, then the simulation is continued for 20% more particle histories. This

process is repeated for up to five repetitions.

4.2.6 Verifying Artificial Detector Model Using MCNP6

The method of modeling the double-stacked, perforated semiconductor devices discussed

in Section 4.2.2 was verified using MCNP6. Previous work has demonstrated responses

that are comparable to experimental data as well [Cooper et al., 2011]. MCNP6 allows

coupled neutron and charged particle transport modeling. The code was used to model the

explicit detector geometry and simulate a detector response. MCNP6 is only in Beta testing,

but provides the most viable method for verifying the detector modeling. For brevity, an

equivalent volume, reduced density 6Li model of a detector as described in Section 4.2.2 is

referred to as an artificial detector; an MCNP6 model is referred to as an explicit detector

model.
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Description of Geometry Modeling

In the MCNP6 model, the detailed geometry of a trenched perforated Si detector, backfilled

with LiF, was modeled explicitly. A device was chosen that would yield a dual-stacked

efficiency close to the 50% considered in Section 4.2.2. The definitions for the unit cell

geometry that is repeated to form straight trenched devices are given in the section view in

Fig. 4.3; the values for the specific device modeled are given in Table 4.2. The cross-sectional

area is taken to be 4 cm2 to simulate the 2×2 array of devices that is used at each location

within the spectrometer model. The trenches of each single device were modeled by creating

alternating cells of Si and LiF that fill the detection volume via the FILL command [X-5

Monte Carlo Team, 2003]. The bulk Si material was then created as a separate cell to fill the

remainder of the detection volume. Two of such detector volumes were stacked with their

absorbers offset to reduce streaming and form a double-stacked device. The second detector

was offset by 25 µm to center the absorber in the second detector over the non-absorbing side

walls of the first detector. An illustration of the double-stacked geometry is given in Fig. 4.2.

To complete the detector model, the stacked regions were placed on the same volmue of PCB

as the artificial model, but with a m ore accurate modeling of the FR4 type PCB; the boron

content is the same. To create a spectrometer, the above model of detector and PCB were

duplicated at positions throughout the HDPE cylinder with sheets of Cd behind them, as in

the original model. The material properties for the MCNP6 model are given in Tables 4.3

WC

WT  

D

T

Fig. 4.3: Dimensions of a unit
cell of a perforated, straight-
trenched detector
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and 4.4 beginning on page 44.

Table 4.2: Geometric specifi-
cations for unit cell of a perfo-
rated, straight-trenched device.

Dimension Value (µm)

WT 30
WC 50
D 350
T 500

Creating a Pulse Height Energy Spectrum in MCNP6

MCNP6 allows the actual phenomena occurring in perforated detectors to be modeled and for

a pulse height energy spectrum from charge deposition by reaction products to be simulated.

The simulation tracks neutrons, with fully analog physics, from birth until they are absorbed

or leaked from the system. If a 6Li(n, t)α reaction occurs, the created triton and alpha

particle are tracked until they reach the cutoff energy or leave the detection volume. Charge

deposited by the reaction products tracks is recorded. Here, an assumption is introduced

that the charge collection efficiency of the device is 100%, i.e., any charge deposited in the

semiconductor region of a detector contributes to the pulse height spectrum.

An F4 tally is used on the semiconductor in the detector volume to generate a simulated

pulse height spectrum. The F4 tally with E4 card determines the probability distribution

for a source particle depositing a certain amount of energy in a cell during its history. The

F4 tally includes energy deposited via all tracks and secondary particles of any type in a

history. It is worth noting that this is different than typical energy distributions for MCNP

tallies which give the distribution of particle energies as they contribute to the tally. The

FT card (special treatment for tallies) was also used. In particular, the FT card was used

with the PHL option. For the PHL option, the FT card modifies an F4 tally to be an energy

pulse height spectrum with anti-coincidence for multiple cells within the MCNP6 model [X-5

Monte Carlo Team, 2003]. This card is necessary because the Si sidewalls of the trenches

are a separate cell from the bulk Si material. Thus, the PHL card is used to simulate a

pulse height spectrum from energy deposited in either the side walls or bulk Si. To simulate

the use of a low-level discriminator (LLD) and compensate for the assumption of a perfect

charge collection efficiency, only histories which deposit greater than 300 keV of energy are

considered a detected event. All neutron histories which contribute more than 300 keV of

energy are then summed. Thus, this tally is used to determine the probability per source
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Table 4.3: Crystalline LiF (ρ =
2.635g cm−3) material composition
for MCNP6 model.

MCNP Library Mass Fraction

3006.70c 0.225502
3007.70c 0.016789
9019.70c 0.757709

Table 4.4: Natural Si (ρ =
2.3290g cm−3) material composition
for MCNP6 model.

MCNP Library Atomic Fraction

14028.70c 0.92223
14029.70c 0.04685
14030.70c 0.03092

Table 4.5: FR4 printed circuit
board (ρ = 2.635g cm−3) material
composition for MCNP6 model.

MCNP Library Mass Fraction

1001.70c 0.010
5010.70c 0.0053
5011.70c 0.0147
6000.70c 0.040
8016.70c 0.390
13027.70c 0.010
14028.70c 0.230
29063.70c 0.140
29065.70c 0.060
35079.70c 0.050
35081.70c 0.050
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neutron of at least 300 keV of energy being deposited within the semiconductor region of

the detector.

Thermal Efficiency Verificiation

Efficiency simulation were performed in MCNP6 and MCNP5 to verify the artificial detector

model described in Section 4.2.2. First, the dual-stacked device placed on a PCB described in

Section 4.2.6 was modeled in MCNP6. The surface of the top detector was irradiated with a

thermal, normal-incident neutron beam of the same cross sectional area as the top detector.

The neutron beam was assumed to have a Maxwellian Energy distribution (see [X-5 Monte

Carlo Team, 2003]) with a mode of 0.0254 eV. The pulse height spectrum tally described in

Section 4.2.6 was used to determine the number of events that deposit greater than 300 keV

per source neutron. The number of particle histories simulated was 107.

The result of the thermal beam illuminating a double-stacked device produced 0.4728±0.0001

counts per source neutron. All source neutrons entered the device, thus the thermal efficiency

of this dual-stacked device was found to be 47.28±0.01%. This efficiency agrees with previous

simulations [Shultis and McGregor, 2009]. Using ε = 0.4728 in Eq. 4.10 yields an artificial
6Li density of 0.07134 g cm−3. This density substituted into Eq. 4.13 yields C = 0.002857.

An MCNP5 input file was created using this C and ρ(6Li). The input file had the same

geometry and source specification as the MCNP6 model except for the detection region of

the explicit model was replaced with the artificial model. The tally method described in

Section 4.2.3 was used. 108 neutron histories were simulated. The only variance reduction

technique used in the artificial model is the default implicit capture method. The same 6Li

cross section library as the MCNP6 simulation was used, i.e., 3006.70c.

The MCNP5 simulation produced a thermal detector efficiency of 49.25± 0.01%. This is

in good agreement with the effiency of the MCNP6 simulation that was used to produce the

artificial model for the MCNP5 simulation. Accuracy is expected at thermal energies where

the large (n, t) cross section of 6Li dominates all interaction types.

Spectrometer Response Verification

A second scenario was simulated to verify the use of the artificial detector models. The

main phenomena of interest is streaming of high energy neutrons through the spectrometer.

Additionally, the accuracy of detector efficiency for the artificial model may be reduced when

neutrons entering the MSNDs are not uniform in direction, traversing the device at all angles.

Because only the relative responses are important in the FOM calculations, the detector

responses are normalized to the second detector. A spectrometer was modeled with five
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detector positions and a 6.0 cm radius of the cylindrical HDPE sections. The front faces of

the detectors were 3.0 cm apart. The spectrometer model used the same detector and PCB

dimensions as the above results, with 0.1 cm of natural Cd behind each PCB. The beam

was of the same cross sectional area as the moderator. An MCNP6 and MCNP5 model

of the spectrometer were made. The only difference was the explicit and artificial detector

models for the MCNP6 and MCNP5 models, respectively. The number of histories for both

simulations was 109. The input file for the MCNP6 model is given on page 183.

Five different neutron sources were analyzed with both the MCNP5 and MCNP6 models:

AmBe, PuBe, a monoenergetic fusion source (14.1 MeV), and spontaneous fission sources of
252Cf and 240Pu. The simulated detector spectrum from each source was normalized to the

second detector. The counts per source neutron and normalized detector responses, as well

as their associated errors, are given for each source simulation for the artificial and explicit

detector models are given in Table 4.6. A plot of the results from the 14.1 MeV, AmBe,

and PuBe sources is given in Fig. 4.4, and the results from spontaneous fission sources are

depicted in Fig. 4.5.

The unnormalized responses are inaccurate, particularly in the first detector, even though

the normalized responses appear to agree. The shape of the normalized curves, and how they

compare to each other, is all that is of interest; differences in the responses are compensated

for by increasing the number of neutrons. In all detector spectra, the artificial model slightly

overpredicts the explicit model, but is in good agreement. The main emphasis of the differ-

ence in the two models is that the spectrum shows the same shape, and that for different

sources the detector is higher. For 252Cf and 240Pu the simulated responses become very

close, and for one detector location, the artificial 252Cf response is higher than the 240Pu

response. This indicates that for this point, a 240Pu source may be incorrectly identified.

This simply suggests that care must be taken for sources that are close together, and that

these artificial templates although good enough for the process of optimization, may not be

able to be used as templates for identifying actual sources from experiment.

4.3 Geometric Optimization

4.3.1 Motivation

Simulations were performed to determine the optimal geometric configuration for the spec-

trometer. The optimal geometric configuration has the best ability to identify neutron

sources without additional complexity or weight from the moderator. The parameters that

were optimized for the spectrometer included the thickness of moderator between each de-
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Fig. 4.4: Comparison of detector responses for AmBe, PuBe, and 14.1 MeV fusion sources.
All responses are normalized to second detector. All relative errors are less that 0.7%. The
dashed line indicates the artificial detectors, and the solid line indicates an explicit MCNP6
model.
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tector, the cross sectional area of the moderator, and the number of detectors in the spec-

trometer. The weight of the device was also considered, but a specific weight criteria was not

specified other than usability as a hand-held device. The optimization was multidimensional

and thus performed in several iterative steps. As there were minimal design criteria for the

device, several constraints for the optimization were set based on initial simulation results. A

general brute-force search was employed for optimization, as the tolerance on optimizations

is sufficiently imprecise that more precise methods are not necessary.

4.3.2 Development of Objective Function

An objective function was developed to compare geometries based on their ability to identify

sources via FOM values. An objective function provides a quantifiable measure of the

quality of the results for a particular set of optimization parameters. Either the minimum

or maximum of the objective function, depending on the definition of the function, provides

the optimal set of parameters.

The goal of a spectrometer is to identify all sources accurately and with statistical con-

fidence. For a particular experimentally measured spectrum, a FOM value is generated for

each reference spectrum in the library. For correct identification of the neutron source, the

lowest calculated FOM value should correspond to the reference spectrum associated with

that source; the difference between the lowest value and the next closest must also be statis-

tically significant for the source to have been identified with confidence. Thus, a deviation is

formed for a particular source as the difference between the lowest and second lowest FOM

values, relative to the larger uncertainty of the two values, i.e.,

∆ =
FOMmin+ − FOMmin

σ(FOMmin+)
, (4.15)

where FOMmin is the lowest FOM value, FOMmin+ is the second lowest FOM value, and

σ(FOMmin+) is the standard deviation of FOMmin+. The largest uncertainty of the two

FOM values is σ(FOMmin+) rather than σ(FOMmin) because σ(FOM) ∝
√
FOM . Us-

ing the larger of the two uncertainties is more conservative. By dividing by the standard

deviation, Eq. (4.15) removes any difference in FOM values caused by different numbers

of detectors (increasing the degrees of freedom which proportionally increases the expected

mean of FOM values). The spectrometer must be able to identify all neutron sources in a

set of reference spectra in this manner. The case in which the spectrometer identifies the

source with the lowest confidence is the minimum value of ∆ for the set of all possible sources
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∆min = min {∆i : i = 1, 2, ..., Nsrc} , (4.16)

where Nsrc is the number of sources reference spectra are available for. The set of values {∆i}
are stochastic, so ∆min is a random variable with some distribution. An expectation value

for ∆min can be determined by averaging ∆min for many measured spectra that provides

a measure of the ability of a particular geometry to discriminate between FOM values

for various sources. Thus, the objective function Θ for the spectrometer is taken as the

expectation value of ∆min, i.e.,

Θ =
1

Ncorr

Ncorr∑
n=1

∆
(n)
min. (4.17)

Here, ∆
(n)
min is the n-th ∆min of Ncorr trials in which all sources were correctly identified.

Each trial contains a measured spectra for each of the Nsrc sources. It is noted that Ntrials is

the total number of trials simulated; however, Ncorr in Eq. (4.17) only includes trials which

identify all sources correctly. The sample standard deviation for Θ is computed as

σ(Θ) =
1√

Ncorr − 1

√
∆2

min −Θ2, (4.18)

where

∆2
min =

1

Ncorr

Ncorr∑
n=1

(∆
(n)
min)2, (4.19)

is the expected value of the square of ∆min.

For a correctly identified source, a relatively high value of Θ indicates a large difference

between the two lowest FOM values, relative to the statistical uncertainty in the values; this

is considered to indicate a higher quality spectrometer. The confidence of identification is

also dependent on the location of the lowest FOM value and its uncertainty. This is not

considered because in general if Θ is high, then the separation is high, and the uncertainty

in the lowest detector is proportional to the square root of that FOM.

The percentage of the Ntrials that correctly identify a source is also tabulated as a statistic

and considered a measure of quality. Here, frequentist statistics is assumed. Explicitly,

P (correct identification of all Sources in a trial) = psucc, where

psucc =
# of trials where all sources were correctly identified

Ntrials

. (4.20)
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4.3.3 Simulated Responses

The calculation of FOM requires the comparison of an observed detector spectrum to a

reference spectrum. The reference spectra can be generated from the simulated detector

responses of an MCNP simulation. For the purpose of optimization, it is not feasible to

collect the many observed detector responses experimentally. As an alternative method,

measured detector spectra can be generated by using counting statistics to sample from the

reference spectra, as described in the remainder of this section. With artificially generated

data, Monte Carlo sampling can be used to generate FOM values.

To generate an observed detector spectra, a response is sampled from an appropriate

PDF for each detector in the spectrometer. The type and parameters of the PDF depend

on the expected number of counts (i.e., the mean number of counts) present in the detector.

The number of counts observed in a detector is a random variable which follows a Poisson

distribution. A Poisson distribution for a random variable is fully defined by the mean of the

random variable. Thus, if the mean number of counts observed in a detector is known, the

observed number of counts is distributed as a Poisson distribution with that mean. Here,

electronic noise and other phenomena in a detector that would distort the distribution are

ignored.

The F4 MCNP tallies used to simulate detector responses discussed in Section 4.2.2

provide a normalized response function for each detector in the spectrometer. Each response

function estimates the expected value of counts observed in a particular detector, per source

neutron. The total number of source neutrons S0 multiplied by the response function can be

taken as the mean of the distribution that observed counts in such a detector would follow.

Therefore, for a particular neutron source strength, the simulated observed number of counts

in a detector would follow a Poisson distribution with a mean µ given by:

µi = S0ri. (4.21)

Here, ri is the MCNP response (tally) for the detector position of interest. For the MCNP

model used for optimization, the number of neutrons incident upon the spectrometer is the

same as S0 because the beam is uniform and of the same size as the cross sectional area of

the device. As a result, the nomenclature of neutron source strength is used throughout this

chapter to refer to the total number of neutrons incident upon the spectrometer.

In application, the spectrometer will count for some fixed period of time, so for a uniform

incident beam, the total incident neutrons would be given by

S0 = ṡ0AT, (4.22)
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where ṡ0 is the neutron source strength per unit time per unit area (n cm−2 s−1 ), A is

the cross-sectional area of the spectrometer, and T is the total count time. It should be

remembered that this discussion is for a source beam of the same cross sectional area as the

device.

For the purpose of comparing spectrometers with different cross sectional areas, it is more

physically realistic to keep the source strength per unit area the same. Also, because T is a

variable that can be linearly scaled in application to achieve a particular value of S0, it has

no over all effect on optimizations. Thus, for a particular neutron field, the total number

of incident neutrons per unit area over a certain time s0 is kept constant when comparing

different spectrometer geometries. The relation between S0 and s0 for a uniform, normal

incident beam is s0 = S0/A. Although s0 remains constant, S0 is needed to determine

detector responses, and is thus typically used to characterize the neutron source strength in

this work.

A pseudo-random number generator is used to sample a random floating point number

between 0 and 1. This random number is transformed to sample values from the appro-

priate Poisson PDF. For large values of µ, sampling from a Poisson distribution becomes

computationally difficult and another method must be used. For a mean greater than 20,

a particular Poisson distribution can be well approximated by a Gaussian distribution with

the same mean as the Poisson distribution and a variance given by the square root of that

mean [Tsoulfanidis, 1995]. Combining these results with the distributions defined in Sec-

tion 2.1.5, the observed response in each detector is sampled from the PDF

f(N) =


1√
2πσ

e−(µ−N)2/(2σ2) µ ≥ 20

µN

N !
e−µ 0 ≤ µ < 20

. (4.23)

where σ =
√
µ is the standard deviation for the Gaussian PDF and N is rounded to be a

discrete number after sampling for the Gaussian PDF. The pseudo-random number generator

used was the Park and Miller Generator described in detail by Press et al. [1992]. The random

variable with a uniform distribution was transformed to the appropriate distributions for N

using methods and algorithms from Numerical Recipes by Press et al. [1992]. The Fortran90

code that performs the sampling is an executable generated from the simul resp.f90 source

code, found on page 166. The random number seed for the random number generator is

written to a file and passed between directories to ensure random numbers are not reused

across trials.

It is noted that when comparing different cross-sectional areas of the spectrometer, the
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input to the simulated response codes for the source strength can be confusing. As mentioned

above, the source strength per unit area is kept constant, not the total number of neutrons

incident upon the spectrometer. However, the input for source strength in the codes is given

as the total number of incident neutrons. The source strength is scaled internally in the

code by cross-sectional area to keep the source strength per unit area constant. Explicitly,

the source strength that is input is scaled by the ratio of the cross-sectional area of the

spectrometer of interest to that of a 10-cm radius spectrometer.

4.4 Automation of Simulations and Data analysis

To automate the procedure of performing the large number of simulations and process-

ing data for optimization, a set of interconnected Python scripts (modules) was developed.

Python is an efficient scripting language with many integrated pre-existing numerical analy-

sis packages. In general, the Python modules created for the work described in this chapter

are a mix of procedural and object-oriented programs. For the numerical analysis portion of

the work, Fortran90 programs were written. These programs are executed using a Python

wrapper script. Appendix B summarizes the function of each Python module and Fortran90

program on page 135. The actual source code and scripts are included in Appendix B as well,

with the exception of straightforward modules. It is noted that the majority of the modules

were not sufficiently robust enough to perform all simulations of interest, so modifications

to the base code were made throughout.

The general procedure for performing simulations and data processing is as follows:

1. For each geometry and neutron source, create an MCNP input file.

2. Perform all MCNP simulations, ensuring that statistical tests are passed.

3. Organize output tallies from each file into individual tallies

4. For many trials:

(a) Simulate observed data from all sources

(b) Perform FOM calculations between all templates and simulated data

(c) Calculate Θ (and other parameters of interest) and add them to large data array

5. Average results from many trials
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4.5 Corrections to the FOM for MCNP Simulations

Adjustments must be made to the FOM equations to correct for artificial biases in results

introduced by MCNP simulations in the σ(Sji ) term. The corrections are artificial and are

only necessary for optimization comparisons. The modified FOM statistic is given as

FOM j =

Ndet∑
i=1

(Ri − Sji )2

σ2(Ri) + βradβNPS σ2(Sji )
, (4.24)

where the factors βNPS and βrad are described below and all other factors are the same as

before. This equation was used for comparing all optimization simulations.

Cross Sectional Area of Moderator

Adjusting the cross-sectional area of the spectrometer requires adjustment to the uncertainty

σ(Sji ). The correction arises because tallies in MCNP are normalized to a response per source

neutron, rather than per source per unit area. To explain this correction, consider the tally

response of a particular detector in a spectrometer with some reference radius rref . In the

MCNP simulations, the source is a uniform disk of the same orientation and radius as the

spectrometer. In an analog sense, the tally gives the average response in the detector per

neutron from a total source strength equal to the number of particle histories, NPS. The tally

will have some sample standard deviation, σ(0). Now, consider a simulation with the same

value of NPS but a smaller radius r. In this case, because the value of NPS is the same, the

number of particle histories per source area has been increased, and thus particle histories

are more likely to contribute to the tally, producing a smaller relative error (the tally is

larger, but this is accounted for by how sampling is performed as discussed in Section 4.3.3).

The smaller uncertainty in the smaller radius case introduces a bias into the values of

σ(Sji ). For comparison purposes, it is not reasonable for the geometry with a smaller radius

to have a lower variance; in an experimentally collected template, a lower radius would not

have a lower variance as the source strength per unit area is the same. To correct the bias in

optimization simulations, a correction factor βrad is applied to the uncertainties, rather than

altering the value of NPS, to make all geometries have roughly equal relative errors. Scaling

the relative errors by a ratio of the areas, and applying error propagation, the result is

βrad =
r2
ref

r2
. (4.25)

The value of rref is 10 cm for the optimization results in this chapter. The correction is

performed in the executable with source code fom.f90.
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Different Number of Particle Histories

A similar bias occurs when different values of NPS are used. The value of NPS is increased

in some simulations to ensure that the 10 statistical tests in MCNP are passed. In general,

for all tallies σ ∝ 1/
√
NPS [X-5 Monte Carlo Team, 2003]. Thus, the correction factor is

βNPS =

√
NPS

NPS(0)
, (4.26)

where NPS is the number of particle histories in the simulation which passes all statisti-

cal tests, and NPS(0) is the number of histories in the original simulation; all simulations

are performed for the same number of histories initially. For the optimization simula-

tions, NPS(0) = 2 × 108. The correction for this factor takes place in the code module

FOM output.py.

4.6 Optimization Results

For all of the optimization results in this section, Eq. (4.17) was used to determine Θ, a mea-

sure of the quality of a spectrometer. In all cases, Ntrials = 1000 trials were performed. The

number of trials that all sources were correctly identified was calculated as psucc (Eq. (4.20)).

For each trial, observed detector spectra were generated for each neutron source using the

procedure described in Section 4.3.3. A uniform beam of incident neutrons was normally-

incident upon a spectrometer surrounded by a void, as described in Section 4.2.1. An

illustration of a spectrometer with labeled dimensions can be seen in Fig. 4.6. The integer

Ndet refers to the number of detector positions in a spectrometer.

The only two sources simulated for the optimization studies were the spontaneous fission

sources 240Pu and 252Cf. Only two sources were used for the optimization to limit the compu-

tational cost of simulations. Initial work determined that these two sources were consistently

the most difficult to distinguish because of their similar Watt energy spectra. If these sources

can be properly identified, all other sources should also be correctly identified. Additionally,

these two sources have neutrons covering the spectrum of most neutron sources, with the

exception of thermal neutrons. However, thermal neutrons are not a focus of optimization.

Because there is no moderator between the source and the front detector, thermal neutrons

are detected in the first detector, independent of the spectrometer geometry. It is of note

that the 240Pu source is exclusively fission neutrons from 240Pu, and does not include neu-

trons from induced fission from 239Pu that would be found in a mixture of 239Pu and 240Pu.

The energy spectrum of neutrons leaving a sphere of Pu with a mix of 239Pu and 240Pu is
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Fig. 4.6: Illustration of dimensions for axial cross section
of spectrometer with Ndet = 6 detectors.

known to have a slightly altered spectrum [Toraskar and Melkonian, 1971]. The ability to

identify a mix of Pu isotopes is discussed in Section 4.7. The Python modules described

previously were used to perform simulations of and generate the output data.

4.6.1 Optimal Detector Spacing for a Fixed Radius

Optimization was performed to determine the optimal spacing of detectors for spectrometers

with various numbers of detectors. Only spectrometers utilizing between 3 and 11 detectors

were considered. Simulations were performed with a relatively large fixed radius of HDPE

moderator, r = 10 cm, and variable, uniform spacing t of detectors axially throughout the

spectrometer. A large source strength was chosen to ensure all spectrometer geometries

correctly identified all sources in all trials (psucc = 1) for these initial simulations. The

source strength of neutrons was taken to be 109 total incident neutrons (corresponding to an

incident neutron flux per unit area of 3.18×106 n cm−2 ). Observations indicate the optimal

detector spacing has some dependence on the source strength chosen, but it is negligible

relative to the statistical uncertainties in the objective function and the increments of t.

A plot of Θ versus detector spacing t is given in Fig. 4.7 on page 59, for various numbers

of detectors. The values of Θ represent the number of standard deviations of the second
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lowest FOM value σ[FOMmin+]. A linear spline is connected between points for clarity.

Error bars are depicted for σ(Θ), but are difficult to see in this plot because their length is

smaller than the symbols used. For reference, an example set of data needed to compute Θ

from the simulations for spectrometers with various t, Ndet=11 detectors, and r=10 cm is

given in Appendix D on page 187; the example data includes the MCNP5 tallies, simulated

detector counts, and computed FOM values for the simulated spectra.

As Fig. 4.7 demonstrates, an optimal spacing t exists for each particular value of Ndet.

The specific values of t, Θ, and σ(Θ) for the optimal t are given for each value of Ndet

in Table 4.7. The performance is improved with increasing number of detectors, as would

be expected because more data points allows for a better comparison and identification of

a spectrum. Because there is no limit on the amount of moderator, increasing Ndet will

improve results, as long as neutrons can traverse the moderator to the back detectors.

Figure 4.8 is a plot of Θ versus the number of detectors for the peak values from Table 4.7.

Even for 3 detectors, the spectrometer was able to correctly identify sources for a very large

number of incident neutrons. However, for Ndet below 6, the results are noticeably poorer.

From 6 to 11 detectors, the results are roughly linear. The values of Θ begin to drop off

nonlinearly below 6 detectors. This is because there just simply are not enough data points

to distinguish between the very similar source spectra. Based on this result, and to limit the

number of simulations, only detector geometries with Ndet between 6 and 11 are explored for

the remainder of this work. Also, at small values of Ndet, the optimal value of t is large. At

these large thicknesses of moderator, the spectrometer designs would perform very poorly

when the source strength is low and room scatter is included to give more noise in the back

detectors.

Table 4.7: Comparison of optimal
value of Θ with respect to t for the
values of Ndet from Fig. 4.7.

Ndet t (cm) Θ σ(Θ)

11 3.5 43.4131 0.013
10 4 41.2018 0.0135
9 4 39.8023 0.0131
8 5 37.4673 0.0127
7 5 34.9114 0.0126
6 5 30.7839 0.0123
5 7 26.5515 0.0119
4 7 19.0562 0.0102
3 10 12.8654 0.0085
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In general, the optimal detector spacing is a balance between moderator thermalization

and neutrons being absorbed in or leaking from the moderator. For the reference spectrum

that is the correct source, with increasing source strength the value of FOM decreases;

for templates that do not match the correct source, the value of FOM increases. Thus,

it would be expected that the optimum value of Θ comes from the spectrometer geometry

with the highest intrinsic efficiency. Interestingly, an increased efficiency of the device does

not directly correspond to a higher Θ, as seen in Fig. 4.9. Here, the intrinsic efficiency of a

spectrometer εspec is taken as the probability of an incident neutron being measured in any

detector in the device; based on the {ri} detector tallies, which provide the expected counts

in each detector per neutron incident on the front of the spectrometer, the spectrometer

intrinsic efficiency is εspec =
∑Ndet

i=1 ri. The values of εspec reported for each spectrometer

geometry are taken as the average over those for 239Pu and 252Cf. A plot of εspec and Θ

versus t is given for 10 and 11 detectors in Fig. 4.10; in this figure the values of εspec and

Θ have been normalized to the maximum value for visual clarity. In both cases, the peak

efficiency occurs at lower value of t than for the peak value of Θ. This result indicates

that the quality of a spectrometer is not exclusively a function of efficiency, but also of the

deviation of the detector responses ri between adjacent templates.
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4.6.2 Determination of Threshold Source Strength and Θ for

Correct Source Identification

Motivation

Simulations were performed to determine the source strength used for the optimization of

the weight and aspect ratio of the spectrometer, which are discussed in later sections. It is

necessary to choose a particular source strength for all optimizations. With a sufficiently

large number of incident neutrons, all sources in all trials are correctly identified for all

spectrometer geometries, and Θ is large, so there is no particular geometry that is better

at correctly identifying sources. Similarly, with too few source neutrons, the counts in each

detector are too few, and the correct source is not identified, independent of spectrometer

geometry. Additionally, the scenario in which fewer detectors may be preferable is when

there are lower counts in the back detectors, so the spectrometer geometry should ideally be

optimized near the threshold of identification. Because of these reasons, a source strength

was determined for which all sources can be identified in the majority of trials, but Θ is

small enough that the difference between unique geometries is significant.

An approximate value of how large Θ should be to correctly identify sources in the major-

ity of trials is needed to determine the source strength for optimizations as well. Determining

a threshold source strength for identification also helps to identify how many total counts

would be necessary to correctly identify a source experimentally. Although Θ is an average

quantity, the difference in the two lowest FOM values, relative to their uncertainty, can be

calculated and used as an indicator of if counting time should be increased in an experiment.

It is ideal to have some threshold value Θmin for which psucc is greater than 0.95 if Θ > Θmin.

Although the detector model is not ideal, and the actual detectors that are implemented

may be of a slightly different efficiency and cross-sectional area, the results are dependent

on the number of counts in each detector in the spectrometer. The results from this section

could be scaled to determine how many counts are needed for a correct identification by

multiplying the MCNP response functions by the threshold source strength.

Results

For fixed geometry, various source strengths were explored to determine a relation between

Θ and psucc, with the intent of determining Θmin. Fig. 4.11 compares Θ and psucc for a range

of total incident neutrons (S0) from 105 to 107 and a geometry of Ndet = 11, r = 10 cm,

t=3.5 cm; values of S0 were spaced equidistant logarithmically. Table 4.8 gives values of Θ,

σ(Θ), and psucc for various source strengths and three unique geometries. As demonstrated,

for Θ < 1 the value of psucc is relatively low (less than 0.80). For Θ > 2, the value of
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psucc is much higher (greater than 0.99 in all cases). Therefore, it is proposed that values of

Θ greater than 2 have at least a 95% statistical confidence of correct source identification,

and values of Θ < 1 have no statistical significance of correct identification. It is noted

that no general relation between confidence of identification and Θ is made here, other than

these two proposed limits. The true distribution of Θ is unknown, and σ(FOM) is a very

approximate standard deviation. The values of Θ are formed with data randomly sampled

from the precise means of distributions. In reality, because of neutrons scattering from the

room, detector noise, and general differences between simulation and reality, the observed

data points will be different than the means of the distributions. This will result in the

values of FOM that correspond to the correct source being much larger than the ones found

here. This may require the cutoff for theta to be higher, and that the relation between psucc

and Θ may demonstrate a different trend. Caution is advised in application of these results.

However, for optimization purposes, a value of Θmin = 2.0 is more than sufficient.

Several sample statistics of ∆
(n)
min (described by Eq. (4.16)) were computed for the Ncorr

trials where sources were correctly identified; the sample statistics are compared for various

source strengths. The sample standard deviation of ∆
(n)
min for n = 1, 2, . . . , Ncorr, notated

σ(∆
(n)
min), is given in Table 4.9. The average of the {∆(n)

min} is Θ. The minimum and maximum

values of ∆
(n)
min from the Ncorr trials1 are also compared. For Θ > 2, the values of ∆

(n)
min are

fairly centralized around the mean, justifying the value of Θmin = 2 being used as a similar

threshold of identification for ∆
(n)
min with individual measured spectra in application.

With a value of Θmin set, various values of S0 were explored for a variety of geometries

to determine a source strength for the remainder of optimization simulations. Geometries

that cover the spectrum of possible designs from 6 to 11 detectors were chosen for this set

of simulations. The value of t for each value of Ndet was based on the results for optimal

spacing from Table 4.7. Fig. 4.12 gives a plot of Θ versus the number of detectors (with

respective optimal thicknesses), for various values of S0. For 106 source neutrons, Θ was

near 1 or slightly below for all 3 geometries, whereas for 107, Θ was well above 3 in all cases.

Thus, 107 is taken to be the value of S0 for correct identification in the majority of trials, for

all geometries, and used for the remainder of optimizations; this corresponds to a neutron

source strength of 3.18×104 n cm−2 . The source strength is only determined to best order of

magnitude because simulated detector efficiencies are not accurate necessarily with the real

design, and the strength is primarily for optimization purposes. Also, the source strength

chosen produces a Θ well above Θmin = 2 for all geometries, which is favorable because the

amount of moderator is later decreased in Section 4.6.3.

1It is noted for clarity that ∆
(n)
min is the minimum value of the {∆i : i = 1, 2, . . . , Ntemp} for the n-th trial

(in this case there are only two templates), and min{∆(n)
min} is the minimum of that value from all trials.
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Table 4.8: Comparison of Θ and psucc, the probability of correctly identifying all
sources in a trial, for various source values of total incident neutrons S0.

Ndet = 8 Ndet = 10 Ndet = 11

S0 Θ σ(Θ) psucc Θ σ(Θ) psucc Θ σ(Θ) psucc

1.0E+04 0.11 6.3E-03 0.001 0.11 6.8E-03 0.005 0.13 3.9E-03 0.188
1.3E+04 0.13 7.1E-03 0.008 0.12 7.4E-03 0.011 0.15 4.2E-03 0.206
1.8E+04 0.14 6.7E-03 0.011 0.12 6.0E-03 0.027 0.17 4.8E-03 0.211
2.4E+04 0.15 6.9E-03 0.020 0.14 6.4E-03 0.028 0.19 5.4E-03 0.266
3.2E+04 0.14 6.0E-03 0.056 0.15 6.0E-03 0.072 0.18 6.0E-03 0.266
4.2E+04 0.16 5.9E-03 0.079 0.17 6.1E-03 0.114 0.23 6.4E-03 0.273
5.6E+04 0.18 6.0E-03 0.145 0.20 6.6E-03 0.166 0.24 7.1E-03 0.341
7.5E+04 0.20 6.2E-03 0.191 0.23 7.0E-03 0.234 0.28 7.6E-03 0.339
1.0E+05 0.23 7.2E-03 0.292 0.27 8.0E-03 0.313 0.29 8.0E-03 0.409
1.3E+05 0.30 8.1E-03 0.364 0.29 8.6E-03 0.373 0.34 8.8E-03 0.449
1.8E+05 0.33 9.0E-03 0.413 0.35 9.8E-03 0.455 0.41 1.0E-02 0.496
2.4E+05 0.39 9.8E-03 0.506 0.41 1.0E-02 0.528 0.46 1.1E-02 0.560
3.2E+05 0.47 1.1E-02 0.589 0.50 1.2E-02 0.603 0.54 1.3E-02 0.582
4.2E+05 0.57 1.2E-02 0.646 0.58 1.3E-02 0.641 0.64 1.4E-02 0.649
5.6E+05 0.70 1.4E-02 0.720 0.73 1.4E-02 0.717 0.80 1.6E-02 0.715
7.5E+05 0.82 1.5E-02 0.776 0.87 1.5E-02 0.800 0.96 1.7E-02 0.823
1.0E+06 0.97 1.6E-02 0.850 1.09 1.7E-02 0.850 1.15 1.9E-02 0.854
1.3E+06 1.20 1.8E-02 0.905 1.29 1.9E-02 0.905 1.45 2.0E-02 0.919
1.8E+06 1.49 1.9E-02 0.933 1.61 2.0E-02 0.940 1.72 2.2E-02 0.953
2.4E+06 1.79 1.9E-02 0.966 1.96 2.1E-02 0.978 2.11 2.2E-02 0.975
3.2E+06 2.21 2.0E-02 0.988 2.39 2.2E-02 0.991 2.64 2.4E-02 0.996
4.2E+06 2.69 2.0E-02 0.993 2.93 2.1E-02 0.997 3.17 2.3E-02 0.997
5.6E+06 3.21 2.0E-02 0.994 3.52 2.0E-02 0.999 3.81 2.1E-02 1.000
7.5E+06 3.80 1.9E-02 0.996 4.16 1.9E-02 0.999 4.55 2.1E-02 1.000
1.0E+07 4.54 1.8E-02 0.996 4.96 1.9E-02 0.998 5.42 1.9E-02 1.000
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Table 4.9: Comparison of σ(∆
(n)
min), Θ, and S0 for a spec-

trometer with 11 detectors, r = 10 cm, and t = 3.5 cm.

Note, σ(∆
(n)
min) here is the sample standard deviation for

∆
(n)
min, not the standard error in the mean of the {∆(n)

min}
σ(Θ). The relation is σ(∆

(n)
min) =

√
Ncorrσ(Θ).

S0 Θ σ(∆
(n)
min) min{∆(n)

min} max{∆(n)
min}

1.0e+04 0.13 0.09 2.25e-03 0.39
1.3e+04 0.14 0.10 1.90e-04 0.47
1.8e+04 0.16 0.11 9.12e-04 0.52
2.4e+04 0.19 0.13 2.19e-04 0.63
3.2e+04 0.20 0.13 4.13e-04 0.60
4.2e+04 0.22 0.15 1.61e-03 0.82
5.6e+04 0.23 0.16 1.96e-04 0.82
7.5e+04 0.27 0.18 3.33e-04 0.86
1.0e+05 0.30 0.19 2.96e-04 0.86
1.3e+05 0.35 0.22 3.95e-04 1.07
1.8e+05 0.40 0.25 7.64e-04 1.08
2.4e+05 0.48 0.29 7.34e-04 1.20
3.2e+05 0.55 0.33 6.74e-04 1.37
4.2e+05 0.66 0.37 3.07e-03 1.56
5.6e+05 0.81 0.44 2.10e-03 1.85
7.5e+05 0.96 0.50 7.10e-03 2.15
1.0e+06 1.15 0.56 1.04e-03 2.31
1.3e+06 1.41 0.61 1.43e-03 2.68
1.8e+06 1.74 0.66 4.23e-02 3.13
2.4e+06 2.13 0.71 3.60e-02 3.55
3.2e+06 2.60 0.69 4.49e-02 4.06
4.2e+06 3.17 0.71 8.52e-02 4.77
5.6e+06 3.84 0.68 5.85e-01 5.46
7.5e+06 4.53 0.67 1.53e+00 5.95
1.0e+07 5.38 0.64 2.39e+00 6.67
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4.6.3 Radius of the Moderator

Motivation

For a fixed source strength per unit area and a fixed value of t, increasing the moderator

radius r improves the quality of the spectrometer by increasing the efficiency of the device.

As the cross sectional area of moderator is increased, more neutrons are scattered towards the

detectors, resulting in higher count rates. The increased counts, via improved spectrometer

intrinsic efficiency, in each detector reduces the denominator error term for the observed

responses in the FOM equation, improving the discrimination ability of the spectrometer. As

the radius increases, the probability of scattered neutrons near the edge of the spectrometer

reaching a detector decreases exponentially because of attenuation. Thus, with increasing

values of r, the spectrometer efficiency (and consequently Θ) should have a diminishing rate

of increase. Because the spectrometer is intended to be a portable hand-held device, the

weight of the device should ideally be less than 15 lbs (6.8 kg). However, if r is reduced

too much, an unacceptably long counting time would be required for source identification.

Also, to fairly compare values of Ndet, a specific weight of moderator must be chosen, or the

largest value of Ndet will always perform best, as demonstrated previously in Section 4.6.1.

Results

To determine a weight for optimization, spectrometers with different radii were analyzed

with all other geometric parameters remaining constant. Fig. 4.13 plots Θ versus r. The

geometric parameters were 6 and 4.0 cm for Ndet and t, respectively. This geometry was

chosen for conservatism because 6 is the minimum number of detectors being considered,

and t = 4.0 cm is a non optimal value. If this geometry succeeds, than any geometry with

more detectors and optimal t will also succeed. The neutron source strength s0 = 3.18× 104

n cm−2 determined in the previous section was used. Fig. 4.13 plots Θ versus r for this source

strength and geometry. A sub-linear relation is demonstrated between Θ and r. The value of

r = 6.0 cm is chosen to determine the weight w for optimization as it produces a Θ > Θmin

in Fig. 4.13, with some conservatism for lower source strengths. For a spectrometer that has

11 detectors with optimal spacing t = 3.5 cm, a value of r = 6 cm yields a weight of 4.84 kg

(10.67 lbs). This weight w accounts for the HDPE and the sheets of Cd in the spectrometer.

The equation for determining the weight, w, is thus

w = πr2 [ρCdNdettCd + t(Ndet − 1)ρHDPE] , (4.27)
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where the densities ρCd and ρHDPE are 8.65 g cm−3 and 0.95 g cm−3, respectively. The

weight of 10.67 lbs is sufficient for a hand held device, and is thus used as the fixed weight

for performing aspect ratio optimizations in the next section.
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Fig. 4.13: Comparison of Θ and radius of moderator r.1

4.6.4 Optimal Moderator Aspect Ratio with a Fixed Weight

Using the fixed weight of 10.67 lbs selected in the previous section, the aspect ratio, defined

as Ar = t/r, was analyzed. The value of Ar was changed by adjusting the value of t, and

then using the weight of the device to restrict the value of r. When Eq. (4.27) is solved for

r, the equation becomes

r =

√
w

π [ρCdNdettCd + t(Ndet − 1)ρHDPE]
, (4.28)

Fig. 4.14 plots Θ as a function of t, for a weight of 10.67 lbs, with the value of r determined

by the relation in Eq. (4.28). Table 4.10 provides values for Θ, as well as Ar. The maximum

1Values of Θ vary unrealistically for r > 7.5 cm. The variations are caused by the statistical uncertainties
in the MCNP tallies {rji } used to simulate measured data. Explicitly, Eq. (4.21) assumes that the µi are
known exactly, which is inaccurate for simulates with larger r that converge slowly. The noise could be
corrected for by using the Gaussian variance σ2(ri) to sample a µi, before sampling Ci, for all i and sources.
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Fig. 4.14: Comparison of Θ for different geometries with a
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values are slightly different in this case as compared to the fixed radius results. It is of

note that for a fixed weight, the 10 detector case performs very similarly to the 11 detectors

case (the optima agree within one standard deviation). So, for the same weight (the main

constraint on optimization), the number of detectors becomes relatively negligible at 10

detectors. With some conservatism, 11 detectors is a sufficient number of detector positions.

To determine if the aspect ratio (a dimensionless parameter) is the key factor in the quality

of the spectrometer, this process was repeated for different weights for the 9, 10, and 11

detector cases and found to produce optima at the same values of Ar , at least for the coarse

spacing used here.

Table 4.10: Comparison of aspect ratios and Θ
for a variety of Ndet and a fixed weight of w at
4.84 kg.

Ndet r t Ar Θ σ(Θ)

6 7.61 4.5 0.591 3.17 0.021
7 7.69 3.5 0.455 3.35 0.022
8 7.14 3.5 0.490 3.50 0.022
9 6.69 3.5 0.523 3.48 0.021
10 6.70 3.0 0.448 3.56 0.022
11 6.80 2.5 0.368 3.59 0.026

4.7 Detecting WGPu versus 240Pu

The difference in energy spectra between 240Pu and Weapons Grade Plutonium (WGPu) is

due to the difference between energy of neutrons released from induced fission of 239Pu and

spontaneous fission of 240Pu [Toraskar and Melkonian, 1971]. The optimization simulations

were performed using the spontaneous fission energy spectrum of 240Pu. To determine the

ability of the spectrometer to identify a source of WGPu, simulations were performed and

compared against that of the pure 240Pu case.

The energy spectrum of WGPu is primarily a mix of neutrons from spontaneous fission

of 240Pu and induced fission of 239Pu, some of which will be moderated to lower energies.

The fractions of neutrons from induced and spontaneous fission will depend on the size and

mixture of the WGPu. The larger the device is, the more readily induced fissions will occur,

thus shifting the spectrum to consist more of energy of induced fission neutrons. The exact

mixture and density of WGPu can vary, and in general is not known. For the simulations

in this section, WGPu is taken to be a 4.0 kg sphere of a homogeneous mixture of 93%
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239Pu and 7% 240Pu. The density is taken to be 19.84 g cm−3, similar to the BeRP ball

used in experiments discussed by Mattingly [2009]. It is noted that the energy of induced

fission neutrons is relatively independent of incident neutron energy, and thus there is no

coupling between incident and produced neutron energies. An MCNP5 simulation was used

to determine the energy spectrum of the sphere of WGPu described above via an F1 tally on

the edge of the sphere, which determines the total number of neutrons leaving the sphere.

The sphere is in a void, and the source location of spontaneous fission neutrons from 240Pu

is uniform throughout the volume. The F1 tally is broken into 86 equal neutron energy

intervals between 10−11 and 20 MeV. The resulting energy spectrum of neutrons leaving the

sphere of WGPu is shown in Fig. 4.15.
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Fig. 4.15: Comparison of neutron source energy spectra for
WGPu, 240Pu, and 252Cf.

The output energy spectrum from the sphere of WGPu described above is then taken

to be the input in a spectrometer simulation for a beam of normal-incident neutrons, as

described in Section 4.2.1. The resulting detector spectra (normalized to the second detector)

is compared against that of pure 240Pu and 252Cf in Fig. 4.16. As demonstrated, the results

are very similar to those of 240Pu, so it would be very difficult to distinguish between pure
240Pu and WGPu. This is because the induced fission energy spectrum of 239Pu is very

similar to the spontaneous spectrum of 240Pu, as shown in Fig. 4.16. A positive result is
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that WGPu detector spectrum is shifted away from the 252Cf spectrum with respect to 240Pu,

indicating that WGPu is more distinguishable from 252Cf than 240Pu. Thus, the optimization

results are conservative for this particular scenario, as they are based on how similar 252Cf

and 240Pu spontaneous fission spectra are.

4.8 Shadow Shield Design and Optimization

4.8.1 Motivation

The shadow shield is a device to correct for neutrons scattered off of the environment (room

scatter) that enter the spectrometer. The spectrometer methodology developed in the pre-

vious sections is effective at identifying neutron sources by comparing observed spectra to

a library of reference spectra. However, when neutrons scatter off nearby material they

lose energy, softening the energy spectrum of neutrons that enter the spectrometer. Also

room-scattered neutrons enter the spectrometer at different locations and directions than

those entering through the front of the device. The fraction of neutrons entering the spec-

trometer that have scattered off nearby material can be very high. This can result in the

observed detector spectra being significantly different from the corresponding template spec-
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tra (particularly in the first few detectors, which detect lower energy neutrons). For accurate

identification of sources in application, room-scatter effects must be corrected.

One solution to correct room-scatter neutrons is to account for room scatter in the tem-

plates. However, it would be difficult to develop a manageable number of templates that

covers the large variety of possible environments that could be encountered. Another ap-

proach would be to prevent room-scattered neutrons from entering the spectrometer. A layer

of Cd around the cylindrical and back surface of the spectrometer, followed by a layer of sev-

eral centimeters of HDPE would prevent the majority of neutrons from entering the side and

back of the device. Although this would provide some correction, the overall weight would

be significantly increased, and it would not account for room-scattered neutrons entering the

front of the device, an issue discussed further in Section 4.8.6.

The shadow shield provides an alternative method that accounts for room-scattered neu-

trons by taking two separate measurements. For the first measurement, the shadow shield

is placed between the source and the spectrometer. Ideally, the shield absorbs or deflects

all neutrons traveling directly from the source to the front of the device, masking the spec-

trometer from the line-of-sight (LOS) response. In the second measurement, the shield is

removed and the spectrometer measures the response from both the LOS and room-scattered

neutrons. Fig. 4.17 illustrates the two measurements, as well as possible neutron paths. Be-

cause the second measurement is a superposition of LOS and room-scattered neutrons, the

difference of the first measurement from the second results in the line of sight response (the

shadow of the shield). This net response is much closer to that of a void and can be used

to identify the source via comparison to templates from void simulations, eliminating de-

pendence on the environment. It is noted the counting time of these two measurements

is the same, with the neutron source and environment unchanged. Although taking two

separate measurements is not ideal in practice, it is no different than background measure-

ments required in the vast majority of radiation detection applications. Additionally, any

non-directional background source that is constant in time (such as cosmic neutrons or a

reactor) will be included in both measurements and thus eliminated from the net response.

Although bursts of spallation neutrons in Fe produced by cosmic background (known as the

“ship effect”) could be an issue, these can potentially be accounted for via temporal analysis

of the measurements, as discussed in Kouzes et al. [2007].

Shadow shields (typically referred to as shadow cones) are commonly used for precise

measurement of neutron energy spectra [ISO, 2000]. This section explores the utility of a

shadow shield and optimizes the design and implementation of the shield via MCNP simula-

tions. The procedure of identifying sources using FOM values is modified and demonstrated

for a variety of sources for the optimal shield design and location. The impact of different
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Fig. 4.17: Illustration of the two shadow shield measurements. Several possible neutron paths
are illustrated: (A) neutrons deflected or absorbed in the shield, (B) neutrons scattered off of the
environment entering the front of the spectrometer without interacting in the shield, (C line-of-site
neutrons, and (D) neutrons scattered off of the environment entering the front of the device.
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types of rooms is briefly analyzed as well.

4.8.2 Source Identification with Shadow Shield Measurements

The difference in the detector spectra from the two shadow shield measurements described

in the previous section (referred to herein as the net spectra) are used to identify observed

sources by comparing the net spectra against templates created in a void using FOM values

as before. The equation for the FOM value of the j-th source is

FOM j =

Ndet∑
i=1

(Ri − Sji )2

σ2(Ri) + σ2(Sji )
. ((4.4))

The terms Ri and σ2(Ri) of the above equation are modified from the original definitions in

Section 4.1.2 to account for the two different shadow shield measurements. The value Ri is

the logarithm of the normalized difference in the two counting measurements, observed at

the i-th detector position, i.e.,

Ri = ln

(
Cns
i − Cs

i

Cns
norm − Cs

norm

)
, (4.29)

where the superscript ns indicates the observed counts with no shield present, the superscript

s is the observed counts with the shield in place, and the subscript norm indicates the chosen

normalization detector position. The uncertainty term, σ2(Ri), is by definition

σ2(Ri) = σ2

[
ln

(
Cns
i − Cs

i

Cns
norm − Cs

norm

)]
. (4.30)

Application of the error propagation formula (Eq. (2.27)) to the term in brackets reduces

the above equation to

σ2(Ri) =
(Cns

i + Cs
i )

(Cns
i − Cs

i )
2

+
(Cns

norm + Cs
norm)

(Cns
norm − Cs

norm)2
. (4.31)

There are no changes required to the template values {Si} to account for room scatter,

except that the templates are generated using an isotropic point source; template simulations

are still performed with the spectrometer and source present in a void. Tallies from void

simulations are labeled with the superscript void. Values of FOM calculated using the

modified definitions given above are referred to as FOMroom throughout this section for

clarity.
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4.8.3 Comparison of Shield Designs

The approximate χ2 statistic is used to determine the relative effectiveness of a particular

shield design (or location). For a particular shield design, the net detector spectra from the

shadow shield measurements are compared against the template spectra from the same source

in a void, effectively comparing the expected mean response of observed net spectra and the

corresponding template spectra. This is much more efficient and simple than generating

observed spectra and computing FOMroom values for many simulated observed responses.

The approximate χ2 statistic is computed using Eq. (2.31) and labeled as χ2
red; the value of

N is Ndet, the degrees of freedom µ is Ndet (there is no subtraction of one because the mean

neither the data nor normalization are used to restrict the data), and the other variables

are:
Ri = rnsi − rs,
Si = rvoidi ,

σ2(Ri) = σ2(rnsi ) + σ2(rsi ),

σ2(Si) = σ2(rvoidi ).

(4.32)

Here, the values ri represent the MCNP tally at the i-th detector position from the appropri-

ate simulation indicated by superscripts described in the previous section. The uncertainties

σ2(ri) are the MCNP standard error for the appropriate tally, noting σ2(ri) is an absolute er-

ror. It is also noted that the simulations are not normalized to a particular detector position

in the above equation.

The statistic χ2
red defined above gives a measure of the deviation between detector re-

sponses from the net and void spectra, relative to the propagated uncertainties in the detector

responses. The lower the value of χ2
red, the more closely the net spectra matches the void

spectra. Therefore, the lowest value of χ2
red indicates the design for which the shadow shield

net spectrum is most likely to be correctly identified by a corresponding template created

in a void. Additionally, as χ2
red is a reduced chi-squared value, values less than one indicate

that, relative to the propagated uncertainty of the {ri}, the net and void spectra agree.

4.8.4 MCNP Model

The MCNP model described in Section 4.2.1 was modified to simulate shadow shield de-

signs. All simulations in this section use the optimum spectrometer design determined in

Section 4.6.4: 11 detectors, 2.5 cm thick HDPE sections, and a moderator radius of 6.8 cm.

The model was modified to include a room with a floor and ceiling, as well as walls on three

sides. Figure 4.18 depicts the geometry, with key dimensions given in Fig. 4.19. The room
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was created with the intent of representing a worse case scenario (i.e., room scatter account-

ing for a large majority of the observed detection measurements), similar to a bunker. All

surfaces in the room were 20 cm of concrete of the composition given in Table 4.11. The

cylindrical shield was placed coaxially with the spectrometer and source. The source was 1.5

m from the front surface of the spectrometer, along the axis of the spectrometer, as shown

in Fig. 4.19. All walls and the ceiling were tangentially 1.5 m away from the center of the

front plane of the spectrometer. The source and spectrometer were placed a meter above

the floor to represent the height that the spectrometer would be during a measurement as a

hand held device.

Fig. 4.18: Geometry for room shine scenario.

The neutron source was changed to an isotropic point source. An isotropic point source

was used because the beam source does not introduce any room scatter directly from the

79



SOURCE SHIELD SPECTROMETER

Fig. 4.19: Dimensions for room shine scenario.

Table 4.11: Concrete (ρ = 2.70 g cm−3)
material composition for room scatter sim-
ulations.

MCNP5 Library Mass Fraction

1001.70c 0.022100
6012.66c 0.002484
8016.70c 0.574930
11023.70c 0.015208
12000.66c 0.001266
13027.70c 0.019953
14000.66c 0.304627
19000.66c 0.010045
20000.66c 0.042951
26000.55c 0.006435
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source. Also, fewer histories are required to reduce the variance for a point than a disk

source. The reduced number of histories was of particular interest for the simulations with

the shadow shield in place because the shield prevents the majority of neutron histories from

reaching the tallies. The directional source biasing variance reduction method described in

Section 2.3.2 was used. Particles were only created in direction cosines between 0 and 1,

as measured from the central axis of the spectrometer and source. It is noted that here,

because the source is a point, and room scatter is modeled, the tally per source particle is

different than the rally per incident neutron on the device, unlike that in the previous beam

source simulations.

To simulate the two shadow shield measurements, two simulations were performed. One

with the shield in place, and another with the shield removed (the cells are replaced by a void

in the model). The shield is of a cylindrical shape the same diameter as the spectrometer.

The cylindrical shield’s central axis is colinear with the axis of the spectrometer and source.

It is noted that typically shadow shields are referred to as a shadow cone, because the shape

is usually tapered towards the source [ISO, 2000]. The tapering is to prevent as little room

scatter from the source from being shielded, while still blocking the entire LOS response.

This geometry is not used here to help eliminate human error in lining up the shield in

application.

The room scatter simulations are very inefficient computationally because many neutrons

are terminated in the shield, and scattered neutrons have to go through multiple scatters

in the room to reach the source; these effects lead to poor convergence. To limit the total

number of simulations, a single neutron source was used for optimizing shield thickness and

location. The 30-cm D20 moderated 252Cf neutron source from Table 4.1 (252Cf - D2O )

was chosen. The 252Cf - D2O source features a relatively strong epithermal energy neutron

source, as well as covering the energy range of fast neutrons seen in the majority of neutron

sources. The epithermal and lower energy neutrons are of particular interest when analyzing

the room-scatter scenario because neutrons with low numbers of scatters in the room are the

most likely to reach the first and last few detectors, where the biggest deviation from void

templates is seen.

For optimization of shield thickness, an additional simulation was performed with the

shadow shield and spectrometer in a void to determine the probability LOS neutrons escape

the shield. A parallel uniform neutron beam of the same diameter as the shield was used.

Parallel incident neutrons represent the highest probability of escaping the shield. An F1

tally, labeled as Jshield, was used on the front surface of the spectrometer to determine the

probability, per source neutron, that a neutron escapes the shield and enters the spectrom-

eter. An F1 tally determines the number of neutrons that cross a surface in any direction,
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per source neutron. The neutron importance of the spectrometer region was set to zero

(terminating all tallies that enter that region) so that neutrons backscattering out of the

spectrometer are not tallied.

4.8.5 Shadow Shield Thickness

In application, a shadow shield is primarily made of a moderator (in this case HDPE) with a

thermal neutron absorber between the shield and the spectrometer (Cd). The shadow shield

needs to be light enough to be hand-held, but thick enough to deflect or absorb the majority

of neutrons traveling from the source directly to the spectrometer. As the thickness of the

shield design is increased, less neutrons will reach the spectrometer without interacting, but

a minimal amount of moderator may be necessary to cause the majority of neutrons to

interact and be deflected away from the spectrometer. The goal is to determine a minimal

shield thickness for which enough of the LOS response is reduced that the net spectrum can

be used to correctly identify a source by matching templates created in a void environment.

By modifying the room-scatter MCNP model described in the previous section, simula-

tions were performed to determine the necessary thickness of the shadow shield to identify

sources correctly. A total of 109 particle histories were simulated. The dimensions of the

shield being considered can be seen in Fig. 4.21. The shield is placed with the center of

the moderator half way between the source and the spectrometer, as recommended in [ISO,

2000]. The location of the shield is investigated further in Section 4.8.6. Figure 4.20 com-

pares the detector spectrum for the void template and the room scatter simulation with a
252Cf - D2O source and no correction by the shadow shield method.

Figure 4.22 plots a comparison of the shadow shield corrected net detector spectra for

various shield thicknesses, as well as the void templates; Figure 4.23 provides a larger view

of the last few detector positions where the error bars are difficult to see and includes the

spectrum for a 20-cm thick shield. The values and error bars in the figures were calculated

using Eq. (4.32). Table 4.12 compares values of the weight of moderator and Cd, χ2
red , and

Jshield for different shield thicknesses. Results are included for a simulation that calculated

Jshield for an unmoderated 252Cf source, which produces more high-energy neutrons than the
252Cf - D2O source, on average. Also, an entry is included in the table for a simulation with

the 252Cf - D2O source in which the Cd sheet at the back of the shadow shield is removed

The relative uncertainty in the value of Jshield was less than 1% in all cases.

As demonstrated in Fig. 4.20, the deviation between the uncorrected and void spectra

are significant, particularly in the first and last few detectors. These detectors are most

affected by room-scatter neutrons because lower energy neutrons can reach them from the
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front and back of the spectrometer. Beginning at a thickness of 15 cm, the net and void

spectra agree within error, indicated by values of χ2
red less than 1.0. As the thickness of

shield is increased beyond 20-cm, there is no statistically significant improvement in the

values of χ2
red because Jshield is already well below 0.01. With some conservatism for higher

energy sources, a 20-cm thick moderator shield was chosen to be the most effective while

limiting weight. This shield’s weight is less than 7 lbs. Table 4.12 demonstrates that for

the higher energy 252Cf unmoderated source, the shield still prevents 99% of neutrons from

traveling directly from the source to the spectrometer. For the 20-cm shield, the Cd sheet

at the back of the shield improved results minimally. The improvement was primarily from

the responses in the first detector where thermal neutrons are measured. The removal of Cd

may be of desire in environments where Cd is prohibited as a health risk.

As seen in Fig. 4.23, although χ2
red was less than one for tshd > 15 cm, there is large

uncertainty in the last few detectors, and the net spectra does not agree with the void spectra

as well as in other detector positions. The cause of the disagreement and large uncertainty is

that the majority of the response in the back detectors is from room-scattered neutrons; the

LOS response only accounts for less than 5% of the total response in the last three detector

positions. Even though the relative uncertainty in the shielded and unshielded measurements

are < 1% for these detectors, the uncertainty in the differencing of the measurements scales

with the magnitude of the two values added in quadrature, as shown in Eq. (4.32). Because

the LOS response is on the order of the absolute error of each of the two measurements,

the relative uncertainty in the final result is large. As Fig. 4.23 demonstrates, the value of

Ri is higher than Si in the last few detectors, and increasing the shield thickness does not

correct this behavior. The overbias is likely due to neutrons would that enter the rear of the

detector after scattering off the back wall being absorbed in the shield and thus not counted

as room scatter, thereby increasing the net values. Because the 1.0-cm thick shield allows

more of the signal in the last few detectors to be from the LOS response, these back scatter

neutrons are not as significant (and are also less likely to be blocked by the thin shield), and

the agreement in the last several detectors is better. However, overall the 1.0-cm response

does worse than the 15- and 20-cm cases because of their ability to prevent the majority of

LOS neutrons from entering the front of the detector. This issue in the last few detectors,

and a possible correction, is discussed further in Section 4.8.7.

4.8.6 Optimal Shield Location

Simulations were performed to determine the effect of the location of the shadow shield,

relative to the source and spectrometer. The base MCNP model with the 252Cf - D2O
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Table 4.12: Comparison of χ2
red values for different

shadow shield thicknesses.

tshd (cm) wgt. (lbs.) χ2
red Jshield

1.0 (Cd) 0.58 74.23 2.92E-01
5.0 (Cd) 1.80 1.94 4.58E-02
10.0 (Cd) 3.32 0.36 1.29E-02
15.0 (Cd) 4.84 0.20 4.33E-03
20.0 (Cd) 6.36 0.21 1.62E-03

20.0 (no Cd) 6.08 0.24 1.66E-03
20.0 (Cd - 252Cf) — — 6.40E-03

25.0 (Cd) 7.88 0.20 6.56E-04
30.0 (Cd) 9.40 0.24 2.82E-04
40.0 (Cd) 12.45 0.25 5.89E-05
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source described in Section 4.8.4 was modified and simulations performed with a 20-cm thick

shadow shield at different locations along the axis between the source and spectrometer. The

dimensionless variable z = x/L, where x and L are depicted in Fig. 4.17 on page 76, is used

to refer to shield locations; the value of x varies, and L = 1.5 m. Table 4.13 compares χ2
red

for different values of z. Figure 4.24 gives a plot of detector spectra at z = 0.5, as compared

to the void template. Figure 4.25 compares net spectra with void for various values of z.

The value of z = 0.0 refers to the shield being placed 0.1 cm away from the source. The

value z = 1.0 refers to the shield being 0.1 cm away from the spectrometer.

In general, spectrometer locations that are not too near to either the source or spectrom-

eter produce net spectra that agree, within error, with the void template; in particular values

of z ∈ [0.4, 0.8]. It is desirable that the performance is similar for a range of values because

in application it would be easier to place the shadow shield some fixed value (a meter or

so) in front of the spectrometer, rather than requiring the shield to be a specific distance in

between.

The issue with placing the shield very near to the spectrometer is accounting for neu-

trons which scatter off the environment and enter the front of the spectrometer (path B in

Fig. 4.17). These scattered neutrons are prevented from entering the front of the detector, so
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they are views as being a portion of the LOS response (path C in Fig. 4.17). This causes a

higher response in the front few detectors because the room-scattered neutrons are at lower

energies because of scattering, as seen in Fig. 4.25. A similar problem occurs when the shield

is placed too close to the source, inhibiting the ability of any neutrons that would exhibit

room scatter to reach the walls and ultimately the spectrometer. and it does not stop the

problem of neutrons entering through the front of the detector.

Although there is some statistical uncertainty in the values of χ2
red , z = 0.8 produced

better results than z = 0.5, the ideal location suggested by [ISO, 2000]. The discrepancy is

because in [ISO, 2000] the shield was of a cone shape, with the smaller end near the source.

The shadow shield discussed here is of a cylindrical shape, so it stops some neutrons the

cone would not from reaching the room. The neutrons would scatter back into the detector

(particularly with the inclusion of the back wall in the model), being counted as room scatter.

As the shield gets farther away from the source, the effect is lessened, until z = 0.9 where

the problem discussed above occurs.

Table 4.13: Compari-
son of χ2

red for different lo-
cations of a 20-cm thick
shadow shield.

z = x/L χ2
red

0.0 879.88
0.1 107.56
0.2 4.89
0.4 0.31
0.5 0.21
0.6 0.18
0.8 0.17
0.9 31.76
1.0 739.87

4.8.7 Results with Optimal Shield Design

To demonstrate the utility of the shadow shield method, various sources were simulated and

FOM values computed to determine if the sources could be identified. The shadow shield

was a 20-cm thick HPDE cylinder with a sheet of Cd at the back. The shield was placed

at z = 0.5. MCNP simulations were performed for The list of sources listed in Table 4.1.
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Fig. 4.24: Comparison of net detector spectra with void
spectra for a 20-cm thick shadow shield at a location of z =
0.5.

For each source, MCNP simulations were performed for the void templates and the two

room-scatter simulations described in Section 4.8.4, depicted in Fig. 4.17.

Similar to the procedures in Section 4.3, a total of Ntrials = 1000 were performed, where

each trial represents a sampling of data from all sources. For each source in each trial,

detector measurements were sampled from the response functions for the two room-scatter

simulations individually, based on counting statistics distributions (detailed in Section 4.3.3).

Then, the difference of the spectra were taken and FOMroom values computed for each sim-

ulated spectra, as described in Section 4.8.2. For comparison, FOM values were computed

between the uncorrected data sampled from the room-scatter simulation with no shield and

the void templates. Also, FOM values are computed based on detector spectra sampled from

the void templates. Several different source strengths were sampled. The percent of sources

correctly identified out of all the simulated measured data, for all trials, was computed. It

is noted that this is different than psucc, as psucc gives the percent of all trials that correctly

identified all sources. The difference was made because the net spectra do not identify the

sources as accurately, and more sources are being simulated, so there was often at least one

source that was incorrectly identified in each trial.
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Fig. 4.25: Comparison of net spectra with room scatter
included and void for various z, using a 20-cm thick shadow
shield.

High Room-Scatter Environment: Confined Room

The procedure above was performed using the worse case scenario room, as depicted in

Fig. 4.18. Table 4.14 compares the shadow shield method with no correction and purely
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void templates. As demonstrated, although the shadow shield method is not as accurate

as in a void, it identifies significantly more sources than for no correction. As discussed

in Section 4.8.5, the main problem with identification is the LOS response is substantially

smaller than the room-scattered response, particularly in the last few detectors in higher

energy sources. Because the uncertainty in the shielding and non-shielding measurement are

proportional to the square root of the number of counts, the uncertainty in the LOS response

is large, relative to the net value, independent of the magnitude of the source strength. This

could be corrected by implementing an algorithm that only includes detectors in the FOM

calculation for which a high enough percentage (∼10%) of the total response is LOS. The

next section demonstrates the utility of the shadow shield in an environment where room-

scattered neutrons are less prevalent.

Table 4.14: Source identification data with room scatter from an enclosed room.

% Sources Correctly Identified

S0 (total neuts.) Void Walls - Shield Correction Walls - No Correction

1010 100.0% 83.2% 15.5%
109 97.7% 77.3% 15.5%
108 89.2% 46.3% 15.0%

Moderate Room-Scatter Environment: Floor Only

For comparison, the above simulations were repeated with the room modified to only have

a floor (all walls and ceiling were replaced with a void). The environment represents an

outdoors, open space. All simulations and data sampling were the same as for the confined

room. Fig. 4.26 compares the effect of the removal of the walls on detector spectra, with

no shadow shield correction, for the 252Cf - D2O source. As demonstrated, the simulation

with no walls has significantly less room scatter, but is still substantially different from the

void template, particularly in the front detectors. Table 4.15 compares the results of the

1000 trials as before. An example set of simulated data and FOM values for several of the

sources in one trial are given in Appendix D on page 193. With the walls removed, the

simulation performance is improved significantly, however it is apparent that the shadow

shield correction is still needed to account for room scatter. Because the majority of the

signal in the detectors is not coming from the room-scattered neutrons, the room-scatter

correction is able to predict the location of the source far more accurately than in the

previous results given in Table 4.14.
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Fig. 4.26: Comparison of the effect of room type on detector
spectra.

Table 4.15: Source identification data with room scatter from a concrete floor.

% Sources Correctly Identified

S0 (total neuts.) Void Floor - Shield Correction Floor - No Correction

1010 100.0% 96.4% 46.2%
109 97.7% 85.1% 46.0%
108 89.2% 59.3% 43.1%

4.9 Conclusions, Recommendations, and Future Work

The neutron source identification spectrometer was demonstrated to be effective at identify-

ing sources using the FOM comparison method. The developed optimization methodology

was able to improve the geometric design of the system and provide insight into the statis-

tical behavior of the FOM equations. In general, the efficiency of the spectrometer needs

to be improved to reduce the required source strength for identification. This can be easily

and effectively implemented by adding more detectors at each position in the spectrometer,

increasing the cross sectional area of the detection volume. The developed MCNP5 model is
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in general accurate, but the fidelity can be improved by explicit modeling of the detectors in

MCNP6. For actual detection of spontaneous fission sources, which have very similar energy

spectra, templates should be generated from experimental data. For high energy neutron

sources, which will register counts at deeper detector positions, the front response should

not be included in FOM calculations. In general, the response of the first detector is not well

modeled by the MCNP5 artificial detector model. Additionally, most thermal neutrons are

actually from moderation through either room scatter or moderator surrounding the source,

so the first position would not match well to experiments. However, the front detector is

still very useful for identifying the presence of thermal neutron sources. The shadow shield

method is an effective method, except for cases with extremely low LOS signal.

A simple simulation study still to be investigated would be adjusting the way that the

algorithm accounts for detectors with low numbers of counts. The current algorithm con-

tributes scores to the FOM from detector positions with non-zero counts. If this cutoff is

raised from zero to a higher value, e.g., 20 then the FOM calculations would be improved,

as the low count rates are mostly just contributing statistical noise to FOM calculations.

Also, the effects on detector spectra from shielding and moderator placed around a neutron

source should be investigated.

A more important and involved study would be to determine the confidence intervals for

source identification. Although the relation of Θ and psucc provided some insight, the actual

distribution of the FOM values is unknown. Initial Monte Carlo studies demonstrate that

for the template that matches the source, FOM has a χ2(Ndet − 1) distribution, and the

error propagation estimate of σ(FOM) is very accurate. However, the distribution of the

FOM values for the incorrect templates are not χ2, and the estimate of σ(FOM) is very

poor, differing from the sample standard deviation by up to 150%. Additionally, in real

application, the templates will not match measured spectra perfectly because of differences

between reality and simulations. The differences would result in relatively large values of

FOMmin, i.e., the FOM for the correct template. Thus, confidence of identification based

on a χ2 distribution is unlikely, even for the correct source1. Future simulated data should

add some form of a random term into the simulated responses to account for detector noise

and modeling inaccuracies. Also, the inaccuracies in the estimated standard deviation can

be improved by removing the logarithms from the FOM, as the error propagation estimate

for logarithms is known to be very poor for large values [Taylor, 1997].

1The majority of FOMmin values would be relatively large and located in the region of the domain that
should be the low-probability tail of a χ2(Ndet − 1) distribution [Hogg et al., 2013]. Thus, FOMmin would
not be distributed as χ2(Ndet − 1).

92



Chapter 5

Simulations of Neutron Multiplicity

Measurements with Perturbations to

Nuclear Data

5.1 Motivation

This chapter provides a summary of initial studies performed to analyze a known discrepancy

between multiplicity distributions generated by MCNP modeling and experimental data.

MCNP simulations have been known to demonstrate an overbias in multiplicity distributions

from a sphere of WGPu [Miller et al., 2010; Sood et al., 2011], and the cause of the overbias

is believed to be inaccuracies in the nuclear data, as demonstrated in Miller et al. [2010].

Perturbations were made to nuclear data for 239Pu ENDF/B-VII.1 data in ACE format to

attempt to correct the overbias.

Simulations of multiplicity and criticality experiments were performed to determine the

correction of overbias caused by the individual perturbations. The sets of resulting data

were compared using chi-squared analysis with the intent of reducing the bias in multiplicity

distributions without sacrificing the accuracy of keff in criticality experiments. Energy-

dependent perturbations to the mean of the total number of neutrons produced per fission,

ν, of 239Pu were analyzed. Also, energy-independent perturbations to microscopic neutron

capture, elastic scattering, and fission cross sections were performed. Several methods were

used to maintain realistic cross section relations from the original data. The main goal of

the cross section alterations is to determine how effective the perturbations are, relative to ν

alterations; if the cross section alterations are ineffective, then simulations of the multiplicity

experiments provide a useful tool for verifying tabulated ν data.
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5.2 Background

5.2.1 Neutron Multiplicity Distributions

A neutron multiplicity distribution depicts the probability of a particular number of neu-

trons created within a multiplying system being measured over some fixed, short amount

of time (the coincident gate width). Multiplicity distributions provide information about

the generation of neutrons from spontaneous fission, as well as other neutron sources. Neu-

tron multiplicity distributions are created from correlated time-dependent measurements of

a sub-critical system.

The procedure for constructing a multiplicity distribution provides intuitive understand-

ing. Here, the multiplicity counting scenario is assumed to be perfect (i.e., there is no

detector dead time and there are only spontaneous fission neutron sources). Detector dead

time is the amount of time from the start of detecting one neutron before the measurement

of another neutron can begin and be registered. A multiplicity counter measures neutrons

leaving the system of interest. The counter consists of multiple thermal neutron detectors

whose outputs are combined into one time-dependent output. The relation between the

number of neutrons leaving the system and the number detected by all detectors can be

determined based on a binomial distribution and absolute detection efficiency. The proba-

bility of detecting k neutrons given n neutrons have left the system over a time T is given

by [Reilly et al., 1991]

P (k;n, T ) =
n!

(n− k)!k!
εk(1− ε)n−k, k = 0, 1, . . . , n, (5.1)

where ε is the absolute detection efficiency of the multiplicity counter. The time dependence

the k neutron detection events is then used to construct a multiplicity distribution.

A time-dependent series of neutron detection events, referred to as a neutron pulse train,

is recorded. A simple pulse train, depicted on the left side of Fig. 5.1, represents the time

neutron detection events occurred. The total count time T is divided into coincident gates

of a fixed width. Within the time of the first coincident gate, three detection events were

recorded, representing a multiplicity of three; the second gate has a multiplicity of two, and

so forth. No events were measured during the fifth gate. The number of occurrences of

each multiplicity is then binned in a histogram, as seen in the right side of Fig. 5.1. This

histogram is then normalized by dividing each bin by the total number of gates. Thus,

each bin of the normalized multiplicity distribution represents the probability of a certain

number of neutrons being detected during one gate width, forming a discrete PDF. The first

moment of this distribution is the total count rate of the multiplicity counter. Normalized

94



T

t

0
Gate Width

 F
re

q
u

en
cy

 (
u
n

-n
o

rm
al

iz
ed

)

Multiplicity

0 1 2 3

=   Detected Neutron

1

2

3

Fig. 5.1: Illustration of construction of a multiplicity distribution from a neutron pulse train.
Multiplicity is the number of neutrons detected in one gate width; frequency is the number of gates
with a certain multiplicity in counting time T .

multiplicity distributions can be seen in Fig. 5.7 on page 113. To correct for dead time,

assuming non-paralyzable detectors, detection events that occur within the same detector

less than the dead time apart would not be included in the pulse train. The total count time

T is chosen such that the sample standard deviation of the probability for each bin is below

some desired value.

5.2.2 Application of Multiplicity Distributions

Neutron multiplicity distributions are primarily applied for non-destructive assay of neutron

systems containing fissionable isotopes. Neutrons produced from spontaneous and induced

fission sources are created effectively instantaneously. These simultaneous neutrons can

be measured by a multiplicity counter, and fission events identified. Because the number

of neutrons emitted per fission are generally known values, relations can be developed to

determine the amount of fissionable material in the system; the fissionable isotopes present

can be discerned as well. Another benefit of the simultaneity of fission neutrons is background

neutron sources (e.g. (α, n) reactions and room scattered neutrons) can be discriminated

because they are emitted in non-coincidence [Reilly et al., 1991]. Multiplicity counters used

for experiments typically consist of an array of 10–15 3He detectors. Often, the counter

completely surrounds the fissionable material of interest. Coincidence and timing circuits are

used to construct a distribution from the output pulse chains of the multiplicity counter, as

discussed in Ensslin [1998]. For experimental measurements, the dead time of the individual

detectors must be accounted for, as well as the neutron die-away time of the multiplicity
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counter. The neutron die-away time is a time constant which describes the exponential decay

of a neutron population in a multiplicity counter over time because of the finite thermalization

and detection time of the device. Counter die-away and dead time are typically on the order

of a few µs, compared to gate widths, which are on the order of 1000 µs.

The theory relating a measured distribution to the multiplication properties of a fission-

able system has been applied since Feynman [1946], based on a simplified point model of

the system. Typically multiplicity counting analysis does not use the entire multiplicity dis-

tribution. Instead, the first three factorial moments of the distribution are used. The n-th

factorial moment of X is defined as E[X(X − 1)(X − 2) · · · (X − n + 1)]. In the case of

multiplicity distributions, X is the discreet random variable defined as the number of mea-

sured events in one gate. The factorial moments of the measured multiplicity distribution

are related to the moments of the spontaneous fission and induced fission rates of the system

that is being studied [Reilly et al., 1991]. The first moment of a measured multiplicity distri-

bution is the total neutron count rate. The second factorial moment (E[ν(ν−1)]) determines

the “doubles” rate. The doubles rate is the expected number of true coincident events of

two neutrons [Reilly et al., 1991], i.e., the rate that fission events releasing two neutrons

occur and are measured. The triples rate is similarly defined. Multiplicity distributions can

be misleading in that the measured multiplicities (the abscissa of the distribution) do not

represent true coincidence. The true coincidence of 3 neutrons in a sample is rare [Reilly

et al., 1991], even though multiplicities are much higher because there are many fission events

happening randomly throughout the sample.

Other distribution parameters of interest in measurements are the divergence of the ratio

of the variance to the mean from unity (unity is expected for a Poisson distribution), termed

the Feynman-Y statistic. The Feynman-Y can be related to the subcritical multiplication of

the system and used to verify the functionality of a multiplicity counter, as discussed in Croft

et al. [2012]. The relations of factorial moments and other statistics to the fission rates of

the system being measured are complex and beyond the scope and application of this work,

but the relations are derived and explained in Ensslin [1998]. In this chapter, multiplicity

distributions are used as a measure of subcritical multiplication, rather than to determine

spontaneous fission rates, doubles rates, etc.
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Fig. 5.2: Illustration of multiplicity experiments (not to scale).

5.3 Pu Experiments and Multiplicity Measurements

5.3.1 Overview of Experimental Setup

Previously, experiments were performed using a 4.5 kg sphere of 94% 239Pu plutonium metal

to generate multiplicity distributions with a multiplicity counter. Five different experiments

were performed: one with the bare sphere and the remaining with various thicknesses of

polyethylene reflectors surrounding the sphere. The reflectors were 0.5, 1.0, 1.5, and 3.0

inch spherical shells of polyethylene, which reflect and moderate fast neutrons. Multiplic-

ity counting was performed using the nPod multiplicity counter. The nPod consists of a

staggered array of 15 “15-inch-long, 1-inch-diameter, 10 atm, 3He proportional counters em-

bedded in an HDPE moderator block 16.6 inches tall and 4 inches deep”[Miller et al., 2010].

The individual detectors have a 4 µs dead time. The moderator casing is wrapped in Cd to

minimize the effect of room scattered neutrons. The sphere of Pu and reflectors were placed

on a steel stand on a table a meter above the ground. The experimental data in this work

is from experiments performed through Los Alamos National Laboratory (LANL) discussed

by Solomon [2011]. The specifics of the experiments are unpublished. However, a detailed
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explanation of experiments very similar to the experiments used in this work can be found

in [Mattingly, 2009]; the article discusses corrections to account for dead time and other

factors, as well as the use of multiplicity factorial moments to validate the experiments. The

primary difference between the experiments studied in this work (and by Solomon [2011])

and [Mattingly, 2009] is the reflector thicknesses. Another difference is the design of the

stands that the Pu spheres are placed on. The experimental multiplicity distributions and

their estimated statistical uncertainties are of high accuracy and validity in both cases, and

separate modeling of the systems demonstrate similar results. A diagram from an MCNP

model of the experiments in this work is given in Fig. 5.2. A SNAP-3 total neutron counter

is modeled as well (not pictured). This detector was used to verify that the simulated source

is accurate. Details on the SNAP-3 detector can be found in [Mattingly, 2009].

5.3.2 Previous Modeling Work

The LANL multiplicity experiments described above were previously modeled in a modified

version of MCNP5 with a multiplication patch, MCNP5 mult [Sood et al., 2011; Solomon,

2011]. The patch allows sampling of spontaneous fission source events and produces list-

mode tallies that provide time-dependent tally data. The detector geometry was modeled

explicitly and the list-mode tallies can provide the number of absorptions that have occured,

as well as when each absorption occured. The time-dependent tally data from the simulated

multiplicity-counter detector array are used to reconstruct multiplicity distributions with

the mtool.pl script. The mtool.pl script (used for work in Solomon [2011]) is a Perl script

which takes the time-dependent tallies from the MCNP list-mode tallies and constructs a

multiplicity distribution using a non-paralyzable dead-time correction. The non-paralyzable

dead-time correction is such that if multiple events occur within the dead time interval, only

one event is counted. This is alternative to a paralyzable dead-time correction where a second

event occurring resets the dead time window, allowing the detector to become completely

paralyzed. Previous studies using this MCNP5 model found that MCNP simulations predict

the mean and variance of the multiplicity distributions to be significantly larger values than

the multiplicity experiments [Miller et al., 2010; Solomon, 2011]. However, simulations were

able to accurately predict multiplicity distributions for a 252Cf source. The overbias was

found to worsen as the amount of multiplication in the system was increased by surrounding

the sphere with more polyethylene. A comparison of the experimental and MCNP5 mult

generated multiplicity distributions1 can be seen in Fig. 5.7 on page 113.

1The measured and simulated multiplicity distributions throughout this work are normalized. The vertical
axes are labeled as “Frequency”, referring to the probability of occurrence per multiplicity bin, i.e., the
relative frequency, rather than the number of occurrences. Multiplicity bins are labeled as “Multiplets”.
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Work has been done to determine the cause and magnitude of the overbias in MCNP using

MCNP PoliMi by [Miller et al., 2010], as well as from internal LANL analysis [Solomon,

2011; Sood et al., 2011]. Sensitivity studies on physical parameters were explored: diameter

of device, dead time, 239Pu mass density, etc. Previous results demonstrated that the bias

can be reduced by modifying the value of ν directly in the induced fission sampling routines

by Miller et al. [2010]; this effectively changes the energy-averaged value of ν by reducing all

of the tabular ν data by the same fraction. As a consequence, the computed values of keff

for simulations using the shifted ν data are very inaccurate. Because the MCNP bias over

experimental data increases with the amount of surrounding moderator, an energy-dependent

alteration of ν should reduce the bias more effectively. Additionally, it is known that the ν

data tend to be artificially high below 1.5 MeV [Chadwick et al., 2006]. In order to match

the JEZEBEL fast critical experiment [ICSBEP Handbook, 2004], ν values were increased

in the ENDF/B-VII.1 nuclear data. Below 1.5 MeV, ν tends to lie around two standard

deviations above the experimental data, as determined by covariance analysis by Chadwick

et al. [2006].

5.4 Methodology

5.4.1 Modifying Nuclear Data Files

In this work, the nuclear data read by MCNP5 mult was modified. The United States

Cross Section Evaluation Working Group is a collective group across many universities

and national laboratories which maintains nuclear data. In particular, they manage the

Evaluated Nuclear Data Files (ENDF) library. The current release of the ENDF library is

ENDF/B-VII.1 [Chadwick et al., 2006], where VII.1 is the version and B indicates the release

recommended for use (other versions contain non-verified data). The ENDF libraries con-

tain all cross sections and other tabulated nuclear data needed to perform most Monte Carlo

radiation transport simulations. The VII.1 release also contains experimentally-determined

covariance matrices, in many arbitrary formats, for neutron cross section and ν data.

The code MCNP5 reads data from “A Compact ENDF” (ACE) format files. The ACE

format files contain large arrays of numbers, typically organized by energy data points and

the value of the nuclear data of interest at that energy. Different portions of the nuclear

data are indexed by chains of pointers and numerical flags, whose meanings are given in Vol.

III of the MCNP manual [X-5 Monte Carlo Team, 2003]. Covariance data are only present

in the ENDF format. The covariance data of interest in this work are, in general, organized

as relative covariance terms, averaged over an energy group, divided into sub-matrices by
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energy. However, the specific formats vary greatly.

The Nuclear Data Verification & Validation (NDVV) Python modules available at LANL

were used and expanded for reading and modifying nuclear data, with the intent of being

versatile enough to be applicable to other covariance data analyses. As the NDVV tools

are large codes, only newly created modules that are specifically relevant to the results in

this work are given. The modules added to NDVV for handling ENDF covariance matrices

in this work are the mf33.py and cov matrices.py modules. The ENDF format manual

can be used to understand the behaviour of these files. All ACE data are handled using the

ace sb.py module written for this work. These Python modules can be found in Appendix E,

with description on page 197.

5.4.2 Correlated Random Sampling of ν in ACE Files

Unique sets of correlated random ν data were used instead of employing a linear opti-

mization or some subjective method. The methods discussed in Section 2.1.7 were used to

sample correlated random values from covariance data. Both the Cholesky and eigenvalue

decomposition methods, with optional correction for non-positive-semidefinite matrices were

implemented. The decompositions were implemented using prebuilt Python linear algebra

models with PyLab, a modified version of Python; open-source documentation is available

at <www.scipy.org/PyLab>.

A small perturbation to ν data can have a large effect on results because the many fission-

based neutron multiplications that potentially take place throughout a single history. These

multiplications result in a non-linear change in results with respect to ν perturbations. A

linear optimization problem would likely get stuck in a local minima. Additionally, because

the problem was under-constrained (50 variables with only 6 sets of results), it is likely

a standard step-descent method (e.g. as gradient descent [Press et al., 1992]) would find

a minima that is not physically realistic. Using a covariance matrix to sample data adds

statistical confinement to potential values of the data, but requires some form of random

sampling of the space.

The covariance data used to correlate the randomly sampled numbers was read from the
239Pu ENDF/B-VII.1 data library1. The library that was used to compile the ACE libraries

used in this work was ENDF/BVII.0. However, ENDF/B-VII.1 possesses the same values for

ν and all neutron cross sections as ENDF/B-VII.0 for 239Pu. The ν data for 239Pu contain

one row (and symmetric column) in the covariance matrix with all zeros. To handle this, the

1For some nuclear data, the ENDF/B-VII.1 covariance data contain co-relation terms between different
data types and isotopes, for different energy groups. Only co-relation terms between energy groups, for a
particular type of nuclear data of 239Pu, are considered in this work.
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submatrix of the correlation matrix with the row and column of zeros absent was used for

the decomposition and sampling process. Because there is no information on the variance

for that row, that sampled value is taken as the original value. For ν of 239Pu, below thermal

energies there is no covariance data.

The covariance matrix for ν data of 239Pu is positive definite and the Cholesky decompo-

sition was used. The covariance data are given as averages over certain energy groups. The

ν data are evaluated at certain energies for which linear interpolation is applied in between

to evaluate ν during simulations [ENDF-6 Manual, 2011]. There are also more energies for

which ν is evaluated than corresponding covariance energy groups. To map the sampled

covariance data to the ν data points, ν data was sampled as

ν ′(E) = σrel(Eg)ν(E)R̃(Eg) + ν(E). (5.2)

Here, ν(E) is the original value of ν at energy E, ν ′(E) is the perturbed ν data, Eg is

the covariance energy group that E lies in, σrel(Eg) is the relative standard deviation in

group Eg, and R̃(Eg) is the correlated standard normal random sample in group Eg as

described in Eq. (2.21) on page 12. The standard-normal-distributed random numbers were

generated using pre-built Python routines, which utilize the Mersenne Twister algorithm

and allows for specification of the random number generator state through a numerical

seed. Details on the sampling algorithms can be found in the open-source documentation at

<www.python.org/doc>

Observation on Sampling Correlation Matrix

The sampling method described above was tested to determine if the method was sampling

covariance matrices as intended. To verify the method, a unique vector of correlated values

was generated 10,000 times for the covariance matrix data for ν of 239Pu. The samples were

then used to generate a covariance matrix. It was found that the covariances were roughly

two orders of magnitude higher in the generated correlation matrix than in the original

correlation matrix for 239Pu, or non-zero where zero was expected.

For another test the sampling routines were tested for an arbitrary matrix with cross-

correlation values much higher (O(10−1), rather than the O(10−5) of 239Pu). The correlation

matrix was recreated accurately. These results demonstrate that the inability to recreate

the correlation matrix has to do with the relatively small values in the covariance data and

that, within statistics, the method is sampling accurately. As a comparison, a correlation

matrix was generated from 10,000 vectors, each with 50 uncorrelated, normally-distributed

random numbers. The numbers in these vectors should display no correlation. However, the
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covariance values in the correlation matrix showed correlations on the same order as those of

the regenerated correlation matrix for 239Pu. The cross-correlations between energy groups

are very small relative to the variances (the majority are O(10−6)). The effect of covariance

between energy groups, thus, has very minimal constraint on the data for 239Pu. However,

the samples are still confined statistically by the variance terms.

5.4.3 Energy-Averaged Perturbations of Capture Cross Section

Here, σc is referring to the microscopic capture cross section related to the probability of a

neutron absorption event that results in no reemission of one or more neutrons, sometimes

referred to as the removal cross section1. It is noted that in the case of ACE format 239Pu

data, the capture cross section only includes the (n, γ) radiative capture reaction. Alterations

to σc of 239Pu were made by increasing the energy-averaged value of σc, given analytically

as σc =
∫ Emax

0
σc(E) dE/Emax, where Emax is the maximum energy that σc is tabulated for.

Multiple increases were investigated to determine their effect on the simulated multiplicity

distributions. Alterations to the ACE data were performed by adjusting the tabular cross

sections from the ESZ block, described in Vol. III of [X-5 Monte Carlo Team, 2003]. The

ESZ block in an ACE file contains data for σc, σt, and σs, as functions of energy, separate

from the typical MT reaction data in ENDF format [ENDF-6 Manual, 2011]. Although the

only constituent of σc for 239Pu is the (n, γ) cross section, the ACE data for (n, γ) cross

section are not altered because only data in the ESZ block is used for determining the

probability of capture reactions during transport of neutrons ((n, γ) and other MT reactions

that due not emit neutrons are tabulated in ACE files for use with tallies). Each capture

cross section data point (representing the microscopic cross section evaluated at some energy)

was increased by a fixed percentage. This increases σc by the same percentage; all reference

to increasing or decreasing nuclear data in this work is performed in this manner unless

otherwise indicated. Because MCNP demonstrates an overbias in multiplicity distributions,

an increase in the probability of capture in the system should decrease the probability of

neutrons leaving the system and reaching the detectors, decreasing the discrepancy between

MCNP and experiments.

Since σt is defined as the sum of all other individual cross sections, an adjustment of

some form must be made to compensate for changes in σc . Different methods were explored

for compensating for this change in either σt or σs. Also, the relation between σc and σs

was adjusted in various ways to determine the effect on the system. One other case was

1The nomenclature for a neutron absorption without reemission varies in nuclear data libraries. Absorp-
tion without reemission is described by the total absorption and disappearance cross sections in ACE and
ENDF format data, respectively. Typically, the absorption cross section refers to σa = σf + σc.
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considered in which σf was adjusted to compensate for the changes. It is useful to categorize

the different methods by the change in σc and σt in each case. To describe the various cross

section adjustments investigated, define the amount εi (E) that the i-th cross section σi (E)

was adjusted to become the perturbed value σ′i(E), at each energy, i.e.,

σ′i(E) = σi (E) + εi (E). (5.3)

Then in all cases the changes in σc and σt are given by

εc(E) = α σc(E), (5.4)

εt(E) = εc(E) + εs(E), (5.5)

where α is the signed fractional change in σc(E), i.e., α = [σc
′(E)−σc(E)]/σc(E). Dropping

the energy notation, the value of εs for the various methods, at each energy for which cross

sections are evaluated, is described and labeled as follows:

case 1. Only σt was adjusted to account for the increase in σc , therefore εs = 0.

case 2. The scattering ratio c = σs/σt remained constant, so that εs = εc [c/(1− c)].

case 3. The ratio of the scattering to capture cross sections remained constant, i.e., σ ′s/σ
′
c =

σs/σc, so that εs = εcσs/σc.

case 4. The sum of σc and σs remained constant (εt = 0) for energies greater than 1 keV,

i.e., εs = −εc, for E > 1 keV.

case 5. The sum of σc and σf remained constant (εt = 0 and εs = 0), i.e., εf = −εc.

Case 4 alters cross sections only for energies greater than 1 keV because at low energies

capture is much more dominant than scattering. For any α greater than 0.25%, subtracting

εc(E) from σs would yield an unrealistic negative value for σ ′s(E). Additionally, the systems

being studied are relatively fast with the majority of neutrons and fission interactions at

energies above 1 keV, so changes made below 1 keV are expected to have minimal effect on

results anyways. No alterations other than those described in the cases above were made to

the ACE file. A unique ACE file was made for each set of altered cross sections. The XSn

card was used in the MCNP input files to input the modified sets of data into simulations.

5.4.4 Energy-Averaged Perturbations of Fission Cross Section

The fission cross section modifications were made in the same manner as the capture cross

section, with the exception of the location of the fission data within the ACE files. In ACE
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format, the FIS block contains the energy-dependent total fission cross section data and was

thus modified. All changes to other cross sections occur in the ESZ block, as described in

Section 5.4.3. The methods in the previous section were performed with the exchange of σf

and εf in place of σc and εc, respectively. Only case 1 and case 4 were explored for the fission

cross section because of initial results, as discussed later in Section 5.7.1.

5.4.5 Quantifying Shifts in Cross Sections

In all cross section manipulations, a measure of how statistically realistic the alterations

were was computed as how much a cross section had been shifted, relative to the variance

of that cross section. The average number of standard deviations that the i-th cross section

was shifted in the positive or negative direction, #s(σi), is thus calculated as

#s(σi) =
1

Nerg

Nerg∑
j=1

εi(Ej)

s(σi(Ej))
. (5.6)

Here Ej is the j-th of Nerg energy at which σi(E) was modified, and s(σi(Ej)) is the stan-

dard deviation for σi(Ej). The values s(σi(Ej)) are taken from the energy group averaged

covariance matrices from File 33 of ENDF/B-VII.1 library. Here the values for s(σi(Ej))

only consider variance within energy group, for the same material, for the i-th reaction. The

sample standard deviation, s(#s(σi)), of #s(σi) was also computed to demonstrate that the

values of #s(σi) are not caused by to a very small variance in a particular energy regime.

5.5 Data Generation, Simulations, and Comparison to

Experimental Data

Unique sets of nuclear data were generated and analyzed for many trials. Here, for clarity

and brevity, a trial refers to a unique set of nuclear data. For each trial, the original nuclear

data was read from the MCNP ACE format nuclear data files. The data was then perturbed

via a method described earlier, depending on the nuclear data of interest, and written to a

unique ACE format file.

For trials where ν was sampled, correlated random samples of ν were generated based

on the procedure discussed in Section 5.4.2. The random number generator seeds used to

generate the data were saved to regenerate ACE files at a later time and ensure each trial

was unique. For cross sections, data points were shifted uniformly for multiple trials, based

on the value of α (see Eq. (5.4)). Data was generated with the five different cases for the
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capture cross section. The process was repeated with cases 1 and 4 for the fission cross

section.

For each trial, the five different multiplicity simulations of the plutonium sphere sur-

rounded by various thickness of reflectors, as described in Section 5.3.1, were performed.

The simulations used the same MCNP input files as in Solomon [2011]. In the MCNP input

files, the FISNU setting on the PHYS:N card was set to 1. This particular setting uses an

evaluated Gaussian width to provide more accurate sampling of the number of neutrons per

fission, which is better for sub-critical systems [X-5 Monte Carlo Team, 2003]. In addition

to the multiplicity simulations, the JEZEBEL fast-critical bare Pu sphere experiment was

simulated for each trial. The JEZEBEL benchmark consists of a critical, bare Pu sphere

(primarily 239Pu). This simulation measures how well MCNP5 would model a critical system

using the perturbed sets of data, a critical feature in the simulation tools. The only modifi-

cations to the input files was an XS card used to specify the location of modified ACE file for

each trial. All modified ACE file data libraries are labeled with the nomenclature 94239.99c

to prevent the use of incorrect data. The simulations were performed using MCNP5 mult.

Sample input files are available in Appendix F.

Multiplicity distributions were generated for each of the five multiplicity simulations in

each trial using mtool.pl. The distributions were created with a coincident gate width of

2000 µs. To compare the simulation results to the experimental multiplicity distributions,

a chi-squared goodness of fit statistic was computed. A reduced chi-squared value was

computed for each of the five multiplicity experiments between the reference experimental

data and the simulation as described in Eq. (2.29). Specifically, for the m-th multiplicity

experiment

χ2
mult,m =

1

NB − 1

NB∑
i=1

(Si − Ei)2

σ2(Si) + σ2(Ei)
. (5.7)

Here, Si and Ei are the probabilities (i.e., the normalized frequencies) from the i-th bin of

the multiplicity histograms of the j-th scenario for the simulation trial and experimental

data, respectively; NB is the number of bins that had a non-zero frequency in either the

reference or simulated multiplicity distribution (different for each trial and experiment). For

each bin, if either the reference or simulated value had a non-zero score it contributed to the

total score, even if the other had a zero score. A chi-square statistic was also calculated for

keff between the JEZEBEL criticality experiment and simulation labeled as χ2
keff

.

Reduced chi-squared values were used to increase the importance of the constraint that

a trial produce a critical system. An individual reduced chi-square test was calculated for

each of the multiplicity scenarios and the criticality simulation. The degrees of freedom η in

Eq. (2.31) for each multiplicity distribution is NB − 1, where NB is the number of bins that
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had a non-zero score in either the reference or simulated multiplicity distribution. For the

criticality simulation, η is unity.

The χ2
red values for all six simulations were then summed to form a FOM for each trial,

i.e.,

FOM =
5∑

m=1

χ2
red,mult,m + χ2

red,keff
. (5.8)

Here, the subscripts mult,m and keff indicate the χ2
red value for the m-th multiplicity ex-

periment and the JEZEBEL experiment, respectively. The trial with the lowest FOM value

represents the best match to the experimental multiplicity distributions and criticality bench-

mark. In the above equation, FOM is composed such that each simulation carries equal

weight.

The summation of the multiplicity reduced χ2 values χ2
red,mult,m are also used to compare

trials, i.e.,

χ2
mult =

5∑
i=1

χ2
red,mult,m. (5.9)

The lower the value of χ2
mult, the better that particular set of nuclear data corrects the

discrepancy in multiplicity distributions between simulation and experiment. The code that

makes these comparisons is mult chi sq.py, a stand alone script, given on page 238.

5.6 Results for ν Perturbations

The methodology described above was applied for 500 trials. The computed FOM value

described in Eq. (5.8) and the χ2 values for keff and χ2
mult are given in Table 5.1 below;

entries are only included for the ten trials which produced the lowest FOM values. The

numbering of the trials is arbitrary other than to refer to their random number generator

seeds. Entries are also included in Table 5.1 for the original ENDF/B-VII.1 data, labeled

as “Original”, and the best-case energy averaged ν from Miller et al. [2010], labeled as “ν

-1.14%”, throughout. The energy-averaged case shifts all values of ν down by 1.14%. This is

not necessarily the best-case shift for this set of experimental data; it is given for comparison

of FOM and χ2 results to demonstrate that energy-dependent perturbations to ν has the

potential to match multiplicity distributions while maintaining accuracy in keff .

As expected, Table 5.1 demonstrates that the original data matches keff within statistical

error but has significant inaccuracy for the multiplicity distributions. Since ν was shifted

down at all points for the energy-averaged case, criticality is not preserved, and the χ2
keff

value was significantly higher than the best energy-dependent cases. The energy-dependent
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perturbations were not able to match the multiplicity distributions as accurately as the

energy-averaged case, but preserved keff more accurately.

Table 5.1: FOM and χ2 values for ten trials
with lowest FOM values, and original and shifted
ENDF/B-VII.1 data.

Trial FOM χ2
mult χ2

keff

ν -1.14% 164.24 130.58 33.66
303 197.07 192.89 4.18
243 264.3 261.33 2.97
55 267.9 267.9 0.01
471 271.34 268.34 3.00
396 273.42 272.1 1.32
335 273.62 273.55 0.07
99 276.88 276.4 0.49
473 284.21 282.54 1.67
127 285.87 284.82 1.05
90 333.93 333.91 0.66

Original 426.86 426.6 0.27

For the trial with the lowest FOM (trial 303), the MCNP expanded criticality validation

suite was performed [X-5 Monte Carlo Team, 2003; ICSBEP Handbook, 2004]. Only the

cases in the validation suite containing plutonium were analyzed. For each file in the suite,

the original and trial 303 ACE data respective results are compared to reference experimental

solutions. The notation is such that “ * ” indicates the mean was within one to two standard

deviations of the experimental data, “ ** ” is within two to three, “ *** ” is within three

or more, and no asterisk is within one standard deviation. Table 5.2 on page 108 compares

the results of validation suite for trial 303 and original ENDF/B-VII.1 data as compared to

the reference benchmark. The RMSD for the suite was calculated as:

RMSD =

√∑Ncases

i=1 (keff,i − krefeff,i)
2

Ncases

× 100%. (5.10)

Here, krefeff,i indicates the reference keff value for the i-th of Ncases benchmarks. The RMSD

for trial 303 was found to be 0.51% as compared to the RMSD produced with the ENDF/B-

VII.1 data of 0.49%. The energy-averaged shift of ν down by 1.14% produced a RMSD of

1.23%.

A comparison of the multiplicity distributions generated from simulations with the orig-
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Table 5.2: Comparison of keff for different data with the MCNP criticality validation benchmark suite.

Benchmark
Reference ENDF/B-VII.1 ν Data Trial 303 ν Data

keff σ keff σ # σ away keff σ # σ away

pu-met-fast-001 1.0000 0.0020 1.0000 0.0003 0.9967 0.0003 *
pu-met-fast-002 1.0000 0.0020 1.0001 0.0003 0.9968 0.0003 *

pu-met-fast-022-case-2 1.0000 0.0021 0.9983 0.0003 0.9950 0.0003 **
mix-met-fast-001 1.0000 0.0016 0.9993 0.0003 0.9993 0.0003
mix-met-fast-003 0.9993 0.0016 1.0008 0.0003 1.0008 0.0003
pu-met-fast-006 1.0000 0.0030 0.9995 0.0003 0.9967 0.0003
pu-met-fast-010 1.0000 0.0018 1.0001 0.0003 0.9963 0.0003 *
pu-met-fast-020 0.9993 0.0017 0.9981 0.0003 0.9950 0.0003 **

pu-met-fast-008-case-2 1.0000 0.0006 0.9977 0.0003 ** 0.9942 0.0003 ***
pu-met-fast-005 1.0000 0.0013 1.0092 0.0003 *** 1.0058 0.0003 ***

pu-met-fast-025-case-2 1.0000 0.0020 0.9988 0.0003 0.9954 0.0003 **
pu-met-fast-026-case-2 1.0000 0.0024 0.9985 0.0003 0.9953 0.0003 *

pu-met-fast-009 1.0000 0.0027 1.0053 0.0003 * 1.0022 0.0003
pu-met-fast-023-case-2 1.0000 0.0020 0.9993 0.0003 0.9972 0.0003 *

pu-met-fast-018 1.0000 0.0030 0.9964 0.0003 * 0.9932 0.0003 **
pu-met-fast-019 0.9992 0.0015 0.9975 0.0003 0.9945 0.0003 **

pu-met-fast-024-case-2 1.0000 0.0020 1.0019 0.0003 0.9983 0.0003
pu-met-fast-011 1.0000 0.0010 1.0006 0.0003 0.9970 0.0003 **

pu-met-fast-021-case-2 1.0000 0.0026 0.9931 0.0003 ** 0.9897 0.0003 ***
pu-met-fast-021-case-1 1.0000 0.0026 1.0021 0.0003 1.0001 0.0003

pu-met-fast-003-case-103 1.0000 0.0030 0.9981 0.0003 0.9958 0.0003 *
pu-comp-inter-001 1.0000 0.0110 1.0121 0.0003 * 1.0099 0.0002

mix-comp-therm-002-case-pnl30 1.0024 0.0060 1.0011 0.0003 0.9983 0.0003
mix-comp-therm-002-case-pnl31 1.0009 0.0047 1.0025 0.0003 1.0004 0.0003
mix-comp-therm-002-case-pnl32 1.0042 0.0031 1.0031 0.0003 1.0001 0.0003 *
mix-comp-therm-002-case-pnl33 1.0024 0.0021 1.0079 0.0003 ** 1.0046 0.0003
mix-comp-therm-002-case-pnl34 1.0038 0.0025 1.0042 0.0003 1.0017 0.0003
mix-comp-therm-002-case-pnl35 1.0029 0.0027 1.0066 0.0003 * 1.0036 0.0003

pu-sol-therm-009-case-3a 1.0000 0.0033 1.0190 0.0002 *** 1.0159 0.0002 ***
pu-sol-therm-011-case-16-5 1.0000 0.0052 1.0060 0.0004 * 1.0025 0.0004
pu-sol-therm-011-case-18-1 1.0000 0.0052 0.9943 0.0004 * 0.9916 0.0003 *
pu-sol-therm-011-case-18-6 1.0000 0.0052 0.9996 0.0004 0.9960 0.0004

pu-sol-therm-021-case-1 1.0000 0.0032 1.0043 0.0004 * 1.0020 0.0004
pu-sol-therm-021-case-3 1.0000 0.0065 1.0044 0.0005 1.0013 0.0004
pu-sol-therm-018-case-9 1.0000 0.0034 1.0031 0.0003 1.0014 0.0003
pu-sol-therm-034-case-1 1.0000 0.0062 0.9999 0.0004 0.9968 0.0004

RMSD 0.49% 0.51%
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inal ENDF/B-VII.1 ν and from experimental data is given in Fig. 5.7 on page 113. The

plot of multiplicity distributions for trial 303 as compared to experimental data is given in

Fig. 5.8 on page 114. All multiplicity distributions are for a coincident gate width of 2000

µs. The generated set of ν data in trial 303 corrects the overbias demonstrated using the

original data, but is still inaccurate as compared to the experimental data.

For each multiplicity distribution, the first and second moments (not factorial moments)

were computed using mtool.pl. Table 5.3 on page 109 compares the first and second mo-

ments of the multiplicity distributions for trial 303 and the original data, as compared to

experimental data. The column “# σ away” indicates how many standard deviations away

that moment is from the experimental moment. The σ is chosen as the biggest standard

deviation of the experiment and simulated data for that row (in all cases the simulated data).

As is shown, the best-case solution does not match the experimental data solution within

statistics, but it is a significant improvement over the original data. The average devia-

tion between the ENDF/B-VII.1 and trial 303 results over all multiplicity experiments was

computed. Trial 303 reduced the average deviation in the mean of multiplicity distributions

between simulation and experiment to 4.32% from 6.73% for the ENDF/B-VII.1 ν data; the

average deviation in the second moment was reduced from 13.87% to 8.74%.

Table 5.3: Comparison of first and second multiplicity moments for different thicknesses of
polyethylene reflector.

Reflector Moment
ENDF/B-VII.1 ν Trial 303 ν Experimental

Value σrel # σ away Value σrel # σ away Value σrel

None
1 1.76E+001 2.68E-003 14.11 1.74E+001 2.68E-003 10.13 1.69E+001 1.38E-003
2 3.31E+002 2.94E-003 24.43 3.24E+002 2.95E-003 17.59 3.08E+002 1.52E-003

0.5
1 2.40E+001 2.67E-003 16.72 2.37E+001 2.67E-003 11.75 2.29E+001 1.51E-003
2 6.13E+002 2.90E-003 29.51 5.97E+002 2.90E-003 20.84 5.61E+002 1.65E-003

1.0
1 3.17E+001 2.66E-003 23.52 3.11E+001 2.66E-003 16.67 2.97E+001 1.77E-003
2 1.07E+003 2.89E-003 41.52 1.03E+003 2.89E-003 29.59 9.38E+002 1.93E-003

1.5
1 3.80E+001 2.67E-003 28.61 3.70E+001 2.67E-003 19.27 3.51E+001 1.84E-003
2 1.54E+003 2.92E-003 50.25 1.46E+003 2.91E-003 34.14 1.32E+003 2.01E-003

3.0
1 3.19E+001 2.70E-003 34.04 3.06E+001 2.70E-003 19.44 2.90E+001 1.75E-003
2 1.11E+003 3.04E-003 58.05 1.02E+003 3.03E-003 33.72 9.17E+002 1.96E-003

Figure 5.3 on page 110 coplots the ν data of trial 303 and the original ENDF/B-VII.1

data. As this plot is very difficult to read at low energies, Fig. 5.4 on page 111 depicts the

modified and original ν between 85 and 150 eV. Although ν was shifted up or down randomly

over each energy group, the smoothness of the data points has not been significantly reduced.

Figure 5.5 on page 112 gives a plot of the correlated random numbers used for trial 303. The

vertical axis represents the number of standard deviations that ν was shifted with respect
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to each energy in the horizontal axis. This plot qualitatively demonstrates that the values

are being sampled from a Gaussian and that the correlation between groups is not visually

significant. Figure 5.6 on page 112 plots the percent deviation of ν from the ENDF/B-VII.1

data for trial 303; the average magnitude of deviation from the original data (averaged over

all energy points where ν was evaluated) was 0.38%. The maximum deviation was 1.61%.

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

1e-02 1e-01 1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06 1e+07 1e+08

ν-
b
a
r

Energy (eV)

Original ACE
Modified ACE
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Fig. 5.7: Comparison of multiplicity distributions using original ENDF/B-VII.1 data and
experimental multiplicity distributions. Distributions are for (A) bare Pu sphere, (B) 0.5-cm
reflector, (C) 1.0-cm reflector, (D) 1.5-cm reflector, and (E) 3.0-cm reflector.
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Fig. 5.8: Comparison of multiplicity distributions using trial 303 (modified ENDF/B-VII.1
ν data) and experimental multiplicity distributions. Distributions are for (A) bare Pu sphere,
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5.7 Results of Cross Section Perturbations

The effect of the different cross section alteration schemes, discussed in Sections 5.4.3

and 5.4.4, are compared by the sum of the reduced chi-squared values for the multiplic-

ity distributions χ2
mult given by Eq. (5.9). The first and second moments of multiplicity

distributions are compared to experimental results to determine when cross section alter-

ations produce high values of χ2
mult because of over-correcting the original overbias in the

distributions. The average number of standard deviations that cross sections are shifted,

as calculated with Eq. (5.6), are given as a measure of how realistic the cross section alter-

ations are (where the variance data for that cross section were readily available); the sample

standard deviation of the number of standard deviations data was shifted is also given. The

chi-squared values for keff are also tabulated for comparison of the effect on the system to ν

alterations discussed in the previous section. Trials are labeled by the signed percent change

in a cross section of interest (α in Eq. (5.4)). For reference, a comparison of the multiplicity

distributions generated from simulations with the original ENDF/B-VII.1 cross sections and

from experimental data is given in Fig. 5.7 on page 113; the distributions for the “ν -1.14%”

trial are given in Fig. 5.10 on page 123.

5.7.1 Results of Capture Cross Section Perturbations

The results for case 1 of altering σc and σt discussed in Section 5.4.3 is given in Table 5.4 on

page 117. The plot of multiplicity distributions produced with 16% increased σc from case 1

and the five experimental distributions is given in Fig. 5.11 on page 124. Based on the values

of χ2
mult in Table 5.4, increasing the value of σc decreases the discrepancy between the MCNP

and experimental multiplicity distributions. Significant alterations to the capture (and thus

total) cross section had to be made to create a noticeable improvement in χ2
mult. As seen in

Table 5.4, the 16% increase in σc corresponds to a 3.5 and 6.9 standard deviation increase

in σf and σt , respectively. This set of data is well outside of statistical confidence, and the

correction to the multiplicity distributions is still not as good as that of the ν case. For

comparison, in the “-1.14% ν ” trial the value of ν was decreased 3.9 standard deviations,

on average, with s(#s(ν)) = 1.82 standard deviations. For most values of α, keff is not

effected in any statistically significant manner.

As demonstrated in Fig. 5.11, a 16% increase in σc with compensation in σt corrects the

overbias in multiplicity data produced by the original ENDF/B-VII.1 239Pu data, but in

most cases is still inaccurate as compared to the experimental data. The 3.0-cm scenario is

accurate to a high degree of precision. This indicates that χ2
mult improvements are dominated

by corrections in the 3.0 cm scenario and energy-dependent alterations to σc may be able
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to produce a more accurate match to all of the distributions. However, it would require a

significant alteration based on the results of α = 16%.

The 3.0-cm simulation also has more moderation, so the effects of changes made to cross

sections at lower energies are more prevalent. Figure 5.9 on page 117 compares multiplicity

distributions for the 3.0 cm reflected scenario for various changes in σc, for case 1. The

2.0% and 8.0% increases in σc correspond to 0.86 and 3.45 for #s(σc), respectively; the

latter value of #s(σc) is similar to #s(ν) in the -1.14% ν trial. The 2.0% increase (near

one standard deviation) shows minimal correction to the distribution. It is of note that the

3.0-cm simulation shows the greatest correction in the distributions, but the 8.0% increase

in σc , similar in magnitude to the ν trial, does not fully correct this case. Also, for the

3.0-cm scenario, the ν trial actually over-corrects the overbias in multiplicity, as seen in

Fig. 5.10 on page 123. The over-correction is because the ν data corrects all experimental

distributions, and thus overcompensates in the case with the greatest change. This suggests

that the system overall is not as sensitive to perturbations of σc as it is to ν .

The results for changing σc for case 2 and 3 are given in Tables 5.5 and 5.6 on page 118.

Case 2 and 3 demonstrate that in general increasing scattering has a negative effect on χ2
mult,

as compared to case 1. As a result, only case 1 and 4 were performed for the fission cross

sections. The results for case 3 in Table 5.6 do not show a clear relation between α and

χ2
mult. This is due to the stochastic spread of χ2

mult values (particular for relatively large

values). In general, increasing scattering has a negative effect on the accuracy of simulated

multiplicity distributions.

The results from case 4 for σc are depicted in Table 5.7 on page 119. The scattering cross

section covariance matrix was in a format that is not yet implemented in the ndvv tools.

Altering the cross sections was able to improve χ2
mult as compared to the original data by

increasing capture and reducing the scattering cross section to compensate. For the same

values of α, the improvements were not as great as in case 1. Changes were only made

above 1 keV for case 4 because σc being orders of magnitude larger at times than σs at lower

energies. To give some insight to the sensitivity of the systems to changes in σc at lower

energies, Table 5.8 compares results of case 1 for changing data at all energies and for only

above 1 keV. These results suggest, primarily because of correction in the 3.0-cm simulation,

that the multiplicity experiments are sensitive to σc at lower energies.
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Table 5.4: A comparison of results for case 1 where σc was increased and σt was increased
to compensate for the change, at each energy.

Trial χ2
mult χ2

keff
#s(σt) s(#s(σt)) #s(σc) s(#s(σc))

ν -1.14% 130.6 33.66 n/a n/a n/a n/a
16.0% 142.6 1.86 3.47 3.05 6.90 2.47
14.0% 163.0 0.66 3.04 2.67 6.03 2.16
10.0% 209.0 0.11 2.17 1.90 4.31 1.55
8.0% 237.5 0.51 1.74 1.52 3.45 1.24
6.0% 277.8 0.08 1.30 1.14 2.59 0.93
4.0% 321.1 0.45 0.87 0.76 1.72 0.62
2.0% 371.2 0.02 0.43 0.38 0.86 0.31
1.5% 384.9 0.07 0.33 0.29 0.65 0.23
1.0% 396.4 0.16 0.22 0.19 0.43 0.15
0.5% 410.0 0.01 0.11 0.10 0.22 0.08
0.25% 423.6 1.06 0.05 0.05 0.11 0.04

Original 426.6 0.27 0 0 0 0
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Fig. 5.9: Comparison of multiplicity distributions for the
3.0-cm polyethylene reflected sphere of Pu.
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Table 5.5: A comparison of results for case 2 in which σc was increased and σs was
increased to keep the ratio of scattering to σt the same as in the original data; σt was
increased to compensate for the changes in σc and σs.

Trial χ2
mult χ2

keff
#s(σt) s(#s(σt)) #s(σc) s(#s(σc))

ν -1.14% 130.58 33.7 n/a n/a n/a n/a
10.0% 215.7 0.07 5.15 3.66 4.31 1.55
8.0% 249.0 1.08 4.12 2.93 3.45 1.24
6.0% 283.1 0.42 3.09 2.20 2.59 0.93
4.0% 326.1 1.09 2.06 1.47 1.72 0.62
2.0% 374.6 0.26 1.03 0.73 0.86 0.31
1.5% 389.8 0.26 0.77 0.55 0.65 0.23
1.0% 397.3 1.66 0.51 0.37 0.43 0.15
0.5% 409.7 0.48 0.26 0.18 0.22 0.08
0.25% 418.7 0.11 0.13 0.09 0.11 0.04

Original 426.6 0.27 0 0 0 0

Table 5.6: A comparison of results for case 3 in which σc was increased and σs was increased
to keep the ratio of σc to σs the same as in the original data; σt was increased to compensate
for the change in σc and σs.

Trial χ2
mult χ2

keff
#s(σt) s(#s(σt)) #s(σc) s(#s(σc))

ν -1.14% 130.58 33.7 n/a n/a n/a n/a
2.0% 394.4 0.05 1.03 0.73 0.86 0.31
1.5% 423.1 0.41 0.77 0.55 0.65 0.23
0.5% 423.6 0.04 0.26 0.18 0.22 0.08
1.0% 424.7 0.01 0.51 0.37 0.43 0.15

Original 426.6 0.27 0 0 0 0
0.25% 426.9 0.01 0.13 0.09 0.11 0.04
4.0% 434.5 2.32 2.06 1.47 1.72 0.62
6.0% 445.3 3.28 3.09 2.2 2.59 0.93
8.0% 454.2 2.91 4.12 2.93 3.45 1.24
10.0% 461.5 9.03 5.15 3.66 4.31 1.55
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Table 5.7: A comparison of results for case 4 in which σc was
increased and σs was decreased to keep σt the same as in the
original data, for neutron energies greater than 1 keV.

Trial χ2
mult χ2

keff
#s(σc) s(#s(σc))

ν -1.14% 130.58 33.7 n/a n/a
10.0% 345.1 0.22 4.04 1.21
8.0% 359.9 0.04 3.23 0.96
6.0% 372.7 1.11 2.42 0.72
4.0% 390.9 0.01 1.62 0.48
2.0% 408.8 0.13 0.81 0.24
1.5% 410.9 0.02 0.61 0.18
1.0% 417.9 0.01 0.40 0.12
0.5% 422.1 0.18 0.20 0.06
0.25% 425.4 0.04 0.10 0.03

Original 426.6 0.27 0 0

Table 5.8: A comparison of results for case 1 in which σc was increased and σs was decreased
to keep σt the same. Changes were made to cross sections for neutron energies above Ecut.

α
χ2
mult #s(σc) s(#s(σc))

Ecut = 1 keV Ecut = 0 Ecut = 1 keV Ecut = 0 Ecut = 1 keV Ecut = 0

10.0% 349.9 209.03 4.04 4.31 1.21 1.55
4.0% 395.35 321.1 1.62 1.72 0.48 0.62
2.0% 410.0 371.15 0.81 0.86 0.24 0.31
1.0% 420.7 396.4 0.40 0.43 0.12 0.15
0.5% 421.2 410.02 0.20 0.22 0.06 0.08
0.25% 423.5 423.59 0.10 0.11 0.03 0.04
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5.7.2 Results of Fission Cross Section Perturbations

Fission cross section perturbation results for case 1 and 4 are given in Tables 5.9 and 5.10,

respectively. The trials are ordered by percent change in σf . The covariance data for σf was

in a format not yet implemented in the NDVV tools, and thus #s(σf ) was not computed.

Overall, the changes in σf produced far better correction than the capture cases, using lower

values of α. Additionally, σt was altered less than one standard deviation in the trials which

produced the lowest values of χ2
mult. For σf reductions larger in magnitude than 2.0%, the

value of χ2
mult begins to increase again due to over-correcting the overbias; the adjusted data

produced multiplicity distributions which are shifted below the experimental distributions,

based on the mean of the distributions, leading to a higher value of χ2
mult.

As Table 5.10 demonstrates, the fission decrease in case 4 was able to correct the prob-

lem by only changing σf and σs for energies above 1 keV. The multiplicity distributions

generated from simulations with the -1.5% decrease in σf for case 4 are plotted against the

experimental distributions in Fig. 5.12 on page 125. The corrected data are very accurate,

and demonstrates a better correction for all reflector thicknesses than in the ν results. The

-1.14% ν data are not optimized to this set of simulations (the results of Mattingly [2009]

are from slightly different experimental setups). However, because the ν results are over-

correcting some distributions, while still under-correcting others, a set of data that produces

a χ2
mult better than the -1.5% σf trial is unlikely. The values of χ2

keff
are increased signifi-

cantly because the multiplication of the system has been reduced without any compensation.

Energy-dependent alterations to σf would likely produce results which minimize both χ2
keff

and χ2
mult.

Table 5.9: A comparison of results for reduced σf with σt reduced
to compensate for the changes, as described in case 1.

Trial χ2
mult χ2

keff
#s(σt) s(#s(σt))

-4.0% 1318.2 167.72 -1.16 0.82
-2.0% 101.0 48.31 -0.58 0.41
-1.6% 27.1 22.97 -0.47 0.33
-1.4% 17.4 22.79 -0.41 0.29
-1.2% 23.1 14.25 -0.35 0.25
-1.0% 47.7 9.37 -0.29 0.21
-0.5% 178.7 1.33 -0.14 0.10

ν -1.14% 130.58 33.7 n/a n/a
Original 426.6 0.27 0 0
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Table 5.10: A comparison of results for σf al-
terations of case 4. Cross sections were altered
for neutron energies greater than 1 keV.

Trial χ2
mult χ2

keff

-4.0% 1093.4 150.3
-2.0% 65.8 29.6
-1.5% 14.6 24.4
-1.2% 28.4 13.0
-1.0% 56.5 9.4
-0.8% 100.4 6.5
-0.5% 195.7 3.0
-0.25% 298.2 2.3
ν -1.14% 130.58 33.7
Original% 426.6 0.0

Table 5.11: A comparison of the results for case 5 in which σc was increased and σf was decreased
to keep σt the same as in the original data, for energies above Ecut.

Trial
χ2
mult #s(σc) s(#s(σc))

Ecut = 1 keV Ecut = 0 Ecut = 1 keV Ecut = 0 Ecut = 1 keV Ecut = 0

10.0% - 90.66 - 4.31 - 1.55
4.0% 328.05 222.47 1.62 1.72 0.48 0.62
2.0% 371.58 314.82 0.81 0.86 0.24 0.31
1.0% 399.77 367.18 0.40 0.43 0.12 0.15
0.5% 413.38 398.66 0.20 0.22 0.06 0.08
0.25% 421.05 413.23 0.10 0.11 0.03 0.04
ν -1.14% - 130.58 n/a n/a n/a n/a
Original - 426.6 0 0 0 0

5.7.3 Results of Altering both Fission and Capture

The results of case 5 from Section 5.4.3, where σc was increased and σf was decreased to

account for the change, are depicted in Table 5.11 above. Results are given for changing cross

sections at all energies and only at energies above 1 keV for comparison to case 4 results.

The results were an improvement over cases 1-4 for σc, but not better than case 1 and 4

of σf . It is expected that increasing σc and decreasing σf together would produce a better

result. Tesults are not improved because the percent changes were made with respect to the

capture cross section. In this case, εf = −εc. Since σc is not as large as σf (particularly

above 1 keV), the value of εf/σf is not as large in magnitude in case 5, compared to when
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σf is altered directly. This result indicates that compensating for a change in σf with σc is

not effective relative to the statistical uncertainty in σc ; compensating for σf in σt or σs

produces a better result.
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Fig. 5.10: Comparison of multiplicity distributions for -1.14% reduced energy averaged ν
and experimental multiplicity distributions. Distributions are for (A) bare Pu sphere, (B)
0.5-cm reflector, (C) 1.0-cm reflector, (D) 1.5-cm reflector, and (E) 3.0-cm reflector.
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Fig. 5.11: Comparison of multiplicity distributions for 16% increased σc from case 1 and
experimental multiplicity distributions. Distributions are for (A) bare Pu sphere, (B) 0.5-cm
reflector, (C) 1.0-cm reflector, (D) 1.5-cm reflector, and (E) 3.0-cm reflector.

124



 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0  20  40  60  80  100

F
re

q
u

e
n

c
y

Multiplet

A MCNP
Exp. Data

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0  20  40  60  80  100

F
re

q
u

e
n

c
y

Multiplet

B MCNP
Exp. Data

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  20  40  60  80  100

F
re

q
u

e
n

c
y

Multiplet

C MCNP
Exp. Data

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0  20  40  60  80  100

F
re

q
u

e
n

c
y

Multiplet

D MCNP
Exp. Data

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0  20  40  60  80  100

F
re

q
u

e
n

c
y

Multiplet

E MCNP
Exp. Data

Fig. 5.12: A comparison of multiplicity distributions for σf reduced 1.5% and experimental
multiplicity distributions; σs was increased to compensate for changes in σf , as described in
case 4 of Section 5.4.3. Distributions are for (A) bare Pu sphere, (B) 0.5-cm reflector, (C)
1.0-cm reflector, (D) 1.5-cm reflector, and (E) 3.0-cm reflector.
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5.8 Conclusions

The work presented in this chapter demonstrates that by exclusively changing ν in an energy-

dependent manner, multiplicity distributions can be recreated more accurately than with

the original ENDF/B-VII.1 data, without changing criticality results significantly. Although

energy-dependent perturbations were not as effective as shifting the entire spectrum of ν,

the perturbations preserved keff and the statistical uncertainties. More trials would likely

produce an energy-dependent modified set of data that would preserve keff while matching

multiplicity distributions at least as accurately as an energy-averaged shift. The results

also demonstrate that when ν is calibrated during creation of nuclear data these multiplicity

experiments should be considered. Although the accuracy of criticality problems was reduced

somewhat for the new data, this is not entirely unexpected. If, on average, ν has been shifted

down to ensure multiplicity distributions match, it is likely some other area in the nuclear

data needs adjustment to compensate.

Upon review of the cross section results, increasing the value of σc generally decreases

the discrepancy between the MCNP and experimental multiplicity distributions. However,

the multiplicity results are not sensitive to σc relative to the uncertainties in σc and σt. De-

creasing σf was able to produce multiplicity distributions which match experimental results

very well, particularly by increasing σs to compensate. This is to be expected because ν

alterations improved multiplicity results. If relatively small decreases in the mean number of

fission neutrons released per fission improve results, then minor decreases in the probability

of fission occurring should also be effective. The covariance data would be needed to ensure

the alterations to σf were not statistically unreasonable. However, based on the best-case

results from changing σt and σf , increasing σt by less than one standard deviation, it is

likely that the σf perturbations are small relative to the statistical uncertainties in σf (σf is

a significant portion of σt, particularly for energies above 1 keV).

The results of case 2 and 3 for σc suggest that increasing σs has a negative effect on

multiplicity distributions, although case 4 decreased σf and was able to match multiplicity

distributions very well by increasing σs. In case 4 for σc , σs is decreased, but the results were

not able to produce a better improvement over changes in σt and σc. It is of note that when

a cross section of interest is increased and σt is adjusted to compensate, the probability of all

other events occurring is inherently decreased. Appendix A provides some insight into this

phenomena. These results suggest that the effectiveness of case 1 for σc is partially because

of the fact that the probability of fission occurring has been decreased. It is noted that the

χ2
keff

value was not statistically increased in the majority of the σc alterations, unlike in the

σf cases, even at the large value of 16%.
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5.9 Summary and Suggestions for Future Work

Future work should include more correlated sampling trials of ν data for 239Pu. Energy-

dependent sampling of σf , compensating with σs, should also be pursued in future work,

as it has the potential to provide the best correction to multiplicity distributions, while

preserving keff . For futures samples, more criticality test cases should be included to

introduce more energy-dependent restrictions on the data. For sampling of σf , a global

optimization scheme may need to be applied. Cross sections have many covariance energy

groups (400 for σt of 239Pu), as compared to the 50 groups of ν, and will require far more

trials and constraining problems if the purely random sampling approach is used. A global

optimization approach should be used that takes random walks through the phase space

(preventing the method from finding local minima) but is biased to pick results that produce

better solutions. Additionally, the global optimization scheme should generate data that is

statistically realistic, based on the covariance data.

In the ideal case, both ν and sets of cross sections would be simultaneously sampled

from covariance data. The ideal set of nuclear data would then be determined based on

simulation results. This approach is inherently limited by the large degrees of freedom

and heavy computational cost. The beginning of the necessary methods and programs

to perturb energy-dependent nuclear data to match multiplicity distributions have been

developed and tested. Additionally, by adjusting the Figure of Merit parameters, a better

match to criticality problems as desired by the user can be found. Results have demonstrated

that these simulations should be considered in validation and calibration of nuclear data,

particularly ν. Initial findings are encouraging that this method will provide a tool for

validating nuclear data, and generating data sets purposed for simulating specific problems

in nuclear engineering
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Appendix A

Changes in Probabilities of
Interaction Events

This section develops an intuitive explanation of the behavior caused by altering the total

interaction cross section, through a simplified example. Consider neutrons of a particular

energy traveling through a homogeneous system. Consider only two reactions: a reaction

of interest a and the occurrence of any other reaction, labeled as b. The total interaction

cross section is σt = σa + σb. The cross section σa is to be perturbed, and σt must be

adjusted to compensate. The probability of a neutron traveling a distance x to where it has

an interaction of type i is

P (Interaction i, x) = P (Interaction, x) ∗ P (Interaction i | Interaction, x)

= [1− e−σtx] σi
σt
,

(A.1)

where P (Interaction i | Interaction, x) denotes the conditional probability that an interactino

of type i occurs, given that an interaction at x has occured. This conditional probability,

given by σi/σt, is what was altered in in Section 5.7 by adjusting the cross sections. How-

ever, the marginal probability of interaction (the term in squared brackets) is also implicitly

adjusted. Consider the case in which σa is altered by εa, i.e., σ ′a = σa + εa. The total cross

section is then adjusted to compensate as σ ′t = σt + εa. For the value of P (Interaction a, x),

both the conditional and marginal probability in Eq. (A.1) have increased from the original

values to the perturbed values in a straightforward manner, so the probability of that inter-

action occurring has increased. Now, consider the change in probability for the unperturbed

reaction b. The probability of a neutron undergoing interaction b at x in the perturbed

system is given by

P ′(Interaction b) = p′b(x) =
[
1− e−σ ′

tx
] σb
σ ′t
. (A.2)

In this case, since σ ′t is greater than σt, the probability of an interaction occuring has
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increased, but the conditional probability of interaction b occurring has decreased. To de-

termine the net effect on pb(x) consider the Maclaurin series for exp (−σ ′tx):

p′b(x) =

[
1− (1− σ ′tx+

(σ ′tx)2

2
+O(σ ′3t x

3))

]
σb
σ ′t
. (A.3)

Simplification yields

p′b(x) = σb x−
σ ′tx

2

2
−O(σ ′2t x

3)). (A.4)

In the original, unperturbed system, the probability of interaction b at x is given by

Eq. (A.4) with σt replacing σ ′t . The difference in pb(x) of the perturbed and original system

is

∆pb(x) = p′b(x)− pb(x) = −(σ ′t − σt)x2

2
+O((σ ′2t − σ2

t )x
3). (A.5)

Substituting for σ′t in the first term yields:

∆pb(x) = −εax
2

2
+O((σ ′2t − σ2

t )x
3) (A.6)

The overall probability of interaction b occurring is ∝ −εa. Thus, altering a cross section

and adjusting the total cross section to compensate for the change inherently alters the

probablity of all other reactions occuring in the opposite direction.
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Appendix B

Spectrometer Scripts and Codes

File Name Description Page

spectrometer maker.py

Python control script for creating MCNP5 inputs
for all sources and geometries. Automatically
calls modules to perform cell-splitting and parral-
lel runs

136

input.i
Sample input for spectrometer maker.py. This file
contains MCNP5 cards that do not change be-
tween runs to be printed directly

142

source printer.py
Python module that reads in source energy distri-
butions based on key word entries

143

source list.py Input file for source printer 144

importance fn.py Python module for automatic cell splitting 147

hydra run.py
Python control module for running MCNP5 sim-
ulations in parallel. Includes auto-rerun if statis-
tical checks are not passed

151

run fom.py
Python control script for computing simulated re-
sponses and FOM values for many trials, before
computing Θ

154

fom comparison format.py
Script with all data class that parses and manip-
ulates data from all trials to compute Θ, also has
member functions for printing results

158

FOM output.py
Reads tallies from MCNP outputs and compiles
them by file name into master file.fom

—

master file.fom Sample output from FOM output.py 165

simul resp.f90
Source code for simulating detector response; uses
modules of code from [Press et al., 1992]

166

src str.txt
Contains source strengths to be read in by
simul resp.exe. Format: number strengths, single
column of strengths

—

fom.f90 Source code for calculating FOM values 170
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spectrometer maker.py: Generate and Run MCNP5 Files
import shutil # for copying files

import os # for directories and chmod etc.

import stat # for chmoding to user access

import subprocess # for running programs

import re # for regexps

import source_printer #reads sources from master file and prints them

import importance_fn #deternubes the "imp:n/p" in a file

import hydra_run #runs mcnp on hydra

# function for default file reading

def readinput(inputfilename):

input = open(inputfilename)

a = []

for line in input:

a.append(line)

input.close()

return a;

# directorymaker

def makedirectory(dir):

if not os.path.exists(dir):

os.makedirs(dir)

os.chmod(dir, stat.S_IRWXU)

else:

os.chmod(dir, stat.S_IRWXU)

# prints a list of stuff with some justification to a file

def printer(file, stuff, justified):

for item in stuff:

temp = str(item)

if(len(temp) < justified):

file.write(temp.ljust(justified))

else:

file.write(temp.ljust(len(temp)+2))

return

# prints stuff from the initial file

def initial_printer(ifile, initialfile, initialfile_counter):

count = 0;

for line in initialfile:

if (count < initialfile_counter):

count +=1

continue

else:

# prints from initialfile until it finds a "c *" line

temp = line.split()

if (len(temp) > 1):

if (temp[1] == ’*’):

break

ifile.write(line)

count+=1

return count+1

#moves file to a directory OVERWRITING any files in the way

def move_dir(file_name, dir):

os.chdir(dir)

if os.path.exists(file_name):

print "IM IN YOUR DIRECTORY DELETING YOUR FILES!"

os.remove(file_name)

os.chdir("..")

shutil.move(file_name, dir)
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#makes a batch file for all mcnp files. A list of lists of names of files for each directory in directories.

def make_batch(mcnp_names, directories):

print "Enter in the name of the batch file (no extension)"

name = raw_input()

print "How many nodes (seperate files to run) do you want?"

number = raw_input()

batch = []

for t in range(int(number)): #open a file for each node

batch.append(open(name+str(t)+".bat", "w"))

#determine number of files to be printed per batch

files_per_batch = 0

for i in mcnp_names:

files_per_batch += len(i)

files_per_batch = int(files_per_batch/float(number))

filecount = 0 #keep track of how many files have been printed on each

t=0 #which batch file are you in

for direct in range(len(directories)): #loop through each directory

batch[t].write("cd %s\n" % directories[direct]) #change from the main directory to the current one

for name in mcnp_names[direct]: #writes

if (filecount == files_per_batch and t != (int(number)-1)): #extra file because of odd numbers

t+=1 #next file

batch[t].write("cd %s\n" %directories[direct])

filecount=0

tempstring = name.replace(".i",".o")

batch[t].write("mcnp5 i=%s o= %s\n" % (name, tempstring))

filecount+=1 #increment nout of how many files printed per batch

batch[t].write("erase runt*\n")

batch[t].write("cd ..\n")

for t in batch:

t.close()

#searchs a line for a string, returns true if found, else false

def search_for(line, string):

pattern = re.compile(str(string))

if (pattern.search(line)):

return True

else:

return False

# ***********main ****************

def main():

#output info

all_source_names = []

# constants throughout

mat_li = 2

mat_hdpe = 1

mat_board = 4

mat_cd = 3

source_erg_dist = 1

#densities

dens_li = -0.0835

dens_hdpe = -0.9500

dens_board = 0.00053

dens_cd = -8.65

#input data

output_data = [] #output list to be printed

names = [] #output file names
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directories = [] #name of detector types that directories are made to store all the different stuff

detector_start = 100.0

cyl_radius = [10.0, 9.5, 9.0, 8.0, 7.5, 7.0, 6.5, 6.0, 5.5, 5.0, 4.5, 4.0] #outer radius of HDPE

#must be bigger than the size of the detectors and the board

number_detectors =[6,6,6,6,6,6,6,7,7,7,7,7,7,7,8,8,8,8,8,8,8]

poly_thick = [4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, \

3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, \

3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0 ]

cyl_radius = [6.0]*len(poly_thick)

if (len(poly_thick) != len(number_detectors)):

print "your lengths don’t match"

exit()

cd_thick = 0.1

board_thick = 0.157

board_width = 1.1

li_thick = 0.1

normalization = 0.00333286*li_thick/0.1 # constant used for FMn tally card to account for efficiency

#cell numbers for the RPP that define the detector and the boards and CYL for boundary

det_box = 35

board_box = 40

outer_cyl = 30

source_list = readinput("source_names.txt")

for i in range(len(source_list)):

source_list[i] =source_list[i].strip(’\n’)

#check to see if this is on hydra or a pc. Use hydra_check for particle balance function and mcnp runs

hydra_check = hydra_run.hydra_machine()

if hydra_check:

num_nodes = raw_input("Enter the number of nodes: ")

for det in range(len(number_detectors)):

initialfile = readinput(’input.i’) #stuff to print throughout

directories.append("Det"+str(number_detectors[det])+"PE"+str(poly_thick[det])+"R"+str(cyl_radius[det]))

makedirectory(directories[det])

names = []

for source in source_list:

#open a file for each source

names.append(source+".i")

ifile = open(source+".i", "w")

initialfile_counter = 0 # keeps track of where you are in the prebuilt input file

initialfile_counter = initial_printer(ifile, initialfile, initialfile_counter) #returns

#where you are at in the file, after the "*" break, see function for more details

li_front = ([],[]) #[surface numbers], [locations in x plane], front is front of li cell

li_back = ([],[]) #back of li cell

cd_front = ([],[])

li_cells = []

poly_cells = []

poly_cells_annulus=[]

cd_cells = []

cd_back = ([], [])

board_cells = []

#Create surfaces of the detector, front surfaces 100’s, back 1100’s, cd front 200’s, cd back 1200’s

for i in range((number_detectors[det])):

#front of detectors

if (i==0):

li_front[1].append(detector_start) #create the initial surface

else:

li_front[1].append(li_front[1][-1]+poly_thick[det]) #start of the current detector

#other surfaces - each one is a thickness offset by the thickness of the last detector

li_back[1].append(li_front[1][-1]+li_thick)

cd_front[1].append(li_back[1][-1]+board_thick)

cd_back[1].append(cd_front[1][-1]+cd_thick)
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#create surface numbers and cell numbers for all surfaces

# --- cd cells: 500, polycells around detectors 11, 21, etc, licells: 10, 20, 30.., board_cells: 600’s,

# poly behind cd: 400’s---

for i in range((number_detectors[det])):

li_front[0].append(100+i)

li_back[0].append(1100+i)

cd_front[0].append(200+i)

cd_back[0].append(1200+i)

cd_cells.append(500+i)

#label detectors in increments of 10

li_cells.append(10*(i+1))

poly_cells_annulus.append(10*(i+1)+1) #annulus of HDPE around the lithium and board

poly_cells.append(400+i)

board_cells.append(600+i)

#add one more li_cell that is equal to the back of the detector

li_front[0].append(li_front[0][-1]+1)

li_front[1].append(li_front[1][-1]+poly_thick[det])

#print the cell cards:

# **************************************************************************************

#DEBUG: DIfferent for if you want a poly sheet in back or not

poly_sheet = False

if(not poly_sheet):

print poly_cells.pop(-1) #DEBUG is there a poly sheet in back or not

li_front[1][-1] = li_front[1][-2]+cd_thick+board_thick+li_thick

#determine the array_width, the width of the RPP that holds all the poly

array_width = li_front[1][-1] - li_front[1][0]

#print the Li regions, board, and the poly around them

imp = 1.0

ifile.write("c ---- detector chunks, breadboards, and surounding poly annuli ----\n")

for cell in range(number_detectors[det]):

#print detector

printer(ifile, [li_cells[cell], mat_li, str(dens_li), " "], 4)

printer(ifile, [li_front[0][cell], -1*li_back[0][cell], -1*det_box], 6)

ifile.write(" imp:n=%6.2f $detector at %.0f cm \n" % (imp, li_front[1][cell]-100))

#print bread board

printer(ifile, [board_cells[cell], mat_board, str(dens_board), " "], 4)

printer(ifile, [li_back[0][cell], -1*cd_front[0][cell], -1*board_box], 6)

ifile.write(" imp:n=%6.2f $breadboard at %.0f cm \n" % (imp, li_front[1][cell]-100))

#print poly annuli outside of the lithium and breadboard

if (cell == 0):

printer(ifile, [poly_cells_annulus[cell], "0", " ", " "], 4)

printer(ifile, [li_front[0][cell], -1*cd_front[0][cell], -1*outer_cyl, "(("+str(det_box)+" "+

str(-1*li_back[0][cell])+"):"+str(board_box)+")"], 4)

ifile.write("imp:n=%6.2f $Voided annulus at %.0f cm \n" % (imp, li_front[1][cell]-100))

else:

printer(ifile, [poly_cells_annulus[cell], mat_hdpe, str(dens_hdpe)+"00", " "], 4)

printer(ifile, [li_front[0][cell], -1*cd_front[0][cell], -1*outer_cyl, "(("+str(det_box)+" "+

str(-1*li_back[0][cell])+"):"+str(board_box)+")"], 4)

ifile.write("imp:n=%6.2f $HDPE annulus at %.0f cm \n" % (imp, li_front[1][cell]-100))

#print the Cd behind the detectors

ifile.write("c ---- Cd slices behind detectors ----\n")

imp= 1.0

for cell in range(len(cd_cells)):

printer(ifile, [cd_cells[cell], mat_cd, str(dens_cd)+"00", " "], 4)

printer(ifile, [cd_front[0][cell], -1*cd_back[0][cell], -1*outer_cyl], 6)
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ifile.write(" imp:n=%6.2f $cd slice behind detecor %d \n" % (imp, cell+1))

#print poly between cd and next detector

ifile.write("c ---- poly cylinders behind Cd ----\n")

imp = 1.0

for cell in range(len(poly_cells)):

printer(ifile, [poly_cells[cell], mat_hdpe, str(dens_hdpe)+"00", " "], 4)

printer(ifile, [cd_back[0][cell], -1*li_front[0][cell+1], -1*outer_cyl], 6)

ifile.write(" imp:n=%6.2f $HDPE cylinder behind detecor %d \n" % (imp, cell+1))

#print the graveyards

ifile.write("c ---- graveyard and neutron beam ----\n")

printer(ifile, ["1", "0", " ", 10, -1*li_front[0][0], -1*outer_cyl, " imp:n=1",

"$ void before spectrometer"], 4)

ifile.write("\n")

printer(ifile, ["999", "0", " ", str(outer_cyl)+":"+str(-10)+":"+str(li_front[0][-1]),"",

" imp:n=0", "$ graveyard/problem boundary\n"], 4)

#print blank line at end of cells

ifile.write("\n")

#print the surface cards:

# **************************************************************************************

#PRINT Some initial geometry that is fixed for each problem

initialfile_counter = initial_printer(ifile, initialfile, initialfile_counter)

printer(ifile, [outer_cyl, "CX", cyl_radius[det], " "], 4)

ifile.write(" $ cylindrical surface of spectrometer\n")

printer(ifile, [det_box, "RPP", detector_start, array_width+li_front[1][0], "-1 1 -1 1"], 4) #

#box from start of detector, to end of last poly sheet, and 4cm^2 front centered along x-axis

ifile.write(" $ square box for detector edges (2x2square)\n")

#print the box for the breadbox of the array

printer(ifile, [board_box, "RPP", detector_start, array_width+li_front[1][0], -1*board_width,

board_width, -1*board_width, board_width], 4)

ifile.write(" $ square box for PCB edges (%.1fx%f.1square)\n" % (board_width, board_width))

#print front detector faces

ifile.write("c --- vertical slices thru the spectrometer I (front detector surfaces) ---\n")

for surf in range(len(li_front[0])):

printer(ifile, [li_front[0][surf], "px", li_front[1][surf]," "], 5)

if (surf == len(li_front[0])-1):

ifile.write("$back of last sheet of poly/spectr\n")

else:

ifile.write("$front of detector %d\n" % (surf))

#print back detector faces

ifile.write("c --- vertical slices thru the spectrometer II (back detector surfaces) ---\n")

for surf in range(len(li_back[0])):

printer(ifile, [li_back[0][surf], "px", li_back[1][surf]," "], 5)

ifile.write("$back of detector %d\n" % (surf))

#print cadmium faces

ifile.write("c --- vertical slices thru the spectrometer III (Cd slices) ---\n")

for surf in range(len(cd_back[0])):

printer(ifile, [cd_front[0][surf], "px", cd_front[1][surf]," "], 5)

ifile.write("$front cd of detector %d\n" % (surf))

printer(ifile, [cd_back[0][surf], "px", cd_back[1][surf]," "], 5)

ifile.write("$back cd of detector %d\n" % (surf))

#print new line for end of block 2:

ifile.write("\n")

#print block 3

#*******************************************************************************************
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#print the source spatial definition

initialfile_counter = initial_printer(ifile, initialfile, initialfile_counter)

ifile.write("SI2 0 %.2f $ radial sampling range: 0 to Rmax\n" % float(cyl_radius[det]))

#print the source energy distribution:

source_data = source_printer.get_source("source_list.txt", source)

source_printer.print_source(ifile, source_data, source_erg_dist)

#print some physics settings

initialfile_counter = initial_printer(ifile, initialfile, initialfile_counter)

#print detector:

ifile.write("F4:N ")

for cell in li_cells:

ifile.write("%d " % cell) #print each of the detector cells

ifile.write("\nTF4 %d 7j\n" % len(li_cells)) #tells the tally fluctuation chart to optimize

#the last detector cell (the normalization cell), the 7j just means skip all the other

#entries, ncessary for the card used

#print the rest of the detector and the material cards

initialfile_counter = initial_printer(ifile, initialfile, initialfile_counter)

ifile.close()

# RUN PARTICLE BALANCE ON EACH FILE TO GET THE CORRECT IMPORTANCE FUNCTION FOR EACH:

# *******************************************************************************************

importance_fn.particle_balance(names[-1], cd_cells, [li_cells, poly_cells, poly_cells_annulus,

board_cells], 300000, ’n’, 1.00, hydra_check) #names[-1] is curent source file name, li_cells

#is the ones being balance, particle type is , hydra_check is whether or not this is a hydra run

#also case sensitive

#move the source files to the correct directory so you dont overwrite them

move_dir(source+".i", directories[det]) #store files

#append name

all_source_names.append(names)

#create an output list of all the directories

print directories

directories_file = open("directories.txt", "w")

for derp in directories:

directories_file.write(derp+"\n")

directories_file.close()

if (hydra_check == True):

count = 0

for i in directories:

for name in names:

count +=1

print "Running file: %s/%s, file %i of %i" % (i, name, count, len(directories)*len(names))

hydra_run.hydra_mcnp_run(name, i, "same", num_nodes, auto_rerun = True, tallies = ["4"])

#^^^i is directory of files, "same" for no output directory, auto rerun reruns if not

# enough particles, tallies is which to make sure converged

else: #Local run with batch files on 4 processors

break_check = True

make_batch(all_source_names, directories)

if __name__ == "__main__":

main()
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input.i: Sample Input to spectrometer maker.py
SPC8: Detectors every 3 cm in 30 cm x 20 cm-dia spectrometer

c A cylinder of polyethylene is used as neutron spectrometer.

c At various distances into cylinder square perforated neutron

c detectors (2x2 cm) are placed perpendicular to the axis. Behind

c each detector is a 1 mm disk of cadmium extending to the edge of

c the poly cyclinder.

c

c ********************* BLOCK 1: CELL CARDS *****************************

c GEOMETRY:

c * BREAK LINE FOR PYTHON

c ********************* BLOCK 2: SURFACE CARDS *************************

10 px -10 $ left problem boundary

c *

c ********************* BLOCK 3: DATA CARDS ****************************

c

c ----- Source: disk source, different erg dist. for each file ----

SDEF ERG=d1 PAR=1 VEC= 1 0 0 DIR=1 POS 0 0 0

AXS=1 0 0 rad=d2 EXT=0

SP2 -21 1 $ weighting for radial sampling: her r^1

c * BREAK LINE FOR PYTHON

c ----- Problem parameters

mode n

nps 200000000

c

c

c ------ total thermal flux detector

c * BREAK LINE FOR PYTHON

c ------------------------------------------------------------------

c modify tallies to give no. (n,t) reactions per source neutron

c C=[(rho Na/A)x10^(-24) atom/(b-cm)] x Vol_detector

c for Li-6 to stop 50% of neutrons in .1 cm, density ~ 0.0835 g/cm^3

c Vol_det = 0.4 cm^3 ( 2 x 2 x .1 cm)

c find that C=0.0033286

c ------------------------------------------------------------------

FC4 tally modified to (n,t) reactions per source neutron

FM4 0.0033286 2 105

c

c ------ MATERIALS

c

c --------------------------------------------------------------------

c material: polyethylene d=0.95 g/cm^3

c --------------------------------------------------------------------

m1 1001 2

6000 1

mt1 poly.01

c

c --------------------------------------------------------------------

c material: Li-6F nominal d=2.7 g/cm^3

c ignore F: Li-6 in LiF has a density of 0.6131 g/cm^3

c --------------------------------------------------------------------

m2 3006 1

c

c --------------------------------------------------------------------

c cadmnium nominal density 8.65 g/cm^3

c --------------------------------------------------------------------

m3 48000 1

c

c --------------------------------------------------------------------

c Printed circuit board...still need this one

c

m4 5010 1
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source printer.py: Module for Source Distributions
import re

import os

# This is a functinon that will open a file of sources listed and find the

# source desired and print its distribution to a file with a particular

# distribution number. The sources should be found in the file by having: *

# source_name, including the *, as the line before the source distribution

# information. The source info is for the source energy distribution and the

# distribution number should be included, but will be disregarded when the info

# is read in. the name of the source file is also passed in.

#

# Note, could be easily modified to handle material properites

#find the source and read in its data to a list. NOTE: this data has the Dn and Pn # still in it,

#the calling function must get rid of these

def get_source(source_filename, source_name):

source_file = open(source_filename, "r")

source_flag = False

source_data = []

#search the file for the line containing the source name

for line in source_file:

if(not source_flag):

if(search_for(line, source_name)):

line_data = line.split()

if(line_data[0] == "#"):

source_flag = True

else: #in a source region

if(search_for(line, "END")): #terminates each source

line_data = line.split()

if(line_data[0] == "#"):

source_file.close()

return source_data

else:

source_data.append(line)

source_file.close()

#print source_data to file output_file, with energy distribtuion given by distribution_number

def print_source(output_file, source_data, distribution_number):

for line in source_data:

if search_for(line, "[^\s]+[iI]\d+"): #find lines that have SI in them and change the dist number

m = re.search("[^\s]+[iI]\d+", line)

line = line[:m.start()] + line[m.end():]

line = "SI" + str(distribution_number) + line

elif search_for(line, "[^\s]+[pP]\d+"):

m = re.search("[^\s]+[pP]\d+", line)

line = line[:m.start()] + line[m.end():]

line = "SP" + str(distribution_number) + line

elif search_for(line, "[^\s]+[bB]\d+"):

m = re.search("[^\s]+[bB]\d+", line)

line = line[:m.start()] + line[m.end():]

line = "SB" + str(distribution_number) + line

output_file.write(line) #print each line to the file :D

#searchs a line for a string, returns true if found, else false

def search_for(line, string):

pattern = re.compile(str(string))

if (pattern.search(line)):

return True

else:

return False
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source list.txt: Input for source printer.py
# cfd2o

c UN PG 82 ISO SOURCE 8529 IS ORIGINAL REFERENCE

c ---- source is for a Cf-252 _D2O moderated (UN-403 p. 82

SI1 H 0.0 0.2150E-06 0.4640E-06 0.1000E-05 0.2150E-05

0.4640E-05 0.1000E-04 0.2150E-04 0.4640E-04 0.1000E-03

0.2150E-03 0.4640E-03 0.1000E-02 0.2150E-02 0.4640E-02

0.1000E-01 0.1260E-01 0.1580E-01 0.2000E-01 0.2510E-01

0.3160E-01 0.3980E-01 0.5010E-01 0.6310E-01 0.7940E-01

0.1000E+00 0.1260E+00 0.1580E+00 0.2000E+00 0.2510E+00

0.3160E+00 0.3980E+00 0.5010E+00 0.6310E+00 0.7940E+00

0.1000E+01 0.1260E+01 0.1580E+01 0.2000E+01 0.2510E+01

0.3160E+01 0.3980E+01 0.5010E+01 0.6310E+01 0.7940E+01

0.1000E+02 1.5807E+01

SP1 D 0.0 0.0 0.1838E-01 0.1850E-01 0.1883E-01 0.1969E-01

0.2150E-01 0.2564E-01 0.3346E-01 0.3954E-01 0.4271E-01

0.4907E-01 0.5275E-01 0.5970E-01 0.5330E-01 0.6534E-01

0.2020E-01 0.2025E-01 0.2154E-01 0.1990E-01 0.1930E-01

0.1919E-01 0.1926E-01 0.1912E-01 0.1833E-01 0.1739E-01

0.1650E-01 0.1539E-01 0.1494E-01 0.1342E-01 0.1273E-01

0.1052E-01 0.6375E-02 0.1255E-01 0.1360E-01 0.1135E-01

0.1172E-01 0.1656E-01 0.2011E-01 0.2725E-01 0.2717E-01

0.1774E-01 0.1784E-01 0.1195E-01 0.6157E-02 0.2445E-02

0.7821E-03

# END

# pube

c Pu-238Be spectrum: Lehman (Ryan T-A.4)

SI1 H 0.250 0.500 0.750 1.250 1.500

1.750 2.000 2.375 2.875 3.000

3.500 4.250 4.500 5.000 5.250

5.500 5.750 6.000 6.250 6.500

7.125 7.625 8.000 8.375 8.750

9.125 9.625 10.000 10.380

SP1 D 0.0 0.3421E-01 0.2955E-01 0.5288E-01 0.2384E-01

0.1970E-01 0.2384E-01 0.4510E-01 0.5183E-01 0.1892E-01

0.1068E+00 0.1151E+00 0.4250E-01 0.1099E+00 0.3836E-01

0.3006E-01 0.2695E-01 0.1970E-01 0.1451E-01 0.1348E-01

0.4277E-01 0.3732E-01 0.3266E-01 0.2100E-01 0.1244E-01

0.6998E-02 0.1244E-01 0.1089E-01 0.6303E-02

# END

# ambe

c ---- source is for a AmBe (alpha,n) (UN-403 p. 82)

SI1 H 0.0 0.1000E+00 0.1260E+00 0.1580E+00 0.2000E+00

0.2510E+00 0.3160E+00 0.3980E+00 0.5010E+00 0.6310E+00

0.7940E+00 0.1000E+01 0.1260E+01 0.1580E+01 0.2000E+01

0.2510E+01 0.3160E+01 0.3980E+01 0.5010E+01 0.6310E+01

0.7940E+01 0.1000E+02 0.1580E+03

SP1 D 0.0 0.0 0.3838E-02 0.5003E-02 0.6767E-02

0.8339E-02 0.1071E-01 0.1332E-01 0.1625E-01 0.1957E-01

0.2209E-01 0.2446E-01 0.2728E-01 0.2875E-01 0.4268E-01

0.5521E-01 0.9698E-01 0.1318E+00 0.1579E+00 0.1500E+00

0.1329E+00 0.3830E-01 0.7870E-02

# END

# cf252mcnp

SP1 -3 1.025 2.926 $ Watt distn for f-252

# END

# pubers

c source is for a PuBe + room scat (UN-403 p 106)

SI1 H 0.0 0.1000E-07 0.2150E-07 0.4640E-07 0.1000E-06

0.2150E-06 0.4640E-06 0.1000E-05 0.2150E-05 0.4640E-05

144



0.1000E-04 0.2150E-04 0.4640E-04 0.1000E-03 0.2150E-03

0.4640E-03 0.1000E-02 0.2150E-02 0.4640E-02 0.1000E-01

0.1260E-01 0.1580E-01 0.2000E-01 0.2510E-01 0.3160E-01

0.3980E-01 0.5010E-01 0.6310E-01 0.7940E-01 0.1000E+00

0.1260E+00 0.1580E+00 0.2000E+00 0.2510E+00 0.3160E+00

0.3980E+00 0.5010E+00 0.6310E+00 0.7940E+00 0.1000E+01

0.1260E+01 0.1580E+01 0.2000E+01 0.2510E+01 0.3160E+01

0.3980E+01 0.5010E+01 0.6310E+01 0.7940E+01 0.1000E+02

0.1580E+02

SP1 D 0.0 0.6186E-02 0.7848E-02 0.1006E-01 0.1118E-01

0.1062E-01 0.7626E-02 0.5842E-02 0.4809E-02 0.3740E-02

0.3131E-02 0.2039E-02 0.2028E-02 0.1577E-02 0.1308E-02

0.1060E-02 0.1011E-02 0.9771E-03 0.1021E-02 0.3352E-03

0.3690E-03 0.3867E-03 0.3907E-03 0.4330E-03 0.4938E-03

0.5340E-03 0.6115E-03 0.7768E-03 0.9575E-03 0.1181E-02

0.1453E-02 0.1898E-02 0.2317E-02 0.3432E-02 0.3692E-02

0.5824E-02 0.8122E-02 0.1142E-01 0.1816E-01 0.2774E-01

0.2761E-01 0.5635E-01 0.9223E-01 0.1053E+00 0.1576E+00

0.1372E+00 0.1308E+00 0.1066E+00 0.1200E-01 0.1546E-02

0.1565E-03

# END

# triga

c West and Larsen’s TRIGA reflector spectrum (Ryan T-A.7)

SI1 H 0.1000E-07 0.2600E-07 0.6000E-07 0.1400E-06 0.2600E-06

0.4200E-06 0.6500E-06 0.1000E-05 0.3060E-05 0.2260E-04

0.1670E-03 0.1230E-02 0.9120E-02 0.2480E-01 0.6740E-01

0.1830E+00 0.4980E+00 0.8210E+00 0.1350E+01 0.2230E+01

0.3680E+01 0.4720E+01 0.6070E+01 0.7790E+01 0.1000E+02

SP1 D 0.0 0.2233E+00 0.2938E+00 0.2198E+00 0.1970E-01

0.3519E-02 0.2615E-02 0.2401E-02 0.1444E-01 0.4812E-01

0.4836E-01 0.4373E-01 0.3909E-01 0.7676E-02 0.7377E-02

0.7661E-02 0.9298E-02 0.2379E-02 0.2445E-02 0.2404E-02

0.1343E-02 0.1892E-03 0.2311E-03 0.7431E-04 0.6805E-05

# END

# puo2

c source is for a PuO2 (UN-403 p 106)

SI1 H 0.0 0.1000E-06 0.2150E-06 0.4640E-06 0.1000E-05

0.2150E-05 0.4640E-05 0.1000E-04 0.2150E-04 0.4640E-04

0.1000E-03 0.2150E-03 0.4640E-03 0.1000E-02 0.2150E-02

0.4640E-02 0.1000E-01 0.1260E-01 0.1580E-01 0.2000E-01

0.2510E-01 0.3160E-01 0.3980E-01 0.5010E-01 0.6310E-01

0.7940E-01 0.1000E+00 0.1260E+00 0.1580E+00 0.2000E+00

0.2510E+00 0.3160E+00 0.3980E+00 0.5010E+00 0.6310E+00

0.7940E+00 0.1000E+01 0.1260E+01 0.1580E+01 0.2000E+01

0.2510E+01 0.3160E+01 0.3980E+01 0.5010E+01 0.6310E+01

0.7940E+01 0.1000E+02 0.1580E+02 0.2510E+02

SP1 D 0.0 0.2328E+00 0.1123E+00 0.2135E-01 0.9035E-01

0.1423E-01 0.1068E-01 0.8039E-02 0.5817E-02 0.3994E-02

0.3568E-02 0.2778E-02 0.2166E-02 0.1715E-02 0.2139E-02

0.2850E-02 0.8854E-03 0.9530E-03 0.1191E-02 0.1343E-02

0.1587E-02 0.1848E-02 0.2169E-02 0.2677E-02 0.3402E-02

0.4499E-02 0.6034E-02 0.8149E-02 0.1193E-01 0.1631E-01

0.2350E-01 0.3323E-01 0.4328E-01 0.5031E-01 0.4574E-01

0.4453E-01 0.4022E-01 0.3712E-01 0.2546E-01 0.1254E-01

0.1776E-01 0.8123E-02 0.1278E-02 0.7384E-02 0.8090E-02

0.9691E-02 0.6772E-02 0.7130E-02 0.7839E-04

# END

# fusion

c ----- 14.1 MeV neutron source

SI1 L 14.1

SP1 D 1.0

# END

145



# 50kev

c ----- 50 keV monoenergetic source

SI1 L 5.0E-02

SP1 D 1.0

# END

# 1mev

c ----- 1 MeV monoenergetic source

SI1 L 1.0

SP1 D 1.0

# END

# 100ev

c 100 ev monoenergetic

c ----- 100 eV monoenergetic source

SI1 L 1.0E-04

SP1 D 1.0

# END
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importance fn.py: Script for Automatic Cell Splitting
import shutil # for copying files

import os # for directories and chmod etc.

import stat # for chmoding to user access

import subprocess # for running programs

import re # for regexps

import hydra_run #for hydra runs

#searchs a line for a string, returns true if found, else false

def search_for(line, string):

pattern = re.compile(str(string))

if (pattern.search(line)):

return True

else:

return False

#Runs MCNP for a given file and moves them to some output directory w/ same name as input file

#-MPI RUN

def mcnp_run_hydra(name):

output_name_final = name #store file name

output_name_final = output_name_final.replace(".i", ".o")

output_name = "temp_pb.o"

if os.path.exists(output_name):

print "I DELETED A FILE!"

os.remove(output_name)

temp_string = "mpirun -n 16 /usr/local/bin/mcnp5.mpi"+" i=" + name + " o=" +

output_name + " xsdir=/usr/local/data/MCNPDATA/xsdir"

print temp_string

#subprocess.check_call(temp_string) #run mcnp with output file name temp.o

os.system(temp_string)

if os.path.exists(output_name_final): #checks to make sure ouptut file name not already there

print "I DELETED A FILE!"

os.remove(output_name_final)

os.rename(output_name, output_name_final) #change name to name of input with .o extension

eraser_hydra()

#Deletes all teh mcnp worhtless files

def eraser_hydra():

os.system("rm"+" runt*") #remove runtape files

#LOCAL RUN

def mcnp_run(name):

output_name_final = name #store file name

output_name_final = output_name_final.replace(".i", ".o")

output_name = "temp_pb.o"

if os.path.exists(output_name):

print "I DELETED A FILE!"

os.remove(output_name)

temp_string = "mcnp5"+" i=" + name + " o=" + output_name

subprocess.check_call(temp_string) #run mcnp with output file name temp.o

if os.path.exists(output_name_final): #checks to make sure ouptut file name not already there

print "I DELETED A FILE!"

os.remove(output_name_final)

os.rename(output_name, output_name_final) #change name to name of input with .o extension

eraser()

#Deletes all teh mcnp shit files

def eraser():

temp_file = open("eraser.bat","w")

temp_file.write("erase runt*")

temp_file.close()

subprocess.check_call("eraser.bat") #remove runtape files

os.remove("eraser.bat")
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#performes the particle_balance to determine importance fn, also truncates if there is a jump of more than 4

#

# particle type is either "n", or "p" for neutron or photon, respectively double_cells is a list of lists

# of cells that will have same importance as there corresponding neighbor in the imp_cells list

# normalization is the number of the cell of least importance (most number of counts, therfore normalized

# to it), later in the function it is set to be the index of said cell.

def particle_balance(original_filename, imp_cells, double_cells, NPS, particle_type, initial_importance, hydra):

#change particle type for search patterns

#DEBUG DEBUG

#open input file

original_file = open(original_filename, "r")

#name of particle balance file

balance_name = "dragonfly.i"

ifile = open(balance_name, "w")

flag = False

for line in original_file:

if ((search_for(line, "^((NPS)|(nps)|(Nps))")) or (search_for(line, "^((ctme)|(CTME))"))):

ifile.write("NPS " + str(NPS)+"\n")

flag = True

else:

ifile.write(line)

if (not flag):

ifile.write("NPS" + str(NPS))

ifile.close()

#run mcnp for the quick file to get a rough particle balance

if (hydra):

mcnp_run_hydra(balance_name)

elif (not hydra):

mcnp_run(balance_name)

os.remove(balance_name) #delete quick file

#open output file and look for cell balance

out_file = open(balance_name.replace(".i", ".o"),"r")

flag = False

cell_data = []

for line in out_file:

if (search_for(line, "population\s+collisions\s+")): #found start of particle balance stuff

flag = True

elif(search_for(line, "^\s+total\s+")): # found end of particle balance stuff

flag = False

else:

if(flag):

if(search_for(line, "^\s*\d+\s+")):

cell_data.append(line)

#Loop through all the imp_cells, and if they match one of them, append the population to a list. Normalize

#to the least important cell.

imp_function = []

maximum = 0

print imp_cells

for cell in imp_cells:

for line in cell_data: #loop through all the data

line_data = line.split()

if(line_data[1] == str(cell)): #found a population of a correct cell

imp_function.append(line_data[3]) # add population of that cell

if (float(line_data[3]) > float(maximum)): #find the biggest one

maximum = line_data[3]

normalization_index = len(imp_function) - 1

#now normalize
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temp_list = []

for value in range(len(imp_function)):

try:

check = float(initial_importance)*float(imp_function[normalization_index])/float(imp_function[value])

#intiial importance is what the cell was originally incase there is other cell splitting already done

except ZeroDivisionError:

if temp_list != []:

check = temp_list[-1]

else:

check = 1.0

if (value !=0):

if (check/temp_list[-1] < 4):

temp_list.append(check)

elif(check > 9999):

temp_list.append(9999)

else:

temp_list.append(4*temp_list[-1])

else:

temp_list.append(check)

imp_function = temp_list

#make less digits so it doesnt print a bunch of numbers:

temp_list = []

for i in imp_function:

if(i < 10.0):

i = ’%.2f’ % i

temp_list.append(i)

elif(i > 10.0 and i < 1000):

i = ’%.1f’ %i

temp_list.append(i)

else:

i = str(int(i))

temp_list.append(i)

#overwrite:

imp_function = temp_list

print imp_function

#delete output file

out_file.close()

#open a temp input file that will eventually over write actual input file

temp_name = ’derpalerp.i’

ifile = open(temp_name, "w")

#read in all the lines of original_file and over write the old importances with the new ones

double_cells.append(imp_cells) #make a list of lists of cells so that you can check all at once

master_list = double_cells

imp_string = "imp:" + particle_type + "="

#make sure all the doubles_cells lists have the same name, if not you add a number tha tis fake.

#This is for the case that there is not poly behind the last detector so that the loops come out right:

for i in range(len(master_list)):

for j in master_list:

if (len(master_list[i]) < len(j)):

master_list[i].append("999999999")

print "i added a cell"

print master_list[i], j

else:

continue

#repopen the original_file to start from beginning

original_file.close()

original_file = open(original_filename, "r")

for line in original_file:

if( search_for(line, imp_string+"\s*\d+.\d+")): #found a cell line

printed_cell_flag = True
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for cell_list in master_list: # loop throuhg all the possible lists

for i in range(len(cell_list)): # loop through all the possible cells in lists

if (line.split()[0] == str(cell_list[i])): #one of the possible cells has been found,

ifile.write(re.sub(imp_string+"\s*\d+.\d+", imp_string+str(imp_function[i]), line))

printed_cell_flag = False

if printed_cell_flag:

#If cell was just not one of the ones being balanced then you need to write it to the file

ifile.write(line)

else:

ifile.write(line)

#overwrite files

original_file.close()

ifile.close()

os.remove(original_filename)

os.rename(temp_name, original_filename)

os.remove(balance_name.replace(".i", ".o"))
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hydra run.py: Script for Running MCNP5 simulations
import os

import subprocess

import re

import shutil

import time

from FOM_output import Tally

#UPDATE: 01172013. The main has been updated to just run with autorerun activated, all the

#.i files in current directory. If you want use auto rerun you would need to change the tallies

#to list all tallies of interest, it is currently only set #for the tally 4, which was used for spectrometer.

#moves file to a directory OVERWRITING any files in the way

def move_dir(file_name, dir):

os.chdir(dir)

if os.path.exists(file_name):

print "IM IN YOUR DIRECTORY DELETING YOUR FILES!"

os.remove(file_name)

os.chdir("..")

shutil.move(file_name, dir)

#The following code checks an output to make sure a certain tally is converged or not

def check_statistics(output_name, tallies):

#Get the errors if there are any from FOM_output module

tally = Tally() #initialize a variable that will find all tallies in a file

tally.clear_all() #

tally.tally_file = output_name #name of the tally

tally.get_tallies(output_name) #find all the tallies in a file with name ofile and get data about them

#check all errors to see if any missed

for err in tally.errors:

for line in err:

for cell in tallies:

# check for name in errors

if re.match("^\s+"+str(cell)+"\s+missed", line):

return False

#if not fails return True

return True

#Runs MCNP for a given file and moves them to some output directory w/ same name as input file

def hydra_mcnp_run(name, input_direct, directory, num_nodes, auto_rerun = True, tallies = None):

flag = False

if os.path.exists(input_direct):

os.chdir(input_direct)

flag = True

output_name_final = name #store file name

output_name_final = output_name_final.replace(".i", ".o")

output_name = "tempr.o" #Temp output name

#Remove temp file if it exists

if os.path.exists(output_name):

print "I removed the temp file on first pass"

os.remove(output_name)

eraser()
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if os.path.exists("runtpe"):

os.remove("runtpe")

if os.path.exists(output_name):

print "I DELETED A FILE!"

os.remove(output_name)

#make python wait

time.sleep(2)

temp_string = "mpirun -n " + str(int(num_nodes)) + " /usr/local/bin/mcnp5.mpi "

temp_string += "i=" + name + " o=" + output_name + " xsdir=/usr/local/data/MCNPDATA/xsdir"

os.system(temp_string) #run mcnp in parallel with output file name temp.o

if (auto_rerun):

if tallies == None:

raise IOError("YOu need to include tallies if you are trying to check convergence")

else:

if not (check_statistics(output_name, tallies)):

#Get the number of particles ran:

temp_in = open(name, "r")

nps_new = None

#look through file till you find NPS card

for line in temp_in:

if re.search("^\s*(NPS|nps|Nps)\s+(\d+)", line):

m = re.search("^\s*\w+\s+(\d+)", line)

nps_new = m.group(1)

print nps_new

if nps_new == None:

raise ValueError("IN hydra_run.py need to add a better catch line for nps or CTME")

#Need to rerun the problem, only try 5 times, each time run 20% more particles

for attempt in range(5):

nps_new = int(float(nps_new) * 1.2)

print nps_new

#Create continuation run file

cont_f = open("cont.i", "w")

cont_f.write("CONTINUE\n")

cont_f.write("NPS %i\n" % nps_new)

cont_f.close()

#clear out old output:

print os.listdir(".")

os.remove(output_name)

if os.path.exists(output_name):

os.system("rm %s" % output_name)

#Make python wait

print "waiting 2 seconds..."

time.sleep(2)

temp_string = "mpirun -n " + str(int(num_nodes)) + " /usr/local/bin/mcnp5.mpi "

temp_string += "i=cont.i c o=" + output_name + " r=runtpe" +

" xsdir=/usr/local/data/MCNPDATA/xsdir"

print temp_string
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os.system(temp_string)

os.remove("cont.i")

if check_statistics(output_name, tallies):

os.remove("runtpe")

break

if os.path.exists(output_name_final): #checks to make sure ouptut file name not already there

print "I DELETED A FILE!"

os.remove(output_name_final)

os.rename(output_name, output_name_final) #change name to name of input with .o extension

if os.path.exists(directory):

move_dir(output_name_final, directory)

move_dir(name, directory) #store files

eraser()

if flag:

os.chdir("..")

#Deletes all teh mcnp shit files

def eraser():

os.system("rm runt*")

#determine if hydra machine or not

def hydra_machine():

print "Is this a hydra (0) or PC (1) run?: "

hydra_flag = raw_input()

if (hydra_flag == "0"):

hydra_check = True

else:

hydra_check = False

return hydra_check

def main():

files = os.listdir(os.getcwd())

derp = []

for f in files:

if re.search(".i$", f):

derp.append(f)

files = list(derp)

num_nodes = raw_input("Input the number of nodes to use: ")

for name in files:

print "Running File "+name+", which is File %i of %i" % ((int(files.index(name))+1), len(files))

hydra_mcnp_run(name, "nodirectorychange", "same", num_nodes, auto_rerun = True, tallies = ["4"])

if __name__ == "__main__":

main()

153



run fom.py: Control Script for Simulated Data and FOM

calculations
# This module runs all the other codes to generate responses and fom results

# In the main it calls fom_comparison_format which calculates Theta

#UPDATE: 081412: Added the ability to run multiple trials and average results with statistical error

#UPDATE: 103012: Added ability to keep going if it fails. Also in fom_comparison_format changed

#a bug that was adding incorrect amounts to the average.

#Added ability to rerun file and only redo those that failed by default. Adding a -new

#to command line execution will initiate an overwrite of the old file

import shutil # for copying files

import os # for directories and chmod etc.

import stat # for chmoding to user access

import subprocess # for running programs

import re # for regexps

import FOM_output #gets outputs and prints htem as response functions

import time # to tell program to wait

import fom_comparison_format

from sys import argv

import gc

#moves file to a directory OVERWRITING any files in the way

def move_dir(file_name, dir):

os.chdir(dir)

if os.path.exists(file_name):

os.remove(file_name)

os.chdir("..")

shutil.move(file_name, dir)

def makedirectory(dir):

if (not os.path.exists(dir)):

os.mkdir(dir)

os.chmod(dir, stat.S_IRWXU)

else:

os.chmod(dir, stat.S_IRWXU)

def main():

# - - - - - - - - - - -- - - - - -

#How many trials of results do you want to run and average?:

num_trials = 1000

nps = 2.E8 #number of histroies to scale to

#changeable filenames:

fom_name = "fom.exe"

resp_name = "simul_resp.exe"

src_str = "src_str.txt"

fom_output = "FOM.out"

#get the list of directories

directories = [] #list of directories that contain output files

completed_directories = [] #list of directories that have already been completed

#If list of completed directories already exists, read in names from file

if os.path.exists("completed_directories.txt"):

if len(argv) > 1:

if re.search("-n", argv[1]):

#Will make new files later

print "Creating new completed_directories file"
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else:

comp_dir_file = open("completed_directories.txt", "r")

for line in comp_dir_file:

if len(line) > 0:

completed_directories.append(line.strip())

comp_dir_file.close()

comp_dir_file = open("completed_directories.txt", "a")

print "The following directories are complete: "

print completed_directories

time.sleep(1.5)

else:

comp_dir_file = open("completed_directories.txt", "w")

dir_list = os.listdir(os.getcwd())

for name in dir_list:

if re.search("Det\d+PE", name.strip()):

if os.path.isdir(name):

directories.append(name.strip())

#rip the outputs from the files in each directory

#The main function will return a list of all the files in each one

file_list = []

print directories

for dir in directories:

file_list.append(FOM_output.main(dir, scale=nps))

#create an initial ’irand’ file which is used for the simulated response data as a random number seed

if os.path.exists(’irand’):

os.remove(’irand’)

irand = open(’irand’,"w")

irand.write("73907\n")

irand.close()

makedirectory("FOM_outputs")

#open output file, if rerun (option "-n" not specified), then append to file, dont make new one,

#Else Make new one, also make new completed_directories file

if len(argv) > 1:

if re.search("-n", argv[1]):

outfile = open("FOM_outputs"+"/"+"FOM_comparison.out", "w")

comp_dir_file = open("completed_directories.txt", "w")

else:

outfile = open("FOM_outputs"+"/"+"FOM_comparison.out", "a")

first_time = True

for dir in directories:

#Skip directories that have already been completed

if dir in completed_directories:

continue

#Initialize instance of class. Each Class recieves the same output file, and when called to print will

#just print to the end of it

all_data = fom_comparison_format.all_data(outfile, dir+".fomout")

average_theta = []

print "Comparing data for geometry: %s... " % dir

for i in range(num_trials):
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if i % int(0.1*num_trials) == 0:

print "Completed %.0f%% of %i trials" % (100*float(i)/float(num_trials), num_trials)

if i == 0:

shutil.copy(fom_name, dir)

shutil.copy(resp_name, dir)

shutil.copy(src_str, dir)

move_dir(’irand’, dir)

os.chdir(dir)

#run fom codes

if i % 900 == 0:

time.sleep(2)

try:

subprocess.check_call(resp_name)

subprocess.check_call(fom_name)

except:

print "HAD ONE FILE FAIL, DOES NOT AFFECT AVERAGE"

time.sleep(1.0)

continue

#change name of output and make copy in parent directory in folder "fom_results"

out_name_str = dir+".fomout"

if os.path.exists(out_name_str):

try:

os.remove(out_name_str)

except:

time.sleep(1.0)

print "Waiting to delete file: ", out_name_str

os.remove(out_name_str)

os.rename(fom_output, out_name_str)

#Get data

# - - - - - -- - - - - -- - - - - -- - -

all_data.parse()

average_theta.append(all_data.get_last_value(0))

if i == (num_trials - 1):

#delete duplicate files

os.remove(fom_name)

os.remove(resp_name)

os.remove(src_str)

shutil.move(’irand’,"..") #move current random number seed back to parent directory

shutil.copy(out_name_str, "../"+"FOM_outputs")

#return to parent directory

os.chdir("..")

else:

#Need to remove all files that are not being kept, except on last trial

try:

#os.remove("FOM.plt")

os.remove(out_name_str)

os.remove("simul_resp.out")

except:

try:

time.sleep(0.0001)

os.remove("simul_resp.out")

os.remove(out_name_str)

except:

continue
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#averages output

averages_output = open("average.out","w")

for i in average_theta:

averages_output.write("%f\n" % i)

all_data.average_results()

if first_time:

first_time = False

fp = None

else:

fp = True

all_data.fprint(average=True, format=1, format_printed=fp)

#force so doesn’t reuse same one, seems to be a wierd bug elsewhere

del all_data

gc.collect()

#Write out completed directories to a file, skip these directories if no errors

comp_dir_file.write(dir+"\n")

#when done get rid of ’irand’ to not mess up the next time someone uses this code

os.remove(’irand’)

comp_dir_file.close()

if True:

main()

157



fom comparison format.py: Data Utility Class

# Load local modules

# ------------------------------------------------------------------------------------

import os

import re

# ------------------------------------------------------------------------------------

#UPDATE: July 11 2012

#Added ability to generate many responses and average results

class all_data(object):

"""Each instance of this class contains all the data for all of the responses for one particular geometry.

Averaging can be done more easily this way inside the class"""

# - - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -

def __init__(self, outfile, infile_handle):

#Get rid of the old data

self.clear()

self.outfile = outfile

if self.outfile.closed:

raise ValueError("Somehow you closed the file you passed in")

self.file_name = infile_handle

return None

# - - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -

def clear(self):

"""Clears and initializes all data"""

self.strength = []

self.difference = []

self.lowest_fom = []

self.original_source = []

self.closest_template = []

self.smallest_template = []

self.avg_eff = []

self.not_matches = []

self.outfile = None

self.geometry = None

self.diff_std_dev = None

self.averaged = False

self.format_printed = False

self.functions_list = ["functions_list", "clear", "parse", "initialize_lists", "fprint",

"outfile", "file_name", "geometry", "average_results", "averaged",

"diff_std_dev","format_printed"]

self.file_name = None

return None

# - - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -

def initialize_lists(self, num_strengths):

"""makes all attributes be lists of the appropriate length so u can store data for each source strenght"""

attributes = dir(self)

#Get rid of the default functions

temp_list = []

for i in attributes:
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if not search_for(i, "__\S+__"):

if i not in self.functions_list:

temp_list.append(i)

else:

continue

attributes = temp_list

#Initialize each list

for j in attributes:

exec("self.%s = [ [] for i in range(num_strengths)] " % (j))

return None

# - - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - - -

def parse(self):

"""Reads in the data for a single geometry/configuration folder, and appends sorted data of it to each

list. You can read in multiple sampling of the same geometry, but not different files

The way it works is each item (e.g.) efficiency has a list for each source strength, then with in

each source strength is a list for each trial. The last member is made the average eventually"""

#open file passed in during init

print "comparing data for:", self.file_name

if self.file_name == None:

raise ValueError("need to pass in a filename to be parsed")

if (not search_for(self.file_name, ".fomout")):

print self.file_name, "had no data"

return None

file_handle = open(self.file_name, "r")

#Local variables.

new_strength_flag = False

temp_list = []

counter_flag = 0

first_time_flag = True

efficiency = []

strength = []

difference = []

lowest_fom = []

closest_template = []

smallest_template = []

original_source = []

avg_eff = []

master_list = [] #Each member of list is for a specific energy

for line in file_handle: #loop through all the lines in each file

line_data = line.split()

if search_for(line, ’c\*’):

#Start of a new set of FOM data, figure out the actual source:

source = line.split()[3]

elif search_for(line, "total incident"):

#Find and get the efficiency for this source strength

159



new_strength_flag = True

counter_flag = 0

#Reinitialize list for storing the first and second smallest FOM’s:

temp_list = []

efficiency.append(line_data[14].rstrip(’%’))

strength.append(line_data[10].strip())

elif search_for(line, ’c--+’):

#All data has been read in for a particular source, now store it and reset lists

if first_time_flag == True:

#initialize the list of all results to have a slot for each source strength

for i in strength:

master_list.append([])

avg_eff.append([])

first_time_flag = False

for each in range(len(strength)): #store each of the results, for each strength, then compare

data_temp = [difference[each], strength[each], lowest_fom[each], original_source[each],

smallest_template[each], closest_template[each], efficiency[each]]

master_list[each].append(data_temp)

avg_eff[each].append(efficiency[each])

# Organized by [difference[2], strength[2], smallest_template[2],

# closest_template[2], original_source[2], lowest_fom[2], efficiency[2]

new_strength_flag = False

temp_list = []

counter_flag = 0

efficiency = []

strength = []

difference = []

lowest_fom = []

closest_template = []

smallest_template = []

original_source = []

elif new_strength_flag:

#Data for a new source strength

#Counter flag is what line you are on in data for a particular source

if (counter_flag <1):

#Skip first line because it just contains the number of counts in each detector

counter_flag +=1

elif counter_flag < 3 :

#Read in the top two lowest FOM scores

if (search_for(line, "--ERROR:")): #when zero coutns make sure it catchs it by

#setting diff to zero

temp_list = [[0,0,0],[0,0,0]]

temp_list[1][1] = 1.

temp_list[0][1] = 1.

temp_list[1][2] = 1.

temp_list[0][0] = "ERROR: ZERO COUNTS"

temp_list[1][0] = "ERROR: ZERO COUNTSnUIMBER2"

counter_flag = 80

temp_list.append([line_data[0], line_data[2], line_data[4]])
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counter_flag += 1

else:

#have the data you need:

#Templist[i] = [source type, FOM, std_dev]

if (float(temp_list[1][1]) < 0.0001):

#Make sure FOM not zero

diff = 0.0

source = "False Data, No counts in bins other than normaliz"

else:

diff = float(temp_list[1][1])-float(temp_list[0][1])

diff = diff/float(temp_list[1][2])

#Store data locally:

difference.append(diff)

original_source.append(source)

lowest_fom.append(temp_list[0][1])

smallest_template.append(temp_list[0][0])

closest_template.append(temp_list[1][0])

temp_list = []

new_strength_flag = False

#Sort all the data for this file and append to the instance’s lists

temp_master = []

for each in range(len(master_list)):

temp_master.append(sorted(master_list[each], key = lambda diff: diff[0]))

#Compute the average efficiency

asum = 0.0

for num in avg_eff[each]:

asum = asum + float(num)

avg_eff[each] = asum/float(len(avg_eff[each]))

master_list = list(temp_master)

#if necessary initialize lists to be smae length as source strengths:

if self.strength == []:

self.initialize_lists(len(master_list))

#determine the number of misses there are and store data:

for i in range(len(master_list)):

if self.not_matches[i] == []:

self.not_matches[i] = 0

else:

for data in master_list[i]:

if not search_for(data[4], data[3].rstrip(".i")) or data[0] < 0.0000000001:

master_list[i][master_list[i].index(data)][0] = 0.0

#Not a match

# print "adding to not matches"

self.not_matches[i] +=1

break #DEBUG TODO this break statemetn is for if you want to know that it failed

# in one "trial", somewhere, remove to know fails of all samples of all

# sources

else:

continue
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#Store the worse case data:

for i in range(len(master_list)):

self.avg_eff[i].append(avg_eff[i])

self.difference[i].append(master_list[i][0][0])

self.strength[i].append(master_list[i][0][1])

self.lowest_fom[i].append(master_list[i][0][2])

self.smallest_template[i].append(master_list[i][0][4])

self.original_source[i].append(master_list[i][0][3])

self.closest_template[i].append(master_list[i][0][5])

return None

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

def fprint(self, idx=None, average=None, format=None, format_printed=None):

"""Method that prints out to file nice and pretty. Only prints for case (geometry) specified by idx,

but prints for all source strengths"""

"""format is used to print in special formats. Format == 1 prints it so that all of the data from

the difference are printed for a single chi_sq value"""

#Default to self.averaged:

if average == None:

average = self.averaged

if format_printed != None:

self.format_printed = format_printed

#If not an averaged result

if not average:

self.outfile.write("\nc------------------------------")

self.outfile.write("\nc *** Geometry is: %s \n" % (self.file_name.strip()))

#Default print the first one

if idx == None:

idx = 0

self.outfile.write(" Source_Strength Difference(in sigma’s) SmallestFOM"

+" Source Number Misses Closest_Template AvgEfficiency")

for i in range(len(self.strength)):

self.outfile.write("\n %13s %19.4f %19s %15s %11i %23s %18.4f%s" % (self.strength[i][idx],

float(self.difference[i][idx]), self.lowest_fom[i][idx], self.original_source[i][idx],

self.not_matches[i], self.closest_template[i][idx], (self.avg_eff[i][idx]),"%"))

else:

#If is an averaged result, just print the last one cause thats where the average is

idx = -1

if format == None or format == 0:

self.outfile.write("\nc------------------------------")

self.outfile.write("\nc *** Geometry is: %s \n" % (self.file_name.strip()))

self.outfile.write("Averaged Result:\n")

self.outfile.write("Source_Strength Difference(in sigma’s) Std Dev of Difference"

+"SmallestFOM Number Misses AvgEfficiency")

for i in range(len(self.strength)):

self.outfile.write("\n %13s %19.4f %19.4f %18.3f %16.3f %18.4f%s" % (self.strength[i][idx],

float(self.difference[i][idx]), self.diff_std_dev[i], float(self.lowest_fom[i][idx]),

float(self.not_matches[i]), (self.avg_eff[i][idx]),"%"))
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elif format == 1:

#print the diference and the errors for each source strength in a column

#for all thickness and such. Also print the thicknesses;

if not self.format_printed:

self.outfile.write(" GeometryName Radius No._Detectors Thickness ")

#print the source strengths:

for i in self.strength:

self.outfile.write("Str:%8s_(n’s) sig. number_miss " % i[0])

self.outfile.write("\n")

self.format_printed = True

#get the number of detectors and thickness:

m = re.search("Det(\d+)PE(\d+\.\d+)R(\d+\.\d+)\.fomout", self.file_name.strip())

m_num_det = float(m.group(1))

m_poly_thick = float(m.group(2))

m_radius = float(m.group(3))

#print name, geometry, etc.

self.outfile.write("%21s%8.2f%9i%14.2f " % (self.file_name.strip(), m_radius, m_num_det,

m_poly_thick))

for i in range(len(self.strength)):

self.outfile.write("%13.4f%11.4f%12.4f" % (self.difference[i][idx], self.diff_std_dev[i],

self.not_matches[i]))

self.outfile.write("\n")

else:

raise ValueError("Invalid format entry")

return None

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

def average_results(self):

"""Method that averages all results and stores the average to the results as the last in the list"""

if self.averaged == True:

raise ValueError("already averaged, wont work right")

attributes = dir(self)

#local average values

avg_eff = [ 0. for i in range(len(self.strength))]

diff = [ 0. for i in range(len(self.strength))]

lowest_fom = [ 0. for i in range(len(self.strength))]

diff_sq = [ 0. for i in range(len(self.strength))]

not_matches = [ 0 for i in range(len(self.strength))]

std_dev = []

for i in range(len(self.not_matches)):

self.not_matches[i] = float(self.not_matches[i])

self.not_matches[i] /= float(len(self.strength[i]))

#compute sum of values and square

for idx in range(len(self.strength)):

num_trials = len(self.avg_eff[idx])
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for i in range(len(self.avg_eff[idx])):

avg_eff[idx] += self.avg_eff[idx][i]

diff[idx] += self.difference[idx][i]

diff_sq[idx] += self.difference[idx][i]*self.difference[idx][i]

lowest_fom[idx] += float(self.lowest_fom[idx][i])

#compute average

avg_eff[idx] /= num_trials

diff[idx] /= num_trials

diff_sq[idx] /= num_trials

if num_trials != 1:

std_dev.append(1./(num_trials-1.)*(diff_sq[idx] - diff[idx]*diff[idx]))

else:

std_dev.append(1./(num_trials)*(diff_sq[idx] - diff[idx]*diff[idx]))

#store all average results as last member of list

self.diff_std_dev = std_dev

for src in range(len(self.strength)):

self.difference[src].append(diff[src])

self.avg_eff[src].append(avg_eff[src])

self.lowest_fom.append(lowest_fom[src])

self.averaged=True

return None

#searchs a line for a string, returns true if found, else false

def search_for(line, string):

pattern = re.compile(string)

if (pattern.search(line)):

return True

else:

return False

if __name__ == "__main__":

file = open("test.txt", "a")

os.chdir("FOM_outputs")

a = all_data(file, "Det6PE4.0R10.0.fomout")

a.parse()

os.chdir("..")

a.fprint(idx=0)

a.average_results()

print a.averaged

a.fprint(average=True)

a.average_results()

file.close()

# os.remove("test.txt")
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master file.fom: Sample Output from FOM output.py
’100ev’

11 6.8 ! number of detectors, radius of spectrometer

4.07152E-07 0.0250 ! r_i, sigma(r_i)/r_i

2.36026E-06 0.0235

5.25792E-07 0.0304

4.86122E-08 0.0637

3.87641E-09 0.2023

0.00000E+00 0.0000

0.00000E+00 0.0000

0.00000E+00 0.0000

0.00000E+00 0.0000

0.00000E+00 0.0000

0.00000E+00 0.0000

’ambe’

11 6.8

9.24320E-08 0.0572

8.26495E-07 0.0429

6.06992E-07 0.0408

2.93210E-07 0.0454

1.58648E-07 0.0501

1.11427E-07 0.0475

6.86984E-08 0.0474

4.63191E-08 0.0436

2.88369E-08 0.0405

1.71930E-08 0.0412

7.55912E-09 0.0573

’cf252mcnp’

11 6.8

5.20806E-08 0.0964

5.22608E-07 0.0511

5.91422E-07 0.0430

4.38491E-07 0.0409

2.64141E-07 0.0409

1.54190E-07 0.0420

8.01043E-08 0.0448

4.74482E-08 0.0437

2.73162E-08 0.0449

1.48358E-08 0.0440

5.94480E-09 0.0523

’cfd2oN’

11 6.8

3.36993E-07 0.0291

1.81081E-06 0.0272

6.92907E-07 0.0294

1.91853E-07 0.0338

6.97646E-08 0.0373

3.21269E-08 0.0434

1.85437E-08 0.0473

1.10869E-08 0.0561

5.49360E-09 0.0579

3.42547E-09 0.0544

1.39792E-09 0.0632

’fusionN’

11 6.8

9.17220E-09 0.1917

1.06044E-07 0.1095

1.39183E-07 0.0868

1.61640E-07 0.0848

1.38673E-07 0.0805

1.06838E-07 0.0808

9.37919E-08 0.0864

8.28473E-08 0.0817

5.87632E-08 0.0745

4.38710E-08 0.0836

2.08117E-08 0.1000
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simul resp.f90: Source Code for Generating Simulated

Responses
PROGRAM simul_resp

! Program to generate simulated count data from response functions

! Same as SIMUL but response functions are read from a file and not

! defined by DATA statements

IMPLICIT NONE

REAL, ALLOCATABLE, DIMENSION(:) :: resp, ecount, src

INTEGER, ALLOCATABLE, DIMENSION(:) :: ncount

CHARACTER(len=40) :: stype

REAL, PARAMETER :: PI = 3.14159265

COMMON/RANCOM/ISEED !Random Num_seed

INTEGER :: open_error !I/O STATUS

CHARACTER (len=20) :: output_name, infile_name !output file name

INTEGER :: STATUS !For dynamic memory status

INTEGER :: I, isrc, num_src, idet, iround, iseed!loop counters

REAL :: x, sig, cyl_rad, source

INTEGER :: n, num_det

! READ IN THE SOURCE INFORMATION FROM A FILE

OPEN(555,FILE=’src_str.txt’,STATUS=’OLD’,ACTION=’READ’, IOSTAT=open_error)

IF (open_error /= 0) THEN

STOP "Can’t find the src_str.txt file for source strengths"

END IF

READ (555,*) num_src

ALLOCATE(src(num_src), STAT=STATUS) !allocate memory for number of sources

IF (status /= 0) THEN

STOP "Problem allocating memory"

END IF

DO I=1,num_src,1

READ(555,*) src(I)

END DO

!Read iseed from a file so as not to use same random num every time

OPEN(UNIT=556,FILE=’irand’,STATUS=’OLD’,ACTION=’READ’, IOSTAT=open_error)

IF (open_error /= 0) THEN

write(*,*) "No file found, use default seed of 73907"

iseed = 73907

ELSE

READ(556,*) iseed

CLOSE(UNIT=556)

END IF

OPEN(11,FILE=’simul_resp.out’,STATUS=’UNKNOWN’)

!-- Begin loop to process all response functions

output_name = "master_file.fom"

OPEN (UNIT=10, FILE=output_name, STATUS=’UNKNOWN’, ACTION=’READ’, &

&IOSTAT=open_error)

IF (open_error /= 0) THEN

STOP "No response function, (master_file.fomin), file"

END IF

98 READ(10,*,END=99) stype

READ(10,*) num_det, cyl_rad

ALLOCATE(resp(num_det), ncount(num_det), ecount(num_det), STAT=STATUS)

IF (status /= 0) THEN

STOP "Problem allocating memory for detector arrays"

END IF
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DO 97 i=1,num_det

READ(10,*) resp(i)

97 CONTINUE

!** process both spectra

stype= ’ ’’ ’//’Source is ’//stype

WRITE(11,50) stype,’ ’’ ’

WRITE(11,53) num_det, num_src, cyl_rad

53 FORMAT(1x, 2I5, 1F10.1)

50 FORMAT(A40,A3)

!-- loop over all source strengths

DO 20 isrc=1,num_src

!Normalize the responses to per area of 10cm^2. i.e., if you have

!an area of 10cm^2, then the total source is what is read in

source = src(isrc)*cyl_rad*cyl_rad/100.

!-- loop over all detector locations

DO 30 idet=1,num_det

ecount(idet)=resp(idet)*source

!-- sample from expected counts

IF (ecount(idet).LE.0.01) THEN

ncount(idet)=0

ELSEIF (ecount(idet) .GT. 20.) THEN

sig=SQRT(ecount(idet))

CALL Normal(ecount(idet),sig,x)

! -- round x to nearest integer

n=INT(x)

iround = INT(2*x-2*n)

ncount(idet)=n+iround

ELSE

CALL Poiss(ecount(idet),n)

ncount(idet)=n

ENDIF

30 CONTINUE

WRITE(11,52) source,(ncount(i),i=1,num_det)

52 FORMAT(1X, 1g14.4, 15I12)

20 CONTINUE

DEALLOCATE(resp, ncount, ecount)

GOTO 98

99 CLOSE(11)

DEALLOCATE(src)

!write the randomnumber seed to the directory

OPEN(UNIT=666,FILE=’irand’,STATUS=’REPLACE’, ACTION=’WRITE’, IOSTAT=open_error)

WRITE(666,*) iseed

CLOSE(UNIT=666)

END PROGRAM simul_resp

SUBROUTINE Normal(m,sig,x)

!---------------------------------------------------------------------

! Generates a random sample x from a normal N(m,sig) distribution

! using the Box-Muller method.

!

! INPUT: m = the mean of the Gaussian distribution

! sig = the standard deviation of the Gaussian distribution

!

! OUTPUT: x = a random sample from the Gaussian distribution

!

! NOTE: Although, in general, m and sig can be independent, for

! counting data m = sig^2

!---------------------------------------------------------------------

REAL m

rho1 = FLTRN()

rho2 = FLTRN()
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y = SQRT(-2.*log(rho1))*COS(6.283185*rho2)

x = sig*y + m

RETURN

END

SUBROUTINE Poiss(m,n)

!---------------------------------------------------------------------

! Generates a random sample n from a Poisson distribution with mean m

!---------------------------------------------------------------------

REAL m,lnm

!-- initialize

rho = FLTRN()

n=0

em = EXP(-m)

fn = em

lnm = LOG(m)

FFn = fn

!-- use inverse CDF method

DO 10 i=1,45

IF (rho .GT. FFn) THEN

n=n+1

fn = EXP(n*lnm - m - gammln(FLOAT(n+1)))

FFn = FFn + fn

ELSE

RETURN

ENDIF

10 CONTINUE

WRITE(*,*)’ WARNING: Poisson sampling failed’

END

FUNCTION gammln(xx)

!----------------------------------------------------------------------

! Returns value of ln[Gamma(xx)]. From "Numerical Recipes"

!----------------------------------------------------------------------

REAL gammln,xx

INTEGER j

DOUBLE PRECISION ser,stp,tmp,x,y,cof(6)

SAVE cof,stp

DATA cof,stp/76.18009172947146d0,-86.50532032941677d0, &

& 24.01409824083091d0,-1.231739572450155d0,.1208650973866179d-2, &

& -.5395239384953d-5,2.5066282746310005d0/

x=xx

y=x

tmp=x+5.5d0

tmp=(x+0.5d0)*log(tmp)-tmp

ser=1.000000000190015d0

DO 10 j=1,6

y=y+1.d0

ser=ser+cof(j)/y

10 CONTINUE

gammln=tmp+log(stp*ser/x)

RETURN

END

REAL FUNCTION FLTRN()

!---------------------------------------------------------------------

! PURPOSE: Returns a single precision floating point random

! number in the open interval (0,1).

! Works on any system for which the maximum value

! of an integer variable is 2**31-1 or larger.

!

! ARGUMENTS: none (ISEED the seed number is kept in COMMON)

!
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! METHOD: Minimal standard generator as specified in the article

! S.K. Park and K.W. Miller, "Random Number Generators:

! Good Ones are Hard to Find", Comm. ACM, vol. 31, no. 10,

! October 1988.

!---------------------------------------------------------------------

INTEGER a,m,q,r,lo,hi,test,iseed

REAL minv

COMMON/RANCOM/ISEED

PARAMETER(a=16807,m=2147483647,q=127773,r=2836)

PARAMETER(minv=4.6566129E-10)

hi = iseed/q

lo = MOD(iseed,q)

test = a*lo-r*hi

IF(test .GT. 0) THEN

iseed = test

ELSE

iseed = test + m

ENDIF

FLTRN = minv*REAL(iseed)

RETURN

END
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fom.f90: Source Code for Computing FOM Values
!******* Program for comparing a measured spectrometer response to templates

! The number 30 throughout is max number of different sources

! that are being simulated

!UPDATE 71112: Added ability to average results

PROGRAM fom_042412

IMPLICIT NONE

INTEGER, ALLOCATABLE, DIMENSION(:) :: ncount

REAL, ALLOCATABLE, DIMENSION(:) :: RR,sig2c

REAL, ALLOCATABLE, DIMENSION(:, :) :: rel

REAL, DIMENSION(30) :: fom,fom2,sigfom

REAL, DIMENSION(30,30) :: SS,sig2S, resp

CHARACTER(LEN=72) :: templ(30),templ2(30),label

INTEGER :: norm, nsrc, ndet,j,i,status,nresp

INTEGER :: nset, nsum, cnorm

REAL :: r2norm, Snorm, src, cyl_rad, eff

!** analysis parameters

norm = 2 !which detector to normalize to

!default is 10, radius of the spectrometer

!get number of source strengths

OPEN(UNIT=512,FILE=’simul_resp.out’,ACTION=’READ’,STATUS=’OLD’)

READ(512,*) label, ndet, nsrc !lable and ndet are just dummys here

CLOSE(UNIT=512)

!** open input/output files

OPEN(10,FILE=’simul_resp.out’,STATUS=’OLD’)

OPEN(11,FILE=’master_file.fom’,STATUS=’OLD’)

OPEN(12,FILE=’FOM.out’,STATUS=’UNKNOWN’)

OPEN(13,FILE=’FOM.plt’,STATUS=’UNKNOWN’)

!-- read in all templates and form ratios for the response functions

j=0

!-- loop to read response functions

40 j=j+1

READ(11,*,END=100) templ(j)

templ2(j)=templ(j)

READ(11,*) ndet, cyl_rad

ALLOCATE(RR(ndet), ncount(ndet), rel(30,ndet),&

&STAT=status)

IF (status /= 0) THEN

STOP "Problem allocating memory for detector arrays"

END IF

DO 15 i=1,ndet

READ(11,*) resp(j,i),rel(j,i)

15 CONTINUE

!-- calc ratios and variances

Snorm = resp(j,norm)

r2norm = rel(j,norm)**2

DO 16 i=1,ndet

SS(j,i) = LOG(resp(j,i)/Snorm)

sig2S(j,i) = (rel(j,i)**2 + r2norm)*100./(cyl_rad*cyl_rad)

16 CONTINUE

nresp=j

! DEALLOCATE MEMORY

DEALLOCATE(RR, ncount, rel,&

&)

GOTO 40

!-- big loop to read and process simulated count data

!** read in spectrometer count data
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100 READ(10,*,END=300) label

READ(10,*) ndet, nsrc, cyl_rad

WRITE(12,31) label

WRITE(13,31) label

31 FORMAT( //’c****** ’,(A))

!Allocate memory

ALLOCATE(ncount(ndet), RR(ndet), sig2c(ndet))

nset=0

99 READ(10,306) src, (ncount(i),i=1,ndet)

306 FORMAT(1x, 1E14.4, 5000I12)

!-- find total number of counts

nsum=0

DO 35 i=1,ndet

nsum=nsum + ncount(i)

35 CONTINUE

eff = float(nsum)/(src)*100.

WRITE(12,38) nsum,src,eff,(ncount(i),i=1,ndet)

WRITE(13,34) label,nsum,(ncount(i),i=1,ndet)

34 FORMAT(/(A),/&

& ’Simulated count data: total counts = ’,I10,/4000I8)

38 FORMAT(/’Simulated count data: total counts = ’,I10,’ total incident&

& neutrons= ’,ES10.1,’ total efficiency = ’,F7.4, ’%’/40001I8)

nset=nset+1

!-- check that normalization counts are not zero

IF (ncount(norm).EQ.0) THEN

WRITE(12,36)norm

WRITE(12,333)

WRITE(13,333)

IF (nset.EQ.nsrc) THEN

DEALLOCATE(ncount, RR, sig2c)

WRITE(12,333)

WRITE(13,333)

GOTO 100

ELSE

GOTO 99

ENDIF

ENDIF

36 FORMAT(’--ERROR: normalization detector’,I2,’ has zero counts’)

!-- calculate log of ratios and stnd dev. for count data

cnorm = ncount(norm)

DO 11 i=1,ndet

IF (ncount(i).GT.0) THEN

sig2c(i) = 1./FLOAT(ncount(i)) + 1./FLOAT(cnorm) !Corrected

RR(i) = LOG(1.*ncount(i)/FLOAT(cnorm))

ELSE

sig2c(i)=0.0

RR(i) = LOG(1./cnorm)

ENDIF

11 CONTINUE

!** compare data to all response functions -- calc FOM and stnd dev.

DO 10 j=1,nresp

!-- calc figure of merit (FOM)

fom(j)=0.0

DO 30 i=1,ndet

IF((resp(j,i).GT.1E-15).AND.(ncount(i).GT.0)) THEN

fom(j)=fom(j)+(RR(i)-SS(j,i))**2/(sig2S(j,i) + sig2c(i))

ENDIF

30 CONTINUE

sigfom(j)=2*SQRT(fom(j))

fom2(j)=fom(j)
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10 CONTINUE

!-- sort the FOMs

CALL mysort(nresp,fom,sigfom,templ)

!-- print out results

DO 20 j=1,nresp

WRITE(12,32) templ(j),fom(j),sigfom(j)

WRITE(13,57) templ(j),j,fom(j),sigfom(j),sigfom(j)

!-- reset template names

templ(j)=templ2(j)

32 FORMAT(A30,’ FOM ’,G12.4,’ +-’,G12.4)

37 FORMAT((A))

57 FORMAT(’c ’,A30,/I4,G12.4,’ (’,G12.4,’,’,G12.4,’)’)

20 CONTINUE

!-- process next set of simulated data

IF (nset.EQ.nsrc) THEN !read all data for all src str’s

WRITE(12,333)

WRITE(13,333)

333 FORMAT (/’c’,72(’-’)//)

DEALLOCATE(ncount, RR, sig2c)

GOTO 100

ELSE

GOTO 99

ENDIF

!-- terminate the program -- all data processed

300 CLOSE(10)

CLOSE(11)

CLOSE(12)

CLOSE(13)

END PROGRAM fom_042412

!Fortran77 subroutine to sort a list from Numerical Recipes

SUBROUTINE mysort(n,arr,brr,crr)

INTEGER n,M,NSTACK

REAL arr(n),brr(n)

CHARACTER*72 crr(n),c,ctemp

PARAMETER (M=7,NSTACK=50)

INTEGER i,ir,j,jstack,k,l,istack(NSTACK)

REAL a,b,temp

jstack=0

l=1

ir=n

1 if(ir-l.lt.M)then

do 12 j=l+1,ir

a=arr(j)

b=brr(j)

c=crr(j)

do 11 i=j-1,1,-1

if(arr(i).le.a)goto 2

arr(i+1)=arr(i)

brr(i+1)=brr(i)

crr(i+1)=crr(i)

11 continue

i=0

2 arr(i+1)=a

brr(i+1)=b

crr(i+1)=c

12 continue

if(jstack.eq.0)return

ir=istack(jstack)

l=istack(jstack-1)
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jstack=jstack-2

else

k=(l+ir)/2

temp=arr(k)

arr(k)=arr(l+1)

arr(l+1)=temp

temp=brr(k)

brr(k)=brr(l+1)

brr(l+1)=temp

ctemp=crr(k)

crr(k)=crr(l+1)

crr(l+1)=ctemp

if(arr(l+1).gt.arr(ir))then

temp=arr(l+1)

arr(l+1)=arr(ir)

arr(ir)=temp

temp=brr(l+1)

brr(l+1)=brr(ir)

brr(ir)=temp

ctemp=crr(l+1)

crr(l+1)=crr(ir)

crr(ir)=ctemp

endif

if(arr(l).gt.arr(ir))then

temp=arr(l)

arr(l)=arr(ir)

arr(ir)=temp

temp=brr(l)

brr(l)=brr(ir)

brr(ir)=temp

ctemp=crr(l)

crr(l)=crr(ir)

crr(ir)=ctemp

endif

if(arr(l+1).gt.arr(l))then

temp=arr(l+1)

arr(l+1)=arr(l)

arr(l)=temp

temp=brr(l+1)

brr(l+1)=brr(l)

brr(l)=temp

ctemp=crr(l+1)

crr(l+1)=crr(l)

crr(l)=ctemp

endif

i=l+1

j=ir

a=arr(l)

b=brr(l)

c=crr(l)

3 continue

i=i+1

if(arr(i).lt.a)goto 3

4 continue

j=j-1

if(arr(j).gt.a)goto 4

if(j.lt.i)goto 5

temp=arr(i)

arr(i)=arr(j)

arr(j)=temp

temp=brr(i)

brr(i)=brr(j)

brr(j)=temp

ctemp=crr(i)

crr(i)=crr(j)

crr(j)=ctemp

goto 3

5 arr(l)=arr(j)

173



arr(j)=a

brr(l)=brr(j)

brr(j)=b

crr(l)=crr(j)

crr(j)=c

jstack=jstack+2

if(jstack.gt.NSTACK) STOP ’NSTACK too small in sort2’

if(ir-i+1.ge.j-l)then

istack(jstack)=ir

istack(jstack-1)=i

ir=j-1

else

istack(jstack)=j-1

istack(jstack-1)=l

l=i

endif

endif

goto 1

END
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Appendix C

Spectrometer MCNP Files

Description Page

MCNP5 file for a uniform beam of 252Cf irradiat-
ing a spectrometer in a void.

176

MCNP5 file for a point source of 252Cf irradiating
a spectrometer in an enclosed room with shadow
shield included.

179

MCNP6 input file for verifying spectrometer re-
sponse from 252.Cf

183
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MCNP5 Input File for Void and Disk Source
SPC8: Detectors every 3 cm in 30 cm x 20 cm-dia spectrometer

c A cylinder of polyethylene is used as neutron spectrometer.

c At various distances into cylinder square perforated neutron

c detectors (2x2 cm) are placed perpendicular to the axis. Behind

c each detector is a 1 mm disk of cadmium extending to the edge of

c the poly cyclinder.

c

c ********************* BLOCK 1: CELL CARDS *****************************

c

c ---- detector chunks, breadboards, and surounding poly annuli ----

10 2 -0.0835 100 -1100 -35 imp:n=1.00 $detector at 0 cm

600 4 0.00053 1100 -200 -40 imp:n=1.00 $breadboard at 0 cm

11 0 100 -200 -30 ((35 -1100):40) imp:n=1.00 $Voided annulus at 0 cm

20 2 -0.0835 101 -1101 -35 imp:n=1.31 $detector at 2 cm

601 4 0.00053 1101 -201 -40 imp:n=1.31 $breadboard at 2 cm

21 1 -0.9500 101 -201 -30 ((35 -1101):40) imp:n=1.31 $HDPE annulus at 2 cm

30 2 -0.0835 102 -1102 -35 imp:n=1.99 $detector at 5 cm

602 4 0.00053 1102 -202 -40 imp:n=1.99 $breadboard at 5 cm

31 1 -0.9500 102 -202 -30 ((35 -1102):40) imp:n=1.99 $HDPE annulus at 5 cm

40 2 -0.0835 103 -1103 -35 imp:n=3.26 $detector at 8 cm

603 4 0.00053 1103 -203 -40 imp:n=3.26 $breadboard at 8 cm

41 1 -0.9500 103 -203 -30 ((35 -1103):40) imp:n=3.26 $HDPE annulus at 8 cm

50 2 -0.0835 104 -1104 -35 imp:n=5.49 $detector at 10 cm

604 4 0.00053 1104 -204 -40 imp:n=5.49 $breadboard at 10 cm

51 1 -0.9500 104 -204 -30 ((35 -1104):40) imp:n=5.49 $HDPE annulus at 10 cm

60 2 -0.0835 105 -1105 -35 imp:n=9.30 $detector at 12 cm

605 4 0.00053 1105 -205 -40 imp:n=9.30 $breadboard at 12 cm

61 1 -0.9500 105 -205 -30 ((35 -1105):40) imp:n=9.30 $HDPE annulus at 12 cm

70 2 -0.0835 106 -1106 -35 imp:n=15.7 $detector at 15 cm

606 4 0.00053 1106 -206 -40 imp:n=15.7 $breadboard at 15 cm

71 1 -0.9500 106 -206 -30 ((35 -1106):40) imp:n=15.7 $HDPE annulus at 15 cm

80 2 -0.0835 107 -1107 -35 imp:n=26.3 $detector at 18 cm

607 4 0.00053 1107 -207 -40 imp:n=26.3 $breadboard at 18 cm

81 1 -0.9500 107 -207 -30 ((35 -1107):40) imp:n=26.3 $HDPE annulus at 18 cm

90 2 -0.0835 108 -1108 -35 imp:n=43.1 $detector at 20 cm

608 4 0.00053 1108 -208 -40 imp:n=43.1 $breadboard at 20 cm

91 1 -0.9500 108 -208 -30 ((35 -1108):40) imp:n=43.1 $HDPE annulus at 20 cm

100 2 -0.0835 109 -1109 -35 imp:n=69.9 $detector at 22 cm

609 4 0.00053 1109 -209 -40 imp:n=69.9 $breadboard at 22 cm

101 1 -0.9500 109 -209 -30 ((35 -1109):40) imp:n=69.9 $HDPE annulus at 22 cm

110 2 -0.0835 110 -1110 -35 imp:n=110.9 $detector at 25 cm

610 4 0.00053 1110 -210 -40 imp:n=110.9 $breadboard at 25 cm

111 1 -0.9500 110 -210 -30 ((35 -1110):40) imp:n=110.9 $HDPE annulus at 25 cm

c ---- Cd slices behind detectors ----

500 3 -8.6500 200 -1200 -30 imp:n=1.00 $cd slice behind detecor 1

501 3 -8.6500 201 -1201 -30 imp:n=1.31 $cd slice behind detecor 2

502 3 -8.6500 202 -1202 -30 imp:n=1.99 $cd slice behind detecor 3

503 3 -8.6500 203 -1203 -30 imp:n=3.26 $cd slice behind detecor 4

504 3 -8.6500 204 -1204 -30 imp:n=5.49 $cd slice behind detecor 5

505 3 -8.6500 205 -1205 -30 imp:n=9.30 $cd slice behind detecor 6

506 3 -8.6500 206 -1206 -30 imp:n=15.7 $cd slice behind detecor 7

507 3 -8.6500 207 -1207 -30 imp:n=26.3 $cd slice behind detecor 8

508 3 -8.6500 208 -1208 -30 imp:n=43.1 $cd slice behind detecor 9

509 3 -8.6500 209 -1209 -30 imp:n=69.9 $cd slice behind detecor 10

510 3 -8.6500 210 -1210 -30 imp:n=110.9 $cd slice behind detecor 11

c ---- poly cylinders behind Cd ----

400 1 -0.9500 1200 -101 -30 imp:n=1.00 $HDPE cylinder behind detecor 1

401 1 -0.9500 1201 -102 -30 imp:n=1.31 $HDPE cylinder behind detecor 2

402 1 -0.9500 1202 -103 -30 imp:n=1.99 $HDPE cylinder behind detecor 3

403 1 -0.9500 1203 -104 -30 imp:n=3.26 $HDPE cylinder behind detecor 4

404 1 -0.9500 1204 -105 -30 imp:n=5.49 $HDPE cylinder behind detecor 5

405 1 -0.9500 1205 -106 -30 imp:n=9.30 $HDPE cylinder behind detecor 6

406 1 -0.9500 1206 -107 -30 imp:n=15.7 $HDPE cylinder behind detecor 7

407 1 -0.9500 1207 -108 -30 imp:n=26.3 $HDPE cylinder behind detecor 8

408 1 -0.9500 1208 -109 -30 imp:n=43.1 $HDPE cylinder behind detecor 9
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409 1 -0.9500 1209 -110 -30 imp:n=69.9 $HDPE cylinder behind detecor 10

c ---- graveyard and neutron beam ----

1 0 10 -100 -30 imp:n=1 $ void before spectrometer

999 0 30:-10:111 imp:n=0 $ graveyard/problem boundary

c ********************* BLOCK 2: SURFACE CARDS *************************

10 px -10 $ left problem boundary

30 CX 6.803 $ cylindrical surface of spectrometer

35 RPP 100.0 125.357 -1 1 -1 1 $ square box for detector edges (2x2square)

40 RPP 100.0 125.357 -1.1 1.1 -1.1 1.1 $ square box for PCB edges (1.1x1.100000.1square)

c --- vertical slices thru the spectrometer I (front detector surfaces) ---

100 px 100.0 $front of detector 0

101 px 102.5 $front of detector 1

102 px 105.0 $front of detector 2

103 px 107.5 $front of detector 3

104 px 110.0 $front of detector 4

105 px 112.5 $front of detector 5

106 px 115.0 $front of detector 6

107 px 117.5 $front of detector 7

108 px 120.0 $front of detector 8

109 px 122.5 $front of detector 9

110 px 125.0 $front of detector 10

111 px 125.357 $back of last sheet of poly/spectr

c --- vertical slices thru the spectrometer II (back detector surfaces) ---

1100 px 100.1 $back of detector 0

1101 px 102.6 $back of detector 1

1102 px 105.1 $back of detector 2

1103 px 107.6 $back of detector 3

1104 px 110.1 $back of detector 4

1105 px 112.6 $back of detector 5

1106 px 115.1 $back of detector 6

1107 px 117.6 $back of detector 7

1108 px 120.1 $back of detector 8

1109 px 122.6 $back of detector 9

1110 px 125.1 $back of detector 10

c --- vertical slices thru the spectrometer III (Cd slices) ---

200 px 100.257 $front cd of detector 0

1200 px 100.357 $back cd of detector 0

201 px 102.757 $front cd of detector 1

1201 px 102.857 $back cd of detector 1

202 px 105.257 $front cd of detector 2

1202 px 105.357 $back cd of detector 2

203 px 107.757 $front cd of detector 3

1203 px 107.857 $back cd of detector 3

204 px 110.257 $front cd of detector 4

1204 px 110.357 $back cd of detector 4

205 px 112.757 $front cd of detector 5

1205 px 112.857 $back cd of detector 5

206 px 115.257 $front cd of detector 6

1206 px 115.357 $back cd of detector 6

207 px 117.757 $front cd of detector 7

1207 px 117.857 $back cd of detector 7

208 px 120.257 $front cd of detector 8

1208 px 120.357 $back cd of detector 8

209 px 122.757 $front cd of detector 9

1209 px 122.857 $back cd of detector 9

210 px 125.257 $front cd of detector 10

1210 px 125.357 $back cd of detector 10

c ********************* BLOCK 3: DATA CARDS ****************************

c

c ----- Source: disk source, different erg dist. for each file ----

SDEF ERG=d1 PAR=1 VEC= 1 0 0 DIR=1 POS 0 0 0

AXS=1 0 0 rad=d2 EXT=0

SP2 -21 1 $ weighting for radial sampling: her r^1

SI2 0 6.8030 $ radial sampling range: 0 to Rmax

SP1 -3 1.025 2.926 $ Watt distn for f-252

c ----- Problem parameters
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mode n

nps 200000000

c

c

c ------ total thermal flux detector

F4:N 10 20 30 40 50 60 70 80 90 100 110

TF4 11 7j

c ------------------------------------------------------------------

c modify tallies to give no. (n,t) reactions per source neutron

c C=[(rho Na/A)x10^(-24) atom/(b-cm)] x Vol_detector

c for Li-6 to stop 50% of neutrons in .1 cm, density ~ 0.0835 g/cm^3

c Vol_det = 0.4 cm^3 ( 2 x 2 x .1 cm)

c find that C=0.0033286

c ------------------------------------------------------------------

FC4 tally modified to (n,t) reactions per source neutron

FM4 0.0033286 2 105

c

c WEIGHT WINDOW GENERATOR

c MESH geom=cyl ref=10 0 0 origin -15 0 0 axs=1 0 0 vec=0 0 1

c imesh 1.5 15.1 iints=1 4

c jmesh 99 110 120 131 jints=1 11 10 8

c kmesh 1 kints=1

c WWG 4 0 0 4j

c WWGE:n 10

c

c

c ------ MATERIALS

c

c --------------------------------------------------------------------

c material: polyethylene d=0.95 g/cm^3

c --------------------------------------------------------------------

m1 1001.50c 2

6000.50c 1

mt1 poly.01

c

c --------------------------------------------------------------------

c material: Li-6F nominal d=2.7 g/cm^3

c ignore F: Li-6 in LiF has a density of 0.6131 g/cm^3

c --------------------------------------------------------------------

m2 3006.66c 1

c

c --------------------------------------------------------------------

c cadmnium nominal density 8.65 g/cm^3

c --------------------------------------------------------------------

m3 48000.50c 1

c

c --------------------------------------------------------------------

c Printed circuit board...still need this one

c

m4 5010.50c 1

178



MCNP5 Input File for Enclosed Room with Shadow

Shield
SPC8: Detectors every 3 cm in 30 cm x 20 cm-dia spectrometer

c A cylinder of polyethylene is used as neutron spectrometer.

c At various distances into cylinder square perforated neutron

c detectors (2x2 cm) are placed perpendicular to the axis. Behind

c each detector is a 1 mm disk of cadmium extending to the edge of

c the poly cyclinder.

c Added stuff:

c Added ability to handle point source and wall shine, moved source

c 1.5 m away instead of 1.0 m so more shine occurs

c

c ---- graveyard ----

999 0 50 imp:n=0.0 $kill zone

c ---- detector chunks, breadboards, and surounding poly annuli ----

10 2 -0.0835 100 -1100 -35 imp:n=1.10 $detector at 0.0 cm

600 4 0.00053 1100 -200 -40 imp:n=1.10 $breadboard at 0.0 cm

11 0 100 -200 -30 ((35 -1100):40) imp:n=1.10 $Voided annulus at 0.0 cm

20 2 -0.0835 101 -1101 -35 imp:n=1.68 $detector at 2.5 cm

601 4 0.00053 1101 -201 -40 imp:n=1.68 $breadboard at 2.5 cm

21 1 -0.9500 101 -201 -30 ((35 -1101):40) imp:n=1.68 $HDPE annulus at 2.5 cm

30 2 -0.0835 102 -1102 -35 imp:n=2.24 $detector at 5.0 cm

602 4 0.00053 1102 -202 -40 imp:n=2.24 $breadboard at 5.0 cm

31 1 -0.9500 102 -202 -30 ((35 -1102):40) imp:n=2.24 $HDPE annulus at 5.0 cm

40 2 -0.0835 103 -1103 -35 imp:n=2.14 $detector at 7.5 cm

603 4 0.00053 1103 -203 -40 imp:n=2.14 $breadboard at 7.5 cm

41 1 -0.9500 103 -203 -30 ((35 -1103):40) imp:n=2.14 $HDPE annulus at 7.5 cm

50 2 -0.0835 104 -1104 -35 imp:n=2.16 $detector at 10.0 cm

604 4 0.00053 1104 -204 -40 imp:n=2.16 $breadboard at 10.0 cm

51 1 -0.9500 104 -204 -30 ((35 -1104):40) imp:n=2.16 $HDPE annulus at 10.0 cm

60 2 -0.0835 105 -1105 -35 imp:n=1.94 $detector at 12.5 cm

605 4 0.00053 1105 -205 -40 imp:n=1.94 $breadboard at 12.5 cm

61 1 -0.9500 105 -205 -30 ((35 -1105):40) imp:n=1.94 $HDPE annulus at 12.5 cm

70 2 -0.0835 106 -1106 -35 imp:n=1.96 $detector at 15.0 cm

606 4 0.00053 1106 -206 -40 imp:n=1.96 $breadboard at 15.0 cm

71 1 -0.9500 106 -206 -30 ((35 -1106):40) imp:n=1.96 $HDPE annulus at 15.0 cm

80 2 -0.0835 107 -1107 -35 imp:n=2.38 $detector at 17.5 cm

607 4 0.00053 1107 -207 -40 imp:n=2.38 $breadboard at 17.5 cm

81 1 -0.9500 107 -207 -30 ((35 -1107):40) imp:n=2.38 $HDPE annulus at 17.5 cm

90 2 -0.0835 108 -1108 -35 imp:n=2.09 $detector at 20.0 cm

608 4 0.00053 1108 -208 -40 imp:n=2.09 $breadboard at 20.0 cm

91 1 -0.9500 108 -208 -30 ((35 -1108):40) imp:n=2.09 $HDPE annulus at 20.0 cm

100 2 -0.0835 109 -1109 -35 imp:n=1.77 $detector at 22.5 cm

609 4 0.00053 1109 -209 -40 imp:n=1.77 $breadboard at 22.5 cm

101 1 -0.9500 109 -209 -30 ((35 -1109):40) imp:n=1.77 $HDPE annulus at 22.5 cm

110 2 -0.0835 110 -1110 -35 imp:n=1.00 $detector at 25.0 cm

610 4 0.00053 1110 -210 -40 imp:n=1.00 $breadboard at 25.0 cm

111 1 -0.9500 110 -210 -30 ((35 -1110):40) imp:n=1.00 $HDPE annulus at 25.0 cm

c ---- Cd slices behind detectors ----

500 3 -8.6500 200 -1200 -30 imp:n=1.10 $cd slice behind detector 1

501 3 -8.6500 201 -1201 -30 imp:n=1.68 $cd slice behind detector 2

502 3 -8.6500 202 -1202 -30 imp:n=2.24 $cd slice behind detector 3

503 3 -8.6500 203 -1203 -30 imp:n=2.14 $cd slice behind detector 4

504 3 -8.6500 204 -1204 -30 imp:n=2.16 $cd slice behind detector 5

505 3 -8.6500 205 -1205 -30 imp:n=1.94 $cd slice behind detector 6

506 3 -8.6500 206 -1206 -30 imp:n=1.96 $cd slice behind detector 7

507 3 -8.6500 207 -1207 -30 imp:n=2.38 $cd slice behind detector 8

508 3 -8.6500 208 -1208 -30 imp:n=2.09 $cd slice behind detector 9

509 3 -8.6500 209 -1209 -30 imp:n=1.77 $cd slice behind detector 10

510 3 -8.6500 210 -1210 -30 imp:n=1.00 $cd slice behind detector 11

c ---- poly cylinders behind Cd ----

400 1 -0.9500 1200 -101 -30 imp:n=1.10 $HDPE cylinder behind detecor 1

401 1 -0.9500 1201 -102 -30 imp:n=1.68 $HDPE cylinder behind detecor 2

402 1 -0.9500 1202 -103 -30 imp:n=2.24 $HDPE cylinder behind detecor 3

403 1 -0.9500 1203 -104 -30 imp:n=2.14 $HDPE cylinder behind detecor 4
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404 1 -0.9500 1204 -105 -30 imp:n=2.16 $HDPE cylinder behind detecor 5

405 1 -0.9500 1205 -106 -30 imp:n=1.94 $HDPE cylinder behind detecor 6

406 1 -0.9500 1206 -107 -30 imp:n=1.96 $HDPE cylinder behind detecor 7

407 1 -0.9500 1207 -108 -30 imp:n=2.38 $HDPE cylinder behind detecor 8

408 1 -0.9500 1208 -109 -30 imp:n=2.09 $HDPE cylinder behind detecor 9

409 1 -0.9500 1209 -110 -30 imp:n=1.77 $HDPE cylinder behind detecor 10

c ---- graveyard and neutron beam ----

1 0 1300 -1301 1302 1304 -1305 -1306 imp:n=1 $ void before shadow shield

2 0 -100 1308 -30 imp:n=1 $ void behind shadow shield

301 1 -0.95000 -30 1306 -1307 imp:n=1.0 $ shadow shield

302 3 -8.65000 -30 1307 -1308 imp:n=1.0 $ Cd shield

3 0 1306 -111 30 1300 -1301 1304 -1305 imp:n=1 $ void around spectrometer

4 0 111 1300 -1301 -1303 1304 -1305 imp:n=1 $ void after spectrometer

c ---- Walls ---------

5 11 -2.7 -1300 -50 imp:n=1.0 $ floor

6 11 -2.7 1301 -50 imp:n=1.0 $ ceiling

7 11 -2.7 1303 -50 -1301 1300 1304 -1305 imp:n=1.0 $ catcher wall

8 11 -2.7 -1304 -50 -1301 1300 imp:n=1.0 $ left wall

9 11 -2.7 1305 -50 -1301 1300 imp:n=1.0 $ right wall

c ********************* BLOCK 2: SURFACE CARDS *************************

c --- Planes for walls

1300 PZ -100. $floor NU

1301 PZ 150. $ceiling NU

1303 PX 250. $Catcher NU

1304 PY -150. $Left Wall

1305 PY 150. $Right wall

c --- Plane for shadow shield

1306 PX 18.00 $Shadow Shield Front Plane

1307 PX 33.00 $Shadow Shield Back Plane

1308 PX 33.10 $Back Shield Cd

c --- Basic Geometry

50 RPP -60.0 270. -170. 170. -120. 170. $outer boundary NU

1302 px -60.0 $left problem boundary

30 CX 6.8 $ cylindrical surface of spectrometer

35 RPP 100.0 125.357 -1 1 -1 1 $ square box for detector edges (2x2square)

40 RPP 100.0 125.357 -1.1 1.1 -1.1 1.1 $ square box for PCB edges (1.1x1.100000.1square)

c --- vertical slices thru the spectrometer I (front detector surfaces) ---

100 px 100.0 $front of detector 0

101 px 102.5 $front of detector 1

102 px 105.0 $front of detector 2

103 px 107.5 $front of detector 3

104 px 110.0 $front of detector 4

105 px 112.5 $front of detector 5

106 px 115.0 $front of detector 6

107 px 117.5 $front of detector 7

108 px 120.0 $front of detector 8

109 px 122.5 $front of detector 9

110 px 125.0 $front of detector 10

111 px 125.357 $back of last sheet of poly/spectr

c --- vertical slices thru the spectrometer II (back detector surfaces) ---

1100 px 100.1 $back of detector 0

1101 px 102.6 $back of detector 1

1102 px 105.1 $back of detector 2

1103 px 107.6 $back of detector 3

1104 px 110.1 $back of detector 4

1105 px 112.6 $back of detector 5

1106 px 115.1 $back of detector 6

1107 px 117.6 $back of detector 7

1108 px 120.1 $back of detector 8

1109 px 122.6 $back of detector 9

1110 px 125.1 $back of detector 10

c --- vertical slices thru the spectrometer III (Cd slices) ---

200 px 100.257 $front cd of detector 0

1200 px 100.357 $back cd of detector 0

201 px 102.757 $front cd of detector 1

1201 px 102.857 $back cd of detector 1

202 px 105.257 $front cd of detector 2
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1202 px 105.357 $back cd of detector 2

203 px 107.757 $front cd of detector 3

1203 px 107.857 $back cd of detector 3

204 px 110.257 $front cd of detector 4

1204 px 110.357 $back cd of detector 4

205 px 112.757 $front cd of detector 5

1205 px 112.857 $back cd of detector 5

206 px 115.257 $front cd of detector 6

1206 px 115.357 $back cd of detector 6

207 px 117.757 $front cd of detector 7

1207 px 117.857 $back cd of detector 7

208 px 120.257 $front cd of detector 8

1208 px 120.357 $back cd of detector 8

209 px 122.757 $front cd of detector 9

1209 px 122.857 $back cd of detector 9

210 px 125.257 $front cd of detector 10

1210 px 125.357 $back cd of detector 10

c ********************* BLOCK 3: DATA CARDS ****************************

c

c ----- Source: point source, biased, different erg dist. for each file ----

SDEF ERG=d1 PAR=1 VEC= 1 0 0 DIR=d2 POS -50.0 0. 0. $NU

SI2 -1. 0. 0.9990 1. $ histogram for cosine bin limits

SP2 0. 0.5 0.4995 0.0005 $ fractional solid angle for each bin

SB2 0. 0. 1. 0.0 $Probability bias for each bin NU

SP1 -3 1.025 2.926 $ Watt distn for f-252

c ----- Problem parameters

mode n

nps 300000000

c

c

c ------ total thermal flux detector

F4:N 10 20 30 40 50 60 70 80 90 100 110

TF4 2 7j

c ------------------------------------------------------------------

c modify tallies to give no. (n,t) reactions per source neutron

c C=[(rho Na/A)x10^(-24) atom/(b-cm)] x Vol_detector

c for Li-6 to stop 50% of neutrons in .1 cm, density ~ 0.0835 g/cm^3

c Vol_det = 0.4 cm^3 ( 2 x 2 x .1 cm)

c find that C=0.0033286

c ------------------------------------------------------------------

FC4 tally modified to (n,t) reactions per source neutron

FM4 0.0033286 2 105

c

c WEIGHT WINDOW GENERATOR

c MESH geom=cyl ref=10 0 0 origin -15 0 0 axs=1 0 0 vec=0 0 1

c imesh 1.5 15.1 iints=1 4

c jmesh 99 110 120 131 jints=1 11 10 8

c kmesh 1 kints=1

c WWG 4 0 0 4j

c WWGE:n 10

c

c

c ------ MATERIALS

c

c --------------------------------------------------------------------

c material: polyethylene d=0.95 g/cm^3

c --------------------------------------------------------------------

m1 1001.50c 2

6000.50c 1

mt1 poly.01

c

c --------------------------------------------------------------------

c material: Li-6F nominal d=2.7 g/cm^3

c ignore F: Li-6 in LiF has a density of 0.6131 g/cm^3

c --------------------------------------------------------------------

m2 3006.66c 1

c
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c --------------------------------------------------------------------

c cadmnium nominal density 8.65 g/cm^3

c --------------------------------------------------------------------

m3 48000.50c 1

c

c --------------------------------------------------------------------

c Printed circuit board...still need this one

c

m4 5010.50c 1

c --------------------------------------------------------------------

c PNL CONCRETE:

c --------------------------------------------------------------------

c Concrete, Ordinary, rho = 2.300

m11 1001.70c -0.022100

6000.66c -0.002484

8016.70c -0.574930

11023.70c -0.015208

12000.66c -0.001266

13027.70c -0.019953

14000.60c -0.304627

19000.66c -0.010045

20000.66c -0.042951

26000.55c -0.006435
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MCNP6 Input File for Spectrometer
MSND Device

C

C --------------------CELL CARDS-------------------

C

C Front Detector

10 3 -2.329 -10 u=1 $ Sidewall

11 1 -2.372 10 u=1 $ Trench, 90% PF

12 3 -2.329 -11 lat=1 fill=1 u=2 $ Unit Cell

13 0 -12 fill=2 u=3 $ Diode

14 3 -2.329 -13 u=3 $ Bottom of Diode

21 0 -21 fill=3 $ Entire top detector

22 like 21 but trcl=(0.050 0 0.0025) $ Back detector

15 4 -1.91 -14 $ Board

30 6 -8.65 -15 -300 301 $ Cd

23 5 -0.95 -15 (#15 #21 #22 #30) $ Moderator

c 2nd Detector

110 3 -2.329 -10 u=4 $ Sidewall

111 1 -2.372 10 u=4 $ Trench, 90% PF

112 like 12 but fill=4 u=5 $ Unit Cell

113 like 13 but fill=5 u=6 $ Diode

114 3 -2.329 -13 u=6 $ Bottom of Diode

121 0 -21 fill=6 trcl=1 $ Entire top detector

122 like 121 but trcl=(-2.950 0 0.0025) $ Back detector

115 like 15 but trcl =(-3.0 0. 0.) $ Board

130 like 30 but trcl =(-3.0 0. 0.) $ Cd

123 5 -0.95 -115 (#115 #121 #122 #130) $ Moderator

c 3rd Detector

210 3 -2.329 -10 u=7 $ Sidewall

211 1 -2.372 10 u=7 $ Trench, 90% PF

212 like 12 but fill=7 u=8 $ Unit Cell

213 like 13 but fill=8 u=9 $ Diode

214 3 -2.329 -13 u=9 $ Bottom of Diode

221 0 -21 fill=9 trcl=(-6 0. 0.) $ Entire top detector

222 like 221 but trcl =(-5.950 0 0.0025)$ Back detector

215 like 15 but trcl =(-6.0 0. 0.) $ Board

230 like 30 but trcl =(-6.0 0. 0.) $ Cd

223 5 -0.95 -215 (#215 #221 #222 #230) $ Moderator

c 4th Detector

310 3 -2.329 -10 u=10 $ Sidewall

311 1 -2.372 10 u=10 $ Trench, 90% PF

312 like 12 but fill=10 u=11 $ Unit Cell

313 like 13 but fill=11 u=12 $ Diode

314 3 -2.329 -13 u=12 $ Bottom of Diode

321 0 -21 fill=12 trcl=(-9. 0. 0.) $ Entire top detector

322 like 321 but trcl =(-8.950 0 0.0025)$ Back detector

315 like 15 but trcl =(-9.0 0. 0.) $ Board

330 like 30 but trcl =(-9.0 0. 0.) $ Cd

323 5 -0.95 -315 (#315 #321 #322 #330) $ Moderator

c 5th Detector

410 3 -2.329 -10 u=13 $ Sidewall

411 1 -2.372 10 u=13 $ Trench, 90% PF

412 like 12 but fill=13 u=14 $ Unit Cell

413 like 13 but fill=14 u=15 $ Diode

414 3 -2.329 -13 u=15 $ Bottom of Diode

421 0 -21 fill=15 trcl=(-12. 0. 0.) $ Entire top detector

422 like 421 but trcl =(-11.950 0 0.0025)$ Back detector

415 like 15 but trcl =(-12.0 0. 0.) $ Board

430 like 30 but trcl =(-12.0 0. 0.) $ Cd

423 5 -0.95 -415 (#415 #421 #422 #430) $ Moderator

C Region Outside of detector and kill zone

100 0 -99 115 215 315 415 15 $ Gap around Moderator

101 0 99 $ OUTSIDE WORLD

C --------------------SURFACE CARDS----------------

C
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C Front Device

10 RPP 0.115 0.15 -1.0 1.0 -0.002 0 $ Sidewall

11 RPP 0.115 0.15 -1.0 1.0 -0.005 0 $ Unit Cell

12 RPP 0.115 0.15 -1.0 1.0 -1 1 $ Diode

13 RPP 0.1 0.115 -1.0 1.0 -1 1 $ Back of Diode

21 RPP 0.1 0.15 -1.0 1.0 -1 1 $Entire 1st detector

14 RPP 0.0 0.1 -1.0 1.0 -1 1 $ Board

15 RCC 0.2 0.0 0.0 -3.0 0. 0. 6.0 $ Moderator

115 RCC -2.8 0. 0.0 -3.0 0. 0. 6.0 $ Moderator Det 2

215 RCC -5.8 0. 0.0 -3.0 0. 0. 6.0 $ Moderator Det 3

315 RCC -8.8 0. 0.0 -3.0 0. 0. 6.0 $ Moderator Det 4

415 RCC -11.8 0. 0.0 -3.0 0. 0. 6.0 $ Moderator Det 5

99 RCC 5.0 0.0 0.0 -30. 0. 0. 7.0 $ Prob Boundary

300 PX 0.0 $Cd slice 1 front

301 PX -0.1 $Cd slice 1 back

C

C --------------------DATA CARDS-------------------

C

C --- PHYSICS/CUT OFF -----------------------------

MODE N T A

IMP:N 1 9R 1 9R 1 9R 1 9R 1 9R 1 0

IMP:T 1 6R 0 2R 1 6R 0 2R 1 6R 0 2R 1 6R 0 2R 1 6R 0 2R 0 0

IMP:A 1 6R 0 2R 1 6R 0 2R 1 6R 0 2R 1 6R 0 2R 1 6R 0 2R 0 0

PHYS:N 6J 3 $ NCIA, 3=ions are from neutron capture

CUT:N 2J 0 $ Analog capture

CUT:T J 0.001 0 $ Energy cut

CUT:A J 0.001 0 $ Energy cut

C

C MATERIALS

C

M1 $ 6-LITHIUM FLUORIDE, RHO = 2.635 (CRYSTALLINE)

3006.70c -0.225502

3007.70c -0.016789

9019.70c -0.757709

C

C AIR, DRY, RHO = 0.001205

M2 6000.70c -0.000124

7014.70c -0.755268

8016.70c -0.231781

18040.70c -0.012827

C

M3 $ NATURAL SILICON, RHO = 2.3290

14028.70c 9.22230000E-01

14029.70c 4.68500000E-02

14030.70c 3.09200000E-02

C

M4 $ FR4 Electronics board material, rho = 1.91

1001.70c -0.010 $ Epoxy

5010.70c -0.0053 $ Fiberglass

5011.70c -0.0147 $ Fiberglass

6000.70c -0.040 $ Epoxy

8016.70c -0.390 $ Fiberglass/Epoxy

13027.70c -0.010 $ Fiberglass

14028.70c -0.230 $ Fiberglass

29063.70c -0.140 $ Copper

29065.70c -0.060 $ Copper

35079.70c -0.050 $ Epoxy

35081.70c -0.050 $ Epoxy

C

C POLYETHYLENE (HIGH-DENSITY), RHO = 0.9500

M5 1001.70c -0.143716

6000.70c -0.856284

MT5 POLY.10T

c --------------------------------------------------------------------

c cadmnium nominal density 8.65 g/cm^3

c --------------------------------------------------------------------

m6 48000.50c 1
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SDEF pos= 1.5 0 0 PAR= 1 ERG= D2 VEC= 1 0 0 DIR= -1.

rad=d1 ext=0 axs=1 0 0

SI1 0.0 6.0

SP1 -21 1

SP2 -3 1.025 2.926 $ Watt distn for f-252

c --- Cell Movements ------------------------------

TR1 -3.0 0.0 0.0

C --- TALLY ---------------------------------------

F6:A (10 14)

SD6 1

F16:T (10 14)

SD16 1

F8:A,T (10 14)

FT8 phl 2 6 1 16 1 0

E8 0 1E-5 1E-3 3E-1 5 $efficiency calc

c --- 2nd detector ---

F106:A (110 114)

SD106 1

F116:T (110 114)

SD116 1

F18:A,T (110 114)

FT18 phl 2 106 1 116 1 0

E18 0 1E-5 1E-3 3E-1 5 $efficiency calc

c -- 3rd detector ----

F206:A (210 214)

SD206 1

F216:T (210 214)

SD216 1

F28:A,T (210 214)

FT28 phl 2 206 1 216 1 0

E28 0 1E-5 1E-3 3E-1 5 $efficiency calc

c -- 4th detector ----

F306:A (310 314)

SD306 1

F316:T (310 314)

SD316 1

F38:A,T (310 314)

FT38 phl 2 306 1 316 1 0

E38 0 1E-5 1E-3 3E-1 5 $efficiency calc

c -- 5th detector ----

F406:A (410 414)

SD406 1

F416:T (410 414)

SD416 1

F48:A,T (410 414)

FT48 phl 2 406 1 416 1 0

E48 0 1E-5 1E-3 3E-1 5 $efficiency calc

c ---flux tallies ---

F54:n (21 22)

E54 0 0.0254E-6 10

F64:n (121 122)

E64 0 0.0254E-6 10

F74:n (221 222)

E74 0 0.0254E-6 10

C --- Problem Stuff -------------------------------

nps 1E8

dbcn 28j 1 $ Turns on MCNPX algorithms

FT138 CAP

print
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Appendix D

Example Tabulated Data for
Spectrometer Simulations

Description Starting Page

Example of simulation data for a neutron beam
uniformly irradiating a spectrometer in a void for
various values of t.

187

Example of simulated counting measurements for
room scatter and void template simulations for
a point source with concrete floor. The opti-
mal shadow shield and several sources were used.
The spectrometer has the geometric parameters
Ndet = 11, r =6.8 cm, t = 2.5 cm.

193
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Fixed Radius Example Data

Table D.1: Simulation data for spectrometer with geometry pa-
rameters Ndet = 11, r = 10.00 cm, and t = 2.00 cm.

Source is 252Cf s.f.

i x (cm) ri σrel(ri) Ci (counts)

1 0.00 5.18e-05 4.90e-03 52107
2 2.00 4.56e-04 3.60e-03 456575
3 4.00 6.03e-04 2.90e-03 603345
4 6.00 5.35e-04 2.70e-03 535444
5 8.00 4.08e-04 2.60e-03 406720
6 10.00 2.86e-04 2.50e-03 285371
7 12.00 1.92e-04 2.50e-03 191782
8 14.00 1.28e-04 2.60e-03 127731
9 16.00 8.27e-05 2.60e-03 82879
10 18.00 5.08e-05 2.80e-03 51005
11 20.00 2.31e-05 3.40e-03 22961

s0 (n cm−2 ) Template FOM

3.18e+06
252Cf s.f. 2.30
240Pu s.f. 3632.00

Source is 240Pu s.f.

i x (cm) ri σrel(ri) Ci (counts)

1 0.00 5.55e-05 4.70e-03 55583
2 2.00 4.89e-04 3.50e-03 487576
3 4.00 6.30e-04 2.80e-03 630142
4 6.00 5.55e-04 2.60e-03 554393
5 8.00 4.14e-04 2.50e-03 413694
6 10.00 2.83e-04 2.40e-03 283514
7 12.00 1.85e-04 2.40e-03 184442
8 14.00 1.20e-04 2.40e-03 119510
9 16.00 7.56e-05 2.50e-03 75621
10 18.00 4.54e-05 2.60e-03 45187
11 20.00 2.04e-05 3.20e-03 20464

s0 (n cm−2 ) Template FOM

3.18e+06
240Pu s.f. 2.42
252Cf s.f. 3287.00
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Table D.2: Simulation data for spectrometer with geometry pa-
rameters Ndet = 11, r = 10.00 cm, and t = 3.00 cm.

Source is 252Cf s.f.

i x (cm) ri σrel(ri) Ci (counts)

1 0.00 5.24e-05 4.90e-03 52292
2 3.00 7.48e-04 2.90e-03 748712
3 6.00 7.78e-04 2.40e-03 777503
4 9.00 5.07e-04 2.30e-03 507560
5 12.00 2.86e-04 2.30e-03 286121
6 15.00 1.55e-04 2.30e-03 154373
7 18.00 8.31e-05 2.30e-03 82917
8 21.00 4.48e-05 2.40e-03 44823
9 24.00 2.45e-05 2.40e-03 24939
10 27.00 1.31e-05 2.50e-03 13024
11 30.00 5.18e-06 3.10e-03 5137

s0 (n cm−2 ) Template FOM

3.18e+06
252Cf s.f. 6.66
240Pu s.f. 7514.00

Source is 240Pu s.f.

i x (cm) ri σrel(ri) Ci (counts)

1 0.00 5.64e-05 4.70e-03 56720
2 3.00 7.97e-04 2.80e-03 796549
3 6.00 8.10e-04 2.30e-03 808712
4 9.00 5.10e-04 2.20e-03 508867
5 12.00 2.76e-04 2.20e-03 275981
6 15.00 1.43e-04 2.20e-03 142619
7 18.00 7.36e-05 2.20e-03 73704
8 21.00 3.79e-05 2.30e-03 37738
9 24.00 1.99e-05 2.30e-03 20095
10 27.00 1.02e-05 2.40e-03 10372
11 30.00 3.89e-06 2.90e-03 4029

s0 (n cm−2 ) Template FOM

3.18e+06
240Pu s.f. 9.22
252Cf s.f. 6397.00
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Table D.3: Simulation data for spectrometer with geometry pa-
rameters Ndet = 11, r = 10.00 cm, and t = 3.50 cm.

Source is 252Cf s.f.

i x (cm) ri σrel(ri) Ci (counts)

1 0.00 5.29e-05 4.80e-03 52714
2 3.50 8.73e-04 2.60e-03 872715
3 7.00 7.88e-04 2.20e-03 787797
4 10.50 4.38e-04 2.20e-03 438737
5 14.00 2.18e-04 2.20e-03 217490
6 17.50 1.05e-04 2.20e-03 105040
7 21.00 5.15e-05 2.30e-03 51578
8 24.50 2.55e-05 2.40e-03 25315
9 28.00 1.29e-05 2.40e-03 12546
10 31.50 6.49e-06 2.50e-03 6508
11 35.00 2.43e-06 3.00e-03 2501

s0 (n cm−2 ) Template FOM

3.18e+06
252Cf s.f. 12.61
240Pu s.f. 8599.00

Source is 240Pu s.f.

i x (cm) ri σrel(ri) Ci (counts)

1 0.00 5.66e-05 4.70e-03 56955
2 3.50 9.33e-04 2.50e-03 933247
3 7.00 8.09e-04 2.10e-03 808462
4 10.50 4.33e-04 2.10e-03 432803
5 14.00 2.05e-04 2.10e-03 204933
6 17.50 9.40e-05 2.20e-03 93966
7 21.00 4.37e-05 2.20e-03 43392
8 24.50 2.05e-05 2.20e-03 20476
9 28.00 9.85e-06 2.30e-03 9942
10 31.50 4.71e-06 2.40e-03 4724
11 35.00 1.70e-06 2.90e-03 1767

s0 (n cm−2 ) Template FOM

3.18e+06
240Pu s.f. 5.52
252Cf s.f. 7613.00
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Table D.4: Simulation data for spectrometer with geometry pa-
rameters Ndet = 11, r = 10.00 cm, and t = 4.00 cm.

Source is 252Cf s.f.

i x (cm) ri σrel(ri) Ci (counts)

1 0.00 5.26e-05 4.80e-03 52415
2 4.00 9.73e-04 2.40e-03 974040
3 8.00 7.54e-04 2.10e-03 753923
4 12.00 3.64e-04 2.20e-03 364228
5 16.00 1.60e-04 2.20e-03 159829
6 20.00 7.04e-05 2.20e-03 70732
7 24.00 3.13e-05 2.30e-03 31155
8 28.00 1.44e-05 2.30e-03 14608
9 32.00 6.77e-06 2.40e-03 6678
10 36.00 3.23e-06 2.50e-03 3121
11 40.00 1.15e-06 3.10e-03 1116

s0 (n cm−2 ) Template FOM

3.18e+06
252Cf s.f. 10.45
240Pu s.f. 8351.00

Source is 240Pu s.f.

i x (cm) ri σrel(ri) Ci (counts)

1 0.00 5.65e-05 4.70e-03 56561
2 4.00 1.03e-03 2.40e-03 1032070
3 8.00 7.71e-04 2.10e-03 771816
4 12.00 3.54e-04 2.10e-03 354063
5 16.00 1.47e-04 2.10e-03 145698
6 20.00 6.03e-05 2.20e-03 60317
7 24.00 2.55e-05 2.20e-03 25595
8 28.00 1.09e-05 2.30e-03 10857
9 32.00 4.89e-06 2.30e-03 4788
10 36.00 2.19e-06 2.40e-03 2243
11 40.00 7.51e-07 2.80e-03 765

s0 (n cm−2 ) Template FOM

3.18e+06
240Pu s.f. 6.48
252Cf s.f. 7201.00
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Table D.5: Simulation data for spectrometer with geometry pa-
rameters Ndet = 11, r = 10.00 cm, and t = 4.50 cm.

Source is 252Cf s.f.

i x (cm) ri σrel(ri) Ci (counts)

1 0.00 5.29e-05 4.90e-03 53014
2 4.50 1.05e-03 2.30e-03 1048627
3 9.00 6.96e-04 2.10e-03 694879
4 13.50 2.93e-04 2.20e-03 292757
5 18.00 1.15e-04 2.20e-03 115449
6 22.50 4.62e-05 2.30e-03 46237
7 27.00 1.90e-05 2.30e-03 19134
8 31.50 8.14e-06 2.40e-03 8172
9 36.00 3.60e-06 2.50e-03 3510
10 40.50 1.63e-06 2.50e-03 1694
11 45.00 5.50e-07 3.00e-03 557

s0 (n cm−2 ) Template FOM

3.18e+06
252Cf s.f. 6.13
240Pu s.f. 8259.00

Source is 240Pu s.f.

i x (cm) ri σrel(ri) Ci (counts)

1 0.00 5.68e-05 4.70e-03 56628
2 4.50 1.11e-03 2.20e-03 1107345
3 9.00 7.04e-04 2.10e-03 704396
4 13.50 2.79e-04 2.10e-03 280475
5 18.00 1.03e-04 2.20e-03 102770
6 22.50 3.83e-05 2.20e-03 38518
7 27.00 1.47e-05 2.30e-03 14645
8 31.50 5.87e-06 2.30e-03 5883
9 36.00 2.43e-06 2.40e-03 2403
10 40.50 1.03e-06 2.40e-03 1008
11 45.00 3.33e-07 3.00e-03 301

s0 (n cm−2 ) Template FOM

3.18e+06
240Pu s.f. 6.61
252Cf s.f. 6601.00
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Table D.6: Simulation data for spectrometer with geometry pa-
rameters Ndet = 11, r = 10.00 cm, and t = 5.00 cm.

Source is 252Cf s.f.

i x (cm) ri σrel(ri) Ci (counts)

1 0.00 5.26e-05 4.90e-03 52098
2 5.00 1.10e-03 2.20e-03 1102268
3 10.00 6.25e-04 2.20e-03 624350
4 15.00 2.32e-04 2.20e-03 232509
5 20.00 8.19e-05 2.30e-03 81281
6 25.00 3.00e-05 2.30e-03 29727
7 30.00 1.15e-05 2.40e-03 11498
8 35.00 4.59e-06 2.40e-03 4670
9 40.00 1.92e-06 2.50e-03 1930
10 45.00 8.31e-07 2.60e-03 829
11 50.00 2.70e-07 3.10e-03 270

s0 (n cm−2 ) Template FOM

3.18e+06
252Cf s.f. 8.75
240Pu s.f. 7494.00

Source is 240Pu s.f.

i x (cm) ri σrel(ri) Ci (counts)

1 0.00 5.67e-05 4.70e-03 56540
2 5.00 1.16e-03 2.10e-03 1162559
3 10.00 6.28e-04 2.10e-03 627665
4 15.00 2.16e-04 2.10e-03 217045
5 20.00 7.10e-05 2.20e-03 71238
6 25.00 2.40e-05 2.20e-03 23884
7 30.00 8.51e-06 2.30e-03 8516
8 35.00 3.15e-06 2.30e-03 3110
9 40.00 1.23e-06 2.40e-03 1224
10 45.00 4.98e-07 2.50e-03 485
11 50.00 1.54e-07 3.00e-03 135

s0 (n cm−2 ) Template FOM

3.18e+06
240Pu s.f. 5.25
252Cf s.f. 6240.00

192



Room-Scatter, Floor Only Example Data

Table D.7: Simulated counting data from point sources of strength s0 = 109

n cm−2 above a concrete floor; FOMmin and FOMmin + represent the lowest
and second lowest FOM values, respectively, and Cneti is the room shine
net spectra, i.e., Cneti = C ns

i − Csi . Values in the table of “Correct” and
“Inorrect” indicate whether the source was correctly identified.

Source is monoenergetic 100 keV neutrons

i C ns
i (counts) Cs

i (counts) rvoidi rvoidi /rvoid2 Cnet
i /Cnet

2

1 1069 563 3.94E-07 0.174 0.223
2 2411 145 2.26E-06 1.000 1.000
3 551 24 5.10E-07 0.226 0.233
4 66 17 4.91E-08 0.022 0.022
5 15 6 3.33E-09 0.001 0.004
6 16 8 2.39E-10 0.000 0.004
7 6 4 1.25E-11 0.000 0.001
8 9 8 0.00E+00 0.000 0.000
9 10 13 0.00E+00 0.000 -0.001
10 17 7 0.00E+00 0.000 0.004
11 23 16 0.00E+00 0.000 0.003

FOMmin
room 2.37 FOMmin +

room = 1397.00 Correct

Source is monoenergetic 1 MeV neutrons

i C ns
i (counts) Cs

i (counts) rvoidi rvoidi /rvoid2 Cnet
i /Cnet

2

1 295 215 6.17E-08 0.090 0.114
2 887 188 6.85E-07 1.000 1.000
3 892 133 7.83E-07 1.143 1.086
4 637 127 5.37E-07 0.784 0.730
5 429 115 2.80E-07 0.409 0.449
6 220 92 1.29E-07 0.188 0.183
7 160 88 5.45E-08 0.080 0.103
8 126 106 2.16E-08 0.031 0.029
9 114 85 8.01E-09 0.012 0.041
10 78 94 3.02E-09 0.004 -0.023
11 73 72 9.51E-10 0.001 0.001

FOMmin
room 7.50 FOMmin +

room = 11.28 Incorrect
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Source is AmBe (α, n)

i C ns
i (counts) Cs

i (counts) rvoidi rvoidi /rvoid2 Cnet
i /Cnet

2

1 214 216 3.36E-08 0.088 -0.006
2 454 110 3.83E-07 1.000 1.000
3 538 86 4.47E-07 1.167 1.314
4 387 77 3.50E-07 0.916 0.901
5 325 64 2.45E-07 0.641 0.759
6 225 65 1.66E-07 0.434 0.465
7 134 77 1.04E-07 0.273 0.166
8 139 60 6.80E-08 0.178 0.230
9 97 49 4.23E-08 0.111 0.140
10 90 46 2.57E-08 0.067 0.128
11 53 42 1.16E-08 0.030 0.032

FOMmin
room 11.33 FOMmin +

room = 15.70 Incorrect

Source is 252Cf s.f.

i C ns
i (counts) Cs

i (counts) rvoidi rvoidi /rvoid2 Cnet
i /Cnet

2

1 264 234 4.75E-08 0.090 0.056
2 667 133 5.30E-07 0.235 1.000
3 728 98 6.03E-07 0.267 1.180
4 533 72 4.48E-07 0.198 0.863
5 346 78 2.60E-07 0.115 0.502
6 209 81 1.53E-07 0.068 0.240
7 137 53 8.28E-08 0.037 0.157
8 113 75 4.79E-08 0.021 0.071
9 92 67 2.66E-08 0.012 0.047
10 90 68 1.49E-08 0.007 0.041
11 43 37 5.94E-09 0.003 0.011

FOMmin
room 3.28 FOMmin +

room = 9.66 Correct
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Source is 252Cf w/ 30-cm D2O moderator

i C ns
i (counts) Cs

i (counts) rvoidi rvoidi /rvoid2 Cnet
i /Cnet

2

1 750 444 3.51E-07 0.209 0.182
2 1827 144 1.68E-06 1.000 1.000
3 723 57 6.67E-07 0.398 0.396
4 236 31 2.04E-07 0.122 0.122
5 84 22 7.44E-08 0.044 0.037
6 70 27 3.48E-08 0.021 0.026
7 54 43 1.90E-08 0.011 0.007
8 42 30 1.10E-08 0.007 0.007
9 25 26 5.89E-09 0.004 -0.001
10 37 25 3.38E-09 0.002 0.007
11 29 35 1.41E-09 0.001 -0.004

FOMmin
room 7.54 FOMmin +

room = 240.60 Correct

Source is monenergetic 14.1 MeV neutrons

i C ns
i (counts) Cs

i (counts) rvoidi rvoidi /rvoid2 Cnet
i /Cnet

2

1 93 113 8.16E-09 0.085 -0.233
2 136 50 9.56E-08 1.000 1.000
3 196 42 1.41E-07 1.477 1.791
4 197 43 1.59E-07 1.662 1.791
5 193 52 1.37E-07 1.437 1.640
6 161 53 1.18E-07 1.239 1.256
7 164 42 9.87E-08 1.032 1.419
8 136 34 8.40E-08 0.878 1.186
9 104 48 6.30E-08 0.659 0.651
10 65 28 4.22E-08 0.442 0.430
11 33 20 2.06E-08 0.216 0.151

FOMmin
room 6.43 FOMmin +

room = 265.80 Correct
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Source is 238PuBe (α, n)

i C ns
i (counts) Cs

i (counts) rvoidi rvoidi /rvoid2 Cnet
i /Cnet

2

1 217 198 2.77E-08 0.078 0.054
2 455 106 3.57E-07 1.000 1.000
3 497 74 4.26E-07 1.193 1.212
4 402 85 3.45E-07 0.967 0.908
5 302 75 2.54E-07 0.712 0.650
6 219 58 1.66E-07 0.464 0.461
7 169 74 1.08E-07 0.301 0.272
8 125 68 7.01E-08 0.196 0.163
9 101 63 4.39E-08 0.123 0.109
10 85 38 2.70E-08 0.076 0.135
11 48 43 1.21E-08 0.034 0.014

FOMmin
room = 7.70 FOMmin +

room = 45.97 Correct
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Appendix E

Multiplicity Scripts and Codes

File Name Description Page

mf33.py

Data utility class for MF33 and MF31 ENDF
“files”. These MF files contain information for all
covariance matrices for a particular isotope, and
pointers to subsections that contain the actual co-
variance data. See [ENDF-6 Manual, 2011] for
format details.

198

cov matrices.py

Data utility class for entire covariance matrices
from ENDF neutron data files. Contains all sub-
routines for random samples of covariance matri-
ces.

203

ace sb.py

Data utility class for modifying and regenerat-
ing ACE format files. The sample data member
function is where actual data perturbations take
place. This function was modified as needed to
produce desired data for different cross sections
and ν

217

mtool.pl
LANL internal script that computes multiplicity
distributions using a non-paralyzable dead time
correction.

—

mult chi sq.py

Procedural script that parses and manipulates
data from all trials to compute FOM and χ2

mult

values. The file directories and naming of trials
are hard coded.

238
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mf33.py: Utility Class for ENDF files
#!/usr/bin/env python

"Provides methods for working with ENDF102 MF33 Records."

#===================================================================================================

__version__ = "$Id: mf33.py,v 1.9 2012/06/15 23:50:24 morgan Exp $"

#===================================================================================================

# Load local python modules

from ndvv.endf.records.control import controlRecord

from ndvv.endf.records.list import listRecord

from ndvv.log import devnull

from ndvv.endf.records.peek import peek_at_controlRecord

from ndvv.endf.cov_matrices import endfCovMatrix

from math import sqrt

from numpy import zeros, array, diag

#===================================================================================================

class mf33Record(object):

"""This class includes all of the combinations of mt’s (mt1 and mt).

33.2 Formats

Section:

[MAT, 33, MT/ ZA, AWR, 0, MTL, 0, NL] HEAD

<subsection for n = 1>

<subsection for n = 2>

<subsection for n = NL>

[MAT, 33, 0/ 0.0, 0.0, 0, 0, 0, 0] SEND

Subsection:

[MAT,33,MT/ XMF1, XLFS1, MAT1, MT1, NC, NI]CONT

<sub-subsection for n =1>

Sub-subsection:

NI-type:

LB=5: [MAT,33,MT/ 0.0, 0.0, LS, LB=5, NT, NE/ {Ek}{Fk,k}] LIST.

ariables : NT Total number of entries in the two arrays {Ek} and {Fk,k}.

NE Number of entries in the array {Ek} defining (NE-1) energy intervals.

LS Flag indicating whether the {F_(k,k’)} matrix is symmetric or not.

Definiton of Variables:

AWR - Atomic mass of target ratio to neutron mass

ZA - Atomic number Z*1000 plus atomic mass number A

XMF1 - Floating point equivalent of the MF for the 2nd energy-dependent cross section

of the pair, for which the correlation matrix is given. If MF1=MF,XMF1=0.0 or

blank.

XLFS1 - Floating point equivalent for the final excited state of the 2nd energy dependent

cross section. For MF1=10, XLFS1 = 10; if MF16=10, XLFS1=0.0 or blank.

MAT1 - MAT for the 2nd /energy-dependent cross section

MT1 - MT for the 2nd energy-dependent cross section

NC - Number of NC-type sub-subsections which follow the CONT record.

NI - Number of NI-type sub-subsections which follow the NC-type subsubsections.

MTL - Non-zero value of MTL is used as a flag to indicate that reaction MT is

one component of the evaluator-defined lumped reaction MTL

NL - Number of subsections within a section.

LB - Flag whose numerical value determines the meanings of the numbers given
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in the arrays {Ek, Fk}{El, Fl}.

FOR LB=5:

NP - Total number of pairs of numbers in the arrays {Ek, Fk}{El, Fl}.

NT - Total number of numbers in the LIST record; NT=2*NP.

LT - Number of pairs of numbers in the second array, {El, Fl}.

If LT=0, the table contains a single array {Ek, Fk}.

If LT not = 0, the table contains two arrays; the first array, {Ek, Fk}, has

(NP - LT) pairs of numbers in it.

The first line read must contain a valid /MAT,MF,MT/. The loose variable may be used to ignore

subsequent values.

A python logger may be used to capture messages about the data as it is parsed, checked, or

manipulated.

"""

# ---------------------------------------------------------------------------------------------

def __init__(self, f=None, loose=False, logger=None):

"Initialize a MF33 covariance record possibly reading data from f[ile object]."

self.clear()

if f is not None:

self.parse(f=f,loose=loose,logger=logger)

return None

# ---------------------------------------------------------------------------------------------

def clear(self):

"Clear the current record."

self.__dict__[’endfRecords’] = controlRecord()

self.__dict__[’endfCovMatrices’] = [endfCovMatrix()]

return None

# ---------------------------------------------------------------------------------------------

def __getattr__(self, name):

"Override getattr to allow multiple ways of getting record values."

cr = self.__dict__[’endfRecords’]

endfCovMatrices = self.__dict__[’endfCovMatrices’]

d = {

’cr’ : ’cr’,

’matmfmt’ : ’cr.mat, cr.mf, cr.mt’,

’mfmt’ : ’cr.mf, cr.mt’,

’mat’ : ’cr.mat’,

’mf’ : ’cr.mf’,

’mt’ : ’cr.mt’,

’za’ : ’cr.c1’,

’awr’ : ’cr.c2’,

’mtl’ : ’cr.l2’,

’nl’ : ’cr.n2’,

}

value = eval( d.get( name, ’None’ ) )

if value is not None:

return value

raise AttributeError("endf mf33 object has no attribute %s"%(name))
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#-----------------------------------------------------------------------------------------------

def __setattr__(self, name, value):

"Override setattr to allow multiple ways of setting record values."

cr = self.__dict__[’endfRecords’]

endfCovMatrices = self.__dict__[’endfCovMatrices’]

d = {

’matmfmt’ : ’self.mat, self.mf, self.mt = value’,

’mfmt’ : ’self.mf, self.mt = value’,

’mat’ : ’cr.mat= value’,

’mf’ : ’cr.mf=value’,

’mt’ : ’cr.mt= value’,

’za’ : ’cr.c1 = value’,

’awr’ : ’cr.c2 = value’,

’mtl’ : ’cr.l2 = value’,

’nl’ : ’cr.n2= value’

}

exec( d.get( name, "self.__dict__[name] = value" ) )

return None

# ---------------------------------------------------------------------------------------------

def parse( self, f, loose=False, logger=None):

"Read the MF33 data."

if logger is None:

logger = devnull

logger.log(9,"entered routine ndvv.endf.mf33.parse")

logger.log(8,"%s"%(__version__))

"Read in the head record first:"

cr = controlRecord(f=f, loose=loose, logger=logger)

if (cr.l2 != 0):

raise NotImplemented("There is a lumped reaction sum, not implemented in code yet, see section \

33.2 of ENDF6 Manual for more info")

#TODO

#loop through all the subsections, storing their particular cov matrix data.

covMatrixRecords = []

for subSection in range(cr.n2):

covMatrixRecords.append(endfCovMatrix(f=f, logger=logger, loose=loose))

self.__dict__[’endfCovMatrices’] = covMatrixRecords

self.__dict__[’endfRecords’] = cr

return None

#---------------------------------------------------------------------------------------------

def get_endfCovMatrix(self, mf1=None, mt1=None, mat1=None):

"""Returns the full covariance matrices for a particular mt1 & mf1 (certain subsection record

in the form of cov_matrices class) and corresponding energies. Note

that this is not all one cov matrix, but different pieces seperated by

energy"""

"Look for same mf1 and mat1 and mt1 if there is none specified"

if (mf1 == None):

mf1 = 0.0

if (mat1 == None):

mat1 = 0

if (mt1 == None):

mt1 = self.mt

"get the index of the covariance matrices you want by checking all subsections:"
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counter = 0

for ss in self.endfCovMatrices:

#put in temp check to make sure no mat1’s different from mat TODO

if (ss.mat1 != 0) or (ss.xmf1 != 0.0):

raise NotImplementedError("There are mf1 and mat1 different from mf and mat")

elif (ss.mt1 == mt1 and ss.mat1 == mat1 and ss.xmf1 == mf1):

return self.endfCovMatrices[counter]

else:

counter += 1

return None

#---------------------------------------------------------------------------------------------

def get_full_matrix(self, mf1=None, mt1=None, mat1=None):

"""Returns a full covariance matrix (covers full energy range). If any entries are None,

the program assumes mf1=mf, or mt1=mt, etc."""

#find the write cov_matrices instance (sub section)

ss = self.get_endfCovMatrix(mf1=mf1, mt1=mt1, mat1=mat1)

#Generate full matrix

return ss.get_full_matrix()

#---------------------------------------------------------------------------------------------

def get_corr_matrix(self, mf1=None, mt1=None, mat1=None):

"""Returns a full covariance matrix (covers full energy range). If any entries are None,

the program assumes the same mat1mf1mt1 as section matmfmt"""

#find the write cov_matrices instance (sub section)

ss = self.get_endfCovMatrix(mf1=mf1, mt1=mt1, mat1=mat1)

#Generate corr matrix

return ss.get_corr_matrix()

#---------------------------------------------------------------------------------------------

def sample_cross_section(self, mf1=None,mt1=None,mat1=None, fi=None, cross_sections=None,

interpolation=None):

"""Samples a vector of ne-1 normally distributed random numbers using Mersenne twister

algorithm and then uses a specified correlation matrix to correlate the random numbers. If

no mf1 or mt1 are specified it is assumed that you want mf1=mf & mt1=mt.

This returns the modified cross sections as an array. WARNING: the fi in this class is not the fi that

this class is associated with, so modifying it will not modify the original fi."""

raise NotImplementedError("This function should work, but I have not explicitly tested it, so be wary."

+"The alg. worked for ACE files so it should be k")

#Generate the right cov_matrices instance (sub section)

ss = self.get_endfCovMatrix(mf1=mf1, mt1=mt1, mat1=mat1)

#Get the correct cross-sections out, noting that by default the mf is just mf - 30

if fi==None:

raise ValueError("Must pass in the file_index object you are working with")

exec("section=fi.get_section(mf=%d, mt=%d)" % (ss.mf-30, ss.mt))

#store cross sections in an array by finding the tab1 record:

endfRecords = section.endfRecords
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for rec in endfRecords:

if getattr(rec, "line", False): #is it a TAB1 record?

rec.line.y = array(rec.line.y)

cross_sections = array(rec.line.y)

energies = array(rec.line.x)

endfRecord = rec

break

else:

continue

#Sample cross sections using the cov_matrices class

return cov_matrix.sample_cross_section(cross_sections, energies, interpolation)

#==================================================================================================

if __name__ == "main":

#file name and directory of endf file

endf_dir=’/home/sbolding/ENDF_Stuff/CrossX061212/neutrons/’

file_name=’n-094_Pu_239.endf’

# a = mf33Record(file_name)
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cov matrices.py: Utility Class for ENDF Covariance Ma-

trices
#!/usr/bin/env python

"""Provides methods for handling the Covariances matrices specified in 31 and 33 series of files

The subsubsections should really be read out into their own class so that each one will contain

its own energy etc, currnetly they are just lined up by index and two different members of this

class.

Need to be wary that if you were going to reprint these cov matrices to a file the NC

type subsubsections MUST come first. You would need to not sort them by energy.

WARNING: The current version creates the full matrix assuming that each sub_matrix is only for a

particular energy range, if there is overlap it probably won’t work. U235 nubar for example,

this will not work on. I didn’t add it simply because it wasnt in any of my cases.

Need to add logger statements to most of this file"""

#===================================================================================================

__version__ = "$Id: cov_matrices.py,v 1.0 2012/06/15 23:50:24 sbolding $"

#===================================================================================================

# Load local python modules

from ndvv.endf.records.control import controlRecord

from ndvv.endf.records.list import listRecord

from numpy import zeros, matrix

from math import sqrt

from numpy.linalg import cholesky, eig, LinAlgError, norm

from numpy import random, array, diag, transpose, dot, matrix, interp

from scipy import interpolate

#===================================================================================================

class endfCovMatrix(object):

"""This class will hold the information for a subsection from a 30’s series file that contains the

covariance data for a set of cross sections, nubar data, etc. Each instance of this class

contains the covariance matrix (stored as a bunch of submatrices) for a particular mf, mt1, mf1

and mt (subsection). The unique submatrices of the covariance matrix for a particular combination

of mt & mt1 (mostly by energy) are in a list for each instance called by self.covMatrices.

The class mf33 includes all of the combinations of mt’s (mt1 and mt).

EndfFormat Section"""

#-----------------------------------------------------------------------------------------------

def __init__(self, f=None, loose=False, logger=None, seed=None):

"Initialize a Covariance Matrix record"

self.clear()

#Initialize random number generator to arbitrary value

random.seed(self.seed)

if f is not None:

self.f = f

self.parse(f=f, loose=loose, logger=logger)

return None

#-----------------------------------------------------------------------------------------------

def clear(self):
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"Clear the current record."

self.__dict__[’endfRecords’] = tuple([controlRecord(), listRecord()])

self.__dict__[’covMatrices’] = [] #contains the portions of covariance matrices for each case

# each member of the list ’covRecords’ is a full matrix

# that makes up some portion of a particular section. I

# think the portions have to do with energy, but i can’t

# tell for sure.

self.__dict__[’energies’] = [] #contains the energy bins for the corresponding covmatrix

self.__dict__[’sorted’] = False #is the data sorted in order of increasing energy?

self.relative = False #Is the cov matrix relative (vs absolute)?

self.f = None #File object

self.modified_corr_matrix = None #If a fixup is applied, a new correlation matrix is stored

self.sampling_matrix = None #The matrix used for sampling is stored

self.full_matrix = None #2d array that is the original full matrix, ignoring modifications

self.fixup_applied = False #If a fixup has been applied or not, may not be used

self.seed = 17

return None

#----------------------------------------------------------------------------------------------

def __getattr__(self, name):

"Override getattr to allow multiple ways of getting section values."

cr = self.__dict__[’endfRecords’][0]

lrs = self.__dict__[’endfRecords’][1:] #list of the list records

d = {

’cr’ : ’cr’,

’matmfmt’ : ’cr.mat, cr.mf, cr.mt’,

’mfmt’ : ’cr.mf, cr.mt’,

’mat’ : ’cr.mat’,

’mf’ : ’cr.mf’,

’mt’ : ’cr.mt’,

’nc’ : ’cr.n1’,

’ni’ : ’cr.n2’,

’mat1’ : ’cr.l1’,

’mt1’ : ’cr.l2’,

’xmf1’ : ’cr.c1’,

’xlfs1’ : ’cr.c2’

}

value = eval(d.get(name,’None’))

if value is not None:

return value

raise AttributeError("endf covariance matrices object has no attribute %s"%(name))

#-----------------------------------------------------------------------------------------------

def __setattr__(self, name, value):

"Override setattr to allow multiple ways of setting record values."

cr = self.__dict__[’endfRecords’][0]

lrs = self.__dict__[’endfRecords’][1:] #list of the list records

d = {

’cr’ : ’cr=value’,

’matmfmt’ : ’cr.mat, cr.mf, cr.mt=value’,

’mfmt’ : ’cr.mf=value’,

’mat’ : ’cr.mat=value’,

’mf’ : ’cr.mf=value’,

’mt’ : ’cr.mt=value’,

’nc’ : ’cr.n1=value’,

’ni’ : ’cr.n2=value’,

’mat1’ : ’cr.l1=value’,

’mt1’ : ’cr.l2=value’,

’xmf1’ : ’cr.c1=value’,

’xlfs1’ : ’cr.c2=value’
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}

exec( d.get( name, "self.__dict__[name] = value" ) )

return None

#----------------------------------------------------------------------------------------------

def parse(self, f, loose=False, logger=None):

"Parses all sub and sub-sub section data and stores them into matrices and Records"

if logger is None:

logger=devNull

logger.log(9,"entered routine ndvv.endf.cov_matrices.parse")

logger.log(8,"%s"%(__version__))

"Read in the header of the sub section"

cr = controlRecord(f) #Control record for a single covariance matrix/single subsection

endfRecords = [cr]

#set subSection values

ni = cr.n2

nc = cr.n1

xmf1 = cr.c1

if (xmf1 != 0.0):

raise ValueError("There is a dependence on another MF, this is not coded. See the"+ \

"manual section 33.2.1")

#Temp Variables for storing after iteration into tuples:

covMatrices = []

energies = []

for nc in range(nc):

if nc > 0:

raise ValueError("Need to put in code to read in NC type sub-subsections")

#TODO

for ni in range(ni): #read in all of the NI sub-subsections

lr = listRecord(f)

lb = lr.l2 #type of cross section

logger.log(9,"entering code that parses the subsubsection matrices")

#------------------------------------------------------------------------------------

"Parse the subsubsection matrices"

#------------------------------------------------------------------------------------

if (lb not in [5]):

msg = "Need to put in code to read in LB=%d format NI sub-subsections" % lb

raise NotImplementedError(msg)

elif lb == 5:

"Direct matrix data section"

self.relative = True

ls = lr.l1 #symmetric or not

nt = lr.npl #total number of entries in lr.b

ne = lr.n2 #number of energies

m = zeros([ne-1,ne-1]) #create matrix to store data

erg = lr.b[0:ne] #store list of energies
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if ls == 1:

"Read in an upper triangular (symmetric) format matrix:"

"Store the matrix elements:"

index=ne #start of b_n elements

for i in range(ne-1):

for j in range(i,ne-1):

m[i][j] = lr.b[index]

#Don’t overwrite diagonal element

if (j != i):

m[j][i] = lr.b[index]

index+=1 #increment location on data list

elif ls==0:

"Read in a full (asymmetric) matrix"

msg = "Warning, you have read in an asymmetric covariance matrix...whatever that " \

+"means, for mt1=%d, subsubsection #%d. See ENDF manual chpt 33 for more"\

% (cr.l2, len(covMatrices))+"info. May not actually be asymmetric, use"\

+" cov_matrices.symmetric to check\n"

print msg

logger.log(9,msg) #NOT SURE IF THIS IS THE RIGHT FORMAT TODO"

"Store the matrix elements:"

index=ne #start of b_n elements

for i in range(ne-1):

for j in range(ne-1):

m[i][j] = lr.b[index]

index+=1 #increment locatioon in list

else:

raise ValueError("Incorrect value for LS on an LB=5 card")

"Store the data after it is read in:"

energies.append(erg)

covMatrices.append(m)

endfRecords.append(lr)

"Store all data to instance:"

self.__dict__[’covMatrices’]=covMatrices

self.__dict__[’energies’]=energies

self.__dict__[’endfRecords’] = tuple(endfRecords)

return None

#-----------------------------------------------------------------------------------------------

def check(self):

#TODO

print """Need to write checks to make sure mf1 mt1 mat1 all the same for a particular

instance"""

#-----------------------------------------------------------------------------------------------

def get_full_matrix(self):

"""Returns a full matrix for a particular subsection (one covMatrices class). This requires

making the matrix out of its various energy components. The correct MT1 and MF1/Mat1 are

specified in higher class mf33Record"""

if self.full_matrix != None:

return self.full_matrix
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"If the measurement is relative warn user:"

if self.relative == True:

print "WARNING: the covariance matrix you are using is for relative covariances"+ \

", the correlation matrix is correct and does not need to be changed"+\

". See ENDF Chapter 33.2.2.2\n"

#Sort energies if not already done:

if not self.sorted:

self.sort_by_energy()

#Determine the total number of energies:

energies = self.get_energies()

ne = len(energies)

#Create Matrix:

m = zeros([ne-1,ne-1])

xidx = 0

yidx = 0

counter=0

skip_cycles=0

for k in range(len(self.covMatrices)):

yidx_initial = xidx

for i in range(len(self.covMatrices[k])):

#Set col location in m to start at the location of where rows being changed start

yidx = yidx_initial

for item in range(len(self.covMatrices[k][i])):

if (k != 0):

#for the first cov matrix you just print the whole thing

if (item == 0) or ( i == 0):

#for higher k you need to skip the first entry in row and column

continue

m[xidx][yidx] = self.covMatrices[k][i][item]

yidx += 1

#Increment location in m after each row

if (i == 0 and k != 0):

continue

else:

xidx += 1

# CHECK MATRIX VALUES:

if not symmetric(m):

raise ValueError("Non-symmetric cov matrix, need to add code to accounts for this")

"""

print m[55][45], self.covMatrices[0][55][45]

print m[len(self.covMatrices[0])-1][len(self.covMatrices[0][0])-1], self.covMatrices[0][-1][-1]

print m[-1][-1], self.covMatrices[1][-1][-1]

print m[-4][-3], self.covMatrices[1][-4][-3]

print m[len(self.covMatrices[0])][len(self.covMatrices[0])], self.covMatrices[1][1][1]

"""

self.full_matrix = m

return m

#-----------------------------------------------------------------------------------------------
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def get_energies(self):

"""Determine the total list of energies for this subsection. This data is in the endfRecords for a

cross section, but this class doesn’t have access to that data. I am not totally sure how

it stores the different sections, so it may be better to not duplicate by brute force"""

#Make sure in order of increasing energy:

if not self.sorted:

self.sort_by_energy()

#append non duplicate energies to the list [0,1,2,..,m,m+1,...,p,p+1...q-1,q]:

erg = []

for eng in range(len(self.energies)):

temp = self.energies[eng]

#The lowest one covers the full range of its energies [0,1, 2,..,m]

if eng == 0:

erg.extend(self.energies[eng])

#The Last one has a duplicate has two duplicates on its lower end [0,p,p+1,...q]:

elif eng == (len(self.energies)-1):

erg.extend(self.energies[eng][2:])

#Middle ones lose two to their bottom as well as a top energy [0,m,m+1,..,p-1,p,q]:

else:

erg.extend(self.energies[eng][2:])

return erg

#-----------------------------------------------------------------------------------------------

def sort_by_energy(self):

"""Need to be wary that if you were going to reprint these cov matrices to a file the NC

type subsubsections MUST come first. You would need to not sort them by energy"""

#sort in order of ascending energy

#put in debug error:

if(len(self.energies) > 2):

raise NotImplementedError("Has not been tested on data that has more than 2"

+"subsubsections,make sure energies and matrix have values for all energies ")

#create a list of data that can be sorted

if (len(self.energies) != len(self.covMatrices)):

raise ValueError("Somehow the number of energy arrays is different from the no. of matrices")

matrix_data = []

for erg in range(len(self.energies)):

matrix_data.append(tuple([self.energies[erg], self.covMatrices[erg],

self.endfRecords[erg+1]]))

#put in order of increasing energy range

matrix_data = sorted(matrix_data, key=lambda top_energy: top_energy[0][-1])

#Store sorted data back to instance data

self.energies = []

self.endfRecords = [self.__dict__[’endfRecords’][0]]

self.covMatrices = []

for erg in range(len(matrix_data)):

self.energies.append(matrix_data[erg][0])

self.endfRecords.append(matrix_data[erg][2])

self.covMatrices.append(matrix_data[erg][1])

self.sorted = True

self.__dict__[’endfRecords’] = tuple(self.__dict__[’endfRecords’])

return None
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#-----------------------------------------------------------------------------------------------

def get_corr_matrix(self):

"Generates a correlation matrix for a particular subsection"

#First generate the covariance matrix

m = self.get_full_matrix()

corr = zeros([len(m), len(m[0])])

for i in range(len(m)):

for j in range(len(m)):

if (m[i][j] == 0.0):

corr[i][j]=0.0

else:

corr[i][j] = m[i][j]/(sqrt(m[i][i]*m[j][j]))

return corr

#-----------------------------------------------------------------------------------------------

def gen_sampling_matrix(self, m=None):

"""Returns a sampling matrix for generating correlated random samples. m (cov matrix) can be

specified. This is primarily for debugging and external use of this function"""

#Get the correct correlation matrix and check for symmetry:

if m==None:

m = self.get_corr_matrix()

#Check that none of the variances are zero, and if so store row and raise flag:

zero_variances = []

cov = self.full_matrix

for i in range(len(self.full_matrix)):

if cov[i][i] == 0.0:

print "Zero variance in correlation matrix, setting row/column to zero in sampling matrix"

zero_variances.append(cov[i][i])

#Check that all columns and rows of this one are zero:

for j in range(len(cov)):

if cov[i][j] != 0.0 or cov[j][i] != 0.0:

raise ValueError("There is zero variance, but non zero covariance...not possible")

#Remove the zero_variance rows and columns from the correlation matrix

if zero_variances != []:

temp_m = []

for i in range(len(m)):

if i in zero_variances:

continue

else:

temp_list = []

for j in range(len(m[i])):

if j in zero_variances:

continue

else:

temp_list.append(m[i][j])

temp_m.append(temp_list)

m = array(temp_m)

try:

#See if positive definite and cholesky decomposition will work (much more efficient)

if not symmetric(m):
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raise LinAlgError("WARNING: non symmetric matrix")

print "\nChecked if matrix was symmetric or not..."

u = cholesky(m) #Will raise LinAlgError if it fails

except LinAlgError:

#Try eigenvalue decomposition

print "Not positive definite, trying singular Eigenvalue decomposition..."

evals, evecs = eig(m)

#Check for negative eigenvalues, if so, then need to make a PSD correlation matrix:

check = all(eval >= 0.0 for eval in evals)

zero_check = all(eval != 0.0 for eval in evals)

if not zero_check:

raise LinAlgError("There is a zero eigenvalue, need to account for this")

if not check:

print "Negative eigenvalues, indefinite matrix, applying Eigenvalue Fixup Method..."

m = self.eigenvalue_fixup(evals, evecs) #returns a new corr matrix that is PSD

print "Fixup applied"

evals, evecs = eig(m)

#make sure nothing failed in fixup

check = all(eval > 0 for eval in evals)

if not eigenmatrix_check(evals,evecs):

raise LinAlgError("Error in new eigenvector decomposition matrix")

if not check:

raise LinAlgError("Still have neg. eigenvalues, even after fixup method")

if not eigenmatrix_check(evals,evecs):

raise LinAlgError("Error in final eigenvector decompositon result")

#Generate u

sqrt_evals = []

for i in evals:

sqrt_evals.append(sqrt(i))

u = dot(evecs, sqrt_evals)

#If there were zero variances u need to set those values in sampling matrix to zero:

if zero_variances != []:

temp_m = []

x_idx = 0

for i in range(len(cov)):

temp_list = []

y_idx= 0

for j in range(len(cov[i])):

if j in zero_variances or i in zero_variances:

temp_list.append(0.0)

else:

temp_list.append(u[x_idx][y_idx])

y_idx+=1
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if j in zero_variances:

y_idx -= 1

if i in zero_variances:

x_idx -= 1

temp_m.append(temp_list)

x_idx += 1

u = array(temp_m)

self.sampling_matrix = u

return None

#---------------------------------------------------------------------------------------------------

def eigenvalue_fixup(self, evals, evecs):

"""Fixup applied to correlation matrices with negative eigenvalues that are not semi-positive

definite. This method works by setting all the eigenvalues to positive and then generating

a new correlation matrix with a fixed set of values

This function returns the modified eigenvector matrix, but it stores the modified

correlation matrix to self.modified_corr_matrix for access later"""

#Check to make sure that the matrix is orthogonal etc. before applying fixup

if not eigenmatrix_check(evals, evecs):

raise LinAlgError("Need to apply Gramm-Schmidt method, not implemented")

#Make a new array of positive evals

pos_evals = []

for i in evals:

pos_evals.append(abs(i))

pos_evals = array(pos_evals)

#make diagonal matrix of pos eigenvalues:

d = matrix(diag(pos_evals))

#solve for new correlation matrix, use matrix module to simplify multiplication

tr = matrix(evecs.transpose())

emat = matrix(evecs)

new_corr = emat*d*tr

new_corr = array(new_corr)

#Need to make sure diagonal elements are 1. In most cases they will not be:

dd = diag(new_corr)

for i in range(len(new_corr)):

for j in range(len(new_corr)):

new_corr[i][j] = new_corr[i][j]/(sqrt(dd[i]*dd[j]))

self.modified_corr_matrix = new_corr

#check that new correlation matrix is normalized

for i in range(len(new_corr)):

if abs(new_corr[i][i] - 1.0) > 0.000001:

raise LinAlgError("Something has gone wrong in renormalizing the new corr matrix")

#return the modified correlation_matrix

return new_corr

#---------------------------------------------------------------------------------------------------

def sample_corr_matrix(self, seed=None):

"""samples a set of normally distributed random numbers from a correlation matrix. Uses

self.sampling_matrix if there is one, else reads it in using self.gen_sampling_matrix.
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Returns correlated samples from a normal distribution with mean of zero and std deviation of one

The random seed can be specified here, or it uses the one stored. Self.seed is updated

BEFORE this function is ran. This is for storing the seed that generated each set of sampled

data external to this class"""

if self.sampling_matrix == None:

self.gen_sampling_matrix()

#Generate a vector of random numbers, distributed normally: use specified seed if one is given

if seed != None:

random.seed(seed)

self.seed = random.get_state()[1][0]

#Get the sampling matrix: sample_mat = self.sampling_matrix

#Generate normally distributed random numbers rand_array =

array(random.randn(len(sample_mat)))

#Sample 1000 numbers from the random number generator, this is so it

#jumps ahead in the period and the seed will be changed. The seed only

#changes every #623 samples because mersenne twister smaples 623 numbers

#at each state. This is much easier than trying to store

#the whole state. 1000 is arbitrary, and numbers were checked to be random

random.randn(1000)

#multiplication by hand

temp_array = []

for i in range(len(sample_mat)):

sum = 0.

for j in range(len(sample_mat[i])):

sum += sample_mat[i][j]*rand_array[j]

temp_array.append(sum)

temp_array = array(temp_array)

return temp_array

#-----------------------------------------------------------------------------------------------

def sample_cross_section(self, cross_sections, energies, seed=None, interpolation=None):

"""Samples a vector of ne-1 normally distributed random numbers using Mersenne twister

algorithm and then uses a specified correlation matrix to correlate the random numbers.

The energies in the input are those of the crossX, not those of the cov matrix.

The energies of the crossx are typically different than those of the cov matrix, therefore

the random numbers generated from the cov matrix have to be mapped onto the cross sections.

The cov matrix values are group averaged.

If any of the variances are zero, that cross section is not sampled and returned as the original

value and there is no correlation to it."""

#sample rand_array (generating sample matrix if one not already specified)

rand_array = self.sample_corr_matrix(seed=seed)

cov_energies = array(self.get_energies())

#Get out the std_dev into an array

cov = self.get_full_matrix()

std_dev = array([ sqrt(cov[i][i]) for i in range(len(cov))])

#If any of the variances are zero they will be canceled out by the way the corr_matrix is set up
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#Map the variances on to the proper cross sections due to different numbers of energy pnts:

mapped_rand_array = []

mapped_std_dev= []

cov_idx = 0

#This next section makes a vector of correlated values that is same size as the number of cross sections

#by mapping values based on energies. The correlation matrix is for group averaged values, so if

#a cross section falls within that group, it is set to have the same relative variance/covariance

#that group corresponds to.

# - - - - - - -- - - - - - - - -- - - - - - - -- -- - - - - - - -- -- - - - - - - -- -- - - - - - - -

if not self.relative:

raise ValueError("The mapping of energies in this function only works for relative covariance data,"

+" need to rewrite if not relative")

#raise error if different endpoint energies

if abs(cov_energies[-1] - energies[-1]) > 0.000001:

print cov_energies[-1], energies[-1]

raise ValueError("Different Upper Endpoint Energies b/w cov and CX data, handling this case not "

+"implemented yet. Possible that energies of crossX not in eV, as they are in the cov data")

for i in range(len(energies)-1):

while True:

if (energies[i] - cov_energies[cov_idx]) >= -0.0000000001:

if (cov_energies[cov_idx+1] - energies[i]) > -0.0000000001:

#in the proper energy bin

mapped_rand_array.append(rand_array[cov_idx])

mapped_std_dev.append(std_dev[cov_idx])

break

else:

cov_idx+=1

else:

if cov_idx == 0:

#handle case where the cross sections have starting energies lower than the

#covariance data by setting the sampling of all cross sections below that value to 0.0.

#This effectively means no changes are made to those cross sections

mapped_rand_array.append(0.0)

mapped_std_dev.append(0.0)

raise ValueError("You probably shouldnt need this, make sure it’s actually how"

+"you want to handle this data. More details in source")

break

else:

raise ValueError("Energies got out of order somehow")

#Store the last case which is always the last variance

mapped_rand_array.append(rand_array[-1])

mapped_std_dev.append(std_dev[-1])

mapped_rand_array = array(mapped_rand_array)

mapped_std_dev = array(mapped_std_dev)

if self.relative:

mapped_std_dev = mapped_std_dev*cross_sections

#Generate modified cross section data

cx = mapped_rand_array*mapped_std_dev + cross_sections

#Use interpolation if desired
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print interpolation

if interpolation != None:

return self.inter_cross_section(cx, energies, interpolation=interpolation)

else:

#DEBUG

temp_file = open("/scratch/sbolding/nubar_plot.txt","w")

for i in range(len(cx)):

temp_file.write("%s %s %s\n" % (energies[i], mapped_rand_array[i], mapped_std_dev[i]))

return cx

#-----------------------------------------------------------------------------------------------

def inter_cross_section(self, cross_sections, energies, interpolation="linear"):

"""Function reads in a set of sampled cross sections and adjusts them such that the center of each

cov energy group is the sampled value and in between some kind of interpolation method is used.

By default linear interpolation is assumed."""

#input check

if len(cross_sections) != len(energies):

raise ValueError("Length of cross sectios and energies do not match")

#intialize local variables

cov_energies = self.get_energies()

centered_cx = []

centered_energies = []

#find center point (or slightly lower energy) of each cov energy group and store cx and energy.

avg_energies = []

for i in range(len(cov_energies)-1):

avg_energies.append((cov_energies[i] + cov_energies[i+1])/2.)

#map centerpoints to energies and cross section values

idx = 0

for cx in range(len(cross_sections)):

if energies[cx] < avg_energies[idx]:

continue

elif energies[cx] >= avg_energies[idx]:

#Check to see if one above or below is closest

check_hi = abs(energies[cx] - avg_energies[idx])

check_low = abs(energies[cx-1] - avg_energies[idx])

if check_hi < check_low:

centered_cx.append(cross_sections[cx])

centered_energies.append(energies[cx])

else:

centered_cx.append(cross_sections[cx-1])

centered_energies.append(energies[cx-1])

idx += 1

if idx == len(avg_energies):

break

#add first and last value of cross_section and energy to make interpolation easier

centered_cx.insert(0, cross_sections[0])

centered_cx.append(cross_sections[-1])

centered_energies.insert(0, energies[0])
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centered_energies.append(energies[-1])

#perform interpolation

if interpolation == "linear":

cx = interp(energies, centered_energies, centered_cx)

for i in range(len(cx)):

print energies[i], cross_sections[i], cx[i]

# for j in range(len(centered_energies)):

# print centered_energies[i], centered_cx[i]

exit()

return cx

elif interpolation == "cubic_spline":

tck = interpolate.splrep(centered_energies, centered_cx)

cx = interpolate.splev(energies, tck)

for i in range(len(cx)):

print cx[i]

exit()

return cx

else:

raise ValueError("Invalid, or unimplimented, entry for interpolation scheme")

exit() #STILL DEBUGGING

return cross_sections

#---------------------------------------------------------------------------------------------------

def eigenmatrix_check(evals, evecs):

"""Checks an eigenmatrix to ensure all columns are orthogonal and normalized to one

and that there are no degenerate eigenvalues. Need to be careful, lots of potential issues with

roundoff accumulation.

Prints out any errors to the screen, and returns False if any tests failed"""

TOL = 1.0e-05

no_errors = True

#CHeck for degenerate eigenvalues and zero eigenvalues

for i in range(len(evals)):

if evals[i] == 0.0:

print "Zero valued eigenvalue"

no_errors = False

for j in range(i,len(evals)):

if i != j:

if evals[i] == evals[j]:

print "Degenerate Eigenvalues, matrix will not be orthogonal", evals[i], evals[j]

no_errors = False

215



#Check for normalization of eigenvectors

for i in range(len(evecs)):

check = abs(norm(evecs[:][i]) - 1.0)

if check > TOL:

print "Not very-well normalized, most likely do to round off: norm = ",norm(evecs[:][i])

raise ValueError("Not normalized, may just be round off")

#Check for orthogonality of eigenvectors:

for i in range(len(evals)):

for j in range(len(evals)):

if i != j:

dp = dot(evecs[:][i],evecs[:][j])

if abs(dp) > TOL:

print "Not orthogonal for columns ", i, " and ", j, "dp = ", dp

no_errors = False

return no_errors

#---------------------------------------------------------------------------------------------------

def symmetric(m):

"""Check to see if a matrix is symmetric or not. Returns True if symmetric, else False"""

return all(all(float(m[i,j]) == float(m[j,i]) for j in range(i,len(m[i])))for i in range(len(m)))
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ace sb.py: ACE Format Data Class

#!/usr/bin/env python

#!/home/sbolding/EPD/epd-7.3-1-rh5-x86_64/bin/python

# ===============================================================

#Local Modules

from numpy import array

from math import sqrt

import os

import linecache

#Module for reading in covariance data

from ndvv.endf.file_index import file_index

# ===============================================================

"""This module creates an ace file object from an ace file and contains

strategies for reading in a section from the file and reprinting a new ace file.

NOTE: If you change any of the cross sections stored in "self.data_arrays" in this file

it will be changed when you use fprint. To access the original data need to use

"self.orig_data_arrays".

NOTE: The indexing in this program typically starts from 0, but the ACE format

is based on starting from 1. At times this can be confusing, particularly with

line_cache.getline() and some of the get_array_element functions. In all cases the

values in this program are THE VALUE IN ACE FORMAT MANUAL - 1 so that they are indexed from 0

UPDATE 09/25/12: You can now change cross sections, not just nubar. All data is stored in

parrallel arrays and then accessed by an index. The indices are mapped using self.indices

dictionary and the names desired."""

# = = = = = = = = = = = = = = = = = = = = = = = = = = =

class ace_file_index:

"""This super class contains the files and such needed for parsing and to be used for printing etc.

Also contains the ace sections that have been called and changed"""

def __init__(self, section, xsdir_handle=None, output=None, dir=None):

#get rid of the old data

self.file_index_clear()

if dir == None:

#assume current directory

self.dir = os.curdir

else:

self.dir=dir

#open output file

if output==None:

print "must read in output file name later"

else:

self.output=output

self.__dict__[’outfile’] = open(self.output,"w")

self.section = section

#No XSDIR file:

if xsdir_handle == None:
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raise IOError("need to specify a XSDIR file")

#XSDIR FILE READ

if xsdir_handle != None:

self.xsdir = open(self.dir+xsdir_handle, "r")

#Find line that has the file you need

flag=False

for line in self.xsdir:

if search_for(section, line):

flag=True #This is purely for reading the next line

#store section_info and initiate input file

self.sectionRecord = tuple(line.split())

#Check to see if endf file is not in current directory

if self.sectionRecord[4] == ’1’:

self.f_handle = self.dir+self.sectionRecord[2]

else:

if not search_for(self.sectionRecord[4], "$(/\s*"):

self.f_handle = self.sectionRecord[4]+"/"+self.sectionRecord[2]

else:

self.f_handle = self.sectionRecord[4]+self.sectionRecord[2]

raise NotImplementedError("This has not been debugged")

self.f = open(self.f_handle, "r")

if self.sectionRecord[0] != self.section:

raise IOError("Read in incorrect line in xsdir file")

elif flag:

#Get the stopping address from next line

self.stop_address = int(line.split()[5])

flag=False

return None

# - - - - - - - - -- - -- - - - - - - - - - - - - - -

def file_index_clear(self):

self.f = None #input ACE file that is being read in and modified

self.xsdir = None #xsdir file

self.xsdir_handle = None #name of xsdir file

self.output = None #name of output file

self.outfile = None #output file

self.of_idx = None #Line in output file

self.of_col = None #col in output file

self.dir = None #directory location of xsdir (and possible f)

self.section = None #The name of the section being modified, e.g. "94239.70c"

self.sectionRecord = None #Contains information about the section, such as location in f

self.f_handle = None #name of f

self.mod_secs = [] #list of classes containing all the info u need for new file

self.stop_address = None #The start of the next cross section data, when to stop printing

self.fi_object = None #File index object, has to do with getting covariance matrices

return None
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# - - - - - - - - -- - -- - - - - - - - - - - - - - -

def lc_get_lines(self, fileName, start, nolines):

"returns a list of lines gotten using the get_lines function"

idx = start

lines = []

for i in range(nolines):

lines.append(linecache.getline(fileName, idx))

return lines

# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

class ace_section(ace_file_index, object):

"""Contains the data for a particular section from an ace file"""

# - - - - - - - - -- - -- - - - - - - - - - - - - - -

def __init__(self, section, section_type, xsdir_handle = None, output=None, dir=None):

self.section_clear()

ace_file_index.__init__(self, section, xsdir_handle=xsdir_handle, output=output, dir=dir)

self.type = section_type

if self.f != None:

self.parse()

else:

raise ValueError("trouble opening input file from xsdir line")

return None

# - - - - - - - - -- - -- - - - - - - - - - - - - - -

def __getattr__(self, name):

#Cr is just a local variable for quick reference

cr = self.__dict__[’controlData’]

d = {

’nu_ne’ : ’int(cr[3])’,

’lnu’ : ’int(cr[1])’,

’knu’ : ’int(cr[0])’,

’nr’ : ’int(cr[2])’,

’totnu’ : "self.__dict__[’data_arrays’][1]",

’promptnu’: "self.__dict__[’data_arrays’][0]"

}

value = eval( d.get( name, ’None’ ) )

if value is not None:

return value

raise AttributeError("ace_section object has no attribute %s"%(name))

# - - - - - - - - -- - -- - - - - - - - - - - - - - -

def __setattr__(self, name, value):

#Cr is just a local variable for quick reference

cr = self.__dict__[’controlData’]

d = {

’nu_ne’ : ’cr[3]=value’,

’lnu’ : ’cr[1]=value’,

’knu’ : ’cr[0]=value’,

’nr’ : ’cr[2]=value’

}
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exec( d.get( name, "self.__dict__[name] = value" ) )

return None

# - - - - - - - - -- - -- - - - - - - - - - - - - - -

def parse(self, f=None):

#parse file from superClass

if f == None:

f = self.f

fileName = self.f_handle

print "Parsing section..."

#Store relavent line info:

sr = tuple(self.sectionRecord)

self.address =int(sr[5])

self.table_length = sr[6]

self.idx = int(self.address) #index of where you are in the file

#++++++++++ Parse different types of data +++++++++++++++++++++

if self.type == "totnu" or self.type == "promptnu": #Need to parse both the totnu and promptnu data

#Get the relative location of the nubar data and figure out how much offset:

line_offset = self.get_jxs_value(1) #no. of data entries to skip from end of information block

if line_offset == "0":

raise ValueError("No nuBar data")

#there are 4 data entries per line and 12 lines of control information at the start:

self.data_addresses.append(int(line_offset/4)+ self.address + 12)

self.idx = int(self.data_addresses[-1]) #update the index

self.data_offset_col= line_offset % 4 #column # @ for the beggining of data

self.col = int(self.data_offset_col)

self.data_offsets.append(self.col)

#Read in the controlData:

self.controlData = self.get_data_points(4,update=True)

if self.knu < 0:

#Parse the total and fast nubar stuff

if self.lnu != 2:

raise ValueError("Coefficient stuff, dont have code to handle this yet")

#Read in the energies and the prompt nubar stuff efficiently

energies = []

for i in range(self.nu_ne):

energies.append(float(self.get_line_data_point(update=True)))

self.energies = array(energies)

#Read in the prompt nubar data

#Store the starting place of a modified section:

self.start_changes.append(tuple([self.idx, self.col]))

data_array = []

for i in range(abs(self.knu) - len(self.controlData) - self.nu_ne + 1):

data_array.append(float(self.get_line_data_point(update=True)))

self.data_arrays.append(array(data_array))

#Store the data_arrays as read in so u can access the original data when sampling

self.orig_data_arrays.append(array(data_array))

#Store the stopping place for data

self.stop_changes.append(tuple([self.idx, self.col]))
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#Read in the next control data temporarily and store data indexing locations

self.data_addresses.append(self.idx)

self.data_offsets.append(self.col)

cr = tuple(self.get_data_points(3, update=True))

#Checks:

if int(cr[2]) != self.nu_ne:

raise ValueError("Different number of energies for prompt and total")

if int(cr[0]) != 2:

raise ValueError("Coefficient stuff, dont have code to handle this yet")

#Read in energies just to check

energies = []

for i in range(self.nu_ne):

energies.append(float(self.get_line_data_point(update=True)))

#Make sure energies are teh same:

if energies[-1] != self.energies[i]:

raise ValueError("Energy arrays are not the same for total and prompt nubar")

del energies

#Store starting place of next set of data:

self.start_changes.append(tuple([self.idx, self.col]))

#Read in the total nubar data

data_array = []

for i in range(self.nu_ne):

data_array.append(float(self.get_line_data_point(update=True)))

#store data and stopping point of data changes

self.data_arrays.append(array(data_array))

#Store the data_arrays as read in so u can access the original data when sampling

self.orig_data_arrays.append(array(data_array))

self.stop_changes.append(tuple([self.idx, self.col]))

#Store what the index is for total and prompt nubar:

self.data_indices["totnu"] = len(self.data_arrays) - 1

self.data_indices["promptnu"] = len(self.data_arrays) - 2

else:

raise NotImplementedError("need to add stuff to get just total or just fast nubar data")

elif self.type == "capture" or self.type == "total" or self.type == "fission":

#You have to read in the total to adjust capture or fission

print "Warning: This function adjusts the total absorption or fission"+

", and elastic scattering cross section to compensate for the increase."

+"This does not adjust the individual components of the absorption cross section"

+" (such as radiative capture) or individual fission components"""

#Get energy table, which starts at JXS(1):

self.go_to_xss(self.get_jxs_value(0))

ne = self.get_nxs_value(2) #number of energies

energies = []

for erg in range(ne):

energies.append(float(self.get_line_data_point(update=True)))

self.energies = energies #energies for the total, capture, or elastic cxs

#Read in the total cross section

#Store the starting place of a modified section for total:

self.start_changes.append(tuple([self.idx, self.col]))
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data_array = []

for i in range(ne):

data_array.append(float(self.get_line_data_point(update=True)))

#store data and stopping point of data changes

self.data_arrays.append(array(data_array))

#Store the data_arrays as read in so u can access the original data when sampling

self.orig_data_arrays.append(array(data_array))

self.stop_changes.append(tuple([self.idx, self.col]))

#update data_index for total

self.data_indices["total"] = len(self.data_arrays)-1

#Read in the capture cross section

#Store the starting place of a modified section for total:

self.start_changes.append(tuple([self.idx, self.col]))

data_array = []

for i in range(ne):

data_array.append(float(self.get_line_data_point(update=True)))

#store data and stopping point of data changes

self.data_arrays.append(array(data_array))

#Store the data_arrays as read in so u can access the original data when sampling

self.orig_data_arrays.append(array(data_array))

self.stop_changes.append(tuple([self.idx, self.col]))

#update data_index for capture

self.data_indices["capture"] = len(self.data_arrays)-1

#Read in the elastic cross sections

self.go_to_xss((self.get_jxs_value(0)+3*ne))

print self.idx, self.col

#Store the starting place of a modified section for total:

self.start_changes.append(tuple([self.idx, self.col]))

data_array = []

for i in range(ne):

data_array.append(float(self.get_line_data_point(update=True)))

#store data and stopping point of data changes

self.data_arrays.append(array(data_array))

#Store the data_arrays as read in so u can access the original data when sampling

self.orig_data_arrays.append(array(data_array))

self.stop_changes.append(tuple([self.idx, self.col]))

#update data_index for total

self.data_indices["elastic"] = len(self.data_arrays)-1

#-------------------------------------------------------------------

#Read in the fission cross section

fis = self.get_jxs_value(20)

if int(fis) == 0:

raise IOError("There is no FIS block for this file")

# go to start of fis block and check ne is same as ESZ grid

self.go_to_xss(fis)

ie = int(self.get_line_data_point(update=True))

if ie != 1:

raise ValueError("The first value in the table is not that of the first energy point"

+", you need to change the code to handle this case, see manual_volIII page F-33")
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num_entries = int(self.get_line_data_point(update=True))

if num_entries != ne:

raise ValueError("Have read in the wrong data block")

self.start_changes.append(tuple([self.idx, self.col]))

data_array = []

for i in range(ne):

data_array.append(float(self.get_line_data_point(update=True)))

#store data and stopping point of data changes

self.data_arrays.append(array(data_array))

#Store the data_arrays as read in so u can access the original data when sampling

self.orig_data_arrays.append(array(data_array))

self.stop_changes.append(tuple([self.idx, self.col]))

#update data_index for capture

self.data_indices["fission"] = len(self.data_arrays)-1

"""

#The following code is stuff for geting out the n, gamma reaction

mt_table = self.get_mt_table()

lsig_table = self.get_lsig_table()

print self.get_jxs_value(7)

print mt_table.index("102"), len(mt_table), "index should be -3"

self.go_to_xss(self.get_jxs_value(6)+int(lsig_table[mt_table.index("102")]))

print self.idx, "start line"

num_entries = int(self.get_line_data_point(update=True))

data_array = []

for i in range(num_entries):

data_array.append(float(self.get_line_data_point(update=True)))

data_array = array(data_array)

print data_array

print self.idx, "end line"

"""

else:

raise NotImplementedError("Need to write stuff to parse other data")

return None

# - - - - - -- - - - - - -- - - - - -- - - -- - - - --

def get_lsig_table(self):

"""Function returns lsig table, which is a bunch of poitners to all the cross section tables"""

#store the old address to change it back after you leave this function

original_idx = self.idx

original_col = self.col

#Need to get the MT_table first

self.get_mt_table()

#Go to the LSIG table. The 6th entry of the 8th line is the pointer to lsig table:

lsig = self.get_jxs_value(5)

self.go_to_xss(lsig)

nmt = self.get_nxs_value(3)

lsig_table = []

for i in range(nmt):

lsig_table.append(self.get_line_data_point(update=True))

if lsig == "0":

raise ValueError("No LSIG value to specify location for crossX tables")
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return lsig_table

# - - - - - -- - - - - - -- - - - - -- - - -- - - - --

def get_mt_table(self):

"""generates self.mt_table which is a list of available mt values"""

# keep old self.idx and col

orig_idx = self.idx

orig_col = self.col

if self.mt_table != []:

return

#get the location of the mt_table

lmt = self.get_jxs_value(2)

#go to mtr table

self.go_to_xss(lmt)

#read in the values

nmt = self.get_nxs_value(3) # of MT elements

mt = [];

for val in range(nmt):

mt.append(self.get_line_data_point(update=True))

self.idx = int(orig_idx)

self.col = int(orig_col)

return mt

# - - - - - -- - - - - - -- - - - - -- - - -- - - - --

def get_jxs_value(self, value):

"""This function returns a specified value from the jxs array. It uses

self.address and lincache, so it doesnt actually have to change your

self.idx or self.address or self.col. This function subtracts number

by one automatically which is required for this program since indexing

is always from 0

NOTE: the values are offset from 0, so you should subtract 1 from the

value in the ACE format manual, e.g. if you wanted to get nubar (which

is JXS(2) in ACE manual), you would ask for get_jxs_value(1)."""

#go to the first point in the jxs array

idx = self.address + 8

#increase the necessary number of lines

idx += int(value/8)

col = value % 8

#get that data point

line_data = (linecache.getline(self.f_handle, idx).split())

return int(line_data[col])-1

# - - - - - -- - - - - - -- - - - - -- - - -- - - - --

def get_nxs_value(self, value):

"""This function returns a specified value from the nxs array. It uses

self.address and lincache, so it doesnt actually have to change your

self.idx or self.address or self.col. This function DOES NOT subtract

one from returned value automatically because in the NXS array, values

have different means, rather than JXS where they were all just

pointers.
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NOTE: the values are offset from 0, so you should subtract 1 from the

value in the ACE format manual, e.g. if you wanted to get nubar (which

is NXS(2) in ACE manual), you would ask for get_nxs_value(1).

Not real scenario"""

#go to the first point in the nxs array

idx = self.address + 6

#increase the necessary number of lines

idx += int(value/8)

col = value % 8

#get that data point

line_data = (linecache.getline(self.f_handle, idx).split())

return int(line_data[col])

# - - - - - -- - - - - - -- - - - - -- - - -- - - - --

def go_to_xss(self, arr_index):

"""This function goes to the "value"-th member of the XSS array. This

is useful for getting to the start of specific data arrays. The

function updates self.idx and self.col to the appropriate value"""

self.idx = int(arr_index/4)+ self.address + 12

self.col = arr_index % 4

return

# - - - - - -- - - - - - -- - - - - -- - - -- - - - --

def sample_data(self, type=None, fi_handle=None, seed=None, scalar=None,

interpolation=None, scattering_ratio=None, energy_cutoff=None,

scat_fix_up=None):

"""Samples a set of data from a corresponding correlation matrix in an

ENDF file. fi_handle is the file name with full path that contains the

corresponding covariance matrix. This function returns the random

number seed that was used to generate the data. Although there is many

numbers that correspond to teh state of the generator, you can reseed

the generator with the seed returned by this function to get back to

the same state. Note that this function uses numpy’s random number

generator, not pythons default.

If scalar is specifed, then it simply multiplies original array by

scalar for each value and returns the number of sigma the total cross

section has been shifted by.

Both index and type are not really needed, index is just left over from

previous code, should probably be rewritten with just type and a

dictionary for each data array, and all data arrays should be in their

own class

Scattering_ratio determines how the scattering is adjusted when fission

and capture are adjusted. If it is set to be "total", then the ratio

of elastic scaterring to total is kept constant, if it is set to "cx"

then the ratio of elastic scattering to the cross section of interest

is kept the same. if it is "sum" then the sum of the cross section and

the elastic scattering cross section is kept constant, so total is not

effected, unless the scat_fix_up is set to "total" then any time

elastic goes negative, the difference will be stored in the total to

keep elastic non-negative. Energy_cutoff is the energy below which to

not change cross sections; it is passed in in MeV.

"""

if self.fi_handle == None:

self.fi_handle = fi_handle

#get data_index from the dictionary. The order is arbitrary
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try:

data_index = self.data_indices[type]

except:

raise ValueError("Have not read in, or are not capable of reading in data you h"

+"ave specified in sample_data call")

if energy_cutoff == None:

#set to a negative value

energy_cutoff = -1.0

self.energy_cutoff = energy_cutoff #update cutoff energy to whatever the current is

#If scalar multiply crossX by scalar and return None:

if scalar != None:

temp_array = self.orig_data_arrays[data_index]*float(scalar)

#change cx only for energies >= energy_cutoff:

energies = list(self.energies)

new_data = []

for erg in range(0,len(self.energies)):

if energies[erg] >= energy_cutoff:

new_data.append(temp_array[erg])

else:

new_data.append(self.orig_data_arrays[data_index][erg])

self.data_arrays[data_index] = array(new_data)

self.store_modified_data(data_index)

if type == "capture" or type == "fission":

#need to adjust the elastic scattering cross section and total cross section to compensate

print "cross section before and after"

print self.orig_data_arrays[data_index]

print self.data_arrays[data_index]

#function that adjusts elastic and ttoal cross sections

self.balance_cross_sections(data_index, scalar, scattering_ratio, energy_cutoff=energy_cutoff)

print "elastic before and after"

print self.orig_data_arrays[self.data_indices["elastic"]]

print self.data_arrays[self.data_indices["elastic"]]

print "total before and after"

print self.orig_data_arrays[self.data_indices["total"]]

print self.data_arrays[self.data_indices["total"]]

print "fission before and after"

print self.orig_data_arrays[self.data_indices["fission"]]

print self.data_arrays[self.data_indices["fission"]]

#determine how many sigma cx and total have shifted

tot_avg_shift, tot_shift_std = self.get_sig_shifted("total")

avg_shift, shift_std = self.get_sig_shifted(type)

if self.output != None:

#create file with list of energies, old cross sections, and new cross sections

nubar_outfile = open(self.output+"_cxplot", "w")

nubar_outfile.write("#Energy Original New Elastic_Orig Elastic_New "

+"Total_Orig Total_new Tot_Sig_shifted Tot_Rel_sig\n")

energies = self.energies
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for erg in range(len(energies)):

nubar_outfile.write("%s%s%s" % (str(energies[erg]*1000000).ljust(15),

str(self.orig_data_arrays[data_index][erg]).ljust(15),

str(self.data_arrays[data_index][erg]).ljust(15)))

nubar_outfile.write("%s%s" % (str(

self.orig_data_arrays[self.data_indices["elastic"]][erg]).ljust(15),

str(self.data_arrays[self.data_indices["elastic"]][erg]).ljust(15)))

nubar_outfile.write("%s%s\n" % (str(

self.orig_data_arrays[self.data_indices["total"]][erg]).ljust(15),

str(self.data_arrays[self.data_indices["total"]][erg]).ljust(15)))

nubar_outfile.close()

return tot_avg_shift, tot_shift_std, avg_shift, shift_std

else:

return None

else:

if type == "capture" or type == "fission":

raise NotImplementedError("Don’t have stuff to handle covariance for capture")

# -------------------------------------------------------------------------------------

#Sampling using covariance data

#--------------------------------------------------------------------------------------

#Read in the covariance matrices if one has not been specified:

if not self.cov_class.has_key(type):

if self.fi_object == None:

if self.fi_handle == None:

raise IOError("Need to input a path with name of endf file")

print "Reading in covariance data from ENDF file_index object..."

self.fi_object = file_index(self.fi_handle)

#get the cov_matrices class and store it

if type == ’totnu’:

section = self.fi_object.get_section(mf=31, mt=452)

elif type == ’promptnu’:

section = self.fi_object.get_section(mf=31, mt=456)

#store the cov_matrices class:

self.cov_class[type] = section.get_endfCovMatrix()

#store variance data

cov = self.cov_class[type].get_full_matrix()

#Generate random sample from covariance matrix. If a seed is specified, then it will be used

#sample_cross_section returns the sampled cross section data from input of cross_section,

#energies in ACE file are in MEV, rather than the eV that the covariance matrices are in:

energies = self.energies*1000000

self.data_arrays[data_index] = self.cov_class[type].sample_cross_section(

self.orig_data_arrays[data_index], energies, seed=seed, interpolation=interpolation)

#store data for printing

self.store_modified_data(data_index)

if self.output != None:
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#create file with list of energies, old cross sections, and new cross sections

nubar_outfile = open(self.output+"_cxplot", "w")

nubar_outfile.write("Energy Original New\n")

for erg in range(len(energies)):

nubar_outfile.write("%s%s%s\n" % (str(energies[erg]).ljust(15),

str(self.orig_data_arrays[data_index][erg]).ljust(15),

str(self.data_arrays[data_index][erg]).ljust(15)))

nubar_outfile.close()

#return random number seed that was used to generate this data

return self.cov_class[type].seed

# ---------------------------------------------------------------------------------

def get_sig_shifted(self, type):

#Determines how many sigma the section "type" has shifted, if it can get the covariance data, if

#not, then it will return None and None.

#Get the covariance data out if possible:

if not self.var.has_key(type):

try:

self.init_covariance_data(type)

except:

print "Not able to get covariance data for %s data" % type

#No variance, so return none

return None, None

#values for how much stuff has shifted

sig_shifted = []

sig_shifted_sq = []

orig = (self.orig_data_arrays[self.data_indices[type]])

new = self.data_arrays[self.data_indices[type]]

mapped_var = self.var[type]

energy_cutoff = self.energy_cutoff

energies = self.energies

for i in range(len(mapped_var)):

if float(mapped_var[i]) != 0.0:

temp_var = ((new[i] - orig[i])/sqrt(mapped_var[i]))

if energies[i] < energy_cutoff:

#not shifted at this energy

continue

sig_shifted.append(temp_var)

sig_shifted_sq.append(temp_var*temp_var)

else:

continue

#determine average number shifted

avg_shift = sum(sig_shifted)/len(sig_shifted)

avg_shift_sq = sum(sig_shifted_sq)/len(sig_shifted)

shift_std = sqrt(avg_shift_sq - avg_shift*avg_shift)

return avg_shift, shift_std
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# - ---------------------------------------------------------------------------------

def init_covariance_data(self, type, fi_handle=None):

"""Stores the variance and covariance data for a particular reaction, or nubar"""

if not self.cov_class.has_key(type):

if self.fi_object == None:

if self.fi_handle == None:

if fi_handle == None:

raise IOError("Need to input a path with name of endf file")

else:

self.fi_handle = fi_handle

print "Reading in covariance data from ENDF file_index object..."

self.fi_object = file_index(self.fi_handle)

#Determine section of ENDF file

mt_map = {"fission":18, "capture":102, "total":1, "totnu":452, "promptnu":456}

mt = mt_map[type]

if type == "promptnu" or type == "totnu":

mf = 31

else:

mf = 33

section = self.fi_object.get_section(mf=mf, mt=mt)

print "Getting out the %s cov matrix out..." % type

#Store cov_class

self.cov_class[type] = section.get_endfCovMatrix()

cov = self.cov_class[type].get_full_matrix()

if not self.cov_class[type].relative:

raise IOError("This is set up for relative covariance")

var = []

for i in range(len(cov)):

var.append(cov[i][i])

var = array(var)

#Get out the covariance energies

self.cov_energies[type] = array(self.cov_class[type].get_energies())*0.000001

cov_energies = self.cov_energies[type]

energies = self.energies

#Store variance

rel_var = self.map_array_by_energy(energies, cov_energies, var)

mapped_var = rel_var*self.orig_data_arrays[self.data_indices[type]]*

self.orig_data_arrays[self.data_indices[type]]

self.var[type] = array(mapped_var)

return None

# - -- - - - -- - -- - - - -- - -- - - - -- - -- - - - -- - -- - - - --

def map_array_by_energy(self, energies, cov_energies, cov_array):

"""This function takes the values of cov_array, and repeats them for any

time that energies[i] is between cov_energies[i] and cov_energies[i+1], and

returns it as an array that is len(energies) long. This assumes that
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len(energies > cov_energies)"""

#raise error if different endpoint energies

if abs(cov_energies[-1] - energies[-1]) > 0.0000000001:

print cov_energies[-1], energies[-1]

raise ValueError("Different Upper Endpoint Energies b/w cov and crossX data")

if len(energies) < len(cov_energies):

raise ValueError

new_arr = []

cov_idx = 0

for i in range(len(energies)-1):

while True:

if (energies[i] - cov_energies[cov_idx]) > -1.0E-12:

if (cov_energies[cov_idx+1] - energies[i]) > -1.0E-12:

#in the proper energy bin

new_arr.append(cov_array[cov_idx])

break

else:

cov_idx+=1

else:

if cov_idx == 0:

break

else:

raise ValueError("Energies got out of order somehow")

#store last data point

new_arr.append(cov_array[-1])

return array(new_arr)

# - - - - - - - - -- - -- - - - - - - - - - - - - - -

def balance_cross_sections(self, data_index, scalar, scattering_ratio, energy_cutoff=None, scat_fix_up=None):

"""This function adjusts elastic scattering cross section and the total

cross section based on the difference of shift in the cross section

found at data_index, based on scalar shift. Note, it also shifts the

total cross section based on difference, so you do not need to do that

outside of this function if it is called. This function also stores

the modified data for printing new ACE file for scattering and total

cross section. If scattering ratio is "fission", then data_index must

be capture. In this case it will adjust the fission cross section to

compensate for changes in capture"""

es_idx = int(self.data_indices["elastic"])

tot_idx = int(self.data_indices["total"] )

cap_idx = int(self.data_indices["capture"])

#how much did cross section shift

cx_diff = self.data_arrays[data_index] - self.orig_data_arrays[data_index]

#determine how much to shift scattering cross section

scat_diff = []

fiss_diff = []

if energy_cutoff == None:

#change cx for all energies

energy_cutoff = -1.
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energies = list(self.energies)

for j in range(len(cx_diff)):

if energies[j] < energy_cutoff:

#store a zero and continue

scat_diff.append(0.0)

fiss_diff.append(0.0)

continue

if scattering_ratio == "total":

# keep probability of scattering constant at each energy

#determine probability of scattering

prob_scat = self.orig_data_arrays[es_idx][j]/self.orig_data_arrays[tot_idx][j]

#det scattering shift

scat_diff.append(prob_scat/(1. - prob_scat) * cx_diff[j])

elif scattering_ratio == "None" or scattering_ratio == None:

#Don’t shift scattering cross section

scat_diff.append(0.0)

elif scattering_ratio == "cx":

#keep probability of scattering ratio to cross section probability same

#determine ratio

ratio_to_cx = self.orig_data_arrays[es_idx][j]/self.orig_data_arrays[data_index][j]

scat_diff.append(ratio_to_cx*cx_diff[j])

elif scattering_ratio == "sum":

#keep the sum of scattering and cx the same

scat_diff.append(-1.*cx_diff[j])

elif scattering_ratio == "fission":

#keep the sum of capture and fission the same

scat_diff.append(0.0)

fiss_diff.append(-1.*cx_diff[j])

cx_diff[j] = 0.0

else:

raise NotImplementedError("No method found for scattering ratio specified in call of sample_data")

#Shift total and scattering cross section

self.data_arrays[es_idx] = array(self.orig_data_arrays[es_idx] + scat_diff)

self.data_arrays[tot_idx] = array(self.orig_data_arrays[tot_idx] + scat_diff + cx_diff)

if scattering_ratio == "fission":

self.data_arrays[self.data_indices["fission"]] = array(

self.orig_data_arrays[self.data_indices["fission"]] + fiss_diff)

self.store_modified_data(self.data_indices["fission"])

if not scat_fix_up == None:

raise NotImplementedError("This is not meant to be used for fission and capture changes together")

#Go through scat data and make sure no negatives, if scat_fix_up is "total", then compensate for negative in

#the total cross section, else raise error
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for j in range(len(self.data_arrays[es_idx])):

if self.data_arrays[es_idx][j] < 0.0:

if scat_fix_up == None:

raise ValueError("Changed CX too much, change can not be compensated for in scattering cross"

+"section producing a negative value. Should apply scat_fix_up")

elif scat_fix_up == "total":

self.data_arrays[tot_idx][j] -= self.data_arrays[es_idx][j]

self.data_arrays[es_idx][j] = 0.0

else:

raise IOError("You have passed in a scat_fix_up that is not recognized")

else:

continue

#store modified data for printing

self.store_modified_data(es_idx)

self.store_modified_data(tot_idx)

return None

# - - - - - - - - -- - -- - - - - - - - - - - - - - -

def store_modified_data(self, data_index):

#This function is called if you have changed data and stores the relevent info needed

#for printing that changed data later

self.mod_secs.append(modified_section(data_tuple = tuple([self.start_changes[data_index],

self.stop_changes[data_index]]), data_index = data_index,

data_array = self.data_arrays[data_index]))

return None

# - - - - - - -- - - - - - - - - - - - - - - -- - --

def clear_mod_secs(self):

#All this does is clear out the modified sections. Useful if creating multiple files

#from the same covariance matrix without

#creating a new instance of ace_section

self.mod_secs = []

return None

# - - - - - - - - -- - -- - - - - - - - - - - - - - -

def section_clear(self):

self.__dict__[’controlData’] = None

self.address = None #Line in file where section starts

self.data_addresses = [] #Location in file where data for a particular reaction starts

self.data_offsets = [] #Offset column in a file where a particular data section starts

self.table_length = None #Length in words of the table of data for whole section

# self.ne = None #Number of energy points

self.idx = 0 #Line in file you are at

self.col = 0 #column in line you are at

self.controlData = None #All the control data that you will need for printing

self.energies = None #List of energies for cross section or nubar being changed.

self.data_arrays = [] #List of the cross section/nubar data arryas

self.start_changes = [] #List of tuples of starting idx and column for each modified data

self.stop_changes = [] #List of tuples of stopping idx and column for each modified data

self.data_offset_col = None #The initial offset column

# self.lnu = None #2 for table, 1 for coefficient type table

# self.knu = None #first point at data_address, kind of wierd, but has to do with
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#relative location of totnu data array of data

self.orig_data_arrays = [] #The data arrays as originally read in

self.cov_class = {} #This is the dict of endf covariance classes

self.cov_energies = {} #Energies of the cov matrices, may be different than cx

self.data_indices = {} #Maps the different types of cross sections to the data index

self.mt_table = [] #This is a list of all the possible MT values available

self.lsig_table = {} #Maps MT values to their location in the table, from JXS(7)

self.var = {} #Dict of the variance arrays

self.energy_cutoff = None #Energy cutoff for sampling, by default is none

self.fi_handle = None #Handle for file index

# - - - - - - - - -- - -- - - - - - - - - - - - - - -

def get_line_data_point(self, offset=None, update=False, line=False):

#Returns the data at a point in a row. Offset is how many data_points u

#want to offset from ur current idx and col in file. Only updates idx and

#column if update=True. IF update is true it sets the idx and col to be

#of the next point after the data_point you have gotten

#local var:

idx = int(self.idx)

col = int(self.col)

#Advance in file offset data points if requested

if offset != None:

offset = int(offset)

if (offset+col) > 3:

#Need to increase line

if (offset+col+1 > 8):

#need to increase line index multiple times

idx += int((offset+col+1)/4)

col = ((offset+col) % 4)

else:

idx+=1

col = ((offset+col) % 4)

else:

col += offset

if update == True:

#update location in file to location of next point after where you are at

if col == 3:

self.col=0

self.idx=idx+1

else:

self.col = col+1

self.idx = idx

if line == True:

if update == True:

self.idx += 1

#Return the full line

return tuple(linecache.getline(self.f_handle, idx).split())

else:

#Return a single data point

return str(linecache.getline(self.f_handle, idx).split()[col])

# - - - - - - - - -- - -- - - - - - - - - - - - - - -

def get_data_points(self, number, update=False):
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#Returns several data points as a list and optionally updates

#the idx and col to be at the next location after the last data point

if float(number) < 2.:

raise ValueError("Use get_line_data_point to get single data point")

#all but last case

temp_data = [self.get_line_data_point(offset=i) for i in range(number-1)]

#last case you can update

temp_data.append(self.get_line_data_point(update=update, offset=number-1))

return temp_data

# - - - - - - - -- - - - - - --- - - - -- - - - - - - - - -- - - - - - - - - - - - -- - - -

def fprint(self):

#Prints a new outputfile with modified sections

print "Writing output..."

#Make sure outfile is open

if self.outfile == None:

self.outfile = open(self.output, "w")

#The only way outfile will be closed is if you have already written

#one outfile and are going to be writing a new one

if self.outfile.closed:

self.outfile = open(self.output, "w")

print "Opening new output file..."

#Make sure modified sections are in order if multiple

if len(self.mod_secs) > 1:

temp_list = self.mod_secs

temp_list.sort(key=lambda mod_sec : mod_sec.start_idx )

self.mod_secs = list(temp_list)

#Make sure there are not multiple modifications to the same section

for i in range(len(self.mod_secs)):

for j in range(len(self.mod_secs)):

sec = self.mod_secs[i]

sec2 = self.mod_secs[j]

if i != j:

if str(sec.data_index) == str(sec2.data_index):

raise ValueError("You have changed the same cross section"

+"twice without reseting the modsecs. fprint Does not know which one to print")

# - - - - Begin Printing - - - - - - - -

#Loop over all modified sections

of_idx = self.of_idx = int(self.address) # What line r u at in the original file

of_col = self.of_col = 0 # What column r u at in the original and new file

f_handle = self.f_handle

for sec in self.mod_secs:

#Print from original file until u reach modified line

for line in range(sec.start_idx - of_idx):

self.outfile.write(linecache.getline(f_handle, of_idx))

of_idx += 1

#Print first part of next line from input file if needed

self.of_idx = of_idx #Move to next line

if self.mod_secs.index(sec) != 0:

if sec.start_idx != self.mod_secs[self.mod_secs.index(sec)-1].stop_idx:
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#Else: This has been printed from a previous modified section

for col in range(sec.start_col):

line_data = linecache.getline(self.f_handle, self.of_idx)[20*col:(20*(col+1))]

self.unformatted_write(line_data)

else:

for col in range(sec.start_col):

line_data = linecache.getline(self.f_handle, self.of_idx)[20*col:(20*(col+1))]

self.unformatted_write(line_data)

#Print the modified section (which updates self.of_idx)

print "Data modified from original file between lines ", sec.start_idx, " and ", sec.stop_idx

for pnt in range(len(sec.data_array)):

self.formatted_write(sec.data_array[pnt])

#Print rest of current line if needed:

if self.mod_secs.index(sec) != len(self.mod_secs)-1:

if sec.stop_idx != self.mod_secs[self.mod_secs.index(sec)+1].start_idx:

#ELSE: then the next modified section will print the portion of this line

if self.of_col != 0:

for col in range(4 - self.of_col):

line_data = linecache.getline(self.f_handle, self.of_idx).split()

self.unformatted_write(str(line_data[self.of_col]))

of_idx = self.of_idx

#Print the end of the file

print "Writing end of file..."

while True:

#Check to see if end of file has been reached:

if of_idx == self.stop_address:

break

self.outfile.write(linecache.getline(f_handle, of_idx))

of_idx+=1

print "..Output writing complete"

self.outfile.close()

# - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - -

def formatted_write(self, dbl):

"Prints out a string formated as data tables are in ACE format w/ 11 strings"

temp_str = "%20.11e" % dbl

if self.of_col == 3:

temp_str += "\n"

self.of_idx += 1

self.of_col = -1

self.outfile.write(temp_str)
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self.of_col +=1

return None

#- - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - -

def unformatted_write(self, string):

"Prints out a string to fit in 20 characters right justified, directly as passed in"

string.strip()

if self.of_col == 3:

self.of_idx += 1

self.of_col = -1

self.outfile.write(string.rjust(20))

self.outfile.write("\n")

else:

self.outfile.write(string.rjust(20))

self.of_col+=1

# ----------------------------------/--------------------------------------

def search_for(object, string):

import re

"""Reads in object, which is either a list of patterns or a single pattern

and searches string for pattern(s). Returns true if all match"""

"object is a list of patterns"

if getattr(object, "pop", False):

#loop through each pattern and search

for i in object:

if re.search(str(i), string, flags=re.IGNORECASE): #match

continue

else:

return False

return True #all matched

elif getattr(str(object), "lstrip", False):

#search for pattern in string

if re.search(str(object), string, flags=re.IGNORECASE):

return True

else:

return False

class modified_section(object):

def __init__(self, data_tuple=None, data_array=None, data_index = None):

#Gets passed in a data_tuple of all the info u need (optionally) in an order

#for passing to printer and stores it in more usable format

self.clear()

if data_tuple != None:

if len(data_tuple) == 2 and all(len(data_tuple[i]) == 2 for i in range(2)):

self.start_idx, self.start_col = data_tuple[0]

self.stop_idx, self.stop_col = data_tuple[1]
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else:

raise ValueError("Did not pass proper data to modified_section.init")

if data_array != None and data_index != None:

self.data_array = data_array.copy()

self.data_index = int(data_index)

else:

raise IOError("Need to pass in the data_array and/or corresponding data_index")

return None

def clear(self):

self.start_col = None

self.stop_col = None

self.start_idx = None

self.stop_idx = None

self.data_index = None

self.data_array = None

return None

# ================================================================================================

def main():

#Directories and other changable variables:

dir = "/scratch/sbolding/ace_files/"

ace_file_handle = dir+"endf70j"

ace_file = open(ace_file_handle,"r")

section = "94239.99c"

output_dir = "/users/sbolding/src/sb_tools/"

xsdir = "xsdir"

section_type = "capture"

# spec = "totnu"

# section_type = "totnu"

endf_dir=’/scratch/sbolding/ENDF_files/’

file_name= ’n-094_Pu_239.endf’

fi_handle = endf_dir+file_name

fi=ace_section(section, section_type, output=output_dir+"test.out", dir = dir, xsdir_handle = xsdir)

changes = fi.sample_data(type = section_type,scalar=1.005,

scattering_ratio="None", fi_handle=fi_handle, energy_cutoff=None, scat_fix_up=None)

fi.fprint()

fi.clear_mod_secs()

changes2 = fi.sample_data(type = section_type,scalar=1.01, scattering_ratio="None",

fi_handle=fi_handle, energy_cutoff=None, scat_fix_up=None)

print "0.5", changes[0], changes[1], changes[2], changes[3]

print "1.0", changes2[0], changes2[1], changes2[2], changes2[3]

if __name__ == ’__main__’:

main()
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mult chi sq.py: Multiplicity Distribution Data Analysis

Script
"""Tool that reads in outputs from mtool and mparser scripts and computes chi-sq, which isn

then written to a file, along with keff results. Meant to be ran in directory containing

different trials"""

#==================================================================

#Local Modules

import os

import math

import re

import subprocess

import sys

#==================================================================

#UPDATES:

#on 08/24/12 added abilited to skip directories that are bad

#------------------------------------------------------------------

def main():

#--------------------------------------------------------------

#ADJUSTABLE VARIABLES

gate_widths = [1000,2000]

gate_widths = [str(i) for i in gate_widths]

det = ".lm14"

crits = ’CASE_1’

count_time_original = ’300.00’

dead_time = ’4’

mparser_path = "/users/sbolding/log_files"

chi_out_path = "/scratch/sbolding/"

chi_sq_output = "chi_squared.out"

all_data_list = [[] for i in gate_widths]

m1_list = [[] for i in gate_widths]

m2_list = [[] for i in gate_widths]

sort_data = True

bad_dir = [’trial-713-16’, ’debug-trial’]

#Get path from command line optionally

if len(sys.argv) > 1:

os.chdir(sys.argv[1])

chi_out_path = sys.argv[1]

#------------------------------------------------------------------------

"""Read in the experimental data using mparser"""

exp_data = []

for i in gate_widths:

out_name = "mparse_"+i+".mpout"

os.system("mparser -f %s/*.log -b %s -o %s -t" % (mparser_path, i, out_name) )

data_f = open(out_name, "r")

data_flag = False

names = []

multiplets = []

gate_times = []

list_of_mult = []
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exp_m1 = []

exp_m2 = []

for line in data_f:

line_data = line.split()

if line_data[1] == "m1":

exp_m1.append(tuple([line_data[3], line_data[4]]))

elif line_data[1] == "m2":

exp_m2.append(tuple([line_data[3], line_data[4]]))

elif line_data[1] == "multiplet":

#read in file names, found data:

data_flag = True

line_of_names = line_data[2:]

for i in range(len(line_of_names)):

word = line_of_names.pop(0)

if i % 2 == 0:

names.append(word.rstrip(","))

else:

gate_times.append(word)

#Make an instance of multiplicity_data for each name

for i in range(len(names)):

list_of_mult.append(multiplicity_data(name=names[i], gate_width = gate_times[i]))

#store m1 and m2

for i in range(len(exp_m1)):

list_of_mult[i].m1 = exp_m1[i]

list_of_mult[i].m2 = exp_m2[i]

elif data_flag:

#store multi. distribution data

multiplets.append(line_data[0])

idx=1

for i in range(len(names)):

list_of_mult[i].mult_dist.append(float(line_data[idx]))

list_of_mult[i].abs_error.append(float(line_data[idx+1])*float(line_data[idx]))

idx += 2

#Store multiplet numbers to classes

for i in range(len(list_of_mult)):

list_of_mult[i].multiplets = multiplets

#Store to master list

exp_data.append(list_of_mult)

data_f.close()

#--------------------------------------------------------------

"""GETTING OUT MCNP DATA"""

#Get all the directories with mtoolout files:

base_dir = os.path.abspath(os.getcwd())
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#open chi sq file for each gatewidth:

chi_out = []

for gw in gate_widths:

chi_out.append(open(chi_out_path+"chi_squared_gw"+gw+".out", "w"))

directories = []

for d in os.listdir(os.getcwd()):

if search_for("trial", d):

bad_dir_flag = False

for bad in bad_dir:

if search_for(bad, d):

print "\nSkipping directory %s \n" % d

bad_dir_flag = True

if not bad_dir_flag:

directories.append(d)

else:

continue

#Sort directories by date:

directories.sort(reverse=False)

#Print file header

for ff in chi_out:

ff.write("Data for list_mode tally: %s, reference keff value: 1.0000 +/- 0.0020\n\n" % det)

ff.write("%s%s%s%s%s%s%s%s\n" % ("Trial".center(27), "Chi-sq".center(21),

"Sigma Chi-sq".center(17),"Red. Chi-sq".center(21),

"Red. Sigma Chi-sq".center(17), "keff Chi-sq".center(15), "keff".center(13),

"Sigma-keff".center(15)))

#Get out mtool files for each directory

for d in directories:

os.chdir(d)

print "In directory %s\n" % d

sub_dir = os.listdir(os.curdir)

for dd in sub_dir:

if search_for("trial", dd):

os.chdir(dd)

print "Looking in subdirectory %s" % dd

#Look for the mtool.out files

files = os.listdir(os.curdir)

berp_files = []

mtool_files = []

for f_handle in files:

if search_for(’o\Z’, f_handle):

#Found an MCNP output file that should be appended

if search_for(crits, f_handle):

#---------------------------------------------------------

"""Get out the keff and error for each trial"""

kfile = open(f_handle, "r")

for line in kfile:
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if search_for("the final estimated combined", line):

keff = float(line.split()[8])

keff_err = float(line.split()[15])*keff

kfile.close()

break

else:

continue

continue

else:

berp_files.append(re.search(’(\S+)o\Z’,f_handle).group(1))

elif search_for(’\.mtoolout’, f_handle):

mtool_files.append(f_handle)

else:

continue

#----------------------------------------------------------------------

"""Generate mtool.out files if there is not one for each case:"""

berp_files.sort()

for f in berp_files:

#Make sure that mtool files do not already exist:

if search_for(f, mtool_files, flags="any"):

#make sure a file exists for each gatewidth

for gw in gate_widths:

temp_list = []

for mf in mtool_files:

if f in mf:

temp_list.append(mf)

if search_for(gw, temp_list, flags="any"): #TODO

#if search_for("falsenamenfeauonflaef", temp_list, flags="any"): #DEBUG

for temp_f in temp_list:

if search_for(gw, temp_f):

temp_file = open(temp_f, "r")

line = temp_file.readline()

check = abs(float(line.split()[3]) -

float(count_time_original))

if check < 0.001:

temp_file.close()

continue

else:

print "failed", line.split()[3], count_time_original, check, line

print d+dd

os.system("mtool -f %s.lm14 %s.lm34 -c %s -d %s -b %s -o %s.mtoolout"

% (f, f, count_time_original, dead_time, gw, (f+"_"+gw)))

temp_file.close()

#####END TEMP STUFF

continue

else:

os.system("mtool -f %s.lm14 %s.lm34 -c %s -d %s -b %s -o %s.mtoolout" %

(f, f, count_time_original, dead_time, gw, (f+"_"+gw)))

else:

#no mtool file for this berp ball, generate using mtool:
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for gw in gate_widths:

os.system("mtool -f %s.lm14 %s.lm34 -c %s -d %s -b %s -o %s.mtoolout" %

(f, f, count_time_original, dead_time, gw, (f+"_"+gw)))

#------------------------------------------------------------------------------------------

"""Parse the mcnp data"""

#Get new list of mtool files:

mtool_files = []

for file in os.listdir(os.getcwd()):

if search_for("\.mtoolout\Z", file):

mtool_files.append(file)

#Read in data:

mcnp_data = []

for gw in gate_widths:

#this list will contain data for all berp files and all detectors:

mcnp_temp_list = []

for file in mtool_files:

if not gw in file:

continue

data_f = open(file, "r")

data_flag = False

names = []

multiplets = []

gate_times = []

list_of_mult = []

mcnp_m1 = []

mcnp_m2 = []

first_line = True

for line in data_f:

line_data = line.split()

if first_line:

count_time = line_data[3]

dead_time = line_data[7]

gate_time = line_data[11]

first_line = False

elif line_data[1] == "m1":

mcnp_m1.append(tuple([line_data[3], line_data[4]]))

elif line_data[1] == "m2":

mcnp_m2.append(tuple([line_data[3], line_data[4]]))

elif search_for("#multiplet", line):

#read in file names (different detectors) found data:

data_flag = True

line_of_names = line_data[1:]

for i in line_of_names:

names.append(i)
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#Make an instance of multiplicity_data for each name

for i in range(len(names)):

list_of_mult.append(multiplicity_data(name=names[i], gate_width = gate_time))

#Store m1 and m2

for i in range(len(names)):

list_of_mult[i].m1 = mcnp_m1[i]

list_of_mult[i].m2 = mcnp_m2[i]

elif data_flag:

#store multi. distribution data

multiplets.append(line_data[0])

idx=1

for i in range(len(names)):

list_of_mult[i].mult_dist.append(float(line_data[idx]))

list_of_mult[i].abs_error.append(float(line_data[idx+1])*float(line_data[idx]))

idx += 2

#Store multiplet numbers to classes

for i in range(len(list_of_mult)):

list_of_mult[i].multiplets = multiplets

#Store to master list

mcnp_temp_list += list_of_mult

data_f.close()

mcnp_data.append(mcnp_temp_list)

#------------------------------------------------------------------------------------------

"""Compute chi_sq of all the data for each trial, for each gatewidth"""

for gw in range(len(gate_widths)):

#Loop through all gate_widths

chi_sq = 0.0

red_chi_sq = 0.0

m1_mcnp_data = []

m2_mcnp_data = []

m1_exp_data = []

m2_exp_data = []

if berp_files == []:

error_flag = True

msg = "NO MCNP_OUTPUT FILES, MAJOR ERROR MADE"

print msg

for berp in berp_files:

#Loop through all berp_files

#Get out mcnp data and matching exp data:

mcnp = None

for data in mcnp_data[gw]:

if search_for(berp, data.name):

if search_for(gate_widths[gw], data.gate_width):

if search_for(det, data.name):
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#Found the right one

m1_mcnp_data.append(data.m1)

m2_mcnp_data.append(data.m2)

mcnp = data

break

error_flag = False

#Shoudl not be missing anything:

if mcnp == None:

msg = "\nWARNING: MCNP output no good in %s for %s, ignoring in FOM calc" %

((d+dd), berp)

print msg

error_flag = True

continue

#Get corresponding exp_data:

for data in exp_data[gw]:

if search_for(berp, data.name):

if search_for(gate_widths[gw], data.gate_width):

#Found the right one

m1_exp_data.append(data.m1)

m2_exp_data.append(data.m2)

exp = data

break

# --------------------------------------------------------------------------

"""Compute the chi_sq value for each berp_file. The exp data usually has

less points, so loop over those only"""

if len(exp.mult_dist) > len(mcnp.mult_dist):

raise ValueError("Need to check this")

#Determine how many non zero bins are being compared each time

sum = 0

num_bins = 0

for i in range(len(exp.mult_dist)):

if (exp.mult_dist[i] == 0.0 and mcnp.mult_dist[i] == 0.0):

#zero_score, ignore

continue

else:

num_bins += 1

temp_val = exp.mult_dist[i] - mcnp.mult_dist[i]

temp_val = temp_val*temp_val

temp_val = temp_val/(math.pow(exp.abs_error[i],2)+math.pow(mcnp.abs_error[i], 2))

sum += temp_val

#Compute reduced chi-sq:

red_chi_sq += sum/(float(num_bins))

chi_sq += sum/(float(num_bins))

#Store m1 and m2 for mcnp

m1_list[gw].append(m1_mcnp_data)

m2_list[gw].append(m1_mcnp_data)

#Add in term for keff:

temp_val = (1.0 - keff)*(1.0 - keff)/(keff_err*keff_err+0.002*0.002)

k_chi = temp_val

red_chi_sq += temp_val

#Compute chi_sq standard error based on error propogation
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chi_err = 2.*math.sqrt(chi_sq)

red_chi_err = 2.*math.sqrt(red_chi_sq)*1/math.sqrt(6)

all_data_list[gw].append([d+"/"+dd, chi_sq, chi_err, red_chi_sq, red_chi_err,

k_chi, keff, keff_err, m1_mcnp_data, m2_mcnp_data])

#print to output file for each gate_width

if error_flag:

all_data_list[gw][-1][0] = all_data_list[gw][-1][0]+msg

# chi_err, red_chi_sq, red_chi_err, k_chi, keff, keff_err))

os.chdir(base_dir)

os.chdir(d)

os.chdir(base_dir)

#Sort data or not?

if sort_data:

temp_all_data = []

for gw in all_data_list:

temp_sort = gw

gw.sort(key=lambda trial : trial[3])

temp_all_data.append(gw)

all_data_list = temp_all_data

#print to output file

for gw in range(len(gate_widths)):

for i in range(len(all_data_list[0])):

chi_out[gw].write("%27s %14.2f %17.2f %17.2f %17.2f %15.4f %14.4f +/-%10.4f" %

(all_data_list[gw][i][0], all_data_list[gw][i][1], all_data_list[gw][i][2],

all_data_list[gw][i][3], all_data_list[gw][i][4], all_data_list[gw][i][5],

float(all_data_list[gw][i][6]), float(all_data_list[gw][i][7])))

#Print out m1

chi_out[gw].write(" m1:")

for t in range(len(all_data_list[gw][i][8])):

chi_out[gw].write("%s %s " % (all_data_list[gw][i][8][t][0],

all_data_list[gw][i][8][t][1]))

chi_out[gw].write(" m2:")

for t in range(len(all_data_list[gw][i][8])):

chi_out[gw].write("%s %s " % (all_data_list[gw][i][9][t][0],

all_data_list[gw][i][9][t][1]))

chi_out[gw].write("\n")

#Print out m1

chi_out[gw].write("Exp Data: \n m1:")

for t in range(len(m1_exp_data)):

chi_out[gw].write("%s %s " % (m1_exp_data[t][0],m1_exp_data[t][1]))

chi_out[gw].write(" \n m2:")

for t in range(len(m2_exp_data)):

chi_out[gw].write("%s %s " % (m2_exp_data[t][0],m2_exp_data[t][1]))

for file in chi_out:

file.close()

return None

# ----------------------------------/--------------------------------------

class multiplicity_data(object):

"""Container for the data for a set of experimental data for a berpfile (multiplicity distr etc)"""

def __init__(self, name=None, gate_width=None):
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self.clear()

self.gate_width = gate_width

self.name = name

return None

def clear(self):

self.name = None

self.multiplets = []

self.mult_dist = []

self.abs_error = []

self.gate_width = None

self.count_time = None

self.m1 = None

self.m2 = None

return None

# ----------------------------------/--------------------------------------

def search_for(pattern, strings, flags=None):

import re

"""Reads in strings, which is either a list of strings or a single string and searches string

for pattern. Returns true if all match by default."""

"strings is a list of strings"

if getattr(strings, "pop", False):

#loop through each pattern and search

for i in strings:

if re.search(pattern, str(i), flags=re.IGNORECASE): #matca

if flags == "any":

return True

else:

continue

else:

if flags == "all":

return False

else:

continue

if flags == "all":

return True #all matched

else:

return False

elif getattr(str(strings), "lstrip", False):

#search for pattern in string

if re.search(pattern, str(strings), flags=re.IGNORECASE):

return True

else:

return False

#CALL MAIN BY DEFAULT

if __name__ == ’__main__’:

main()

246



Appendix F

Multiplicity and Criticality MCNP
Input Files

Description Page

MCNP5 mult input file for JEZEBEL fast critical
benchmark.
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MCNP5 mult file for a 3.0-cm reflected Pu sphere
multiplicity experiment.
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MCNP5 mult Input File for JEZEBEL Criticality Ex-

periment
Bare Pu-239 Jezebel, ref. PU-MET-FAST-001

1 1 0.04029014 -1 imp:n=1

2 0 1 imp:n=0

1 so 6.3849

m1 94239.55c 0.037047

94240.50c 0.0017512

94241.50c 0.00011674

31000.50c 0.0013752

kcode 2500 1.0 10 110

ksrc 0 0 0

print

c m0303 is the ACE file for trial 303

XS1 94239.99c 236.998600 m0303 0 1 1 808738 0 0 2.5301E-08 ptable

248



MCNP5 mult Input File for 3.0-cm Reflected Multiplic-

ity Experiment
LANL BERP BALL MEASUREMENTS

c Configuration: BERP ball w/ 3" poly reflector

c Diagnostics: 1 NPODS, 1 SNAP (no poly), 1 HPGe

c ==============================================================================

c CELL CARDS

c ==============================================================================

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c begin non-detector cells

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c --------------------------------------

c BeRP ball

c --------------------------------------

1001 1 -19.604 -101 $ (19.604 w/ rho,M,V; 19.655

imp:n=1

1002 0 101 -102 $ void between ball and ss304

imp:n=1

1003 2 -7.92 102 -103 $ ss304

imp:n=1

1004 9 -0.962 110 -160 116 -119 $ poly sleeve

imp:n=1

1005 9 -0.962 (161 162 -163): $ 4 in diameter poly reflector

(-161 162 -163 119)

imp:n=1

1006 9 -0.962 (161 163 -164): $ 5 in diameter poly reflector

(-161 163 -164 119)

imp:n=1

1007 9 -0.962 (161 164 -165): $ 6 in diameter poly reflector

(-161 164 -165 119)

imp:n=1

1008 9 -0.962 (161 165 -166): $ 9 in diameter poly reflector

(-161 165 -166 119 110)

imp:n=1

1009 21 -0.0012 (161 166 -167): $ 15 in diameter poly reflector

(-161 166 -167 (110:111:-112:113:-114) 141)

imp:n=1

c --------------------------------------

c BeRP ball stand

c --------------------------------------

1101 3 -2.70 -110 141 -111 112 -113 114 $ Base

imp:n=1

1102 3 -2.70 110 115 -116 -117 $ Stand neck

imp:n=1

1103 3 -2.70 117 -119 -121 (118:-120) $ Stand

imp:n=1

c --------------------------------------

c tables

c --------------------------------------

1201 8 -7.874 140 -142 143 -146 147 -150 $ Table 1

(-141:-144:145:-148:149)

imp:n=1

1202 8 -7.874 140 -142 151 -143 147 -150 $ Table 2

(-141:-152:153:-148:149)

imp:n=1

c --------------------------------------

c room

c --------------------------------------

1800 21 -0.0012 122 -999 $ inside room

103 $ outside BeRP ball

#1101 #1102 #1103 $ not the BeRP ball stand

#1004 $ not the poly sleeve

#1005 #1006 #1007 #1008 #1009 $ not the poly reflectors

#1201 $ not the tables

#1202
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#3000 $ not the NPOD3

#5000 $ not the SNAP3

imp:n=1

c --------------------------------------

c floor

c --------------------------------------

1901 23 -2.3 -122 123 -999 $ concrete floor

imp:n=1

1902 21 -0.0012 -123 -999 $ "basement"

imp:n=1

9999 0 999 $ outside world

imp:n=0

c --------------------------------------

c detectors

c --------------------------------------

3000 0 131 -132 133 -134 135 -136 $ NPOD3 container cell

imp:n=1 fill= 3 (3)

5000 0 -178 179 -180 -199 $ SNAP3 container cell

imp:n=1 fill= 5 (5)

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c end non-detector cells

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c begin NPOD version 3 cells

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c --------------------------------------

c Detector body

c --------------------------------------

3001 3001 -0.962 3001 -3002 3003 -3004 3005 -3006 (3020:-3005:3006) $ poly body

(3023:-3005:3006)(3026:-3005:3006)(3029:-3005:3006)

(3032:-3005:3006)(3035:-3005:3006)(3038:-3005:3006)

(3041:-3005:3006)(3044:-3005:3006)(3047:-3005:3006)

(3050:-3005:3006)(3053:-3005:3006)(3056:-3005:3006)

(3059:-3005:3006)(3062:-3005:3006)

imp:n=1 u=3

c --------------------------------------

c Holes in poly body for tubes

c --------------------------------------

3002 0 -3020 3005 -3006 (3019:-3005:3006) $ hole 1 $ front row

imp:n=1 u=3

3003 0 -3023 3005 -3006 (3022:-3005:3006) $ hole 2

imp:n=1 u=3

3004 0 -3026 3005 -3006 (3025:-3005:3006) $ hole 3

imp:n=1 u=3

3005 0 -3029 3005 -3006 (3028:-3005:3006) $ hole 4

imp:n=1 u=3

3006 0 -3032 3005 -3006 (3031:-3005:3006) $ hole 5

imp:n=1 u=3

3007 0 -3035 3005 -3006 (3034:-3005:3006) $ hole 6

imp:n=1 u=3

3008 0 -3038 3005 -3006 (3037:-3005:3006) $ hole 7

imp:n=1 u=3

3009 0 -3041 3005 -3006 (3040:-3005:3006) $ hole 8

imp:n=1 u=3

3010 0 -3044 3005 -3006 (3043:-3005:3006) $ hole 9 $ back row

imp:n=1 u=3

3011 0 -3047 3005 -3006 (3046:-3005:3006) $ hole 10

imp:n=1 u=3

3012 0 -3050 3005 -3006 (3049:-3005:3006) $ hole 11

imp:n=1 u=3

3013 0 -3053 3005 -3006 (3052:-3005:3006) $ hole 12

imp:n=1 u=3

3014 0 -3056 3005 -3006 (3055:-3005:3006) $ hole 13

imp:n=1 u=3

3015 0 -3059 3005 -3006 (3058:-3005:3006) $ hole 14

imp:n=1 u=3

3016 0 -3062 3005 -3006 (3061:-3005:3006) $ hole 15

imp:n=1 u=3
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c --------------------------------------

c Al wall for He3 tubes

c --------------------------------------

3017 3002 -2.70 -3019 3005 -3006 (3018:-3013:3014) $ Al wall tube 1

(3018:-3014:3015) (3018:-3015:3006)

imp:n=1 u=3

3018 3002 -2.70 -3022 3005 -3006 (3021:-3013:3014) $ Al wall tube 2

(3021:-3014:3015) (3021:-3015:3006)

imp:n=1 u=3

3019 3002 -2.70 -3025 3005 -3006 (3024:-3013:3014) $ Al wall tube 3

(3024:-3014:3015) (3024:-3015:3006)

imp:n=1 u=3

3020 3002 -2.70 -3028 3005 -3006 (3027:-3013:3014) $ Al wall tube 4

(3027:-3014:3015) (3027:-3015:3006)

imp:n=1 u=3

3021 3002 -2.70 -3031 3005 -3006 (3030:-3013:3014) $ Al wall tube 5

(3030:-3014:3015) (3030:-3015:3006)

imp:n=1 u=3

3022 3002 -2.70 -3034 3005 -3006 (3033:-3013:3014) $ Al wall tube 6

(3033:-3014:3015) (3033:-3015:3006)

imp:n=1 u=3

3023 3002 -2.70 -3037 3005 -3006 (3036:-3013:3014) $ Al wall tube 7

(3036:-3014:3015) (3036:-3015:3006)

imp:n=1 u=3

3024 3002 -2.70 -3040 3005 -3006 (3039:-3013:3014) $ Al wall tube 8

(3039:-3014:3015) (3039:-3015:3006)

imp:n=1 u=3

3025 3002 -2.70 -3043 3005 -3006 (3042:-3013:3014) $ Al wall tube 9

(3042:-3014:3015) (3042:-3015:3006)

imp:n=1 u=3

3026 3002 -2.70 -3046 3005 -3006 (3045:-3013:3014) $ Al wall tube 10

(3045:-3014:3015) (3045:-3015:3006)

imp:n=1 u=3

3027 3002 -2.70 -3049 3005 -3006 (3048:-3013:3014) $ Al wall tube 11

(3048:-3014:3015) (3048:-3015:3006)

imp:n=1 u=3

3028 3002 -2.70 -3052 3005 -3006 (3051:-3013:3014) $ Al wall tube 12

(3051:-3014:3015) (3051:-3015:3006)

imp:n=1 u=3

3029 3002 -2.70 -3055 3005 -3006 (3054:-3013:3014) $ Al wall tube 13

(3054:-3014:3015) (3054:-3015:3006)

imp:n=1 u=3

3030 3002 -2.70 -3058 3005 -3006 (3057:-3013:3014) $ Al wall tube 14

(3057:-3014:3015) (3057:-3015:3006)

imp:n=1 u=3

3031 3002 -2.70 -3061 3005 -3006 (3060:-3013:3014) $ Al wall tube 15

(3060:-3014:3015) (3060:-3015:3006)

imp:n=1 u=3

c --------------------------------------

c He-3 regions; note the tube numbering scheme. Eight tubes in front

c seven in back. Tubes are numbered in clockwise direction starting at "347"

c --------------------------------------

3032 3003 -0.001434 -3018 3013 -3014 $ 3He+C+O, 10.2 atm, tube 1 ldr

imp:n=1 u=3

3033 3003 -0.001434 -3021 3013 -3014 $ 3He+C+O, 10.2 atm, tube 2 ldr

imp:n=1 u=3

3034 3003 -0.001434 -3024 3013 -3014 $ 3He+C+O, 10.2 atm, tube 3 ldr

imp:n=1 u=3

3035 3003 -0.001434 -3027 3013 -3014 $ 3He+C+O, 10.2 atm, tube 4 ldr

imp:n=1 u=3

3036 3003 -0.001434 -3030 3013 -3014 $ 3He+C+O, 10.2 atm, tube 5 ldr

imp:n=1 u=3

3037 3003 -0.001434 -3033 3013 -3014 $ 3He+C+O, 10.2 atm, tube 6 ldr

imp:n=1 u=3

3038 3003 -0.001434 -3036 3013 -3014 $ 3He+C+O, 10.2 atm, tube 7 ldr

imp:n=1 u=3

3039 3003 -0.001434 -3039 3013 -3014 $ 3He+C+O, 10.2 atm, tube 8 ldr

imp:n=1 u=3
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3040 3003 -0.001434 -3042 3013 -3014 $ 3He+C+O, 10.2 atm, tube 9 ldr

imp:n=1 u=3

3041 3003 -0.001434 -3045 3013 -3014 $ 3He+C+O, 10.2 atm, tube 10 ldr

imp:n=1 u=3

3042 3003 -0.001434 -3048 3013 -3014 $ 3He+C+O, 10.2 atm, tube 11 ldr

imp:n=1 u=3

3043 3003 -0.001434 -3051 3013 -3014 $ 3He+C+O, 10.2 atm, tube 12 ldr

imp:n=1 u=3

3044 3003 -0.001434 -3054 3013 -3014 $ 3He+C+O, 10.2 atm, tube 13 ldr

imp:n=1 u=3

3045 3003 -0.001434 -3057 3013 -3014 $ 3He+C+O, 10.2 atm, tube 14 ldr

imp:n=1 u=3

3046 3003 -0.001434 -3060 3013 -3014 $ 3He+C+O, 10.2 atm, tube 15 ldr

imp:n=1 u=3

c

3047 3003 -0.001434 -3018 3014 -3015 $ 3He+C+O, 10.2 atm, tube 1 ar

imp:n=1 u=3

3048 3003 -0.001434 -3021 3014 -3015 $ 3He+C+O, 10.2 atm, tube 2 ar

imp:n=1 u=3

3049 3003 -0.001434 -3024 3014 -3015 $ 3He+C+O, 10.2 atm, tube 3 ar

imp:n=1 u=3

3050 3003 -0.001434 -3027 3014 -3015 $ 3He+C+O, 10.2 atm, tube 4 ar

imp:n=1 u=3

3051 3003 -0.001434 -3030 3014 -3015 $ 3He+C+O, 10.2 atm, tube 5 ar

imp:n=1 u=3

3052 3003 -0.001434 -3033 3014 -3015 $ 3He+C+O, 10.2 atm, tube 6 ar

imp:n=1 u=3

3053 3003 -0.001434 -3036 3014 -3015 $ 3He+C+O, 10.2 atm, tube 7 ar

imp:n=1 u=3

3054 3003 -0.001434 -3039 3014 -3015 $ 3He+C+O, 10.2 atm, tube 8 ar

imp:n=1 u=3

3055 3003 -0.001434 -3042 3014 -3015 $ 3He+C+O, 10.2 atm, tube 9 ar

imp:n=1 u=3

3056 3003 -0.001434 -3045 3014 -3015 $ 3He+C+O, 10.2 atm, tube 10 ar

imp:n=1 u=3

3057 3003 -0.001434 -3048 3014 -3015 $ 3He+C+O, 10.2 atm, tube 11 ar

imp:n=1 u=3

3058 3003 -0.001434 -3051 3014 -3015 $ 3He+C+O, 10.2 atm, tube 12 ar

imp:n=1 u=3

3059 3003 -0.001434 -3054 3014 -3015 $ 3He+C+O, 10.2 atm, tube 13 ar

imp:n=1 u=3

3060 3003 -0.001434 -3057 3014 -3015 $ 3He+C+O, 10.2 atm, tube 14 ar

imp:n=1 u=3

3061 3003 -0.001434 -3060 3014 -3015 $ 3He+C+O, 10.2 atm, tube 15 ar

imp:n=1 u=3

c

3062 3003 -0.001434 -3018 3015 -3006 $ 3He+C+O, 10.2 atm, tube 1 udr

imp:n=1 u=3

3063 3003 -0.001434 -3021 3015 -3006 $ 3He+C+O, 10.2 atm, tube 2 udr

imp:n=1 u=3

3064 3003 -0.001434 -3024 3015 -3006 $ 3He+C+O, 10.2 atm, tube 3 udr

imp:n=1 u=3

3065 3003 -0.001434 -3027 3015 -3006 $ 3He+C+O, 10.2 atm, tube 4 udr

imp:n=1 u=3

3066 3003 -0.001434 -3030 3015 -3006 $ 3He+C+O, 10.2 atm, tube 5 udr

imp:n=1 u=3

3067 3003 -0.001434 -3033 3015 -3006 $ 3He+C+O, 10.2 atm, tube 6 udr

imp:n=1 u=3

3068 3003 -0.001434 -3036 3015 -3006 $ 3He+C+O, 10.2 atm, tube 7 udr

imp:n=1 u=3

3069 3003 -0.001434 -3039 3015 -3006 $ 3He+C+O, 10.2 atm, tube 8 udr

imp:n=1 u=3

3070 3003 -0.001434 -3042 3015 -3006 $ 3He+C+O, 10.2 atm, tube 9 udr

imp:n=1 u=3

3071 3003 -0.001434 -3045 3015 -3006 $ 3He+C+O, 10.2 atm, tube 10 udr

imp:n=1 u=3

3072 3003 -0.001434 -3048 3015 -3006 $ 3He+C+O, 10.2 atm, tube 11 udr

imp:n=1 u=3
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3073 3003 -0.001434 -3051 3015 -3006 $ 3He+C+O, 10.2 atm, tube 12 udr

imp:n=1 u=3

3074 3003 -0.001434 -3054 3015 -3006 $ 3He+C+O, 10.2 atm, tube 13 udr

imp:n=1 u=3

3075 3003 -0.001434 -3057 3015 -3006 $ 3He+C+O, 10.2 atm, tube 14 udr

imp:n=1 u=3

3076 3003 -0.001434 -3060 3015 -3006 $ 3He+C+O, 10.2 atm, tube 15 udr

imp:n=1 u=3

c --------------------------------------

c Cadmium Wrap

c --------------------------------------

3077 3004 -8.65 3007 -3008 3009 -3010 3011 -3005 $ bottom Cd

imp:n=1 u=3

3078 3004 -8.65 3007 -3001 3009 -3010 3005 -3006 $ Cd -x

imp:n=1 u=3

3079 3004 -8.65 3002 -3008 3009 -3010 3005 -3006 $ Cd +x

imp:n=1 u=3

3080 3004 -8.65 3001 -3002 3009 -3003 3005 -3006 $ Cd -y

imp:n=1 u=3

3081 3004 -8.65 3001 -3002 3004 -3010 3005 -3006 $ Cd +y

imp:n=1 u=3

c --------------------------------------

c Cadmium shield

c --------------------------------------

3082 3004 -8.65 3007 -3008 3009 -3010 3006 -3012 $ Cd top

imp:n=1 u=3

c --------------------------------------

c Pre-amp housing

c --------------------------------------

3083 3002 -2.7 3063 -3064 3065 -3066 3012 -3067

imp:n=1 u=3

3084 0 3069 -3070 3071 -3072 3067 -3068 $ inside housing

(-3073:3074:-3075:3076:-3077:3078)

(-3073:3074:-3075:3076:-3079:3080)

imp:n=1 u=3

3085 3002 -2.7 3063 -3064 3065 -3066 3067 -3068

(-3069:3070:-3071:3072:-3067:3068)

imp:n=1 u=3

3086 3004 -8.65 3073 -3074 3075 -3076 3077 -3078 $ rf shield

imp:n=1 u=3

3087 3006 -2.33 3073 -3074 3075 -3076 3079 -3080 $ dielectric circuit board

imp:n=1 u=3

c --------------------------------------

c Display Housing

c --------------------------------------

3088 0 3001 -3002 3009 -3081 3068 -3082

(-3001:3083:-3009:3081:-3068:3082)

(-3083:3084:-3009:3085:-3068:3082)

(-3084:3002:-3009:3081:-3068:3082)

(-3083:3084:-3086:3081:-3068:3082)

(-3083:3084:-3085:3086:-3087:3082)

(-3083:3084:-3085:3086:-3088:3089)

imp:n=1 u=3

3089 3002 -2.7 3001 -3083 3009 -3081 3068 -3082 $ Al wall, -x

imp:n=1 u=3

3090 3002 -2.7 3083 -3084 3009 -3085 3068 -3082 $ Al wall, -y

imp:n=1 u=3

3091 3002 -2.7 3084 -3002 3009 -3081 3068 -3082 $ Al wall, +x

imp:n=1 u=3

3092 3002 -2.7 3083 -3084 3086 -3081 3068 -3082 $ Al wall, +y

imp:n=1 u=3

3093 3002 -2.7 3083 -3084 3085 -3086 3087 -3082 $ Al top

imp:n=1 u=3

3094 3006 -2.33 3083 -3084 3085 -3086 3088 -3089 $ dielectric circuit board

imp:n=1 u=3

c

3999 0 (-3001:3002:-3003:3004:-3005:3006) $ outside detector

(-3007:3008:-3009:3010:-3011:3005) $ for use in universes
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(-3007:3001:-3009:3010:-3005:3006)

(-3002:3008:-3009:3010:-3005:3006)

(-3001:3002:-3009:3003:-3005:3006)

(-3001:3002:-3004:3010:-3005:3006)

(-3007:3008:-3009:3010:-3006:3012)

(-3063:3064:-3065:3066:-3012:3067)

(-3063:3064:-3065:3066:-3067:3068)

(-3001:3002:-3009:3081:-3068:3082)

imp:n=1 u=3

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c end NPOD version 3 cells

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c begin SNAP3 cells

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c --------------------------------------

c Tripod plate

c --------------------------------------

5001 5001 -2.7 5002 -5003 -5004 -5005 $ Aluminum

imp:n=1 u=5

c

c --------------------------------------

c Bottom cover

c --------------------------------------

5002 5002 -0.962 5003 -5006 -5007 -5008 $ High Density poly

imp:n=1 u=5

c --------------------------------------

c He3 Tube

c --------------------------------------

5003 5003 -0.001284 -5009 5011 -5012 $ lower dead region

imp:n=1 u=5

5004 5003 -0.001284 -5009 5012 -5013 $ active region l = 10.1

imp:n=1 u=5

5005 5003 -0.001284 -5009 5013 -5014 $ upper dead region

imp:n=1 u=5

5006 5001 -2.7 5010 -5015 -5016 (5009:-5011:5014) $ SST wall of he3 tube

imp:n=1 u=5

c --------------------------------------

c HN Connector

c --------------------------------------

5007 0 -5018 5015 -5027

imp:n=1 u=5

5008 5004 -7.89 -5017 5015 -5027 5018

imp:n=1 u=5

5009 5004 -7.89 5027 -5039 5018 -5017

imp:n=1 u=5

5010 5002 -0.962 5026 -5021 5019 -5020 $ poly sleeve

imp:n=1 u=5

5011 5005 -8.65 5021 -5022 5019 -5020 $ Cd top

imp:n=1 u=5

5012 5002 -0.962 5022 -5027 5019 -5020 $ top spacer - pol

imp:n=1 u=5

5013 5005 -8.65 5006 -5023 5024 -5025 $ Cd shield

imp:n=1 u=5

c --------------------------------------

c Detector body

c --------------------------------------

5014 5002 -0.962 5006 -5027 5028 -5007 -5008

(-5046:-5033: 5034)

(-5029: 5030)

5048

imp:n=1 u=5

5015 5002 -0.962 5006 -5027 5028 -5007 -5048

imp:n=1 u=5

c --------------------------------------

c Protective cover

c --------------------------------------

5016 5001 -2.7 5003 -5039 5007 -5032 -5008

254



imp:n=1 u=5

c --------------------------------------

c Inner front protective cover

c --------------------------------------

5017 5001 -2.7 5006 -5027 5033 -5034 5046 -5008

imp:n=1 u=5

c --------------------------------------

c Removable CH2 Shield

c --------------------------------------

5018 0 5008 -5047 5035 -5036 5003 -5039 $ NO CH2 in front of S

c 5018 5002 -0.962 5008 -5047 5035 -5036 5003 -5039 $ CH2 in front of SN

imp:n=1 u=5

c --------------------------------------

c Top cover

c --------------------------------------

5019 5002 -0.962 -5007 -5008 5027 -5039 (5019 (-5038:5037)) $ top plate

imp:n=1 u=5

c --------------------------------------

c MC PCB Housing

c --------------------------------------

5020 0 -5043 -5008 5039 -5044 (5043:5008:-5039:5041)

(5043:5008:-5041:5044) (5042:5040:-5041:5044)

imp:n=1 u=5

5021 5001 -2.7 -5043 -5008 5039 -5041

imp:n=1 u=5

5022 5001 -2.7 -5043 -5008 5041 -5044 (5042:5040:-5041:5044)

imp:n=1 u=5

5023 0 -5042 -5040 5041 -5044

imp:n=1 u=5

c --------------------------------------

c Display housing

c --------------------------------------

5024 5001 -2.7 -5043 -5008 5044 -5045

imp:n=1 u=5

c --------------------------------------

c Cd bottom shield

c --------------------------------------

5025 5005 -8.65 5006 -5026 -5024

imp:n=1 u=5

c --------------------------------------

c voids in detector

c --------------------------------------

5026 0 5010 -5015 5016 -5019

imp:n=1 u=5

5027 0 5015 -5027 5017 -5019

imp:n=1 u=5

5028 0 5023 -5027 5020 -5028

imp:n=1 u=5

5029 0 5026 -5023 5020 -5024

imp:n=1 u=5

5030 0 5006 -5023 5025 -5028

imp:n=1 u=5

5031 0 5026 -5010 -5019

imp:n=1 u=5

5032 0 5006 -5027 5029 -5030 5028 -5046 5048

imp:n=1 u=5

5033 0 5027 -5039 -5037 (5038:-5019) 5017

imp:n=1 u=5

5034 0 5027 -5039 -5018

imp:n=1 u=5

c --------------------------------------

c voids outside detector

c --------------------------------------

5035 0 5001 -5002 -5031

imp:n=1 u=5

5036 0 5002 -5003 5004 -5031

imp:n=1 u=5

5037 0 5002 -5003 5005 -5031 -5004
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imp:n=1 u=5

5038 0 5003 -5039 5008 -5031

(5036:5047:-5035)

imp:n=1 u=5

5039 0 5003 -5039 -5008 5032 -5031

imp:n=1 u=5

5040 0 5039 -5041 5008 -5031

imp:n=1 u=5

5041 0 5039 -5041 -5008 5043 -5031

imp:n=1 u=5

5042 0 5041 -5044 5008 -5031

imp:n=1 u=5

5043 0 5041 -5044 -5008 5043 -5031

imp:n=1 u=5

5044 0 5044 -5045 5008 -5031

imp:n=1 u=5

5045 0 5044 -5045 -5008 5043 -5031

imp:n=1 u=5

c --------------------------------------

c Outside detector (for including in universe)

c --------------------------------------

5999 0 5031:-5001:5045

imp:n=1 u=5

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c end SNAP3 cells

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c ==============================================================================

c SURFACE CARDS

c ==============================================================================

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c begin non-detector surfaces

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c --------------------------------------

c BeRP ball minus the Be (i.e. a Pu Sphere)

c see Eldon Brandon, "Assembly of 239Pu Ball for Criticality Experiment"

c CMB-11-FAB-80-65 (Oct 23, 1980)

c --------------------------------------

101 sz 97.425 3.7938 $ mean diameter 75.876 mm of pu ball

102 sz 97.425 3.827 $ IR ss304 clad

103 sz 97.425 3.8558 $ OR ss304 clad; see Atwater memo Q2-85-5045A (22 Apr 85)

c --------------------------------------

c stand for BeRP ball

c --------------------------------------

110 pz 86.487 $ top of base

c use surf of table, surface 141, as bottom

111 px 7.62 $ sides of base

112 px -7.62 $ sides of base

113 py 7.62 $ sides of base

114 py -7.62 $ sides of base

115 cz 0.3937 $ lower cylinder inside

116 cz 0.9535 $ lower cylinder outside

117 pz 92.04325 $ lower cylinder top

118 cz 1.87579 $ upper cylinder inside

119 cz 2.21615 $ upper cylinder outside

120 pz 92.78239 $ upper cylinder mid

121 pz 94.05239 $ upper cylinder mid

c --------------------------------------

c concrete floor

c --------------------------------------

122 pz 0.0

123 pz -91.44 $ 3 ft of concrete

c --------------------------------------

c NPOD container surfaces

c --------------------------------------

131 3 px -21.668699

132 3 px 21.668699

133 3 py 0.000001
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134 3 py 10.317439

135 3 pz 0.000001

136 3 pz 49.428399

c --------------------------------------

c tables

c --------------------------------------

c ~~~ table 1: BeRP & NPOD3 ~~~

140 pz 84.951316 $ bottom

141 pz 85.217 $ surface

142 pz 89.027 $ top of edges

143 px -61.2775 $ -x outer edge

144 px -61.011816 $ -x inner edge

145 px 61.011816 $ +x inner edge

146 px 61.2775 $ +x outer edge

147 py -30.7975 $ -y outer edge

148 py -30.531816 $ -y inner edge

149 py 30.531816 $ +y inner edge

150 py 30.7975 $ +y outer edge

c ~~~ table 2: SNAP3 ~~~

c use same bottom, surface 140

c use same surface, surface 141

c use same top of edges, surface 142

151 px -183.83250 $ -x outer edge

152 px -183.566816 $ -x inner edge

153 px -61.543184 $ +x inner edge

c use table 1 -x outer edge for table 2 +x outer edge, surface 143

c use table 1’s -y outer and inner edges and +y outer and inner edges

c --------------------------------------

c polyethylene reflector surfaces

c --------------------------------------

160 pz 91.567 $ poly sleeve

161 pz 97.425

c

162 sz 97.425 3.90271

163 sz 97.425 5.12572

164 sz 97.425 6.39572

165 sz 97.425 7.66572

166 sz 97.425 11.47572

167 sz 97.425 19.09572

c --------------------------------------

c SNAP container surfaces

c --------------------------------------

178 5 cz 10.4

199 5 px 7.3659999

179 5 pz 0.000001

180 5 pz 36.525199

c --------------------------------------

c problem boundary

c --------------------------------------

999 sph 0 0 0 500 $ outside world

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c begin non-detector surfaces

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c begin NPOD version 3 surfaces

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

3001 px -21.59

3002 px 21.59

3003 py 0.07874

3004 py 10.2387

3005 pz 0.07874

3006 pz 42.2427

3007 px -21.6687

3008 px 21.6687

3009 py 0.0

3010 py 10.31744

3011 pz 0.0

3012 pz 42.3214

257



3013 pz 0.15748 $ bottom of ldr

3014 pz 2.49174 $ top of ldr - bottom of ar

3015 pz 40.59174 $ top of ar - bottom of udr

c 3016 pz 43.688 $ top of udr

c 3017 pz 43.7667 $ top of al wall

3018 c/z -17.85874 8.255 1.19126 $ tube 1

3019 c/z -17.85874 8.255 1.27

3020 c/z -17.85874 8.255 1.3462

3021 c/z -12.77874 8.255 1.19126 $ tube 2

3022 c/z -12.77874 8.255 1.27

3023 c/z -12.77874 8.255 1.3462

3024 c/z -7.69874 8.255 1.19126 $ tube 3

3025 c/z -7.69874 8.255 1.27

3026 c/z -7.69874 8.255 1.3462

3027 c/z -2.61874 8.255 1.19126 $ tube 4

3028 c/z -2.61874 8.255 1.27

3029 c/z -2.61874 8.255 1.346

3030 c/z 2.46126 8.255 1.19126 $ tube 5

3031 c/z 2.46126 8.255 1.27

3032 c/z 2.46126 8.255 1.3462

3033 c/z 7.54126 8.255 1.19126 $ tube 6

3034 c/z 7.54126 8.255 1.27

3035 c/z 7.54126 8.255 1.3462

3036 c/z 12.62126 8.255 1.19126 $ tube 7

3037 c/z 12.62126 8.255 1.27

3038 c/z 12.62126 8.255 1.3462

3039 c/z 17.70126 8.255 1.19126 $ tube 8

3040 c/z 17.70126 8.255 1.27

3041 c/z 17.70126 8.255 1.3462

3042 c/z 15.3187 4.064 1.19126 $ tube 9

3043 c/z 15.3187 4.064 1.27

3044 c/z 15.3187 4.064 1.3462

3045 c/z 10.2387 4.064 1.19126 $ tube 10

3046 c/z 10.2387 4.064 1.27

3047 c/z 10.2387 4.064 1.3462

3048 c/z 5.15874 4.064 1.19126 $ tube 11

3049 c/z 5.15874 4.064 1.27

3050 c/z 5.15874 4.064 1.3462

3051 c/z -0.07874 4.064 1.19126 $ tube 12

3052 c/z -0.07874 4.064 1.27

3053 c/z -0.07874 4.064 1.3462

3054 c/z -5.00126 4.064 1.19126 $ tube 13

3055 c/z -5.00126 4.064 1.27

3056 c/z -5.00126 4.064 1.3462

3057 c/z -10.08126 4.064 1.19126 $ tube 14

3058 c/z -10.08126 4.064 1.27

3059 c/z -10.08126 4.064 1.3462

3060 c/z -15.16126 4.064 1.19126 $ tube 15

3061 c/z -15.16126 4.064 1.27

3062 c/z -15.16126 4.064 1.3462

c --------------------------------------

c pre-amp housing

c --------------------------------------

3063 px -21.4071

3064 px 21.4071

3065 py 0.18288

3066 py 10.1295

3067 pz 42.7786

3068 pz 44.8614

3069 px -21.0566

3070 px 21.0566

3071 py 0.5334

3072 py 9.77898

c --------------------------------------

c rf shield

c --------------------------------------

3073 px -20.9423

3074 px 20.9423
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3075 py 0.64769

3076 py 9.66469

3077 pz 43.0

3078 pz 43.15748

3079 pz 42.8

3080 pz 42.8787

c --------------------------------------

c display housing

c --------------------------------------

3081 py 10.3124

3082 pz 49.4284

3083 px -20.3955

3084 px 20.3955

3085 py 0.6355

3086 py 9.6774

3087 pz 48.7934

3088 pz 45.0

3089 pz 45.07874

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c end NPOD version 3 surfaces

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c begin SNAP3 surfaces

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c --------------------------------------

c vibration pads

c --------------------------------------

5001 pz 0

5002 pz 3.81

c --------------------------------------

c tripod plate

c --------------------------------------

5003 pz 4.445

5004 px 7.366

5005 cz 10.34796

c --------------------------------------

c Bottom plate

c --------------------------------------

5006 pz 9.3726

5007 cz 10.16

5008 px 4.7752

c --------------------------------------

c He3 gas cavity & sst wall

c --------------------------------------

5009 cz 1.1938

5010 pz 10.399375 $ a guess at the tube height above bottom detector poly

5011 pz 10.475575

5012 pz 12.786975

5013 pz 22.946975

5014 pz 26.045775

5015 pz 26.121975

5016 cz 1.27

c --------------------------------------

c HN Connector

c --------------------------------------

5017 cz 1.016

5018 cz 0.9398

c --------------------------------------

c Poly sleeve

c --------------------------------------

5019 cz 1.35001

5020 cz 3.81

5021 pz 26.27884

c --------------------------------------

c Cd Shield top

c --------------------------------------

5022 pz 26.35504

c --------------------------------------
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c Cd shield

c --------------------------------------

5023 pz 27.1526 $ top of shield

5024 cz 3.8354

5025 cz 3.91414

c --------------------------------------

c bottom Cd shield

c --------------------------------------

5026 pz 9.45134

c --------------------------------------

c Detector Body

c --------------------------------------

5027 pz 28.1051

5028 cz 3.9624

5029 py -3.622

5030 py 3.622

5031 cz 10.3505

5032 cz 10.2108

c --------------------------------------

c inner front protective cover

c --------------------------------------

5033 py -6.35

5034 py 6.35

c --------------------------------------

c front protective cover

c --------------------------------------

5035 py -7.3152

5036 py 7.3152

c --------------------------------------

c top cover

c --------------------------------------

5037 cz 2.3495

5038 pz 31.0007

5039 pz 33.0327

5040 px 4.5212

c --------------------------------------

c MC PCB Housing

c --------------------------------------

5041 pz 33.2613

5042 cz 9.9568

5043 cz 10.2362

5044 pz 34.9377

5045 pz 36.5252

5046 px 4.69668

5047 px 7.3152

c --------------------------------------

c detector body ambiguity surface

c --------------------------------------

5048 px 0.0

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c end SNAP3 surfaces

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c ==============================================================================

c DATA CARDS

c ==============================================================================

c --------------------------------------

c translation cards

c --------------------------------------

tr3 60.31744 0 85.217 0 1 0 -1 0 0 0 0 1 $ NPOD3

tr5 -100 0 85.217 1 0 0 0 1 0 0 0 1 $ SNAP3

c --------------------------------------

c source definition

c --------------------------------------

rdum 1001 94240 39290034 3 9 1 0 0 97.425 2

1001 99999 130898 3 9 1 0 0 97.425 2

nps 39420932

c

260



si2 0 3.7938

sp2 -21 2

c

sp3 -3 0.799 4.903

c

si9 0 300.0e8

sp9 0 1

c

c --------------------------------------

c tally cards

c --------------------------------------

c leakage tallies

f01:n 101

c01 0 1

fm01 39420932

fq01 c m

f11:n 103

c11 0 1

fm11 39420932

fq11 c m

c Detector Incident Spectra

f21:n 131 132 133 134 135 136

e21 1e-10 49ilog 1e1

c21 0 1

fm21 39420932

f31:n 178 179 180 199

e31 1e-10 49ilog 1e1

c31 0 1

fm31 39420932

c NPOD Tubes 2 ways

f04:n 3047 3048 3049 3050 3051 3052 3053 3054

3055 3056 3057 3058 3059 3060 3061 T

sd04 300 15r

e04 1e-10 49ilog 1e1

fm04 -39420932 3003 -2

t04 300e8 1e33

cf04 1901

fq04 f m

tf04 16 6j 1

c

f14:n 3047 3048 3049 3050 3051 3052 3053 3054

3055 3056 3057 3058 3059 3060 3061 T

sd14 300 15r

e14 1e-10 49ilog 1e1

fm14 39420932

fu14 2003 $ <- list-mode tally

t14 300e8 1e33

cf14 1901

fq14 f u

tf14 16 6j 1

c SNAP

f24:n 5004

sd24 300

e24 1e-10 49ilog 1e1

t24 300e8 1e33

fm24 -39420932 5003 -2

cf24 1901

fq24 f m

tf24 7j 1

c

f34:n 5004

sd34 300

e34 1e-10 49ilog 1e1

t34 300e8 1e33

fu34 2003

fm34 39420932

cf34 1901

fq34 u t
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tf34 7j 1

c

c --------------------------------------

c material cards

c --------------------------------------

m1 6000.70c -230.e-6

26000.50c -10.e-6

31000.50c -335.0e-6

92234.70c -41.1e-6

92235.70c -786.6e-6

92236.70c -183.2e-6

92238.70c -1.5e-8

94238.70c -0.0002 $ alpha pu BeRP ball decay

94239.99c -0.93735

94240.70c -0.0595

94241.70c -0.002685

94242.70c -0.00028

95241.70c -2506.0e-6

c

m2 14028.70c -0.009223 $ Stainless Steel

14029.70c -0.000468

14030.70c -0.000309

24050.70c -0.008690

24052.70c -0.167578

24053.70c -0.019002

24054.70c -0.004730

25055.70c -0.02

26054.70c -0.037992

26056.70c -0.596401

26057.70c -0.013774

26058.70c -0.001833

28058.70c -0.081692

28060.70c -0.031468

28061.70c -0.001368

28062.70c -0.004361

28064.70c -0.001111

c

m3 13027.70c -0.96530 $ aluminum 6061

12024.70c -0.00790

12025.70c -0.00100

12026.70c -0.00110

14028.70c -0.00551

14029.70c -0.00029

14030.70c -0.00020

22046.70c -0.00012

22047.70c -0.00011

22048.70c -0.00111

22049.70c -0.00008

22050.70c -0.00008

24050.70c -0.00008

24052.70c -0.00167

24053.70c -0.00019

24054.70c -0.00005

25055.70c -0.00150

26054.70c -0.00040

26056.70c -0.00643

26057.70c -0.00015

26058.70c -0.00002

29063.70c -0.00192

29065.70c -0.00088

30000.70c -0.00250

c

m8 26054.70c 0.05845 $ natural iron

26056.70c 0.91754

26057.70c 0.02119

26058.70c 0.00282

m9 1001.70c 0.666667

6000.70c 0.333333

262



mt9 poly.60t

c

m21 8016.70c 0.2

7014.70c 0.8

c

m23 1001.70c -0.010 $ schaeffer portland concrete (page 451)

8016.70c -0.529

11023.51c -0.016

12000.51c -0.002

13027.70c -0.034

14000.51c -0.337

19000.51c -0.013

20000.51c -0.044

26000.50c -0.014

6000.70c -0.001 $ see ne handbook(7-113) for another portland comp

c

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c begin NPOD version 3 materials

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c --------------------------------------

c ENDF/B-VI Evaluations

c --------------------------------------

c m3001 1001.66c 0.666667 $ High Density poly (dens=.95 g/cc)

c 6000.66c 0.333333

c mt3001 poly.60t

c m3002 13027.66c 1.000000 $ al 6061

c m3003 2003.66c 0.9423 $ He-3 With Quench Gas

c 6000.66c 0.0192

c 8016.66c 0.0385

c m3004 48106.66c 0.0125 $ Natural Cd

c 48108.66c 0.0089

c 48110.66c 0.1249

c 48111.66c 0.1280

c 48112.66c 0.2413

c 48113.66c 0.1222

c 48114.66c 0.2873

c 48116.66c 0.0749

c m3006 14028.66c 0.922297 $ Natural Si

c 14029.66c 0.046832

c 14030.66c 0.030871

c --------------------------------------

c ENDF/B-VII Evaluations

c --------------------------------------

m3001 1001.70c 0.666667 $ High Density poly (dens=.95 g/cc)

6000.70c 0.333333

mt3001 poly.60t

m3002 13027.70c 1.000000 $ al 6061

m3003 2003.70c 0.9423 $ He-3 With Quench Gas

6000.70c 0.0192

8016.70c 0.0385

m3004 48106.70c 0.0125 $ Natural Cd

48108.70c 0.0089

48110.70c 0.1249

48111.70c 0.1280

48112.70c 0.2413

48113.70c 0.1222

48114.70c 0.2873

48116.70c 0.0749

m3006 14028.70c 0.922297 $ Natural Si

14029.70c 0.046832

14030.70c 0.030871

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c end NPOD version 3 materials

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c begin SNAP3 materials

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c --------------------------------------
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c ENDF/B-VI evaluations

c --------------------------------------

c m5001 13027.66c 1.000000 $ Aluminum 6061

c m5002 1001.66c 0.666667 $ High Density poly (rho=.95 g/cc)

c 6000.66c 0.333333

c mt5002 poly.60t

c m5003 2003.66c 0.9423 $ He-3 With Quench Gas

c 6000.66c 0.0192

c 8016.66c 0.0385

c m5004 14028.66c -0.009223 $ Stainless Steel

c 14029.66c -0.000468

c 14030.66c -0.000309

c 24050.66c -0.008690

c 24052.66c -0.167578

c 24053.66c -0.019002

c 24054.66c -0.004730

c 25055.66c -0.02

c 26054.66c -0.037992

c 26056.66c -0.596401

c 26057.66c -0.013774

c 26058.66c -0.001833

c 28058.66c -0.081692

c 28060.66c -0.031468

c 28061.66c -0.001368

c 28062.66c -0.004361

c 28064.66c -0.001111

c m5005 48106.66c 0.0125 $ Natural Cd

c 48108.66c 0.0089

c 48110.66c 0.1249

c 48111.66c 0.1280

c 48112.66c 0.2413

c 48113.66c 0.1222

c 48114.66c 0.2873

c 48116.66c 0.0749

c --------------------------------------

c ENDF/B-VII evaluations

c --------------------------------------

m5001 13027.70c 1.000000 $ Aluminum 6061

m5002 1001.70c 0.666667 $ High Density poly (rho=.95 g/cc)

6000.70c 0.333333

mt5002 poly.60t

m5003 2003.70c 0.9423 $ He-3 With Quench Gas

6000.70c 0.0192

8016.70c 0.0385

m5004 14028.70c -0.009223 $ Stainless Steel

14029.70c -0.000468

14030.70c -0.000309

24050.70c -0.008690

24052.70c -0.167578

24053.70c -0.019002

24054.70c -0.004730

25055.70c -0.02

26054.70c -0.037992

26056.70c -0.596401

26057.70c -0.013774

26058.70c -0.001833

28058.70c -0.081692

28060.70c -0.031468

28061.70c -0.001368

28062.70c -0.004361

28064.70c -0.001111

m5005 48106.70c 0.0125 $ Natural Cd

48108.70c 0.0089

48110.70c 0.1249

48111.70c 0.1280

48112.70c 0.2413

48113.70c 0.1222

48114.70c 0.2873
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48116.70c 0.0749

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c end SNAP3 materials

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c --------------------------------------

c problem specifications

c --------------------------------------

mode n

phys:n 4j 1 $ analog

cut:n 2j 0 $ analog

totnu

print

prdmp 2j 1

c m0303 is the ACE file for trial 303

XS1 94239.99c 236.998600 m0303 0 1 1 808738 0 0 2.5301E-08 ptable
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