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ABSTRACT

Integer programs (IPs) are mathematical models that can provide an optimal solution

to a variety of different problems. They have been used to reduce costs and optimize

organizations. Additionally, IPs are NP -complete resulting in many IPs that cannot be

solved. Cutting planes or valid inequalities have been used to decrease the time required

to solve IPs.

Lifting is a technique that strengthens existing valid inequalities. Lifting inequalities

can result in facet defining inequalities, which are the theoretically strongest valid in-

equalities. Because of these properties, lifting procedures are used in software to reduce

the time required to solve an IP.

The thesis introduces a new algorithm for exact synchronized simultaneous uplifting

over an arbitrary initial inequality for knapsack problems. Synchronized Simultaneous

Lifting (SSL) is a pseudopolynomial time algorithm requiring O(nb +n3) effort to solve.

It exactly uplifts two sets simultaneously into an initial arbitrary valid inequality and

creates multiple inequalities of a particular form. This previously undiscovered class of

inequalities generated by SSL can be facet defining.

A small computational study shows that SSL is quick to execute, requiring on average

less than a quarter of a second. Additionally, applying SSL inequalities to a knapsack

problem enabled commercial software to solve problems that it could not solve without

them.
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Chapter 1

Introduction

Integer programming is a tool that can and has been used reduce costs, optimize or-

ganizations, and businesses. Integer programs (IPs) are mathematical models that can

provide an optimal solution to a variety of different problems and take the form maxi-

mize cT x subject to Ax ≤ b and x ∈ Z
n
+, where A ∈ R

mxn and b ∈ R
mx1. This thesis

presents an algorithm to generate cutting planes using exact synchronized simultaneous

uplifting for the knapsack problem. This algorithm can be applied to numerous IPs.

One example of the usefulness of IPs involves The United States Postal Service

(USPS). The USPS faces challenges in profitability and quality. To address these issues,

a large scale integer programming algorithm was developed to identify cost saving op-

portunities along delivery routes. The USPS has saved over $5 million annually after

implementing an integer program in 2007 [30]. This amounts to a 24% reduction of

transportation costs.
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USPS is only one example of the significant research in transportation applications of

IPs [2, 30, 34, 39]. The airline industry uses IPs for crew assignment [1] and to determine

the optimal flight legs [37]. IPs can also solve problems in genetics research [11, 19].

Sports games are frequently scheduled using IPs [16, 40]. These examples are only a

small sampling of the variety of IP applications used throughout the world.

Beyond the industry applications, the average person unknowingly attempts to solve

IPs. For instance, a child attends the state fair with $40 from her parents and wants to

find the combination of rides and snacks that will make her happiest without exceeding

her budget. This brief example illustrates a simple IP called the knapsack problem (KP),

which is critical to this thesis.

The classic KP example involves a camper preparing for her trip and determining

what to bring in her knapsack. She has the option to either select each item, or not.

Each item has an associated benefit and weight. She maximizes the benefit, restricted

by the amount she can carry.

The most common method to solve IPs is the branch and bound algorithm. It

uses the optimal solution from linear relaxations. A linear relaxation (LR) is the IP

formulation without the integer requirement. When the LR contains fractional values

branch and bound creates two nodes, also referred to as children. One child adds the

constraint that a fractional variable is less than or equal to the floor of its value from the

LR. The other child adds the constraint that the variable must be greater than or equal

to its ceiling. By adding these constraints, the non integer space between some integer
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points is no longer valid in either of these problems. Running this process iteratively

enumerates all integer points. Eventually branch and bound finds the optimal solution,

but it can require exponential time. To reduce the time required to solve IP problems

with branch and bound, cutting planes are frequently used.

A cutting plane is a valid inequality that when added to the problem eliminates

some fraction of the LR’s feasible area. A valid inequality is satisfied by every feasible

IP solution. Applying iterations of cutting planes can force the optimal LR solution to

become an integer solution, thus the IP is solved. Facet defining cutting planes are the

theoretically strongest valid inequalities.

One method to obtain a facet defining inequality is through lifting. Lifting uses

the restricted polyhedron which forces some variables in the problem to specific values.

Lifting alters the coefficients on the variables of a valid inequality to make it stronger.

It is possible to create a facet defining inequality through lifting. This thesis focuses on

the development of facet defining inequalities through exact synchronized simultaneous

uplifting.

1.1 Research Motivation

Bolton [10] developed an exact synchronized simultaneous uplifting algorithm. This is

not a robust lifting algorithm because the restricted polyhedron is the empty set. The

goal of this research is to develop an exact synchronized simultaneous uplifting algorithm

which lifts two sets into an arbitrary initial valid inequality for the knapsack instance.
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Thus presenting a new lifting method with the objective of generating cutting planes to

reduce the time to solve IPs.

1.2 Research Contributions

This thesis presents a new exact synchronized simultaneous uplifting (SSL) algorithm

for the knapsack polytope. The input to SSL is an initial valid inequality, a knapsack

problem, and two sets of mutually exclusive indices. A table is generated based on the

indices selected from the initial valid inequality. Feasible points are generated for each

table value. These points are used to calculate the exact synchronized simultaneous

uplifting coefficients.

The primary contributions of this thesis lie in the creation of exact synchronized si-

multaneously uplifted variables in an arbitrary inequality for the KP polyhedron. Theo-

retical results provide the conditions under which the cutting planes generated are facet

defining. Additionally SSL runs in pseudopolynomial time, O(nb + n3).

Results from a small computational study show applying SSL technology enabled

CPLEX 10.0 [38], a commercial integer programming software, to solve 29.5% more

problems than its traditional methods. Thus, SSL improves upon the solutions available

from commercial software. Since SSL creates cutting planes, they can be applied to

traditional linear integer programs and even nonlinear integer programs.
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1.3 Outline

Chapter 2 contains an overview of integer programming and polyhedral theory providing

the background information necessary to understand the research presented in this thesis.

Topics covered include: cutting planes and facet defining inequalities, the knapsack

problem, covers, and lifting. Formal definitions along with detailed examples aid in the

understanding of these complex topics.

Chapter 3 presents SSL. First, notation is defined followed by an overview of the

algorithm. Next, the pseudocode provides the details to execute SSL. Proof of correct-

ness and theoretical conditions for facet defining inequalities are presented. Finally, an

example demonstrates SSL produces multiple facet defining inequalities.

The results from the computational study are found in Chapter 4. The class of

problems generated is described along with data to support the effectiveness of SSL. Data

presented includes nodes evaluated, preprocessing times, and time required to solve to

optimality. The results show that SSL cuts enabled CPLEX to solve significantly more

problems than its traditional methods.

Finally, Chapter 5 provides a conclusion of SSL and its computational results. This

chapter also contains ideas and extensions discovered during the development of SSL

that can be pursued as future research.
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Chapter 2

Background Information

This chapter introduces the integer programming and mathematical background neces-

sary to understand this thesis. Concepts discussed include integer programming, the

definition and use of cutting planes, the knapsack problem with an example, covers,

and a variety of lifting techniques. Through the discussion in this chapter, a basic un-

derstanding of the concepts should lead to an appreciation and understanding of the

advancements presented in Chapter 3. Nemhauser and Wolsey [28] is an excellent tech-

nical reference for additional integer programming information.

2.1 Integer Programming and Polyhedral Theory

An integer program (IP) has a linear objective equation that is maximized or minimized

and subject to a finite set of linear constraints. The decision variables are required to
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be integer. Thus, IPs follow the form:

Maximize zIP = cT x

subject to Ax ≤ b

x ∈ Z
n
+

where c ∈ <n, A ∈ <mxn and b ∈ <m.

The feasible space for an IP is defined as P = {x ∈ Z
n
+ : Ax ≤ b}. The solution space,

P contains a set of countable points. Let N be the set of indices of an IP, N = {1, ..., n}.

A basic concept in many optimization methods is convexity. A set is convex if every

point on the line segment connecting any two points from the set, is also in the set.

Formally, S is convex if, and only if, λs1 + (1−λ)s2 ∈ S for all s1, s2 ∈ S and λ ∈ [0, 1].

The convex hull of a set S, conv(S), is defined as the intersection of all convex sets that

contain S. Observe that P is not a continuous region and therefore the solution to an

IP is not convex unless there is only zero or one feasible solution.

Algorithms used to solve IPs often rely on solving iterations of the linear relaxation

(LR) of an IP. An IP is transformed into a LR by removing the integer restrictions

from the problem. Here, the linear relaxation that corresponds to the given problem is

referred to as IPLR with the format, maximize cTx subject to Ax ≤ b, x ∈ <n
+. Let PLR

be defined as the LR’s feasible region, PLR = {x ∈ <n
+ : Ax ≤ b}.

The solution to a single linear inequality is a half space. All x ∈ <n such that

∑n
j=1 αjxj ≤ β is a half space and is clearly convex. A polyhedron is the intersection

of a finite number of half spaces. Using these definitions, the feasible region of a linear

7



program {x ∈ <n
+ : Ax ≤ b} is a polyhedron and is convex. When a polyhedron is

bounded it is known as a polytope. Furthermore, P ch is a polyhedron.

The dimension is an important characteristic of a polyhedron. The dimension of a

polyhedron is the number of linearly independent vectors that define the space. Vectors,

v1, ..., vq ∈ <n are linearly independent if and only if the unique solution to
∑q

i=1 λivi = 0

is λi = 0 for all i = 1, ..., q.

Because P consists of a set of points, affine independence is used to determine

dim(P ch) points found within P . A set of points x1, x2, x3, ..., xr ∈ <n
+ is affinely inde-

pendent if and only if,
∑r

j=1 λjxj = 0 and
∑r

j=1 λj = 0 is uniquely solved by λj = 0 ∀

j = 1, ..., r.

The dimension of a convex set is the maximum number of affinely independent points

minus one. The reduction by one is due to the fact that one of the points represents the

origin and linearly independent vectors can then be created by connecting this ”origin”

and any of the other affinely independent points.

2.2 Cutting Planes and Facets

With a polyhedron and its dimension defined, cutting planes, valid inequalities, faces,

and facets can now be introduced and discussed. This section covers these topics and

how they apply to integer programming.

In integer programming there are two different polyhedrons to consider. There is P ch

8



which has integer extreme points and PLR which may not. The relationship between

these two polyhedrons and the transformation from PLR to P ch may aid in the ability

to solve an IP.

A cutting plane is a valid inequality that is used to eliminate area of PLR without

removing any points in P . The inequality
∑n

j=1 αjxj ≤ β is a valid inequality of P ch if

and only if every x ∈ P satisfies
∑n

j=1 αjxj ≤ β. The idea of a face is used to theoretically

judge the strength of a valid inequality.

Every valid inequality induces a face of a polyhedron. The valid inequality,
∑n

j=1 αjxj ≤

β, defines a face F ⊆ P ch of the form F = {x ∈ P ch :
∑n

j=1 αjxj = β}. If F 6= {∅}, then

F is said to support P ch. Thus, a face consists of all points in the polyhedron that meet

the inequality at equality.

A polyhedron can be described as a set of faces. The minimum definition includes

only the faces that have the dimension of one less than dim(P ch). These are known at

facet defining inequalities and are the strongest of all valid inequalities.

Facet defining inequalities are vitally important because they are both necessary

and sufficient for the description of P ch. Any inequality that is not a facet defining

inequality of P ch is redundant and can be eliminated. Determining P ch is critical to

integer programming research because solving a linear program over P ch generates an

optimal integer solution. This means that branch and bound is not required and allows

the optimal solution to be found at the root node. The following example illustrates

these concepts.
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Example 2.1

Consider the following integer program:

Maximize zIP = 2x1 + 3x2

Subject to 3x1 + 2x2 ≤ 12

x1 + 2x2 ≤ 6

x1, x2 ∈ Z+.

Figure 2.1 provides a graphical view of this IP. The first constraint, 3x1 + 2x2 ≤ 12,

passes through points (0, 6), C , and D. The second constraint, x1 + 2x2 ≤ 6, passes

through the points A, B, C , and (6, 0). Clearly PLR is defined by these two constraints

and the x1 and x2 axes. The solution to the LR is the point (3, 1.5) giving a z value of

10.5. The large circles represent P , the feasible integer points.

The inequality, x1 +x2 ≤ 4, removes no integer points and therefore is valid as shown

by the dashed line in Figure 2.2. If it is applied to the problem as a cutting plane, it

removes the ”BCD” triangle. The new LR solution is the point (2, 2) with a zLR value

of 9. Since the LR solution is integer, the IP solution is also the point (2, 2) with a zIP

value of 9.

To show that x1 + x2 ≤ 4 induces a facet, it must be valid and its face must have

a dimension of one less than P ch. The dimension of P ch can be found by bounding

it from above and below. For this example, the points (0, 0), (0, 1) and (1, 0) are all

affinely independent and feasible. Therefore, the dim(P ch) ≥ 3 − 1. Because there are

10



y y y y y t t t

0 1 2 3 4 5 6 7

y

y

y

t

t

t

t

1

2

3

4

5

6

7

y y y

y y

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

JJ

J
JJ

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

HH
@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

A

B

C
t

D

3x1 + 2x2 ≤ 12

1x1 + 2x2 ≤ 6
x1 + x2 ≤ 4

x1

x2

Figure 2.1: Cutting Plane Method in Example 2.1

11



two variables, dim(P ch) ≤ 2. Therefore, the dimension of P ch is two.

The inequality, x1+x2 ≤ 4 is valid as seen in Figure 2.1 because it does not violate any

integer points. The dimension of the face of the inequality is at least one, with affinely

independent points (1, 3) and (4, 0). These points are feasible and satisfy x1 + x2 = 4.

Additionally, the point (0, 0) is feasible and does not satisfy x1 + x2 = 4, thus the face

is not the entire P ch. Therefore the face’s dimension is one. Consequently, x1 + x2 ≤ 4

is a facet defining inequality.

The other facet defining inequalities for P ch in this example are x1 +2x2 ≤ 6, x1 ≥ 0,

and x2 ≥ 0. With the inclusion of all facets, P ch is fully defined and all corner points

are integer.

This example shows how valid inequalities are used to help solve IPs. The number

of variables and complexity are directly related. As the number of variables increases,

the difficulty of finding valid and facet defining inequalities also increase. Knapsack

problems are the simplest form of IPs with n variables and are the focus for the next

section and also this thesis.

2.3 The Knapsack Problem

An important area of integer programming research is the knapsack problem (KP),

which is a particular class of integer programs. The name is derived from an example

of a camper packing a knapsack with items for a trip. There are n items available to

12



bring each with a benefit, cj , and weight, aj. The camper looks to bring the maximum

benefit while being restricted by the total amount of weight that she can carry, b.

The binary KP formulation begins by setting xj = 1, if that item is selected; and

xj = 0, if not. The IP is , maximize
∑n

j=1 cjxj, subject to
∑n

j=1 ajxj ≤ b, xj ∈ B for all

j = 1, 2, ..., n where aj ≥ 0 ∀ j = 1, ..., n. Let PKP represents the set of feasible solutions,

PKP = {x ∈ B
n :

∑n
i=1 aixi ≤ b}. The convex hull is then denoted as P ch

KP = conv(PKP ).

There exist numerous methods to solve a knapsack problem. Integer programming,

dynamic programming and shortest path models are among the most common and

frequently taught in college courses. [32] provides an excellent background information

on other methods used to solve the knapsack problem.

A reason that KPs are so highly studied is in their value to general integer program-

ming. Any binary integer programming constraint can be converted into a knapsack

through a simple transformation. If the constraint is an equality, then two constraints

are formed, a ’≤’ and a ’≥’. Each ’≥’ constraint is multiplied through by a −1. If there

is an ai < 0, then xi is replaced with 1 − x′
i. With this transformation, knapsack cuts

can be applied to any single binary integer programming constraint.

In a general KP, it can be assumed that the ai’s are sorted in descending order; if

i, j ∈ N and i < j, then ai ≥ aj. Furthermore, if a1 ≥ b , then x1 = 0 for all feasible

solutions and x1 can be eliminated from the problem. Thus there are always n + 1 an

affinely independent points when, only one item is included, for all items, and when

no items are included. Consequently, P ch
KP is fully dimensional,dim(P ch

KP) = n. The

13



following example illustrates a basic KP.

Example 2.2

Consider a camper deciding between 25 items to take on a trip. The hiker can carry

379 ounces, or approximately 24 pounds. The benefit and weight in ounces of each item

can be found in Table 2.1, followed by the problem’s IP formulation.

Item# 1 2 3 4 5 6 7 8 9 10 11 12 13

Benefit 20 7 46 79 9 84 42 34 91 107 117 3 39

Weight 105 93 92 90 74 72 72 71 70 65 64 62 61

Item# 14 15 16 17 18 19 20 21 22 23 24 25

Benefit 12 60 87 90 54 2 22 99 46 17 5 27

Weight 60 44 44 44 43 43 42 42 41 41 40 40

Table 2.1: Benefit and weight of items that may be taken in the knapsack

Maximize

20x1 + 7x2 + 46x3 + 79x4 + 9x5 + 84x6 + 42x7 + 34x8 + 91x9 + 107x10 + 117x11+

3x12 + 39x13 + 12x14 + 60x15 + 87x16 + 90x17 + 54x18 + 2x19 + 22x20 + 99x21+

46x22 + 17x23 + 5x24 + 27x25

Subject to

105x1 + 93x2 + 92x3 + 90x4 + 74x5 + 72x6 + 72x7 + 71x8 + 70x9 + 65x10 + 64x11+

62x12 + 61x13 + 60x14 + 44x15 + 44x16 + 44x17 + 43x18 + 43x19 + 42x20 + 42x21+.

41x22 + 41x23 + 40x24 + 40x25 ≤ 379

xj ∈ {0, 1}, j ∈ {1, ..., 25}.
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The optimum solution to this problem is to select items {9, 10, 11, 15, 16, 17, 21}

leading to an objective benefit of 651 units while carrying 373 ounces.

2.4 Covers

As previously discussed, integer programs and their facet defining inequalities are fairly

simple to determine in two dimensions. In higher dimensions, the difficulty greatly

increases. Covers can assist with this challenge. A cover is a set of indices from a binary

knapsack constraint when xj = 1 ∀ j = 1, ..., n the inequality is infeasible. Covers are

often used to find a valid starting inequality that can be strengthened by lifting. Thus,

cover inequalities are very important in KP when looking for facet defining inequalities.

Formally, C ⊂ N is a cover if and only if
∑

j∈C aj > b. A minimal cover occurs when

one indice is removed from the set and it is no longer a cover. Formally,
∑

j∈C\{k} aj ≤ b

for each k ∈ C .

Every cover defines a cover inequality. These are always valid and follow the form

∑
j∈C xj ≤ |C| − 1. It is valid because the sum of all the coefficients is greater than the

maximum allowed by the constraint. Therefore at least one item must be left at zero in

each feasible solution.

In addition to minimal covers, there exist extended covers. They are defined as

E(C) = C ∪ {i ∈ N : ai ≥ aj for all j ∈ C} and follow the form
∑

j∈E(C) xj ≤ |C| − 1.

The example below depicts these concepts.
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Example 2.3

Looking back at the KP in Example 2.1, the constraint is

105x1 + 93x2 + 92x3 + 90x4 + 74x5 + 72x6 + 72x7 + 71x8 + 70x9 + 65x10 + 64x11+

62x12 + 61x13 + 60x14 + 44x15 + 44x16 + 44x17 + 43x18 + 43x19 + 42x20 + 42x21+.

41x22 + 41x23 + 40x24 + 40x25 ≤ 379

Based on this constraint the set {15, 16, 17, 18, 19, 20, 21, 22, 23, 24} is a minimal

cover represented by the inequality x15+x16+x17+x18+x19+x20+x21+x22+x23+x24 ≤ 9.

An extended cover is {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24}. Its inequality is
∑24

i=1 xi ≤ 9.

2.5 Lifting

Lifting is a tool used in integer programming to create stronger inequalities. Gomory

[20] first developed lifting to strengthen inequalities by increasing the dimension of the

cutting plane. Lifting has been studied by a variety of sources including [3, 5, 6, 7, 8, 9,

12, 13, 14, 15, 18, 21, 22, 26, 29, 31, 33, 43, 44]. A more specific breakdown of references

is provided in a later section.

Lifting takes a valid inequality of a restricted space and changes some of the coef-

ficients and possibly the right hand side to make the inequality valid over the entire

polyhedron. It is also used to find cutting planes that can be facet defining.

A restricted space is vital to lifting and takes a subset of variables, E ⊂ N , and forces
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them to a fixed value, ki for each i ∈ E. Formally let P ch
E,K = conv{x ∈ P : xi = ki for

all i ∈ E} where ki ∈ Z and K = (k1, k2, ..., k|E|). Thus, the restricted space only looks

at a specific subset of variables, instead of the entire polyhedron.

Let
∑

i∈E αixi +
∑

i∈N\E αixi ≤ β be a valid inequality of P ch
E,K where E ⊂ N . Lifting

attempts to create a valid inequality of P ch that takes the form
∑

i∈E α′
ixi+

∑
i∈N\E αixi ≤

β ′.

There are multiple types of lifting that can be used: up, down and middle lifting,

exact and approximate lifting, single and synchronized lifting, and sequential and simul-

taneous lifting. This leads to 24 different combinations. One example is exact single

sequential uplifting.

2.5.1 Up, Down, and Middle Lifting

There are three ways of lifting in terms of assuming the initial coefficients for variables to

be lifted. Uplifting is the most common lifting technique and assumes the initial αi = 0

for all i ∈ E, or K = (0, 0, ..., 0). The opposite is down lifting which assumes that all

ki’s are set to the upper bound of xi for all i ∈ E. Finally there is middle lifting [41]

where 0 < ki < ui ∀ i ∈ E. In this thesis, uplifting is used to create a new class of valid

inequalities.
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2.5.2 Exact and Approximate Lifting

Exact and approximate lifting differ in the known strength of the inequality. With exact

lifting, the strongest possible inequality is formed. Thus, the goal is to increase α′ and/or

decrease β ′ as far as possible while maintaining validity. Typically an integer program

is solved to determine these values. With approximate lifting, the α′ and β ′ may be

able to be increased or decreased to strengthen the inequality. Thus, most approximate

lifting techniques do not need to solve an integer program but merely approximate the

solution.

2.5.3 Single and Synchronized Lifting

Single and synchronized lifting refer to the number of inequalities generated by the lifting

algorithm. Single lifting is the most commonly studied and generates a single inequality.

Synchronized lifting creates many inequalities that take a particular form.

2.5.4 Sequential and Simultaneous Lifting

Sequential and simultaneous lifting differentiates between the number of variables lifted

at a time. Sequential lifting requires the size of E to be one. Simultaneous lifting

requires |E| ≥ 2.
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2.5.5 Prior Research on Lifting

With these nine broad classes of lifting, prior research methods can be classified according

to the type of lifting. One of the most common lifting techniques is exact single sequential

uplifting [41], which is described in the following example.

Example 2.4

A general method to perform exact single sequential uplifting of a binary variable,

x1, is as follows. Begin with
∑n

j=2 αjxj ≤ β that is valid for P ch
{1}. To determine α1, solve

the following integer program

z∗IP = maximize
∑n

j=2 αjxj

subject to Ax ≤ b

x1 = 1

x1 ∈ {0, 1}, x2, ..., xn ∈ Z
n

and let α1 = β − z∗IP .

Returning to Example 2.1, consider the cover inequality x15 +x16 +x17 +x18 +x19 +

x20 + x21 + x22 + x23 + x24 ≤ 9. The following steps lift x1. Solve

z∗IP = maximize x15 + x16 + x17 + x18 + x19 + x20 + x21 + x22 + x23 + x24

subject to 105x1 + 93x2 + 92x3 + 90x4 + 74x5 + 72x6 + 72x7 + 71x8 + 70x9+

65x10 + 64x11 + 62x12 + 61x13 + 60x14 + 44x15 + 44x16 + 44x17+

43x18 +43x19 +42x20 +42x21 +41x22 +41x23 +40x24 +40x25 ≤ 379
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x1 = 1

xi ∈ {0, 1} for i = 1, ..., 25

It is possible to let x1 = 1 and include six other indices x19, x20, x21, x22, x23, x24 while

remaining valid. Therefore z∗ = 6. Since α1 = β − z∗, α1 = 9 − 6 = 3. The up lifted

valid inequality is 3x1 + x15 + x16 + x17 + x18 + x19 + x20 + x21 + x22 + x23 + x24 ≤ 9.

Next, uplifting x2 one obtains z∗ = 7, and α2 = 9 − 7 = 2. The uplifted valid

inequality becomes 3x1 +2x2 +x15 +x16 +x17+x18 +x19 +x20 +x21+x22 +x23 +x24 ≤ 9.

This continues until all variables are lifted. The results are summarized in Table 2.2.

Lifting Var z∗ α

x1 6 3
x2 7 2
x3 7 2
x4 7 2
x5 7 2
x6 8 1
x7 8 1
x8 8 1
x9 8 1
x10 8 1
x11 8 1
x12 8 1
x13 8 1
x14 8 1
x25 8 1

Table 2.2: Sequential Example

The final exact single sequentially up lifted inequality is 3x1 +2x2 +2x3 +2x4 +2x5 +

x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 + x16 + x17 + x18 + x19 + x20 + x21 +

x22 + x23 + x24 + x25 ≤ 9, which is facet defining as shown by the points in Table 2.3.
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0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 2.3: Affinely independent points for exact single sequential uplifting example

The first nine affinely independent points are from the minimal cover inequality. The

remaining 16 points are generated by the lifted variables, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10,

x11, x12, x13, x14, x25. Each variable lifted into the inequality increases the dimension by

one. As mentioned before, when x1 is lifted in six other variables x19, x20, x21, x22, x23,and

x24 are set equal to one. This is shown in the 10th point.

This is one simple example of exact lifting. Notice that an IP is solved each time a

new variable is lifted. This can cause an increase in run time so the problem with lifting
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takes longer to solve than the original problem. In 2010, Harris [25] formally introduced

synchronized and single lifting as a new class of lifting. Therefore, the classification of

prior researchers lifting techniques into this new lifting method should be thoroughly

discussed.

A primary lifting result is due to Balas [5], who provides tight bounds for approximate

synchronized sequential uplifting into a cover inequality from a knapsack constraint.

Gutierrez developed a method to perform both exact single sequential and simultaneous

uplifting for a generic IP, it requires solving a single branching tree.

The ”sequence independent lifting” results of [4, 23, 36, 42] should be considered

approximate simultaneous single uplifting. Balas and Zemel provided an exponential al-

gorithm to perform exact synchronized simultaneous uplifting [6] into a cover inequality

for a knapsack constraint. Recently there have been polynomial time algorithms devel-

oped to perform exact simultaneous single uplifting on the knapsack polytope [17, 35].

In 2009 Kubik [27] developed a pseudo-polynomial time algorithm for multiple simulta-

neously lifted sets into a valid inequality for P ch
KP .

Bolton [10] introduced the original exact synchronized simultaneous uplifting method

for the knapsack polyhedron. Realistically, her method could not lift into any inequality

and her results should have been viewed as two set inequalities. Recently Harris ex-

panded upon this idea and developed a three set lifting inequality in cubic time for the

knapsack polyhedron.

There still exist numerous other papers that involve lifting, but the majority of these
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papers are only applicable for certain problems. The reader should now be able to

classify these lifting procedures. The next section describes in detail Bolton’s exact

synchronized simultaneous uplifting and helps to provide necessary background for this

thesis.

2.5.6 Synchronized Simultaneous Lifting

The input for Bolton’s algorithm is a knapsack constraint and two mutually exclusive

lifting sets E1 and E2 and the inequality 0x ≤ 0. The outputs from this are valid

inequalities of the form αE1

∑
i∈E1

xi + αE2

∑
i∈E2

xi ≤ 1.

When applying Bolton’s algorithm, the number of variables included from each set,

E1 and E2, are organized as an ordered pair. If three variables were included from E1

and seven from E2, the point is (3, 7) where E1 is the x axis and E2 is the y axis.

Once all feasible combinations of variables have been determined the slope,
αE2

αE1

, of

the lines from the first point to all other points is found. The line that eliminates no other

feasible points is selected. The next extreme point can be determined by the minimum

slope. If a tie occurs, the point furthest along the line is selected. This extreme point is

now identified and the slope of the lines to all subsequent points is found. This process

is repeated until the final extreme point is located on the opposite axis. Returning to

the previous problem, cutting planes are generated in the following example by exact

synchronized simultaneous uplifting.

Example 2.5
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Consider a portion of the KP from Example 2.2 given the constraint, 105x1 +93x2 +

92x3 + 90x4 + 74x5 + 72x6 + 72x7 + 71x8 + 70x9 ≤ 379. Let E1 ={1,2,3,4} and

E2={5,6,7,8,9}. The output is valid inequalities of the form α1
∑

i∈E1
xi + α2

∑
i∈E2

xi ≤

β.

First the feasible combinations are found and shown in Table 2.4. These are found in

linear time using the process introduced by Easton and Hooker [17]. It begins by taking

all elements in E1 and decrementing until a feasible point is found. Then, the number

of elements from E2 are increased until the constraint becomes invalid which requires

E1 to then decrease.

E1 E2 F/I
4 0 I
3 0 F
3 1 F
3 2 I
2 2 F
2 3 I
1 3 F
1 4 F
1 5 I
0 5 F

Table 2.4: Candidate point list

With the possible points determined, the infeasible points can be eliminated and the

α values can be calculated based on the first two feasible points, (3,0) and (3,1). Both

α1 and α2 are found by solving the following system of equations

α1(3) + α2(0) = 1

α1(3) + α2(1) = 1.
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This determines that α1 = 1
3

and α2 = 0 The same process was repeated for all

feasible points with the results in Table 2.5. Thus, the minimum α is clearly 0 between

points (3, 0) and (3, 1). From there, the first set of α values are identified as (1
3
, 0) leading

to the inequality 1
3

∑
i∈E1

xi + 0
∑

i∈E2
xi ≤ 1, also written as

∑
i∈E1

xi + 0
∑

i∈E2
xi ≤ 3.

Next, take the point, (3, 1), and conduct the same procedure.

E1 E2 α1 α2
α2

α1

3 0 - - -

3 1 1
3

0 0

2 2 1
3

1
6

1
2

1 3 1
3

2
9

2
3

1 4 1
3

1
6

1
2

0 5 1
3

1
5

3
5

Table 2.5: Alphas - 1

The minimum α fraction is 2
3

at the point (1, 4) is seen in Table 2.6. This leads to

the inequality 3
11

∑
i∈E1

xi + 2
11

∑
i∈E2

xi ≤ 1. This can also be written as 3
∑

i∈E1
xi +

2
∑

i∈E2
xi ≤ 11.

Shown in Table 2.7, the same procedure is completed using (1, 4) as the anchor point

to the final point (5, 0). The final inequality is
∑

i∈E1
xi +

∑
i∈E2

xi ≤ 5.

This completes the exact synchronized simultaneous uplifting and generates three

valid inequalities. Of these three inequalities, the first two are facet defining. For

∑
i∈E1

xi +0
∑

i∈E2
xi ≤ 3, the nine affinely points are shown in Table 2.8 and prove that
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E1 E2 α1 α2
α2

α1

3 1 - - -

2 2 1
4

1
4

1

1 3 1
4

1
4

1

1 4 3
11

2
11

2
3

0 5 4
15

1
5

3
4

Table 2.6: Alphas - 2

E1 E2 α1 α2
α2

α1

1 4 - - -

0 5 1
5

1
5

1

Table 2.7: Alphas - 3

this inequality is facet defining. For 3
∑

i∈E1
xi + 2

∑
i∈E2

xi ≤ 11, the nine points shown

in Table 2.9 are all affinely independent.

This illustrates that facet defining inequalities can be generated using exact syn-

chronized simultaneous uplifting where E = ∅. Chapter 3 describes SSL and how it is

applied to an arbitrary initial valid inequality.
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0 1 1 1 0 0 0 0 0
1 0 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

Table 2.8: Affinely independent points for
∑

i∈E1
xi + 0

∑
i∈E2

xi ≤ 3

0 1 1 1 0 0 0 0 0
1 0 1 1 0 0 0 0 0
1 1 0 1 0 0 0 0 0
1 1 1 0 1 1 1 1 1
0 0 0 0 0 1 1 1 1
0 0 0 0 1 0 1 1 1
0 0 0 0 1 1 0 1 1
0 0 0 0 1 1 1 0 1
1 1 1 1 1 1 1 1 0

Table 2.9: Affinely independent points for 3
∑

i∈E1
xi + 2

∑
i∈E2

xi ≤ 11
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Chapter 3

Synchronized Simultaneous uplifting

over arbitrary initial inequalities for

the knapsack polytope

This chapter presents the SSL algorithm developed in this research. SSL uplifts two sets

into an arbitrary inequality simultaneously and generates multiple inequalities of the

same form. Discussed in this chapter is an overview of SSL introducing the notation.

This is followed by the pseudocode for SSL and the theoretical argument of correctness

and facet defining conditions. Finally, an example illustrates SSL and shows that it

creates a new class of facet defining inequalities.
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3.1 SSL

The input for SSL is a knapsack constraint
∑n

i=1 aixi ≤ b, disjoint sets E, E1, E2 ⊂ N

and a valid inequality
∑

i∈E αixi ≤ β of PKP ch
E1∪E2

. Without loss of generality, E1 =

{i11, i
1
2, ..., i

1
e1
} and E2 = {i21, i

2
2, ..., i

2
e2
} where e1 = |E1| and e2 = |E2|. SSL outputs valid

inequalities of the form
∑

i∈E αixi +
∑

i∈E1
α1xi +

∑
i∈E2

α2xi ≤ β.

The goal for this algorithm is to generate multiple inequalities by uplifting two sets

simultaneously into a given inequality. This process begins with the creation of the table

to identify feasible set combinations. The table has a place for each possible value of b.

Stored in the table, Tj, is the largest amount from the left hand side of the valid initial

inequality that can be taken at that bj value. For convenience define Tj = −∞ if j < 0.

Feasible combinations from the sets are then found for each table value, Tj for j =

0 to b. These j represent the weight of objects from each set that can be selected

while remaining feasible. This step also finds Bolton’s feasible points to the knapsack

constraint with a right hand side of b− j. These points are called the candidate extreme

points for j and denoted as EPj . The value j is the third dimension of elements in EPj.

Thus a q ∈ EPj takes the form (e1q
, e2q

, jq). Clearly, jq = j in this situation. Let the set

of all candidate extreme points be EP =
⋃b

j=0 EPj . Next the points in EP are sorted

by angle from smallest to largest where zero degrees occurs on the E1 axis.

With the points generated and sorted, the α values are then calculated. This begins

with all points forming a 0 angle, thus with e2q
= 0. For each of these points, α1

is calculated by taking the inequality right hand side, β, minus the table value and
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dividing the difference by the number of objects taken from E1,
β−Tjq

e1q
. The point with

the minimum α1 is the most extreme point, it is now called p and selected as the first

fixed point.

With this first extreme point determined, α2 is calculated by solving a system of

equations using the first point, q in EP where e2q
6= 0. This leads to the first test

inequality, which is obtained by solving for α1 and α2 in the following two equations:

α1e1p
+ α2e2p

= β − Tjp
and α1e1q

+ α2e2q
= β − Tjq

.

Every point q′ remaining in the sorted angle list is checked to see if the test inequality

is valid (if α1e1q′
+α2e2q′

< β−Tjq′
). If this point does not strictly satisfy the inequality,

then test point, q′, takes q’s place (a new inequality is found between point p and q′ and

the q is updated). This continues until the points reach the E2 axis. At this point, the

inequality with α1 and α2 are reported and can be used to generate a valid inequality.

Next q becomes the next fixed point, p, and the process continues. Inequalities will

be generated until the fixed point reaches the E2 axis. The result of SSL is multiple

valid inequalities of the form
∑

i∈E αixi +
∑

i∈E1
α1xi +

∑
i∈E2

α2xi ≤ β. SSL is formally

defined by the pseudocode in the following section.

Synchronized Simultaneous Lifting Algorithm

Initialization

Sort E1 and E2 so that their knapsack coefficients are in descending order.

CreateTable Subroutine
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For (j = 0 to b ) begin

Find EPj using the FeasiblePoint Subroutine

End For

Let EP :=
⋃b

j=0 EPj sorted from smallest to largest according to the angle.

Let α1 := ∞.

For Each (q ∈ EP ) begin

If e2q
= 0, then

If
β−Tjq

e1q
≤ α1, then

α1 :=
β−Tjq

e1q
.

pos := q.

End If

End If

End For

Let ext := pos.

Let pos := ext + 1.

Let p := pos.

α2 := 1
e1q ∗e2p−e2q ∗e1p

∗ [e1q
∗ (β − Tjp

) − e1p
∗ (β − Tjq

)]

End Initialization

Main Step
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While (q’s angle is less than 90 degrees ) begin

For (p = pos and e1p
6= 0 )

If ( α1e1p
+ α2e2p

> β − Tjp
), then

p := p + 1.

α1:=
1

e1q∗e2p−e2q ∗e1p
∗ [e2p

∗ (β − Tjq
) − e2q

∗ (β − Tjp
)]

α2:=
1

e1q∗e2p−e2q ∗e1p
∗ [e1q

∗ (β − Tjp
) − (e1p

∗ (β − Tjq
)]

pos := p.

p := p + 1.

End For

ext := pos.

Report α1
∑

i∈E1
xi + α2

∑
i∈E2

xi ≤ β as a valid inequality.

End While

CreateTable Subroutine

Initialization

For (j = 0 to b)

Tj := 0.

End For

Main Step

For Each (i ∈ E) begin

32



For (j = 0 to b) begin

If Tb−j−ai
+ αi > Tb−j , then

Tb−j := Tb−j−ai
+ αi.

End For

End For Each

Feasible Point Subroutine for EPj

Initialization

sum := 0, p := 0, q := 0, count := 0

While( sum ≤ b − j)

If (p ≤ |E1| − 1), then sum := sum + ai1
e1−p

and p := p + 1.

Else sum := sum + ae2
e2−q

and q := q + 1.

End While

If q = 0, then p := p − 1, sum := sum − ai1
e1−p

.

If q = 1, then q := q − 1, sum := sum − ai2
e2−q

.

If q ≥ 2, then

EPj [count] := (p, 0) and count := count + 1.

q := q − 1 and sum := sum − ai2
e2−q

.

Main Step

i := 0
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While (p ≥ 0 and q ≤ e2)

If (sum > bi, then sum := sum − ai1
e1−p+1

and p := p − 1.

Else

EPj [count] := (p, q), count := count + 1

sum := sum + ai2
e2−q

and q := q + 1.

End Else

numpointsi := count + 1

End While

Return feasE1, feasE2 and numpointsi.

With SSL fully detailed by the psuedo code, it is now necessary to prove its theoretical

value. This is done through proof of validity, running time, and facet defining conditions.

Theorem 3.1.1 Given a knapsack constraint
∑

i∈N aixi ≤ b and a valid inequality

∑
i∈E αixi ≤ β of P ch

KPE1∪E2

, then the SSL algorithm returns a valid inequality of PKP of

the form
∑

i∈E αixi +
∑

i∈E1
α1xi +

∑
i∈E2

α2xi ≤ β.

Proof: For contradiction, assume that there exists an x ∈ PKP such that
∑

i∈E αixi +

∑
i∈E1

α1xi +
∑

i∈E2
α2xi > β. Furthermore, let this x be the first such x in the sorted

list. Now, let the SSL inequality be generated from fixed point p = (e1p
, e2p

, jp) and

the next fixed point q = (e1q
, e2q

, jq). Let j =
∑

i∈E aixi ≤ b due to the validity of

∑
i∈E αixi ≤ β. Clearly, Tj =

∑
i∈E αixi due to the obvious correctness of the dynamic

programming table. Let e1x
= |{i ∈ E1 : xi = 1}| and e2x

= |{i ∈ E2 : xi = 1}|.
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Assume that x occurs in the sorted angle list after the fixed point that created the

SSL inequality. Since x ∈ PKP and due to the sorted order of the knapsack constraint,

EPj contains (e1x
, e2x

, jx) or a point that is larger in one or both of the first two di-

mensions. However, SSL checks to verify that each point in EPj does not violate the

inequality. Since this point is in EPj, α1 and α2 would have changed to different values,

a contradiction.

Assume that x occurs in the sorted angle list prior to the fixed point that created

the SSL inequality. Thus, x, p and q are not on the same line and they create a triangle

in the e1 and e2 plane. Since this is the first point that violates an inequality, x must

be on the interior or line segment from p to the prior fixed point. But this violates the

convexity of P ch
KP and the result follows.

2

In addition to being valid, the inequalities produced by SSL require pseudopolynomial

effort to generate. A large portion of this time comes in the initialization, rather than

the main step.

Theorem 3.1.2 Given a knapsack constraint
∑

i∈N aixi ≤ b and a valid inequality

∑
i∈E αixi ≤ β of P ch

KPE1∪E2

, then the SSL requires O(nb + n3).

Proof: Consider SSL step by step. First in the initialization, the E1 and E2 sets are

sorted by their a coefficients. This requires O(nlog(n)) effort using bisection sort. Next

the table is created. For each element in E all b elements in the table are evaluated,

which requires O(nb) effort. It requires linear, O(nb), effort to find EPj using the
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FeasiblePoints subroutine. There are at most e1 ∗ e2 feasible points. By compacting the

table, there only exist at most O(n2) points that are not dominated by either a higher

j value or a higher ep1
or ep2

. Such a compaction would require O(nb). The angles can

then be sorted and obtained in O(n2log(n)). The final step in initialization, to find the

first fixed point, which requires O(n) as there can only be e1 points on the axis.

Each inequality that the main step evaluates requires examining at most each point

in this compacted list. Thus, each inequality requires O(n2). There can be at most

O(e1 + e2) inequalities. Thus, the main step requires O(n3). Reporting is O(n2). Thus,

SSL requires O(nb + n3).

2

With the running time determined, it is then useful to show that SSL can produce

facet defining inequalities. First define ξi to be the identity point in the ith dimension.

Any inequality generated from SSL is created from two points. It is a simple task to

modify this algorithm to record these two points, which are now called (e1p
, e2p

, jp) and

(e1q
, e2q

, jq). For brevity, SSL does not force the points that generated the inequalities

in any particular order. Thus, if one has a p and q that does not meet the following

theorem. The reader should reorder the p and q to see if the opposite order satisfies the

conditions. It is also known that points beyond i1e1
or i2e2

do not exist.

Theorem 3.1.3 Given a knapsack constraint
∑

i∈N aixi ≤ b and a valid inequality

∑
i∈E αixi ≤ β 6= 0 that is facet defining for P ch

KPE1∪E2
and the inequality

∑
i∈E αixi +

∑
i∈E1

α1xi +
∑

i∈E2
α2xi ≤ β from the SSL algorithm that is generated from the two fixed
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points p and q corresponding to the table. If any of the following conditions are met:

i) If e1p
= e1 − 1 and e2q

= e2 − 1, then
∑

i∈{i1
1
,...,i1

e1−1
,i2

e2−e2p
+1

,...,i2e2}
ai ≤ b − j1 and

∑
i∈{i1

e1−e1q
+1

,...,i1e1,i2
1
,...,i2

e2−1
} ai ≤ b− j2,

ii) If 1 ≤ e1p
≤ e1 − 2 and e2q

= e2 − 1, then
∑

i∈{i1
1
,i1

e1−e1p
+2

,...,i1e1 ,i2
e2−e2p

+1
,...,i2e2}

ai ≤

b−j1,
∑

i∈{i1
e1−e1p

,...,i1
e1−1

,i2
e2−e2p

+1
,...,i2e2

} ai ≤ b−j1 and
∑

i∈{i1
e1−e1q

+1
,...,i1e1

,i2
1
,...,i2

e2−1
} ai ≤

b − j2,

iii) If e1p
= e1 − 1 and 1 ≤ e2q

≤ e2 − 2, then
∑

i∈{i1
1
,...,i1

e1−1
,i2

e2−e2p
+1

,...,i2e2
} ai ≤ b − j1,

∑
i∈{i1

e1−e1q
+1

,...,i1e1,i2
1
,i2

e2−e2q
+2

,...,i2e2}
ai ≤ b−j2 and

∑
i∈{i1

e1−e1q
+1

,...,i1e1,i2
e2−e2q

,...,i2
e2−1

} ai ≤

b − j2,

iv) If 1 ≤ e1p
≤ e1−2 and 1 ≤ e2q

≤ e2−2, then
∑

i∈{i1
1
,i1

e1−e1p
+2

,...,i1e1,i2
e2−e2p

+1
,...,i2e2}

ai ≤

b−j1,
∑

i∈{i1
e1−e1p

,...,i1
e1−1

,i2
e2−e2p

+1
,...,i2e2

} ai ≤ b−j1,
∑

i∈{i1
e1−e1q

+1
,...,i1e1

,i2
1
,i2

e2−e2q
+2

,...,i2e2
} ai ≤

b − j2 and
∑

i∈{i1
e1−e1q

+1
,...,i1e1,i2

e2−e2q
,...,i2

e2−1
} ai ≤ b − j2,

then the SSL inequality is facet defining for P ch
KP .

Proof: Cases i), ii) and iii) are a subset of case iv); therefore, it suffices to prove this

case. The reader can easily eliminate portions of this proof to obtain the other three

cases.

Given a knapsack constraint
∑

i∈N aixi ≤ b, a valid inequality
∑

i∈E αixi ≤ β 6= 0 that

is facet defining for P ch
KPE1∪E2

and the inequality
∑

i∈E αixi +
∑

i∈E1
α1xi +

∑
i∈E2

α2xi ≤ β

generated from the SSL algorithm, assume that all of the necessary assumptions are true

for case iv).
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By Theorem 3.1.1, the SSL inequality is valid. Furthermore, the origin does not

meet the SSL inequality at equality, thus the face of the SSL inequality has dimension

at most n− 1. Now it suffices to find n = |E|+ |E1|+ |E2| affinely independent points.

Due to assumption,
∑

i∈{i1
1
,i1

e1−e1p
+2

,...,i1e1
,i2

e2−e2p
+1

,...,i2e2
} ai ≤ b−j1. Therefore, the points

∑
i∈{i1

e1−e1p
+2

,...,i1e1,i2
e2−e2p

+1
,...,i2e2}

ξi + ξl are feasible in the knapsack constraint with b re-

placed by b−j1 for all l = {i11, ..., i
1
e1−e1p−1} due to the sorted order of the a coefficients in

the knapsack constraint. Furthermore, by assumption
∑

i∈{i1
e1−e1p

,...,i1
e1−1

,i2
e2−e2p

+1
,...,i2e2}

ai ≤

b − j1, the points
∑

i∈{i1
e1−e1p

,...,i1e1,i2
e2−e2p

+1
,...,i2e2}

ξi − ξl are feasible in the knapsack con-

straint with b replaced by b − j1 for each l ∈ {e2 − e2p
, ..., e2} due to the sorted order of

a.

Since each of these e1 points requires at most b−j1 units from the knapsack constraint,

there exists a point containing only xi = 1 with i ∈ E such that
∑

i∈E αixi = Tj1 and this

point requires at most j1 units from the knapsack constraint. To each of the previously

mentioned e1 points add this point. Call these points Q.

Each point in Q is clearly feasible as the sum of the respective a coefficients is less

than or equal to b− j1 + j1 = b. Furthermore, each point has exactly e1p
variables equal

to one with indices in E1 and e2p
variables equal to one with indices in E2. Evaluating

any point in Q in the SSL inequality therefore results in Tj1 + α1e1p
+ α2e2p

= β due

to the method that SSL generates α1 and α2. Thus, each point in Q is in the SSL

inequality’s face.

To create e2 more points, observe that
∑

i∈{i1
e1−e1q

+1
,...,i1e1

,i2
1
,i2

e2−e2q
+2

,...,i2e2
} ai ≤ b−j2 due
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to assumption. Therefore, the points
∑

i∈{i1
e1−e1q

+1
,...,i1e1,i2

e2−e2q
+2

,...,i2e2}
ξi + ξl are feasible in

the knapsack constraint with b replaced by b− j2 for all l = {i21, ..., i
2
e2−e2q−1} due to the

sorted order of the a coefficients in the knapsack constraint. Furthermore, by assumption

∑
i∈{i1

e1−e1q
+1

,...,i1e1,i2
e2−e2q

,...,i2
e2−1

} ai ≤ b− j2, the points
∑

i∈{i1
e1−e1q

+1
,...,i1e1,i2

e2−e2q
,...,i2e2}

ξi − ξl

are feasible in the knapsack constraint with b replaced by b − j2 for each l ∈ {e2 −

e2q
, ..., e2} due to the sorted order of a.

Since each of these e2 points requires at most b−j2 units from the knapsack constraint,

there exists a point containing only xi = 1 with i ∈ E such that
∑

i∈E αixi = Tj2 and this

point requires at most j2 units from the knapsack constraint. To each of the previously

mentioned e2 points include this point. Call these points Q′.

Each point in Q′ is clearly feasible as the sum of the respective a coefficients is less

than or equal to b− j2 + j2 = b. Furthermore, each point has exactly e1q
variables equal

to 1 with indices in E1 and e2q
variables equal to 1 with indices in E2. Evaluating any

point in Q′ in the SSL inequality therefore results in Tj2 + α1e1q
+ α2e2q

= β due to the

method that SSL generates α1 and α2. Thus, each point in Q′ is in the SSL inequality’s

face.

Since
∑

i∈E αixi ≤ β 6= 0 that is facet defining for P ch
KPE1∪E2

, there exist |E| affinely

independent points in PKP that satisfy
∑

i∈E αixi +
∑

i∈E1
α1xi +

∑
i∈E2

α2xi = β with

the property that xi = 0 for all i ∈ E1 ∪ E2. Call these points Q′′.

Consider the matrix obtained by including the points from Q, Q′ and Q′′. There are

|E| + |E1| + |E2| = n points and each point meets the SSL inequality at equality. The
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points in Q′′ are clearly affinely independent from the points in Q and Q′ due to the

block diagonal construction. The points in Q′, Q′′ are clearly affinely independent from

the other points in Q′, Q′′, respectively, as shown in the sequential lifting example in

Chapter 2. Since SSL obtained α1 and α2, the point with (e1p
, e2p

) and (e1q
, e2q

) are also

affinely independent. Thus, these points are n affinely independent points and the SSL

inequality is facet defining.

2

With the detailed procedure for SSL described and the theoretical strength shown,

it is useful to demonstrate SSL with an example. The following section will illustrate

the key aspects in executing SSL and determining the facet defining conditions.

3.2 SSL Examples

The following examples will demonstrate SSL, the facet defining conditions, and show

that is creates a new class of inequalities.

Example 3.1

Reconsider the example from Chapter 2 with the knapsack constraint

105x1 + 93x2 + 92x3 + 90x4 + 74x5 + 72x6 + 72x7 + 71x8 + 70x9 + 65x10 + 64x11+

62x12 + 61x13 + 60x14 + 44x15 + 44x16 + 44x17 + 43x18 + 43x19 + 42x20 + 42x21+.

41x22 + 41x23 + 40x24 + 40x25 ≤ 379.

The inequality, 3x1 + 3x2 + 3x3 + 3x4 + 2x5 + 2x6 + 2x7 + 2x8 + 2x9 ≤ 11, generated
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in Example 2.4 is the initial valid inequality. Also, let set E1 = {10, 11, 12, 13, 14} and

E2 = {15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}.

With this information, a table is generated to find the maximum left hand side of

the valid inequality that can be included for each possible b. The table for this example

is condensed to show only the critical numbers, where Tj 6= Tj+1 for j = 0, ..., b. Table

generation begins by creating the array T which contains spaces for all values from 0 to b.

All spaces initially contain a zero. They are then updated using dynamic programming.

The table is created in iterations, based on the elements in E. Starting at the end for

a given i ∈ E, the dynamic programming formula is, if Tj is less than Tj−ai
+ αi, then

Tj := Tj−αi
+ αi for j = b, ..., 0. This is done for each i in E.

For this example, begin at T379 and consider x1 where a1 is 105 and α1 is 3. Initially

both T379 and T274 are zero. Since T379 is less than 0 +3 it is assigned a value of 3. This

continues for all Tj. After considering x1 the table created is shown in Table 3.1. For

simplicity, the range of j with the same Tj have been condensed.

j 0-104 105-379
Tj 0 3

Table 3.1: Table including only x1

This same process is completed for x2 then all indices in the initial valid inequality.

The final table, Table 3.2, contains the maximum left hand side of the valid inequality

that can be included at each table location.

The points are then generated using a portion the Easton and Hooker’s algorithm [17]
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j 0-69 70-89 90-140 141-159 160-181 182-230
Tj 0 2 3 4 5 6

j 231-251 252-274 275-322 323-344 345-379
Tj 7 8 9 10 11

Table 3.2: Table for example

where the right hand side of the inequality is evaluated as β − Tj. For each ”dominate

table” location, the extreme feasible point candidates are listed in Table 3.3.

j 0 70 90 141 160 182 231 252 275 323 345
Tj 0 2 3 4 5 6 7 8 9 10 11

5 0 4 0 4 0 3 0 3 0 3 0 2 0 2 0 1 0 0 1 0 0
5 1 4 1 4 1 3 1 2 2 2 1 1 2 1 1 1 1
4 3 3 3 3 2 2 2 1 3 1 3 0 3 0 3 0 2
3 4 2 4 2 4 1 4 0 5 0 4
2 6 1 6 1 5 0 5
1 7 0 7 0 7
0 9

Table 3.3: Initial generated Table

For simplicity, non-extreme points are eliminated using Bolton’s algorithm. This is

not stated in the algorithm and is unnecessary. However it does reduce a few steps in

the example. The remaining points are in Table 3.4 and illustrated graphically in Figure

3.1.

The next step generates EP by combining EPj for all j in the table. The angle for

each point is calculated. The sorted angle list for the dominate table locations is shown

in Table 3.5.

The initial candidate point lies on the E1 axis. The most extreme point has the

minimum α1 value. For point q where e2q
= 0, let α1q

be
11−Tjq

e1q
. This calculation is
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j 0 70 90 141 160 182 231 252 275 323 345
Tj 0 2 3 4 5 6 7 8 9 10 11

5 0 4 0 4 0 3 0 3 0 3 0 2 0 2 0 1 0 0 1 0 0
5 1 4 1 4 1 3 1 2 2 2 1 1 2 0 3 1 1
4 3 3 3 2 4 1 4 0 5 1 3 0 3 0 2
3 4 1 6 0 7 0 5 0 4
1 7 0 7
0 9

Table 3.4: Generated Table after Bolton’s

shown for all possible candidate points in Table 3.6. The minimum α1 value is 1.5 from

point (2, 0, 8), as calculated by 11−8
2

. This point becomes the initial candidate point, or

the fixed point, is e18
= 2, e28

= 0, and j8 = 8.

The next step is to calculate an initial α1 and α2 from the candidate point, q, and

the first point off the E1 axis, at p = 10, (5, 1, 0). These values are found by solving this

system of equations.

2α1 + 0α2 = (11 − 8)

5α1 + α2 = (11 − 0)

This yields α1 = 3
2

and α2 = 7
2
. All points with larger angles are then tested for

validity in the equation 3
2

∑
i∈E1

xi + 7
2

∑
i∈E2

xi ≤ 11 − Tj. Applying the next point

(4,1,2) results in 3
2
(4) + 7

2
(1) ≤ 11 − 2, which simplifies to 9.5 > 9 and the test fails.

Thus, (4,1,2) is combined with (2, 0, 8) (the fixed point) to create new α values. The

following equations are solved,

2α1 + 0α2 = (11 − 8)

4α1 + α2 = (11 − 9).
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Figure 3.1: Graphic of Points

Solving the above equations generates the new test inequality 3
2

∑
i∈E1

xi+3
∑

i∈E2
xi ≤

11 − Tj. The next point (4,1,3) fails. Generating the next α1 and α2 provides the new

test inequality 3
2

∑
i∈E1

xi + 2
∑

i∈E2
xi ≤ 11 − Tj. Several points satisfy this inequality,

but point 14 (3,2,3) fails. This leads to a new inequality, which fails at (4,3,0). The next

test inequality is 3
2

∑
i∈E1

xi + 5
3

∑
i∈E2

xi ≤ 11 which fails at point (3,3,2).

This continues until the point (1,1,9) forms the equation 3
2

∑
i∈E1

xi + 1
2

∑
i∈E2

xi ≤

11 − Tj. All remaining points satisfy this equation. Thus, 3
∑4

i=1 xi + 2
∑9

i=5 xi +
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Pt# E1 E2 Tj Angle Pt# E1 E2 Tj Angle
1 5 0 0 0 18 2 4 3 63.43
2 4 0 2 0 19 1 2 7 63.43
3 4 0 3 0 20 1 3 6 71.57
4 3 0 4 0 21 1 4 4 75.96
5 3 0 5 0 22 1 6 2 80.54
6 3 0 6 0 23 1 7 0 81.87
7 2 0 7 0 24 0 9 0 90
8 2 0 8 0 25 0 7 2 90
9 1 0 9 0 26 0 7 3 90
10 5 1 0 11.31 27 0 5 4 90
11 4 1 2 14.04 28 0 5 5 90
12 4 1 3 14.04 29 0 4 6 90
13 3 1 4 18.43 30 0 3 7 90
14 3 3 2 45 31 0 3 8 90
15 2 2 5 45 32 0 2 9 90
16 1 1 9 45 33 0 1 10 90
17 3 4 0 53.13 34 0 0 11 DNE

Table 3.5: Ordered EP by Angle

3
2

∑1
i=10 4xi + 1

2

∑25
i=15 xi ≤ 11 is a valid inequality and the point (1,1,9) is considered

the next fixed point.

The new fixed point, (1,1,9), continues the process with the next point in line (3,4,0).

The points that fail and the α values that they form with (1,1,9) are shown in Table

3.7. The inequality created with points (1,1,9) and (0,3,8) generates an inequality that

is satisfied by all points and 3
∑4

i=1 xi + 2
∑9

i=5 xi +
∑14

i=10 xi +
∑25

i=15 xi ≤ 11 is valid.

Furthermore, E2 axis has been reached and SSL terminates.

For this problem and inequality, SSL generates two inequalities,

3
∑4

i=1 xi + 2
∑9

i=5 xi + 3
2

∑14
i=10 xi + 1

2

∑25
i=15 xi ≤ 11 and

3
∑4

i=1 xi + 2
∑9

i=5 xi +
∑14

i=10 xi +
∑25

i=15 xi ≤ 11.
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Pt# E1 E2 Tj α1

1 5 0 0 2.20
2 4 0 2 2.25
3 4 0 3 2.00
4 3 0 4 2.33
5 3 0 5 2.00
6 3 0 6 1.67
7 2 0 7 2.00
8 2 0 8 1.50

9 1 0 9 2.00

Table 3.6: Initial extreme points

These inequality are valid by Theorem 3.1.1. Furthermore, these inequalities satisfy

Theorem 3.1.3 and so they are facet defining inequalities. For 3
∑4

i=1 xi + 2
∑9

i=5 xi +

3
2

∑14
i=10 xi + 1

2

∑25
i=15 xi ≤ 11 the 25 points that are generated from this theorem are

presented in Table 3.8. The first nine points come from the initial valid inequality

3
∑4

i=1 xi + 2
∑9

i=5 xi ≤ 11. For convenience, lines section together the sets E, E1, and

E2 across the top, and the indices in the sets along the side. The two points that

create this SSL inequality are point 8 = p, (2, 0, 8), and point 16 = q, (1, 1, 9). Since

1 ≤ e1p
= 2 ≤ e1 − 2 = 3 and 1 ≤ e2q

= 1 ≤ e2 − 2 = 9, case iv) must be verified.

To verify the first condition, observe that a10 + a14 = 65 + 60 = 125 ≤ 379 − 252

where the 252 is the smallest j value where Tj = 8. This then enables the points in 10th

and 11th columns to be feasible in Table 3.8. To verify the second condition, observe

that a12 + a13 = 62 + 61 = 123 ≤ 379 − 252. This then enables the points in 12th, 13th

and 14th columns to be feasible in Table 3.8. It is trivial to verify that these points

satisfy the inequality at equality. The points for x1 to x9 contribute 8 to the left hand

side of the inequality. Since α1 = 3
2

and there are always 2 variables between x10 to x14
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E1 E2 Layer α1 α2

1 1 9

3 4 0 -3 5

2 4 2 −1
2

−5
2

2 4 3 0 2

2 6 0 1
4

7
4

1 3 6 1
2

3
2

1 6 2 3
5

7
5

0 9 0 7
9

11
9

0 7 3 6
7

8
7

0 3 8 1 1

Table 3.7: Trial α values with candidate point (1,1,9)

set to one.

To verify the third condition, observe that a14 + a15 = 60 + 44 = 104 ≤ 379 − 275

where the 275 is the smallest j value where Tj = 9. This then enables the points in 15th

to the 25th columns to be feasible in Table 3.8. Observe that the fourth condition does

not exist due to the fact that e2q
= 1. It is trivial to verify that these points satisfy the

inequality at equality. The points for x1 to x9 contribute 9 to the left hand side of the

inequality. Since x14 = 1, another 3
2

is contributed. Finally, there is always 1 variables

between x15 to x25 set to one, which contributes and additional 1
2
.

For 3
∑4

i=1 xi + 2
∑9

i=5 xi +
∑14

i=10 xi +
∑25

i=15 xi ≤ 11 the 25 points in Table 3.9 meet

the inequality at equality and are affinely independent. As with the first inequality, the
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xi E E1 E2

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 1 1 1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 3.8: Affinely independent points for 3
∑4

i=1 xi+2
∑9

i=5 xi+
3
2

∑14
i=10 xi+

1
2

∑25
i=15 xi ≤

11

first nine points come from the initial valid inequality, 3
∑4

i=1 xi + 2
∑9

i=5 xi ≤ 11, and

the remaining 16 points were generated using Theorem 3.1.3. The fixed points used to

generate the inequality are 16 = p, (1, 1, 9) and 31 = q, (0, 3, 8). Since 1 ≤ e1p
= 1 ≤

e1 − 2 = 3 and 1 ≤ e2q
= 3 ≤ e2 − 2 = 9, case iv) must be verified.

To verify the first condition, observe that a10+a25 = 65+40 = 105 ≤ 379−275. This

then enables the points in 10th through 14th columns to be feasible in Table 3.9. The
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second conditions does not exist due to fact that e1p
= 1. To verify that these points

satisfy the inequality at equality, the points for x1 to x9 contribute 9 to the left hand

side of the inequality, and there are always three variables between x15 and x25 equal to

one which contributes a total of three.

xi E E1 E2

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
3 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1
25 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Table 3.9: Affinely independent points for 3
∑4

i=1 xi+2
∑9

i=5 xi+
∑14

i=10 xi+
∑25

i=15 xi ≤ 11

To verify the third condition, observe that a15 + a24 + a25 = 44 + 40 + 40 = 124 ≤

379 − 252. This allows the 15th through the 21st points to be feasible. To verify the

final condition, a22 + a23 + a24 = 122 which allows the 22th through 25th points to be
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clearly feasible. These points meet the inequality at equality. The points for x1 to x9

contribute 8 to the left hand side of the inequality, there is always a variable between

x10 and x14 equal to one which contributes one, and finally x25 contributes one.

One of the most exciting results is that these SSL inequalities are a new class of facet

defining inequalities for the knapsack polytope. To show that this new class of inequal-

ities cannot be generated by other lifting techniques, consider the following example.

Example 3.2

Let the knapsack constraint be

148x1 + 148x2 + 74x3 + 74x4 + 74x5 + 19x6 + 19x7 + 19x8 + 19x9 + 13x10 + 13x11 +

13x12 + 13x13 + 13x14 ≤ 222.

Executing Bolton’s algorithm [10] with

E1 = {1, 2} and E2 = {3, 4, 5}

provides three feasible extreme points (1,0), (1,1) and (0,3). This provides the in-

equalities

x1 + x2 ≤ 1 and

2
3
x1 + 2

3
x2 + 1

3
x3 + 1

3
x4 + 1

3
x5 ≤ 1.

This second inequality is far more interesting and is facet-defining over the reduced

space and so it is used for this example. To reduce the amount of fractional calculations,

consider the equivalent valid inequality 2x1 + 2x2 + x3 + x4 + x5 ≤ 3.

To this initial inequality, apply SSL with sets
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E1 = {6, 7, 8, 9} and

E2 = {10, 11, 12, 13, 14}.

The dynamic programming table with the feasible extreme points is shown in Table

3.10. The angles associated with the points are then calculated and the list is sorted,

seen in Table 3.11.

j 0 74 148 222
Tj 0 1 2 3

4 0 4 0 3 0 0 0
4 5 4 5 3 1
0 5 0 5 2 2

1 4
0 5

Table 3.10: Dynamic programming table and feasible extreme points

Pt# E1 E2 Tj Angle
1 4 0 0 0
2 4 0 1 0
3 3 0 2 0
4 3 1 2 18.43
5 2 2 2 45
6 4 5 0 51.34
7 4 5 1 51.34
8 1 4 2 75.96
9 0 5 0 90
10 0 5 1 90
11 0 5 2 90

Table 3.11: Ordered EP by Angle

The minimum α1 occurs at point (3,0,2) with α1 = 1
3
. Following SSL, the points

(3,0,2) and (3,1,2) form the first lifted inequality, with α1 = 1
3

and α2 = 0. This

inequality is not violated by any other points, so it is valid and (3,1,2) becomes the next
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fixed point.

From (3,1,2), the point (4,5,1) creates the inequality with α1 = 3
11

and α2 = 211,

that is not violated by any of the other feasible points. However, (1,4,2) meets this

inequality at equality and it becomes the next fixed point. The final inequality uses

(1,4,2) and (0,5,1) and assigns α1 = 1
5

and α2 = 1
5
. Thus, SSL creates the following

three inequalities.

2
∑2

i=1 xi +
∑5

i=3 xi + 1
3

∑9
i=6 xi + 0

∑14
i=10 xi ≤ 3

2
∑2

i=1 xi +
∑5

i=3 xi + 3
11

∑9
i=6 xi + 2

11

∑14
i=10 xi ≤ 3 and

2
∑2

i=1 xi +
∑5

i=3 xi + 1
5

∑9
i=6 xi + 1

5

∑14
i=10 xi ≤ 3.

Consider the second inequality, 2
∑2

i=1 xi +
∑5

i=3 xi + 3
11

∑9
i=6 xi + 2

11

∑14
i=10 xi ≤ 3.

First observe that this inequality is not based upon a cover inequality. Therefore, none

of the results on lifting covers can find this inequality. Furthermore, it has four distinct

coefficients, which set it apart from both Bolton’s [10] and Harris’s [25] algorithms.

Applying sequential lifting, will generate integer coefficients, so it generate this inequality

either. Applying simultaneous lifting E1 [24] results in a coefficient of α1 = 1
3

and then

α2 = 0. In the opposite order, simultaneous lifting generates an α2 = 1
5

and α1 = 1
5
.

Consequently, SSL generates previously undiscovered valid inequalities of the P ch
KP .

To show that SSL generates undiscovered facet defining inequalities, it is necessary

to determine the affinely independent points utilizing Theorem 3.1.3. Since e1p
= 3 =

e1−1 = 4−1 and e2q
= 4 = e2−1 = 5−1, the conditions for facet defining are outlined

by case i). The affinely independent points are shown in Table 3.12.
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xi E E1 E2

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 1 1 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 1 0 0 0 0 0 0 0 0 0
4 0 0 1 0 1 1 1 1 1 1 1 1 1 1
5 1 0 0 1 1 1 1 1 1 1 1 1 1 1
6 0 0 0 0 0 0 1 1 1 0 0 0 0 0
7 0 0 0 0 0 1 0 1 1 0 0 0 0 0
8 0 0 0 0 0 1 1 0 1 0 0 0 0 0
9 0 0 0 0 0 1 1 1 0 1 1 1 1 1
10 0 0 0 0 0 0 0 0 0 0 1 1 1 1
11 0 0 0 0 0 0 0 0 0 1 0 1 1 1
12 0 0 0 0 0 0 0 0 0 1 1 0 1 1
13 0 0 0 0 0 0 0 0 0 1 1 1 0 1
14 0 0 0 0 0 1 1 1 1 1 1 1 1 0

Table 3.12: Affinely independent points for 2
∑2

i=1 xi+
∑5

i=3 xi+
3
11

∑9
i=6 xi+

2
11

∑14
i=10 xi ≤

3

The first five points are facet defining by the original lifting inequality. To verify the

first condition, observe that a6 +a7 +a8 +a14 = 19+19+19+13 = 71 ≤ 222−T2 = 74.

This allows the 6th through 9th points to be feasible. To verify the second condition

observe that a9 + a10 + a11 + a12 + a13 = 19 + 13 + 13 + 13 + 13 = 71 ≤ 222 − T2 = 74.

This allows the 10th through 14th points to be feasible.

It is clear to see that these points meet the lifted inequality at equality and are

affinely independent. Thus, SSL can generate previously undiscovered facet defining

inequalities. Furthermore, if more variables are included in this problem than any of

the lifted facet defining inequalities off of this new inequality would also be previously

undiscovered classes.
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Chapter 4

Computational Results

One contribution of this research is in the application of exact synchronized simulta-

neous uplifting over an arbitrary initial valid inequality and the development of an

algorithm to iteratively create valid inequalities of this new class. This section describes

the quantitative advancements of SSL through its implementation into commercial inte-

ger programming software, CPLEX[38]. These results show that SSL inequalities allow

CPLEX to solve problems that it could not solve before due to insufficient memory.

Additionally, SSL reduces the time to solve some IPs that CPLEX alone could also

solve.

The results of this computational study were obtained through the use of an Intel

(R) Core i7 computer with a 1.58 GHz processor and 3.0 GB of RAM. A commercial

optimization software, IBM’s CPLEX 10.0, was used to compare the results with and

without the SSL cuts. All results are reported in seconds. The SSL implementation is

created in C++.

An appropriate class of problems has to solve within a general time interval. Prob-

lems solving too quickly are unlikely to show either positive or negative effects for SSL.
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Additionally, problems requiring days to solve are also impractical for a small computa-

tional study.

This study is performed on randomly generated multiple knapsack problems (MKP).

An MKP is a KP with more than one constraint and is represented as maximize
∑

i∈N cixi

subject to
∑

i∈N aijxi ≤ bj for j = 1, ..., r and xi ∈ {0, 1} for all i ∈ N where r is the

number of rows and aij ≥ 0 for all i ∈ N and j ∈ {1, ..., r}.

The constraint coefficients, aij, are random integers taken from a uniform distribu-

tion, {0, ..., 1000} for i ∈ {1, ..., r} and j ∈ {1, ..., n}. Each objective coefficient, cij, is

calculated by adding the column coefficients and a uniform random integer between 0

and 100, cij = a1j + ... + arj + u where u is a uniformly distributed integer between

0 and 100. The right hand side of each constraint is one fifth of the sum of the row’s

coefficients rounded down to the nearest integer, b
∑n

j=1

aij

5
c = bi for i = 1, ..., r.

The computational study was conducted using n variables, with n equal to 50, 60, and

70. The number of rows varies such that r equals three and four. To ensure randomness

and avoid anomalies, 20 instances of each size problem are generated and the averages

reported.

For this study, the initial valid inequality is 0 ≤ 0. The first iteration of SSL creates

several unique inequalities. Each of these inequalities are then considered an initial valid

inequality for SSL, each of which generated more inequalities. Each of those were all

considered a new initial valid inequality and continued SSL iterations until all variables

were included.
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A key component of SSL is the quality of the sets E1 and E2. For the computational

study, the initial sets were selected based on the variables with a reduced cost greater

than −10. These random indices were sorted based on a and split into two sets at the

largest gap in between coefficients, where E1 contains the variables with the largest a

coefficients.

After creating the initial valid inequalities, the sets were selected based on size. The

number of indices in the problem but not in the inequality were determined. This

number was divided by four and determined to be the number of variables selected for

each set. The variables in E1 were the largest variables based on a and E2 were the

smallest. Thus, of the remaining points not in the inequality, the quarter of points with

the largest a value were placed in E1 and the quarter with the smallest in E2.

To reduce the number of points that must be generated, SSL simplifies the table into

layers. A layer exists for every Tj 6= Tj+1. This has no effect on the validity of the results

because only the most ”dominate” Tj is selected.

All inequalities generated by SSL were lifted into the inequality. This includes in-

equalities generated in an early iterations of SSL that will have more variables lifted in

before SSL terminates.

The results from the study are summarized in the tables below. Table 4.1 details

the number of problems that were solved with and without the addition of SSL cuts.

There are three problem classes where SSL implementation allowed more problems to be

solved to optimality than CPLEX alone. No instances where encountered where CPLEX
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solved and CPLEX with SSL did not. Of these 120 problems CPLEX solved, 79 while

implementing SSL and 61 without. This amounts to a 29.5% increase in the number of

problems solved to optimality.

n = 50 n = 60 n = 70
SSL CPLEX ∆ SSL CPLEX ∆ SSL CPLEX ∆

r = 3 20 20 0 20 20 0 17 14 3
r = 4 20 6 14 1 0 1 1 1 0

Table 4.1: Number of problems solved with SSL versus CPLEX

In situations where the problem failed, to solve the number of nodes and time required

were recorded and summarized in Table 4.2 below. When CPLEX failed to optimally

solve the problem, the average node size was about 13 million nodes, but the minimum

and maximum vary greatly. Additionally, the time before CPLEX declared that the

problem could not solve to optimality took between just over a minute to more than 25

minutes.

Nodes Time
Average 9,705,000 523.26

Minimum 1,370,000 81.00
Maximum 34,460,000 1553.00

Table 4.2: Nodes and time to fail to solve to optimality

To be effective, SSL inequalities must be generated and applied quickly. The average

preprocessing times, are shown in Table 4.3. It never requires more than one second

for SSL to execute. On average, it clearly requires less than quarter of a second. Also

in Table 4.3 are the average number of SSL cuts generated and added to the problem.

There were at most 17 cuts with a minimum of 9. Thus SSL generates many cuts quickly.
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n = 50 n = 60 n = 70
cuts time cuts time cuts time

r = 3 12.65 0.15 12.0 0.20 11.44 0.11
r = 4 13.45 0.20 13.2 0.03 14.55 0.01

Table 4.3: Preprocessing time for SSL

When CPLEX solves a problem to optimality both with and without SSL imple-

mentation, the time and percent difference recorded and shown in Table 4.4. All times

are averages in terms of seconds where a positive percent change represents SSL solving

faster than CPLEX.

n = 50 n = 60 n = 70
SSL CPLEX %∆ SSL CPLEX %∆ SSL CPLEX %∆

r = 3 185.00 269.15 31.27% 615.80 605.5 -1.7% 670.40 548.4 -22.25%
r = 4 1001.50 880.33 -13.76% DNE DNE DNE 1529.00 1103.00 -39.62%

Table 4.4: Time to solve with SSL versus CPLEX

While the time to solve with SSL inequalities is numerically larger, on average, Table

4.5 below shows p-values that resulted from the statistical analysis. A paired t-test

compared the time to solve with an α value of 0.05. Of the four situations where there

was enough data to compare, three found no significant difference between means time

to solve with and without SSL. The only situation with significant difference, signified

by a p-value= 0.01 < α = 0.05, is when n = 50 and r = 3 which is the problem class

that SSL solved faster than CPLEX. Thus for this instance, SSL solved statistically

significantly faster than CPLEX.

The research motivation for this thesis began with Bolton’s [10] algorithm. Table
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n = 50 n = 60 n = 70
r = 3 0.01 0.866 0.463
r = 4 0.552 DNE DNE

Table 4.5: P -values from paired t-test on time to solve

4.6 shows a comparison between Bolton’s method and SSL. SSL was able to solve 5.33%

more problems to optimality than Bolton’s algorithm. Thus, synchronized simultaneous

uplifting to Bolton’s inequalities is beneficial.

n = 50 n = 60 n = 70
SSL Bolton SSL Bolton SSL Bolton

r = 3 20 20 20 18 17 11
r = 4 20 20 1 5 1 1

Table 4.6: Problems solved SSL vs. Bolton

Overall, adding SSL inequalities provided a significant improvement over traditional

CPLEX resulting in approximately one-third more problems solved to optimality. This

computational study shows that SSL inequalities are fast to generate, do not require

significantly more time to solve, and enable CPLEX to solve problems that it could

not before. Further computational studies are encouraged to understand the precise

computational benefits of this thesis and which sets should be used.
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Chapter 5

Conclusion

The goal of this thesis was to develop a method to perform exact synchronized simulta-

neous uplifting of two sets into an arbitrary valid initial inequality. Another objective

is to generate cutting planes that perform better than traditional CPLEX. The SSL

algorithm presented in this thesis achieves these goals. Furthermore, the inequalities

generated by SSL form a new class of valid and at times facet defining inequalities.

SSL requires O(nb+n3) effort. The inequalities generated are valid and when specific

conditions are met, outlined in Theorem 3.1.3, they are facet defining. This is illustrated

by an example which demonstrates all critical aspects of the algorithm. After executing

SSL, two inequalities are generated. Both of these inequalities are shown to be facet

defining.

The computational study presented in Chapter 4 shows that adding SSL inequalities

to CPLEX enabled the software to solve 29.5% more problems to optimality where it

was unable to before. No instances were encountered that CPLEX could solve while

CPLEX with SSL cuts would not. SSL inequalities are created very quickly, requiring

less than a second to generate.
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5.1 Future Research

At present, exact synchronized simultaneous uplifting into an arbitrary inequality only

allows for two sets. Harris [25] developed an algorithm to exact synchronized simulta-

neous up lift three sets into the zero inequality. There is opportunity for research which

allows three or more sets to be lifted into an arbitrary initial valid inequality.

Additionally, SSL is currently restricted to uplifting. There are possible applications

in down and middle lifting. SSL is also limited to a single constraint KP. Applications

to multiple knapsack instances are still undiscovered.

Beyond the knapsack problem, there are areas of study in different types of problems.

Extending the SSL algorithm to handle node packing or edge covering problems is a new

application area. Other applications include mixed integer programs and non-binary

instances. Further research exists in the extensions of these synchronized simultaneous

lifting concepts for general integer programs with negative constraints.

This thesis provided a small computational study. Further research into set selection

and variety of problem classes is necessary. Additionally, a larger sample size would

allow for greater statistical analysis of the strength and quality of SSL application as

compared to CPLEX.

Overall, opportunities for research within polyhedral theory and combinatorial op-

timization are vast, and only a few are discussed in this chapter. When considering

lifting techniques, the goal is to achieve facet defining valid inequality. Unfortunately, a
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common challenge of researchers is to find these inequalities in a reasonable amount of

time. Thus, there are extensive areas for future development.
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