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1.0 Introduction

The analysis of neutron tramsport through matter has been a subject of
considerable investigation in recent years. With the advent of advanced reactors,
reliable fast-neutron penetration information is critical to the further
development of optimal reactor core and radiation shield designs. Comsequently,
much attention has been focused upon simple geometries in order to better
understand the interactions and transport processes involved.

Many institutions, including the Nuclear Engineering Department at Kansas
State University, have been actively engaged in a continuing program to analyze
the energy and angular dependent flux which penetrates slabs of various test
materials. From such studies it is hoped to establish experimental benchmark
data for simple well defined geometries. This data could then be used to
improve and verify computational methods employed in standard neutron transport
calculations. The present study represents an investigation of some approximate
numerical techniques which can be applied to the analysis of problems involving
highly anisotropic neutron scattering. Anisotropic scattering occurs in many
important particle tramsport problems. The one studied in the present work is
that of multigroup neutron transport through water slabs.

Until recently, much of the work done with anisotropic particle tramsport
has relied upon Legendre polynomial expansions of the elastic scattering cross
sections. Although these expansions yield a relatively accurate description
of transfer probabilities for media comprised of atomg with large mass number,
light materjals offer a special problem., Multigroup angular transfer cross
sections for elastic scattering from light elements tend to be highly
anisotropic in the scattering angle. Legendre expansions of extremely high

order are required to accurately model angular transfer. Timmons [1] indicates



that in some cases, Legendre orders in excess of 160 terms are needed to
eliminate significant oscillations in reconstructed angular scattering
distributions. Recent work by Carter and Forest [2] as well as Attia and
Harms [72] s.ggest approximate techniques which can be used to evaluate trans-
fer cross sections without resorting to Legendre expansions. They examine
these methods as they apply to neutron transport through hydrogen and water
slabs. Unlike other elements, hydrogen scatters isotropically in the center
of mass coordinate systems. Hence, hydrogen angular transfer cross sections
lend themselves to a somewhat simplified treatment.

Odom [3] employed.an exact Kermnel technique to obtain very accurate
anisotropic elastic scattering cross section information for not only the
special hydrogen case, but for materials of arbitrary mass number. He compares
transport results using these refined anisotropic elastic scattering cross
sections to similar ANISN calculations [4] which employ ninth order Legendre
cross section‘expansions. Such ninth order truncation of the Legendre cross
section expansion severely impairs its ability to represent highly anisotropic
scattering cross sections. These cross sections often appear as sharply peaked
distributions. Odom concludes that the exact kermel technique provides for a
far more realistic representation of highly anisotropic angular particle
transport. His results ds well as theoretical and empirical considerations
presented in Section 2 of this work sugéest that multigroup angular cross
sections for equal lethargy energy structures might successfully be modeled
by triangularly shaped distributions. Use of a triangular representation
conaiderably simplifies evaluation o; angular cross section information.

The only actual cross section information required for such an evaluation is
the total group-to-group transfer cross sections for all group transfers

being considered. This is in sharp contrast to Legendre expansion téchniques



which usually require a minimum of nine angular moments for evaluation of each
group-to-group transfer cross section considered.

A discrste ordinates transport code [3] has been used to draw comparisons
between Odom's refined cross section data and triangularly approximated values.
Triangular approximation of hydrogen and oxygen data has been studied extensively.
Angular distributions calculated using triangular and refined elastic scattering
water cross section data are compared for few-group scattering problems as
well as a 20 group scattering problem. Particular emphasis is given to
selection of numerical quadrature sets for use in the discrete analysis.

Methods for selection of the minimum order numerical quadrature needed for a
given gset of anisotropic cross sections is introduced in this work. The
method removes much of the guess work involved in selection of numerical

quadratures for transport calculations.- '



2.0 Theoretical Consideratioms
2,1 FEquations for Neutron Transport

Extensive treatment of the linearized Boltzmann particle tramnsport equation
can be found in numerous references [5,6,7]. Brief introductory comments
concerning this equation are presented here so as to aid in the later discussion
of multigroup elastic scattering transfer cross sections. TFor the sake of
clarity, the monoenergetic form of the transport equation is discussed first.
Subsequent sections make the extension to the more general multigroup form of
this equation. Since this work is concerned primarily with the tramsport of
neutrons through homogeneous slabs, only the one-dimensional, time-independent
form of the equation is considered. However, extension of the results to other

geometries presents no special problem [6].

2.1.1 Monoenergetic Model
The general one dimensional steady-state form of the Boltzmann transport

equation can be written as

M g—xw(x.u,cb) + op B(x,u,9) = J da' o_(2'-2) v(x,u',9") + Q(x,u,4) 5 (2.1)
ﬂ'

where:
u = cosine of the polar angle between a particle's velocity vector and
the positive x axis,
x = the distance traveled into the slab,

¢ = the azimuthal angle between the z axis and the projection of the

particle’s velocity vector onto the slab face.

|2
i

a unit vector in the direction of particle travel,

¢, = the total macroscopic cross section of the slab,
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Figure 1. Coordinate for Slab Geometry



Q(x,u,¢) = the particle source strength in direction @ at position x,
P(x,u,9) = the angular particle density in direction @ at position x in

tha glab,
g,(2'+2) = the macroscopic scattering transfer cross section from direction

Q' to direction Q.
The scattering transfer cross section, GSQQ‘-Q), may be thought of in terms of
a transfer from one direction defined by u and ¢, tb another direction defined
by u' and ¢'. If azimuthal symmetry is assumea, the quantity JZH d¢ cs(gf-g)
is independent of ¢'. Consequently, Eq. (2.1) may be expressedoin terms of polar
angular dependence as
5 +1
boag VG Foop vix,K) = J—l du’ o (') v(x,u') +Q(x,0) , (2.2)

where

1 2m
plx,u) = 5= Jo d¢ P(x,u,¢)

igs the azimuthally averaged angular density and os(u'+u) is the azimuthally
averaged elastic scattering cross section from u' to p. Similarly, Q(x,u)

is the azimuthally averaged source in direction p at position x.

2.1.2 Multigroup Model

It has been pointed out by Davison [5] and others [8,9,7], that a mono-
energetic description of neutron transport can be strictly justified only for
the case of slightly absorbing media in regiens which lie awéy from sources and
boundaries. Division of the energy spectrum into a series of subintervals
permits a far more realistic representation of most physical situations,

particularly since o, and Gs(u'+u) values vary dramatically with energy for

T
many elements [10]. An equation similar to Eq. (2.1) can be written to describe



the source-free, energy-dependent transport of neutrons [5];

B2 Y (x,2,E) + oy (E) ¥(x,8E) = J dE' J dg' o (E'Q'+E,2) ¥(x,2',E') . (2.3)
b's T Q! s

In this equation, oS(E',gf+E,g) represents the macroscopic scattering transfer
cross section from energy E' and direction f', to energy E and direction Q.

Before proceeding further, it should be pointed out that for isotropic
noncrystalline media, the scattering transfer cross section, GS(E',gf+E,g), may be
written in the form GS(E'+E,gf-g). This notation indicates that the scattering
probability depends only on the scattering angle rather than on the actual
initial and final directions. The scattering cross section can be expressed
more formally as the sum of two components; one elastic and the other inelastic.

Explicitly,

v 1, - t t
o (E'+E,2'-9) = o_, (E"+E,u) + o, (E'E,u) , (2.4)

', o is the elastic scattering cross section, and ¢ is the

el in

inelastic scattering cross section. Neutrons which undergo inelastic collisions

n

where u

scatter through laboratory angles which are well defined by energy-momentum
constraints. Although such constraints differ from those which govern angular
distributions for elastically scattered neutrons, the triangular approximating
technique developed in this work is equally applicable to the approximation of
inelastic group-to-group transfer cross sections. The transition from the
approximation of elastic to inelastic scattering distributions can be carried
out by replacing the energy-momentum constraints for elastic scattering
angular distributions by those constraints for inelastic distributions.
Davison [5] points out that for low atomic numbers, inelastic scattering
becomes important only at very high energies (higher than the average fission

neutron). In most practical situations, inelastic scattering is important



only for elements with large atomic masses. Light element elastic scattering
cross section treatment is emphasized in this work with the understanding that
inelastic scattering will become an important consideration only for target
nuclei with large atomic masses and high energy incident neutrons.

Equation (2.3) may now be used to arrive at a form of the multigroup

transport equation. By integrating from E to Eg’ the following expression

g+l
is obtained to describe particle transport in energy group g'

9 1 1, 1
u Ewg(x,&) + Ugtbg(x,&) =g§ L}' de Gg._,g(ﬁ 2) dﬂg'(x,ﬁ) . (2.5)
where,
ES
'Pg(xsﬂ) = f dE lb(x,&;E) (2.6)
Eg+1
E
.1 g
Ug = m JE dE UT(E) IIJ(X,EZ_;,E) (2.7)
g+l
o, () = —-—1-——JEg dE JEE' dE' o (E'E, 1) ¢(x,0',E') . (2.8)
g'rg ¢g.§x,g') Eg+l Egr+1 s &

The group-to-group macroscopic scattering transfer cross section defined by Eq.
(2.8) is the portion of the transport equation dealt with most extensively in
this work.r Therefore, a closer examination of the relationship of Gg'+g(u)

to the overall equation, as well as techniques for its numerical determination,

are in order.
2.2 Anisotropic Group-to-Group Scattering Cross Sections

To solve the multigroup neutron transport equation, Eq. (2.5), it is

necessary to have some analytical expression or numerical method which can be



used to evaluate ug,+g(u). Although Eq. (2.8) presents one alternative, it

is of little use in its present form. One obvious difficulty is that ¥(x,R',E')
appears explicitly in this equation. If v(x,2',E') were known, there would

be no point in solving the multigroup problem. To free Ug'*g(u) from this
explicit dependence upon the angular density, separability of angular

and energy components is a common assumption. By allowing y(x,Q,E) to equal

®(x,2) W(E), Eq. (2.8) can be reduced to the following form;

g r8'
o = [ [ e o mremw W (2.9)
g Eg+1 Eg'+l
where,
Egs
By = J dE W(E') . (2.10)
Eg'+1

By assuming the separability in energy of ¥ (x,Q,E), the evaluation of ag,+g(u)
is no longer contingent upon knowledge of the angular demsity.

Ginsberg and Becker [11] discuss several possible weighting schemes that
might be used for W(E). For the case of an infinite non-absorbing media, the
neutron flux is rigorously proportional to the inverse of the neutron energy.
This 1/E flux weighting is widely used to generate hyperfine multigroup cross
section data sets for absorbing and nonabsorbing materials. Actual group
averaged cross sections are spatially dependent [12]. However, an underlying
agsumption behind the use of multigroup methods is that at some level of
detail, this inherent spatial dependence can be neglected. For problems where
spatial effects are significant, this dependence can be conveniently taken
into account when hyperfine group structures are collapsed to few group

structures. Whether or not spatial dependence significantly affects few group

cross sections depends on the nature of the problem. For example, Becker [13]
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points out that for slowing down problems where scattering is predominant
and where sources at energies of interest are determined by inscattering,
it may be reasonable to assume that spatial dependence is secondary in nature.
He poinus out that spatial dependence is likely to be more.significant in
problems where absorptiom is prevalent and scattering is poor. Consequently,
evaluation of cg,+g(u) in this work will be based upon a W(E) = 1/E weighting
with the understanding that cross section problems involving significant amounts
of absorption (or geometries involving strong flux buckling) may require a
modified weighting scheme. Hence, evaluation of angular group-to-group
transfer cross sections could be carried out if the elastic scattering
transfer cross sectidn, bS(E'+E,u), were known.

Odom [3] discusseé seﬁeral computer codes which are currently used
to calculate éS(E'+E,u) as well as Ug'»g(“)' Among those mentioned are
SUPERTOG [14], MC**2 [15], and XSDRN [16]. All of these codes make use of

conventional Legendre expension techniques to carry out cross section

evaluation.

2.2,1 Legendre Expansion Techniques
Before group~to-group scattering cross sections can be evaluated by
Eq. (2.9), empirical data must be obtained for Us(E'+E,u). Extensive
research over the past twenty years has resulted in detailed tabulations of
these data. Common practice has been to express this elastic scattering cross
section in a truncated L+l term Legendre polynomial expansion'{S,lﬂ], namely
%ﬁ'gzo 8, (E,E') P, (u) o E"<E<E'

cS(E'+E.u) = y (2.11)
0 e E' > E or E > E!

where a = (Arl)ZI(A+l)2. The fact that the elastic scattering cross section

is zero for o E' > E or E' > E is derived from collision kinematics for elastic
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scattering [7]. This expression for the elastic scattering croaé section can
now be substituted into Eq. (2.9) to solve for the elastic scattering group-
to-group transfer cross section, Ug‘+g(u)'

" Work by Hill [17] and others [3,1], indicate that low order truncation of
Legendre expansions for oB(E'+E,u) can lead to-an'inadequate representation of
og.+g(u). Truncated low order Legendre expansions exhibit particular difficulty‘
in representing the aharply peaked functional behavigr of highly anisotropic
scattering distributions; Timmons [1] points out that Legend¥e orders well
in excess of 160‘terms may be required to eliminate significant oacillatioﬁs
in data sets reduced from DLC2/99G files [18)]. The first 26 group-to-group
limits for the DLC2 energy structure.are given in Table 6. Figures 2 and 3
depict macroscopic angular transfer cross sections for hydrogen scattering
between various energy gfoups in this sﬁructuré. Reaulta for én eighth order
Legendre expansion are compared to exact results computed by BIGD [3]. Note
the inability of this low order expansion to represent highly anisotropic
behavior of the exact hydrogen cross section. Although sufficient accuracy
might be obtained for these cases through use of high order expansions, this

approach attains success only at the expense of a dramatic increase in computa-

tional time.

2.2.2 Exact Kernel Techniques
The exact kernel approach was applied by 0dom\[3] to avoild Legendre

expansion of the elastic scattering transfef cross section. Subsequent developmeﬁt

of a trilangular approximation to o _,

B g
elements, will in part be based upon thls approach. Therefore, a brief outline

(1) for hydrogen, as well as other

of this technique is presented in this section. Although the development
provided here 1s somewhat different than that presented bj Odom, the same

results are obtained [19]. ' , ;
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The general approach to the exact kernel technique is based on the fact
that for elastic scattering of neutrons from nuclei of mass number A, the
cosine of the scattering angle, p, is uniquely determined by energy-momentum

constraints [6]. Explicitly,
v = 0.5 [(A+1)VE/E" - (A-1)VE'/E] = S(E,E") (2.12)

Because of this relationship the differential elastic scattering cross section,
US(E'+E,u), must be proportional to a delta function which imposes the kinematic
constraints of Eq. (2.12). In particular, one may write

OS(E') o(E',n) 8[u-S(E,E')] dn oE' < E < E'
OS(E'+E,u) dE = (2.13)

.0 oE' > E or E > E'
where §[u~S(E,E')] expresses the kinematic constraints imposed by conservation
of energy and momentum, and n is the cosine of the center of mass scattering

angle given by [14]

, . ‘ |
IR €. Y I PR 1
- S [1 E‘] ‘ (2.14)

Most nuclear data sets report differential elastic scattering cross
sections, 0(E,n), in terms of the center of mass scattering angle n. In the
center of mass system, this differential scattering cross section is a much
smoother function of angle than in the laboratory system. For example, low
energy scattering in the center of mass tends toward isotropism, and consequently,
o(E,n) varies only slightly with n. In the laboratory system, such isotropic
trends are difficult to realize.

By combining the expression for n and cs(E'+E,u) from Eqs. (2.13) and (2.14)

with Eq. (2.9), o (u) may be written as follows:

g'rg
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-1 [F dE ¢ 25 (E') o(B',n) W(E")6[u-S(E,E")]
Og;_,g(u) ST . . T g g | U s .
8 g+l g'+1 (2-15)

Evalution of this integral can be simplified fy examining the region of integration
in the (E,E') plane. Figure &4 illustrates the domain of this region. According

to Eq. (2.13), the integral is zero unless (aE' < E < E'). Therefore, the

area to be integrated must be some subset of region 1 in Fig. 4. Furthermore,
since the integral over a helta function is zero unless its ;ange of integration
includes the support of the delta function, the double integration of Eq.

(2.15) is equivalent to integration along the line defined by u=S(E,E') [33].

From Eq. (2.12), this corresponds to an integration in the (E,E') space along

the line

2
g = E(A+1) 5 = EPQu) . © (2.16)

(@212t 4 )

Since (-1<u<l), it is apparent from the above equation that [1<T(u)<(1/a)].
This means that the line of integration (i.e. u=S(E,E') or E'=El(u)) will

always lie within region 1 of Fig. 4. From Eq. (2.16), og,eg(u) may now be

rewritten in the following form

2

%g'se™ T TwE .

1
J dE OS(EP) o(ET,n) W(EI) T

E ,
8

X J dE' 8§[u-S(E,E')] (2.17)
Eg'+l

The integration over E' is trivial, namely

E
g

dE' §[u-S(E,E")] = |I'| E J+m du 8[u=~S(E,E')] = |I''| E (2.18)
E 00
g'+1

Substitution of this result into Eq. (2.17) yields



16

E'=§E INTEGRATION
£ . LINE E=EI'(u)
Eo N \ee
B AR '
g : @ REGION |
|
> 77), REGION 2
| !
]
| 1 ."EE
Ege1 Bg

Figure 4. Integral evaluatiom of o

y.. (u) din the
(E,E') plane g8



17

-2 Ir] |
Ug‘+g(u) = (l—a)Ag, J dE GS(EF) o(ET,n) W(ET) T (2.19)
From Eq. (2.16),
71 2 7 2 u? 2 -
’ = 2u + YpHAS-1 + = g(w) . (2.20)
@2 @y U N (a+1)?
pHAT=1
Therefore, the angular group to group scattering cross section may be written
as
bl
& v ) = ﬂﬂlJ IdE o (ET) o(ET,n) W(EL) (2.21)
E 8 AAB, a' 8

Notice that the range of integration in Eq. (2.21) is from a' to b' as shown in
Fig. 4. These limits do not directly correspond to the Bg and Eg+1 limits of
Eq. (2.15). It has already been shown how the region of integration for this
equation is a subset of region 1 in Fig. 4. The region of integration is
further restricted by integration limits imposed in Eq. (2.15). Figure 4
illustrates how integration along the delta function integration line is
constrained to region 2. ﬁence, integration limits Eq. (2.21) merely become
the points at which the delta function integration line intersects the region

2 boundaries, namely

' =
a max[Eg+1,(Eg,+1IP)] ; (2.22)
b' = min[Eg,(Eg./P)] . (2.23)
If no intersection exists, the transfer cross section is zero.

Equation (2.21) can be put in a more convenient form by defining the

variable Z = El'(p), namely

b
og.+g(u) = Eﬁi% Ja dz o _(2z) o(z,n) W(z) , (2.24)

where
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a= max(PEg+1,Eg.+l) . (2.25)
= T'E , ’ 2.26
b = min( Eg Eg,) ( )

gl
By 2 J dE W(E) , (2.27)

E

g+l
and
2

gG) = 2 + Yudealg + —E— (2.28)

Vu2+A2—1

To perform the remaining integration in Eq. (2.24), an explicit form of the
differential scattering distribution, o(Z,n), must be obtained. For all
realistic scattering situations 0(Z,n) must be determined experimentally [20];
therefore, og,*g(u) in Eq. (2.24) must be evaluated numerically.

Finally, it should be noted that the expression for Ug,ég(u) of Eq.
(2.24) is considerably simpler in form than the exact results reported by Odom
[3]. Consequently, this equation lends itself to a greatly simplified numerical
evaluation. However, the two results are equivalent. The same numerical

values can be obtained from either formulation.
2,3 Cross Section Approximation

In this section, it is shown that the methods which may be used to approxi-
mate anisotropic group-to-group scattering cross sections greatly depend upon
the group enérgy structure under consideration. The general case where a neutron
downscatters between two energy groups of arbitrary width is considered first.
For this case, it is shown that elastic scattering group-to-group transfer
cross sections can be well-approximated by quadrilaterally shaped distributions.
If an energy structure based upon equal lethargy widths is used, a simpler
triangular shaped distribution can bg used to approximate the transfer cross

section.
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2.3.1 Approximation of ug,+g(u) for General Multigroup Energy Structures

The development of an approximate form for the group-to-group scattering
cross sections begins with the exact result of Eq. (2.24). The integral
limits of this equation can be categorized into one of three domains depending
upon the exact value of I'(p). Figure 5 illustrates the range of the three
domains in the (E,E') plane (also refer to Fig. 4). The integral limits for

Eq. (2.24) in each of the three domains are:

a=E

domain 1 { gl (2.29)
b = Eg.r(]-\) ]

= E T

domain 2° {ﬂ '+l W (2.30)
b=E, T , 1f (EBE  )>(E-E ;) »
a = E

domadn: 2 { gl (2.31)
b = Eg 3 if (Eg_Eg+1)<(Eg!_Eg|+l) ?
a=E, . T'(w

domain 3 { gl (2.32)
b = Eg .

In order to demonstrate that Eqs. (2.29)-(2.32) may be used for the develop-
ment of a simple and accurate model for group-to-group cross sections, it is
assumed that o_(E) and o(E,n) in Eq. (2.24) are approximately constant over
the range [a,b]. The assumption that o(E,n) is constant implies that center
of mass scattering is ilsotropic; i.e., o0(E,n) = 1/4 n. This assumption is
strictly valid for the hydrogen case where A=1.0 for energies less than about
30 MeV. However, scattering cross sections for A>1 are not always isotropic.
Buttlar [21] points out that if (k) 1s the wave number of'the incident neutron
and (R) is its atomic radius, then when kR<<l1, scattering in the center of

mass system will be predominantly isotropic. Since k ~ vE and R ~ A, one
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for which the integration limits in Eq.(2.24)
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would expect to find isotropic center of mass scattering dominant for small A
values and low neutron energles. As (kR) approaches one, center of mass
scattering ceases to be isotropic. The angular distribution tends to peak in
the forward direction. In other words, neutrons most frequently scatter
through small angles. 'Consequently, the assumption of isotropic center of
mass scattering for A>]l can be expected to account for some of the differences
noted between various approximate and exact group-to-group transfer cross
sections values calculated in this section. The second assumption, that US(E)
is nearly constant over the range [a,b], can be used to account for the
remaining portion of the differences. This later assumption is valid for
energy group structures.in which the nearness of adja;ent group limits preclude
any dramatic in-group variation of cs(E). Thus, this assumption is poor for
energy ranges which contain many sharp resonance peaks. However, it becomes
reasonably accurate for situations involving fine energy structures and
relatively sqooth cross‘segtions.

Consider the evaluation of Eq. (2.24) for the widely used case of W(E)
= 1/E. By assuming [US(E)a(n,E)=C] where C is a constant, the expression

for og,+g(u) then reduces to

- C onf®
Ograg W) = Eﬁ-gL' m® . (2.33)

By replacing (a) and (b) with their explicit values in terms of the group limits
given by Eqs. (2.29), (2.30), and (2.32), the following expressions result for

the three respective regions represented in Fig. 3:

_awe . Fgr
Domain 1, . 0g'+g(U) Y &n Eg+1 oy . . (2.34)

E
B s (2.35)
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E_T'(w
Domain 3, o, (W= Egglg-ﬂn - (2.36)
g g Mgl Egr+1

it is instructive to examine these three equations for two important
special cases. The first case of interest is that when A=1l. TFor this
situation, g(u)=4p and F(u)=l/u2. In this circumstance, it is obvious from

Eq. (2.35) that o (u) is a linear function of u for region 2 of Fig. 5.

g'rg
Further examination suggests that Egqs. (2.34) and (2.36) may also be represented
by linear functions. This linearity can be seen by taking the derivatives

of these two equations. They are

2
E . u
d 4C g
== T 5. An)] » —= [E-n ( ] + 2) (2.37)
dpu “g'-g Ag. Es+1
4 o, 1 =3 [zn § - ) - 2] | (2.38)
dy %gragtt Ayt - 2 .

g|+1 H
Notice from Eq. (2.12) that when A=1, u is constrained between Hmax and Boin

where,

B = ﬂig+1/Eg' and Modn = “E37Eg'+l (2.39)

Furthermore, recall that energy groups have been assumed to be narrow. Conse-
quently, (Eg+1/Eg) and (Eg'+1/Eg.) are approximately unity. These cond%tions
can be used to show that the logarithmic term in Eqs. (2.37) and (2.38) tends
to zero. Hence, g;-[og.+g(u)] is nedrly constant for Eqs. (2.34)-(2.36); all
three equations may be approximated by linear functions. A similar situation
is encountered when these equations are examined for the special case where
A2>>1. Under this condition, T(u)=1 and g(u)=(2p+A). Substitution of these
quantities into Eqs. (2.34)-(2.36) again yields an approximate linear

representation in for o "
p W g._,_E(u)
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The purpose for demonstrating approximate piecewise linearity of cg,+g(u)
is not to derive some approximate form of the group-to-group transfer cross
section. Rather, the purpose 1s to justify a low order approximation for the
transfer cross section. Figure 6 depicts exact ox;gen angular scattering
crogs sections for three group-to-group energy transfers. WNotice how in
each case, the exact angular distribution is well approximated by piecewise
linear functions. In particular, the cross;sections for transfer from groups
18 to 19' and 19' to 20 resemble trapizoidal angular distributions. The
area under the distribution is equal to the total scattering cross section

from group g' to g, i.e.;

o;?ig = JQ dg_ag.?g(ﬁfﬁf) s (2.40)
The upper vertices of the trapezoid correspond to the values of u which cause

a change of integration limits in Eq. (2.24), (i.e., where the change from
domain 1 to 2 or 2 to 3 occurs in Fig; 5). Hence the trapezoid's vertices occur
at

= § s = °
u: (Eg Eg,) and u = 5¢( (2.41)

Bor1oBgran) -
This trapezoid concept has been applied to approximate two of the exact cross
sections illustrated in Fig. 4. Note that in each case, the approximate
distribution accurately models the exact oxygen cross section.

Of particular interest in Fig. 6 is the transfer from DLC2 group 18 to 19.
Unlike the previous examples for groups 18 to 19' and 19' to 20 where transfer
occurred between groups of different lethargy widths, transfer is now between
two groups of equal lethargy widths. Consequently, the integration line in
Fig. 4 passes throught the points Eg=Eg, and Eg+1=Eg,+1 simultaneously whenever

I'(u) equals (Eg/Eg,) or (Eg+1/Eg,+1).' For the case of equal lethargy group
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structures, domain 1 in Fig. 5 will directly adjoin domain 3. Domain 2 does

not exist; the flat top portions of trapezoidal distributions vanish. Only a
triangular representation remains. This is a very simple, but useful, represen-
tation since equal lethargy group energy structures are widely used for many

multigroup transport calculations [18,22].

2.3.2 Approximation of ag,+g(u) for Energy Structures Having Equal Lethargy
Widths

It has already been pointed out how the approximate trapezoidal representa-
tion of a group-to-group scattering cross section reduces to an approximate
triangular distribution for energy structures based upon equal lethargy widths.
Characteristics of the triangular distribution are easily evaluated. The angular
support, or base of the triangular distribution is determined by energy-momentum
constraints imposed by Eq. (2.12), i.e., the cosine of the scattering angle, u,
must lie between,

W ™ max{—l,S(Eg+1,Eg,)] and Pt =-min[l,S(Eg,+1,Eg)] (2.42)

, E
gtl’ g
to g. Note that values of S(E,E') as defined by Eq. (2.12) may lie outside the

where Eg, E ys and Eg,+1 are the group limits for transfer from groug g'
range [-1,1]. To avoid assigning such meaningless values to the cosine of a
scattering angle, Mo and Hoin 3T required by Eq. (2.42) to lie on the inter-

val [-1,1]. The apex of the triangle occurs at Moid where,

Moid = S(Eg,Eg,) . (2.43)

As with Boax and Pmin’ Moid is also required to lie on the interval [-1,1].

If Mnig 88 calculated by Eq. (2.43) lies outside this range, it is set equal

to the nearest interval value (i.e., +1 or -1). The height, h, of the triangle
at the apex is evaluated from knowledge of the total group-to-group scattering

cross section. When umax=s(Eg+1’Eg') and umin=s(Eg‘+l’Eg) where S(Eg'+1’Eg) and
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5¢( g') are elements of [-1,1], then

Eg+1’E

ct?t
he —B&28 | (2.44)

“min = Mmax
Therefore, the equations which can be used to triangularly approximate aniso-

tropic group-to-group scattering cross sections are

H=H
() = — 2 p (2.45)
S(Eg.Eg.) Hnax

Ty
g g
when By <u§$(Eg,Eg,), and
Poin "

= h
GS‘*E(H) umin - S(EgsEg|)

£

(2.46)

when uminzygﬁ(Eg,Eg,).

It is possible when A>1 for values of Woax to lie beyond the (-1) edge
of the [-1,1] range. Examples of two such cases are illustrated in Figs. 7
and 8. To correctly evaluate °g'+g(") for cases such as these, a slight
modification of Eq. (2.44) is needed

9 0,i‘;(.'ut

g'g
% =
h b2b3 ’ (2.47)
b, + b, + ——
1 2 b2+'b3

where bl’ h2’ and b3 are defined in Fig. 9.

The computer code LITTLED (Appendix A) calculates triangularly approximated
scattering transfer cross sections for elements with A>l. The only inputs
required by this code are a multigroup equal lethargy energy structure, and
the total group-to-group scattering cross sections (i.e., the zeroth Lengendre
moments) for the particular element and group structure under consideration.
Comparison between exact and triangularly approximated values are discussed

in the next section.
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2.3.3 Comparison of Exact and Triangularly Approximated Elastic Transfer
Cross Sections

Equations (2.45) and (2.46) suggest simple approximate relatiomns for
evaluation of zroup~in-group scattering cross sections. Before any statements
concerning the usefulness of these approximations can be made, some knowledge
of their accuracy must be known. In this context, accuracy refers to how well
a triangular approximating distribution models the actual transfer cross section.
The present work has examined this question for hydrogeﬁ and oxygen data.

In Fig. 10 and Table 1, approximated 020+23(u) values for hydrogen are
compared to exact results from the computer program BIGD [3]. There is no
significant difference in numerical values. Approximated hydrogen transfer
cross sections for 020+20(u) and 020*24(u) in Figs. 2 and 3 compare so well
with exact values that the discrepancies cannot be shown within the resolutions
of the figures. It has been found that the triangular approximation provides
an excellent description of hydrogen scattering transfer cross sections for
the case of equal lethargy width group structures.

Recall from Section 2.3.i that the approximation of og,+g(u) by a piecewise
linear function was developed under the assumption that [OS(E)U(E,H)] is
approximately constant over narrow energy intervals. Indeed, hydrogen scattering
is isotropic in the center of mass system up to energies of about 35 MeV. It
also has an essentially constant elastic scattering cross section, US(E), below
100 keV. Above this wvalue this cross section begins to decrease. However,
the decrease is relatively slow when compared to the DLC2 group energy width
uséd for cross section evaluations in Figs. 1, 2, and 10. For these reasons,
the excellent agreement between triangular and exact hydrogen elastic transfer
cross sections is to be expected.

For the case of oxygen, however, os(E) does not always vary slowly

between group-to-group energy limits. Furthermore, scatfering is not isotropic



Table 1. Comparison of Exact and Triangularly
Approximated Transfer Cross Sections
for Hydrogen Group 20 to 23 Transfer
(DLC2/99G Structure).

Scattering Angle, u

Exact, (barn)

Approximate, (barn)

0.819
0.830
0.840
0.851
0.862
0.873
0.883
0.894
0.903

0.000
0.189
0.384
0.584
0.751
0.571
0.386
0.195
0.039

0.000
0.197
0.395
0.592
0.752
0.564
0.376
0.189
0.038
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in the center of mass, particularly in the resonance energy regions. Conse-
quently slightly poorer agreement of exact and approximate elastic transfer
cross section calculation should be expected. Figures 7, 8, and 11 compare
triangular approximations with their corresponding exact value from Eq. (2.24).
Relative shapes compare favorably; however, more significant deviations are
observed than were noted for the similar hydrogen results. Several of the
exact cross sections in Fig. 11 exhibit mild curvature between théir base
point and peak value as well as a shift of the distribution from the mid
points. This curvature and distortion of the ideal triangular shape can be
attributed to the variation of the differential elastic scattering cross
sectioﬁ, o(E,n). This cross section is a rapidly varying functién of both E
and n in the neighborhood of resonances in addition to being highly peaked in

the forward scattering direction for large values of E. On Fig. 11, ¢ is

1+
shifted towards the forward scattering angles since US(E,n) is highly peaked
towards n=1 at the high group 1 energies (14.9-13.5 MeV). The cross sections
919514 916+17° and 051592 all occur for energy intervals near resonances in
the oxygen cross section. The value 020e21 is for a relatively flat portion
of the oxygen cross section curve where US(E,n) is much more isotropic in
shape. As the group structure becomes finer (as would be needed to perform
detailed transport calculation in the neighborhood of a resonance) the group
transfer cross sections are even better approximated by the triangular model.

The variation in US(E,n) can be expected to pfoduce "smooth" variations
in the exact group transfer cross sections. However, examination of 016+17 in
Fig, 11 shows a relatively rapid oscillation in the transfer distribution.
Such oscillations are encountered frequently, particularly for fine group

structure and for energy regions near resonances. These oscillations are not

physical in origin but arise from discontinuities in the input microscopic
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data. The initial microscopic cross section data from which the exact group
transfer distribution is calculated by BIGD is taken from the ENDF data file.
On thig file, cross sections and angular distributions are tabulated at
discrete energies. The calculation of the transfer distributions often
requires cross section values at non—tabulatéd energies. In BIGD linear
interpolation between ENDF tabulated values is used. This linear interpolation
as well as statistical error in the tabulated data, produces discontinuities

in the microscopic cross section data (see Fig. 12) which in turn produces the
spurious oscillations in the calculated transfer distributions.

Although the use of higher order interpolation procedures might tend to
mitigate this effect, there would remaln the inherent problem of statistical
fluctuations in the microscopic data itself which would still lead to non~-
physical oscillations or structure in the group transfer cross sections. These
effects become particularly severe for fine ‘group structure for which the
ENDF data file uses a comparatively course energy mesh. Consequently, inter-
polation errors and statistical errors become relatively more important. TFor
such situations the triangular approximation is a crude but effective method
for eliminating the spurious structure while maintaining the essential
characteristics of the scattering transfer distributions.

In the present work, oxygen scattering cross sections are to be ultimately
combined with hydrogen components to produce water cross sections. Table 2
compares the magnitudes of total hydrogen and oxygen cross sectlons for the
first 26 groups of the DLC2/99G energy strucutre. In nearly all cases, total
hydrogen group cross sections exceed those for oxygen. Consequently, the
combination cf these values to form water cross sections reduces significantly
the effect of inaccuracies in triangularly approximated oxygen scattering

component.
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data between the DLC/2 groups 16 and 17 limits
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Table 2. Comparison of Total Hydrogen
and Oxygen Cross Sections for
the First 26 Groups of the DLC/2

Structure.
H 0
Group Tps (barns) I (barns)
1 0.684 0.648
2 0.752 0.793
3 0.824 0.878
4 0.901 0.651
5 0.982 0.672
6 1.069 0.778
7 1.160 0.793
8 1.256 0.949
9 1.357 0.883
10 1.463 1.320
11 1.574 1,187
12 - 1.690 1.164
13 ‘ 1.810 1.715
14 ©1.936 2.540
15 2.067 3.009
16 2.203 2.091
17 2.345 1.121
18 2.492 1.035
19 2.645 0.666
20 2.805 1.381
21 2.971 2.127
22 3.145 1.952
23 3.326 1.980
24 _ 3.515 2.467
25 3.714 4.018

26 3.922 2.990
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Figure 13 provides a comparison of an exact elastic group-to-group transfer
cross section for water with the corresponding Legendre and trigngular approxi-
macions. Since the triangular representation compares well with the exact
result, it is expected that it will produce transport results which would
agree well with the use of the exact transfer cross sections. This comparison

is the subject of the next chapter.



CROSS SECTION (BARNS)

0.4 -

03| -

0.2 |-

WATER GROUP-TO-GROUP
ELASTIC SCATTERING CROSS SECTION
(3.01-3.33 MeV) TO (2.47-2.73 MeV)

———EXACT (CALCULATED FROM
ENDF/B DATA)

———EIGHTH ORDER LEGENDRE EXPANSION

erennae TRIANGULAR APPROX.

Figure 13.

-0.5 0.0 0.5 1.0
COSINE OF SCATTERING ANGLE

Comparison of approximate triangular and Legendre expansion
techniques with an exact water scattering cross sectiomn

39



40
3.0 Anisotropic Tramsport Methods and Calculations

The previous section considered a method whereby neutron transfer cross
sections for eiagtis scatters could be approximated by piece-wise linear
functions. Brief comments were made as to how well numerical values of
exact and approximate cross sections agree. However, such agreement 1s not
only the concern in the development of a useful approximation. The ultimate
purpose for evaluation of approximate Ug,+g(u) values is their successful
incorporation into transport calculational models.

Standard discrete ordinate transport modeis iﬁ current use (e.g., ONETRAN
[23], ANISN [4]) are structured such that Legendre expansions of multigroup
transfer cross sections must be used. The advantage of this approach is that
cross section computer ato%age requirements are minimized at the expense of
having to perform a Legendre reconstitution. Consequently, most multigroup
cross sectlon preparation codes have been written so as to supply only the
Legendre expansion coefficients for the group cross sections. TFor the cross
section approximation developed in this work to be of much use, it must be
capable of being incorporated into a calculational transport model. It has
been shown by Odom [3] that the standard discrete ordinates model can be
modified to accept non-expanded group-to-group transfer cross sections.
However, Odom did not explore in detail the capabilities and limitations of
his approach. In this section an investigation of the accuracy of Odom's
direct Sh model is presented as it applies to the use of exact and approximate
group—to—-group elastic transfer cross sections.

When comparing two transport calculations, one using exact scattering
transfer cross sections and the other using triangularly approximated values,

minor variations are to be expected between calculated values of group angular
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fluxes. However, discrepancies among the two sets of results may not be
entirely attributable to the differences between exact and approximate trans-
fer cross saction values. Differences may also arise as a result of the
particular numerical technique used for solution of the transport equation. In
this chapter the sources of such differences are investigated.

3.1 Transport Techniques for Evaluating the Utility of Approximated Cross

Sections

The usefulness of ‘triangular approximating functions to describe transfer
cross sections ultimately depend upon how well they can reproduce transport
calculations based upoé'exact Gg'+g(u) values. To draw this comparison, a
method for solving the neutron transport equation must be selected. Several
techniques are available. Among them are spherical harmonics [6,24], Fourier
transforms [25,17], discrete ordinates [6,5], separation of variables [6],
as well as others [6,24].

Discrete ordinates, by far the most common technique used today, is the
method employed in the present work. The computer code MGRP[3], which is
based upon this technique, has been used for comparative analysis of exact
and approximate Ug,ég(u) values, This finite difference discrete ordinates
computer program solves the azimuthally symmetric multigroup form of the
transport equation. Documentation of this code, as well as supporting cross
section preparation codes, can be found in Appendix A. The reason for use of
this particular code in the present work is its superior ability to handle
highiy anisotropic neutron scattering cross sections. This ability results
from the fact that MGRP is able to accept group-to-group scattering cross
sections which have not been expressed in the form of a Legendre expansion.

In this code, the angular particle density i1s evaluated at a set of discrete
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directions and at a set of discrete positions. The spatial derivative term
in the transport equation is approximated by a simple finite difference.
Rather than obtailning a transport solutiom for ¢g(x,u), approximate values of
mg(xk,pj) (where k=1,2,...K and j=1,2,...J) are obtained from the following

set of coupled linear equations

fi(xkﬂ,uj) - ws(xk,uj)
3 (xk+l - %)

+ Og ‘Pg(xkruj)

]
il ~~100

J

g
By using a sufficiently large spatial mesh set {xk} and angular quadrature
set {uj}, it is possible to produce transport results having any desired
degree of accuracy. However, using large spatial and angular sets is not
often practical because of the large associated computer cost. Therefore, a
compromise between accuracy and computational cost must be made. Table 3 was
compiled from a series of water penetration studies done with MGRP. Even for
this simple three energy group problem, the effect of quadrature and mesh size
are reflected in program execution times.

In general, the maximum mesh size allowed in discrete ordinates calculations
is governed by the specific quadrature set used for polar discretization. This
interdependence is necessary to maintain the convergence stability criterion
inherent in discrete ordinate equations [3]. Common practice is to first
select a quadrature set for the polar angle. Once this choice has been made,
mesh size is adjusted so as to provide reasonmably accurate results with a mini-
mum amount of computational time. The selection of a particular quadrature
set to describe the polar angular dependence of the angular flux is a key step
in any discrete ordinateé calculation. Its importance is emphasized here

since improper or inadequate selection of this set can lead to erronecus



Table 3. (orouter executlon times*® for a 3 group transport
problem. Calculations were done by MGRP on the
Kansas State Unilversity IBM 370/158 computer.

Bumber of Quadrat&re Points Number of Mesh Points

76 101 131
14 6.5 7.9 9.3
16 7.2 9.5 11.4
18 9.2 12.1 14.9
22 - 27.9 _—

*Time in seconds.
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transport results. As is pointed out ia the next section, selection con-
gideratons are important when comparing the effect of exact and/or approximate

cg,+g(u) values with each other or with experimental results.

3.2 Discrete Ordinate Quadrature Set Selection

Equation (3.1) shows how, in the discrete ordinate calculations, the
integral over polar angle u is replaced with a quadrature summation over
index (i). By making this approximation, certain concessions are made which
limit the flexibility of the calculated results.

One concession of lesser consequence is that values for ¢g(st) are
only available at specific quadrature angles. If calculated results are to
be compared with experimental data at fixed polar anglea, these experimental
source and exit angles must be included in the quadrature set. There are
two ways by which this may be accomplished. The first is to generate an
angular'quadrature set on the interval -1 to +1 which contains these angles.
Such an approach can possibly lead to negative quadrature weights for certain
discrete directions. Bell [6] indicates that such sets are unacceptable for
transport calculations. The second approach is to modify a standard quadra-
ture set. Two common standard quadratures are the Gaussian and Lobatto sets
[26]. To evaluate wg(x,u) at desired quadrature angles, a common practice
is to modify these standard sets by including the desired quadrature directions
with zero weights [17].

There is however, a more serious concession which results from the
numerical quadrature approximation in Eq. (3.1), particularly when highly
anisotropic scattering prevails. To grasp the significance of this concession,
one must first understand how the azimuthally symmetric form of the discrete

ordinates transport equation is tyﬁically used. Odom [3] and others [12,27]
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have used the azimuthally symmetric form of the transport equation to analyze
neutron slab penetration distributions for normally incident spectra. It

sould be peointed out that aside from the case of an isotropic neutron

source, normal slab inéidence is the only situation.for which the azimu-

thally symmetric equation holds any promise of being physically realistic.
Since the polar angle has been discretized, a neutron source may mathematically
be selected only at ome or more of the discrete directions in the quadrature
set. For example, if a monodirectional azimuthally symmetric source at

u u, were selected, this implies the presence of a conical neutron

source
beam at one edge of the slab. While there is nothing mathematically wrong
with this implication, conical neutron sources seldom occur in realistic

situations.
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3.2.1 Incident Direction Considerations
As —— approaches +1.0, an azimuthally symmetric conical neutron
beam becomes more like that of a normally incident neutron spectra. This

brings to mind the question of how close to unity must p be to adequately

source
depict normal incidence. Figures 14 and 15 show two one-speed transport
calculations which were carried out for isotropic scattering through a one
mean free path slab. The scattering ratios were cEGB/ct=O.6 and c=1.0
respectively. Results for these calculations are shown to compare well

with exact values calculated using the X-Y F“unctions1 of radiative transfer.
In both the reflected and transmitted distributions a minor deviation in
Hoource from +1.0 seems to have little effect. Such results suggest that a
quadrature set as small as DP-5 ("Double Gauss" 5 point quadrature, i.e.

5 point Gauss quadrature on both polar intervals (-1, 0) and (0. 1)), whose
maximum quadrature ordinate is u1=0.95308 (17.6°), might adequately describe
normal incidence for the case of isotropic scattering. However, multigroup

elastic scattering for light elements is often quite anisotropic. Figure

16 depicts the diffuse penetration spectra from group 1 to 1 (See Table 6

1In one speed transport prdblems involving slabs of finite thickness, the
angular distribution of the emergent flux can be expressed in terms of
two rational functions, the so-called X and Y functions [28]. If czas/cT

and v = the input source direction at one edge of the finite optical media,

then the transmitted and reflected angular distributions for isotropic
scattering in the media are given by

cu

B :
bp (-1y) " Tt [XCuy) XCug) = Y(uy) YD > uy >0
and ‘
cHS
Vi) = 3Gy [0 X0 = XG) YE)T ¥ 20

Values of X(u) and Y(u) are tabulated by Carlstedt and Mulliken [29] for
various optical thicknesses and wvalues of c.



Transmitted Angular Density, ¥ (1,u)

Figure 14.

47

Transmitted angular density for isotropic scattering
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Transmitted Angular Density, ¥ (1,u)

Figure 15.
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for energy limits) through eight inches of water. In this figure calculations
‘ = e = ° -

using Moource 0.959976 (16.27°) and Hoource 1.000 (0°) from a Lobatto-1l4

quadrature set are compared. Alsc shown are calculations resulting from a

Gauss-30 discretization of the polar angle where Moo ce=0'9600219 (16.26°)

ur
and Hsource =0.996893 (4.52°). Unlike the isotropic case, significant differences

are noted near the ends of the angular range. Note that when p =0.996893

source
(4.52°), the 30 point quadrature appears to adequately describe a normally
incident neutron spectra. However, this improvement over the 14 point
quadrature was accomplished at the expense of a significant increase in
program execution time. For the 30 point Gauss results, program execution
time was nearly three times that required for the corresponding 14 point
Lobatto data. Results similar to those shown in Fig. 16 are presented in
Fig. 17 for a group 20 to 20 transfer. These two figures suggest that neutron
energy has little to do with the disparity between results calculated using
incrementally different values of Msource®
One further compafison is made to demonstrate that significant differences
can be obtained when angles other than usource=1'0 are used to approximate

normally incident source neutrons. Figure 18 illustrates the difference

between diffuse neutron penetration results when Moo ce=0.959967 and u

ur source

=1.0000 for a 4.2 mean free path hydrogen slab. This plot displays deviations
between ¢20(4.2 mfp, u) values in excess of one decade for some values of yu.
Hence, whenever possible Lobatto quadratures should be employed to describe
normally incident source neutrons. This is particularly true when highly

anisotropic scattering prevails.
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3.2.2 Angular Scattering Quadrature Coverage

Ag Indicated by the previous section, use of Lobatto quadrature sets
are preferred when normally incident source neutrons are used with the
azimuthally symmetric transport equation. However, the use of Lobatto
quadrature sets is not as straight forward as it may seem. Complications are
uncovered upon examination of the ability of such sets to adequately describe
normally incident anisotropic neutron transport. Table 4 displays results
from a tramsport calculation through 4.2 mean free paths of hydrogen with
a unit source at usource=1'o in group 20. Obvious differences are observed
between calculations carried out with Lobatto-12 and -14 quadrature sets. The
reason for these differences can be seen from Eq. (3.1). The right hand
side of this gquation attempts to describe the transfer of neutrons from all
directions and energies to a specific direction and specific energy. The zero
values of w20(4.2, u) for the Lobatto-12 calculation result from failure of
this term in the numerically approximated transport equation to adequately
model the angular transfer. This section discusses the mathematical model
used by Eq. (3.1) to describe angular neutron transfer. A mathematical
relation which links the inherent degree of scattering anisotropy for a given
element to the minimum order of angular quadrature required to adequately
describe angular transport is developed.

In the azimuthally symmetric form of the transport equation, Eq. (2.2),
transfer of neutrons from all directions u' to direction p is evaluated by
the following term:

1
J':l du' o_(u') ¥(x,u") (3.2)

The Sn (discrete ordinates) model replaces this source term by the following

numerical approximation:
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Table 4. Group 20 transmission spectra through
a 4.2 mean free path hydrogen slab with

2 unit source at usourcesl'o in Group 20.
Lobatto-12 Quadrature Lobatto-14 Quadrature

u Uog(1e5, W) u Vpg(1e5s 1)
0.136496 0.0 0.115954 0.0
0.399402 0.0 0.342012 5.23 E-10
0.632755 0.0' 0.550201 4.026 E-8 |
0.819209 0.0 0.728792 4.069 E~-6
0.944876 0.0 0.867866 3.518 E-4
1.000000 0.132 0.959976 2.463 E-2

1.000000 1.391 E-1
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iF

Lowy oluug) vlxug) . (3.3)
i=1

To carry out transport calculations, one must first have some knowledge of
the azimuthally symmetric scattering transfer cross section, c(uifuj). This

value is typically obtained by averaging os(g;gf) over all azimuthal directions,

namely

2w 27
o (ug>ny) = %—;; L o (2'-Q) d¢' = %7 L gy ,0) do! (3.4)

The angle uozgggj can be expressed in terms of Hy» uj, $', and ¢ as (6)

My = My Wy ¥ l—ui ‘Jl-u§ cos (¢-¢') . (3.5)

Scattering transfer cross sections can be obtained by approximating the
integral over ¢' in Eq. (3.4) by numerical quadrature. In the present work, a
computer program named QUAZ [3] was employed to carry out this integration
using a 32 point Gauss quadrature. Explicitly,
1 32
olugug) = o 21 o (1)) w, , (3.6)

where

2
uo.“ My ¥y + dl--ui dl-uﬁ cosd, . (3.7)

Values of {¢£} and {Wk} are the ordinates and weights for numerical integration
of (¢-9¢") over (0, 2m).

Once U(ui+uj) values are known, they may be incorporated into transport
calculations. The question oﬁ how well these calculated cross sections actually
represent transfer from directions vy to directions "j remains to be determined.
Odom used reciprocity relatioms to establish whether or not calculated values

of c(ui+uj) were sufficiently accurate, i.e.
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1 1
I+ U(ui&u') dp' = J+1 ouu') du' . (3.8)
-1 -

Since the above equation 1s strictly walid, its numerical approximation can
be used to estimate the accuracy of c(ui+vj) values in the discrete ordimate

equations. For all values of i1 and & does

J J
Y otuen) w, = Y o(uen) w, ? (3.9)
j=l i J j j=1 b2 j j
J
If J is the order of angular quadrature being used then z c(uijuj) L should
: j=l

theoretically be equal for all By in the set if the quadrature is sufficiently
fine. Table 5 draws this comparison fbr the previous example of Table 4 which
used Lobatto-12 and =14 quadrature sets to study neutron tramsport in hydrogen.
Notice that values computed by the 12 point quadrature are in moderate
disagreement with each other as well as with the exact cross section value.
These deviations become significant as the My = +1 directions are approached.
At this point it often becomes a judgment decision as to whether or not such

a quadrature would yield reasonable transport results. The question could

be resolved by actually carrying out the calculation. Use of this 12 point
quadrature in transport calculations has already been demonstrated to yield
questionable results (see Table 4).

Application of reciprocity relations to justify use of a particular
quadrature set is only quantitative in nature. WMo knowledge is gained about
individual U(ui+uj) values. Table 5 fails to explain why the 12 point set
produced zeros for all scattering transfers in Table.4. A more involved
study of the scattering transport mechanism leads not only to an explanation
of why this set failed to produce non-zero values for angular densities
in Table 4, but also a criterion which enables one to judge the adequacy

of any given quadrature set.
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From Eq. (2.42) it is apparent that o _, (u'-y) will take on non-zero

g
values only over certain (u'+u) ranges. This fact has significant implications
when an attempt is made to approximate the transfer cross section using a
discrete quadrature set. This limitation can be seen diagrammatically in
Fig. 19. The figure i1llustrates a three dimensional scattering cone into
which neutrons initially traveling in azimuthal direction ¢' apd polar direction
W, may scatter. An important conclusion can be drawn from this figure. Whether
or not the azimuthally symmetric transfer cross éection, o(ui+uj), is zero
depends upon the polar spacing between adjacent quadrature values of My If
the spacing between adjacent By values 1s too large, neutrons initially
headed in direction By will néver scatter into other directions. This inability
of particles to redistribute angularly remains even after multiple scatters.

If transfer from any direction vy to another direction pj is to take place,
then c(ui+uj) must at least be non-zero for some value j¥i. In other words,
the azimuthally symmetric scattering shell shown in Fig. 20 (obtained by
rotating the three dimensional neutron scattering cone of Fig. 19 about the
x-axis) should at least overlap some polar directions other than Bye

The problem now becomes one of determining how many discrete directions
other than My lie within the polar bounds of the conical azimuthally symmetric
scattering shell. The polar bounds on this scattering shell can be expressed
in terms of two angles Bmax and Bmin' The value Bmax defines the maximum angle
of scatter between the positive x-axis and all possible 8cattering rays in
the azimuthally symmetric scattering shell. Similarly, B

mi
minimum angle of scatter between the positive x-axis and all possible scattering

defines the
It

rays in the azimuthally symmetric scattering shell (see Fig. 20). Hence, in
order for transfer from all initial directions ] to other possible directions

uj to take place, there must exist a polar quadrature ordinate ajicos-luj such

that
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Case B Case C

Figure 21. Various positionings of the neutron scattering cone
~with respect: to the positive x-axis
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Bmin s-ej j-Bmax (3.10

for each value of 1 in the quadrature set (where j#i). From Figs. 19 and 20

_ =1
it is apparent that angles Bmax and Bmin are in some way related to emax_cos -

and. 6 Values of © and 6 are in turn related to elastic
m max m;

inEcos" Ymin® in

scattering energy-momentum constraints through Eqs. (2.12) and (2.42). Thus,

once the bounds in Eq. (3.10) are known, the ability of a given quadrature

set to describe angular particle transfer for a particular set of energy-

momentum constraints can be evaluated (i.e., the order of angular quadrature

needed to describe a given degree of scattering anisotropy can be determined).
First consider the relationship between Bmax and the neutron scattering

cone. By considering the various possible orientations of the three dimensional

neutron scattering come in Fig. 19, one finds that there are only three values

which Bmax may take on depending upon the exact values of 8 emax’ and em

12 in®

When (ei +‘Bma < 1), the maximum possible angle of azimuthally symmetric

X
neutron scatter away from the positive x-axis is Riws ™ By F O (see Fig.
21, Case A). For cases where (ei + Bmax > 7)) but (Si + Bmin < m), Case B in
Fig. 21 illustrates how the maximum angle of scatter away from the positive x-
> n, Case C of Fig. 21

axls is merely Bmax = 1. Finally, when 6, <+ Bm

i in
illustrates how the Bmax = (21 - Bi - emin)' Therefore,

’

o, + emax when ei + Bmax <,
Bmax = 47 when Bi + emin <7< Gi + emax’ (3.11)
(21 = ei -_amin when Bi + emin > 7.
This expression can be written more concisely as
min[(ei + Bmax),ﬂ] . when 61 + emin <w o,
B = (3012)

2n - ei - emin when Bi + amin > T,



A similar approach may be used to evaluate Bmin' As with Bmax' there are
three possible values which Bmin may take on depending upon the exact values

of ei, emax’ and em . When (Bi > emax)’ the minimum possible angle of

in
azimuthally symmetric neutron scatter away from the positive x-axis is Bmin =

ei - emax (see Fig. 21, Case A)., Case D of Fig. 21 illustrates how the initial

emax)’ the angle

quadrature ordinate Bi is contained on the interval (emin’

of minimum approach to the positive x-axis is zero. Finally, Case E of Fig. 21

illustrates how when 6 5_emin, the angle of minimum approach between azimuthally

i
symmetric scattering shell and the positive x-axis is Bmin = (emin - ei).
Therefore,
ei - emax when emax < Bi s
Bmin =40 when emin E-Bi 5_emax 5 (3.13)
emin - ai when Bi < emin .
This expression can be written more concisely as
max[(ei - Bmax),O] when Bi Z-Gmin s
Bmin L ‘3.14)
emin - ai when emin > Bi &

Once Bmax and Bmin have been defined, it is of interest to graphically
represent the range of discrete polar value defined by Eq. (3.10) which will
yield non-zero group-to-group transfer cross sections after scattering from an

initial direction Bi (where j#i). Figure 22 illustrates a plot of Bpax 2nd

Bmin versus incident direction ei for some hypothetically fixed values of

&) and 6
m

. Of course, emax and Bmin are readily determined for a given

in.
group-to-group energy transfer by Eqs. (2.12) and t2.42). Thus, for a given

initial neutron direction Bi, the range of 08, directions which will render

3

0(91+ej) non-zero are found by simply carrying out the projections from Bi

to the appropriate curves. for Bmax and ﬁmin in Fig. 22. It is often convenient
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to express initial directions, ei, and final directions, 6,, in terms of

k|
polar quadrature ordinates ranging between -1 and +1. By merely taking the
cosine of all abscissa and ordinate values found on Fig. 22, Fig. 23 is
obtained.

Figure 23 (or 22) can be used directly to evaluate the ability of a given
numerical quadrature set to represent angular transfer. As an illustration
consider a neutron 1n‘the energy range 2.0190-2.2313 MeV which scatters with
hydrogen to ;n energy between 1.3534-1.4975 MeV. From Eqs. (2.12) and (2.42)
the values of umax and uﬁin for this scatter are calculated to be 0.77815
(38.85°) and 0.860705 (30.60°) respectively. Furthermore, assume that this
neutron is initially traveling in some polar direction P 0.82 (34.92°)
with respect to the positive x-axis, where 0.82 represents a particular ordinate
value of a discrete numerical quadrature. Therefore,'for a given numerical
quadrature set to permit transfer from the assumed initial direction ui = 0.82,

the quadrature must contain at least one ordinate value other thamn u, = 0.82,

|
between cos(Bmax) = +1 and cos(ﬁmin) = 0.60 (see Fig. 24).

The concept behind Figs. 22-24 becomes useful when trying to analyze the
ability of a particular quadrature set to describe anisotropic scattering

transport. Note how in Figs. 22-24 that the range of non-zero o(ui+u ) values

3

on the ordinate is greater than the magnitude of the laboratory scattering
range (u > umin) for all values of Hy except +1. For the case where By

= +1, the non-zero range for o(u ) values is merely equal to the range

17y

between || . and This equality is of utmost importance when selecting

Mnin®
numerical quadrature sets for use with the azimuthally symmetric transport
equation.

Consider the normal source problem of Section 3.2.2 in which Lobatto-12

and -14 quadrature sets were used (see Table 4). Transport calculatioms
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Figure 22. Plot of Bmax and Bmin verses Bi



Range of uj which yields non-zero c(ui+uj)

Figure 23,

Initial Neutron Direction, Wy

Plot for range of uj which will render a non-zero value

of c(ui+uj) for an initial neutron direction of uy
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J
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carried out for a normally incident neutron spectra through 4.2 mean free
paths of hydrogen show .no aﬁgular transfer within the source group when

the Lobatto-12 set was used. However, source group angular transfer
occurred when the 12 pdint set was replaced by a Lobatto-14 set. The reason
for this improvement is illustrated in Fig. 25. For both quadrature sets,
the incident neutron source was placed in DLC/2 group 20(2.0190-2.2313 MeV)
at usource=ui=+1' Values of Hnin and Mnax for transfe; from group 20 to

20 can be calculated from Eq. (2.42). These values are 0.9512 (18.0°) and

1.0000 (0°) respectively. Thus, one observes from Fig. 25 that o(1.000-y,)

3
will only take on non-zero values when "j lies between 0.9512 and 1.0000.

It is now apparent why mo group 20 to 20 angular transfer occurred when the
12 point quadrature set was used; unlike the Lobatto-14 set, the Lobatto-12

set had no value of u, within the required range. Had scattering been slightly

3 _
less anisotropic, i.e. if || < 0.944, the 12 point set could have been used

with greater success.
3.3 Transport Calculations Using Triangularly Approximated Cross Sections

It has been pointed out that the usefulness of triangularly approximated
transfer cross sections depends upon how well they reproduce transport results
obtained with exact cross section values. In this section, comparisons are
drawn between transport calculations carried out with exact and triangularly
approximated cross sections. Also, some extensive calculatioms are presented

which attempt to compare transport results to experimental data.

3.3.1 Comparison of Emergent Angular Densities
A series of computer codes developed by Odom [3] which solve the multi-

group azimuthally dependent neutron transport equation for slab geometry were
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used to analyze the utility of triangularly approximated scattering cross
sections {see Appendix A). Figures 26 through 35 illustrate the results

of such calculations. In these figures, BIGD was used to evaluate cross
secticns for the curves labeled "exact". LITTLED was used to evaluate these
values for curves labeled "approximate'". In all other respects calculations

are identical. Figures 26, 27, and 28 compare transmitted angular densities
through 4 inches of water. Similar comparisons are made by Figs. 29, 30, and 31
for 8 inch water slabs. Figures 32, 33, and 34 compare reflected angular
densities through 8 inches of water. In all the cases, a unit neutron source

was placed in group 20 with an incident direction of u 0.5. All trans-

source
port calculations for Figs. 26-34 were carried out using a DP-7 (Double Gauss-
7 point) numerical quadrature set for approximating the polar integrationm.

For all cases shown in Figs. 26 through 34, transport calculations using
approximate cross sections agree favorably with data calculated from exact .
cross sections. A slight deviation of the curves as the polar angle approaches
+1.0 is noted. Th;a discrepancy is mainly attributable to thertriangularly
approximated oxygen component in the water cross section. This conjecture
can be justified since Table 1 and Figs. 2, 3, and 10 show no significant
differences between exact and approximate hydrogen cross sections. However,
Figs. 7, 8, and 11 indicate that the triangular approximation is not always
a reasonable one when applied to oxygen data.

It is interesting to note that the approximate water calculations for the
group 20 to 20 reflected angulér density in Fig. 32 shows a much larger
deviation from the exact values then do similar calculations from groups 20
to 22 to 24 (see Figs. 33 and 34). This result is to be expécted since for
hydrogen to take any significant part in the shape of the reflected distribution,

neutrons would have to undergo multiple in-group scatters. On the other hand,
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Reflected Angular Density, wzo(d,u), (neut./cm2 per incident neut.)

Figure 32.
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Reflected Angular Density, ¢22(d,u), (neut./cm” per incident neut.)

Figure 33.
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neutrons which scatter only once or twice with oxygen would quickly reach
reflected directions. Since the triangular approximation for the oxygen
crous sections show moderate deviation from exact cross section values,
the ir -grou, relilected angular density is expected to show more significant
differences from results which use exact cross sections.

The possibility does exist that discrepancies in Figs. 26 through 34
result from minor differences in the way approximate cross sections respond
to the DP-7 guadrature used for transport calculations. However, Fig. 35
illustrates similar deviations when a 30 point Gaussian quadrature is employed

to calculate the transmitted density through 4 inches of water.

3.3.2 Comparison of Calculated and Experimental Results

Transport calculations presented thus far have only examined the ability
of approximate cross sections to represeﬁt exact values over a small energy
decrement. The greatest down scatter case has been that of Figs. 28, 31, and 34
which show transfers from group 20 to 24. To evaluate the usefulness of
triangular transfer cross sections for more general transport applications, a
problem involving a larger number of energy groups was studied. Experimental
data for water slab penetrations were obtained from Meyer [30]. In his experi-
ment a neutron beam approximately 1.25 inches in diameter was directed normally
onto an 8 inch water slab. The incident beam spectrum is given in Table 6,
and some of the experimental data are plotted in Fig. 36.

Exact and triangularly approximated transfer cross sections were used
with the incident beam spectrum from Table 6 in the previously mentioned
transport model named MGRP. A 14 point Lobatto quadrature was selected
to discretize the polar angle. Figure 36 gives experimental results for
wg(x,u) only at 11.2°, 33.6°, and 45.0°. Since theése angles are not part
of the standard Lobatto set, dummy angles with a quadrature weight of zero

were inserted at 11.2° and 45.0°.



Table 6. Incident neutron spectrum for experimental
water datal (Ref. 30).

DLC/?2 Group Energy Range Neu/cmzsec
1 14.9180 - 13.4990 0.230
2 13.4990 - 12.2140 : ‘0.245
3 12,2140 - 11.0517 0.178
4 11.0517 - 10.0000 0.809
5 10.0000 - 9.0484 1.730
6 9.0484 - 8.1873 2.602
7 8.1873 - 7.4082 - 3.728
8 7.4082 - 6.7032 5.385
9 6.7032 - 6.0653 6.150

10 6.0653 - 5.4881 6.084
11 5.4881 - 4.9659 6.015
12 4.9659 - 4.4933 7.109
13 4.4933 - 4.0657 8.111
14 4.0657 - 3.6788 8.577
15 3.6788 - 3.3287 8.448
16 3.3287 - 3.0119 9.978
17 3.0119 - 2.7253 13.196
18 2.7253 - 2.4660 17.751
19 2.4660 - 2.2312 23.033
20 ' 2,2313 - 2.0190 28.101
21 2.0190 - 1.8268 34.146
22 1.8268 - 1.6530 40.031
23 1.6530 - 1.4957 43.379
24 1.4957 - 1.3534 44,525
25 1.3534 - 1.2246 44.526
26 1.2246 - 1.1080 42.335

1t The experimental neutron spectrum obtained from Meyer [30]
was numerically integrated over the DLC/2 energy structure
to produce this table. It should be pointed out that energy
group 1 contains only those neutrons which have energies between
14.918 and 13.499 MeV. 1If high energy neutrons from 19.4 to
14.918 MeV are included in the first group, then the group 1
sum would read (0.2302 + 0.8527) = 1.0829 neut/cm?sec. Meyer
points out that spectral data above 12 MeV is somewhat unreliable.
However, this is of little consequence since low energy tramsport
calculations carried out using the spectrum as shown in this
table could not be appreciably affected by significant errors
in the first few high energy groups. These groups constitute
only a small fraction of the total energy spectrum.
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One noteworthy difference should be pointed out between the experimental
configuration and the transport model used in MGRP. The transport model
used by MGEP applies only to a slab system illuminated by a uniformly distri-
buted slant source. However, the experimental transmission spectrum is for
a slab that has been illuminated by a small diameter neutron beam (sometimes
referred to as a '"'pencil beam'"). The experimental data were obtained from a
detector that responded to fast neutrons which hit it regardless of their
polar and azimuthal angles; whereas, the transport model's calculated angular
flux refers to neutrons traveling in well-defined directions (see Fig. 37).
Nevertheless, the angular transmitted flux for the pencil beam experiment
can be expected to agrée with the calculated results from the uniform
illumination problem under certain circumstances. The transport model
calculates, for a uniformly illuminating slant source, the total flux of
neutrons which exit per unit area of the slab face in a fixed direction. The
same value (with an appropriate source hormalization) gould be measured
experimentally using an incident pencil beam source by sweeping a collimated
detector across the face of the slab. This procedure would integrate the
total number of neutroms which exit the slab in a fixed direction from all
possible incident beam locations (see Fig. 38).

Movement of the detector creates difficulties in the design of such
experiments. Odom [3] and Hill [17] use the computer code TWOTRAN to demon-
strate that for thin slaLs the angular flux decreases very rapidly as one
moves laterally away from the ﬁncollided.pencil beam in the slab. Thus, for
large lateral distances, the probability of a neutron being emitted at an
angle which would strike an angularly integrating detector becomes exceedingly
small. Consequently, a stationary angularly integrating detector placed

a large distance away from the exit slab face will detect essentially all
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neutrons transmitted through thzs slab at approximately the same exit angle.
This occurs since all neutrons hitting the detector come from roughly the

same area of the exit face. This approximate equivalence is illustrated in
Fig. 5%. This approximation should become more accurate for thin slabs since
beam spread would be minimized. Accuracy of the approximation should also in-
crease with increases im slab to detector distances since then, negtrons which

significantly deviate from ee would not be picked up by the angularly

xit
integrating detector.

Data from Meyer [31] tend to support the source equivalence between the
two configuations of Fig. 38 only at high neutron energies and for small
scattering angles. These data suggest that high energy neutrons which
scatter only a few times at shallow angles undergo little energy loss.

These neutrons are transmitted through the slab and exit very near their
extrapolated entry point. However, some low energy neutrons that undergo
multiple scatters are observed to exit the far side of the slab at great
distances from their extrapolated entry point (and consequently may not be
"seen" by the detector). This phenomena causes transport calculations for
the angular flux in a discrete direction at low energies to overestimate the
experimentally determined value for that same direction. Hence, from experi-
mental data for a 6.6° exit angle and an 8 inch water slab, Meyer concludes
that the approximate source equivalence in Fig. 38 breaks down below about
3.5 MeV, |

Angular densities calculated by MGRP (using exact cross section values)
and by the Monte Carlo computer code MORSE [30] (using eighth order Legendre
expanded cross section values) are compared to experimental data in Fig. 39.
Transmitted angular densities appear to compare well for the ll.2§ exit

direction down to about 6.5 MeV (note that this is a logarithmic plot). Past
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this point calculated angular densities glightly exceed experimental results;
the validity of the source equivalence suggested by Fig. 38 appears to dwindle.
Transmitted densities in the 45° direction compare poorly for all neutron
energies. These results are to be expected. There appears to be a direct
relationship between the energy and deflection angle for tramnsmitted neutrons,
and the validity of the hypothesized point versus uniform source illumination
equivalence. The smaller the exit angle for transmitted neutrons, the lower
the energy is for which the source equivalence remains valid.

From the preceeding comments, it is evident that only limited comparisons
are possible between the calculations from MGRP and experimental results.
Despite these limitations, calculations using triangularly approximated
cross sections were carried out for the experimental spectrum in Table 6.
Although these calculations may not be readily comparable to the experimental
data, the information does serve as a check on how well triangularly approxi-
mated cross sections perform in general transport applications. Such an
analysis is important since transport results produced from exact cross
section data can never be expected to exactly coinc;de with results based
upon approximate cross sections. A

Figure 40 compares transport calculations based upon exact and approximate
angular scattering cross sections. Both sets of calculations were carried out
using the experimental spectrum from Table 6. In Fig. 40 there is general
agreement in shape between the two sets of results. However, results using
approximate cross sections tend to underpredict values obtained from exact
cross sections. This outcome is to be expected sincé for all cases of neutron
downscattering in Figs. 26 through 34, the tramsport calculations using
approximate cross sections underpredicted the exact results. It is important

to note that Figs. 26 through 34 all indicate better agreement between exact
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and approximate results as p decreases. Consequently, deviations between exact
and triangularly approximated values in Fig. 40 would be expected to decrease
as u decreases., Such was found to be the case. Figure 41 illustrates transport
resulis analogous to those of Fig. 40 for a slightly smaller yu value. The

deviations between approximate and exact results are indeed smaller.
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4.0 Conclusions

In rhis work, simple numerical techniques have been studied which aid
in the analysis of azimuthally-symmetric multigroup neutron transport problems
involving anisotropic scattering. Particular attention has been focused upon
the use of elastic group-to-group transfer cross sections for light element
scattering in transport calculations. These cross bections tend to be highly
anisotropic in the scattering angle because of elastic scattering energy-
mementum constraints. As finer multigroup structures are used, angular
support of the scattering cross section becomes increasingly small. Consequently,
the anisotropy of the multigroup scattering cross sections become more pronounced.
Use of conventional Legendre expansion techniques to represent such highly
anisotropic cross sections often introduce serious oscillatory errors into
transport calculations.

It has been shown in this work that many highly anisotropic group-to-
group transfer cross sections may be represented by simple piecewise linear
functions. The exact nature of these functions depend upon the type of multi-
group energy structure used. In the general case, a group~-to-group transfer
cross section may be approximated by a quadrilaterally shaped distribution.
However, when an equal lethargy width energy structure is employed, many
transfer cross sédctions can be well-approximated by triangularly shaped distri-
butions. Such an approximation is excellent for hydrogen scattering. Since
hydrogen scateers isotfopically in the center of mass coordinate system and its
elastic scattering cross section is a relatively smooth function of energy.

The approximation becomes less useful for other elements which scatter aniso-
tropically in the center of mass system and whose elastic scattering cross
section exhibits numerous resonance peaks. Such is the case for oxygen.

Although the triangular approximation of oxygen group-to-group cross sections
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does not provide an extremely accurate representation for all group transfers
of the relatively broad DLC/2 group structure, it does comstitute a definite
improvement -~vor cusktomary Legendre expansion techniques. Use of a fine group
structure, such as would be employed to study the transmission of neutrons in
the oxygen antiresonance region, would considerably improve the triangular
method's ability to represent exact transfer cross sections.

The approximate method for evaluating highly anisotropic transfer cross
sections not only eliminates the unrealistic oscillatory behavior typical of
Legendre expansions, but, it also provides fér an increase in cross section
computational efficiency. Unlike Legendre expansion techniques which require
computer storage of eight or more moments for Legendre reconstitution, the
triangular method only requires the storage of a single value (i.e., the
total group-to-group transfer cross section). Furthermore, computational time
can be saved by using the triangular transfer cross section representation
since Legendre reconstitution is not needed; cross section values can readily
be calculated by simple linear interpolation of a triangular distriﬁution.

Only hydrbgen and oxygen cross sectlons were examined in this work.
However, the methods employed are completely general. Because of their
relatively smooth fast neutron scattering cross sections, it is expected that
elements such as déuterium, boron, and lithium may also lend themselves to
effective anisotropic transfer cross section evaluation by the approximate
triangular technique.

The triangular approximation has been incorporated into discrete ordinate
transport calculations to obtain emergent energy and angular dependent fluxes
from water slabs illuminated with a normally incident neutron beam. Although
minor differences are noted as the polar scattering angle approaches +1, these

calculations compare favorably with results obtained using exact scattering
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distributions. In the forward directions, results from approximate cross
sections underpredict those obtained using exact transfer cross sections. As
the polar argle increases, the transmitted flux obtained by using triangular
distributions tends toward the exact result. The differences between calcula-
tions using exact and approximate cross sections are wholly dependent upon the
ability of triangular distributions to model exact anisotropic scattering cross
sections. The fact that triangularly approximated emergent fluxes for water
glightly underpredict exact results is not a general rule which can be applied
to all elements. Further investigation of how good the triangular approximation
is for elements other than hydrogen and oxygen must first be carried out before
any general statements regarding the conservatism of this approximation can
be made. The important point to note is that results obtained using triangularly
approximated cross sections are in fair agreement with exact tramsport calcula-
tions. The average deviation between exact and approximate results in Figs.
36 and 37 is only 16%.

To insure that discrete ordinate transport results using approximate
cross sections were justly compared to those calculated using exact values,
particular attention was given to quadrature set selection. This work has
demonstrated that discretization of the polar angle in transport calculations
is not entirely arbitrary. It depends upon the degree of scattering anisotropy
present for the particular problem under consideration. For a given nuclei,
it is possible to predetermine the minimum order quadrature required to
adequately discretize the polar angle. Such an ability is important since it
can avoid costly computer errors caused by under- or over-specifying the size
of a numerical quadrature.

Several possibilities exist for further study in areas related to this

work. One of the most important areas which warrants further investigation
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relates to the examination of the triangular approximation for elements other
than hydrogen and oxygen. Two elements of particular interest might be

lithium and deuterium because of their low atomic mass (which increases
scattering anisotropy) and specific application in fusion reactor blanket

and shield studies. Future studies might also center around the nature and
ability of quadrilaterally shaped distributions to represent transfer cross
sections for energy structures of unequal lethargy widths. Although this work
primarily dealt with equal lethargy width energy structures, it is sometimes
convenient to employ other types of energy structures. This is particularly
true when studying neutron transport through a strong resonance or antiresonance
region of a material. One last area which merits future development is that of
quadrature set selection. The techniques necessary to establish the adequacy
of a given quadrature for use in highly anisotropic scattering problems were
developed in this work. Future work in this area could be directed toward

the development of a computer code capable of carrying out an adequacy
evaluation on numerical quadratures for neutron as well as gamma ray trans-
port pfoblems (energy-momentum constraints also impose restrictions on
scattering angles in gamma ray transport).

In summary, the approximate triangular technique employed provides for
simple and effective evaluation of angular scattering transfer cross sections.
The new technique used to evaluate the adequacy of angular quadratures holds
promise to eliminate much of the guess work involved in selection of numerical
quadrature sets for transport calculations. It is expected that methods
introduced in this work will add to the understanding of anisotropic neutron
transport, and provide a basis to carry out transport calculations more

efficiently and accurately.
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Appendix A

Computer Programs

The main computer codes utilized by this work are presented in this
appendix. Juwong chose shown are LITTLED, QUAZ, MIX, and MGRP. Other programs
that were used include:

1. DLC/2 RETRIEVAL code, which retrieves multigroup cross sections from

DLC/2 library tapes, available with ANISN package from Radiation
Shielding Information Center [18],
2. MGIW, which generates numerical quadratures of any type, developed
by Jeffrey Ryman, graduate student, Kansas State University, 1976,
3. X-Y FUNCTION, which performs slab transmission calculations for
particles that scatter isotropically in a medium, developed by
J. K. Shultis, Associate Professor of Nuclear Engineering, Kansas
State University, 1976.

0f the computer programs listed in this appendix, only LITTLED was
developed by the author. The purpose for including the listings of QUAZ, MIX,
and MGRP is to document the code package used to carry out the traﬁsport
calculations in this work. More qualitative information as to the nature of
these three codes can be found in Ref. [3].

The following diagram illustrates the manner in which the four computer

codes are related

LITTLED BIGD
generate approximate R generate exact
cross sections cross sections

QUAZ
azimuthally average
cross sections

MIX
form macroscopic
mixture cross sections
-
MGRP
one—dimensional discrete ordinate
transport calculations
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In this work the transport calculations start with LITTLED. This program
generates approximate group-to-group angular transfer cross sections, Ug,+g(g;g').
If exact, rather than approximate, transfer cross sections are to be used in
transport calculations, then the computer code BIGD should be used in place of
LITTLED.

Calculated values of cg,+g(g;gf) can be fed directly into QUAZ. This program
carries out azimuthal averaging of angular transfer cross sections. The result
is a matrix which contains Gg'+g(ui+uj) values for all possible combinations
of g'»g and (ui+uj). QUAZ output for two or more elements is normally fed
through the computer program MIX, which forms macroscopic mixture cross sections
to be used in the discrete ordinates transport code MGRP. If neutron transport
through a slab composed of only one element is being considered, then MIX
may be bypassed. For such a case, output from QUAZ would feed directly into
MGRP.

The computer code MGRP solves the azimuthally symmetric multigroup neutron
transport equation for one-dimensional slab geometry. The finite difference
discrete ordinate technique employed.is based upon Eq. (3.1). The output from
this code is the reflected and transmitted angular densities for all groups
and spatial mesh points within the slab.

All programs are writtenm in FORTRAN IV, level G, for the Kansas State
University IBM 370/158 computer. Program variables are defined within each
listing through the liberal use of comment cards. Each listing is followed

by a sequence of sample input data.



Appendix A (continued) - LITTLED

JALITTLED JOR (3344622B2,FJOBRIES+1¢9) " WAYNE MIKOLS®

F*TAPES 2
/" EXEC RINGWIR,PARM=9888WH
1 EXEC FORIGCLG
//7FORY .SYSIN CD =
DIMENSICN UL45),SON{45434,34),5IGSCT(34,34),E(35) LITTLED
DIMENSION SIGT(35) LITTLEG
DIMENSION TITLEL20) LITTLED
COEBRBARE S HP R CE R P U DRI SRS N EB D EO T EI S B BRI R DU SO SR E RN SN VR RSB EOEB U S oo U | [ TTLED
c LITILED
c 8ok ITTLE-D*vs v [ TTLE-Des#ne] [ TTLE-Do e eeL ITTLE-Desdbovusrsdnas] [TTLED
C LITTLED
c LITILED
C LITTLED
C NIN= INPUT UNIT FOR DLC=2 CRDSS SFCTION DATA LITTLED
C NOUT= CUTPUT UNIT FOR DISCRETE CRGSS SECTION DATA LITTLED
C NGROUP=NUMIER OF GROUPS IN CRUSS SECTIUN SET LITILED
[ NUJ= MUMBEAR OF DISCRETE ANGLES T0 BE EVALUATEQD LITTLED
[ MYO#= NUMBER OF TOP MOST EMERGY DLC GRCUP FROM WHICH NEUTRON SCAT LITTLED
c MBOT= AUMBER OF LCWEST OLC £MNERGY GRDUP INTO WHICH NEUTRONS SCAT LITTLED
C SIGT(J)= TOTAL GRGUP CROSS SECTIGHLS LITTLED
C SIGSCT{I+J)= SCATYERING CRQOSS SFCTICNS FRCM GROUP (I) TO (J) FOA LITTLED
[ ZEROQITH) ORGER LEGENDRE MONENT LITILCD
c E(l)= ENERGY STRUCTURE OF GAROLPS 1-MGROUP IN DECREAS ING ORDER LIVILED
c A=ATOMIC MASS QF SCATTERING NLCLEODUS LIFTLED
C DIHMENS IONING OF ARRAYS: U(NDOD by SGNINUONGROUP 4 NGROUP) LIFTLED
c SIGSCT(NGROUPyNGROUP }s EINGROUP ) LITTILED
C SIGTINGRCUP)TITLEL20) LITTLED
C LITILED
C LTFTLED
[ LITILED
CHOvpu b e v 003 o850 R ¢ dNSSSBESRUISBPRUFFEOb R YSbsbodansPhbdsb bbb ors] [TTLED
1 FNRMATIBF10.01 . LITTLED
2 FORMAT(} 415} LITILED
2 FOAMATLIZ0A4) LITTLED
& FORMAT [1%4,5C14.6) LITTLED
$ FCRMLTILD12.5) LITILED
-] FURMAT (LA LCX4BOL4e5) LITTLED
7 FitMATIIX, LOXg "[1% 94]240 Jd= *,12) LITTLED
8 FORMAT[1X,10K:5D17.8}) LETILED
] FORMATULHL)D LITILED
PRINT 9 LITTLED
c LITTILED
c READ IN RIQUIRED PROGRAM INFORMATION LITTLED
[ LIT¥LED
READT 5+ 2 ININ, NUUT» NGROUP y NLD,MTOP . MBOT LITTLED
REAT(S,1 }A ) LIFTTLED
READ(NINGWIISIGT{J)ed=1, KGROUP) LITILED
REACININGIV{ TITLE (KK) 3 KK=1,420) LITYLED
CO 10 I=1,NGRUUP LETTLLOD
10 READIKIAN &) {SIGSCT T od)y J=1 NGROUF | LITILED
NYSRP=KGHROUP+L LITYLERD
REAC(S+LI(ELL)e I=1aNNGRP) LITTLED
C LITTLED
[ PRINT CUT HMULTIGROUP ENERGY STRUCTURE LITTLED
€ ) LITTLED
PRINT S6:A LITTLED
ALPHA={{A=L.01/{A*1.D10%82 LTITVED
58 FORMAT {1Xe10X,"ATOMIL MASS OF SCATTERING NUCLEQUS=®,FT.3.//) LiT7, .0

PRINT 13 Li-t.vD
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Appendix A (continued) - LITTLED

i4
12
13

[sX 2 Nal oWl gi\tﬁrlw DOn

(%]
-

NDAanoON~

DO 14 [=MTOP.MBOT

[i=1-MTOPe1l

IPi=1+1

PRINT 12y [o€LINELIPI}SIGTLI)
FORMATILX 10X 13 92FL0s%y TXsELll %)
FORMAT{1X, 10Xy *GROUP STRUCTURE® s 15X SIGT" /)
PRINT 9

b

START DUTER LOCP OVER INITTAL NEUTRON ENERGY GROUPS

00 30 J=MTOP,MBOY
JJ=MTOP+MBOT =4
JP=FBOT+1-J

START INNER LCOP OVER FINAL REUTRON ENERGY GROUPS

DO 31 IT=J0J.MBOT
IM=11-MTOP#]

1GP=JJ

IGP1=JJ¢e]

1G=11

IGL=11¢1

IF{A.NE.1.0) GO VO 50
GO 1D 53

BEGIN CALCULATINN OF TRIANGULAR CRDSS SECTION FOR €ACH OF THE
{NuJ) O} SCRETE DIRECTIONS FOR THE CASE WHERE (A.NE.1.0)

AA=[A+1.0)%0.5
BB={A-1.0)?0.5

DETERMINE ALLOWABLE DMAX AND UMIN TRANSFER RANGE

UAVTDP={E(IGRFI+E(IGPL})%*0.5
UAYROT=(E{IGI4ECIGI})*0. 5
EMIN=SCRTIELIGLIZEVIGP))
EMIN=SCRT(UAVREOT/UAYTOP)
EMAX=SCRITELIGIZELIGPLYY
UMIKN=AR*EM [N-BB/EMIN
UMID=AASEMIO-BB/ZEMID
UMAX=AA®EMA X=RB/EMAX

DETEAMINE BASE LENGTH DF THE APPROXIMATING TRIANGLE

IFIUMAY,GT.1.0) UMAN=1.0
IFIUMAX 4LTo=1.0) UMAX==1.0
IFIUMIO LTa-1.01UMIN==1,0
[FIUMIDaGTe1.GILUMID=1.0
TFLUMINGGEL=1,0) ULOA=UMIN
IF{UMINLLT-1.4} ULDW=-1.0
DELU= (UMAX-LLGW) F{FLDAT(NUVO-11)
DO 57, KrXk=1, NUD

CREM=KKK-1

Ul KKK) = LOW« CREMSDELY
IF{EITGYI LT (ALPHASE(IGRP 1)} GO TN BO_

DETERMINE WHETHER THE ENYTTIRL TRIAMGULAR AAEA LTES WITHIN

THE =l.0 TO +1.,0 RANGE FOR (Ube IF THE TGTAL AREA OCES, GO TO S54.
IF THE TRIANGLE 15 TRUNCAITDH BY THE -1.0 BJUNDARYs, CALCULATE THE

APPACKXIMATING TRIANBLE®S WEIGHY (SIGMAX) USING Bl,82, AND B3

LITTLED
LITILED
LITTLED
LITILED
LITILED
LITTLED
LITTLED
LITTLED
LITTLED
LITTLED
LITILED
LITILED
LITTLED
LITTLED
LITTLED
LITTLED
LITTLED
LITTLED
LITTILED
LITTLED
LITTLED
LITILED
LITTLED
LITTLED
LETTLLD
LITILED
LITFLED
LITTLED
LITILED
LITTLED
LITTLED
LITTLED
LITILED
LITILED
LITTLED
=LITTLED
LITTLED
LITTLED
LITTLED
LITILED
LITTLED
LITTLED
LITTLED
LITILED
LITTLED
LITILED
LIrTLeD
LITTLED
LITTLED
LITILED
LITILED
LITILED
LITTILED
LITTLED
LITTLED
LITILED
LITILLD
LITILED
LETH. 7D
L1 .0
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Appendix A (continued) - LITTLED

nnnng 2R 2By,

A OO0

[aEaRaRal

53

[aXslgl

IF[UMINL.GT.~1.0) GO TD 54
Bl=UHAX-UMIO
B2=UMHID+1.0
B3=-1.0-UMINK
DENCM=BL+B2+(82#B3/(B2+B3

IFIDENCM.EQ. 0.0} PRINT 6S,UMAK,UMID UMINyJJ, 11

FORMAT(LXe 10Xy "UENOM=0, 0

CALCULATE THE HELIGHT OF THE APPROXIMATING TRIANGLE IN BARNS

335Xy FLO5) 217}

SIGMAX=SIGSCTIJI4 1) /{3 14159265¢«NENOM)

GO 10 56
SIGFAX=0.0
GD 10 56
CONT INUE

IFI{UMAX-UMIN])EQe0.0) PRINT 66, UMAXyUMINJJy 1T

FORMATUL Xyl OXp UPAX-UMIN=0.0" 42F12.5,217)

CALCULATE THE HEIGHY DOF THE APPROXIMATING TRIANGLE IN BARNS

SIGMAX=SIGSCTIJJ I1) /(3. 14159265% (UMAX-UMINI )

CONT INUE

CALCULATE TRIANGULARLY APPROXIMPATED CROSS SECTION AT EACH OF

THE DISCRETE (NUOQY DIRECT

DD %1 K=1,.NuUl

10NS

IFIEL{IG).LT-{ALPHARE(IGPL))) GO TG 5%

IF(UIK).LE.UMIN) GO TO S5
IF(UIK)GE.UHKAX) GU TO 55

IFLLUMID~UMIN}.EQa0.0) PRINT 67 UNIDUMIN,JJo 1]
FORMAT{ LXs LOXe *UMID=-UMIN=Q.0

SGNIK.IM,J4) 15 THE TRIANGULAR CROSS SECTION IN DISCRETE
DIRECTION K FUR NEUTRONS OF INITIAL ENERGY GROUP IN AND

FINAL ENERGY GROUP JM

IFtUIKILT.LMID) SGNIK I M JM)=SIGHMAX® {U{KI-UMINI/{UMID=UMIN}

IFtUiK).LY.UMID) GO YO S1

TFLGUMAR=UMIDI.EQ.0.0} PRINT 685 UMAX URID,JJ, 11

FORMAT(L Xy 1CXet UMAX=-UMID=0.0
SGNiKp IMp JHI=SIGMAX#{UNAX-U{K) I/ {UMAX=UHID}

GO TG 51
CONTEKUE
SGHIK, [MyJH}=0.0
CONTINUE
GO TQ 62

BEGIN CALCULATION OF TRIANGULAR CROSS SECTION FOR THE CASE

WHERE A=1.0

CONTINUE

1IF(I1.NE-JJ) GO TOD 40
UMIN=SCRTIEC(IGLI/ELIG))
UMAX=1.0000

GO TQ %1

DETERMINE BASE LENGTH OF

TRIANGLE

"p2FLl2. 5,217}

§2F12:.5,2171%

LITTLED
LITTLED
LITTLED
LIFILED
LITTLED
LITTLED
LITTLED
LITTLED
LITTLED
LITTLED
LITTILED
LITTLED
LITTLED
LITYLED
LITTLED
LITTLED
LITTLCD
LITILED
LITTLED

‘LITTLED

LITILED
LI¥TLED
LITTLED
LITILED
LITTLED
LITTLED
LITTLED
LITILED
LITTLED
LIITLED
LITILED
LITTLED
LITTLED
LITTLED
LIITLED
LITTLED
LITILED
LITTLED
LITTLED
LITILED
LITILED
LITTLED
LITILED
LITILED
LITTLEL
LITTLED
LITTLED
LITTLED
LITTLED
LITTLED
LITTLED
LITTLED
LITTLED
LITTLED
LEFTLED
LITTLED
LITTILED
LITTLED
LilTLED
LITTLED
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Appendix A (continued) - LITTLED

40 UMIN=SORTIE(TIGLI/ELIGP) )
LMAX=SCRT(E(IGIZELIGPL))
UCRIT=SCRTIE(IGI/JE(IGP)})

4“1 CONTINUE

DELU= (UMAX=-UMIN) /{FLOAT{ NUD-11)

OC 20 KEX=1,4U0

CREM=KKEK-1

ULKKK]I=uMIN+CREM®DELU

(=]

CALCULATE APPROXIMATING TRIANGLE'S HEIGHT
SIGMAX=(SIGSCT(JIyI1)/(1.%3,14159265)) 7LUMAX-UMIN]

CALCULATE TRIANGULAR CROSS SECTION FOR TRANSFER FROM ENERGY
GROUP IM YO ENERGY GROUP JM IN DISCRETE DIRECTION K

OO0 OO wr

00 32 K=1,MU0
IF(UIK)LLTOUMIND GO TO 42
TF(ILaFQedd) SONIKyITMedN)={{UIK)=UMIN} /{1.~UMIN) }*SIGMAX
IF{ii.c5.JJd) GO TO 32
[FIUIK).LTaLMAX) GO TO &2
IFTUIRIJLEJUCRITISCON( Ko TM, JMIa{ (U{KI=UMIN) /(UCRIT-UNIN] J#SIGMAX
ITFIGIKY.LE.UCRIT) GO TO 32
SGHIRGIM, IM) = L{UMAK=ULK) )/ (UMAX-UCRIT) )5 IGHAX
GO To 32

“2 SGNiK,[MeJM)= 0.0

32 CONTINUE

€2 CanNTInUE

C
G PRINT CUT TRIANGULARLY APPROXTIMATED CROSS SECTIONS ON QUTPUT
(4 UNIT (5OUT) TN A FORMAT ACCEPTABLE FOR INPUT TO COMPUTER

C PROGGAAM BQUAZN

C

WITTEAROUT 9) LULK) , K=1,NuD}
WALTEIHCUT e 9 ESOGNIKyTHedN) gK=] 3 NUD)

£0 T INeL
WATTEdG 2L B, 11
9 FUAAATILR, LOX 311 0,° 10 1100
IFLECIG) CT.(ALPMHA®E(IGP L) )1 GO TD &3
PRINT 64
b4 FORMAT{1Xy10Xs*NO-TRANSFER" }
GO TO 3
63 LGNTLHUE
KUU=HLA- 4
DO £C [PRINT=14NUU,S
Kl=IPRINT
K2 [PRINT +4
é0 AITTE(S46L) AU{KPRINT) s SGN{KPRINT  IMy JH) o KPRINT®K1,K2)
&l FORMATIS{LXy OPF 10,49 LPEL4.4) )
3l ONTINUE
3c CONTINGE
IR OE]
END
Fad
//G0LFTOLFGOL DO UNET=TAPES,DI5P=0LD,
' OCR=(RECFM=FB, LRECL=80,BLKSIZF~32T0),
/7 VCL=SER=9833KS,
17 DSN=0LC2,
1 LAZEL=[1,5L)

//CC.FTGIFCOL DO UNIT«=TAPE9.DI SH=NEW,

LITILED
LITTLEL
LITTLED

TTILED

FTTLED
LITILED
LITTLED
LITTLED
LITTLED
LITried
LiTiieD
LITILEG
LITILED
LITTLED
LITTLEDL
LITTLED
LITILED
LITTLED
LITTLED
LITILED
LITTLED
LITTLED
LITTLED
LIITLED
LITTLED
LITILED
LTTILED
LITTLED
LEFTLED
LITILED
LITILID
LITTLED
LITILED
LITILED
LITILED
LETILLD
LITILLD
LITTLED
LITILEDG
LITTLED
LITILED
LITTLLED
LITILED
LITTLED
LITTLED
LITTLED
LLTVTLED
LETTLED
LITTLED
LITTLED
LITTLED
LETTLED
LITTLED
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Appendix A (continued) - LITTLED

2 NIN,NOUT,NGROUP,NUO,MTOP ,MBOT

1 DCB=(RECFM=FB,LRECL=80,BLKS[ZE=3200),
' VOL=SER=9888wWM,
’ DSN=kEY DR,
24 LABEL={19,5L)
4/G0.SYSIN DD

1 3 34 41 1
1.0000
14.918 13.499 12.21¢ 11.052 10.000
£.,7032 6.0653 S. 4881 4,9659 44933
3.0119 2.7253 24667 2:2312 2.0190
1.3534 1.2246 1.1080 1.0026 =90718
«60810 = 55023 «49787

i

9.0484
4.0657
1-8268
« 82085

8.1873
3.56788
1.6530
« 14274

7.4082
3.3287
1+&957
« 67206

E(I)
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Appendix A (continued) - QUAZ

J/QUAL2 JOB {334462282,FJOBRIED, 5,99 50000 » "WAYNE MIKODLS®
/¥ TAPES 2

/ EXEC RINGWTR,PARM=983AWM

/ EXEC FORTGCLG

//FCRTSYSIN DD #

L Seueoxdordsibsngk CUAZ rebbrahbEidhb s QUAZ kb hehb vk kedkk QUAZ *QUAZ
C* PROGRAM FINDS THE ALLOWABLE W.W® TRANSFER RANGE AND THEN GENERATES *QuaZ
C¥THE VALUES OF F{U*->U) MATRIX AT U-QUAD POINTS,USER SUPPLIES SCATTER #QuAZ
CeFUNCTION IN SUM CARD *Qual
CHINPUT PARAMETER Seveesasses *UIALZ
[ = ¥ OF GROUPS, Qual
C N = CRCER CF MU-QUADRATURE (OUTGOING DATA). Guaz
C NP = DRBER (F PHI QUADRATURE. Quaz
[ = QRDER OF MU-QUADRATURE (INGOTNG DATA). Qual
C MNC = NUMBER OF MATERIALS. Quaz
C  NOUT = DUTPUT UNIT. Quaz
C NIN s INPUT LNIT. Qual
€ IhS ~ IF [HS.NE.O HARD SPHERE ENERGY LIMITS NOT USED AND WeW® RANGODUAZ
c IS -1 70 +l. ' Quaz
C EIMG+1) = ENERCY GRDUP STRUCTURE. QuAaz
3 UIN} = MU QUADRATURE POINTS. QuAZ
C  wWiN = MU CUACHATURE WEIGKTS. Quaz
3 PINP) = PHI GUAD PUOINTS. Quaz
€ WWINP} = PHI QUAD WEIGHTS. QuUAZ
C IA = ATOMIC MASS NUMBER OF MATERIAL. Quaz
3 SGNEM,MG,MG) = PULTIGROUP ANGLE DEPENDENT SCAT X-SECTION. Qual
[ UD (M MG,MG) = SCAT ANGLES AT WHICH SGN ARE GIVEN (HEAD FROM UNIT NjQuAZ
C CIMENSIONING OF OTHER ARRYS: QuUAZ
€ CPINP), FiN}y BUNyNI» GLIMGyMG}e GUIMGsMGIy USINsNDy YOUINNI). QuAZ
C : RUAZ
C QuaZ

DIMENSION U(32),WI32)1,P132),WN(32),CPI3R2),6LE27,27),GU{27,2T).F(320uUaZ
1} ,E{28),B{20,20), USL20,20),YOU(20,200s UO(20+10020)s5GNI20,10,10)0uUnNZ

c
CovassREAD INPUT PARAMETERS
c
READ (541010 MGyNyNPyMoNOC,NOUT s NINy IHS
MGG=MG ]
READIS,105) (E{LY,I=1,MGG)
READ(5,100) (U(L)oE=L,N)
READ(55100) (W(I)sI=1sN)
READIS,L00) (PI1}el=1sNP)}
READ{5,100) {WW{l)sI=LsNP)
101 FORMAT (16151
105 FORMAT {(5F10.0)
100 FORMATI3025.15)
PRINT 98, MGeNeNPyM
S8 FORMAT { LHO, 'Nit OF GROUPS =9,13¢" MU-QUADRATURE =°,13,

QJ Al
QUAZ
Qualz
QUAZ
QUAZ
Quaz
Quaz
Quaz
Quaz
Qquaz
Quaz
QUAZ
Quaz
Quaz
QJAZ

2" PHI-QUAD. =1'4(3,* NR OF MU=-0 PTS =°,13//% ENERGY GROUP LIMITS®QuUAZ

3}
PRINT 99, (E (1)y 1=1eMGG)
99 FORMAT {10F12.6)
PI=3,141592653589793D0
DD 300 T=1.N
SI={1.C0-UlH)*uil)}e*0,.5
DO 300 J=1.N
SJ={1.D0-Ul J}#U{J)}**0,5
US(Isst=uidizull)
300 YOU(L,di=5JeS1
DO B K=L NP

QUAZ
QJaZ
QUAZ
Quaz
QUAZ
Quaz
Qual
Quaz
QUAL
GuaAl
Cuaz
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Appendix A (continued) - QUAZ

150
s

CP(K)= COS(PIK))
0O 1000 ICASE*1.NGC
READ [5,101) 1A
PRINT 115 s [A

FORMATLINHD, *VW.W RANGE FOR SCATTER FROM GROUP TO GROUP.

ZATTER =%,13)

C
CodeesCALCULATE W.W' RANGE

c

420

106
118

250

1%:1]

00 5 JX=1.,MG
J=RE6-JX
JI=d+1l

DO 113 I=J:MG
1l=0+1

GLUT, 31=0.5% {TA+1IS (ECTTI/EL1I#20 51 TA=1 )00 S¢{ELJI/E(TL) 20,5
GUITod)=0aSolTA+LIH{ECT} ZECID) )2 # 05~ 1 JA-L)®0.5¥{E(JIIFELT) ) ¥%0.5

IF(GUIT,41aGTo1.D0) GU(L,J4)=1.D0
TF{GLIT , JYaLTa=1a0) GLIL,u)=-1.0
PRINT 420, Jypl2ULUTsd)GUIL, 4]
FORMAT (28X 4 [3+3X413,2020.6)
IFIGUIT,J)sLE.~1.0) GO TO 118
READININ,106) {UOIKyL 9 J) s K=1, M)
REAGININy 106 ) (SGN{KoLod) ¢K=1,M)
FCRMAT (6D12.5)

CONTINUE

CONTINUE

DO 6 LE=14MG

[T=1E+1

DO 7 JE=1l,1E

JJ=JE+L

IF{GUIIE,JE}-GTa-1.0} GO TO 188
DO 250 I=14N

DO 250 J=1¢N

BlI+J)=0.0

GO 10 10

DD 1 I=14N

SUN=0.D0

DO 2 J=1,N

SuM=0.00

C
Coes+6PERFORM INTEGRATICN DVER THE AZIMUTHAL ANGLE PHI

c

22

33

)

DO 9 K=1,NP

G=USIToJ )+YOULTy JI*CPIK)

[F{G L T-CLIIELJE}aORG0TGULIE, JE}Y GO TO 9
L=1

IF {UOIL.IEsJE).GE.G) GO TO 33
IFIL.GE.MIGO TO 33

L=L+1

GO 10 22

D1=U0{L, IE, JE)-UDIL=14IE+JE)

D2=6-UO(L~-1 ,TEyJE)

D3=UD(L, [E, JEI-G
XX={U2%SGNILv [Es JE)+DI*SGNIL-1:YE-JE) } /D]
IF(XX.LT.0.0)KK=0.0 '
SUM= SUM+ WW( K ) ®XX

CONT ENUE

BilsJi=SUME2.0

SUN=B{I,Jioy{J)+5UN

F{L=SUN

QUAZ
Quaz
QuUAZ
QUAZ

MASS OF SCOQuAZ

Quaz
QUAZ
QUAZ
CUAZ
Quaz
Quaz
DUAZ
QUAZ
Quaz
Quaz
QUal
QUAZ
Quaz
Quaz
QUAZ
Quaz
QUAZ
Quaz
Quaz
qQuaz

Quaz’

Quaz
Quaz
QUAZ
QUAZ
QUAZ
QUAZ
Qual
Quaz
Quaz
Quaz
Quaz
Quaz
QUAz
QUAZ
Quaz

QUAZ

QuAZ
Quaz
Quaz
Quaz
QUAZ
Quaz
Quaz
QUAZ
Quaz
quaz
Quaz
Quaz
QuAaz
QuAZ
cuaz
Qual
Quas
Q.
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Appendix A (continued) - QUAZ

PRINT 600,JEy LEv(F(1},1=1,N)

600
10
113 FORMAT(6EL2.5)
T CONTINUE
& CONTINUE
1000 CONTINUE
sTOP
END
Al
//G0.FTOLFOOL
/i’
/t VOL=SER=990G5KS5,
14 DSN=QXYGEN,
/ LABEL={25,5L)
//GD.FTO3IFT0L
a4
14 VOL=SER=98B8WM,
¥4 OSN=0KYGEN,
/ LABEL=(33,5L)
f/GD.SYSIN DD =
(4] L4 32
2.,0119 2.7253
-«9745539562
~ad
-. 0254460438
2970774243
«8707655928
«G647424831
« 2089795918
0667424331
«1909150253
»1398526957
0.4297914B6228259D-02
0.10224927554130630 Q0D
0.3228240312247410 00
C.64761443938924C00 0O
0.1049498127009640 01
0.1494314511568360 01
G 1946667631475621L0 0L
D.2367032349351110 0L
0.2720904743348770 01
C.297873368619269D 01
0.311899061988%260 01}
0.1102480452843540-01
0.538372467683217D-C1
G.921R073929970830-01
0.122B265658726T460 00
0.14321556139537900 Q0
0. 1518644784878579D 00
0.1474104066985310 Q0
G.1308660373279900 00

20

2.%667

FORMAT (2Xs21401PL2ELD.2,/00X,12E10.2)
WRITE(NOUTo L1BI{4BCLsd) g d=1pN) el =1oN)

DD UNIT=TAPES, DISP=0L0,
DCB={RECFM=FB. LRECL=80 ,BLKSIZE=32001,

DU UNTT=TAPE?, DISP=(NEW,KEEP ),
DCA=(RECFM=FB,LRECL=80,BLKSIZE=3200)+

Quaz
Qualz
QuUaAZ
Quaz
Quaz
QUAZ
QUAZ
Quaz
QUAZ
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Group Structure

rature

— Gauss-32

Quadrature

e 9 a}-MG,N,NP,M,NOC,NOUT,NIN,THS
2.2313  2.0190 1.8268 1.6530 1.4957]

-~ 8707695928 -.702922571%5 ]

-.2970T74243 -.1292344012

0254460438 1292344072 [~ DP~-7 Quad

.5 7029225157

.9745539562 —

1298526957 .1909150253 )

21902150253 -1398526957 [—~DP=7 Quadrature

.064 7424831 . 1398526957 Weights

2089795917 .1909150253

<064 1424831 -
0.226013801107392D-01 0.5535130797216790-01
0.162R58313807309D 00 0.2366127498193360 00
0.4206812566112290 00 0.5292857176830840 00
0. 77455965C&488900 QO Q.9063391008591030 00
0.119492436852379D 01 0.1343840020633590 01
0.16666TT43803164D 01 D.1797731979366410 01
0.20920%33072990360 01 0.2232652899140900 01
0.2493977560610760 01 0.2612303282316910 01
0,2018767968771260 DL 0.290491925018066D 01
0.3039342 124458700 01 0.3086240692027430 01
0.313729408513772D 01
0.255637541451267D-01 0.3986575461952750-01
0.6728645126972050-01 0.B010754749710320-01
0.1C3079125048217D 00 0.1136404840030600 DO
0.130866037327990D 00 0.13768355T0829440 00
6.147410506693531D 00 0.1502289189456430 00
0.1516447B4AT45790 0Q 0.1502289189456430 0
0.14321556395979C0 00 0.137683557082 944D 00
0.1228266568726746D 00 0.113640484003002D0 0

Fi

0-1033932842482170 GO
0.6728645T726972050~-01
0.2556375414572670-01

l6]Mass Number

0.92LB07392997089D-01
0.5383724676832170-01
0.1102480452T780710~-01

0.8010754749710320-0
0.398857546195275D-0




Appendix A (coptinued) - MIX

J/IMIX JOB {334462282,F JOBR3IESe ) o" WAYNE MIKOLS® yTIME=(3,00)
feTAPED 2
/YREGIGN 400K
124 EYEC RINGRTR,PARM=9888HWM
74 EXEC FORTGLLG
J/FGRT.SYSIN DD +
C sossbcpb ks s MIX (XS N ERR T IS LA EEE LT 2% 3 MIX
C MIX
C THIS PROGRAM FORMS COMPOSITE CROSS SECTIONS FOR OUTPUT DATA MI X
c EROM CCMPUTER PROGRAM QUAZ ML X
c M1X
C MG = § OF GROUPS. HIX
C N = ORDER OF CQUADRATURES. HiX
c NiNA= ITNPUT UNIT FCOR MATERIAL (A) HIX
2 NINB= INPUT UNIT FOR MATERIAL (B) MIX
C KUT = CUTPUT UNIT. MIX
C AA = # CF ATCMS CF 5027 A& PER MOLECULE. MI X
c BB = #§ CF ATOMS CF SORT B PER MGLECULE. MIX
c AC = NUMBER DERSITY OF MUOLECULES. mixX
3 SIGA, SIGD = TOTAL CROSS SECTIGNS FOR A AND B. HI X
c ARRAYS : BINyN} »SIGA(MG) SIGEIMG)e A{XsNoN)s XuMG*(MGel)/2 MIX
3 H1X
DIMENSION A[19C,18418).8(18,18],SIGA(27),S5IGAL2ZT) X
READLS ¢LOLIMG, No NENAGNIND,NUT ML X
READ {5,210) AARB3,AC MIX
READ(9: 210} (SIGAIL),1=14HMG} MIX
READ(5,210) (SIGBII)eI=1,MG) MIX
101 FORMAT (L&IS) MIX
210 FUARPMAY (&F1G.0) HiX
100 FORMATIGELZ.5) M X
WAJTE (6,95) PG,N.AA,BB, AC HI X
95 FOLAMAT (LHO,*MG="413,* N='413,* NR OF ATOMS A PER MOLEC., =%, MLX
2F4,0,% NR OF ATOMS B =9,F4,0,' NUMBER DENSITY OF MOLEC. =*,Fl0.6HKIX
3) Ml X
WRITE (&46,496) (SIGAL{T) . 1=1,MG) HIX
96 FURMAT (LHO. "TOT X-SECTIONS FOR A #9,/{10F12.6)) MIX
WRITE (6,97) (SIGB(I}, I=1,KHGQ Ml X
87 FOAMAT (LHO.*TQOT X-SECTICNS FOR B ='4/({10F12.6)) LIS
AD=A4 sAL MLX
EC=B8+#AC Kl X
MGG={ MG (HG+] ) ) /2 ML X
D0 10 [G=1,¥GG HIX
10 READININA,100) {(ALIGsEed)e JuleNDp [ml,N) MI X
[ MI X
DO 3 1G=1.MGG MIX
READININHGL100) ((BlIeJdloJd=lelN)el=lyN) MLX
Lo 3 1=1,R MI X
DO 3 J=l,.N MIX
3 AL1Gi,J1=4AD%A(1G.0oJ) + BD*BU[yJ} MIX
REWING 2 MIX
c TCraL CROSS SECTIONS . MI X
DO 5 1=1,.M5 MiX
5 SIGA([)=AD&SIGA(I) +BD®*SIGBII]) MIX
WRITE (6,497 ) MIX
99 FORMAT [1A40,* TOVAL CROSS SECTIONS FOR MIXTURE.') RI X
WRITE(6, J00) (SIGA(L)Im1,NG) : Ml4
LG 20 IG=],MCG Ml X
20 WRITE INUT LO0G) LCA{IGsYvddy Jm1. N}y Iwl,N) Mi 4
sTaP Mo
END B
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Appendix A (continued) - MIX

Fa

//GOFTOLF00L DD UNIT=TAPE?,DISP=0LD,

'y DCB=(RECFM=FByLRECL=80,BLKSIZE=3200) o
'Y YOL=SERZIFOSKS 4

Y DSN=HYDRO,

' LABEL=(26,5L)

J/FTO2F001 CD UNIT=YAPES,D15P=0LD,

'y DCB={RECFM=FB, LRECL=B0,BLKS[ZE=3200),
i VOL=SER=98BRWM,

'y DSH=UXYGEN,

vy LABEL=033,5Le, INI

//FTO3FO0L DD UNIT=TAPEY,DISP= (NEW,KEEP),

i DCB=(RECFM=FB, LRECL=80,BLKSI ZE=3200) ,
7 VOL=REF=#.FTO2F00L,

i DSh=HZ GAPR,

4 LABEL®E (349 SLeoOUT)

/4G0.SYSIN DD # ;

& 1 1 2 3}MG,N,NINA,NINB,NUT
2.0 1.0 0.033%3 B.AC
0.68421 0.75181 a.szaqa}A%h@%uﬂz 0.98240  1.0688
0.64808 0.79340 - 0.87754 0465085 0Q.67241 0.77823
Je

1.14600
0. 79260

1.2561
0. 96489

SIGA(T)
*}s16B (1)
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Appendix A (continued) - MGRP

1IHGRP JOB (334462282,FJOBRIES99) ¢ " WAYNE MIKOLS® o TIME=({8,00]
/eTAPES )

/*REGION S12K

YY) EXEC FORIGCLG

SFFORY LSYSIN DD &

C vHEveesEdtsadoettdsd HORP S40epstdsdsasditdtne MGRP SEEIESEEEPRBEMGRP

[

C¢SOLVES 1-0 ﬁZIVUTHALLY SYMME TRIC FULTIGROUP CASE WITH ARBITRARILY

C#HICH ORLEA CF ANISOTRUPY. [ENPUT PARAMETERS AREcesvose
e = # LF GROUPS.

MUST BE SUPPLIED. .
15 = SOURCE ANGLE ( IN QUADRATURE SET).
NLM = WITHIN GROUP ITERATICN LIMIT.
HIN = INPUT UNIT,.
IPRINT = [F .NE. O PARAINT ANGULAR FLUX VECTUR .
MTJP = HIGHEST ENERGY GROUP IH WHICH THERE LIES A SGURCE
CEL = MESH SIZE. ¢
T = CGAVERGENCE ACCURACY .
ST = ACCELERATICN PARAMETER.
SIGT{MG) = TOTAL CRNSS SECTIONS.

DIMENSICNING OF OTHLR ARHAYS: \
GIMsNy¥G) = NELUTRON DENSITY AT SPATIAL MIDPDINT.

Qi N = WITHIN GROUP SCATTERING.
SKN{M,N) = DUWN SCATTERING SOURCE.
JLIN), JUIH} = LOWER AND UPPER REGICNAL INTEGRATION LIMITS.

[s33020s02 ntalaliatalslslalaRalal oot NakaaFaRale

REAL#4 SIGTU35),U[L6)sHW{16),JLI16),JULLG)AILE,16),
LOt(E36,16)9SNNIL36,16), FIL36916,19)9G(136916:19)
READ (5. 100) MGoNoHoKPyNLoKF oI SoNLMKyNINy IPRINT » MTOP
RTAC [94220) CELeTsST
REAN §5,220) (SIGTII}s I=1luMG)
REAGIS,1C9) (U(J)od=1,N]}
HEADI 5, 109 {HIJ)pJ=1leN)
100 FURFAT (1&615)
220 FORMAT (BFL0.0)
109 FCRMAT (3D25.1%)
180 FORMATI4012.5)
MGG=MG+1
N2=N/2
NPrN24 1
STO=ST

PRINT 1204 MGoNeMiKPyNLoKF s ISeNLMoDELs ToSToUI1S)
120 FORFAT (1H1l, °NR OF GROUPS =%, 13,

2% OQUAGRATURE =t,13/* MESH POINTS LARR&T
3" REGIDHAL INTs =9,03/% REG INF PARAM, =% 13,
&*  SCUACE YYPE =9,13/" SOURCE OIRECTION =',13,
5% MAX NR OF ITER =°,13//" MESH SIIE =4, Fld.by
&'  ACCURACY =y FLOa6/" ACC PARAM. =f g Fldebs
7° SOURCE ANGLE =14,Fl0.6///" TOTAL CROSS SECTIONS*)

PRINT 123 (SIGT(I)y I=1,MG)

N = QRUER OF QUAURATURE.

H = # OF MESH POINTS.

KP = SET = 1 1F REGIONAL INTEGRATION USED.

KL = INTEGRATION U-RANGE FOR RFGIONAL TNYTEGRATION.

KF = IF = 0 THE SOURCE IN TOP GROUP, IF NOT MULTIGROUP SOURCE

Uik) = CUACRATURE POINTS.

WMDY = QUADRATURE WEIGHTS.

A{N,N) = SCAVIERING CRGSS SECTICNS.

FIMyNyMG) = EXITANAL SOURCE (IF KF.HNE.O}e ALSO NEUTRON DENSITY.

MIAP
BMGRP
HIRP
K33aP
RGRP
MRP
M3RP
MGRP
MGRP
MG RP
HMGRP
MGRP
H3PP
Mip
MGAP
MGRP
BG AP
MGRP
MGRP
MGRP
MGaP
MGHP
MIRP
M32p
MGAP
MGRP
H32P
MGRP
MukP
NG RP
MIRP
HGaP
HGRP
M33P
MLAP
MLHP
MSRP
MG AP
KunRpP
MG RP
Hnoup
MGP
MGHP
MGRP
riap
FinP
H3RP
KGAP
MGRP
PGRP
HG AP
MGAP
MGRP
MGAP
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Appendix A (continued) - MGRP

123
C

FORMAT (1Xp1CF1l2.6)

CevdesSET UP REGIONAL INTRGRAT LGN

400

16

8c

201
1000

[sla

781

125

102

122

5011

5010
5012

111
C
=

Nu=N-NL

DO 1CCO I=1.N
IF(KP.EQ.1) GO TD 400
JLIT1=] )
JUiT)=N

GO TO 201
IF{I.LE.NL} GO TOQ 70
IFL1.GE.NU) GO TOD 80
JLET)=1-NL
JUuil)=[+«NL

GO 10 201

JLiT)=1

JULTY=2%NL¢ T

GO 70 201

JLIT) =T-2%NL

JUulli=N

CGNT INUE

CONTINLE

BOUNDARY CONDITIONS.
00 T3l I=1,N
DO 7A1 K=2,.,W
SNN(X,1)-0.C

DD 12% Ki=1,MG

DO 125 J=Ll.N

DO 125 L=1,¥

FiLsJsKEY=Q.0

IFIXF.EQ.0) GO 7D 5010
READIS54102) (FlLeISeKE) gKEmLyMG)
FORMATI4U20.7)

PRINT 122 '

FURMAT {1HO,'FISSION SOURCE *)
PRINT 1244 (F{lylSeKE)e KE=l,FG)
FORMAT (IXy IPI0EL2.4}

DO 5011 KE=1.MG
FllelSsKEV=F{LleISKE)/WIIS)

GO TO 5012

FileISsl)=1.00/W(IS)

MM=pM~1

PRINT 111

FORMAT (1lHO, 'ITER GROUP CONVERGENCE®)

CovasxSTART LARGE ENERGY LOOP

6004
(4

C

00 130 KE=1,MG

NKJ=0

ST=5T0
DESI1=0.5#0ELSIGTIKE)
DO 6004 l=1,N

DO 6004 K=2,H
QIK,11=0.0

READ SELF SCAfTERlNG CROSS SECTIONS.

READ (NINg1BO) (iAl{ledde JuleNly

CovewvSOLVE D.0. EQUATIONS
200 CCNTINLE

DO 3 I=NPgN

[=1,N)
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Appendix A (continued) - MGRP

X=1.0 — DESI/ULL)
¥=1.0 + DESI/U(]) -
XL=X/Y
Y1=DEL/{UIL)*Y}
D0 3 K=1,MM
KK=K+1
3 F(KK.l.KE)*Xl'FlK.I.KEl + VI®Q(KK,I)
00 1 [=1,N2
X=1.0 « CESL/ULT)
¥=1.C - DESLSULTL)
X1sX/Y
Y1=0EL/(ULLYsY)
DO 1 L=1,MH
K=M-L+1
KK=K~1
1 FIKK,IoKE)sXLoF (KeToKE} = Yi®Q{K,1)
Do & I=1:N
CO 5 K=2,M
GIKy Iy KEI={FIKol o KEI#F(K=1,I4KE) }#0.5
CONTINUE
CONT [KUE

[aZa N BT

sosweCALCULATE TN=-SCATTER SOURCE TERM
QOLD=QiM,15]
STT=1.0¢ST
00 7 I=1,N
Ji=JLed
JIU=Jull}
DO 7 K22 .M
0s=0.C
DO 9 J=JdJd.JddU
9 Q5S=05 ¢ GIK,J KEI®ALI,J)IOW(D)
QIR TI=QiNyI) & STUSIDS+SANIK, I} = QIK,1))
7 CONTINUE
IF (QiM, I1S)uLEL0.0) GO TO 3000
CH=ABS{IDRI{M, I5)-0QOLD)/ QU M, I5})
KRE=FL+MTI0P-1
PRINT 134,NKJ¢KREoCH
3% FORMAT {1X,13,17:FL2.6)
IF{CH.LT.T) GO TO 138
3000 COMNTINUE
Coavss [CNVERGENCE ACCEL PARAM AS FUNC OF ITER NO.
NK.J=NKJ+1
IFINKJI.EQ.5) ST=2.0#ST
IFINKJLLE.NLM)} GO TO 200
5003 PRINT 5006,NKJ
5C04 FORMAT(*MO CONVERGENCE AFTER® T4 ,° ITERATIONS®) -
138 CONTINUE
IF(KE.EQ.MG] GO ¥O 130
C
CedsusCALCULATE DOWN SCATTER ENERGY SOURCE
DO 498 I=1,N
DD 498 K=2,M
498 SNNIK I}=0.0
DO 500 JE=T1.KE .
READ (HIN180) (C(ACErddo J=loN)e TI=LlpN)
DO S00 I=l,N
Ja=JLLl)
JJUsJULT)
DO 500 K=z, N

MGRP
M3RP
LI 1
MuRP
M3GRP
MGAP
MLRP
M3RP
M3P
MG 1P
KGRP
KGRP
MGaRP
MGapP
MGRP
HGRP
MGRP
MGRP
M3P
MGAP
MGRP
M3RP
MGHP
MGRP
MSRP
MGRP
KGRP
MGRP
BGeP

MGRP

MGFP
MGRAP
HGRP
MG P
MG RP
MGRP
HGAP
MGRP
M3RP
MGAP
MGRP
H3RP
M3AP
MGRP
MGRP
HIRP
MGRP
MGAP
GRP
M5 AP
MGRP
MGRP
MSRP
MGRP
HLRP
Mode
RUAP
HMLRP
MIRP
HGRAP
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Appendix A (continued) - MGRP

DO SCO J=JJdeJJU
500 SNN(K;I)=SNNIKsI1 ¢ GilKeJsJEI®A(L S0 eW(d)
130 CONTINUE

=

CoewwslALCULATE OIFFUSE TRANSMISSION IN SOURCE OIRECTION
KEG=MG
IF IKF.EQ.0) KEG=1
M§5=2

IF (IPRINT.EQ.O) MS=M
DO 6661 KE=1,KEG
DD 6667 K=M5,M
HU6T F(KeISsKE)=FIK IS KE)~ EXP{-DEL® (K=1}&SIGTI{KE) /ULIS) )*F(1,IS+KE)}
IFLIPRINT.EC.CQ)} GO YO 3002
PRINT 2004
2004 FORMAT{"1°, *ANGULAR DENSITY BY MESH PT ANGLE,AND GROUPY)
00 2000 KE=1,MG
00 2000 K=t .M
PRINT 2CC5,KE K
2005 FORMAT(1HD, "GROUP*3 14, 2%, "MESH PT?,]14)
2000 PRINT 2006, [FIKeloKElpImLloN) '
200& FORMATILX:5D20.10)
3062 CONTINUE
DD 2003 KE=1,MG
KRE=KE+MTQP-1
PRINT 2224,KRE
2224 FORYAY (/27" GROUP 313, * MU, 8Xy *TRANSHISSION HU® +8X
2'REFLECTION®)
DO 2003 l=1,N2
J=hH2+1
2003 KOUITE 1642250) UlJ)pFIMaJKE)y UIL)y, FllsIpKE)
225C FORMAT LLOX,Fl0.6;1PEL&.5,0PF12.6,LPEL4.5)
CosewpsCALCULATE ALBEDD. TRANSHI TYANCE AND SCALAR FLUX
PRINT 8GO ;
8GO FOAMATL///, ° SCALAR FLUX BY GROUP REFLECTED FACE  TRANSMITTED
1FACE ")
RR=0.0
T7=6.0
DO SCCO KE=14MG
KRE=KE+MTOP-1
FLUXR=0.0
FLUXT=0.0
DO s5CCl J=1l.N2
RRELFEN]
FLUXR=FLUXR+W{JI#FElyJKE}
FLUAT=FLUXT+W(JI)EFIM, JJ ,KE)
RAR=RR-FiLly JoKE)2W{J1®ULJ)
S001 TT=PT+F{M,JJ,KEVSWIJII®U(JJ)
SC00 PRINT 801 ,KRE FLUXR,FLUXT
BO1 FORMATILEX,12+D14:5¢5%,014.5)
PRINT 5002 TT.RR
5C02 FOAMAT(/ o' TRANSMITTANCE=?,020.10,2X¢ "ALBEDQ=",D20.:10)
5004 sSTOP

END

Fa

//GDL.FTOLFOCL DD UNIT=TAPE9, D] SP=0LOD, .
¥ OCB= (HELFM=FBsLRECL=BOBLKSIZE=3200) 4
£ VCL*SER=9868WM,

' OSK=HZOAPP,

i LABEL=(34,5L)

J/GCS5YSIN LD =

MG3iP
MGRP
M52p
MGaP
HGRP
M3AP
H32P
MGRP
M3RP
M33P
HGAP
MGHP
MGRP
MGAP
MGHP
M3 RP
M3RP
MGRP
HGRP
M5P
MGaP
MGRP
M3 AP
MG RrP
MGHP
MSRP
M3RP
MGAP
MGRP

MGapP

KGRP
MGRP
KSRP
MZap
MGHP
M3RP
H5RP
MGAP
MGRP
M3 RP
GRP
MGRP
H3RP
M53p
MLdP
MGHP
MG P
HaorP
MGRP
HGRP
MGAP
MGRP
HGRP
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1le

Appendix A (continued) - MGRP

]__[MG,N,M,KP,NL,KF,IS,NLM,
19 18 138 '] L] 1 18 10 1 0

UL NIN, IPRINT , MTOP

€.150C00 0.C000L  G.150 ; DEL,T,ST
0.C95024 0.099855 0.10792 0.10237  0.10427 0.11149 0.11%18 o.tzzzﬂ__SIGi‘(i)
0.12134 0.14246 0.14678 0.19374 0.18104 0.21527 0.23879 0.2172

€.15426  0.20120 ©.19912

-1.02C0006C00 -0.980955155% —-0.959976549

~0.867865501 -0.T728792425 -0. 707106781

-G.550201324 ~0.342012327 -0.115954330

€.115954330 0.342012327 0.550201326

0.707106781 0.728792425 D. 867265601 °
C.959776549 0.930955155 1.00000€000 _)-LOBATTO—-IZ (with 45° Dummy Angle
C.C1C975014 0. 000000UGT 0.066783999 9

0.116620315 0.160285106 0.006000000

0.195235062 0.219156327 0.230944058

€.23C9%4G98 0.219156322 0.195235062 [ Quadrature
€.C0C000000 0.160285186 0.116620315 | Weights

€.056783999 0.000000000 0.010975014 |

€.23C2 0.2447 0.1777 0.8085

1.730 2.602 3.728 5.385 L Fi

62150 60084 4.015 7.109 ssion Source
8.111 8.577 B.448 9.978

13.196 17.751 23.033
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Abstract

This study represents an investigation of approximate numerical techniques
which can be uscd to evaluate highly anisotropic scattering transfer cross
sections., Anisotropic scattering occurs in many important particle transport
problems. The present work evaluates the utility of approximate elastic
scatteriﬁg cross sections for fhe study of fast neutron transport through
water slabs. |

Empirical and theoretical'¢onsiderations suggest that highly anisotropic
angular.transfer cross sections for multigroup equal lethargy width energy
structures may be accurately modeled by triaﬁgplar functions. .The use of
triangular representations greatly simplifies cross section evaluations. The
only actual cross section information required by this triangular method is
the total group-to-group elastic transfer cross sections for all group transfers
being considered. This is in sharp contrast to customary Legendre expansion
techniques which generally require nine angular moments or expansion coefficients
for evaluation of each group-to-group transfer cross section considered.

The usefulness of approximated cross sections depend upon their ability
to reproduce tranéport calculations based upon exact cross section information.
A discrete ordinates transport code is used to compare calculations of trans-
mitted angular densities based upon exact and approximate cross sections.
Results for an 8 inch water slab show no significant differences. To insure
that discrete ordinate tramsport results calculated from approximate cross
sections are justly compared to those célculated using exact values, particular
attention is given to quadrature set selection. A simple mathematical criterion
is developed which enables evaluation of the ability of a quadrature set to

describe angular particle transfer.



