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I. Introduction

Ts every torsion group locally finite? Burnside raised
the quastion in 1902, which became one of the most famous in
group theory. This is called the general Burnside problem,
There is another restricted Burnside problem which states: Let
G be a torsion group in whieh fﬂs 1l for all seG, ¥ a fixed po-
sitive integer. Is & then locally finite? Until 1964 almost
all work was on the restricted Burnside problem - there was no
real attack on t?e ggneral Burnside problem. In 1964, Golod
and Shafareviteh settled the general Buraside problem in the

negative.

In 1941 Kurosh asked, for alzebraic algebras, the analogue
of the Burnside problem, In %IV the work of Golod and Shafa-
reviteh is used to construct a finitely generated, infinite di-
‘mensional, nil algebra, thus setteling the Kurosh pnroblem in
the negative. Using this algebra, an infinite, finitely gene-
rated, torsion group is constructed which settles the general

Burnside problem in the negative,

Many types of torsion sroups are locally finite, including
a class of groups which may be imbedded in certain rings L11.
That work is beyond the scope of this napsr, but, becauses of itis
importance, we give the sneeial case of Fatrix Grouns which was

settled by Burnside himself. This result is presented in 277,

xcent for 4ITI, terrminolosy and definitions are mostly

from Herstein L3]. In 4771 definitions are used irom [2].



IT. The Burnside Problem For l'atrix Groups.

2.1 Definition. A group G is said to be a torsion Zroup il

every 2lement in G is of finite order.

2.2 Definition. A zZroup G is said to be locally finite if

every finitely generatzd subgroup of G is finite.

2.3 lemma, Supnose that G is a2 group, N a normal subgroun of
G such that both ¥ and /¥ are locally finite. Then G is
locally finite.r

Proof. Let gy,+.., 3, be a finite set of elements of G: we

wish to show that they generate a finite subsgroup of G. If

generate a finite subzrou» of G/N¥. ILet this subgroup be Eseeer

denote their images in G/¥ then, by assumption, these

gnpov-! ?‘3:1:
images of Tyl Sy respectively in G, Por any i, jJ,

and let Eaarecer 53¢ be any representative inverce

g.g.=1..5 Ffor some kX and some element u,. .in ¥. Let U be the
O3 lJuk %,

J
subsroup of ¥ generated by all the uy the local finiteness of

159
¥ implies that U is a finite groun. Given any tharee Zis gj, &
-, % A O - £ o : T el .
then glgagﬁ 13’P°m u1J 13y SO 1s oI the form ug, with u U
Similarly any word in the gi's is of the form ug with ueU,
l<w<t. Hence the Byseces 3¢ genarate a group of order at most

to t-o(U), that is, a finite group.

2.4 Definition. Let G G be a groun and sunvose it has a series

V T = &G T = a G
of subgroups 1 Gic...cCchO G. If each Grd el for

r=1,e.ey i-1, thaen the series is called a subnormal series for G.
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2.5 Definition. A group G is said to be solvable if it has

a subnormal series with Gr-l/Gr an abelian groun (r=0,l,..,i-1).

2,6 Locmna, A solvable torsion Zroup is locally finite.

Proof, Let G be z solvable torsion sroup. By the solvability
of G we can find subgroups G; where G; is normal in G, _, aad
G’i-l/Gi is abelian and where 1=Gyc +..cl<Gy=G. An abelian
torsion group is claarly locally finite; annlying Lemma 2.3

r

we see that we can e¢limb up this chain to zZet that ¢ is locally

finite.

2.7 Lemma, A groun of triansular matrices over a field is
solvable,

Proof, 3Because a sudbgroup of a solvable zroup is obviously
solvable it is =nouch to show that the group of invertible tri-

angular matrices is solvable, 7o see this let:

G= Gz 2. % 0 34 °, ’
llo “ayll? Pl o 1
( (10 % 100 %7

r":j ‘ G = ; 0 r

..1‘2 . O 1 3 . O
k\o 1‘ '-O 1JJ

and so on. ™Mach G4 is normal in i1 Gi_l/Gi is abelian and

G, =(1). Thus the group of triansular matrices is solvable.



2.8 ILemma. Let & be a2 finitely generated torsion froun of

-

matrices over a field F. Then there exists & positive integar

¥ such that aH=

1 for any a which is a characteristic root of
any element of G.

Proof, Let GCT be generated DY Ayyeees 2y If P is the »rime
field of P let Fl be the field obtained by adjoining all the
entriés ol Ayseeey 3, to P. UClearly every element in & has
entrizs in ?1. Since Fl is finitely generated over P we can
find a subfield F of Py which is purely transcendental ovar

P and such that [P :E]=zmn is finite. Using the resular resre-

A

Q

sentation of F over ¥ [5] we can wrlte Pl as a setofmxm
matrices over kK. Subctltuulng'these matrices for the eniriec
of Fl in the elements of G, we realize G as a group of mk x mk
matrices over the field ¥. In other words we may consider that
GC:Kt for some %t where ¥ is a finitely gzenerated purely trans-
cendental exteansion of P.

Let a be a characteristic root of any element of G; since

auation xt - 1= 0,

D

G is a torsgion groun, cach g€ G satisfiss an
Thus a is 2 root of unity so is algebraic over the prime Tield
P. Since Gc:Kt, by the Cayley-Hamilton Theorem any element

LY

of 7 satisfies a polynomial over K of degree t therefore tne
characteristic roots of the elements of P satisly ovolynomia

over K of denree t. Since a is such and since X is ourely trans-
cendental over P we deduce that a is algebraic over P of dagree
at most t.

The ar~ument now divides accordiang to the charactzristic

of P,



l, If P ig the field of » elements, o a vrine, then

[P(a) : P]:&t 25 we have just seen, hence P{(a) is a finite

e kg

field havins p* elements with X<t. Thus a® ~*= 1; since

o

k<€t for all the chnrazcteristic rootsz 2 of G the result follows.

-

2, If the ch=racteristic of P is 0, P is the rationa

=
o

field and all the characteristic roots of the elesments of

a

ot

lie in extension fields of de~ree at most over ¥, Since a
primitive m-thrroot of unity has as its minimal nolynomizl the
cycloﬁomic polynomial which is irreducible and of desree 4(n),
the Zuler d-funcfion, and since #(m) goes to infinity with n
we conclude that there are only a finite number of roots of
unity precent. Hence there is a2 positive intezer ¥ guch that

aH=-l for all such a.

2.9 Leuma, Let S be an irreducible semizroup of n x n matrices
over a field P, 3Suppose that tr a, the trace of a, takes on k
distinct values as a ranges over S. Then S has at most kn2
elements.

Proof. Let T be the algebraic closure of F; then clearly
Sc:RnC2§£. In other words, we may assume that F is algebrai-
cally closed.

Let A:={z_ciai] cieF, a; € S) be the linear span of S.
Since S is a semicroup, A is a subalgebra of F. loreover A
acts irreducibly and faithfully on V, the set of n-tuples over
Py since S itself is already irreducible. The comnuting ring

of A on V being a finite dimensional division alsshra over T

nust be F itself. By 7edderburn's theoren A==Fn follows.



Since S spans A =T, over F there must be matrices 2j,...,

a,2 in S which form a basis of Fn over . Let dl,..., dk ba

the k values assumed by the traces of the clements of 8.
o LI i ] 2 1 + +
If x €8 then tr ajX,..., tr a ox 1s an n -tuple of elements

2
S . . . . n
each of which is one of dl,..., dy. Since there are k such

2 3 LY = L - :
n“=tuples we will be done if we can show that the system of

equations tr 29X =by,..., tr a ,x=b b; € F has at most ons

112 Il2’

solution in F,. However, these equations are linear, so it is

5 . 2
mmghtosmmimm;n°%;=0,1=L.”,n has only x=0 as

solution.

Now the a; are a basis of F, =o if tr a;x=0 for all i

then tr yx =0 for all matrices y in En' Since the trace is a

non-de~anerate bilinear form thig indeed forces x=0,

2,10 Theorenm (Burnside). A torsion group of matrices over a

field is loeally finite.
Proor. Let G'tiFn be a torsicn groupn of matrices, Te go by
induction on n,.

Ifn=1 then 3'C ? and so the result is %rivial. Supnose
the result true for matrices of order less than n. If G'C P,
is a forsion grour of mairices let G be a finitely generated
sub~roun of G', Je would like to prove that G is finite.

S

By Lemma 2,8 we have that there ewists an intesm

0]
i3
=
~
(=]

3] . . e ks »
such that 2" =1 for any a which is & charactsristic root of an
element of G, In conseouence, tr g, as & runs over G, takes
on only a finite number of valuss, If G sghould be an irrzdu-

cible ~roun of matrices it would b2 Ffinite by apnlyins Lenna



2.9. S0 sumnose that G is reducible. Ty a chanze of bhasgie

we car assumz that g €% is of the form

)

g
1

b5

wyhers g e F o4 r for 0{m¢n. The s=2t G, of arising
Jl ml < 2& n < l gl

this way is a torsion groun of m Xx m matricas over * so by

induction it is locally finite., (In faect it is finitely

generated so is actually even finite.) Similarly G,, the set

of g, arising, is locally finite ~roup. Given

2
o 0 z 0
! in & man it onto 1
b & 0 &

this map ¢ is clearly a homomorvhism of G into a locally finite
groun. Loreover, Ker 4 is a subsroupn of the group of triznzu-
lar matrices and, as a subgroun of a torsion zroup is itselfl

a torsion zroun. Invoking Lemma 2.6 we deduce that Xer g4 is
locally finite. Knowing that Ker ¢ and G/fer £ are locally-
finite we have by Lemma 2.3 that G iteelf is locally finite.
Since G is finitely generated it must therefore be finite.

e have proved that G' is loeally finite, Thus the theorem is

ectanlichad.
III Graded Algebra

3.1 Dofinition. A gradineg in a module A is defined by a fa-

S n . N . e .
mily of submodules A" (n runnincs throuch all intesers) such



o

that A is the direct sum ZA . Bach 2el has then a uniaue

s . - n., n LAE - JO
renrerentation 2 =Za°; a‘e A where only a finite number of
a’'g are diffarent from zero. Je call a +he horoZ2neous compo-
nent of degree n. A module with a grading defined in it is

called a graded module.

3,2 Definition., -A submodule B of a graded module A is called

homogeneous if B = 23" where T'= B(]An. The aquotient A/B may
then be ragardiasd as a graded module by setting
) n n n,n
(A/B) = (A +B)Y/BEA /B .
. . . . . n,n
T+ will be conveniant to identizy A/B with ZA /B .

3.3 Definition., An R-algebrz A is a right R-module which is

a ring in such a way that addition in the ring is the addition
in the module and (ab)r=(ar)b=a(br) for all a and b in A
and r in R. A homomorphism A --3> A' of R-algebras A, A' 1is
a function on the set A %o the set A' which is a homomorphisnm
both of R-modules and of rings.

Hence 2n Algebra is defined to be a module A whieh is also
a ring in such a way that the oroduct (a,b) --3 ab in the riné;
satisfies (ab)r =a2(br)=(ar)b for 21l ré¢R, This condition,
with the distributive law for multiplicaticn, states that the
product (a,b) --> ad ic a bilinear function A @A --> A, By
the univercality of the tensor »roduct, there is a unicue ho-
nomornhism f: A @ A --3> A of modules with f(a @ b) zab for all
a,b in A. The unit element 1 of the ring also determines a

homomorphism g: R --=> A, defined by ~(r)= ler €A,



3.4 Delfinition. A graded algebra A ics a graded module with
two homomorphisms f: A @ A -->» A and g: R --» A of graded

nodules such that the diasrams below are commutative:

loef .
ADADA —3 A Q@A ReaA <A =A0R
f@ll f ,gGIL 1l lo s
A@A — A AeA oS Ac—Ap A
f f £

3.5 Example of a graded Algsbra

Let G be any field and let T:zF[kl,x2,..., xd] be the
polynomial ring over F in the noncommuting variables Kisesey Xgo
This is also called the free associative algebra on Xj,XpseesXge
over F., e can write T as

- 7 @
T..T069T1@ ...GBTn see

where Tn=P and T, has a basis the A% elements of X: X ¥: ..Xs ’
0 n 1771571 iy

where the %y are chosen from Xj,..., Xg. The elements of T, are
J

called homozeneous elements of degree n. Clearly the T
3 Jr ) n

are sub-
modules, If we define f: T@ T --» T by ordinary multinlication
in polynomizl ring, and define g: P --> T by g(r)= l°'re T vhere
1 is the identity of P, then the following'two diacsrams are

commutative:
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1ot
TOT©T ——mmm > T@T FeT =T =7T@F
f@lL Jf , gall' 1]{ ll@g
T @ T mmmmmmmmme 5 T TQ T->T «- T ® T
f f f

Hence T is a graded algebra,
IV Golod-Shafareviteh Theorem

4.1 Lemma, Let T be the gradad alzgebra defined in 3.5, Let
oL = (:E‘l,fg,...) be the two sided ideal of T generated by the
homogeneous elements fl,fg,... of degrees 2£n1=“-i'12... respec-

tively. Then A= T/0L inherits the zrading of T, in fact

= LI ] - [ 3 AN ] - e Z‘ L ]
A AO{-'BAH&B ce s @ 'lne where Ai Ti/D'Lﬂ Ti

—

Proof. Let ae(fl. Then 2 =Zc;,fbyy where ¢4, by are

homogeneous. Therefore clofqbqa for some n. Hence
P
a EHZ:OUL{‘ T, Olearly fLC ZULﬂTnCDI. Hence Ol is a homoze-

neous submodule, By definition 3.2,

and. A:A. ®ill@...

0

4,2 Theorsm (Golod=Chafareviteh), For A as defined above, fur-

thermore let Ty be the number of n. which are ecual to i.

J
Let bn-‘-’ dlmF (¢%1)0
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. < -
111_.11 nnl

1. b,2db, 5 - = b for n21,
| 2
2. If for each i the ry £[(a-1)/2]° them A is infinite

dim=ansional over F.

Proof. Te will exhibit line2r mapnings 4, ¢ so that the se-

quence

g
\ ¥ 4
(1) Apn @ -e-@dn-n @ v -7 An-l@r@Mp1 79 Apmy O

is exact, where the first sum runs over all n; 4¢n and where
the second sum is that of d copies of A ;.
Hote that if we are able to do this then the enuality ex-

pressed in the theorem would be proved for then
db,_q= b, +dim (Ker ¥ )

and since Eer ¥ is a homomorvhic image of @niﬁn A‘n-ni we
would have dim (Ker ¢ )} & zﬁifn bn-ni’ the net result of vhich
would be db,_; < b, ¢ Z'niﬁ-nbn-ni" the desired conclusion.

Our objective then becomes that of defining the ¢ and ¥ .
To this end we shall first define mappings € and ¥ for the

sequence _
(2) Ty @eee @y, @ .o
3 ~ d-times -
-=> T 1@« ®Ty 3 =» T =» O

where € and ¥ are linear. Althouch the seouence will not be
exact at the T-level it will turn out to be so at the A-level;

that is, we shall induce the proper ¢ and # from these # and F .
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The mapning ¢ is defined simply by:
d

To get & we proceed as follows: if

Sn_nle . s ®sn-nk@ L B E le_nle [ 3 I ) @Tn_nk@.. *

then ¥ sy pn.fije Ty, As an element in' Ty we can write
d

= Spen Ty 1%1 wyxy

where the u; are unicuely determined elements in Tn—l' Define

2 vy
ﬁ: Sn"'nle s e e @Sn_nk e a -3 ul@.-.@ud

It is trivial that the ¥ and £ defined are linear and
have the prover ranges and domains, It is equally clear that
¢ is onto T, so that the sequence (2) is exact at T,.

Let (L, =0L/1T,; our ain is to induce manpings £ and ¥
from our € and £ for the sequence (1).

If tl""" tdeﬂ'[n_l then -s:i_nce OL is en ideal of T,
S tyx3€0L ; by the properties of the grading Z tyxje Tj.

In short, it is in Ol,. Thus the mapping ¥ induces down to ¥

Wi A 1@+ ®L 1 -3 A4 -0

7e now consider ®. Supvose that sn_nl, Spon, 0t Sn-nk"'
; i s -
are in m’n-nl' an_n2 AR ﬂn—nk"" respectively. ‘e must
show that cesy 1, defined by = s f . =Zu.x, are in
’ Uprerer Uy Y250ty p m’n-l'

i
Since € is linear it suffices to do so for each Sp_p. in 0L . .

1 1



1
5 3

T .= .Z 3 3A 4
How Sn—nifl 3=1 Sn-n;%ij%;

d
whe Fum B R n o .. and s 3 o
re £, jzl 81 4%5e Thus ua Sn-nigl:J and so is in OL as “’n-ni
is in the ideal 0L, Being of the correct zrade it is in OLn 1 *

Therefore 3 too induces dowvm to a map ¢ from

An"n‘l@ luo@An_n}:G s e 'tO An"’le.'.@’qn—l.

e must still chow exactness at A 1@ ... 94, 5. We first

establish that #£¢=0, If Spopgeecer § ‘are in

ﬂ—nk
’i‘n__nl,-..., Tn—n;_,‘_ regnectively then
s Q = %
(8 @ oo @8 JEET 2 WXy
where Zuixi=isn_nifi; since the f; are in (L the sum,
> sy.pn.fis i85 in OL hence Zujx;€0L. In other words, 3% maps
i
opy @ o+ ®Tnony ® « -+ into Ol hence Apop @ e @in_pn @ 1s
manped into 0 by ¢£¢¥.

Je must still show that if (4@ ... ®@t3) E €Ol then we can
find elements Wj,..., ug in Ty such that ti-uj €0l for i=1,
2yaney d and such that Euixir-an_nifi for some Sn-—ni in the
appropriate Tn-—ni' Suppose then that (4@ ... B43)F = t;x,€lL;
being in Ol , which is generated as a two sided ideal Dby the Iy,

we have thatl

Zti::i =2 a’lcqfcb}:o + Zcqf,

<

where the By bkq’ ¢, are homorensous and where tie desrse of
bkq ig at least 1. On comparing desree on both sides we may
na ! £ are 2 in T . in i
even assume that the alcn_"qbl{q’ t::qfq re all " Since the
b are of degree at least, Dyq = %1 digp¥m hence
4 Cied = e
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= a‘lco_fqbkq = iakqfqqumxm =Z dpxy

But since £

where d = kZ SN T .

't T

€ 0L we have that d, € 0L,

If we write

qnq j= i*i
we have that
d d d
Z f:x Z dsxs+ =usx
j=1 AT {5 BT 184

hence t;-u;=dy€ 0l. But (c;® ... @ci®...)§ = U D...0uy by
the definition of & ; hence we have proved the exactness of (1)
at Ay 1@ «.. &4, 7. This proves part (1) of the theoren.
Je now consider part (2). For formal power series in %
with integer coefficients we declare
e n, = n
ILZ-‘-Ocnb > z0 d.n't
=1 ci’—’ di Tor #11 4.,
Prom part (1) we have that

e

P
= > = :
Z, ptt2 = dby_

Prom the definition of r. we can write

i
n- m V n- > —
bt o=t E = (= rgth(E ppt™.
N4 ,M m* i#2 n=0
@

m
Let PA(t)= 50 bm't . The above relations become:
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P, (£) - 124dtP, (%) - (1'2:2 riti) P,(t);

therefors )
-dt+ Z 1y > .
PA(t) (1 dt 1o rit Y21

Now if the coefficients in the formal power series expvan-
gion of .
e ) 1

L
1 -dt+ =
( f=2 i

are nonmegative we get that
. - i 4~1

and so, an infinite number of the b, must be different from O.
Hence A is infinite dimensional. |

This itself is of great interest and we single it out as
a theorem before completing the proof of part (2) of the

Theorem 4.2,

4,3 Theorem, A is infinite dimensional over F if the coeffi-

cients in the power series expansion of

o
(1 - dt+i§2

riti y-1
are nonnegative.

To finish the proof of Theorem 4.2 we need to show that
if each rj; < [(a-1)/2]2 then the criterion of Theorem 4.3 is
satisfied and so the theorem is established.

EfoofL

1 -dt+ = retlcl - dt (d=1)2 = i
j=3 " 27 402
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w AN E 5 -l
at+Z ot )yt 50) .t
(1 - a5+ Z,rt ) 3[1 ) dt+( 5 }

- l - ¢ wmaith a == this becomes
1-(a+1)t +at2 + (53-—'2'l-)2 +2

1-% - 1-%
1 - 2ut+ut? (1 - ut)?
=(1-t) (L+ut +u2t2+ ...)2=(1-'b) (1+ 2ut+3u2t2+ oo (u 1—1)untn-f—..)

=1+ (Zu-1)t +u( 3u—2)t2+ e 4 un"l[(nf 1)u-nJ tn-{- _—

As u>1l each coefficient is positive.

From Theorem 4.2 we can construct a finitely generated
nil algebra which is not nilpotent, hence settling the Kurosh
~ Problem (If A is an algebraic algebra over F, does a finite
number of elements of A always generate a finite dimensional

subalgebra of A?) in the negative.

4.4 Theorem, If F is any countable field there exists an infi-
nite dimensional nil algebra over F generated by three elements.
Proof, Let T= F[xl,xg ,x—ﬁ] be the free algebra over F in the
three noncommuting variables Xj,Xp,Xz. Since T is graded we
can write T=—F6T19 g G.'-)Tn@ «es VhETe ‘J?i is homogeneous of
degree i. The ideal T'= Tlea'i‘?@... eBTn@ eee 0f T is countable
and wemie-numerate its elements as S11S55 ees Pick my

e = i € Pas  ToR ick an i
let 5y 810+ 813 tTaset Slkl where SlaE 13 Now pick an inteser

2 2 and
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2
n,> 0 so that s, ™ € Tkl'*1$ Tkl_’ge ee ey nence

m
2 = o m
s, €= s2,1~:1+1+ o 5T S5 % where sgje i\

j.
Continue in this pattern. Hence we have chosen integers mi>0

and 1:l<k2< ... such that

‘m. .
85 o si',kki_lfl+"‘+ Si,ki with s;3€T5.
Let 0L be the ideal of T generated by all the s;4. By our choice
of the 84 4 the integers ry in Theorem 4.2 ar'e all at most 1.
since d=3, r3 <1 2[(a-1)/2]° holds true, therefore epplying
Theorem 4.2 we get that T//L is infinite dimensional. Since
OLC 7t we have that T'/JL is infinite dimensional over F.
By construction T',./OT. is a nil algebra. Since it is generated
by three elements T'/0L is the required example.,

7e close the paper by settling the general Burnside Pro-

blem in the negative.

4.5 Theorem, If p is any prime number there exists an infinite
grbup G generated by three elements in which every element has
finite order a power of p.

Proof. Let P be the prime field with p elements and let Olbve
the ideal in T= F[xl,x2,x3] constructed in the course of oro-
ving Theorem 4.4. Let A=T/0L and let 8y ,8p,83 be the elements
X]+0L, Xp1t0L, X3 +0L respectively. Let G be the multirlica-

tive semigroup in A generated by the elements 1+ 2y y 1+ any
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l+az. Any elewent in G is of the form 1+a where ae /0

(so is nilvnotent). For large enough n, a?"= 0 hence

(li-a)pn= 11—apn= 1l since we are in characteristic p. Hence

G is a group - in fact a torsion group - and every element of

G has order a power of p. Te claim that G is infinite., For if
G is finite the linear combinations of its elements would fornm
a finite dimensional alzebra B over F; since 1, 1+ a4y are in

G the element a;=(lt+a;) - 1 €B., Since 1, ay, ap, az generate
A we get A=B contradicting that A is infinite dimensional over

P, This finishes the proof,



1.
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ABSTRACT

The general Burnside problem asked, is every torsion group
locally finite? HMany types of torsion sgrouvs are locally finite.
However, the general Burnside problem is answered in the negative

7e bezin by showing that a torsion group of matrices is
locally finite. This is done by Burnside himself.

Next we define Graded Algebras and give an example of a
graded algebra, T = F[xl, -++s Xg] be the polynomial ring over F
in the d noncommuting variables.

Next we want to pnrove the Golod-Shafarevitch Theorem. Let
01==(fi,f2,...) be the two-sided ideal of T generated by the
homogencous elements fl,fg,... of degrees 2 énl‘-‘-n2$ e+ TESDEC-
fively. PFurthermore let Ty be the number of n which are equal
40 i. Since I is homogeneously generated the algebra A= T/
inherits the grading of T. Let A.z AO@A]_@ ...@An@ ees and
let b, =dimp(A,), the Golod-Shafarevitch Theorem furnishes a
sufficient condition that A be infinite dimensional over F.

Theorem (Golod-Shafarevitch)., For A as described above
l. by 2dby_71 - Zn52 nbn.-ni for nz1l. |
2. If for each i the-ri,f[(d-l)/érzthen A is infinite dimen-

sional over F,

Then we construct a counterexample which settles the Kurosh
problem in the negative, namely, if I is any countable field
there exists an infinite dimensional nil alzebra over F gene-
rated by three elements. Using this we then settle the sgeneral

Burnside problem in the negative.



