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Abstract. Process-based ecological models used to assess organisms’ responses to environmental
conditions often need input data at a high temporal resolution, e.g., hourly or daily weather data. Such
input data may not be available at a high spatial resolution for large areas, limiting opportunities to use
such models. Here we present a metamodeling framework to develop reduced form ecological models that
use lower resolution input data than the original process models. We used generalized additive models to
create metamodels for an existing model that uses hourly data to predict risk of potato late blight, caused
by the plant pathogen Phytophthora infestans. The metamodels used daily or monthly weather data, and
their predictions maintained the key features of the original model. This approach can be applied to other
complex models, allowing them to be used more widely.
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INTRODUCTION

There is growing interest in process-based
modeling approaches to study the distribution
of species (Chuine and Beaubien 2001, Kearney
and Porter 2004, Morin et al. 2007, Jackson et al.
2009, Monahan 2009, Buckley et al. 2010), but
data requirements for both model development
and application have limited the types of
questions that can be addressed with these
approaches. There is also increasing interest in
using such models for strategic assessments of
the value of new management practices (Hijmans
et al. 2003) and responses to climate change
(Rosenzweig and Parry 1994, Hijmans 2003,
Audsley et al. 2008, Luedeling et al. 2009).
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However, modeling the distribution of species
over larger areas is dominated by correlative
approaches (Guisan and Thuiller 2005, Elith and
Leathwick 2009). This is in part because of the
absence of process-based models for many
species, but also because the large extent - high
resolution data sets needed to apply such models
often are not available.

Process-based ecological models typically re-
quire high temporal resolution weather data
(e.g., daily or hourly data). This is particularly
true for process-based models that capture, for
example, the short generation times of microbial
and arthropod populations and communities
(Fry et al. 1983, 2004, De Wolf et al. 2002,
Griinwald et al. 2002, Scherm and van Bruggen

August 2011 <+ Volume 2(8) ** Article 90



1994). Even for plants and animals with long
generation times, many ecophysiological pro-
cesses occur at short time scales (e.g., an extreme
frost event; Hijmans et al. 2003). Process-based
models have been used, for example, to study the
growth and development of crops (De Wit and
Brouwer 1971) and crop disease (Van der Plank
1963), to simulate greenhouse gas emissions from
soil (Li et al. 1992, Giltrap et al. 2010), and to
predict the spatial distribution of species (Kear-
ney and Porter 2004). The need for high temporal
resolution input data can make it very cumber-
some, or impossible, to use such models over
large spatial extents (Fig. 1; Morin and Lecho-
wicz 2008, Thuiller et al. 2008, Randin et al. 2009).
Here we develop an approach for adapting
models that were developed using input data
with high temporal resolution, so that they can
be used with lower resolution input data.

There have been two main approaches for
applying models across large areas for which
high temporal resolution data are not available:
(1) The model is applied for locations where
sufficient data are available (e.g., a limited
number of weather stations supplying daily
weather data) with predictions interpolated
between these locations/times (De Wolf et al.
2002, Wu et al. 2006). (2) Higher resolution input
data are generated from lower resolution input
data; for example, small time-step weather such
as rainfall patterns can be generated from larger
time-step data through stochastic weather gen-
erators (e.g., Wilks and Wilby 1999, Hijmans et
al. 2000). Both of these approaches have draw-
backs. Interpolation between stations that are far
apart may not adequately capture the non-linear
effect of weather on the model organism.
Stochastic simulation of weather data is compli-
cated and computationally intensive, and the
response model needs to be run many (e.g., 100)
times to obtain an average response. Here we
develop an alternative approach, (3) the use of
metamodels, adapting a model so that it can be
used with lower resolution input data. The term
metamodel can refer to a simplification of the
original model that retains its salient features, or
to a single model created by combining the
results of multiple models. In this paper we
present a metamodeling framework to extend the
application domain of a model, so that the
metamodel can be applied to lower temporal
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resolution weather or climate data. Metamodels
have been developed in bio-economics (Laksh-
minarayan et al. 1996, Breukers et al. 2007,
Kristensen et al. 2008), and in manufacturing
industries to improve design optimization (Wang
and Shan 2007). In ecology they have been used
to organize and synthesize models (Slobodkin
1958), to facilitate the study of endangered
species risk assessments (Nyhus et al. 2007),
and to assess impacts of socio-economic and
climate change on wetlands (Harrison et al.
2008). Lastly, in ground water management
metamodels have been used as a way to reduce
model complexity while keeping those processes
and parameters for which the simulation output
is sensitive, or for which input data are available
(Tiktak et al. 2006). Many metamodels have been
constructed to consolidate different models into a
single model, but to our knowledge they have
not been used in ecology to extend the applica-
tion domain of the original model as we do here.

Our framework for metamodel development
consists of the following steps (Fig. 2). (1) A well-
validated initial process-based model is available
that would be desirable to use, but its application
is limited to high resolution input data. (2) A
large, high resolution, input data set is selected to
match the requirements of the initial model, and
to be representative of the types of conditions in
which we would like to apply the resulting
metamodel. (3) The initial model is applied to
generate predictions from the input data set. (4)
A second set of input data is generated by
averaging to the level of aggregation at which
such data are more generally available. (5) If
predictions from the initial model are higher
resolution than output from the new metamodel
will be, a second set of predictions is generated
by averaging the high resolution predictions to
the desired level of aggregation. (6) The aggre-
gated data of step 4 (and step 5 as needed) are
divided into model construction and evaluation
sets. (7) The metamodel is constructed to
describe the relationship between the aggregated
input data and aggregated predictions from the
initial model. (8) The metamodel performance is
evaluated for the evaluation data set. (9) The
metamodel is evaluated in terms of potential
limitations, in general and in comparison to the
initial process-based model.

We used potato late blight disease (caused by
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Data in this domain are less common.
Models developed for this application

P High

processess.

Spatial or temporal resolution of
ecological predictor variables

Data in this application domain are
relatively common. Models developed here
are often limited to lower resolution
processes or simply correlative.

Low

domain potentially include higher resolution

Data in this domain are rare. Models are
not commonly developed for this
application domain.

Data in this domain are not
common. Models developed here
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are often correlative.
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Spatial or temporal extent of
ecological predictor variables

Fig. 1. Ecological modeling has most commonly been based on data from a small spatial or temporal extent and
low level of spatial or temporal resolution. When higher resolution data are available, this often makes it possible
to develop process-based models, even for high resolution processes such as microbial and arthropod community

interactions and ecophysiological processes. Such models

can be used, in turn, to create metamodels that do not

require as high a level of resolution for input data, and can thus potentially be applied across greater extents.

Phytophthora infestans (Mont.) De Bary., the
proximate cause of the Irish potato famine) as a
model system for application of this framework
because it is well-studied, with well-validated
high resolution models available, and its ecology
illustrates the type of sensitivity to high resolu-
tion variation in weather that is common to many
microbes and arthropods. Late blight forecasting
models recognize the importance of temperature
and moisture in disease development, and have
evolved over time using combinations of these
variables for forecasting. The earliest of these
models for predicting late blight risk were the
“Dutch Rules” postulated by Van Everdingen
(1926, and discussed in Beaumont (1947)). Fry et
al. (1983) developed SimCast, a predictive late
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blight model designed for analysis of economic
timing of pesticide applications, which included
the effect of potato genetic resistance to disease.
Griinwald et al. (2002) further refined the
SimCast model for potato genotypes with mod-
erate to high disease resistance and demonstrat-
ed that it performed well in a tropical highland
climate, even though it was originally developed
in a temperate climate. The SimCast algorithm is
based on counting the hours during a day (from
noon to noon the next day because the period of
high relative humidity occurs overnight) when
relative humidity (RH) is above 90% (a proxy for
the presence of leaf surface moisture (Kim et al.
2010)). The number of ‘blight units’, a measure of
disease risk, is computed based on the number of
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We used SimCast, a
process-based model for
potato late blight that uses
input weather data with hourly
resolution.
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The initial model results are aggregated into
the desired format, e.g., hourly to daily, or daily to
monthly. This aggregation must match the
aggregation level of the high resolution data.

3. Generate initial
model predictions

Initial model predictions
based on high resolution data
are used to construct the
metamodel.

5. Aggregate initial
model results
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1990-1992, the testing data set 1993-1995. J

W N N N N N NN NN NN NN NN SN SN SN N N N N NN BN BN BN SN BN BN BN BN BN BN BN B B B Ny

| J R —————

‘---------------------------------------------------------—
‘----------------------------------------------------.‘
V el
-_— ", 1
: % O [ 7. Construct metamodel T oy (9. Eval uate metamodel's) |
19 = We used ih o el . Test metamode limitations 1
e used the construction subse ;
1 £ g' of aggregated data to construct We used the evaluation The late blight metamodel !
I'© "® |cAMs which used daily and monthly subset of aggr'egated data to retained the correct relative :
1 "q's S lweather data. test the model's performance. values for output, but tended | 4
: = 8 \ to produce underestimates 1
Y
'------------------------------------------------‘
[§
v S ) -
1= 9 10. Prepare new low 1
1 2 £ | resolution input data of 12. Interpret metamodel's )1
1 -8 - interest performance 1
1 E g 11. Apply i ' 1
16 E We are using the late blight metamodel Tr;e .Iate blllght r;etam;)dels give useful | g
1% o | metamodel toevaluate risk for TR VEIIVES o UG RS I E 2 ]
s 3. input data sets with monthly absolute values. 1
1 resolution. 1
1 g / 1
. U

------------------------------------------------'

Fig. 2. Steps in metamodel development. A suitable initial model which predicts desired output is chosen. Then
data are obtained which match the initial model’s application domain and are flexible enough to be adapted to
new model application domains, and are also representative of the future data sets for analysis. The initial model
is applied to the unmodified data. Then the initial data and initial model predictions are aggregated in order to
construct the metamodel, which is applied to lower resolution input data. Once the metamodel has been
constructed, evaluated, and its limitations determined, it can be applied to a new lower resolution dataset.

consecutive hours over 90% RH, the temperature host resistance to disease. SimCast is typical of

(T) during those intervals, and genotype-specific ~models for foliar disease, capturing an important
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aspect of the infection process: periods of
moisture must occur, at disease-conducive tem-
peratures that last long enough to support foliar
infection. Hijmans et al. (2000) used these types
of models at a global scale to estimate the
number of pesticide applications necessary to
manage late blight, using monthly climate data
and a weather generator (approach 2 described
above) for dealing with low resolution weather
data. Because SimCast has become well-estab-
lished as a successful tool for late blight
management and research (Skelsey et al. 2009)
in many areas of the world, we used it for
development of potato late blight metamodels.
Our overall goal in this study was to provide a
framework for constructing metamodels that can
readily be applied to scaling ecological models,
thereby extending their application domain from
high resolution input data to low resolution
input data, and thus supporting their application
across large extents. We developed a metamodel
of the SimCast potato late blight risk model. Our
primary objective was to develop disease risk
models that use monthly or daily weather data as
input, and compare the predictions made with
these models to predictions made with the initial
model that uses hourly weather data. This type
of application domain extension has many
potential applications for scenario analysis for
potato late blight, specifically, and as an example
of the potential for scaling other models. A
secondary objective was to compare the perfor-
mance of models constructed using targeted
weather data from regions where the host of
the disease occurs, with the performance of
models constructed using a data set that repre-
sents a broader range of climates. As indicated
under step 2 of the framework described above,
the data set used for metamodel construction
should be representative of intended application
scenarios for the model, but it is an open question
whether the targeted or broad approach is best.

METHODS

Our first objective was to develop disease risk
metamodels for use with temporally aggregated
weather data and compare the performance of
these models with the original model that uses
high resolution input data. As step (1) in the
metamodeling framework (Fig. 2), we had
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identified SimCast as a model that has been
well-validated in a number of environments, but
requires hourly temperature and relative humid-
ity data as input. (2) We needed a data set with
wide geographic coverage, hourly reporting, and
extensive data quality control. The National
Climatic Data Center Hourly United States
Weather Observations (HUSWOQO) 1990-1995
meet these criteria (US-EPA and NOAA 1997),
containing hourly weather observations from 262
National Weather Service stations nationwide.
Data from the 247 stations reporting hourly
temperature, relative humidity, and precipitation
were included in the analysis. Weather data from
the US represent all five of the main groups of the
Koéppen-Geiger climate classification system, and
22 of 31 climate classes (Kottek et al. 2006, Rubel
and Kottek 2010); classes not represented are
unlikely to support potato production. HUSWO
data were split into two subsets for model
construction (1990-1992) and model evaluation
(1993-1995). (3) Blight units for each day at each
location in the HUSWO data set were predicted
for susceptible and resistant genotypes using
SimCast as presented in Griinwald et al. (2002).
These ‘true’ blight units based on predictions
from hourly input would then be used as the
standard for analysis of the metamodels. (4) We
were interested in comparing metamodels for
both daily and monthly resolution. The HUSWO
data were averaged (within each location) to
provide day-resolution and month-resolution
aggregated input data. So, for example, each
HUSWO location-year supplied 12 months of
month-resolution data and 365 or 366 days of
day-resolution data. It could be argued that
consecutive days and adjacent locations are not
statistically independent because of autocorrela-
tion in weather patterns, but the large size of this
data set makes lack of strict independence
unimportant. (5) SimCast takes hour-resolution
input data and produces day-resolution predic-
tions, so ‘true’ day-resolution blight units were
generated without the need for any aggregation
step. To produce ‘true’ month-resolution blight
units, the ‘true’ day-resolution blight units were
aggregated.

(6-7) We selected generalized additive models
(GAM) (Hastie and Tibshirani 1986) as an
example of a flexible modeling approach for
constructing the metamodels, allowing us to
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directly compare the performance of simpler and
more complex models. The form of SimCast
(Griinwald et al. 2002) suggested a simple linear
model would not be sufficient. We developed
and tested GAMs to model the relationship
between aggregated weather data and aggregat-
ed ‘true’ blight units (Table 1). The first GAM
metamodel had the form of a simple linear model
for the sake of comparison, with blight units
(BU;) as the response variable, and temperature
(T;) and relative humidity (RH;) as predictor
variables, where i indicates the ith location-day
(or location-month) in the HUSWO data set for
the model construction interval 1990-1992. The
second general form of GAM metamodel again
had T; and RH; as predictor variables, but used
the penalized regression spline smoothed func-
tion of their interaction, with k as the dimension
of the basis used to represent the smoothing term
(Wood 2006). Daily and monthly resolutions
were evaluated for both susceptible and resistant
potato genotypes. The metamodels were con-
structed in the R environment (R Development
Core Team 2010) using the contributed package
MGCV (Wood 2008). In the rare cases when
blight unit values were predicted to be less than
zero, they were set equal to zero. Models were
evaluated based on their Generalized Cross
Validation (GCV) scores, AIC (Akaike Informa-
tion Criterion (Akaike 1974)), and R-squared
values.

(8) The metamodel was then evaluated with
the evaluation data subset from the years 1993—
1995. We compared Pearson’s correlation coeffi-
cients for the SimCast predicted values and the
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metamodel predicted values (Table 2). The daily
metamodel (mmp,;,) predictions could be com-
pared directly, but to compare with the monthly
metamodel (mmyo,,) Outputs, SimCast blight
unit predictions were averaged, creating an
average of daily blight unit accumulation per
month.

The secondary objective was to compare the
performance of models constructed using weath-
er data sets specific to host regions, areas where
potato is grown within the US, with models
constructed using a data set that represents a
broader range of climates. Data from Hijmans
(2001) were used to determine which of the
HUSWO station locations were within potato
growing regions in the US. Weather stations in
the potato growing areas or within a distance of
10 kilometers were selected and a subset of
weather data from these stations was created for
use in metamodel construction as detailed in
objective one.

REsuLTs

Metamodel construction and fit

The models that considered an interaction of
temperature and relative humidity yielded lower
AIC and GCV scores than the model that did not
(Table 1), indicating better fit. For mmpg;;, a k
value of 100 was selected (Fig. 3). As k increased
to 150, the time to run the model increased and
the gains in fit were small (Model 2d; Table 1).
For mmyo,1, k=150 was selected (Fig. 3). When
k = 200, mmagumy, begins to decrease in
performance with higher GCV and AIC values
(Model 2f; Table 1). The resulting GAM surfaces

Table 1. Performance of metamodels. In the generalized additive model (GAM) equations, BU is blight units, T is
temperature, RH is relative humidity, s indicates that the interaction of the variables is smoothed, and k is the
dimension of the basis used to represent the smooth term. P-values are all <0.01 and <0.001 for mmp,;;,, and

MMyfonenn, Tespectively.

mmpy, (susceptible)

MMpfonthly (SUSCEPtibIe)

Model GAM R? GCV? AICH R? GCVi AICH
1 BU =T + RH 0.26 3.2981 954,010 0.43 0.61753 18,314
2a BU = s(T, RH, k = 50) 0.61 1.7493 803,934 0.78 0.24147 11,015
2b BU = s(T, RH, k = 100) 0.62 1.7153 799,296 0.78 0.23813 10,906
2c BU = s(T, RH, k = 150) 0.62 1.7040 797,733 0.78 0.23694 10,867
2d BU = s(T, RH, k = 200) 0.78 0.27300 10,878
2e BU = s(RH, T, k = 100) 0.62 1.7144 799,175 0.78 0.23777 10,894
of BU = s(RH, T, k = 150) 0.78 0.23717 10,874

tGeneralized Cross Validation (GCV) score, and Akaike’s Information Criterion (AIC) were used in model selection, where a

lower score indicates a better model fit.

ECOSPHERE % www.esajournals.org

August 2011 <+ Volume 2(8) ** Article 90



SPARKS ET AL.

Table 2. Goodness of fit and Pearson’s Correlation scores of mmp,;, and mmye,¢,, metamodels when fit to
SimCast-predicted blight units for construction (Con.) and evaluation (Evn.) datasets for complete US weather

data and construction datasets based only on potato producing areas of the US. The SimCast model uses
hourly weather data to predict blight units based on hourly weather data. The mmp,;, and mmagumy,
metamodels predict blight units based on daily and monthly time-step weather data, respectively.

mMmpgiry MM pgonthly
Region R? ) Con. Evn. R? P Con. Evn.
All US (Susceptible) 0.62 <0.001 0.85 0.84 0.78 <0.001 0.89 0.89
US potato regions (Susceptible) 0.62 <0.001 0.76 0.74 0.83 <0.001 0.91 091
All US (Resistant) 0.65 <0.001 0.81 0.81 0.76 <0.001 0.88 0.88
US potato regions (Resistant) 0.66 <0.001 0.82 0.82 0.83 <0.001 0.91 0.90

indicate the type of interaction between temper-
ature and relative humidity for predicting the
accumulated blight units (Fig. 3) that might
reasonably be expected based on the structure
of SimCast (Grinwald et al. 2002). Once the
metamodel forms were selected, metamodels for
resistant genotypes were also constructed using
these forms of GAM for mmp,;, resistant and
MM,y Tesistant (Fig. 3).

SimCast versus mmpy,;, and MMyonenty
metamodels

Metamodel predictions for both model con-
struction and model evaluation data sets were
similar to the results obtained with the original
SimCast model (Fig. 4). mmp,;, had Pearson’s
correlation scores of 0.85, 0.84 for construction
and evaluation data sets, respectively. The
correlation scores for mmyyy,¢, for construction
and evaluation data sets were both 0.89. The
number of accumulated blight units per day was
underpredicted by both mmp,;, and mmuenenn,
but predictions by the latter were closer to the
SimCast predicted averages (Table 2). While
there were large differences between the model
predictions, the metamodels successfully cap-
tured the main trends and rankings predicted by
SimCast (Fig. 4).

The structure of SimCast (Griinwald et al
2002) causes the accumulation of six or seven
blight units per day to occur less frequently than
other blight unit values. The weather conditions
required for these values to register are ideal for
late blight development; seven blight units
requires 13-24 hours of a temperature at 13-
22°C with the relative humidity above 90%. This
is not a problem for SimCast’s typical applica-
tions, but it does mean that there were relatively

ECOSPHERE % www.esajournals.org

fewer observations for fitting the GAM at six and
seven blight units, and the model exhibits
slightly different behavior for these values (Fig.
4) for a susceptible genotype.

Comparison when using potato growing areas only
to construct GAM

The metamodels showed little difference in
performance when created from the whole US
weather data set or data sets constructed from
potato growing regions of the US. Both meta-
models under predicted blight units when
compared to blight units predicted by SimCast,
although again, the mmyyy,4,, metamodel pre-
dictions were closer. However, both metamodels
maintain a high correlation with SimCast blight
units (Table 2). Similarly the application of a
model created using the whole US data set when
applied to just potato growing regions showed
little difference from a model created using the
whole US data set and applied to the whole US.
Goodness-of-fit values were similar for all com-
binations tested (Table 2).

DiscussioN

We used a metamodel framework to create a
new model based on an ecological model that
needs high temporal resolution input data, so
that it can be applied with low temporal
resolution input data that may be available at a
relatively high spatial resolution over large
extents. In the discussion we focus on the
different steps of the metamodel framework
(Fig. 2) in relation to the potato late blight model
and more generally for other ecological models.

(1) There is potential for metamodel construc-
tion for a wide range of mechanistic models.
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MMy, Resistant

-40
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-40
MMyoneny, RESistant

Fig. 3. Generalized additive model surfaces depicting mmp,;, and mmpe,g, predicted blight units as a
function of the interaction of relative humidity (%), and temperature (°C), for susceptible and resistant potato

genotypes.

Models for many plant diseases are similar to the
late blight model in that they use weather
thresholds which, when crossed for defined brief
time periods, trigger a predicted increase in
disease risk in the model (e.g., Cu and Phipps
1993, Momol and Aldwinckle 2000). For other
diseases, inputs related to phenology of the host
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plant, soil texture, inoculum, sowing density and
nitrogen may be needed in addition to climatic
variables (De Wolf and Isard 2007, Ennaifar et al.
2007). Coupled energy and mass balance equa-
tions describing organisms and their habitats in
biophysical models (Kearney and Porter 2009)
may also be amenable to this approach, as well as
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SimCast Predicted Blight Units

Fig. 4. Boxplots depicting mmpy;;, and mmuyy,,.1, predicted blight units using evaluation data sets plotted with
SimCast predicted blight units per day and the monthly average of SimCast predicted blight units per day,
respectively, displayed by 0.1 blight unit bins for susceptible and resistant potato genotypes.

models that are based on limiting factors for
survival, such as components of PHENOFIT
(Chuine and Beaubien 2001) and CLIMEX
(Sutherst and Maywald 1985), depending on
their response to extreme input values.

The sensitivity of the initial model to extreme
input values, in combination with the tendency
or lack thereof for extreme input values to
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influence aggregated input values, will be an
important determinant of the success of meta-
modeling. Initial models may also be sensitive to
the high resolution covariance structure of
different input variables; again, the importance
of this sensitivity will depend in part on how
high resolution covariance translates to covari-
ance in averaged input data. Because SimCast
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includes a threshold RH value for infection to
occur, it is sensitive to extreme values, and to the
interaction between RH and temperature. How-
ever, enough of the high resolution features were
maintained in the average values that the
ordering, though not the absolute values, of the
initial model output were maintained in the
metamodel output.

(2) The high resolution data used for meta-
model construction need to have several charac-
teristics. The data need to match the initial
model’s application domain, in the case of
SimCast having weather data available with
hourly resolution. The data need to be such that
they can be modified to match new desired
application domains. This can generally be
accomplished through data aggregation, in the
case of SimCast by aggregating the hourly data
to produce daily and monthly means. The data
need to be extensive enough to provide good
coverage of existing variation in weather pat-
terns. In our case, the fit of potato late blight
metamodels developed using a broad data set
(all the US weather data) or a targeted data set
(only those from potato-growing regions) were
essentially the same. We chose to use the models
constructed using the whole US weather data set.
This approach represented a broader range of
climates and was thus potentially more suitable
for global predictions. In fact, the HUSWO
weather data set may be equally useful for many
ecological models that need to be adapted from
requiring high resolution weather data input to
lower resolution input data. The HUSWO data
are extensive enough that, in our system, the fit
of models for the evaluation subset of the data
was essentially the same as for the construction
subset. Finding large higher resolution input data
sets for other types of predictor variables may be
more challenging. In such cases, simulated input
data (e.g., from a stochastic weather generator)
could perhaps be used for construction of the
metamodel.

(3-5) The degree to which data can be
aggregated for model input is dependent on the
system being modeled. Because potato grows
over a period of months and is grown in many
areas of the world at different times of the year,
and late blight is polycyclic, it is most practical to
aggregate data to the monthly level. The appro-
priate level of aggregation remains to be deter-
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mined for other systems such as plant diseases
with a narrow window of infection, including
fireblight, where blossom infection occurs within
a two to four day window (Thomson 2000) or
Fusarium head blight of wheat and barley, where
infection only occurs during anthesis (De Wolf et
al. 2002). If the key input values for determining
the response are in a tail of the distribution of
input values, the effect may not be preserved. In
our case, MMpyg;, and MMy, Maintain rela-
tive relationships. If a true one-to-one relation-
ship between the original model and metamodel
is necessary, the key input values would need to
be conserved through averaging.

(6-7) For construction of the metamodel, we
used GAMs to model the relationship between
the aggregated initial model output and the
aggregated weather data input. GAMs have the
benefit of flexibility for fitting potentially irreg-
ular surfaces resulting from complex ecological
interactions. Because they capture irregular sur-
faces well, their use puts additional emphasis on
the requirement that the data set used for
metamodel construction be large and represen-
tative. Other smoothing functions could also be
used, and for simpler models low order polyno-
mial models may be sufficient. In our case,
simpler versions of the GAM model that did
not include the interaction between temperature
and RH performed poorly. In some cases, a priori
model structures may be used. It can be argued
that use of smoothing functions results in a
metamodel that is once more, in some sense
‘correlative’. However, the metamodel incorpo-
rates much of the complex information embed-
ded in the structure of the process-based initial
model, which will tend to provide advantages
over approaches such as climate matching.

(8-9) Evaluation of the metamodel has the
potential for several stages. Ideally the initial
model will be well-validated over at least a small
extent, so that similarity of metamodel predic-
tions to initial model predictions is a good
measure of how well the metamodel performs.
A second form of evaluation, again assuming the
reliability of the initial model, is similarity in
results for metamodel application to the con-
struction vs, the evaluation datasets, as we
observed for potato late blight. For metamodels
constructed from less-studied initial models,
other forms of evaluation will be particularly
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important. It would be ideal to have ‘response’
data corresponding to the high resolution input
‘predictor’ data used to construct the metamodel
across a large spatial or temporal extent, but that
scenario will be rare. At least it may be possible
to evaluate the performance of the new meta-
model for a limited number of observations.
The metamodel will tend to have all the
limitations of the initial model, other than the
requirement for higher resolution input data, and
may have additional limitations, as well (though
it may be less sensitive to outliers). In the case of
potato late blight, SimCast provides an estimate
of daily disease risk, but does not incorporate
factors such as the potential ‘compound interest’
buildup of pathogen populations through the
season (e.g., Garrett et al. 2009, 2011). There is
also the potential for pathogen populations to
evolve such that temperature optima shift, or so
that resistance to the pathogen population is less
effective. Thus, the metamodel shares these
limitations. The metamodel construction frame-
work performed well for scaling the model of
disease risk based on hourly weather input to
metamodels using daily or monthly average
weather inputs. Predictions from both the daily
and monthly resolution metamodels were
strongly and positively correlated with predic-
tions from the original hourly resolution SimCast
model (Table 2). The salient features of SimCast
were maintained in the metamodels, even
though the relationship was not one to one. A
limitation of this metamodel is that, although it
preserves relative changes in disease risk, it does
not preserve absolute changes. Interestingly, the
fit of mmyum, when regressed on SimCast
output was slightly better than that of mmpy,
Reasons for this may include the smoothing
effect that averaging has on the SimCast data.
Averaging tends to obscure extreme events, but
the general relationship is preserved. Apparently
monthly averaging maintains the relationship
between predictor and response variables better
than daily averaging. Maintenance of relative but
not absolute features of model predictions may
be a common outcome for other model systems,
limiting applications to comparative analyses.
In addition to the importance of metamodels
such as the late blight metamodel for ecological
analysis and planning, the structure of the
resulting metamodels is also of inherent interest.
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Ecological models, such as those predicting
species distributions or disease risk, transform
time series of meteorological data into ecological
outcomes, in what can be considered summariz-
ing or aggregating data. It is an empirical
question whether use of lower temporal resolu-
tion weather data will capture the most impor-
tant features of a model. De Wit and Van Keulen
(1987) suggested that one should ‘calculate first,
average later’; and Nonhebel (1994) showed that,
because of the high variability of the distribution
of rainfall in most climates, and the non-linear
response of a crop to rainfall, a crop model
overestimated potential yield when using month-
ly rather than daily data. However, these authors
did not adjust their models as they aggregated
the input data used.

While predictions based on means may not
capture all the features resulting from increased
variability in the future as a result of climate
change (Scherm and van Bruggen 1994), these
metamodels are useful tools for decision-making,
planning future research and other policy deci-
sions. Rather than being a tool for estimating
absolute disease risk, our late blight risk evalu-
ations are a way of efficiently estimating relative
rankings of risk over large areas. Because the late
blight metamodels maintain relative relation-
ships, despite under predicting blight units,
linking these models with a geographic informa-
tion system supports creation of maps for
comparisons between different time-periods un-
der climate change scenarios, or comparisons of
different geographic areas during the same time
period. These types of information for potato late
blight can be useful in planning breeding
program locations, making determinations re-
garding education and extension efforts for areas
where disease pressure will increase under future
scenarios, or making predictions regarding spe-
cies invasions.

Metamodels are likely to become more widely
used in ecology, particularly in the context of
projections of the effect of global climate change
(Urban 2005, Pifleros Garcet et al. 2006). Because
global circulation models tend to predict larger
time periods more accurately than smaller time
periods (Sun et al. 2006), it could be desirable to
use the larger time-step data in an unmodified
format, while being aware of the limitations of
this approach. The effects of climate change make
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the need to estimate shifts in ecological processes
such as disease risk more pressing. Because most
available climate change data are not at a
temporal resolution that is compatible with many
currently used process-based models, modifica-
tions such as these are particularly useful. Our
comparison of metamodels developed from a
process-based ecological model indicates that
such an approach can successfully be used to
extend the application domain to lower spatial or
temporal resolution input data.
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