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Abstract 

Microwave ablation is clinically used to thermally ablate cancerous tissue in the liver and 

other organs. When treating large tumor volumes, physicians may use multiple antennas 

simultaneously. Multiple antennas can ablate a larger tissue volume while using the same total 

power as a single antenna. Pre-clinical simulation and experimental studies most often presume 

parallel insertion of antennas. However, due to anatomical constraints, such as the presence of ribs 

and the diaphragm, it is often challenging to insert antennas in a parallel fashion in practice. 

Previous studies have attempted to analyze the effect of non-parallel antenna insertion on ablation 

outcome using computational and experimental approaches; however, they were limited because 

they did not account for dynamic temperature-dependent changes in tissue electrical properties in 

simulations and employed limited experimental validation. In this thesis, we have developed 

improved models of multiple-antenna microwave ablation, including accounting for the effects of 

temperature-dependent changes in tissue properties. We have also developed a system for 

experimental assessment of ablation zone profiles in ex vivo tissues. By utilizing 3D printing, we 

have constructed a device to precisely position antennas within experimental tissue samples and 

allows for accurate sectioning of the ablation zone relative to the plane of antenna insertion. 

Furthermore, we implemented image processing techniques for quantifying the size and shape of 

experimental ablation zones. This enables more accurate and repeatable comparisons of ablation 

profiles between simulations and experiments. We found that for an inter-antenna spacing in the 

range of 10 – 20 mm, simulations and experiments indicated that the ablation zone volumes may 

change by up to 30% due to non-parallel antenna insertion.  
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Chapter 1 - Introduction 

Liver cancer is a significant global health problem. There are over 700,000 fatalities 

attributed to it annually, with about 30,000 in the United States of America alone [1], [2]. Primary 

liver cancer, hepatocellular carcinoma (HCC), accounts for over 85% of these cases [1]. The liver 

is also the most frequent organ to have metastatic cancer growth (cancer that originated in another 

organ but has spread) [3]. Without treatment, median survival of patients with liver cancer is only 

1.6 months [4].  

The current gold standard treatment options for HCC are either liver transplantation or 

surgical removal of the tumor.  In the case of surgical removal of a tumor, doctors also remove a 

small margin (3-5 mm) of healthy tissue to assure complete removal of all cancerous cells from 

the liver.  Unfortunately,  many patients are not eligible for either liver transplant or surgical 

resection; in fact, only about 20% of patients with HCC are eligible to undergo surgical resection 

[5]–[7]. This may be due to the tumor being located in a technically challenging anatomical region, 

or other factors such as medical comorbidities that make surgery more risky [8].   Thus, a majority 

of patients with HCC are in need of alternate methods for treating cancerous tissue [9].  

Ablative therapies are emerging as a viable treatment option for localized tumors [10]. In 

this context, the term ablation refers to the destruction of cells by heat, usually in excess of 50 °C 

for a few minutes [11]. Ablation has several advantages over a traditional resection, the primary 

advantage being that surgical resection is inherently a highly invasive procedure and has a 

relatively high risk of complications compared to local ablative therapies [7], [12], [13]. 

Percutaneous ablation has overall lower morbidity and mortality rate as compared to surgical 

resection [7], [14]. Ablation techniques that have been employed in clinical use include lasers, 
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ultrasound,  radio frequency currents, and microwaves [15]–[17]. Percutaneous ethanol injection 

has also been employed as a non-thermal ablative modality.  

Figure 1 illustrates the major components a typical thermal ablation system. An applicator 

is inserted into the patient, typically under image guidance, to ensure an accurate probe placement. 

The microwave power source delivers microwaves to the applicator which then is radiated into the 

treatment site in the patient.  Some ablation systems employ feedback to guide the adjustment of 

power delivery parameters during the procedure. 

 

 

Figure 1: Block diagram of typical ablation system 

 

 Techniques for inducing ablation 

Radiofrequency ablation (RFA) is the most commonly used ablative technique and has 

been shown to be clinically effective for treating small tumors (< 3 cm) [1], [18], [19]. The 

principal method of heat deposition in tissue during RFA is through the Joule effect (resistive 

losses in the tissue that cause heating) from ionic currents through the body [19], [20]. The ionic 

current that flows through the tissue is induced by the applicator, which is called an RF ablation 

probe or electrode. The typical operating frequency for RF ablation systems is usually around 460 
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kHz [18].  RFA systems employ a minimally invasive probe (typically, < 3 mm diameter) inserted 

percutaneously into the tissue and a large dispersive ground pad placed farther away on the body. 

Ionic currents flow in between the inserted probe and the grounding pad. If the grounding pad is 

sufficiently large, then the current density will be low enough that tissue heating will be kept to a 

minimum near the grounding pad, instead it will be predominantly centered around the active RFA 

probe.  

 A challenge with RFA is that only the tissue near the probe (~few mm) is heated directly 

with the induced RF current. The ablation zone further grows as a result of the thermal conduction 

of heat, flowing from the warmer parts of the tissue to the cooler parts [18]. Because thermal 

conduction is the passive transfer of heat, and the heat is not directed by the applicator, the ablation 

zone is largely based on the blood profusion around the applicator. If the tumor is near a large 

blood vessel, the blood flow will act as a large heatsink. This may result in inadequate heating of 

the targeted tissue to achieve cell death [21].  

Microwave ablation (MWA) emerged in the 1990s and has been slowly growing in clinical 

use for ablation of large targets in vascular organs (e.g. liver tumors) due to the many advantages 

that is has over RFA [7].  The ability to treat larger tumors, not requiring grounding pads, and not 

being as susceptible to the heat sink effect as RFA, are the principle advantages of MWA [22], 

[23]. For RFA, the ablation zone primarily grows passively via thermal conduction, whereas in 

MWA the ablation zone is primarily determined by the radiated electromagnetic wave being 

absorbed by surrounding tissue. Similar to an RF ablation system, MWA also requires a small 

probe that is inserted in to the treatment area. This probe is typically about the same length and 

diameter as the RF probe and is fed by a signal generator, although the MWA signal generator is 

operating at a much higher frequency, typically at either 915 MHz or 2.45 GHz. The MWA probe 
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radiates a time-varying electromagnetic field into the surrounding tissue. As the electromagnetic 

wave propagates, the electric field forces water and other polar molecules to align with the applied 

electric field.  This rotational movement of the polar molecules leads to heating (see Figure 2). 

 

Figure 2: Alignment of polar water molecules with the orientation of the applied electric 

field.  Adapted from [24], [25].  

Tissue dielectric properties determine the penetration depth of the electromagnetic wave. 

Considering the propagating electromagnetic wave as a plane wave traveling through a lossy 

medium, as shown in Equation 1, can be instructive, although it is noted that the tissue surrounding 

the antenna is in the antenna’s near-field, and thus plane wave conditions may not hold. In this 

equation, 𝛼 is the attenuation constant and is determined by the dielectric properties of the material 

within which the electromagnetic wave is traveling.   Equation 1 shows that the electric field 

intensity in a lossy material, such as tissue, decays exponentially.  

𝐄(𝑧, 𝑡) = E0𝑒−𝛼𝑧 cos(𝜔𝑡 − β𝑧)𝒂𝑧   (1)  

Since the electric field from the MW antenna is the primary factor that determines the shape 

of the ablation, careful design of the antenna is important in shaping the ablation. In this study the 
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microwave antenna used was a dipole antenna. The radiation pattern is symmetric across the 

angular expanses, as seen in Figure 3. 

  

Figure 3: Electric field radiation pattern for standard dipole.  

 Some other ablation modalities include Percutaneous Ethanol Injection (PEI), ultrasound, 

and lasers. PEI is a method of ablation that uses alcohol injections to kill the cancerous cells. Laser 

ablation system employ fiber-optic devices inserted into the cancer nodule in order to induce 

heating with light [18]. Ultrasound uses pressure waves to induce heating and has multiple 

transducers along the probe length, which can be used to control the heating along the length of 

the applicator [26].  

 

 Clinical experience with current ablation modalities 

 A large fraction of patients with liver tumors are ineligible for surgical resection because 

of their health status or location of the tumor. For these cases, alternative treatments, such as 

ablation may be employed. It has been found that surgical resection of HCC has a 5-year survival 
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of about 50% [27], [28]. However, if there are multiple tumors in the liver, then resection is not 

always recommended [27], [29].  

  RFA is a viable minimally-invasive alternative for patients that are ineligible for surgical 

resection. Recent studies have shown that the 5-year survival rates for RFA can be higher than 

both traditional surgical resection and PEI, for small tumors, with a survival rate of up to 60% 

[28], [29]. Early clinical studies using MWA suggest 5-year survival rate ranging from about 

30% to 70% [30].  

 

 Multiple antenna ablation 

For treating large tumors, multiple ablations may be necessary in order to cover a sufficient 

volume, as depicted in Figure 4. From this figure, it is clear, that since a probe can only ablate 

tissue over a limited distance, it may not cover enough volume to assure complete destruction of a 

large tumor and a safety margin. In this case, it would take multiple separate ablations to complete 

the operation.  

Physicians may accomplish this by employing multiple antennas simultaneously. The 

physician would insert the required number of antennas based on the size of the tumor and the 

anticipated extent of the ablation zone. An example of ablation zone profile data provided by 

ablation device vendors can be seen in Table 1. Looking at this and Figure 5, one can see how a 

physician might use this information to estimate a potential ablation size for a given antenna 

configuration, applied power, and duration of ablation.  
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Figure 4: Large tumor with multiple ablations for removal. Adapted from [32] 

 

Figure 5: Example ablation zone extents as reported from an ablation device 

manufacturer.  Adapted from [33] 

 

S 1.5 cm 2.0 cm 

A 3.9 cm 4.4 cm 

B 4.7 cm 4.5 cm 

C 3.0 cm 3.1 cm 

M 0.6 cm 0.6 cm 

Volume 29 cm3 32 cm3 

Table 1: Data for estimating ablation zone size following 10 min, 45 W MWA. Data taken 

from [33]. The variables S, A, B, C, and M are illustrated in Figure 5.  
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As one might notice from the manufacturer's guidelines in Figure 5, the indicated ablation 

zone was calculated given with the assumption that the antennas are inserted in a parallel fashion. 

Unfortunately, parallel insertion of antennas may not always be feasible [34]. One of the primary 

obstructions would be a bone or an organ that is in the insertion path or near the ablation zone. 

Another issue that could cause this is that the antennas may diverge from a straight path upon 

insertion due to the mechanical properties of the antenna and tissue.  

 Assuming linearity, the total electric field profile in tissue can be estimated as the 

superposition of the electric fields due to each antenna. Thus, the position of the antennas 

relative to each other may considerably impact the total electric field, which will in turn impact 

the power absorption and tissue heating profiles.  Other studies have investigated this question of 

how non- parallel insertion of multiple antennas can influence the ablation volume. Mukherjee 

employed simulations and experiments in ex vivo tissue to assess the impact of non-parallel 

insertion on microwave ablation patterns with dipole antennas operating at 915 MHz and 2.45 

GHz [34]. While that study concluded that the difference between parallel and non-parallel 

ablations was larger for 915 MHz, a limitation of the study was that simulations did not consider 

dynamic temperature-dependent changes in tissue electrical properties. Further, only a limited set 

of experimental measurements were conducted.  

The objective of this thesis is to determine how ablation zones created with 2.45 GHz 

dipole antennas inserted in a non-parallel manner compare to ablation zones when the antennas 

are inserted in a parallel manner. Multi-physics computational models of microwave ablation and 

experiments in ex vivo liver tissue were employed for this analysis. Image processing techniques 

were employed to outline experimental ablation zone profiles for comparison against simulated 

profiles.   
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Chapter 2 - Methods 

 Computation simulation 

Multi-physics computational models of microwave tissue heating where implemented with 

COMSOL Multiphysics (v5.2a).  COMSOL models use the Finite Element Method (FEM); a 

method that discretizes the materials in the model into elemental shapes. The numerical quantities 

(temperature and electric field) are calculated at the vertices of these shapes, called mesh points. 

Models were employed to compute the electric fields radiated into tissue, and the subsequent heat 

transfer due to absorbed microwave power. Figure 6 illustrates the coupling between the 

electromagnetic and heat transfer simulations employed in this thesis. 

 

Figure 6: Computation Steps COMSOL takes during simulation  

 

 The model liver had a width and depth of 60 mm and a height of 80 mm.  These dimensions 

were selected because it was the largest we were able to consistently retrieve for the experimental 



 

10 

validation without large vessels and other inhomogeneities. The simulation model contained two 

antennas which were designed to be operated at 2.45 GHz (specifications given by Curto et al 

[17]). The antennas had 15 W of power applied to them (power measured at the antenna input, not 

the generator). We chose this power to be as close as possible to be clinically relevant, while 

yielding ablation zone sizes not impacted by the limited size of the tissue samples used in 

experiment.  

We simulated a total of nine different antenna insertion configurations. There were three 

parallel cases and six non-parallel cases. The parallel cases had antennas inserted into the liver 

with the center of the coax at the distance Dins away from each other. The non-parallel cases had 

the tip of each antenna moved toward the center line by 2.5 mm, 5 mm, or 7.5 mm each, resulting 

in the tips being either 5 mm, 10 mm, or 15 mm away from each other.  A diagram showing the 

setup is below in Figure 7, along with Table 2 which contains a list of all scenarios and 

corresponding measurements.  

Dins is the nominal distance between the antennas.  Dtip, the tip distance, is the distance 

between the tips of the antennas. For any parallel case, Dins is equal to Dtip.  For the non-parallel 

cases, Dtip was changed in multiples of 5 mm (each antenna moved 2.5 mm). The tip of each 

antenna was moved inward by half the total tip displacement, so the setup was always symmetric 

down the center line.  Lins is the distance between the tip of the antenna and the top of the liver. It 

is the same length as the length of an antenna inserted into the liver for a parallel case. The total 

length of the antenna in the liver slightly increases for a nonparallel case in order to maintain the 

same tip depth from the surface of the liver.  The depth of the antennas tip from the top of the 

liver remained constant in all scenarios. Ll was chosen by us to act as a reference to define the 
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insertion distance.  As illustrated in Figure 7, ablation zone extents were assessed in primarily 

the XZ plane.  

 

Figure 7: Simulation setup as seen at the XZ plane. blue is the liver and  

yellow bars are the antennas. 

 

Setup Dimensions Dtip Dins Lins LL 

20 mm Parallel 20 mm  

 

20 mm 

 

 

 

 

60 mm 

 

 

 

 

48 mm 

20 mm to 15 mm 15 mm 

20 mm to 10 mm 10 mm 

20 mm to 5 mm 5 mm 

15 mm Parallel 15 mm  

15 mm 15 mm to 10 mm 10 mm 

15 mm to 5 mm  5 mm 

10 mm Parallel 10 mm 10 mm 

10 mm to 5mm 5 mm 

Table 2: Dimensions of simulation illustrated in Figure 7 

 

X 
Y 

Z 
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Equation 2 was used to calculate the electric field at all mesh points. Here 𝜇𝑟 is the relative 

permeability, 𝜖𝑟 is the relative permittivity and 𝜎 is the electrical conductivity of our material. 𝑐0 

is the speed of light in free space, 𝜔 = 2𝜋𝑓 , and E is the vector with x, y, and z components (
𝑉

𝑚
). 

From the electric field we can calculate how much energy is absorbed in the tissue. 

∇ × (𝜇𝑟
−1∇ × 𝐄) −

𝜔2

𝑐0
2 (𝜖𝑟 −

𝑖𝜎

𝜔𝜖0
) 𝐄 = 0 (2) 

To calculate how much heat is produced from the electric field, the heat equation as seen 

in Equation 3 below was used. In this equation, T is the temperature (K), 𝜌 is the liver density (
kg

m3), 

and C is the specific heat capacity of tissue (
J

kg∗K
 ). Qe is the time-averaged electromagnetic power 

density in tissue (
W

m3). Qe is calculated from Equation 4 where 𝜎 is in 
𝑆

𝑚
.  We did not include blood 

perfusion in our simulation as our ex vivo experimentation would also lack blood perfusion and 

the primary goal of this work was to compare simulation results with experimental measurements. 

𝜌𝐶
𝜕𝐓

𝜕𝑡
=  ∇ ⋅ 𝑘∇𝐓 + Qe (3) 

𝑄𝑒 =
1

2
𝜎|𝐄|2 (4) 

The electrical properties of liver tissue at 2.45 GHz where dynamically adjusted as a 

function of the temperature of the liver. The functions we used were defined by Ji and Brace [35]: 

𝜖𝑟(𝑇) = 𝑎3 {1 −
1

1 + exp[𝑎1(𝑎2 − 𝑇)]
} + 1 (5) 

 

𝜎(𝑇) = 𝑎3 {1 −
1

1 + exp[𝑎1(𝑎2 − 𝑇)]
} (6)   

Where 𝑎1, 𝑎2, 𝑎3 in equations 5 and 6 are defined as listed in Table 3. These are directly from 

[35] with the exception of  𝑎3. This parameter was slightly modified so that the dielectric 
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properties of the liver, 𝜎 and 𝜖, would match those given by Hasgall et al. in the tissue properties 

database at 20°C [36]. 

 

 Regression Coefficients 𝑎1 𝑎2 𝑎3 

𝜖𝑟 0.0764 82.271 43 

𝜎 0.0697 85.375 1.75 

Table 3: Constants used in the calculations for dynamically changing liver properties 

 

The mesh for the simulation was a tetrahedral, the parameters that COMSOL used to 

generate the mesh are shown below in Table 4. The copper in the antennas was modeled as a 

perfect electric conductor. An illustration of the model with the tetrahedral mesh COMSOL 

generated is shown in Figure 8. The heterogeneity of the mesh was selected as a balance between 

accuracy and computational burden.  

 Liver Port Teflon 

Max element size (mm) 5 .1 .5 

Min element size (mm) 10.8 10.8 10.8 

Max growth rate  1.5 1.1 1.5 

Curvature Factor .6 .6 .6 

Resolution of narrow regions  .5 .5 .5 

Table 4: Mesh parameters used in simulation 
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Figure 8: Model with tetrahedral mesh shown. 

An electrical scattering boundary condition was imposed on the exterior surfaces of the 

liver and the catheter as well as a thermal insulation boundary condition. We also did not 

simulate the plastic enclosure holding the liver during the experiment.  The simulation did not 

consider tissue contraction as no suitable physics-based models of thermally-induced tissue 

contraction were available at the time the study began. 
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 Experimental validation 

For the experimental validation of the simulated models, a base was 3D printed (Flash 

Forge Creator Pro) to hold the antennas and liver as seen in Figure 9. The base was printed from 

Polylactic acid (PLA), the internal measurements of the base are 60 mm x 60 mm x 85 mm. The 

red attachment piece is 5 mm thick as the top of the liver was typically about 80 mm tall and flush 

with the red attachment piece (ABS) which itself was flush with the top of the base piece. The base 

has a 3 mm slit, for cutting the liver, in each side along the XZ plane.   

 

 

Figure 9: Liver ablation base in white, note the slicing groove down the sides. The blue block 

(template block) held the antennas in position for the indicated ablation. The 20->20 figures 

on the template block indicates a Dins distance is 20mm and a Dtip distance of 20mm 

repsectivly. 

 

The template blocks held the antennas in such a way to mimic the antenna position in the 

simulation. However, we did not run experiments for every single scenario that was studied in the 

simulations. Only four scenarios were investigated experimentally: 20 mm parallel, 20 mm to 15 

mm, 15 mm parallel, and 15 mm to 10 mm.  

 The template blocks were printed from Acrylonitrile Butadiene Styrene (ABS) to 

withstand the heat from the antennas without deformation. Four template blocks where printed, 
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one for each of the listed scenarios. Each template block was held to the base by the red attachment 

plastic piece that snaps to the base to connect the base to the template blocks.  

 The bovine liver was procured from a local meat processing plant and cut into shape to fit 

the base. The pieces were warmed in a water bath (Polyscience 7306) for an hour until they reached 

a temperature of ~30 C, before the experiments started. Five experiments where ran for each 

scenario. 

Two dipole antennas where built that operate at 2.45 GHz. These antennas are built 

according to the dimensions given in the paper by Curto et al [17]. The antennas were simple 

dipoles, with a dipole length of 10.9 mm and a gap of 1 mm. These antennas did not have any 

active cooling or RF choke to avoid radiation and heating along the antennas length.   

For the experimental validation the antennas where fabricated using Micro coax UT-85 

with a thin heat shrink tubing (3M, FP-301 26-28 AWG) acting as an insulating catheter. An SMA 

connector (Huber+Suhner) was attached to the end of the coax to form the connector. A Vector 

Network Analyzer (VNA) verified that the antennas were properly matched (S11 of at least -10 dB 

at the operating frequency) to the feeding transmission line, as seen below in Figure 10. The 

antennas can be seen below in Figure 11, both with and without the catheter. 
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Figure 10: S11 plot from two of the dipole antennas built 

  

Figure 11: Left- Antennas without the Teflon coating 

Right- Antennas with inside the template block 
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For each experiment, one liver piece was removed from the water bath and placed into the 

base and then the template block was snapped into place. Two holes were poked into the liver, 

guided by the template block, with a small introducer to aid antenna insertion. The antennas where 

inserted 6 cm into the liver through the template block. 

We generated a 30 W average forward power signal at 2.45GHz (Sairem microwave 

generator) and used an equal power splitter (Pasternack PE-T1000) to divide the power into two 

separate, phase matched signals fed to each antenna. We then used two power meters (Bird 

Technologies 7022-1-02020 and Bird Technologies 5012D) to track the power level from the 

splitter. We measured the S21 of the outgoing cables (≈ −0.12dB) from the power meters into the 

antennas with the VNA. We adjusted the total average forward power to remain close to 30 watts. 

The setup is shown below in Figure 12. 

 

Figure 12: Setup for experimental validation. 

After the ablation, the liver was cut in half, revealing the ablation zone in the XZ plane. 

This was done by removing the template block along with the red connector piece and slicing the 
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liver with a knife down the slot in the base shown in Figure 9. Both halves of the liver where placed 

on a flatbed scanner (Epson V550 photo) which was used to save a color (RGB) image of the 

ablation zone at 400 dpi. A scanner was used to prevent skew from photos that might appear in a 

hand-held photo. It has the added benefit of keeping the lighting and resolution constant for all 

pictures which is essential for image processing. 

The resulting picture was processed in Python 3.6 with basic image processing techniques 

to measure the size and compare the shape of the resulting ablation zones. An example photo of 

the ablation zone can be seen in Figure 13. 

 

Figure 13: Scanned Image of a 20 mm Parallel Ablation 

 

The image processing was done using the following modules: numpy(1.11.3), 

scipy(0.18.1), skimage(0.14). The packages used for displaying images and contours were 

matplotlib(2.0.0), Seaborn(0.7.1), matplotlib_scaelbar(0.4.1).  

The primary method used to detect the ablated area of the liver is a basic thresh holding 

operation in both the RGB color space as well as the Haematoxylin-Eosin-DAB (HED) color 

space.  We use skimage to convert the RGB image in to the HED color space. 
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The HED color space was developed in order to enable RGB cameras to detect specific 

immunohistochemical staining [37]. This staining of blood is used to determine aspects of the 

bloods composition. This deconvolution algorithm is used to facilitate the analysis of images in 

medicine and was also found to be useful for this application. The use of the HED color space was 

essential in our process, as the other color spaces lost the shape of the ablation region or allowed 

too much noise after thresholding. 

From the original RGB image, only the red and green layers where used. The red layer 

threshold was set at 110 and green layer threshold was set at 75 out of the possible 255 levels. For 

the HED color space, only the first layer was the middle Eosin layer of the HED color space at 

0.34. These were chosen based on a trial and error basis by qualitative comparison to the original 

photo. The color space plots after thresh-holding are seen below in Figure 14. The combined color 

maps can be seen in the bottom right corner after a binary OR of the three thresholded pictures. 
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Figure 14:  Color spaces used in ablation detection after threshold. 

 

 Then scipy was used to perform a small Gaussian blur(𝜎 =  .19) on the resulting non-

binary image to remove noise in the image as seen in Figure 15 and then converted back to a binary 

image. After that a series of morphological operators (erosion, then dilation using a disk of size 3 

pixels) further reduced noise and smoothed the edges of the ablation zone seen in Figure 16. 
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Figure 15: Combined color spaced image with Gaussian blur applied 

 

Figure 16: Image after morphological operators. 

 

After the morphological operators, a scipy function, binary fill holes, was used to fill in the 

holes in the middle of the ablated region. The result is below in Figure 17. Since most of the noise 

has been removed from in the image, skimage region properties was used to single out the region 
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we would like to keep. The ablation region was the largest region in the image after the nose 

removal. After finding the largest area, we used an edge detection on that area to determine the 

size of the ablation zone. The largest area is seen in Figure 18.The edge from Figure 18 is overlaid 

on the original image (Figure 13) for a visual comparison. This is as shown in Figure 19.  

 

 

Figure 17: All holes filled 
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Figure 18: Largest area in picture 

 

 

Figure 19: Outline of ablation Area 

Once the shape of the shape of the ablation region has been found, for all the ablations for 

a given scenario, they are compiled together. To compile the ablation outlines, they were moved 

to the center of the image and in the same orientation. 
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 Region properties of the ablation zone where used to find the center of mass for each 

ablation area. The detected center of mass for our example is seen below in Figure 20. We also 

applied a rotation on an image by image basis depending on the placement of the liver on the 

scanner bed. The angle of rotation was determined qualitatively for each of the ablation areas.  

 

Figure 20: Ablation with the centroid shown at the pink dot. 

 

After we had the aligned the ablation shapes, we added the binary score (0 or 1) for each 

pixel from multiple repetitions of each ablation scenario together to find the composite ablation 

image. Since we performed n = 5 experiments for each experimental scenario, this composite 

image contained only integers with values that ranged between zero and five. This image can be 

seen in Figure 21.  

The values of five occurred in regions where the tissue was ablated in each of the five 

experiments; likewise, the areas that had a value of one are locations where the tissue was ablated 

in only one of the five experiments.  The darkest mass in the center was the area that all 

experiments ablated. From this, we found the maximum and minimum ablation shape for each 

scenario, as well as the 75% contour ablation shape (the shape that we would expect to see ablated 

in 75% of ablations). To find the maximum, we convert the image to a binary image where only 
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the highest number (5) would be a one, all else would be zero. After that, a canny edge detection 

was used to find that shape. 

 

 

Figure 21: Aligned and Rotated Ablation Shapes for 20mm Parallel Ablation (colors are 

inverted, 0 is white) 

  

 Area comparison with Dice Similarity Coefficient (DSC) 

We compared the shape of the ablation zone extents from experiments using the Dice 

Similarity Coefficient (DSC) metric. This is a commonly used metric in image processing 

applications to compare shape similarity. The equation for the DSC calculation can be seen in 

Equation 6. 

DSC =   
2 |𝐴 ⋂ 𝐵 |

|𝐴| + |𝐵|
 (6) 

For the experiments, A and B are binary images that have been detected through image 

processing. Specifically, the areas inside some contours (typically the 75% contour). For 
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simulations we use the XZ plane that bisects the liver and antennas and considered only points on 

that plane that are at or above 55°C as our ablation zone. We also employed a volumetric approach 

and considered the entire volume of the ablation that is above 55 °C to compare extents of the 

ablation zone in 3D for the simulations.  
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Chapter 3 - Results 

 Experimental 

Overlaying ablation regions from multiple ablation experiments was the primary source of 

data for our experimental results. As discussed above, these superimposed images showing the 

ablation area allow us to remove experimental error by allowing us to find what a “typical” shape 

might be for a given scenario. Another benefit is that a comparison of complex ablation scenarios 

can be made by analyzing the shape of the ablation zones. The results from the experiments are 

shown in Figure 22. This figure shows the minimum and maximum ablation area for each scenario. 

The inner most line represents the edge of the ablation zone that was found in all five experiments 

for the given scenario. The outer most line represent the absolute farthest extent of any ablation.  

We also found the 75% ablation contour, the shape that was ablated by 75% of experiments, 

shown in Figure 23. Figure 24 shows the overlay of the 75% contour. This figure is comparing the 

parallel (20 mm parallel) and non-parallel (20 mm to 15 mm). This is demonstrating the difference 

in ablation cross section one might see given a non-parallel insertion of ablation antennas, 

compared to a parallel insertion.  

When comparing the measured area for each ablation in each scenario, the DSC was used. 

The area of each parallel ablation to the area of each non-parallel ablation for the same given 

antenna spacing.   As five experiments where completed for each scenario, there were 25 

comparisons to make for 20 mm spacing, and 25 for the 15 mm spacing. The DSC results of our 

experiments are shown in Table 5.  
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Antenna spacing 15 mm  20 mm  

Mean 0.805 0.733 

Standard Deviation 0.0036 0.0575 

Variance 0.06 0.0033 

Table 5: Table showing the DSC of the experimental ablation zone for antennas inserted in 

the parallel case compared to the non-parallel case. 
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Figure 22: Ablations all resulted in a shape in between the shown red and green lines for a 

given scenario. Lines that are close together imply a smaller uncertainty for that ablation 

zone. 

Area ablated by all five experiments  

Area ablated from any combination of experiments 
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Figure 23: 75% contours of ablations for each scenario. This is what a typical ablation might 

look like for the antenna spacing, insertion angle, and power. 

  



 

32 

 

  

Figure 24: Area of ablation comparing parallel to on parallel in experimentation. The 

contours shown are the 75% confidence contours. 

 

 

 Simulation 

As stated previously, the 55 °C isothermal contour in the simulation was used to estimate 

the outer edge of the simulation ablation area. For now, only the four simulated ablation scenarios 

that were also tested in the experimentally are going to be considered.  The results of all four 

scenarios can be seen below in Figure 25 in the XZ plane.  

 



 

33 

 
 

 

 

 

 

Figure 25: Simulation 55 °C XZ isothermal contours. 
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If we view the same simulation results along the YZ Axes we can see how wide that 

ablation zone is at the midline. This can be seen below in Figure 26. 

  

 

 

 

 

Figure 26: Simulation 55 °C YZ isothermal contours 
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Finally, the ablation area shape as cut symmetrically between the two antennas, in the XY plane 

are shown in Figure 27. 

  

 

 

 

 

Figure 27: Simulation 55 °C XY isothermal contours  

Further comparisons between the parallel and nonparallel cases can be made by overlaying the 

isocontours from the XZ slices from Figure 25 as shown in Figure 28.  
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Figure 28: Overlaid 55°C isothermal outline of parallel and non-parallel cases 

  

The Dice-similarity Coefficient was used to compare the area of the parallel and 

nonparallel cases, as shown in Table 6.   

 

 Extended Simulated Results 

In the last section we examined the results of both experiment results and simulated results 

to establish that there is a connection between the simulation and experimentation. The setups 

examined were: 15 mm parallel, 15 mm to 10 mm, 20 mm parallel, and 20 mm to 10 mm. There 

are also simulated results for a larger set of scenarios than just the ones mentioned above. These 

other scenarios are the anticipated ablation zones for an ablation for a more extreme case then 

previously examined in the experimental validation. For these purely simulated scenarios, we are 

considering the volumetric DSC as opposed to a planar DSC to show the change of the ablation 

volume. The results are shown below in Table 7, Table 8, and Table 9. 
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Antenna spacing 15 mm 20 mm 

DSC .92 .85 

Table 6: DSC of simulation comparing ablation area of the parallel case to the corresponding 

non-parallel case (i.e. 15mm to 15->10) in the XZ plane. 

 

 20 mm Parallel 20 mm to 15 mm 20 mm to 10 mm 20 mm to 5 mm 

20 mm Parallel 1.0    

20 mm to 15 mm .845 1.0   

20 mm to 10 mm .776 .919 1.0  

20 mm to 5 mm .718 .714 .728 1.0 

Table 7: Volumetric DSC for simulations with 20 mm antenna spacing 

 

 15 mm Parallel 15 mm to 10 mm 15 mm to 5 mm 

15 mm Parallel 1.0   

15 mm to 10 mm .927 1.0  

15 mm to 5 mm .89 .95 1.0 

Table 8: Volumetric DSC for simulations with 15 mm antenna spacing 

 

 10 mm Parallel 10 mm to 5 mm 

10 mm Parallel 1  

10 mm to 5 mm .947 1 

Table 9: Volumetric DSC for simulations with 10 mm antenna spacing 
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Chapter 4 - Discussion 

While it is known that that using multiple microwave ablation antennas generally creates a 

larger ablation zone than a single antenna supplied with the same total forward power, it is not yet 

understood how that zone changes for non-parallel insertion. The goal of this study was to 

determine the impact of non-parallel insertion for multiple antenna microwave ablation. We used 

a 3D FEM simulation and performed experimental ablations in ex vivo bovine liver for this 

investigation. 

Experimental results show that there is a larger difference for non-parallel insertion for a 

wide antenna spacing as compared to a narrower antenna spacing as seen in Table 5. This is 

consistent with Figure 24 which shows that the 20 mm spacing ablation zone varies much more 

when non-parallel as compared to the 15 mm spacing.  

The simulated results in Figure 28 show that the simulations predicted similar trends in 

size and shape of the ablation zone as observed in experiment. In this figure it is also clear that the 

wider antenna spacing does significantly impact the ablation zone, as it was in Figure 24. This is 

further shown by comparing Table 5 and Table 6 which show that for both experiments and 

simulation, the wider antenna spacing results in greater than 7% change in similarity. A reason 

that the absolute values of Table 5 and Table 6 do not match may be due to the fact that we did not 

include the effects of tissue contraction in our simulations. When comparing Figure 23 and Figure 

25 we see that the predicted ablation shape dimensions align well with the actual measured ablation 

shape.  

Finally the DSC comparing volumes of simulated ablation zones for parallel and non-

parallel cases is shown in Table 7, Table 8, and Table 9. These data show a similar trend to the 

planar DSC values presented in Tables 5 and 6. For non-parallel insertion, the closer together the 
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antenna spacing is, the more similar the resulting ablation zone will be to a parallel insertion.  In 

this case, if the antenna tips are 5 mm closer together, the 10 mm spacing is about 5% different, 

while the 20 mm spacing is about 15% different than the parallel case. Table 7 also suggests that 

there may be a notable change from the nominal ablation shape as the antennas tend toward being 

much less parallel. We see that the 20 mm parallel ablation zone compared to the 20 mm to 5 mm 

non-parallel configuration has a 30% difference.  
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Chapter 5 - Conclusion 

The use of microwave ablation for treating HCC is becoming more commonplace, 

especially for those patients that are ineligible for surgery. Clinicians who deploy multiple 

antennas for treating HCC sometime may not always be able to insert the antennas parallel to each 

other, and it is not yet known what impact this has on the ablation outcome. This thesis was an 

investigation to assess what the change in ablation volume might be for a non-parallel insertion. 

These results may serve as a guide to practitioners to determine the potential impact of non-parallel 

antenna insertion when conducting clinical procedures.  

We found that nonparallel insertion could have a measurable change on the ablation size 

and volume for our setup. There was up to a 30% variability for some of the more severe cases of 

nonparallel insertion that we studied. We also found that the rate of change for ablation size does 

vary considerably and did not vary linearly with the distance of the tip displacement from the 

original parallel position.  

The model we used for simulating our ablation was relatively accurate at predicting the 

shape of the ablation for our experiment and was also capable of showing how the ablation shape 

would change given for a small tip offset distance. The amount of similarity between the parallel 

and non-parallel insertions did vary when comparing the simulation and the experimentation, 

possibly due to unaccounted tissue shrinkage in the simulations. 
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