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Abstract—Corruption of photopleythysmograms (PPGs) by mo-
tion artifacts has been a serious obstacle to the reliable use of pulse
oximeters for real-time, continuous state-of-health monitoring. In
this paper, we propose an automated, two-stage PPG data pro-
cessing method to minimize the effects of motion artifacts. The
technique is based on our prior work related to motion artifact
detection (stage 1) [R. Krishnan, B. Natarajan, and S. Warren,
“Analysis and detection of motion artifacts in photoplethysmo-
graphic data using higher order statistics,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process. (ICASSP 2008), Las Vegas, Nevada,
Apr. 2008, pp. 613–616] and motion artifact reduction (stage 2)
[R. Krishnan, B. Natarajan, and S. Warren, “Motion artifact
reduction in photoplethysmography using magnitude-based fre-
quency domain independent component analysis,” in Proc. 17th Int.
Conf. Comput. Commun. Network, St. Thomas, Virgin Islands, Aug.
2008, pp. 1–5]. Regarding stage 1, we present novel and consistent
techniques to detect the presence of motion artifact in PPGs given
higher order statistical information present in the data. We analyze
these data in the time and frequency domains (FDs) and identify
metrics to distinguish between clean and motion-corrupted data. A
Neyman–Pearson detection rule is formulated for each of the met-
rics. Furthermore, by treating each of the metrics as observations
from independent sensors, we employ hard fusion and soft fusion
techniques presented in [Z. Chair and P. Varshney, “Optimal data
fusion in multiple sensor detection systems,” IEEE Trans. Aerosp.
Electron. Syst., AES, vol. 1, no. 1, pp. 98–101, Jan. 1986] and [C. C.
Lee and J. J. Chao, “Optimum local decision space partitioning for
distributed detection,” IEEE Trans. Aerosp. Electron. Syst., AES,
vol. 25, no. 7, pp. 536–544, Jul. 1989], respectively, in order to fuse
individual decisions into a global system decision. For stage two, we
propose a motion artifact reduction method that is effective even
in the presence of severe subject movement. The approach involves
an enhanced preprocessing unit consisting of a motion detection
unit (MDU, developed in this paper), period estimation unit, and
Fourier series reconstruction unit. The MDU identifies clean data
frames versus those corrupted with motion artifacts. The period
estimation unit determines the fundamental frequency of a corrupt
frame. The Fourier series reconstruction unit reconstructs the fi-
nal preprocessed signal by utilizing the spectrum variability of the
pulse waveform. Preprocessed data are then fed to a magnitude-
based FD independent component analysis unit. This helps reduce
motion artifacts present at the frequencies of the reconstruction
components. Experimental results are presented to demonstrate
the efficacy of the overall motion artifact reduction method.
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I. INTRODUCTION

PHOTOPLETHYSMOGRAPHY is a noninvasive, optical
means to obtain relative blood volume in tissue as a func-

tion of time. Since hemoglobin is an optical absorber, light
passing through tissue is modulated by each cardiac cycle of
the subject and also by other processes like respiration and sub-
ject motion. The resulting photoplethysmograms (PPGs) can be
acquired with reflectance- or transmittance-mode sensors, and
multiple excitation wavelengths allow waveform features from
time-domain PPGs to be converted into values of blood oxy-
gen saturation. Corruption of PPGs by motion artifacts has been
a significant obstruction to efficient and reliable use of pulse
oximeters for continuous real-time health monitoring, especially
in ambulatory settings [13]. If PPG data are to be reliably ob-
tained from wearable sensors used for real-time, continuous
state-of-health monitoring, then effective algorithms for motion
artifact reduction must be employed.

Over the years, most of the PPG enhancement research has
focused on motion artifact removal techniques. Various signal
processing techniques have been investigated to address the
problem of recovering quasi-periodic PPGs from data corrupted
with motion artifacts. These include wavelet analysis and de-
composition techniques [5] and adaptive filters [6]. The study
in [7] indicates that both wavelet-transform and adaptive filter
techniques introduce phase distortions in PPG data. Generally,
PPG distortions due to nonlinear-phase filters do not dramat-
ically affect heart rate (HR) or oxygen saturation (SpO2) cal-
culations. However, problems with nonlinear-phase filters arise
when PPG is used for purposes like biometric indicators for
patient authentication, where the true waveform shape (without
filtering) is important. PPGs are also of interest for comparison
with hemodynamic models (e.g., blood pressure/flow models),
as they offer a cuffless, noninvasive means to gather these data.
In such contexts as well, motion-reduction technique that does
not, by nature, distort the target PPG is ideal. Work involving
analog filters and moving average techniques is presented in [8].
The artifact extraction problem has also been viewed as a blind
source separation problem in [9], [13], and [10]. In [9], an en-
hanced preprocessing unit preceded the independent component
analysis (ICA) block. The preprocessing unit consisted of signal
period detection using an autocorrelation method followed by
a block-interleaving operation. However, this technique relies
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Fig. 1. PPG data processing system model—preprocessing unit (bandpass filter, detrender, MDU, and Fourier series reconstructor), and magnitude-based
FD-ICA.

on the ability of the autocorrelation technique to correctly de-
tect the waveform period and hence provides erroneous results in
the presence of extreme motion artifacts. In [10], an improved
preprocessing technique is described that employs extrapola-
tion/truncation of each cardiac cycle to the mean of the measured
cardiac cycle followed by the ICA. This method is highly prone
to errors and inconsistencies, since accurate cardiac cycle mea-
surements become difficult in the presence of extreme motion.
In [11], a technique based on the use of correlation canceler is
described for correlating and canceling motion artifact signals
(secondary signal) and obtaining clean PPG signals (primary
signal). The primary signal is then used for measuring blood sat-
uration levels and heart-beat rate. However, the accuracy of the
technique relies heavily on the ability to accurately determine
the proportionality constant and the secondary reference signal.

While removing motion artifact from PPGs is critical, detect-
ing its presence is a key task that needs to be addressed first. A
reliable motion artifact detection technique lays the foundation
for a completely automated PPG data processing system that can
identify PPG data frames contaminated with artifacts and further
process them for motion artifact removal. Some work has ad-
dressed the detection issue by correlating a PPG data frame with
a clean reference signal to detect motion artifact [10]. However,
such techniques are unsuitable for robust continuous monitoring
where clean PPG signals and motion-corrupted signals are to be
identified automatically in real-time implementation.

In this paper, we propose a complete PPG data processing sys-
tem that combines motion artifact detection and reduction tech-
niques introduced in [1] and [2], respectively.1 These two steps
are fundamental to the realization of a completely automated
PPG processing system that would enable reliable continuous
state-of-health monitoring of subjects.

The paper first addresses the issue of detecting the presence
of motion artifact based on the inherent time- and frequency-
domain (FD) characteristics of PPG data acquired from different
subjects. Specifically, the higher order statistics (HOS) proper-
ties of clean and motion-corrupted PPG data are distinguishing
features that aid detection. In the time domain, skew and kurto-

1The material in this paper was presented in part at the IEEE Conference on
Acoustics, Speech and Signal Processing (ICASSP 2008), Las Vegas, NV, and
at the International Conference on Computer Communications and Networks
(ICCCN 2008), St. Thomas, Virgin Islands.

sis measures associated with the data are analyzed. In the FD,
the presence of random components due to motion artifact is
ascertained using a FD kurtosis measure as in [21]. Further-
more, bispectral analyses of PPG data indicate the presence of
strong quadratic phase coupling (QPC) and more specifically
self-coupling in the case of clean PPG data. In motion-artifact-
corrupted data, QPC between random frequency components
is observed, but the self-coupling feature is absent. Neyman–
Pearson (NP) tests are formulated based on these time-domain
and FD metrics. Using practical test data, we characterize the
performance (probability of false alarm: PF , probability of de-
tection: PD , and probability of error: Perror) of the artifact de-
tection tests. The performance results illustrate the potency of
the proposed method for consistent and robust detection of PPG
motion artifact. Note that HOS properties of EEG data have been
investigated in [12] and [23], and fourth-order cumulants were
used in [15] to dynamically determine rhythmic oscillations in
PPG data. However, we believe that the paper presented here
is the first effort to comprehensively investigate PPG motion
artifact detection based on HOS techniques.

As a follow-on to motion artifact detection, we present a new
motion artifact reduction method that combines an enhanced
signal preprocessing unit and a FD ICA unit. The preprocessing
unit incorporates a Fourier series reconstruction of the PPG data
that utilizes the spectrum variability and quasi-periodicity of the
pulse waveform. Following this is a novel FD-ICA routine that
considers only magnitude information. This technique assumes
instantaneous mixing of statistically independent sources in the
time domain and a constant mixing matrix for the time frame
considered. The routine is different from the complex FD-ICA
approach described in [24]. A comparison of the technique used
in this paper with the time-domain ICA and complex FD-ICA
techniques in the literature implies that the new magnitude-
based FD ICA approach more effectively reduces motion
artifact.

II. SYSTEM MODEL

The model for the PPG data processing system is illustrated
in Fig. 1 and essentially consists of the preprocessing unit (that
consists of the bandpass filter, detrender, MDU, and Fourier se-
ries reconstructor) and the FD-ICA unit. PPG data obtained from
the pulse oximeter are first filtered and detrended as described



KRISHNAN et al.: TWO-STAGE APPROACH FOR DETECTION AND REDUCTION OF MOTION ARTIFACTS 1869

in Section IV. The motion artifact detection unit (MDU—see
Section V), determines whether the data, obtained from filtering
and detrending, are corrupt with motion artifacts. If the data are
found to be clean, no further cleansing operations are imposed.
If the data are corrupt, they are fed into the period estimation
and Fourier Series reconstruction unit that yields a PPG signal
composed of primarily its fundamental frequency component
and harmonics as will be discussed in Section VI. We then use
the MDU to determine whether the reconstructed PPG signal is
stained with motion artifacts. If the data are not free of motion
artifacts, the FD-ICA routine is applied to estimate the blood
volume pulsation and motion artifact components (represented
by Component 1 and Component 2 in Fig. 1).

III. THEORY

The following sections review the HOS measures applied to
these PPG data [16]–[20]:

1) Skew and Kurtosis: Skew is a measure of the symmetry
(or the lack of it) of a probability distribution, while the
kurtosis measure indicates a heavy tail and peakedness
OR a light tail and flatness of a distribution relative to the
normal distribution. This measure captures the random
variations of data from the mean. The skew and kurtosis
of a random variable x are given by

C3x(0, 0) =
µ3

σ3/2 (skew)

C4x(0, 0, 0) =
µ4

σ4 − 3 (kurtosis) (1)

where σ is the standard deviation, and µ3 and µ4 are the
third- and fourth-central moments, respectively.

2) Bispectrum: The third-order polyspectrum of a random
variable x is defined as the Fourier transform of its third
cumulant sequence

S3x(f1 , f2)

=
∞∑

k=−∞

∞∑
l=−∞

[C3x(k, l) exp(−j2π(f1k + f2 l))] (2)

where C3x(k, l) is the third cumulant sequence of x. The
third-order polyspectrum, or the power spectrum, sup-
presses all phase information in a random process, while
the bispectrum does not. When the harmonic components
of a process interact, definitive phase relations also exist,
in addition to the contribution of power at their sum and
difference frequencies; this is called QPC. For example,
consider the following process:

X1(k) = cos(λ1k + φ1) + cos(λ2k + φ2)

+ cos(λ3k + φ3) (3)

where λ3 = λ1 + λ2 , indicating that λ1 , λ2 , and λ3 are
harmonically related. If φ1 , φ2 , and φ3 in (3) are indepen-
dent random variables uniformly distributed in the range
[0, 2π], then (λ3 , φ3) is an independent harmonic compo-
nent. However, if φ3 = φ1 + φ2 in (3), then (λ3 , φ3) is the
result of quadratic coupling between (λ1 , φ1) and (λ2 , φ2).

IV. PPG DATA ANALYSIS

The PPG data analysis is performed to understand and extract
features that can be used as distinguishing metrics between clean
and motion-corrupted data. Initially, frames of data are collected
from healthy subjects in the age group of 22–24 years, using a
reflectance pulse oximeter [13], [14]. The subjects follow the
same motion patterns as in [13].

1) Stationary position: The subjects remain still with no wrist,
finger, or elbow movement.

2) Finger movements (three cases): left-right (swinging),
upand down (bending), and arbitrary finger movements
while keeping the wrist and elbow stationary.

3) Wrist movements: The wrist is rotated and arbitrarily
moved, keeping the elbow and fingers stationary.

4) Elbow movements: The elbow is bent and extended, keep-
ing the wrist and fingers stationary.

Data are fed into a MATLAB script that partitions the entire
data segment into short frames of equal length. First, each frame
is passed through a bandpass filter (0.3–12 Hz). Here, the design
of the filter is critical, as the phase information in the data needs
to be preserved to retain the shape of the PPG waveform. For
this purpose, a zero-phase forward-reverse filter of order four
in both directions is chosen. After filtering, the baseline trend
associated with each data frame is removed by extracting an
appropriately fitted polynomial curve. Each data frame is then
inspected in the time domain and FD, and the HOS properties
are characterized.

A. Time-Domain Analysis

In the time domain, we analyze the skew and kurtosis measure
of the time variation of the amplitude of the PPG signal in each
frame considered. This is done by evaluating (1) for each data
frame. It is important to note that these measures will vary
with age and health condition. It is observed that the skew and
kurtosis measured for the case of motion-corrupted data are
much higher in magnitude when compared to the skew and
kurtosis for clean data. Therefore, these measures could serve
as candidate features for motion detection.

B. FD Analysis

In the FD, the kurtosis measure is computed for the magni-
tude of the Fourier spectrum for each data frame. This measure
considers the magnitude of the components present at each fre-
quency sampled by the discrete Fourier transform operation.
It is seen that kurtosis is lesser in magnitude for frames cor-
rupted with motion artifact versus frames with clean data. This
means that a Fourier spectrum of clean data has a lower number
of significant frequency components (since only the harmonic
components are prominent) compared to a spectrum of motion
corrupted data (that consists of harmonic and random spectral
components).

C. Bispectral Analysis and QPC

The bispectrum and the bicoherence of each data frame are
analyzed using the MATLAB Higher-Order Spectral Analysis
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TABLE I
BISPECTRUM PLOT RESULTS: CLEAN DATA

TABLE II
BISPECTRUM PLOT RESULTS: CORRUPT DATA

Toolbox [18]. Significant peaks at nonzero frequencies are ob-
served in the bispectrum diagonal slice plots for clean PPG data,
thereby confirming the presence of strong QPC. In the case
of clean PPG data from the initial subjects, Table I indicates
peaks at tf0 Hz, t = 1, 2, 3, where f0 = 1.54 Hz is the most
dominant frequency being coupled, indicating the presence of
self-coupling between frequencies (we have f0 + f0 = 2f0 and
f0 + 2f0 = 3f0 and so on, indicating equally spaced peaks in
the diagonal slice plot). However, in the case of corrupt PPG
data, QPC is observed to occur between random frequency com-
ponents, and the phenomenon of self-coupling is absent, as il-
lustrated in Table II. The features used for motion detection are
summarized shortly

1) Time-domain features: Skew and kurtosis measures that
provide information on the distribution of data. They con-
tain information regarding amplitude variation of the PPG
waveform.

2) FD feature: FD kurtosis measure that indicates the pres-
ence of random components in the Fourier spectrum,
which are not present in the spectrum of a clean signal
that contains only the main harmonics.

3) Bispectral feature and QPC: Clean PPG data are charac-
terized by the presence of strong self-coupling between
the fundamental components of the frequency spectrum.
This is absent in artifact-corrupted measurements, where
QPC between random frequency components is observed.

V. MOTION DETECTION UNIT

A. Methods for Motion Artifact Detection

1) Neyman–Pearson Detection Rule Formulation: We adopt
NP Detection method [22] for detecting motion artifacts in PPG
measurements. PPG data were collected from ten healthy male
and female subjects, in the age group of 22–30 years (differ-
ent subjects from those considered for preliminary analyses and
feature extractions in Section IV), in order to formulate the hy-
potheses for the NP detection rule. The subjects followed the
same motion routines as detailed in Section IV. Based on the
resulting data, distinguishing measures were computed for each
data frame as described in Section IV. For each of the measures,
let H0 denotes the null hypothesis corresponding to the region
for clean data and H1 denote the alternative hypothesis corre-
sponding to the region for corrupt data. Under the hypotheses

H0 and H1 the time-domain kurtosis, skew, and FD kurtosis
measures are distributed as

H0 : yi ∼ N (µ0i , σ
2
0i)

H1 : yi ∼ N (µ1i , σ
2
1i) ∀i ∈ {1, 2, 3} (4)

whereN (µ, σ2) is a Gaussian distribution with mean µ and vari-
ance σ2 , and i corresponds to each of the distinguishing metrics.

yi is the observation corresponding to the time-domain kur-
tosis (i = 1), skew (i = 2), and FD kurtosis (i = 3) measures.
The sample histogram plots of clean (hypothesis H0) and noisy
(hypothesis H1) time-domain kurtosis measure data are pro-
vided in Fig. 2. Based on values of the time-domain kurtosis
and skew for each frame, local decisions δi ∈ {−1, 1} are made
according to

δi =
{

1 if yi ≥ ηi

−1 if yi < ηi for i ∈ {1, 2}
(5)

where ηi = σ0iQ−1(1 − PFi
) + µ0i , δi = −1 corresponds to

the null hypothesis, and δi = 1 corresponds to the alternative
hypothesis, ∀ is “for all,”∈ is of set.”Here, PFi

is the false-alarm
probability. For FD kurtosis, a decision is made according to

δi =
{

1 if yi ≤ ηi

−1 if yi > ηi for i = 3
(6)

where ηi = σ0iQ−1(PFi
) + µ0i . It can be easily shown for the

time-domain kurtosis and skew measures that

PFi
= 1 −Q

(
ηi − µ0i

σ0i

)
and

PDi
= 1 −Q

(
ηi − µ1i

σ1i

)
(7)

where PDi
is the corresponding probability of detection for each

measure, and Q−1 is the inverse Q-function where, Q-function
is the tail probability of the standard normal distribution. For the
FD kurtosis measure, the corresponding PFi

and PDi
are given

by

PFi
= Q

(
ηi − µ0i

σ0i

)
and

PDi
= Q

(
ηi − µ1i

σ1i

)
. (8)

The tests in (5) and (6) are applied to data obtained from three
new healthy test subjects of 22–30 years of age [different sub-
jects from those considered for formulating the hypotheses in
(4)], in addition to the data from ten subjects considered earlier.
The performance of all motion detectors using test data from the
three new subjects (for brevity of space) is demonstrated against
its theoretical performance, using receiver operating character-
istic (ROC) curves [22] in Fig. 3. It is important to note that the
performance on test data conforms to that expected in theory, as-
suming a Gaussian distribution for yi . The kurtosis measures in
the time domain and FD perform better than the skew measure in
the time domain. This is because the skew measure indicates the
symmetry (or the lack of it) of the distribution of the data about
the mean and is thus more characteristic of the PPG waveform
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Fig. 2. Sample histogram plots of (a) clean (hypothesis H0) and (b) noisy (hypothesis H1) time-domain kurtosis measure data.

Fig. 3. ROC curves (theoretical plot versus test data plot) for the (a) time-domain kurtosis measure, (b) time-domain skew measure, and (c) FD kurtosis measure.

(or the subject), while the kurtosis measure captures random
variations from the mean.

2) Self-Coupling Detection Rule: As concluded earlier,
clean PPG data are characterized by self-coupling, which is ab-
sent from data containing motion artifact (though QPC between
random frequency components is present). That is, self-coupling
implies that the data are clean or contain insignificant amount of
motion artifacts. Hence, to determine the presence/absence of
self-coupling, the frequencies being coupled are noted for each
data frame and a decision is made as follows:

δi =
{

1 Self-coupling ⇒ clean data

−1 No self-coupling ⇒ corrupt data.
(9)

The PD and PF measures related to the self-coupling measure
are directly computed from the initial training set. The PF value
is found to be 0.0420, while the PD value is found to be 0.8932
for this training set.

B. Decision Fusion

The time-domain measures (kurtosis, skew) and the FD mea-
sures (QPC, kurtosis) are modeled as four individual sensors,

whose independent decisions can be fused to detect the pres-
ence of motion artifact in a given data frame. To implement this
sensor decision fusion, we employ two methods: hard-decision
fusion presented in [3] and soft-decision fusion developed
in [4].

The hard-decision fusion technique fuses individual sensor
decisions while minimizing the probability of error for the over-
all detection system. Weights or reliability measures that are a
function of individual PFi

and PDi
values are associated with

the decisions made by the individual sensors, and the fused
global decision is given as follows:

f(δ1 , . . . , δn ) =




+1 if a0 +
4∑

i=1

aiδi > 0

−1 otherwise

(10)

where δi = +1 and δi = −1 ∀i ∈ {1, 2, 3, 4} are the decisions
made by the individual sensors corresponding to the pres-
ence/absence respective of motion artifact based on the detection
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TABLE III
SENSOR-DECISION-FUSION RESULTS

rules developed in Section V-A. The weights ai are defined as

a0 = 0

ai = log
(

PDi

PFi

)
if δi = +1

ai = log
(

1 − PFi

1 − PDi

)
if δi = −1 (11)

assuming uniform cost assignment and equal prior probabilities
for both hypotheses in (4).

The tests in (5), (6), and (9) are applied to data obtained
from three test subjects as described in the previous section to
obtain δi ∀i ∈ {1, 2, 3, 4}. We select thresholds in (5) and (6)
to yield PFi

= 0.2. We then evaluate the individual PDi
and

their respective probability of error Perrori
. The weights are

computed as in (11), and the fused decision is formed using
(10). This is repeated for PFi

= 0.4.
Under the same assumption of uniform costs and equal prior

probabilities, we employ the soft fusion technique as in [4].
In this technique, we partition each of the hypothesis regions
H0 and H1 into mutually exclusive subregions and associate a
level of confidence with each of them. The level of confidence
depends on the distance of the local decision statistic from the
decision threshold and hence is also a function of the probability
of false alarm and the probability of detection associated with
the subregion. Optimal partitioning of the local decision space
is achieved by partitioning the probability of false alarm and the
probability of detection based on a J-divergence maximization
criterion. For the time-domain kurtosis and skew measures, PFi

and PDi
have a functional relationship from (7) of

PDi
= 1−Q

(
σ0iQ−1(1−PFi

)+ µ0i −µ1i

σ1i

)
, i ∈ {1, 2}.

For the FD kurtosis measure, the relationship between PFi
and

PDi
from (8) is as follows:

PDi
= Q

(
σ0iQ−1(PFi

) + µ0i − µ1i

σ1i

)
, i = 3

The soft-decision fusion technique is performed for PFi
= 0.2

and PFi
= 0.4 for i ∈ {1, 2, 3}. We refer the readers to [4] for

a detailed qualitative treatment.
The results are summarized in Table III. It can be easily

seen that for both values of PFi
, the fused decision, and in

particular the soft fusion technique, provides a better probability
of detection of motion artifact than the individual sensors.

VI. MOTION ARTIFACT REDUCTION METHOD

The proposed motion artifact reduction method consists of a
preprocessing unit and an FD-ICA unit. The preprocessing unit
employs a bandpass filter, detrender, MDU, and Fourier series
reconstruction, and its output is fed into the FD-ICA unit. The
FD-ICA unit separates out the motion artifacts present at the
frequency components chosen for reconstruction.

A. Preprocessing Unit

The preprocessing unit consists of the detrender, bandpass
filter, MDU, period estimator, and Fourier series reconstructor,
as shown in Fig. 1. The detrender, bandpass filter, and MDU are
the same as those used in Sections IV and V, respectively.

1) Period Estimation: The period of the PPG signal can be
estimated by an autocorrelation operation. However, accurate
and consistent prediction of the period is not possible by this
method in the presence of extreme motion artifacts, where the
PPG data are completely buried in noise. Hence, an indirect
method for the computation of the period is considered (using
the MDU from Section V). When a frame with motion artifact
is identified as corrupt, the most recent frame with clean data
is identified. The most significant frequency component from
the clean frame is identified from its Fourier spectrum and also
used as the fundamental period for the corrupt frame. This is
a reasonable assumption, since moment-to-moment changes in
HR should be minor.

2) Fourier Series Reconstruction: Upon obtaining the fun-
damental frequency and its harmonics for a corrupt frame, a
Fourier series reconstruction of the signal is performed. In this
reconstruction process, frequencies in the neighborhood of the
harmonics are also used to account for the spectral variability of
the PPG data. This is motivated by the inherent quasi-periodic
nature of PPG signals. Additionally, in the presence of motion
artifact, we expect a possible doppler spread around the funda-
mental frequency and its harmonics. Hence, we must account
for this frequency-dependent spread of energy. We use roughly
5-to-6 significant frequency components near the fundamen-
tal frequency determined for the data frame under considera-
tion. The number of frequency components chosen is a tradeoff
decision that would depend on several factors—using greater
number of power components from the Fourier spectrum would
render the preprocessed signal to be heavily noisy due to in-
crease in contribution from motion artifacts. At the same time,
power contribution from a clean PPG may have widened in fre-
quency, depending on the intensity and nature of the movement
artifact. Therefore, the neighborhood decision (i.e., the number
of frequency components around the fundamental frequency) is
a designers choice that must be based on a careful consideration
of all factors. The technique is illustrated in Fig. 4.

B. FD-ICA Unit

In this paper, we assume that motion artifacts and PPG signal
sources mix linearly with a mixing matrix in the time domain to
form the observables (measurements). The observables, denoted
by x1(t) and x2(t), are the preprocessed measurements due
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Fig. 4. Fourier series reconstruction of a motion-corrupted frame.

to the near-IR and red excitation sources, respectively. For a
measurement time frame τ , this instantaneous mixing is given
by

x1(t) = a11s1(t) + a12s2(t)

x2(t) = a21s1(t) + a22s2(t) (12)

where sources s1(t) and s2(t) denote the time-domain PPGs
and motion artifacts, respectively. The mixing matrix A is as-
sumed to be constant over the time frame τ . Hence, the FD
representation of (12) is

X1(f) = a11S1(f) + a12S2(f)

X2(f) = a21S1(f) + a22S2(f) (13)

where Xi(f) and Si(f) are the Fourier transforms of xi(t) and
si(t) for i = 1 and 2. Now, considering the magnitude of Xi(f)
and using the triangle inequality, we can write (13) as

|X1(f)| ≤ a11 |S1(f)| + a12 |S2(f)|
|X2(f)| ≤ a21 |S1(f)| + a22 |S2(f)|. (14)

Both heart activity and motion artifacts affect the blood vessel
volume at the tip of the finger, the acquisition point for PPG
data in this study. Variations in blood volume due to source in-
terference are observed to result in corrupt PPG data. However,
interference between the two source signals is maximal when
they are aligned in the same direction in the signal space. That
is, for the case of maximal interference, S1(f) and S2(f) ex-
hibit linear dependence, thus equality in (14) can be considered.
Therefore,

|X1(f)| ≈ a11 |S1(f)| + a12 |S2(f)|
|X2(f)| ≈ a21 |S1(f)| + a22 |S2(f)|. (15)

Hence, the Fourier magnitude spectrum of the corrupt PPG data
can be modeled as motion artifacts and pulsatile blood volume
components linearly mixing with an unknown mixing matrix.

Since these pulsatile signals and motion artifacts are assumed
to be statistically independent, we can employ ICA in either
the time domain or FD. From (15), ICA can be performed on
the magnitude spectrum of x1(t) and x2(t), using the fastICA
MATLAB package based on the fast ICA algorithm [25]. After
applying the ICA routine to these magnitude spectra, we obtain
an estimate of Ŝ1(f) and Ŝ2(f) that represents blood volume
pulsation and motion artifact magnitude information, respec-
tively. Utilizing the phase information of the original PPG data,
we then reconstruct the clean PPG data and the motion artifacts.

In traditional FD ICA approaches [24], ICA is performed on
complex data under the assumption that the mixing matrix is
different for each frequency bin. In another FD approach ap-
plied to speech recognition [26], the energy of the observables
in the FD is considered, but the unmixing matrix varies for
different frequency bins. As a result, conventional approaches
suffer from permutation problems and gain issues as discussed
in [24]. However, these issues do not exist in our approach since
all of the frequencies selected by the preprocessing unit are
treated as a single bin for which an unmixing matrix is com-
puted, i.e., the mixing/unmixing matrix is treated as frequency
nonselective (constant for all frequencies). The gain issue is
tackled by normalizing the determinant of the unmixing matrix
to unity, as discussed in [24], then the power of the recovered
PPG source signal (obtained after the FD-ICA process) is scaled
to the original PPG measurement data.

VII. METHODS

Data were collected from ten healthy subjects in the age group
of 22–30 years, who were subjected to the same motion routine
as mentioned in Section IV. Data from each subject were fed
to a MATLAB script that dissects the entire segment into short
equal-length frames. The frame length was picked to accom-
modate roughly three-to-four heart cycles in each of the frames,
implying a time length of about 2–3 s. One factor considered for
this purpose was to keep data frames short enough such that the
mixing matrix can be assumed to be a constant across the data
frame considered (stationarity concern in ICA); yet long enough
to derive crucial statistical and spectral information relevant to
the frame under consideration. It may be noted that determining
the optimal frame length is a design issue in itself that would
have to incorporate factors like speed or frequency of motion
(that would help determine the accurate time length over which
the mixing matrix may be regarded constant) and physiological
factors. These frames were fed to the MDU to detect the pres-
ence of motion artifact. The frames identified as corrupt were
then processed using the technique described in Section VI.

VIII. RESULTS AND DISCUSSION

The results of the separation process for a single subject are
presented in Fig. 5. Each recovered signal segment is visually
compared (shape and peak-to-peak amplitude) with the most
recent clean frame (the Reference). The proposed technique
(magnitude-based FD-ICA) is effective even in the presence of
significant motion artifacts.
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TABLE IV
CORRELATION COEFFICIENT FOR QUANTITATIVE COMPARISON OF DIFFERENT TECHNIQUES

Fig. 5. Separation results using the new technique—sampling rate of pulse
oximeter: 200 Hz; frame length: 2–3 s; reference PPG (clean); observed PPG
(measured); preprocessed PPG (after detrending, filtering, and Fourier series
reconstruction); magnitude-based FD-ICA.

A quantitative comparison between various techniques as
applied to different types of motion artifacts is presented in
Table IV. A correlation coefficient (CC) (normalized to unity)
is obtained by identifying the maximum of all peaks that appear
in the normalized cross-correlation plot between the chosen ref-
erence signals and the output signals recovered by each of the
techniques.

The same separation routine, when applied to data obtained
from the rest of the ten subjects, effectively recovers the clean
PPG data from the corrupt frames in all cases. However, the

efficacy of the whole routine depends primarily on the pre-
processing phase, in particular the accuracy in determining the
fundamental frequency of the corrupt frame. This can be seen
from Table IV, where the CCs between the recovered signals
and their corresponding references drop when recovery from
the Fourier preprocessing phase is not effective enough. Hence,
it can be understood that the clean signal are recoverable if the
fundamental frequency, determined from the most recent clean
frame (reference), matches the actual fundamental frequency of
the corrupt frame.

A. Comparison Between FD-ICA and Time-Domain
ICA Methods

Assuming the independence of source signals and their linear
mixing with an unknown mixing matrix in the time domain
as in (12), the preprocessed observables were sent to a time-
domain ICA routine. The results obtained from the time-domain
ICA routine were then visually compared with those from the
FD-ICA technique and the reference signal (shape and peak-
to-valley height), as shown in Fig. 6. The FD-ICA technique
outperforms the time-domain ICA process. This is also apparent
from Table IV: the CC associated with the FD-ICA routine
is much higher than its time domain counterpart for all cases
of movement. It may be noted that when performing an ICA
based on the assumption of a constant mixing/unmixing matrix,
the duration of the data frame should be short enough for the
assumption to hold. Using long data frames would imply that
the mixing/unmixing matrix is not a constant and hence leads
to inaccurate estimation of the sources.

B. Comparison Between FD-ICA and Complex ICA Methods

In the complex ICA formulation of the problem, it is assumed
that the sources mix with the unknown mixing matrix in a con-
volutive manner in the time domain. This directly translates to
the instantaneous mixing of the sources with the mixing ma-
trix in the FD as in [24]. Here, the assumption of independence
between the sources in the FD is considered. For fairness in com-
parison, all frequencies selected by the preprocessing unit are
treated as a single frequency bin. The mixing matrix is assumed
to be frequency nonselective, and hence only one mixing matrix
is computed for all the frequencies selected during preprocess-
ing, unlike the traditional practice adopted in the complex FD
ICA approach. The complex ICA routine described in [27] was
implemented for the complex data obtained by the Fourier trans-
form of each preprocessed signal. The results obtained from the
complex FD ICA routine were visually compared with those
from the FD-ICA technique and the reference signal (shape and
peak-to-valley height) in Fig. 6. It can be easily seen that the
newly proposed FD-ICA routine outperforms the complex ICA
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Fig. 6. Comparison of the FD-ICA techniques with the time-domain ICA and
complex ICA approaches.

routine. The superiority of the proposed technique is quanti-
fied in Table IV: the CC for the FD-ICA method is consistently
higher than that of the complex ICA approach for all cases of
movement.

IX. CONCLUSION

In this paper, we formulate a robust method for detection and
removal of motion artifact in PPG data, primarily considering
HOS in the detection phase. In the time domain, we observe
that the skew and kurtosis measures associated with the motion-
corrupted PPG data are much higher in magnitude than the same
measures for clean PPG data. The FD kurtosis measure is much
smaller for the corrupt data frames than for the clean frames.
Bispectral analyses of PPG data indicate the presence of strong
QPC and, more specifically, self-coupling in the case of clean
PPG data. Though QPC is found in data corrupted by motion
artifacts, the self-coupling feature for the desired PPG is absent.
Based on all of these observations, NP rules are formulated for
each of the measures. It is understood that kurtosis-based detec-

tion is more reliable than the skew measure. It is seen that soft-
decision fusion based on individual measures further enhances
the overall detection capability. In summary, the HOS-based
motion detection algorithm is a consistent and reliable method
to identify corrupt data frames that can be further processed for
motion artifact removal.

For practical implementation, motion artifact detection
maybe be performed with a cognitive sensor that would operate
in two phases.

1) Learning phase: In this phase, the sensor unit determines
the time domain and FD measures associated with clean
and motion-artifact-corrupted PPG signal of the subject.
Then the NP rules are formulated based on observations
in the learning phase. This process can be perceived as
something similar to how a voice recognition software is
set up on a cell phone.

2) Operational phase: The sensor determines the frames that
are corrupt and clean based on the formulated NP rules.
Once a frame is identified to have motion artifacts, ar-
tifact reduction/removal algorithms are initiated to clean
the signal.

In this implementation model, once the learning phase is
complete, the sensor (along with the motion artifact detec-
tion and removal algorithms) can operate in real time. We ac-
knowledge that learning may render this technique unattrac-
tive for routine clinical use with existing off-the-shelf devices.
However, we presume that with advances in sensor process-
ing power and minor updates to device architectures (e.g., sec-
ondary processing chips), the computational loads incurred and
the processing times required for learning would be significantly
reduced.

In addition to the MDU, this paper describes an enhanced PPG
preprocessing routine that is employed prior to the magnitude-
based FD ICA routine. We readily observe that this process-
ing routine effectively reduces motion artifacts in corrupt data
frames even in the event of significant motion. The FD-ICA rou-
tine proposed in this paper is compared with time-domain ICA
and complex ICA routines and is shown to be more effective in
recovering clean PPG data. The efficacy of the method depends
heavily on the ability of the MDU to identify corrupt/clean data
segments and estimate the period of the waveform. More accu-
racy in the fundamental period estimation of the corrupt frame
helps the FD-ICA routine to more effectively separate motion
artifacts from desired data.
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