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Dynamical Systems Method (DSM) for solving equations

with monotone operators without smoothness assumptions

on F ′(u)

N. S. Hoang†∗ A. G. Ramm†‡
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Abstract

A version of the Dynamical Systems Method (DSM) for solving ill-posed nonlinear
equations F (u) = f with monotone operators F in a Hilbert space is studied in
this paper under less restrictive assumptions on the nonlinear operators F than the
assumptions used earlier. A new method of proof of the basic results is used. An
a posteriori stopping rule, based on a discrepancy-type principle, is proposed and
justified mathematically under weaker assumptions on the nonlinear operator F , than
the assumptions used earlier.

Keywords.Dynamical systems method (DSM), nonlinear operator equations, mono-
tone operators, discrepancy principle.

MSC: 65R30; 47J05; 47J06; 47J35.

1 Introduction

In this paper we study a version of the Dynamical Systems Method (DSM) (see [18]) for
solving the equation

F (u) = f, (1)

where F is a nonlinear Fréchet differentiable monotone operator in a real Hilbert space
H, and equation (1) is assumed solvable. Monotonicity means that

〈F (u)− F (v), u− v〉 ≥ 0, ∀u, v ∈ H. (2)

Here, 〈·, ·〉 denotes the inner product in H. It is known (see, e.g., [18]), that the set
N := {u : F (u) = f} is closed and convex if F is monotone and continuous. A closed and
convex set in a Hilbert space has a unique minimal-norm element. This element in N we
denote y, F (y) = f . We assumed in earlier works that F ′(u) is locally Lipschitz. This
assumption is considerably weakened in this work: we assume now only the continuity of
F ′(u). Since F is monotone, one has F ′(u) ≥ 0, so ||[F ′(u) + a(t)I]−1|| ≤ 1

a(t) if a(t) > 0.
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The local and global existence and uniqueness of the solution to (3) were proved under
these weak assumptions in [13]. This proof is not included in the paper. The emphasis
in this paper is on the new methods and ideas for proving the basic result of the paper,
namely, Theorem 7.

Assume that f is not known but fδ, the noisy data, are known, and ‖fδ − f‖ ≤ δ. If
F ′(u) is not boundedly invertible, then solving for u, given noisy data fδ, is often (but not
always) an ill-posed problem. When F is a linear bounded operator many methods for
stable solution of (1) were proposed (see [14], [15], [26], [7], [18] and references therein).
However, when F is nonlinear then the theory is less complete.

The DSM for solving equation (1) was studied extensively in [18]–[25], [9]-[11], where
also numerical examples, illustrating efficiency of the algorithms, based on the DSM meth-
ods, were given. In [18] the following version of the DSM for solving equation (1) was
studied:

u̇δ = −
(
F ′(uδ) + a(t)I

)−1(
F (uδ) + a(t)uδ − fδ

)
, uδ(0) = u0. (3)

Here F is a monotone operator, and a(t) > 0 is a continuous function, defined for all
t ≥ 0, strictly monotonically decaying, limt→∞ a(t) = 0. These assumptions on a(t) hold
throughout the paper and are not repeated. Additional assumptions on a(t) will appear
in Theorem 7. Convergence of the above DSM was proved in [18] for any initial value u0

with an a priori choice of stopping time tδ, provided that a(t) is suitably chosen. In this
paper an a posteriori choice of tδ is formulated and justified rigorously.

The theory of monotone operators is presented in many books, e.g., in [3], [17], [28].
Many of the results of the theory of monotone operators, used in this paper, can be found
in [18]. In [16] methods for solving well-posed nonlinear equations in a finite-dimensional
space are discussed.

Methods for solving equation (1) with monotone operators are quite important in many
applications. It is proved in [18] that solving any solvable linear operator equation Au = f
with a closed densely defined linear operator A can be reduced to solving equation (1)
with a monotone operator. Equations (1) with monotone operators arise often when the
physical system is dissipative. In the earlier papers and in monograph [18] it was assumed
that F is locally twice Fréchet differentiable, and a nonlinear differential inequality ([18],
p.97) was used in a study of the behavior of the solution to the DSM (3). The smoothness
assumptions on F are weakened in this paper, the method of our proofs is new, and, as a
result, the proofs are shorter and simpler than the earlier ones. The assumptions on the
”regularizing function” a(t) are also weakened.

In this paper we propose and justify a stopping rule for solving ill-posed equation (1)
based on a discrepancy principle (DP) for the DSM (3). The main result of this paper is
Theorem 7 in which a DP is formulated, the existence of the stopping time tδ is proved,
and the convergence of the DSM (3) with the proposed DP is justified under some natural
assumptions for a wide class of nonlinear equations with monotone operators.

Our result is novel because the convergence of the DSM is justified under less restrictive
assumptions on F than in [18], [12], where twice Fréchet differentiability was assumed and
the DP was not established for problem (3). Moreover, the rate of decay of the function
a(t) as t→∞ can be arbitrary in the power scale, while in [18] a(t) was often assumed to
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satisfy the condition
∫∞
0 a(t)dt = ∞ which implies the decay in the power scale not faster

than O(1
t ) as t→∞.

These new theoretical results are useful practically. The auxiliary results in our paper
are borrowed from [8] and their proofs are omitted.

A few remarks about the history of the method (3) may be useful for the reader.
Probably the first paper in which a continuous analog of the Newton’s method was pro-
posed for solving well-posed operator equation (1) was the paper [4]. Method (3) has been
studied in the literature earlier by several authors, (see [1], [18], and references therein),
usually under the assumption that F ′(u) satisfies a Lipschitz condition. Iterative versions
of the method (3) were also studied (see, e.g., in [1], [6], [18]), and in some of the cited
papers by the authors, also under some smoothness assumptions on F ′(u). In [5] iterative
methods of Gauss-Newton type are studied under the assumption that F ′(u) satisfies a
Lipschitz condition. The discrepancy principle for linear ill-posed problems was proposed
by V.Morozov (see, e.g., [15]). We mention paper [27] and book [2].

To the authors’ knowledge it is for the first time a justification of the convergence of
the method (3) is proved in this paper under the minimal assumption of the continuity
of F ′(u). The method of the proof is novel and can be used can be used in a study of
other problems. The justification of the discrepancy principle for stable solution of (1)
with noisy data by the method (3) is also given under the minimal assumption of the
continuity of F ′(u).

2 Auxiliary results

Let us consider the following equation

F (Vδ,a) + aVδ,a − fδ = 0, a > 0, (4)

where a = const. It is known (see, e.g., [18]) that equation (4) with monotone continuous
operator F has a unique solution for any fδ ∈ H.

Let us recall the following result from [18, p.112]:

Lemma 1 Assume that equation (1) is solvable, y is its minimal-norm solution, and F
is monotone and continuous. Then

lim
a→0

‖V0,a − y‖ = 0,

where V0,a solves (4) with δ = 0.

Lemma 2 (Lemma 3, [8]) If (2) holds and F is continuous, then ‖Vδ,a‖ = O( 1
a) as

a→∞, and
lim

a→∞
‖F (Vδ,a)− fδ‖ = ‖F (0)− fδ‖. (5)

Let a = a(t), 0 < a(t) ↘ 0, and assume a ∈ C1[0,∞). Then the solution Vδ(t) := Vδ,a(t)

of (4) is a function of t. From the triangle inequality one gets

‖F (Vδ(0))− fδ‖ ≥ ‖F (0)− fδ‖ − ‖F (Vδ(0))− F (0)‖.
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From Lemma 2 it follows that for large a(0) one has

‖F (Vδ(0))− F (0)‖ ≤M1‖Vδ(0)‖ = O

(
1

a(0)

)
, M1 = max

||u||≤||Vδ(0)||
||F ′(u)||.

Therefore, if ‖F (0)−fδ‖ > Cδ, then ‖F (Vδ(0))−fδ‖ ≥ (C− ε)δ, where ε > 0 is arbitrarily
small, for sufficiently large a(0) > 0.

Below the words decreasing and increasing mean strictly decreasing and strictly in-
creasing.

Lemma 3 (Lemma 2, [8]) Assume ‖F (0) − fδ‖ > 0. Let 0 < a(t) ↘ 0, and F be
monotone. Denote

φ(t) := ‖F (Vδ(t))− fδ‖, ψ(t) := ‖Vδ(t)‖,

where Vδ(t) solves (4) with a = a(t). Then φ(t) is decreasing, and ψ(t) is increasing.

Lemma 4 (cf. Lemma 4, [8]) Assume 0 < a(t) ↘ 0. Then the following inequality
holds

lim
t→∞

‖F (Vδ(t))− fδ‖ ≤ δ. (6)

Remark 5 Let V := Vδ(t)|δ=0, so F (V ) + a(t)V − f = 0. Let y be the minimal-norm
solution to the equation F (u) = f . We claim that

‖Vδ − V ‖ ≤ δ

a
. (7)

Indeed, from (4) one gets

F (Vδ)− F (V ) + a(Vδ − V ) = fδ − f.

Multiply this equality by Vδ − V and use (2) to obtain

δ‖Vδ − V ‖ ≥ 〈fδ − f, Vδ − V 〉
= 〈F (Vδ)− F (V ) + a(Vδ − V ), Vδ − V 〉
≥ a‖Vδ − V ‖2.

This implies (7).
Similarly, from the equation

F (V ) + aV − F (y) = 0

one can derive that
‖V ‖ ≤ ‖y‖. (8)

From (7) and (8), one gets the following estimate:

‖Vδ‖ ≤ ‖V ‖+
δ

a
≤ ‖y‖+

δ

a
. (9)
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Lemma 6 Let a(t) satisfy (16). Then one has

e−
t
2

∫ t

0
e

s
2 |ȧ(s)|‖Vδ(s)‖ds ≤

1
2
a(t)‖Vδ(t)‖, t ≥ 0. (10)

Proof. Let us check that

e
t
2 |ȧ(t)| ≤ d

dt

(
1
2
a(t)e

t
2

)
, t > 0. (11)

One has
d

dt

(
1
2
a(t)e

t
2

)
=
a(t)e

t
2

4
+
ȧ(t)e

t
2

2
=
a(t)e

t
2

4
− |ȧ(t)|e

t
2

2
. (12)

Thus, inequality (11) is equivalent to

3
2
|ȧ(t)| ≤ 1

4
a(t), ∀t > 0. (13)

Inequality (13) holds because by our assumptions the function a(t) satisfies (16). Inte-
grating both sides of (11) from 0 to t, one gets∫ t

0
e

s
2 |ȧ(s)|ds ≤ 1

2
a(t)e

t
2 − 1

2
a(0)e0 <

1
2
a(t)e

t
2 , t ≥ 0. (14)

Multiplying (14) by e−
t
2 ‖Vδ(t)‖, and using the fact that ‖Vδ(t)‖ is increasing (see Lemma 3),

one gets (10). Lemma 6 is proved. 2

3 Main result

Denote
A := F ′(uδ(t)), Aa := A+ aI,

where I is the identity operator, and uδ(t) solves the following Cauchy problem:

u̇δ = −A−1
a(t)[F (uδ) + a(t)uδ − fδ], uδ(0) = u0, (15)

where u0 ∈ H. Assume

0 < a(t) ↘ 0,
1
6
≥ |ȧ(t)|

a(t)
↘ 0, t ≥ 0. (16)

Assume that equation (1) has a solution, possibly nonunique, and y is the minimal-
norm solution to this equation. Let f be unknown but fδ be given, ‖fδ − f‖ ≤ δ.

Theorem 7 Let a(t) satisfy (16). Let C > 0 and ζ ∈ (0, 1] be constants such that
Cδζ > δ. Assume that F : H → H is a Fréchet differentiable monotone operator, and u0

is an element of H, satisfying the following inequalities

‖F (u0) + a(0)u0 − fδ‖ ≤
1
4
a(0)‖Vδ(0)‖, ‖F (u0)− fδ‖ > Cδζ , (17)

6



where Vδ(t) := Vδ,a(t) solves (4) with a = a(t). Then the solution uδ(t) to problem (15)
exists on an interval [0, Tδ], limδ→0 Tδ = ∞, and there exists a unique tδ, tδ ∈ (0, Tδ),
such that limδ→0 tδ = ∞ and

‖F (uδ(tδ))− fδ‖ = Cδζ , ‖F (uδ(t))− fδ‖ > Cδζ , ∀t ∈ [0, tδ). (18)

If ζ ∈ (0, 1) and tδ satisfies (18), then

lim
δ→0

‖uδ(tδ)− y‖ = 0. (19)

Remark 8 In Theorem 7 the existence of tδ satisfying (18) is guaranteed for any ζ ∈ (0, 1].
However, we prove relation (19) for ζ ∈ (0, 1). If ζ = 1 it is possible to prove that uδ(tδ)
converges to a solution to (1), but it is not known whether this solution is the minimal-
norm solution of (1) if (1) has more than one solution.

Further results on the choices of ζ require extra assumptions on F and y. Since the
minimal-norm solution y satisfies the relation ‖F (y)− fδ‖ = ‖f − fδ‖ ≤ δ, it is natural to
choose C > 0 and ζ ∈ (0, 1) so that Cδζ be close to δ.

One can choose u0 satisfying the first inequality in (17). Indeed, if u0 approximates
Vδ(0), the solution to equation (4), with a small error, then the first inequality in (17) is
satisfied. The first inequality in (17) is a sufficient condition for (40), i.e.,

e−
t
2 ‖F (u0) + a(0)u0 − fδ‖ ≤

1
4
a(t)‖Vδ(t)‖, t ≥ 0, (20)

to hold. In our proof inequality (20) is used at t = tδ. The stopping time tδ is often
sufficiently large for the quantity e

tδ
2 a(tδ) to be large. This follows from the fact that

limt→∞ e
t
2a(t) = ∞ (see (44) below). In this case inequality (20) with t = tδ is satisfied

for a wide range of u0.
The second inequality in (17) is a natural assumption because if this inequality does

not hold and ‖u0‖ is not ”too large”, then u0 can be considered as an approximate solution
to (1).

Proof. [Proof of Theorem 7] The uniqueness of tδ follows from (18). Indeed, if tδ and
τδ > tδ both satisfy (18), then the second inequality in (18) does not hold on the interval
[0, τδ).

Let us prove the existence of tδ. From (15), one obtains:

d

dt

(
F (uδ) + auδ − fδ

)
= Aau̇δ + ȧuδ = −

(
F (uδ) + auδ − fδ

)
+ ȧuδ.

This and (4) imply:

d

dt

[
F (uδ)− F (Vδ) + a(uδ − Vδ)

]
= −

[
F (uδ)− F (Vδ) + a(uδ − Vδ)

]
+ ȧuδ. (21)

Denote

v := v(t) := F (uδ(t))− F (Vδ(t)) + a(t)(uδ(t)− Vδ(t)), h := h(t) := ‖v(t)‖.

7



Multiply (21) by v and get

hḣ = −h2 + 〈v, ȧ(uδ − Vδ)〉+ ȧ〈v, Vδ〉 ≤ −h2 + h|ȧ|‖uδ − Vδ‖+ |ȧ|h‖Vδ‖. (22)

This implies
ḣ ≤ −h+ |ȧ|‖uδ − Vδ‖+ |ȧ|‖Vδ‖. (23)

Since 〈F (uδ)− F (Vδ), uδ − Vδ〉 ≥ 0, one obtains from two equations

〈v, uδ − Vδ〉 = 〈F (uδ)− F (Vδ) + a(t)(uδ − Vδ), uδ − Vδ〉,

and
〈v, F (uδ)− F (Vδ)〉 = ‖F (uδ)− F (Vδ)‖2 + a(t)〈uδ − Vδ, F (uδ)− F (Vδ)〉,

the following two inequalities:

a‖uδ − Vδ‖2 ≤ 〈v, uδ − Vδ〉 ≤ ‖uδ − Vδ‖h, (24)

and
‖F (uδ)− F (Vδ)‖2 ≤ 〈v, F (uδ)− F (Vδ)〉 ≤ h‖F (uδ)− F (Vδ)‖. (25)

Inequalities (24) and (25) imply:

a‖uδ − Vδ‖ ≤ h, ‖F (uδ)− F (Vδ)‖ ≤ h. (26)

Inequalities (23) and (26) imply

ḣ ≤ −h
(

1− |ȧ|
a

)
+ |ȧ|‖Vδ‖. (27)

By the assumption, 1− |ȧ|
a ≥ 1

2 , so inequality (27) implies

ḣ ≤ −1
2
h+ |ȧ|‖Vδ‖. (28)

Inequality (28) implies

h(t) ≤ h(0)e−
t
2 + e−

t
2

∫ t

0
e

s
2 |ȧ(s)|‖Vδ(s)‖ds. (29)

From (29) and (26), one gets

‖F (uδ(t))− F (Vδ(t))‖ ≤ h(0)e−
t
2 + e−

t
2

∫ t

0
e

s
2 |ȧ|‖Vδ‖ds. (30)

Hence, using the triangle inequality and (30), one gets:

‖F (uδ(t))− fδ‖ ≤ ‖F (Vδ(t))− fδ‖+ h(0)e−
t
2 + e−

t
2

∫ t

0
e

s
2 |ȧ|‖Vδ‖ds. (31)
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Since a(s)‖Vδ(s)‖ = ‖F (Vδ(s))− fδ‖ is decreasing, by Lemma 3, one obtains

lim
t→∞

e−
t
2

∫ t

0
e

s
2 |ȧ|‖Vδ‖ds ≤ lim

t→∞
e−

t
2

∫ t

0
e

s
2
|ȧ(s)|
a(s)

a(0)‖Vδ(0)‖ds. (32)

The assumption limt→∞
|ȧ(t)|
a(t) = 0 implies

lim
t→∞

∫ t
0 e

s
2
|ȧ(s)|
a(s) a(0)‖Vδ(0)‖ds

e
t
2

= 0. (33)

Indeed, if I :=
∫∞
0 e

s
2
|ȧ(s)|
a(s) a(0)‖Vδ(0)‖ds < ∞ then (33) is obvious. If I = ∞, then (33)

follows from L’Hospital’s rule.
It follows from (31)–(33) and Lemma 4 that

lim
t→∞

‖F (uδ(t))− fδ‖ ≤ lim
t→∞

‖F (Vδ(t))− fδ‖+ lim
t→∞

e−
t
2

∫ t

0
e

s
2 |ȧ|‖Vδ‖ds ≤ δ. (34)

The assumption ‖F (u0) − fδ‖ > Cδζ > δ and inequality (34) imply the existence of a
tδ > 0 such that (18) holds because ‖F (uδ(t))− fδ‖ is a continuous function of t.

We claim that
lim
δ→0

tδ = ∞. (35)

Let us prove (35). From the triangle inequality and (30) one gets

‖F (uδ(t))− fδ‖ ≥ ‖F (Vδ(t))− fδ‖ − ‖F (Vδ(t))− F (uδ(t))‖

≥ a(t)‖Vδ(t)‖ − h(0)e−
t
2 − e−

t
2

∫ t

0
e

s
2 |ȧ|‖Vδ‖ds.

(36)

Recall that a(t) satisfies (16) by our assumptions. From (16) and Lemma 6 one obtains

1
2
a(t)‖Vδ(t)‖ ≥ e−

t
2

∫ t

0
e

s
2 |ȧ|‖Vδ(s)‖ds. (37)

From (17) we have

h(0)e−
t
2 ≤ 1

4
a(0)‖Vδ(0)‖e−

t
2 , t ≥ 0. (38)

It follows from (16) that
e−

t
2a(0) ≤ a(t). (39)

Specifically, inequality (39) is obviously true for t = 0, and(
a(t)e

t
2

)′

t

= a(t)e
t
2

(
1
2
− |ȧ(t)|

a(t)

)
> 0,

by (16). Therefore, one gets from (39) and (38) the following inequality:

e−
t
2h(0) ≤ 1

4
a(t)‖Vδ(0)‖ ≤ 1

4
a(t)‖Vδ(t)‖, t ≥ 0, (40)

9



Here, we have used the inequality ‖Vδ(t′)‖ ≤ ‖Vδ(t)‖ for t′ < t, established in Lemma 3 in
Section 2. From (18) and (36)–(40), one gets

Cδζ = ‖F (uδ(tδ))− fδ‖ ≥
1
4
a(tδ)‖Vδ(tδ)‖. (41)

From (7) and the triangle inequality one derives

a(t)‖V (t)‖ ≤ a(t)‖V (t)− Vδ(t)‖+ a(t)‖Vδ(t)‖ ≤ δ + a(t)‖Vδ(t)‖, ∀t ≥ 0. (42)

It follows from (41) and (42) that

0 ≤ lim
δ→0

a(tδ)‖V (tδ)‖ ≤ lim
δ→0

(
δ + 4Cδζ

)
= 0. (43)

Since ‖V (t)‖ increases (see Lemma 3), the above formula implies limδ→0 a(tδ) = 0. Since
0 < a(t) ↘ 0, it follows that limδ→0 tδ = ∞, i.e., (35) holds.

Let us prove that
lim
t→∞

e
t
2a(t) = ∞. (44)

We claim that, for sufficiently large t > 0, the following inequality holds

t

2
> ln

1
a2(t)

. (45)

By L’Hospital’s rule and (16), one obtains

lim
t→∞

t

2 ln 1
a2(t)

= lim
t→∞

1

2a2(t)−2ȧ(t)
a3(t)

= lim
t→∞

a(t)
4|ȧ(t)|

= ∞. (46)

This implies that (44) holds for t > 0 sufficiently large. From (45) one concludes

lim
t→∞

e
t
2a(t) ≥ lim

t→∞
e
ln 1

a2(t)a(t) = lim
t→∞

1
a(t)

= ∞. (47)

Thus, relation (44) is proved.
From (31), (37), (40) and (9) one gets

Cδζ ≤ a(tδ)‖Vδ(tδ)‖
(
1 +

1
2

+
1
4
)
≤ 7

4

(
a(tδ)‖y‖+ δ

)
. (48)

This and the relation limδ→0
δ
δζ = 0, for a fixed ζ ∈ (0, 1), imply

lim
δ→0

δζ

a(tδ)
≤ 7‖y‖

4C
<

2‖y‖
C

. (49)

It follows from inequality (29) and the first inequality in (26) that

a(t)‖uδ(t)− Vδ(t)‖ ≤ h(0)e−
t
2 + e−

t
2

∫ t

0
e

s
2 |ȧ(s)|‖Vδ(s)‖ds. (50)
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From (49) and the first inequality in (9) one gets, for sufficiently small δ, the following
inequality

‖Vδ(t)‖ ≤ ‖y‖+
δ

a(t)
< ‖y‖+

2‖y‖
C

, 0 ≤ t ≤ tδ. (51)

Therefore,

lim
δ→0

∫ tδ
0 e

s
2 |ȧ(s)|‖Vδ(s)‖ds

e
tδ
2 a(tδ)

≤
(
‖y‖+

2‖y‖
C

)
lim
δ→0

∫ tδ
0 e

s
2 |ȧ(s)|ds

e
tδ
2 a(tδ)

. (52)

Let us show that

lim
δ→0

∫ tδ
0 e

s
2 |ȧ(s)|ds

e
tδ
2 a(tδ)

= 0. (53)

The denominator of (53) tends to ∞ as δ → 0 by (44). Thus, if the numerator of (53) is
bounded then (53) holds. Otherwise, relation (35) and L’Hospital’s rule yield

lim
δ→0

∫ tδ
0 e

s
2 |ȧ(s)|ds

e
tδ
2 a(tδ)

= lim
t→∞

e
t
2 |ȧ(t)|

1
2e

t
2a(t)− e

t
2 |ȧ(t)|

= 0. (54)

It follows from (52) and (53) that

lim
δ→0

∫ tδ
0 e

s
2 |ȧ(s)|‖Vδ(s)‖ds

e
tδ
2 a(tδ)

= 0. (55)

From (55), (50), and (35), one gets

0 ≤ lim
δ→0

‖uδ(tδ)− Vδ(tδ)‖ = lim
δ→0

h(tδ)
a(tδ)

= 0. (56)

It is now easy to finish the proof of Theorem 7.
From the triangle inequality and inequality (7) one obtains

‖uδ(tδ)− y‖ ≤ ‖uδ(tδ)− Vδ(tδ)‖+ ‖V (tδ)− Vδ(tδ)‖+ ‖V (tδ)− y‖

≤ ‖uδ(tδ)− Vδ(tδ)‖+
δ

a(tδ)
+ ‖V (tδ)− y‖,

(57)

where V (tδ) = V0,a(tδ) (see equation (4)). From (56), (35), inequality (57), and Lemma 1
one obtains (19). Theorem 7 is proved. 2
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