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Abstract 

In rainfed cropping systems of the U.S. Great Plains, precipitation represents the main 

input and evapotranspiration, runoff, and drainage represent the main outputs of the soil water 

balance. In the state of Kansas, about 87% of the annual precipitation returns to the atmosphere 

through the evapotranspiration process, where unproductive soil evaporative losses can account 

for 30% to 50% of total evapotranspiration. Given this context, it is essential to identify and 

assess new crop rotations and agronomic practices aimed at shifting non-productive evaporative 

losses into productive transpirational losses. Commonly, soil evaporation is measured using the 

microlysimeter technique, but this technique is labor intensive and only suitable for short 

periods. Since soil evaporation rate depends on surface soil moisture conditions, this thesis is 

centered around a pivotal question: Can we use soil moisture observations from electromagnetic 

sensors to accurately estimate in situ soil evaporation through a data-driven approach? The first 

chapter of this thesis explores the accuracy of two new electromagnetic sensors, the TEROS 10 

and TEROS 12, in sand, loam, and silty clay loam soils at various moisture levels. The second 

chapter introduces five different data-driven approaches that combine the FAO-56 Dual Crop 

Coefficient model with 1) in situ observations from a calibrated soil moisture sensor and 2) 

measurements of green canopy cover to quantify soil evaporation rates in winter wheat and bare 

soil. Overall, the results of our study demonstrate the feasibility of using a simple model coupled 

with in situ soil moisture observations to estimate soil evaporation rates during the entire 

growing season. 
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Chapter 1 - General Introduction 

The soil water balance represents the inflow and outflow of water on the land surface, 

where precipitation is the main inflow in rainfed systems and soil evaporation (E), plant 

transpiration, canopy interception, surface and sub-surface runoff, and drainage are the main 

outflows that shape the hydrological budget of a region (Hillel, 2012; Wilcox et al., 2003). 

Globally, ~65% of the water that falls on the Earth's surface returns to the atmosphere through 

the combined process of evapotranspiration (ET), while the remaining 35% mostly represents 

losses due to runoff and drainage (Rodell et al., 2011; Trenberth et al., 2007). On average, the 

state of Kansas receives 685 mm of precipitation per year, where approximately 85-90% of this 

precipitation returns to the atmosphere through ET (Reitz et al., 2017; Sophocleous, 1998). 

Given the prevalence of ET as the primary outflow component in the soil water balance of this 

region, and the inherent difficulties in separately measuring soil evaporation, canopy 

interception, and plant transpiration, scientists have historically focused on quantifying the 

combined ET process. At the fundamental level, the process of soil evaporation, canopy 

interception, and plant transpiration are essentially an evaporative process (i.e., phase change 

from liquid to vapor). Nonetheless, plant transpiration is a process tightly linked to primary 

biomass production, while evaporation from the soil surface and leaf or residue surfaces can be 

considered unproductive water losses. Thus, understanding the magnitude of soil evaporative 

losses is essential to develop, identify, and assess crop rotations and tactical agronomic 

management practices that could shift non-productive evaporative losses into productive 

evaporative losses. 

In the U.S. southern and central Great Plains (Texas, Oklahoma, Kansas, eastern 

Colorado), hard red winter wheat (Triticum aestivum L.) is the predominant crop with a total 
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annual production that exceeds 20 million metric tons, which represents ~30% of the entire 

wheat production for the United States (Lollato et al., 2017; USDA-NASS, 2016). The state of 

Kansas is one of the largest producers of winter wheat in the U.S. with an estimated planting area 

of 2.8 to 3.6 million hectares per year and grain yields averaging about 2,700 kg ha-1 (Holman et 

al., 2011; Jaenisch and Lollato, 2019). However, winter wheat systems in this region exhibit 

clear signs of yield stagnation and poor use of available precipitation, where about 60-70% of the 

annual precipitation in wheat-dominated cropping systems can be lost in the form of 

unproductive evaporative losses (Patrignani et al., 2014; Warren et al., 2009). 

 Crop evapotranspiration measurements have traditionally been measured using field 

lysimeters (Howell et al., 1985; Putz et al., 2018), which have played a central role in validating 

other methodologies based on soil moisture sensors, eddy covariance towers, and Bowen ratio 

systems (Evett et al., 2016). Field lysimeters typically consist of a large volume (i.e., one to 

several cubic meters) containing undisturbed soil and are equipped with accurate weighing load 

cells to precisely measure hydraulic fluxes like rainfall, drainage, and ET (Singh et al., 2018). 

However, in order to measure soil evaporation separately during the growing season, researchers 

need to make use of other methodologies. A simple and common method for accurately 

measuring evaporation rate with minimal equipment is to use the microlysimeter technique. This 

technique is well suited for measuring soil evaporation rate in conditions where 

micrometeorological and traditional lysimeter methods are impractical or impossible to use, such 

as measuring soil evaporation in small experimental plots without enough fetch for 

micrometeorological methods or surface area for installing lysimeters. The microlysimeter 

technique has an accuracy <0.1 mm day-1 (Klocke et al., 1990) and a relative error of about 7% 

(Boast and Robertson, 1982), thus, this method is often considered the "gold standard" for in situ 
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measurements of evaporation. The microlysimeter technique is based on the assumption that, 

over short time intervals, disruptions to the lower boundary conditions (e.g., sealing) has a 

negligible impact on the rate of soil evaporation. The first study describing and testing the use of 

the microlysimeter technique was a laboratory experiment that measured the soil evaporation rate 

in a silty clay loam soil collected at the University of Illinois Agronomy Farm (Boast and 

Robertson, 1982). Subsequent studies have used the microlysimeter technique to measure 

evaporation in a wide range of scenarios. For instance, Villalobos and Fereres (1990) used the 

microlysimeter technique to study ET partitioning in irrigated corn (Zea mays L.), cotton 

(Gossypium hirsutum L.), and sunflower (Helianthus annuus L.) fields in southern Spain. 

Flumignan et al. (2012) used microlysimeters to measure evaporation rate in bare soil under both 

irrigated and non-irrigated conditions in Brazil. Zhao et al. (2018) quantified ET partitioning in a 

vineyard with sandy loam soils in northwest China. Rafi et al. (2019) quantifies evaporative 

losses of drip-irrigated wheat in Morocco and da Rocha et al. (2022) used microlysimeters to 

validate ET partitioning by eddy covariance flux measurements in a tallgrass prairie in Kansas. 

Two critical aspects for the successful implementation of the microlysimeter method are 

its length and wall material. The length of the microlysimeter exerts a strong control on the 

amount of water that can be supplied to the evaporating surface during the measurement period. 

Studies investigating the effects of microlysimeter length on soil evaporation accuracy suggest 

that a length of 10 to 15 cm is often adequate for short measurement periods (i.e., 2-3 days), 

while a length of 30 cm is often required for periods of up to nine consecutive days (Daamen et 

al., 1993; Evett et al., 1995). On the other hand, the microlysimeter material has important 

implications for heat transfer. Studies dedicated to examining microlysimeter wall materials, 

such as polyvinyl chloride (PVC) and steel, concluded that using less thermally conductive 
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materials, like PVC, closely match the thermal conductivity of mineral soils (Evett et al., 1995). 

In the same study, the researchers concluded that using a thin plastic or nylon material are the 

best choice for capping the bottom of the microlysimeter and minimizing disruption of heat flow 

from deeper soil layers. These studies show that readily available and inexpensive supplies from 

hardware stores could be used to accurately measure soil evaporation in a wide range of 

scenarios. 

Nonetheless, microlysimeters have some well-known limitations, which mainly include 

the small measurement area, the amount of labor required to install and periodically weigh the 

microlysimeters, and the fact that soil moisture conditions within the microlysimeter volume 

start to diverge from that of the surrounding soil after a few days due to differential root water 

uptake and restricted capillary flow. To overcome some of these limitations, scientists have used 

long (e.g., 80 cm) columns filled with undisturbed soil on top of automated load cells (Rumana, 

2015) and microlysimeters paired with soil moisture sensors for continuous monitoring of soil 

evaporation rate based on changes in soil water storage (Baker & Spaans, 1994). The experiment 

conducted by Baker & Spaans (1994) in Minnesota that consisted of 20-cm long microlysimeters 

filled with soil, sealed at the bottom with drainage perforations, and equipped with time domain 

reflectometry waveguides demonstrated good agreement with independent soil evaporation 

measurements obtained using a Bowen ratio system (Baker & Spaans, 1994). Two common 

disadvantages associated with microlysimeters using either load cells or soil moisture sensors 

inserted from the bottom are 1) the need for excavation and 2) the need for sealing the bottom of 

the microlysimeter, which sooner or later, would result in differences in soil moisture levels 

between the microlysimeter and the surrounding soil. 
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Based on these previous attempts to automate soil evaporation measurements, we propose 

to develop and test an open-bottom microlysimeter instrumented with a soil moisture sensor and 

assimilate these observations of surface soil water storage into a simple evaporation model. The 

first part of this thesis focuses on the determination of the sensing volume and the calibration of 

electromagnetic sensors using different mineral soils. The second chapter describes the 

development and testing of a model-data assimilation approach that combines a simple 

evaporation model with surface soil moisture observations. The second chapter also explores the 

assimilation of the fraction of green canopy cover, with the goal of testing whether measuring 

variables that regulate the partition of energy or the supply of water have a more prominent 

impact on the modeling of soil evaporation rate. 
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Chapter 2 - Calibration of TEROS 10 and TEROS 12 

Electromagnetic Soil Moisture Sensors 

 Abstract 

 Electromagnetic soil moisture sensors rely on calibration equations to convert 

measurements of soil dielectric properties into volumetric soil water content. However, this 

relationship is often susceptible to the effect of soil temperature and bulk electrical conductivity, 

hindering accurate soil moisture measurements across multiple soils. Thus, research applications 

often demand verifying the accuracy of factory default equations. The objectives of this study 

were to: 1) calibrate the TEROS 10 and TEROS 12 capacitance soil moisture sensors, and 2) 

determine the sensing volume of each sensor in minerals soils. Calibration equations were 

determined in the laboratory using columns of packed sand, loam, and silty clay loam soils. For 

each soil type, the process involved sieving, oven-drying, and homogenizing the soils with six 

different levels of soil moisture 0, 0.05, 0.15, 0.25, 0.35, and 0.45 cm3 cm-3. The sensing volume 

was determined by quantifying the response of raw sensor outputs while increasing the level of 

oven-dry sand and moist sand (0.100 cm3 cm-3) around the sensor in the radial and axial 

directions. The sensing volume was assumed to be elliptical in shape. For the TEROS 10, a cubic 

polynomial with factory-default parameters resulted in a root mean square error (RMSE) of 

0.027 cm3 cm-3. The same model with fitted parameters using the three soils and six soil moisture 

levels resulted in improved accuracy with a RMSE of 0.017 cm3 cm-3. For the TEROS 12 sensor, 

the manufacturer’s recommended linear equation resulted in a RMSE of 0.037 cm3 cm-3 and the 

same model with fitted parameters had a RMSE of 0.035 cm3 cm-3. A cubic polynomial equation 

with fitted parameters was required for the TEROS 12 to reach more accurate soil moisture 
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estimation with a RMSE of 0.025 cm3 cm-3. The resulting mean sensing volume of the TEROS 

10 was 280 cm3 and for the TEROS 12 was 415 cm3.  
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  Introduction 

Soil water content is an essential climate variable (Hollmann et al., 2013; Bojinski et al., 

2014) that plays a vital role in vadose zone hydrology and agriculture by controlling the 

partitioning of energy and water fluxes. For instance, soil moisture is one of the drivers 

controlling the partitioning of net solar radiation into sensible, latent, and soil heat fluxes 

(Cavanaugh et al., 2011; Rigden et al., 2018; Scanlon and Kustas, 2012; Scott et al., 2021) and 

the partitioning of precipitation into infiltration and surface runoff (Kiekby, 1988; Rockström et 

al., 1998). Thus, accurate soil moisture measurements are essential for understanding and 

quantifying processes of the surface energy balance and the soil water balance. From an 

agronomic perspective, soil moisture has a direct impact on crop yield and productivity 

(Holzman et al., 2014), particularly in rainfed systems, in which rootzone soil moisture can 

provide valuable information to guide in-season management decisions like defining the planting 

date of winter wheat (Triticum aestivum L.) (Lollato et al., 2016), the timing and amount of in-

season nitrogen fertilizer application (Bushong et al., 2016; Walsh et al., 2013; Zotarelli et al., 

2009), and the potential onset of crop diseases such as powdery mildew (Blumeria graminis) and 

anthracnose (Colletotrichum graminicola) (Kumar et al., 2020; Patle et al., 2021). In irrigated 

systems, information about rootzone soil moisture conditions is critical for improving both the 

timing and amount of water applications (Fares and Alva, 2000; Hanson et al., 2000; Irmak et al., 

2000). 

Soil moisture sensors based on electromagnetic principles, such as time and frequency 

domain reflectometry, time domain transmissometry, capacitance, and radio-frequency 

spectroscopy dominate the market of consumer-grade and research-grade sensors due to the their 

cost-effectiveness, seamless integration with dataloggers, user-friendly operation, capacity for 
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temporal resolutions from minutes to hours or daily intervals, and the capability to monitor soil 

water content at different depths, employ data telemetry systems, and facilitate simultaneous 

measurements of soil moisture, soil temperature, and bulk electrical conductivity. 

Electromagnetic sensors work by measuring the soil’s apparent dielectric permittivity (Ka), 

which represents a material’s ability to store electric charge through the polarization and 

rearrangement of its molecules when subjected to an electric field created by applying a voltage 

difference across the material. The dielectric permittivity of soil components is often expressed 

relative to that of vacuum (8.854x10-12 F m−1). Water, with its high dielectric constant (Ka ~78 at 

20 ℃), stands in contrast to other soil components such as air (Ka ~ 1) and soil solids (Ka 2-5), 

making the determination of the relative permittivity an effective method for measuring water 

content in porous media (Topp et al., 1980; Topp and Reynolds, 1998).  

Electromagnetic soil moisture sensors have been widely used to characterize soil 

moisture spatial variability at the catchment scale (Brocca et al., 2007; Walker et al., 2001; 

Western and Grayson 1998), to incorporate soil moisture conditions into model-based rainfall-

runoff partitioning (Aubert et al., 2003; Tramblay et al., 2010), asses drought conditions (Ford et 

al., 2015; Ford et al., 2019; Krueger et al., 2019), understand the role of soil moisture as an 

indicator of growing season herbaceous fuel moisture and curing rate in grasslands (Sharma et 

al., 2021), develop sensor-based irrigation scheduling (Martínez-Gimeno et al., 2020; Ortega-

Farias & Acevedo, 2004), delineate soil moisture-based management zones in agricultural fields 

(Rossini et al., 2021), measure soil evaporation rate using instrumented microlysimeters (Baker 

& Spaans, 1994), and to study soil moisture controls on ET partitioning (Cavanaugh et al., 2011; 

Ding et al., 2013; Zhao et al., 2018). 
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 The TEROS sensor series (METER Group, Inc.) is a new family of electromagnetic soil 

moisture sensors that offer a practical and cost-effective alternative for in situ monitoring 

without the need for expensive pulse and sampling units required by traditional time domain 

reflectometry sensors. Sensors from the TEROS family have been employed in diverse scientific 

studies, including research on irrigation scheduling of drip-irrigated tomatoes (Solanum 

lycopersicum L.) (Bwambale et al., 2023), the assessment of sensitivity in apple trees (Malus 

domestica. L) of variations in soil water status within orchard systems (Mohamed et al., 2021), 

and the monitoring of root zone soil water storage in a watershed dominated by a tallgrass prairie 

(Patrignani et al., 2022), as well as in the validation of soil moisture measurements using cosmic-

ray neutron sensors (Flynn et al., 2021).  

Since electromagnetic soil moisture sensors measure the dielectric properties of the soil, a 

calibration equation is often required to convert raw sensor outputs that are related to the soil’s 

relative permittivity into volumetric soil water content. Sensor manufacturers usually adopt 

either a third-order polynomial, first proposed in the seminal work of Topp et al. (1980) for time 

domain reflectometry (TDR) sensors, or a custom equation based on factory calibrations, but 

some of these equations have shown large errors, particularly in fine-textured soils with high 

bulk electrical conductivity (Ojo et al., 2015; Cosh et al., 2016). Thus, for research applications, 

the accuracy of the factory default equation usually needs to be verified with the soil under 

study, and if necessary, researchers need to develop customized calibration equations to ensure 

adequate levels of accuracy. Similarly, the sensing volume of electromagnetic soil moisture 

sensors can vary widely depending on the selected sensor response stopping criterion and media 

used for determining the maximum sensing volume (Patrignani et al., 2021). Since the TEROS 

sensors use a high-frequency oscillating wave, which minimizes textural and salinity effects, and 
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are factory calibrated using a wide range of soils (personal communication with Meter TEROS 

developing team), we hypothesize that the generic factory calibration equation for each TEROS 

sensor that converts raw sensor outputs into volumetric soil water content applies to multiple soil 

textures from oven-dry to saturation conditions with a root mean square error (RMSE) <0.03 cm3 

cm-3, which is a reasonable benchmark for most practical field applications in agriculture and 

hydrology. Also, accurate determination of the sensing volume of soil moisture sensors is 

essential to guide the installation depth, sensor orientation, and sensor spacing along the soil 

profile. The objectives of this study were to: 1) calibrate the TEROS 10 and TEROS 12 soil 

moisture sensors under laboratory conditions and 2) determine the sensor sensing volume in 

mineral soils.  

 

 Materials and Methods 

 Sensors description 

 The TEROS sensor series uses a 70-MHz oscillating wave to measure the Ka of porous 

media. When an electromagnetic field is applied to a dielectric material like soil, the electric 

charges inside the soil particles and pore water rearrange themselves in response to the electric 

field created by a voltage differential. The redistribution and storage of electrical charge between 

two electrodes or sensor rods (i.e., capacitance) results in a raw voltage output ranging from 

1,000 to 2,500 mV. This voltage output is then converted into volumetric soil water content 

(VWC) using an empirical calibration equation. In this study we used the TEROS 10 and 

TEROS 12 sensors, which represent the most basic and most advanced sensors of the TEROS 

sensor series, respectively. 
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 The TEROS 10 sensor consists of an epoxy-filled head with two sharp stainless-steel rods 

that have a length of 5.4 cm. The TEROS 10 is the simplest and most affordable sensor of the 

TEROS family and only measures VWC. The TEROS 12 sensor has an epoxy-filled head with 

three stainless steel rods that are 5.5 cm in length arranged in a linear array. In addition to VWC, 

the TEROS 12 sensor also measures soil temperature with a thermistor embedded in the central 

rod and bulk electrical conductivity (ECb) between needles 2 and 3 (Figure 2-1). In the case of 

the TEROS 12, the 70 MHz signal is applied to needle 1, and needle 2 and needle 3 are used as 

the reference for the soil moisture measurement. 

 

 Laboratory calibration procedure 

 The sensors were calibrated using columns of uniformly sieved and packed sand (sand = 

100%, clay = 0%), loam (sand = 42%, clay = 13%), and silty clay loam (sand = 10%, clay = 

28%) soils (Table 2-1). The soils were oven dried at 105 C, ground (except for sand), and sieved 

to pass a 2 mm mesh. Then, the soil was thoroughly mixed with known amounts of water to 

reach nominal moisture levels of 0, 0.05, 0.15, 0.25, 0.35, and 0.45 VWC. The soils were 

carefully packed into cylindrical containers with a diameter of 18 cm, a height of 16 cm, and a 

total volume of 4,072 cm3. The soils were packed in four layers of 4 cm each to minimize 

variations in bulk density along the length of the soil columns. Each layer was packed to a target 

bulk density of 1.6 g cm-3 for sand and 1.2 g cm-3 for the loamy sand and silty clay soils. Particle 

size was determined using the hydrometer method (Gavlak et al., 2005) 

 After packing the soil columns, the TEROS 10 and TEROS 12 sensors were inserted in 

the center of the filled container with the sensor rods pointing downwards while maintaining a 

distance of 4 cm from the bottom of the bucket to minimize signal loss. The sensor head was 
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covered with soil (Appendix A Figure A- 1). Sensor voltage output values and VWC were 

recorded with a datalogger (model CR300, Campbell Scientific, Inc.). After collecting the sensor 

readings, one undisturbed soil sample with a volume of 100 cm3 was collected from the center of 

each container for determination of the actual VWC using the thermo-gravimetric method, which 

consisted of oven drying the samples for 48 hours at 105 ˚C. The resulting bulk density was 

computed as the ratio between the mass of oven-dry soil and the volume of the soil sample 

(Table 2-1). Raw sensor readings and the observed VWC collected for each soil column were 

used to verify the factory default equation and fit a sensor-specific calibration equation 

considering all soils (i.e., universal equation). For the TEROS 10 sensor we used a cubic 

polynomial (TEROS 10 Manual, 2023) and for the TEROS 12 sensor we used a linear model 

(TEROS 12 Manual, 2023) according to the manufacturer’s manuals. The raw output voltage of 

each sensor was the predictor variable and the observed VWC was the response variable. The 

goodness of fit of the calibration models was quantified using the root mean squared error 

(RMSE), the coefficient of determination (R2), and the mean absolute error (MAE).  

 

 Calibration models 

 The TEROS 10 sensor converts raw sensor output into VWC using a cubic polynomial 

model: 

𝑉𝑊𝐶 = 𝑎 𝑉𝑜𝑙𝑡𝑎𝑔𝑒3 − 𝑏 𝑉𝑜𝑙𝑡𝑎𝑔𝑒2 + 𝑐 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 + 𝑑  [2.1] 

where Voltage is the raw output voltage (mV, integer value), and a, b, c, and d are fitting 

parameters. The factory default equation has values of a = 4.824x10-10, b = -2.278x10-6, c = 

3.899x10-3, and d = 2.5154. On the other hand, the TEROS 12 sensor relies on a linear 

calibration model: 
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𝑉𝑊𝐶 = 𝑎 − 𝑏 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 [2.2] 

where a and b are fitting parameters that for the factory calibration equation have values of a = 

3.879x10-4 and b = -0.6956. 

 

 Determination of sensing volume 

 The sensing volume of the TEROS 10 and TEROS 12 sensors was determined by 

recording the sensor response in terms of the raw voltage output while gradually varying the 

level of porous medium surrounding the sensor in the radial and axial directions. Given the form 

factor and arrangement of the sensor rods, the sensing volume was assumed to have the shape of 

an elliptical cylinder: 

𝑉 = 𝜋 𝑀 𝑚 ℎ   [2.3] 

where V is the sensing volume (cm3), M is the semi-major radial axis (cm), m is the semi-minor 

radial axis (cm), and h is the length of the response (cm) (Figure 2-1). To determine the semi-

major and semi-minor radial axes of the elliptical cylinder we conducted experiments where the 

sensor was suspended in three different positions at the center of cylindrical containers with a 

diameter of 27 cm, a height of 36 cm, and a total volume of 20,612 cm3 (Figure 2-2). Dry (i.e., 

0% VWC) or moist (i.e., 10% VWC) sand was gradually added to the container while the sensor 

was suspended using a three-fingered laboratory clamp attached to a transversal cross-arm above 

the container. Sand levels were measured using a laser distance measurer (Bosch Professional 

GLM 30 model, Bosch Inc.) with an resolution of 1.58 mm. The addition of sand layers ceased 

when three consecutive readings exhibited the same voltage output (e.g., Patrignani et al., 2022). 

The computation of the sensing length followed a similar procedure, with the sensor rods 

pointing upwards and downward (Figure 2-2D and 2-2E). An exponential rise function was used 
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to approximate the voltage response as a function of the distance from a reference point (e.g., 

Patrignani et al., 2022): 

𝑉𝑜𝑙𝑡𝑎𝑔𝑒 = max{𝑎[1 − 𝑏 𝑒𝑥𝑝(−𝑐𝑥)], 𝑉𝑜𝑙𝑡𝑎𝑔𝑒𝑚𝑖𝑛}   [2.4] 

where x represents the distance from the center according to the sensor orientation, 𝑉𝑜𝑙𝑡𝑎𝑔𝑒𝑚𝑖𝑛 

is the lowest raw output of the sensor in air, and a, b, and c are fitting parameters. The fitting 

parameter a represents the asymptote of the response. Parameter a is the asymptote when the 

support volume is entirely encompassed within the medium. In this fitting exercise, the value of 

a was not optimized, and instead it was forced to adopt the asymptotic value observed as the 

maximum raw voltage output. Then, the sensing volume was estimated based on the distance at 

which the raw sensor response in terms of voltage reached 95% of the asymptotic value of the 

response for each sensor orientation. 

 

 Results and Discussion 

 Calibration models 

 During the laboratory calibration of each sensor, linear and polynomial equations were 

tested to estimate the volumetric water content of mineral soils (Table 2-2). The factory default 

third-order polynomial calibration equation for the TEROS 10 resulted in a RMSE = 0.027 cm3 

cm-3 and R2 = 0.97, while the same calibration equation with fitted parameters resulted in RMSE 

= 0.017 cm3 cm-3 and R2 = 0.99, which represents an improvement in the sensor accuracy of 37% 

across the sand, loam, and silty clay loam soils tested in this study (Table 2-2, Figure 2-3). For 

the TEROS 12, the linear equation with factory default parameters had a RMSE = 0.037 cm3 cm-

3 and R2 = 0.94, and the same linear model with fitted parameters resulted in RMSE = 0.035 cm3 

cm-3 and R2 = 0.94, which represents an improvement of only 5% compared to the factory 
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equation (Table 2-2, Figure 2-3). As a result, both the manufacturer and lab-determined 

calibration equations for the TEROS 10 sensor resulted in RSME <0.03 cm3 cm-3, and thus, we 

accept our initial hypothesis that the TEROS 10 provides accurate volumetric water content 

readings using the factory default settings. On the other hand, the linear calibration models used 

in the TEROS 12 sensor exhibited RMSE values >0.03 cm3 cm-3 regardless of whether we used 

factory default parameters or fitted parameters. In an attempt to seek greater accuracy for the 

TEROS 12, we also fitted a third-order polynomial calibration, in similar fashion as the model 

for the TEROS 10 and the model proposed by Topp et al. (1980) for time-domain reflectometry 

sensors. The third-order polynomial with fitted parameters resulted in RMSE = 0.025 cm3 cm-3 

and R2 = 0.97 (Table 2-2), enhancing soil moisture estimation by 32% compared to the RMSE 

obtained using the manufacturer's equation (Figure 2-3). Hence, we reject the hypothesis that the 

TEROS 12 sensor provides accurate volumetric water content readings using the factory default 

linear model, and we recommend using a third-order polynomial with parameters fitted using a 

laboratory calibration for greater accuracy. 

 Several studies have evaluated the accuracy of different soil moisture sensors and our 

results indicate that the TEROS family of soil moisture sensors offers reliable estimation of soil 

moisture when compared with RMSE values from prior research studies. For instance, Kizito et 

al. (2008) assessed the accuracy of the ECH2O sensor, which also works at a frequency of 70 

MHz, and found RMSE = 0.02 cm³ cm⁻³ when using a single calibration curve in sand and loam 

soils with salinity levels ranging about 1-12 dS m-1. In a laboratory calibration for a time domain 

reflectometry sensor, Ledieu et al. (1986) obtained a RMSE = 0.038 cm3 cm-3 using a loam soil 

with varying bulk densities (1.38 and 1.78 g cm-1). In another sensor calibration study, Schaap et 

al. (1997) achieved an RMSE of 0.036 cm3 cm-3 across five different organic forest soils using a 
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three-parameter model. Several studies evaluating the CS655 (Campbell Scientific, Inc.)  soil 

water reflectometers demonstrated consistent performance with average RMSE <0.04 cm³ cm⁻³ 

across a wide range of soil textural classes (Kargas and Soulis 2019; Patrignani et al., 2022). Vaz 

et al. (2013) tested eight electromagnetic sensors in seven different soil types ranging from non-

saline sandy to clayey soils and obtained RMSE = 0.015 cm3 cm-3 for the 10HS, SM300, and 

Theta Probe sensors, whereas lower accuracies of about 0.025 cm3 cm-3 were estimated for the 

TDR100, CS616, Wet2, 5TE, and the Hydra Probe sensors. Other studies have also focused on 

assessing the error of multi-depth profile sensors. For instance, Geesing et al. (2004) calibrated 

the Diviner 2000 (Sentek, Inc.), using silty loam and loam soils in Germany and obtained an 

RMSE of 0.030 cm3 cm-3 when using a linear regression model. Using a non-linear model, Evett 

et al. (2006) found a superior calibration accuracy for the Diviner 2000 with a RMSE ranging 

from 0.018 to 0.025 cm3 cm-3 for silty clay loam, clay loam, and clay soils. Polyakov et al. 

(2005) achieved RMSE values for the EasyAg 50 (Sentek, Inc.) ranging between 0.024 cm3 cm-3 

in sand columns and 0.048 cm3 cm-3 in a cultivated silty clay loam soil. 

 Given that the dielectric permittivity of the soil components, especially water, is 

influenced by temperature, it is crucial to control and document the soil temperature in the 

calibration of soil moisture sensors. The temperature range during the calibration ranged from 

20.5 ℃ to 25.9 ℃, with an average temperature of 23 ℃ (Figure 2-4). While our calibration did 

not specifically explore the impact of temperature, it is well known that temperature can affect 

the dielectric permittivity of soils due to two opposing factors: 1) the relative permittivity of 

liquid water decreases with increasing temperature, and 2) in low soil moisture conditions, the 

relative permittivity of water molecules closely bounded to solid surfaces, particularly in high-

surface clay minerals, tends to increase with temperature (Jones et al., 2002; Or and Wraith 
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1999; Wraith and Or, 1999; Patrignani et al., 2022). These opposing phenomena can impact the 

accuracy of soil moisture estimation in fine-textured soils and uncertainties can propagate into 

evaporation and infiltration estimates relying on near-surface soil measurements (Jones et al., 

2002). 

 

 Determination of sensing volume 

The sensing volume was estimated by analyzing the sensor voltage response of the 

TEROS 10 (Figure 2-5) and TEROS 12 (Figure 2-6) during the addition of increasing layers of 

dry and moist sand (Table 2-3). For the TEROS 10, the semi-major radial axis determined by 

averaging the distance responses with sensor configurations vertical-cable upwards and vertical-

cable downwards resulted in 3.35 cm. The semi-minor radial axis, estimated with the orientation 

of rods in a horizontal position, was 1.5 cm. The length of the response extending beyond the 

rods and beyond the sensor head was equal to 8.3 cm, which was obtained by summing the 

results from the orientation of rods upwards and rods downwards. According to these 

measurements the sensing volume for the TEROS 10 in dry sand assuming the shape of an 

elliptical cylinder was 131 cm3. The same analysis was implemented to determine the sensing 

volume in moist sand, where the semi-major radial axis resulted in 4.95 cm, the semi-minor 

radial axis resulted in 3.1 cm, and the overall length of the response was 9.2 cm. Consequently, 

the sensing volume for the TEROS 10 in moist sand was 444 cm3, a value similar to the reported 

value by the manufacturer of 430 cm3 using water (TEROS 10 Manual, 2022). The substantial 

increase of the sensing volume by 239% in wet sand compared to dry sand was mostly attributed 

to the additional sensing distance when the sensor was positioned with its rods vertically and 

with the cable facing downwards (Figure 2-5). A more detailed inspection of the responses from 
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each sensor configuration allowed us to quantify the response from each individual rod. Based 

on a side view of the TEROS 10 with the rods pointing downwards, the average sensor response 

extended 1.85 cm from rod one, 3.95 cm from rod two, and 1.5 cm from the tip of the rods 

(Figure 2-7). Based on a front view of the TEROS 10 sensor, the signal extended 1.0 cm in each 

direction (Figure 2-7). We did not observe any measurable signal response beyond the sensor 

head. 

 The calculations of the signal distance for TEROS 12 from the sensor reference levels 

resulted in measurements of 3.1 cm for the semi-major radial axis, 4.1 cm for the semi-minor 

radial axis, and 9.9 cm for the length of the sensor response. The resulting sensing volume of 

TEROS 12 in dry sand was 395 cm3. In the case of moist sand, the semi-major radial axis 

measured 5.4 cm, the semi-minor radial axis measured 2.7 cm, and the length of the sensor 

response was 8.6 cm, resulting in a sensing volume of 394 cm3. These values were 

approximately three times smaller than the manufacturer's reported value of 1,010 cm3 using 

water instead of sand (TEROS 12 Manual, 2023). Based on the side view of the TEROS 12 with 

the rods pointing downwards, on average between dry and moist sand the sensor response 1.5 cm 

from rod one, 1.95 cm from rod 3, and 1.7 cm from the tip of the rods (Figure 2-7). Based on a 

front view of the sensor, the signal extended 2.15 cm in each direction (Figure 2-7). Similar to 

our findings for the TEROS 10, we did not observe any measurable signal response beyond the 

sensor head for the TEROS 12 sensor. 

 It was evident from our laboratory experiments that soil moisture largely influenced the 

sensing volume of TEROS 10 sensor. One possible reason for this phenomenon is that when pore 

spaces are filled with water, electromagnetic waves can propagate farther into the soil volume, as 

opposed to when the sand is dry, and the electric field has to propagate mostly through the soil 
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solids and air. Similar to our study, Patrignani et al. (2022) found that the soil sensing volume of 

soil water reflectometers was lower in dry sand with a value of 477 cm3 when compared to the 

volume in deionized water, which had a value of 529 cm3. 

 Discrepancies between the observed and manufacturer-reported sensing volumes may 

be attributed to the methodology used and the experimental error associated with laboratory 

methodologies. This study determined the sensing volume in both dry and wet sand, whereas 

previous studies used deionized water (Caldwell et al., 2018; Patrignani et al., 2022). Another 

factor that could explain discrepancies in the sensing volumes is the choice of the stopping 

criterion for determining the sensor response between our study and the sensor manufacturer. In 

our study we considered 95% of the maximum signal value (i.e., raw voltage value) as a 

reasonable threshold, but previous studies have shown that the choice of stopping criterion can 

substantially influence the estimated sensing volume (Patrignani et al., 2021). One question 

arising from this study is why the difference in sensing volume between wet and dry sand is 

greater for the TEROS 10 in comparison to the TEROS 12, even though both sensors are 

capacitance sensors using a frequency of 70 Mhz. 

 

 Conclusions 

• For the TEROS 10 sensor, the third-order polynomial calibration equation with factory 

default parameters provided accurate soil moisture observations across three distinct soil 

types with an RMSE of 0.027 cm3 cm-3. The same model with fitted parameters improved 

the estimations of volumetric water content by 37% with an RMSE of 0.017 cm3 cm-3.  

• For the TEROS 12 sensor, a linear model using either factory default parameters or fitted 

parameters resulted in RMSE >0.03 cm3 cm-3. A cubic polynomial model, improved the 
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accuracy by 32%, reducing the RMSE to 0.025 cm3 cm-3. We recommend using a cubic 

model to calibrate the TEROS 12 sensor instead of the default linear model. 

• The sensing volume that accounted for 95% of the response of the TEROS 10 was 131 

cm3 in dry sand and 444 cm3 in wet sand, values that are consistent with the 

manufacturer's specifications in water. In contrast, the sensing volume that accounted for 

95% of the response of the TEROS 12 sensor exhibited a sensing volume of 395 cm3 in 

dry sand and 394 cm3 in wet sand, values that on average are about three times smaller 

than the reported volume of 1,010 cm3 using water. 
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Table 2-1 Soil textural class, percentage of sand, percentage of clay, actual bulk density (ρb) 

from soil sample, bulk electrical conductivity (ECb), range in volumetric water content (VWC) 

of the packed soil columns, and organic matter (OM) of the three soils used in the calibration of 

the TEROS 10 and TEROS 12 soil moisture sensors. 

†Particle size was determined using the hydrometer method (Gavlak et al., 2005) 

‡Organic matter was determined using the loss on ignition method. Samples were analyzed by 

the Kansas State University Soil Testing Lab. 

  

Soil textural class Sand† Clay† ρb ECb VWC range OM‡ 

 % % g cm-3 dS m-1 cm3 cm-3 % 

Sand 100 0 1.7 0 – 0.181 0.001 – 0.320 0 

Loam 42 13 1.3 0 – 0.263 0.005 – 0.449 1.5 

Silty clay loam 10 28 1.1 0 – 0.347 0.009 – 0.463 3.1 
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Table 2-2 Parameter values (a, b, c, d), coefficient of determination (R2), root mean square error 

(RMSE), and mean absolute error (MAE) for the factory and fitted calibration equations for the 

TEROS 10 and TEROS 12 sensors. 

  

Sensor Equation a b c d R2 RMSE MAE 

       cm3 cm-3 cm3 cm-3 

TEROS 10 
Cubic 

Factory 
4.824 x 10-10 -2.278 x 10-6 3.899 x 10-3 2.51 0.97 0.027 0.020 

TEROS 10 
Cubic 

Fitted 
8.916 x 10-10 -4.136 x 10-6 6.673 x 10-3 3.50 0.99 0.017 0.015 

TEROS 12 
Linear 

Factory 
3.879 x 10-4 -0.70   0.94 0.037 0.033 

TEROS 12 
Linear 

Fitted 
4.223 x 10-4 -0.77   0.94 0.035 0.030 

TEROS 12 
Cubic 

Fitted 
1.211 x 10-9 -8.643 x 10-6 2.078 x 10-2 -16.5 0.97 0.025 0.020 
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Table 2-3 Response of TEROS 10 and TEROS 12 in oven-dry and moist (0.100 cm3 cm-3) sand.  

 TEROS 10 TEROS 12 

Sensor orientation Dry 

sand 

Wet 

san

d 

Mean Dry 

sand 

Wet 

sand 

Mean 
 cm cm cm cm cm cm 

Rods vertical with cable upwards 5.2 5.2 5.2 3.2 5.8 4.5 

Rods vertical with cable 

downwards 
1.5 4.7 3.1 3.0 5.0 4 

Rods horizontal 1.5 3.1 2.3 4.1 2.7 3.4 

Rods facing upwards 6.5 7.3 6.9 7.6 6.8 7.2 

Rods facing downwards 1.8 1.9 1.9 2.3 1.8 2.1 
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Figure 2-1 Sketch illustrating the semi-major radial axis (M), the semi-minor radial axis 

(m), and the sensing height (h), where o is the center from which semi-major and semi-

minor radial axes were measured for the elliptical cylinder formula adopted to estimate 

the sensing volume for the TEROS soil moisture sensors. The individual sensor rods are 

denoted with the numbers 1, 2, and 3.  
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Figure 2-2 Sketch (not to scale) illustrating the orientations of the TEROS 10 and TEROS 

12 soil moisture sensors during the determination of the sensing volume. The experiments 

were conducted in 20,612 cm3 cylindrical containers that were gradually filled with 

increasing levels of oven-dry and moist (0.100 cm3 cm-3) fine sand (<1 mm diameter). The 

red dashed line represents the reference level used as the center of the elliptical cylinder. The 

sensors with the rods oriented vertically were used to compute the semi-major radial axis, 

the sensor with rods in horizontal position were used to compute the semi-minor radial axis, 

and the sensor with the rods pointing upwards and downwards was used to compute the 

height. 
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Figure 2-3 Relationship between raw voltage output (Voltage, mV) and observed 

volumetric water content (VWC Observed) determined by the thermo-gravimetric 

method for the three tested soils (A and C). One-to-one relationship between the 

VWC Observed and VWC determined using the manufacturer’s and fitted calibration 

equations (B and D).  
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Figure 2-4 Range of temperature during the laboratory calibration based on TEROS 12 

measurements.  
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Figure 2-5 Response of the TEROS 10 in terms of raw voltage output as a function of the 

distance from the reference point (for additional reference see dashed lines in Figure 2-2) for 

the oven-dry (left column, A, C, E, G, and I) and moist (0.100 cm3 cm-3) sand (right column, 

B, D, F, H, and J). Vertical dashed lines represent 95% of the sensor’s maximum response. 

Panels A, B, C, and D represent the magnitude of the semi-major radial axis. Panels E and F 

represent the magnitude of the semi-minor radial axis. Panels G, H, I, and J represent the 

height of the elliptical cylinder. 
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Figure 2-6 Response of the TEROS 12 in terms of raw voltage output as a function of the 

distance from the reference point (for additional reference see dashed lines in Figure 2-2) for the 

oven-dry (left column, A, C, E, G, and I) and moist sand (0.100 cm3 cm-3) (right column, B, D, 

F, H, and J). Vertical dashed lines represent 95% of the sensor’s maximum response. Panels A, 

B, C, and D represent the magnitude of the semi-major radial axis. Panels E and F represent the 

magnitude of the semi-minor radial axis. Panels G, H, I, and J represent the height of the 

elliptical cylinder.  
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Figure 2-7 Sketch (not to scale) illustrating the magnitude of the average signal 

responses in dry and wet sand for the TEROS 10 and TEROS 12 sensors. 
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Chapter 3 - Quantifying In Situ Soil Evaporation Using a Model-

Data Assimilation Approach 

 Abstract 

Soil evaporation is a major component of the soil water balance in rainfed cropping 

systems of the U.S. Great Plains, accounting for ~40% of the annual precipitation losses. A 

common method to quantify soil evaporation rate consists of using microlysimeters, which are 

thin-walled cylinders inserted into the soil, sealed at the bottom, and weighed daily to estimate 

evaporation loss for short periods of time. However, the use of microlysimeters is labor-intensive 

and relies on manual measurements. The objective of the study was to develop and test a model-

data assimilation approach that combines a simple evaporation model with a) surface soil 

moisture measured with a sensor and b) canopy cover estimated from downward-facing images 

to quantify soil evaporation rate during two winter wheat growing seasons and bare soil. Soil 

evaporation rate was simulated with the FAO-56 Dual Crop Coefficient (DualKc) model. The 

soil moisture and the canopy cover observations were assimilated into the model using the direct 

insertion method, resulting in a total of five approaches to test. All the approaches were validated 

with the traditional microlysimeter technique. Results indicated that assimilating canopy cover 

into the DualKc model proved to be a promising approach for estimating soil evaporation in 

winter wheat, yielding an average RMSE of 0.6 mm day-1 over two growing seasons. A well-

parameterized DualKc model also demonstrated accuracy in estimating soil evaporation in 

winter wheat, with an RMSE of 0.6 mm day-1, while assimilating soil moisture resulted in a 

higher RMSE of 1.2 mm day-1. In bare soil conditions, the most effective approach for estimating 

soil evaporation involved assessing changes in soil water storage based on differences in soil 

moisture in the top 12 cm of the soil profile, resulting in an RMSE of 0.6 mm day-1. These 
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findings show that improving the partition of energy through the assimilation of canopy cover 

may be better than improving the surface soil moisture status based on soil moisture sensors for 

determining soil evaporation rates using data-driven approaches. 
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 Introduction 

At the global scale, the evapotranspiration (ET) process represents about 65% of the 

annual terrestrial precipitation (Oki & Kanae, 2006; Trenberth et al., 2007; Rodell et al., 2011), 

with evaporation from the soil, litter, and canopy surfaces accounting for approximately 20-40% 

of the total ET (Merlin et al., 2016). In the U.S. Great Plains, approximately 75% of the 

cultivated land relies on natural precipitation for crop production (Baumhardt & Salinas-Garcia, 

2006), where soil evaporation can reach magnitudes equal to or even exceed that of plant 

transpiration, especially in the case of field crops with periods having incomplete soil cover or 

fallow periods with bare soil conditions. For instance, a global ET partitioning modeling study, 

which was part of the Coupled Model Intercomparison Project (CMIP), estimated that soil 

evaporation can account for 30-40% of total ET in the U.S. Great Plains (Berg & Sheffield, 

2019). Similarly, a global study using the Community Land Model (CLM) and remote sensing 

information estimated that soil evaporation typically ranges from 40-50% of the total ET in this 

region (Lawrence et al., 2007). A study investigating the magnitude of yield gaps and possible 

causes of yield stagnation in winter wheat (Triticum aestivum L.) in Oklahoma revealed that 

about 70% of the annual precipitation is lost due to soil evaporation (Patrignani et al., 2014) and 

another study in Oklahoma using a simplified soil water balance estimated that ~59% of the 

annual precipitation received by rainfed cropland under continuous winter wheat is lost in the 

form of unproductive evaporative losses (Warren et al., 2009). Given the large impact of 

unproductive evaporative losses in this region, accurate measurements of soil evaporation rates 

play a crucial role in scientific research focused on studying the components of the soil water 

balance and evaluating more effective soil water conservation practices. 
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Perhaps, the most common, direct, and reliable method for measuring in situ soil 

evaporation during both the energy-limiting and the water-limiting stages is the microlysimeter 

technique (Boast & Robertson, 1982; Evett et al., 1995). Microlysimeters are cylinders inserted 

into the soil, excavated, sealed at the bottom, and weighed daily to estimate soil evaporation loss 

for short periods of time. The microlysimeter technique has been widely used to directly quantify 

in situ soil evaporation across a wide range of ecosystems and regions of the world, including 

bare soil conditions (Boast and Robertson, 1982; Daamen et al., 1993; Flumignan et al., 2012), 

irrigated crops like corn (Zea mays L.), cotton (Gossypium hirsutum L.), and sunflower 

(Helianthus annuus L.) (Klocke et al., 1996; Jara et al., 1998; Villalobos and Fereres, 1990), 

furrow- and drip-irrigated vineyards (Kool et al., 2016; Zhao et al., 2018), a mesic tallgrass 

prairie (da Rocha et al., 2022), African savanna ecosystems (Metzger et al., 2014), and the arid 

Patagonia steppe (Paruelo et al., 1991). However, major drawbacks of the microlysimeter 

technique are the small measurement area, the amount of labor required to install and 

periodically weigh the microlysimeters, and the fact that the soil moisture within the 

microlysimeter volume starts to diverge from that of the surrounding soil within a few days as 

roots uptake water from the surrounding soil and capillary flow at the bottom of the 

microlysimeter is restricted. Thus, for accurate measurements of soil evaporation rate, 

researchers often need to install new microlysimeters, which makes this technique very labor-

intensive and only practical for sporadic measurements over short periods of time along the 

growing season. To extend the lifetime of field microlysimeters, improve the temporal resolution 

of soil evaporation measurements, and avoid daily weighing, researchers have explored coupling 

microlysimeters with soil moisture sensors to continuously estimate soil evaporation rate based 

on changes in soil water storage. For instance, in a study using a 20-cm long microlysimeter that 
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was equipped with a time domain reflectometry (TDR) waveguide and sealed at the bottom with 

a few perforations for drainage, researchers obtained soil evaporation estimates that closely 

matched observations with a Bowen ratio system (Baker and Spaans, 1994). The method 

suggested by Baker & Spaans (1994) was the first attempt at instrumenting microlysimeters with 

soil moisture sensors. One advantage of this method is the addition of drainage holes to allow 

excess moisture to leave the microlysimeter after large rainfall events or snowmelt. Two 

practical limitations of this initial concept are 1) waveguides were inserted from the bottom, 

which require excavation, and 2) excavation and sealing of the bottom of the microlysimeter 

disrupts pore connectivity, which my limit accuracy during extended drydown periods.  

Alternative methods to the microlysimeter technique for measuring soil evaporation rate 

include heat pulse sensors and eddy covariance. Heat pulse probes are small sensors that can 

collect accurate measurements near the soil surface to compute the surface energy balance for a 

specific soil layer between two measurement depths (Campbell et al., 1991, Bristow et al., 1994). 

This technique is best suited for studying soil evaporation rate during drydown periods as it 

cannot measure evaporation rate during the energy-limited stage (Deol et al., 2012). The eddy 

covariance method has been widely used to measure high frequency (i.e., 10 Hz or higher) 

observations of the exchange of carbon dioxide and water vapor fluxes simultaneously at the 

landscape level. The methodology can provide direct and continuous measurements of ET 

(Wagle et al., 2020), but ET partitioning requires separate measurements for soil evaporation and 

plant transpiration (Wagle et al., 2020) or data processing methods like the underlying water use 

efficiency approach developed by Zhou et al. (2016). 

Because quantifying in situ soil evaporation requires either a labor-intensive set up or 

expensive instrumentation (e.g., eddy covariance system), physically-based and empirical 
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models are solutions for estimating soil evaporation rates across various temporal and spatial 

scales, minimizing the need for extensive fieldwork. A widely used physically-based model for 

estimating soil evaporation is HYDRUS 1D (Šimunek et al., 2012), which can simulate soil 

water and heat dynamics numerically, and can estimate soil evaporation based on potential ET 

and soil hydraulic properties. In an irrigated winter wheat study, HYDRUS was used for 

estimating actual evapotranspiration, soil evaporation, and crop transpiration, with validation 

against the eddy covariance method and a lysimeter resulting in root mean square errors (RMSE) 

of 0.54 mm day-1, 0.73 mm day-1, and 0.65 mm day-1, respectively (Er-Raki et al., 2021). An 

empirical soil water balance model commonly used for estimating soil evaporation is the FAO-

56 Dual Crop Coefficient model (Allen et al., 1998), which is based on a two-layer soil profile, 

where a surface layer mostly accounts for soil evaporation and a rootzone layer accounts for root 

water uptake. The soil evaporation efficiency that controls the energy-limiting and water-limiting 

stages of soil evaporation is described by a linear-plateau model. Previous models, like the 

Bucket model (Manabe, 1969; Robock et al., 1995), have used these simplified relationships to 

describe soil evaporation rate as a function surface soil moisture. Newer and more advanced 

models represent the soil evaporation efficiency using continuous non-linear relationships (Lie 

and Pielke 1992; Merlin et al., 2011; Oleson et al., 2013).  

Models describing the soil water balance that estimate soil evaporation through a robust 

relationship with surface soil moisture represent an opportunity for data-driven approaches. 

These approaches could integrate in situ observations of soil moisture with weather data sourced 

from mesoscale environmental monitoring networks. In this study, we hypothesize that a model-

data assimilation approach that combines observations of surface soil moisture and green canopy 

cover will be more accurate than using a soil evaporation model or in situ surface soil moisture 
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observations alone. The objective of the study was to develop and test a model-data assimilation 

approach that combines a simple evaporation model with surface soil moisture (SSM) 

observations obtained from an instrumented microlysimeter and canopy cover estimated from 

downward-facing images to quantify soil evaporation rate during the growing season and fallow 

periods.  

 

 Materials and Methods 

 Description of experimental site 

The study was conducted at the Kansas State University Ashland Bottoms Experiment 

Station near Manhattan, KS during the 2021/2022 and 2022/2023 winter wheat growing seasons, 

and in bare soil during the summer of 2023. In 2021/2022, winter wheat (Zenda variety) was 

planted on 22 October 2021 at a density of 38 plants m-2, a row spacing of 0.19 m, and fertilized 

with 90 kg ha-1 of N (source Urea Ammonium Nitrate, 32-0-0 of N–P2O5–K2O) as an in-furrow 

starter fertilizer. To control weeds, spring herbicide applications consisted of mixtures of 

Harmony® Extra (thifensuifuron-methyl), MCPA, and NIS® (nonionic surfactant), and 

herbicides mixtures were applied during fallow periods to suppress weeds when needed. Neither 

insecticides nor fungicides were applied to the plots. In 2022/2023, the same variety of winter 

wheat was planted on 15 October 2022 using the same management as in the previous season. 

Winter wheat plots (12.19 m wide and 15.24 m long) were replicated four times and had a 

rotation of continuous wheat since 2019 under no-tillage. The soil of the experimental site 

corresponds to the Wymore series (Fine, smectitic, mesic Aquertic Argiudolls) and had a silty 

clay loam (sand 10%, clay 28%) soil textural class as determined by particle size analysis using 

the hydrometer method (Gavlak et al., 2005). The field experiment in bare soil conditions was 



52 

 

conducted from 24 June to 11 August 2023 in a soil mapped as a Stonehouse series (Sandy, 

mixed, mesic Typic Udifluvents) and had a loam (sand 42% and clay 13%) soil textural class 

based on particle size analysis. During this experiment, weeds were manually controlled in a plot 

of 10 m by 7 m.  

 

 Soil evaporation model 

Soil evaporation rate was modeled using the Dual Crop Coefficient (DualKc) method 

(Allen et al., 1998). The DualKc method simulates actual crop ET using a two-layer soil water 

balance model at daily time steps. The top soil layer is often used to represent evaporative losses, 

which typically dominate in the top 10 to 15 cm of the soil profile, while the bottom layer is used 

to represent plant water uptake in the rootzone. In this study we only considered the routines for 

modeling soil evaporation rate (E, mm) assuming a soil layer of 12 cm as follows: 

𝐸 = 𝐾𝑒 𝐸𝑇𝑜 [3.1] 

where Ke (dimensionless) is the soil evaporation coefficient and ETo (mm d-1) is reference ET for 

a hypothetical non-water limited grass surface that is 0.12 m in height, with a surface resistance 

of 70 s m-1, and an albedo of 0.23. In this study, daily grass ETo was obtained using the 

formulation of the Penman-Monteith equation as detailed in the FAO-56 manual (Allen et al., 

1998): 

𝐸𝑇𝑜 =  
0.408 ∆ (𝑅𝑛−𝐺)+

900

𝑇𝑎+273
 𝛾𝑢2 (𝑒𝑠−𝑒𝑎)

∆+𝛾  (1+0.34𝑢2)
 [3.2] 

where Rn is net radiation at the crop surface (MJ m−2 d−1), G is the soil heat flux (MJ m−2 d−1), Ta 

is the daily average air temperature at a height of 2 meters (˚C), u2 (m s−1) is the daily mean wind 

speed at a reference height of 2 meters, es is the saturation vapor pressure (kPa), ea is the actual 

vapor pressure (kPa), Δ is the slope of the vapor pressure curve (kPa ˚C−1), and γ is the 
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psychrometric constant (kPa ˚C−1). The value of Ke ranges from zero when the soil surface is dry 

to its maximal value (Ke ~1.2) shortly after precipitation or irrigation events when the soil 

surface is wet and soil evaporation is mostly limited by the supply of energy:  

𝐾𝑒 = 𝐾𝑟(𝐾𝑐 𝑚𝑎𝑥 − 𝐾𝑐𝑏) ≤ 𝑓𝑒𝑤  𝐾𝑐 𝑚𝑎𝑥 [3.3] 

where Kr is the evaporation reduction coefficient, which is also known as the soil evaporation 

efficiency (e.g., Merlin et al., 2016), Kc max is the maximum value of the crop coefficient 

following rain or irrigation, Kcb is the basal crop coefficient that varies with crop stages and that 

typically ranges from 0.15 to 1.10 , and few is the fraction of the soil that is wetted and exposed to 

incident solar radiation. The value of  few is estimated based on the fraction of canopy cover (fc) 

and the fraction of the wetted soil surface (fw) by precipitation (i.e., 𝑓𝑤 = 1): 

𝑓𝑒𝑤  =  𝑚𝑖𝑛 (1 − 𝑓𝑐, 𝑓𝑤  ) [3.4] 

The Kc max parameter represents the maximum ET from any cropped surface based on the amount 

of energy available from incoming solar radiation and is typically adjusted for relative humidity, 

wind speed, and crop height: 

𝐾𝑐 𝑚𝑎𝑥 = max ({1.2 + [0.04 (𝑢2 − 2) − 0.004 (𝑅𝐻𝑚𝑖𝑛 − 45)] (
ℎ

3
)

0.3

} , {𝐾𝑐𝑏 + 0.05}) [3.5] 

The Kr coefficient modulates soil evaporation rate during the energy-limited (i.e., stage I 

evaporation) and water-limited (i.e., stage II evaporation) stages:  

𝐾𝑟 = 1 for  𝐷𝑒 𝑖−1 = 𝑅𝐸𝑊 [3.6a] 

𝐾𝑟 =
𝑇𝐸𝑊−𝐷𝑒𝑖−1

𝑇𝐸𝑊−𝑅𝐸𝑊
  for  𝐷𝑒 𝑖−1 > 𝑅𝐸𝑊  [3.6b] 

where De i-1 is the depletion depth of the soil surface soil layer the previous day (mm), TEW is 

the total evaporable water of the surface evaporative layer, and REW is the readily evaporable 

water. In Eq. 3.6b, TEW represents the maximum possible cumulative evaporation from the soil 
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surface layer and REW represents the cumulative depth of evaporation at the end of the energy-

limiting stage (mm). The TEW mostly depends on the soil textural class and can be estimated as: 

𝑇𝐸𝑊 = 1000 (𝜃𝐹𝐶 − 0.5 𝜃𝑊𝑃) 𝑍𝑒 [3.7] 

where θFC is the volumetric soil water content at field capacity, θWP is the volumetric water 

content at the permanent wilting point, and Ze is the thickness of the surface evaporative layer in 

meters. The soil water balance of the evaporative layer is then computed as: 

𝐷𝑒𝑖 = 𝐷𝑒 𝑖−1 − (𝑃𝑖 − 𝑅𝑂𝑖) +
𝐸𝑖

𝑓𝑒𝑤
+ 𝐷𝑃𝑒𝑖    [3.8] 

where Dei and De i-1 (mm) are cumulative depth of evaporation of the topsoil at the end of day i 

and i-1, Pi is precipitation (mm); 𝑅𝑂𝑖 is runoff from the soil surface (mm) determined using the 

curve number method (Hawkins et al., 2008), and DPei (mm) is deep percolation from the 

surface layer when soil water content exceeds field capacity. In this study, transpiration was 

assumed to be negligible in the surface evaporative layer.  

 

 Measurements of surface soil moisture and fraction of green canopy cover 

 Volumetric water content was measured at hourly intervals in the top 12 cm of the soil 

profile using an open-bottom instrumented microlysimeter. We selected a soil layer of 12 cm to 

match the thickness of the surface evaporative layer in the DualKc model, so that sensor 

observations could be directly assimilated into the model. The instrumented microlysimeters (12-

cm length, 10-cm inner diameter) were constructed with Schedule 40 polyvinyl chloride (PVC) 

pipe. Each microlysimeter had one end beveled at approximately 45-degree angle to facilitate 

insertion into the soil and minimize soil compaction. A total of 12 microlysimeters were inserted 

into the soil with the help of a wooden block and an anti-vibration nylon hammer. In this 

particular case, the microlysimeters were not excavated and were not sealed at the bottom, which 
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allowed for free drainage and capillary flow in and out of the microlysimeter to maintain soil 

moisture conditions inside the microlysimeter volume similar to that of the surrounding soil 

during the entire growing season. Then, a small trench was excavated on the outside of the 

inserted microlysimeter to install a capacitance soil moisture sensor (model TEROS 12, METER 

Group Inc.). The sensor was vertically inserted, positioning the mid rod 6 cm from the soil 

surface, with the cable oriented upwards along the outer wall of the microlysimeter (Appendix B 

Figure B- 1). Each microlysimeter had three holes with a diameter slightly larger than the 

diameter of the sensor stainless-steel prongs (~5 mm). The epoxy head of the sensor remained 

outside of the microlysimeter in contact with the surrounding soil. In preliminary laboratory 

tests, we confirmed that the effect of the PVC wall and the sensor head being outside of the 

microlysimeter volume had negligible impact in the observed volumetric water content within 

the microlysimeter volume (Figure 3-1). The PVC wall served as an effective barrier to prevent 

shallow roots from entering the microlysimeter volume. This was confirmed visually at the end 

of the winter wheat growing seasons when the microlysimeters were removed. Thus, changes in 

soil moisture within the microlysimeter volume during the growing were mostly related to 

precipitation and soil evaporative losses. Volumetric water content inside the microlysimeters 

was recorded hourly and used two-fold: 1) to update the soil moisture depletion of the 

evaporative layer computed by the DualKc model using a direct insertion approach (see next 

section) and 2) as a direct method to quantify soil evaporation rate using daily changes in soil 

water storage (ΔS): 

𝐸 ≈ 𝛥𝑆 = (θt − θt−1)𝑍  [3.9] 

where θt is the volumetric water content reported by the sensor on the last hour of the day, θt−1 

is the volumetric water content reported by the sensor on the last hour of the previous day, and Z 
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is the thickness of the soil layer represented by the instrumented microlysimeter, which is the 

same as Ze in the DualKc model. We installed a total of twelve TEROS 12 sensors between 

winter wheat rows and we also added TEROS 12 sensors outside the instrumented 

microlysimeters to monitor variations between the readings inside the instrumented 

microlysimeter and the surrounding soil. 

The fraction of green canopy cover (FGCC) was estimated from downward-facing 

images that were collected weekly during the winter wheat growing seasons. A total of three 

images were collected per plot and then analyzed using the Canopeo App (Patrignani & Ochsner, 

2015). In this study we assumed that the FGCC estimated from digital images is equivalent to the 

fraction of soil cover (i.e., 𝑓𝑐) in the DualKc model, which plays a pivotal role partitioning the 

amount of energy reaching the soil surface that is available for soil evaporation. Weekly field 

measurements of FGCC were linearly interpolated to generate a daily timeseries for each 

growing season and then these estimations were assimilated into the model using the direct 

insertion method. 

 

 Data assimilation of in situ observations 

Daily average in situ observations of surface soil moisture from the instrumented 

microlysimeters and weekly observations of FGCC interpolated at daily scale were assimilated 

into the DualKc model using the direct insertion method. This assimilation method consists of 

replacing a state variable such as De or fc in the model with actual sensor measurements. The 

assumption of the direct insertion method is that field observations have negligible uncertainty 

compared with the model routine simulating the same state variable, and thus, updating the state 

variable with in situ observations should increase model accuracy. 
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Based on the available field observations of surface soil moisture and canopy cover for 

the winter wheat and bare soil experiments, we tested a total of five data-driven methods to 

estimate soil evaporation. The first method, referred to as “DualKc” follows the standard soil 

water balance implementation detailed in the FAO-56 procedure using crop and soil parameters 

as provided in the FAO-56 tables (Table 3-1). The second method, “DualKc + FGCC”, integrates 

observations of FGCC estimated from downward-facing images. In this method, observations of 

FGCC are used to replace the state variable fc in the DualKc model with the aim of improving 

the partitioning of available energy reaching exposed soil. The third method, “DualKc + SSM”, 

integrates in situ observations of SSM to update the depletion of the surface layer, De, using the 

direct insertion method. This method is aimed at providing model sub-routines with improved 

information about the available soil moisture for soil evaporation. Volumetric soil water content 

measured by the TEROS 12 sensor in the instrumented microlysimeter (θsensor i) is converted 

into soil water depletion as follows: 

𝐷𝑒𝑖  =  𝑇𝐸𝑊 –  1000 (θsensor i –  0.5 𝜃𝑤𝑝) 𝑍𝑒  [3.10] 

The fourth method, “DualKc + FGCC + SSM” integrates both FGCC and SSM. The fifth 

method, “ΔS”, is based on estimating soil evaporation solely using changes in observed soil 

water storage calculated with Eq. [3.9]. The second and fourth methods (i.e., those that included 

FGCC measurements) were only possible during the 2021/2022 and 2022/2023 winter wheat 

growing seasons. 

 

 Validation of soil evaporation using traditional microlysimeters 

 Traditional bottom-sealed microlysimeters (12 cm length, 10 cm inner diameter) 

constructed from PVC pipe were used to validate the different approaches for estimating soil 
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evaporation rate evaluated in this study. The diameter of the microlysimeters was dictated by the 

row spacing of the winter wheat crop, so a diameter of 10 cm allowed us to center the 

microlysimeters between winter wheat rows, while still maintaining a small buffer area of few 

centimeters to avoid damaging shallow plant roots during installation. For each field 

measurement during a rain-free period, a total of 12 microlysimeters (three microlysimeters in 

each of the four plots) were inserted into the soil and excavated, while maintaining the bore hole 

as intact as possible The outside wall of the microlysimeter was then cleaned and the bottom was 

sealed with thin nylon film and tape. After weighing the microlysimeters to determine their 

initial mass, they were returned to the borehole ensuring good contact with the soil. In this study 

we favored the use of a thin nylon film (Glad Press'n Seal Plastic Wrap) instead of a rigid PVC 

base to maximize the amount of heat transfer between the soil inside and below the 

microlysimeter (Evett et al., 1995). Microlysimeters were weighed every 24 hours either early in 

the morning or late in the afternoon for a period of three consecutive days, which is the typical 

duration for which the soil moisture within the microlysimeter remains similar to that of the 

surrounding soil (Daamen et at., 1993). For each measurement day, soil evaporation rate was 

determined as the average soil evaporation rate of the 12 microlysimeters. The performance of 

the different approaches for estimating soil evaporation rate were evaluated using the root mean 

square error (RMSE), the mean absolute error (MAE), and the Nash–Sutcliffe efficiency (NSE) 

coefficient. 
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 Results and Discussion 

 Environmental conditions during the study period 

 Total precipitation for the 2021/2022 winter wheat growing season at the Ashland 

Bottoms Experiment Station (Figure 3-2) was 443 mm, a value that is 16% higher than the 30-

year (1990-2019) precipitation for the typical winter wheat growing period in this region from 

mid-October to mid-June. During the same growing season, the total grass ETo was 572 mm, 

which is 7% higher than the long-term average for this location. Air temperature during the 

2021/2022 growing season ranged from -21℃ to 37 ℃, with a daily mean of 8.8℃, which is 

similar to the typical average temperature during winter wheat growing season for this region. 

Similarly, in the 2022/2023 growing season (Figure 3-3), the precipitation totaled 406 mm, a 

value 7% higher than the long-term average rainfall for the same period. During the same 

growing season, total grass ETo was 546 mm, which is 2.4% higher than the long-term average 

for this location, and air temperature ranged between -22℃ and 34℃, with a mean air 

temperature for the growing season of 8.0 ℃. In the bare soil experiment during the summer of 

2023 (Figure 3-4), the site received a total precipitation of 131 mm, a value 26% lower compared 

to the 30-year average precipitation total for the same period. The grass ETo for the bare soil 

experiment in 2023 was 240 mm, which is 14% lower than the long-term average for this 

location. The range of temperature was between 19 ℃ and 33 ℃, with a mean equal to 26 ℃, 

which is only 1 ℃ higher than the long-term average daily mean air temperature for this period. 

 

 Winter wheat evaporation in a silty clay loam soil 

 In the winter wheat growing season of 2021/2022, the DualKc model was the most 

effective approach for estimating soil evaporation, with a RMSE = 0.57 mm day-1 (Table 3-2). 
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The second-best performing model in this season was the DualKc + FGCC, with RMSE = 0.68 

mm day-1. A comparison between the model predictions on evaporation rate and the in situ 

observation of soil evaporation for a given day revealed that the models resulting in better 

agreement were the DualKc and DualKc + FGCC (Table 3-2). In the subsequent winter wheat 

growing season of 2022/2023, the DualKc + FGCC model outperformed all the other methods, 

with RMSE = 0.53 mm day-1 (Table 3-2). The second-best model for this season was the 

DualKc, which had RMSE = 0.63 mm day-1. Once again, upon examining the timeseries and 

comparing the predictions made by the models with the in situ observations of soil evaporation, 

it is evident that the models with the most robust performance are the DualKc and the DualKc + 

FGCC (Figure 3-3). In both winter wheat seasons, the ΔS approach consistently underperformed 

the other methods, with RMSE = 2.0 mm day-1 for the 2021/2022 season and 1.51 mm day-1 for 

the 2022/2023 growing season (Table 3-3). When comparing the timeseries of soil evaporation 

observations measured with the instrumented microlysimeter against those measured with the 

traditional microlysimeter, which serves as the ground-truth method, overestimations are notable, 

especially following precipitation events, as illustrated in both Figure 3-2 for winter wheat 

growing season 2021-2022 and Figure 3-3 for winter wheat growing season 2022-2023. 

The observed volumetric water content from the TEROS 12 sensors ranged between 

0.160 cm3 cm-3 and 0.380 cm3 cm-3 with a mean moisture of 0.255 cm3 cm-3 for season 

2021/2022 and ranged between 0.120 and 0.39 cm3 cm-3 in 2022/2023 with a mean value of 

0.223 cm3 cm-3. Thus, the observed surface soil moisture conditions during both growing seasons 

generally corresponded well with the range specified in the DualKc model, which uses 

parameters θwp 2⁄  and θFC with the range between θwp 2⁄  = 0.10 cm3 cm-3 and θFC = 0.35 cm3 

cm-3, although occasionally, hourly in situ soil moisture observations were larger than θFC. To 



61 

 

verify the tabulated values used to define the lower and upper soil moisture limits in the DualKc 

model, we collected undisturbed soil samples using 5-cm long and 5-cm diameter stainless steel 

rings centered at 6 cm depth to measure θwp and θFC in laboratory conditions using pressure 

cells (Tempe cells, Soil moisture Equipment, Inc.) set at -10 kPa and pressure plates apparatus 

(model 1500F2, Soil moisture Equipment, Inc.) set at -1,500 kPa, which resulted in θWP = 0.17 

cm3 cm-3 and θFC = 0.31 cm3 cm-3. To further verify the tabulated value of field capacity, θFC was 

estimated by averaging the volumetric water content of the twelve soil moisture sensors 24 hours 

after the end of a large rainfall event on 4 November 2022 totaling 72 mm, which resulted in a 

mean volumetric water content for the twelve TEROS 12 sensors of 0.34 cm3 cm-3. The high 

similarity between tabulated values and independent laboratory and field measurements provides 

evidence that the texture-based values in the FAO-56 manual represent good estimates of model 

parameters.  

Based on error metrics, the DualKc alternative proved to be the most accurate method for 

estimating soil evaporation. Using the results from this model, we found that the total 

evaporation for the 2021/2022 season was 170 mm, representing 38% of the total precipitation 

for the growing season and 30% of the grass ETo. In the following season winter wheat growing 

season of 2022/2023, total evaporation was 216 mm, representing 53% of the growing season 

precipitation and 40% of the grass ETo. A prior global-scale study modeling evaporation reported 

values of E/ETo around 35% and of E/P around 40% (Or & Lehman, 2019) for the U.S. Great 

Plains. The magnitude of E/ETo, during the initial periods (i.e., mid-October until April), was 

30% in the 2021/2022 season and 62% in the 2022/2023 season. For the 2021/2022 season, the 

estimated soil evaporation using DualKc was 64 mm, with an ETo of 218 mm during that period. 

In contrast, for the 2022/2023 season, the soil evaporation amounted to 133 mm, while the grass 
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ETo was 216 mm. During the crop development stage (i.e., April until May) the magnitude of 

E/ETo resulted in 22% in the 2021/2022 season and 20% in the 2022/2023 season. In the mid-

season period (i.e., May until June), E/ETo became smaller compared to previous stages, 

constituting 20% for season 2021/2022 and 15% for season 2022/2023. This reduction can be 

attributed to the maximum ground cover during the mid-stage period, resulting in minimal 

energy reaching the soil surface. During the senescence period, the magnitude of E/ETo 

increased to 62% in the 2021/2022 season and 36% in the 2022/2023 season. Some disparity in 

soil evaporation can be attributed to variations in the amount of residue between the two seasons. 

Furthermore, differences between years can be attributed to differences in the frequency and 

amount of rainfall between seasons, in the definition of the length of crop growth stages, the 

effective plant density, and crop growth habits that influence the shadowing of the soil surface 

(Zhao et al. 2013). 

In the rainfed system where our study was conducted, the primary source of water input 

was precipitation and one possible reason for the substantial number of evaporative losses during 

winter wheat growing seasons could be attributed to the large number of small precipitation 

events during the winter wheat season that are more prone to rapid evaporation from the soil 

surface, crop residue, and standing vegetation. For instance, 36 out of the 51 recorded rainfall 

events during the 2021/2022 growing season had a magnitude <10 mm d-1, constituting nearly 

20% of the growing season precipitation. The following growing season 2022/2023, 47 out of 58 

precipitation events were <10 mm, constituting 32% of the total precipitation for the growing 

season. A prior study in this region using hourly soil moisture and precipitation from May 2017 

to December 2020 from the Kansas Mesonet found that rainfall events totaling <7.5 mm d-1 

rarely infiltrate the soil beyond a 5 cm depth (Parker & Patrignani, 2021). Examining the 30-year 
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(1990-2019) precipitation record for this location, 74% of the daily rainfall events are smaller 

than <10 mm. This underscores the limited effectiveness of smaller precipitation events and the 

vulnerability of rainfed systems in this region to small and modest rainfall events that are prone 

to evaporation. 

 The process of evaporation relies on both the availability of soil moisture and the 

available energy. However, our results suggest that when estimating soil evaporation with 

DualKc in the context of winter wheat, the key factor to consider is the partitioning of energy 

rather than simply assimilating surface soil moisture (SSM). The primary input to the energy 

balance is solar radiation, which is greater during the initial growth stages of winter wheat but as 

the crop canopy progresses through its development stages, the incoming solar radiation reaching 

the soil surface for evaporation diminishes, consequently reducing the evaporation rate. 

Therefore, the gain in modeled soil evaporation accuracy when assimilating canopy cover 

information opens new opportunities to use proxy variables to estimate basal crop coefficients 

that can improve the partition of energy of simple soil water balance models. For instance, a 

previous study in irrigated corn with a plastic mulching found a strong (R2 = 0.99) relationship 

between green canopy cover and basal crop coefficients (Ding et al., 2013). A study conducted in 

the vicinity of Greeley, Colorado, showed a robust linear relationship between corn FGCC and 

Kcb, a relationship that was particularly strong when the FGCC was less than 0.8 (Trout and 

DeJonge, 2018). In that study, FGCC for corn was assessed by utilizing a digital camera 

positioned 6 meters above the ground, and the images were analyzed with software to distinguish 

the green plant canopy from background elements, like our approach. In a study of irrigated 

winter wheat, Er-Raki et al. (2007) found a strong relationship (R² = 0.89) between the 

Normalized Difference Vegetation Index (NDVI), measured using a multi-spectral radiometer 
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(model MSR87, Cropscan Inc., USA), and the Kcb. The strong correlation between FGCC and 

NDVI offers a promising avenue for integrating readily available NDVI data from hand-held and 

remote sensors into the DualKc model. One possible reason for the different accuracy between 

the two growing seasons when estimating soil evaporation with DualKc + FGCC may be 

attributed to the fact that we assumed the same crop coefficients for both growing seasons. If the 

coefficients were adapted properly considering for example the crop density, the accuracy may 

be improved. 

A common limitation in both the DualKc model alone and the DualKc + FGCC approach 

is that the depletion of the evaporative layer tends to be higher than the in situ depletion 

measured with the instrumented microlysimeter (Figure 3-2 and Figure 3-3). This implies that 

the model predicts faster soil drying compared to what is observed in the field. When comparing 

the depletion rates of DualKc, DualKc + FGCC, and DualKc + SSM, it appears that 

incorporating surface soil moisture (SSM) may enhance the accuracy of depletion rate 

estimations due to its influence on evaporation rates. A study conducted in Morocco, focusing on 

wheat, revealed disparities between DualKc predictions and actual evaporation from a lysimeter, 

and the reason for these differences was attributed to the model's tendency to predict faster soil 

drying compared to the observed drying in the lysimeter (Rafi et al., 2019). 

 

 Bare soil evaporation in a loam soil 

In the bare soil study, the most effective method for estimating soil evaporation was the 

ΔS approach, with a RMSE of 0.57 mm day-1 (Table 3.3). Contrary to our expectations, the 

DualKc + SSM exhibited the poorest performance with an RMSE of 1.87 mm day-1, and the 

DualKc alone resulted in a RMSE of 1.49 mm day-1 (Table 3-2). When comparing the 
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predictions of these approaches for soil evaporation with the in-situ observations of soil 

evaporation from the bare soil experiment, we noticed that the ΔS approach performed the best 

(Figure 3-4). We also observed a range of volumetric water content between 0.062 cm3 cm-3 and 

0.330 cm3 cm-3 with a mean moisture of 0.124 cm3 cm-3 for the summer season. For the DualKc 

approaches evaluated in this study, we implemented tabulated values of θFC = 0.25 cm3 cm-3 and 

θWP = 0.12 cm3 cm-3 as inputs for DualKc models, we also conducted a laboratory experiment 

employing pressure cells set at -10 kPa resulting in θFC = 0.25 cm3 cm-3 and pressure plates 

apparatus set at -1,500 kPa resulting in θWP = 0.07 cm3 cm-3. For further verification of the 

tabulated values, we compare the average of three TEROS 12 sensor readings after the end of a 

large precipitation event on 4-5 July, resulting in a volumetric water content of 0.26 cm3 cm-3.  

The ΔS approach exhibited unusually high soil evaporation rates, which were an artifact 

of large changes in soil water storage resulting from drainage rather than evaporative losses 

(Figure 3-4). To mitigate the influence of drainage in the ∆𝑆 approach, a straightforward solution 

involves ignoring volumetric water content from the sensor exceeding θFC, under the assumption 

that any water content exceeding θFC corresponds to drainage. A more robust solution to this 

problem could be the integration of in situ observations with a numerical model such as 

HYDRUS (Šimůnek et al., 2006); however, this alternative would require additional soil 

physical properties to accurately estimate soil water dynamics. A promising alternative to 

integrate in situ observations of soil moisture with a modeling framework is to use the surface 

evaporative capacitance (SEC) method, which simulates surface soil moisture as a capacitor that 

is filled by precipitation and is emptied by both drainage and soil evaporation (Or and Lehmann, 

2019). Thus, in situ soil moisture data can offer insights into the current state of this "capacitor," 

potentially enhancing soil evaporation estimates. Even machine learning models could be the key 
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to reconcile multiple soil evaporation methods into a new data-driven technique for in situ soil 

evaporation measurements by integrating relevant data such as precipitation, soil properties, and 

environmental conditions. Machine learning models can capture more complex and non-linear 

relationships between variables after being trained with data from different scenarios that could 

be derived from laboratory, greenhouse, and field experiments.  

The ∆𝑆 is an approach for in situ quantification of soil evaporation, however the 

implementation of the instrumented microlysimeter in this approach has limitations. For 

example, when assessing the volumetric water content within the TEROS 12 inside the 

instrumented microlysimeter and the values recorded by a TEROS 12 sensor outside, but nearby, 

the microlysimeter, we observed an RMSE of 0.04 cm³ cm⁻³ and an MAE of 0.032 cm³ cm⁻³ 

between sensors. At the beginning of the growing season, the observed water content showed 

little variation between the measurements obtained from the sensor inside the microlysimeter and 

the sensor positioned outside the microlysimeter in the row. However, as winter wheat began to 

grow, the differences in volumetric water content increased due to the crop's growth and elevated 

water uptake. The difference in soil temperature measured inside the instrumented 

microlysimeter and in the soil yielded an RMSE = 4 ˚C and MAE = 3 ˚C, and the temperature 

inside the instrumented microlysimeter was cooler (Figure 3-5). One reason for this may be that 

the low thermal conductivity of the PVC has some insulating effect reducing the heat transfer 

between the soil inside the microlysimeter and the surrounding soil that was not expected. 

Additionally, the presence of PVC in contact with the TEROS 12 sensor rods, as part of the 

instrumented microlysimeter set up, may have contributed to these discrepancies in volumetric 

water content and temperature measurements, during a laboratory calibration we found that the 
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measurements with rods embedded in the PVC are unbiased, with RMSE of 0.014 cm3 cm-3 

(Figure 3-1). 

There are other challenges associated with adopting the ΔS approach to estimate soil 

evaporation rate, these include the relatively small volume of soil sampled and the potential for 

deep percolation losses or gains through capillary rise that can be minimized with some models 

(Allen et al., 2011). Furthermore, this approach requires ignoring days when air temperatures fell 

below 1˚C due to changes in the apparent dielectric permittivity of partially frozen soils, which 

can impact the estimation of volumetric water content (Seyfried and Grant, 2007; Parker and 

Patrignani, 2021), and consequently affect ΔS estimations. The primary limitation of this study 

lies in the validation method. Although traditional microlysimeters proved valuable for 

evaluating data-driven and model-based approaches, they have limitations in terms of continuous 

soil evaporation monitoring and spatial representativeness. To enhance future validation efforts, 

the use of automated weighing microlysimeters similar to that proposed by Rumana (2015) could 

be considered. 

 

 Data driven approach based on soil evaporation reduction coefficient 

Contrary to our expectations that surface soil moisture may improve the estimation of soil 

evaporation by assimilating continuous and accurate data measured with a soil moisture sensor, 

the DualKc + SSM resulted to be the worst approach across the three experiments (Figure 3-5). 

One possible explanation for this may be the oversimplified linear relationship between surface 

soil moisture and evaporation in the DualKc model. The standard method described in the FAO-

56 manual (Allen et al., 1998) provides a simple linear relationship between soil moisture and 

soil evaporation rate, but new studies have shown that soil texture-based representations of the 
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actual and potential soil evaporation rate as a function of surface soil moisture can result in more 

accurate estimation of soil evaporation rate compared with the standard ad hoc approach 

described in the FAO-56 manual (Merlin et al., 2016; Amazirh et al., 2021). The expression 

proposed for the texture-base 𝐾𝑟 for various soil layers thickness is expressed as:  

𝐾𝑟 = [0.5 − 0.5 cos (𝜋
𝜃𝐿

𝜃𝑚𝑎𝑥
)]

𝑃

 [3.11] 

whit θL represents the water content in a soil layer with a thickness denoted as L, where L can 

have any arbitrary value up to 100 cm, and θmax being the soil moisture at saturation, and P is a 

function dependent on both L and potential soil evaporation (Merlin et al., 2011). To assess the 

effectiveness of this approach within our study, we applied a data drive approach, utilizing the 

formulation proposed by Merlin et al. (2011) for the DualKc model: 

𝐾𝑟 = [0.5 − 0.5 cos (𝜋
𝜃𝑠𝑒𝑛𝑠𝑜𝑟

𝜃𝐹𝐶
)]

𝑃

 [3.12] 

where θsensor is the volumetric water content measured in situ with instrumented microlysimeters 

extending to a depth of 12 cm. Since this relationship modulates the soil evaporation rate of the 

wetted and exposed soil, the optimal parameter P for the two winter wheat seasons was obtained 

using a quantile regression analysis by fitting the model to the 0.95 quantile of the observed 

changes in soil water storage from the instrumented microlysimeters as a function of E/Ep (E is 

the soil evaporation and Ep is the potential soil evaporation) (Figure 3-7), where Ep was defined 

as 1.2 𝐸𝑇𝑜 , which is similar to the representation of maximum available energy for soil 

evaporation in the DualKc model (i.e., 𝐾𝑐 𝑚𝑎𝑥). We did not apply any optimization for the bare 

soil approach since the soil remained exposed throughout the entire period. The main advantage 

of data-driven approach based on soil evaporation reduction coefficient is that it simplifies the 

steps of the DualKc and the data assimilation approaches. With the surface soil moisture 
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observations from instrumented microlysimeter 𝐾𝑟 [Eq.12] is estimated and soil evaporation can 

be predicted with the following equation: 

𝐸 =  𝐸𝑇𝑜 𝐾𝑟 (𝐾𝑐 𝑚𝑎𝑥 − 𝐾𝑐𝑏) [3.13] 

Our findings demonstrated an improvement when incorporating a non-linear model based 

on surface soil moisture observations for both the DualKc + SSM and DualKc + FGCC + SSM 

approaches in both winter wheat growing seasons (Figure 3-8). We observed a substantial 

reduction in the error ranging from 25% to about 40% when 𝐾𝑟 is estimated based on Eq. 12, 

resulting in RMSE < 0.65 mm day-1 (Table 3.4). In the bare soil experiment, we noted substantial 

improvements with errors in daily soil evaporation rate decreasing by about 30% compared to 

the linear -plateau model proposed by Allen et al., (1998) (Table 3-4).  

We compared the slopes of the linear model (Allen et al., 1998) and fitted 𝐾𝑟 (Figure 3-

7), resulting in a slope of 5.91 (unitless) for the DualKc model and a slope of 5.25 for our non-

linear approach based on in situ observations of surface soil moisture. In the bare soil study, the 

fitted model resulted in a slope of 10.9, whereas the DualKc model yielded a slope of 8.7. The 

behavior of the two approaches differs for both winter wheat and bare soil. The curve generated 

by the Merlin et al. (2011) model exhibited a less steep slope, indicating that variations in soil 

moisture might have a limited impact on Kr, meaning a weaker relationship between the two 

variables. 

The fitted non-linear soil evaporation reduction coefficient model, which was derived 

from hourly in situ observations of SSM using an instrumented microlysimeter, offers a valuable 

alternative for developing data-driven approaches. Possibly, the sensor failed to capture the 

initial change in soil moisture at the immediate soil surface, potentially resulting in an inaccurate 

estimation of soil moisture and affecting the performance of prior approaches. In future studies 
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the instrumented microlysimeter setting should be re-considered, exploring modifications to 

more effectively capture changes in the topmost soil layer. Furthermore, undertaking field 

calibrations is essential to deepen our comprehension of potential limitations and to guarantee 

the precision of soil moisture measurements. Although the DualKc model is relatively simple, it 

outperforms all the tested approaches. This highlights the importance of prioritizing accurate 

parameterization to better reflect field conditions, rather than relying solely on general or 

scientifically reported soil parameters (Mutziger et al., 2005). 

 

 Conclusions 

• The FAO-56 Dual Crop Coefficient is a simple model that, when properly parameterized, 

provides reliable estimation of soil evaporation rate, and a model-data assimilation approach 

using this model proved effective in generating daily estimates of soil evaporation rate over 

the entire growing season. 

• The assimilation of FGCC within the DualKc model resulted in an accurate estimation of 

surface soil evaporation in winter wheat with RMSE = 0.6 mm day-1. Our findings suggest 

that improving the partitioning of available energy at the soil surface seems to be more 

important than improving the available moisture for accurate estimations of soil evaporation. 

Thus, there exists an opportunity for using time-lapse photography and high-resolution 

remote sensing technologies to better model soil evaporation dynamics. 

• Contrary to our initial expectations, estimation of soil evaporation based on changes in 

surface soil water storage using an open-bottom instrumented microlysimeter resulted in 

reasonable estimates of soil evaporation rates in bare soil but had poor performance in winter 

wheat experiments.  
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• The non-linear soil evaporation reduction factor, which correlates observed changes in soil 

water storage as a function of E/Ep, improves the accuracy of soil evaporation estimates in 

winter wheat to RMSE<0.65 mm day-1 and in bare soil to RMSE≤0.80 mm day-1. The main 

advantage of this approach is its practical field implementation and the simplicity of the 

model, which only requires estimates of Kc max, 𝐾𝑐𝑏, and ETo. 

• The instrumented microlysimeter may have failed to capture the variations in soil moisture 

changes at the immediate soil surface (top 1 cm), potentially resulting in an inaccurate 

estimation of soil moisture in the layer undergoing soil evaporation. 
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Table 3-1 Parameters of the FAO-56 Dual Crop Coefficient model for winter wheat in Ashland 

Bottoms, Kansas including management variables, soil variables, and crop variables volumetric 

water content at field capacity (θFC), volumetric water content at permanent wilting point (θWP), 

layer thickness (Ze), readily evaporable water (REW), basal crop coefficient at initial stages (Kcb 

Ini), mid stages (Kcb Mid) and end stages (Kcb End). 

 

  

Parameter† Winter wheat Winter wheat Bare soil Source 

Season 2021/2022 2022/2023 2023  

Latitude 39.00 39.00 39.14  

Altitude (m) 325 325 325  

Start date 22 Oct 2021 15 Oct 2022 23 June 2023  

End date 14 June 2022 13 June 2023 8 August 2023  

Residue cover (%) 50 40 0 Nahitiya et al., 2021 

Curve number 80 80 63 Hawkins et al., 2008 

θFC (cm3 cm-3) 0.34 0.34 0.25 Allen et al., 1998 (Table 18) 

θWP (cm3 cm-3)  0.20 0.20 0.12 Allen et al., 1998 (Table 18) 

Ze (m) 0.12 0.12 0.12  

REW  12 12 20 Allen et al., 1998 (Table 18) 

Kcb Ini 0.20 0.20 0.15 Allen et al., 1998 (Table 17) 

Kcb Mid 0.95 0.95 0.15 Allen et al., 1998 (Table 17) 

Kcb End 0.15 0.15 0.15 Allen et al., 1998 (Table 17) 

Initial stage (days) 150 160 47  

Development stage 

(days) 
40 40 -  

Middle stage (days) 30 20 -  

Late stage (days) 15 15 -  
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Table 3-2 Error Metrics for FAO-56 Dual Crop Coefficient (DualKc), DualKc assimilation the 

fraction of green canopy cover (DualKc +FGCC), DualKc assimilating surface soil moisture 

(DualKc + SSM) and DualKc assimilation both fraction of green canopy cover and surface soil 

moisture (DualKc + FGCC + SSM)  approaches: Mean Absolute Error (MAE), Root Mean 

Square Error (RMSE), and Nash–Sutcliffe Model Efficiency Coefficient (NSE) comparing in 

situ soil evaporation observations. 

 

  

Land cover Season Model RMSE MAE NSE 

   mm day-1 mm day-1  

Wheat 2021/2022 DualKc 0.57 0.41 0.31 

Wheat 2021/2022 DualKc + FGCC 0.68 0.47 0.04 

Wheat 2021/2022 DualKc + SSM 1.03 0.68 -1.19 

Wheat 2021/2022 DualKc + FGCC + SSM 1.01 0.65 -1.14 

Wheat 2022/2023 DualKc 0.63 0.48 0.50 

Wheat 2022/2023 DualKc + FGCC 0.53 0.44 0.64 

Wheat 2022/2023 DualKc + SSM 1.13 0.94 -0.60 

Wheat 2022/2023 DualKc + FGCC + SSM 1.10 0.92 -0.51 

Bare soil 2023 DualKc 1.49 1.02 -0.31 

Bare soil 2023 DualKc+ SSM 1.87 1.59 -1.07 
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Table 3-3 Table showing the mean absolute error (MAE), root mean square error (RMSE), and 

Nash–Sutcliffe model efficiency coefficient (NSE) between the observed soil evaporation 

measured with traditional microlysimeters and estimated by the change in surface (12 cm) soil 

water storage (ΔS) approach. 

Land cover Season Model RMSE MAE NSE 

   mm day-1 mm day-1  

Wheat 2021/2022 ΔS 2.0 1.38 -3.82 

Wheat 2022/2023 ΔS 1.51 0.89 -2.3 

Bare soil 2023 ΔS 0.57 0.37 0.81 
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Table 3-4  Error Metrics for non-linear approaches: Mean Absolute Error (MAE), Root Mean 

Square Error (RMSE), and Nash–Sutcliffe Model Efficiency Coefficient (NSE) comparing in 

situ soil evaporation observations and the data-drive approach fitting Kr soil evaporation 

estimations. Kr represents soil evaporation reduction coefficient. FGCC is the fraction of green 

canopy cover simulated by FAO-56 Dual Crop Coefficient or derived from in situ observations. 

  

Land cover Season Model Kr RMSE MAE NSE 

    mm day-1 mm day-1  

Wheat 2021/2022 DualKc Fitted 0.58 0.41 0.29 

Wheat 2021/2022 DualKc + FGCC Fitted 0.71 0.51 -0.04 

Wheat 2021/2022 DualKc + SSM Fitted 0.73 0.47 -0.12 

Wheat 2021/2022 DualKc + FGCC + SSM Fitted 0.74 0.47 -0.12 

Wheat 2022/2023 DualKc Fitted 0.68 0.52 0.42 

Wheat 2022/2023 DualKc + FGCC Fitted 0.68 0.49 0.42 

Wheat 2022/2023 DualKc + SSM Fitted 0.83 0.63 0.15 

Wheat 2022/2023 DualKc + FGCC + SSM Fitted 0.83 0.63 0.15 

Bare soil 2023 DualKc Fitted 1.26 0.80 0.07 

Bare soil 2023 DualKc+ SSM Fitted 1.1 0.66 0.28 
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Figure 3-1. Relationship between the volumetric water content (VWC) measured with the 

TEROS 10 and TEROS 12 soil moisture sensors with and without a PVC layer, similar to the 

instrumented microlysimeter setup. N represents the number of observations for each sensor 

and RMSE represents the root means square error. 
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Figure 3-2. (A) Daily reference evapotranspiration (ETo) and precipitation obtained from the 

Ashland Bottoms station of the Kansas Mesonet for the 2021/2022 winter wheat growing season. 

(B) Crop basal coefficient (Kcb) estimated using the Dual Crop Coefficient model (DualKc) and 

from observations of the fraction of green canopy cover (FGCC). (C) Depletion of the surface 

layer estimated by the DualKc, DualKc + FGCC, DualKc assimilating surface soil moisture 

(SSM) (DualKc + SSM), and the observed values of SSM. The grey band represents the ready 

evaporable water (REW) and the black line represents the field capacity (FC). (D) Soil 

evaporation rate predicted with the DualKc, DualKc + FGCC, DualKc + SSM, DualKc + FGCC 

+ SSM, and traditional microlysimeters (ML). 
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Figure 3-3 (A) Daily reference evapotranspiration (ETo) and precipitation obtained from the 

Ashland Bottoms station of the Kansas Mesonet for the 2022/2023 winter wheat growing season. 

(B) Crop basal coefficient (Kcb) estimated using the Dual Crop Coefficient model (DualKc) and 

from observations of the fraction of green canopy cover (FGCC). (C) Depletion of the surface 

layer estimated by the DualKc, DualKc + FGCC, DualKc assimilating surface soil moisture 

(SSM) (DualKc + SSM), and the observed values of SSM. The grey band represents the ready 

evaporable water (REW) and the black line represents the field capacity (FC). (D) Soil 

evaporation rate predicted with the DualKc, DualKc + FGCC, DualKc + SSM, DualKc + FGCC 

+ SSM, and traditional microlysimeters (ML). 
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Figure 3-4 (A) Daily reference evapotranspiration (ETo) and precipitation obtained from the 

Ashland Bottoms station of the Kansas Mesonet for bare soil summer 2023. (B) Depletion 

estimated by DualKc and DualKc assimilating surface soil moisture (DualKc + SSM) and the 

observed values of SSM, the grey bar represents the ready evaporable water (REW) and the 

black line the field capacity (FC). (C) Soil evaporation rate predicted with the DualKc, DualKc + 

SSM and the ∆S approach, and in situ soil evaporation rate represented with white dots. 
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Figure 3-5 (A) Observed volumetric water content (VWC) and (B) observed soil 

temperature with TEROS 12 inside the microlysimeter (ML) and TEROS 12 outside 

the microlysimeter during winter wheat growing season 2022/2023. 
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Figure 3-6 Observed evaporation measured with traditional microlysimeter and evaporation 

estimated with different approaches. (A) DualKc alone, (B) DualKc assimilating fraction of 

green canopy cover (DualKc + FGCC), (C) DualKc assimilating surface soil moisture 

(DualKc + SSM), (D) DualKc assimilating FGCC and SSM (DualKc + FGCC + SSM), and 

(E) Change in storage approach (ΔS). 
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Figure 3-7. Non-linear soil evaporation reduction factor (Kr) for two winter wheat 

seasons (A) and bare soil (B) fitted with changes in soil water storage (ΔS) from 

instrumented microlysimeter (ML), traditional ML observations, DualKc regression 

line and non-linear soil evaporation reduction factor based on soil texture proposed by 

Merlin et al. (2011). 
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Figure 3-8 Observed soil evaporation measured with traditional microlysimeter and soil 

evaporation estimated with different approaches. (A) Fitted alone, (B) Fitted assimilating 

fraction of green canopy cover (Fitted + FGCC), (C) Fitted assimilating surface soil moisture 

(Fitted + SSM), (D) Fitted assimilating FGCC and SSM (DualKc + FGCC + SSM). N: number 

of observations for each approach. 
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Chapter 4 - General Conclusions 

The soil evaporation process represents a crucial component of the soil water balance, 

which is characterized by the transfer of water vapor from the soil surface back to the 

atmosphere. Although some estimations of soil evaporation in the U.S. Great Plains range 

between 30% to 50%, accurate quantification of soil evaporation remains challenging. Numerous 

techniques for in situ soil evaporation measurements have been developed, as well as 

computational models to estimate soil evaporation rates. Each of these methods offers 

advantages and disadvantages, contributing to the complexity of soil evaporation assessment. 

However, a simple technique for quantifying in situ soil evaporation is missing. In response to 

this research gap, the objective of this study was to integrate in situ observations with a model 

capable of providing daily estimates of the soil evaporation rate. 

In the first study, we tested the accuracy and soil sensing volume of two capacitance soil 

moisture sensors of the TEROS family of sensors. For the TEROS 10 sensor, the cubic 

polynomial calibration equation with both factory parameters showed root mean square error 

(RMSE) = 0.027 cm3 cm-3 and R2 = 0.97, and with fitted parameters RMSE = 0.017 cm3 cm-3 and 

R2 = 0.99. For the TEROS 12, the suggested linear calibration model with factory parameters 

resulted in RMSE = 0.037 cm3 cm-3 and R2 = 0.94, and with fitted parameters in RMSE = 0.35 

cm3 cm-3 and R2 = 0.94. By adopting a cubic polynomial equation to convert the raw voltage 

output from the sensor into volumetric water content, we reduce the RMSE = 0.025 cm3 cm-3, 

leading to a more accurate estimation of soil moisture (R2 = 0.97). The average sensing volume 

in dry and moist sand for the TEROS 10 was 288 cm3, which is 33% lower than the 

manufacturer-reported values in water. In the case of TEROS 12, the soil sensing volume was 

415 cm3, which is 60% lower than the manufacturer’s reported value in water. Further 
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calibrations should be undertaken to examine the impact of soil temperature and bulk electrical 

conductivity on the estimation of soil moisture content. 

In the second study, our objective was to quantify in situ soil evaporation using a model-

data assimilation approach in rainfed winter wheat and bare soil. Building upon the accuracy of 

the capacitance sensor, we developed an instrumented microlysimeter. Surface soil moisture 

(SSM) observations from the in situ sensor were combined with the Dual Crop Coefficient model 

(DualKc) using a direct insertion method. The three tested data-driven approaches were: DualKc 

+ SSM for both winter wheat and bare soil, DualKc + FGCC + SSM for winter wheat, and the 

use of the change in surface (top 12 cm) soil water storage (∆S) for both winter wheat and bare 

soil. A fourth approach was the DualKc + FGCC for winter wheat, and it yielded the most 

accurate estimations of daily surface soil evaporation rate in winter wheat, with an average 

RMSE of 0.604 mm day-1 for both seasons. Our findings suggest that improving the partitioning 

of available energy at the soil surface is crucial for achieving accurate estimations of soil 

evaporation. Consequently, there is an opportunity to enhance the assessment of canopy cover 

through in situ downward-facing images and high-resolution remote sensing imagery to integrate 

crop and surface dynamics into empirical and mechanistic models. Contrary to our initial 

expectations, estimating soil evaporation rate based on ∆S using an open-bottom instrumented 

microlysimeter produced reasonable estimates of soil evaporation rate for bare soil conditions. 

Combining this technique with soil hydraulic properties and more advanced numerical models 

such as HYDRUS or the concept of surface evaporative capacitance could harmonize multiple 

sources of in situ information into a new data-driven technique for in situ soil evaporation 

measurements. 
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Appendix A - TEROS 10 and TEROS 12 sensor calibration 

 

  

Appendix A Figure A- 2 Calibration of TEROS 12 with dry (0 cm3 cm-3) silty clay loam 

soil in a bucket of 4,000 cm3. 
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Appendix B - Model data assimilation approach 

  

Appendix B Figure B- 2 Instrumented microlysimeter setting. 
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Appendix B Figure B- 3 Reference evapotranspiration (ETo ), reduction coefficient (Kr ), 

maximum value of crop coefficient (Kc max ), basal crop coefficient (Kcb ), depletion (De ), total 

evaporable water (TEW), readily evaporable water (REW), precipitation (P), runoff (RO), 

evaporation (E), fraction of wetted an exposed soil (few), deep percolation (DPe ), volumetric 

water content at field capacity (𝛉FC)(cm3 cm-3), volumetric water content at wilting point (𝛉WP), 

evaporation layer and microlysimeter length (Ze ), curve fitting parameter (𝛃). 
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Appendix B Figure B- 4 TEROS 12 soil moisture sensor placed 

outside the instrumented microlysimeter within the row crop, with 

surface roots surrounding the sensor rods. 


