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Abstract 

Prevalent extreme climate conditions, as well as depleting water resources in semi-arid 

regions continue to underscore the need for adopting efficient and data-driven management 

practices to ensure the long-term viability of agriculture. Crop evapotranspiration (ET) data—an 

indication of the water requirement of crops—varies significantly in response to these prevailing 

extreme climate conditions.  Understanding the primary indicators responsible for the observed 

variability in crop ET, among the indices chosen to represent these events, as well as the degree to 

which these events may have an impact on crop ET in the future, is vital. Additionally, it is 

necessary to investigate water conservation strategies that can assist agricultural producers to 

become better prepared for the effects of these conditions by increasing the resilience of the maize 

crop to these extreme conditions, without compromising on the yield output or water use and 

productivity. The predictive power of a random forest machine-learning algorithm was employed 

to identify climate extreme indices that most influences crop ET, and to quantify their potential 

impacts in future climate change scenarios. The Decision Support System for Agrotechnology 

Transfer-Crop Environment REsource Synthesis (DSSAT-CERES) Maize model was further used 

to develop and evaluate diverse irrigation strategies based on crop ET data. The aim was to assess 

their effectiveness in enhancing maize crop’s resilience to extreme climate conditions while 

minimizing the overuse of limited water resources. Our study revealed that crop evapotranspiration 

(ET) was primarily influenced by two key indices: the maximum number of consecutive dry days, 

and the maximum temperature. Model predictions further indicate that these indices have the 

potential to increase crop ET by 0.4, 3.1 and 3.8% under low greenhouse gas emission scenario, 

and by 1.7, 5.9 and 9.6% under high greenhouse gas emission scenario in the near, mid and end 



  

century, respectively. A comprehensive 30-year simulation utilizing the DSSAT model revealed 

that in comparison to the commonly practiced full irrigation treatment, an irrigation strategy based 

on crop evapotranspiration (ET) – specifically, applying 75% of the ET requirement– 

demonstrated superior effectiveness. Applying 75% of the required ET amount when it reached a 

30mm threshold, optimized yield, water usage, and productivity. Yield loss was limited to ~6%, 

with irrigation water savings of up to 19%, and water productivity decline was limited to a level 

below 5%, when the maximum temperature or the maximum consecutive dry days increased by 

up to 2oC or 1 day, respectively. The decline in yield, as well as the losses in irrigation water and 

productivity, however, were significantly exacerbated when temperatures increased by up to 4oC, 

thereby highlighting the importance of managing heat stress in order to preserve crop yields and 

significantly minimize water use in agriculture. Overall, these findings show that the ET-based 

deficit irrigation strategy adapts well to extreme heat and water stress, bearing important 

implications for irrigation management decisions in the future. 
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Chapter 1 - Introduction 

 1.1 Problem Statement 

Globally, arid and semi-arid regions are often faced with the challenge of limited 

water resources. The annual precipitation in these regions is often insufficient to meet the 

demands of agricultural production, thereby, exerting significant stress on surface and 

groundwater reservoirs, which serve as the primary sources of water for agricultural 

activities. Irrigation activities, especially for crop production account for a substantial 

proportion of the of yearly water consumption. Irrigation supports about 40% of the 

world’s food production (Mrad et al., 2020). In the United States, groundwater resources 

account for 60% of the water supplied to irrigated areas (Fienen & Arshad, 2016). 

However, these groundwater resources are unreliable, thereby, endangering the prospects 

of sustained agricultural production (Lopez et al., 2022). Therefore, it is crucial to ensure 

that these water sources can continue to support agricultural production in the future, and 

that requires a sufficient understanding of the conditions of climate, as well as the 

implementation of effective management practices, especially in arid and semi-arid 

regions. Crop evapotranspiration (ET) data—an estimate of the maximum amount of water 

required by crops at any given time—help producers to reduce excess withdrawals of the 

groundwater resource, by applying only the needed amount of water per time, during 

irrigation operations. However, the increasingly erratic climate patterns, characterized by 

extreme weather conditions during growing seasons, may create a significant variation in 

the amount of water used for irrigation (Islam et al., 2012), and the amount of water 

resource recharged through precipitation, compared to historical times. For example, rising 

temperatures have the potential to increase crop evapotranspiration, which, if not met 
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adequately, can lead to water stress rising beyond the threshold which plants can handle, 

and ultimately impacting on crop yields (Çakir, 2004; Yilmaz et al., 2010). This situation 

necessitates a meticulous examination of the factors influencing evapotranspiration 

variability in regions like Western Kansas, which are particularly vulnerable to climate 

extremes (Lin et al., 2017; Rammig & Mahecha, 2015). 

Western Kansas, situated in the U.S high plains depends on the Ogallala aquifer for 

as much as 90% of its irrigation needs (Mrad et al., 2020). The region is relatively dry, as 

the mean annual rainfall during growing season is about 350mm, accounting for only about 

30% of the seasonal evapotranspiration (Araya et al., 2017). Additionally, the high plains 

are prone to extreme climate conditions with a long-term study showing that temperatures 

are gradually increasing, as the number of frost days have increased by 5.2 days relative to 

historic times (Lin et al., 2017). To cushion the effects of these extreme conditions, 

producers are forced to apply more irrigation, which implies an accelerated depletion of 

the water reserves (Kenny & Juracek, 2013). Under current observed trends, studies 

(McGuire, 2014; Scanlon et al., 2012; Steward et al., 2013; Steward & Allen, 2016) project 

a higher depletion of the groundwater reserve in the future, relative to the predevelopment 

period of the aquifer—often considered to be before the year 1950. This implies that the 

continuous withdrawal of the limited water resources without adequate recharge can cause 

the water resource to be depleted to the point where they may not be able to sustain 

agricultural activities, and even human needs in the future. In fact, in a recent study 

(Obembe et al., 2023), the overall groundwater withdrawal from the high plains aquifer 

within Kansas alone, is projected to increase further by mid-century.  Under the 

representative concentration pathway (RCP) 4.5 scenario, which anticipates coordinated 
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efforts to mitigate greenhouse gas emissions in the future, the study projects a notable 

increase of 5.9% in groundwater withdrawals. The trend becomes even more pronounced 

under the RCP8.5 scenario, where greenhouse gas emissions continue to rise due to 

inadequate intervention efforts, with a projected increase of up to 7.6%. 

Conversely, future projections based on the sixth assessment report of the working 

groups of the Intergovernmental Panel on Climate Change (IPCC) (Seneviratne et al., 

2021), indicate an expected increase in the intensity and frequency of climate extreme 

conditions, due to increased CO2 emissions. This poses an imminent and increased threat 

to agricultural sustainability, further underscoring the critical importance of investigating 

the factors driving ET variability in the region, as well as estimating the potential change 

in crop ET under future climate change scenarios. It is also imperative to evaluate what 

irrigation management practices may be well adapted to mitigate against the impacts of 

these extreme conditions, as study shows that the peak grain production might decline by 

as much as 60%, under the current management practices employed in the region 

(Cotterman et al., 2018). 

To help address these outlined challenges, the strengths of a machine learning 

statistical model and a robust process-based crop model were separately employed in this 

study. Machine-learning models have shown to be very effective at capturing both linear 

and non-linear interactions, which are often a common occurrence in climate-related 

phenomena (Kadkhodazadeh et al., 2022; Konduri et al., 2020). Their adeptness at 

discerning random patterns that may be present weather-influenced datasets makes them 

invaluable (Roberts et al., 2017a). Consequently, a random forest (RF) machine learning 
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model was employed to investigate the climate extreme conditions driving ET in Finney 

County, Western Kansas. 

Consequently, process-based models are extremely helpful for illustrating the 

physiological mechanism underlying crop yield and yield components. The Decision 

Support System for Agrotechnology Transfer (DSSAT) cropping system model (Jones et 

al., 2003) was therefore deployed to identify and assess efficient irrigation management 

practices tailored to the study area. Establishing effective management strategies is critical 

to avoid further depletion of the already limited groundwater supply, particularly because 

the current management practices are ineffective. This investigation not only considered 

strategies that improved or maintained crop yield at a satisfactory level, but also prioritized 

minimizing excessive water resource demand, both under normal and extreme climatic 

situations.  

 1.2 Statement of objectives 

The specific objectives of this study were aimed at: (i) evaluating the impacts of seasonal 

climate extremes on crop evapotranspiration and quantifying the expected change in crop 

evapotranspiration of maize under future climate change scenarios, using a machine learning 

algorithm; and (ii) investigating sustainable water management strategies for improving crop 

adaptation to extreme climate conditions in western Kansas, using the DSSAT model. 
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Chapter 2 - Literature Review 

 2.1 Estimating potential crop water demands 

The crop evapotranspiration (ET) estimation is crucial for understanding and managing 

crop water demands. To accurately estimate crop ET, various direct and indirect methods have 

been explored in literature. Crop ET is often modeled as a function of the environmental and crop 

characteristics. The former is mostly contained in the reference evapotranspiration (ETo) 

component, which is the amount of water that can be lost from a reference surface like grass or 

alfalfa, and is usually estimated from weather variables. The latter, however, is captured by a factor 

known as the crop coefficient. The crop coefficient may be estimated by considering specific crop 

characteristics such as the crop type, crop height and leaf area index, as well as using indices such 

as the normalized difference vegetation index, which can be estimated from satellite data (Igwe et 

al., 2023), and also from data collected using unmanned aerial vehicles (Wiederstein et al., 2022). 

Standardized values of the crop coefficient for various crops, including maize are reported in the 

FAO 56 irrigation and drainage paper (Allen & Pereira, 1998) along with various other approaches 

reported in literature for estimating the ETo. The most commonly used, and widely accepted 

methods are the Priestly-Taylor (Priestley & Taylor, 1972) and the FAO-Penman Monteith (Allen 

& Pereira, 1998) methods. While the application of these models are largely limited to the specific 

regions (Valipour et al., 2017), machine learning models have however, been reported to be robust 

in accurately estimating ETo and its associated climatic impacts, under various vegetation types 

(Dou & Yang, 2018), climatic regions (Huang et al., 2019; Wei et al., 2022; Wu & Fan, 2019), 

and even under limited data (Mostafa et al., 2023; Torres et al., 2011). For example, in Midwestern 

U.S., a Random Forest machine learning model was reported to show good potential for estimating 

ETo with satisfactory accuracy (Talib et al., 2021). 
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 2.2 Climate-driven variation in seasonal crop water demands 

Crop water demand, represented by evapotranspiration often vary seasonally due to several 

factors (Zhang et al., 2023) with climate driven factors being the major contributors to this 

variation (Basso et al., 2021). Several climatic components which have been reported to 

dominantly influence reference ET (ETo) vary extensively by location (Feng et al., 2020). In the 

south, central and northwestern regions of Iraq, for instance (Al-Hasani & Shahid, 2022), and in 

the Mediterranean region (Gorguner & Kavvas, 2020), the air temperature was found as the pre-

dominant variable affecting ETo. Conversely, in Northeastern China, relative humidity was found 

to dominantly influence ET at high altitudes, while windspeed exerts the greatest impact at low 

altitudes (Liu et al., 2022). Meanwhile, precipitation is reported to be the major driver of ETo in 

most humid regions (Feng et al., 2020; Zhou et al., 2015). Seasonal crop variability is also affected 

by extreme weather events that are primarily a result of climate change. Unusual conditions of 

climate, especially those derived from temperatures and precipitation tend to influence ETo rates 

more abruptly (Sadok et al., 2021). These unusual conditions referred to as climate extremes can 

lead to severe water stress which may likely increase crop water demand, and consequently, the 

irrigation water use. In the united states, high correlation between potential ETo and summer 

precipitation, were reported in the northeastern regions, while the southern regions showed higher 

correlation with temperature indices than with precipitation indices (Nie et al., 2021; 

Vadeboncoeur et al., 2018). In other comparable research, the expected magnitude of change in 

ETo due to the climate-induced shift in the patterns and occurrence of these climatic variables, 

relative to historical period, was evaluated and quantified. In  a study conducted in  Ethiopia, it 

was found ETo will likely increase under Representative Concentration Pathways (RCP4.5) and 

(RCP8.5) scenarios by 14.3 to 15.3%, and 19 to 28.5%, respectively (Gurara et al., 2021). 
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Similarly, in a study carried out in Iran, an increase in ETo ranging between 1.3% and 7.3% was 

predicted, with the biggest increase predicted under the RCP 8.5 scenario (Lotfi et al., 2020). In 

the United States, several studies indicate an overall increasing trend in ET rates (Basso et al., 

2021; Condon et al., 2020; Walter et al., 2004). This trend is not only temporal but also exhibits a 

spatial shift, with rates generally increasing from west to east, as indicated by the shift in imaginary 

100th meridian line separating western arid parts US from the eastern humid parts (Seager et al., 

2018). The Midwestern regions of the U.S. are particularly vulnerable to these shifts in 

evapotranspiration dynamics, majorly because a substantial portion of cultivated areas in the 

region rely predominantly on rainfed agriculture (Ao et al., 2021; Basso et al., 2021). As a result, 

these areas are more exposed to extreme temperatures which have been reported to influence 

evapotranspiration (Igwe et al., 2023; Roderick et al., 2015), and consequently reductions in crop 

production (Lobell et al., 2013, 2014; C. Zhao et al., 2017). These findings suggest the need for 

improving crop adaptation to climate impacts, especially under limited water resources which is 

prevalent in semi-arid regions like western Kansas. 

 2.3 Agricultural sustainability under deficit irrigation management 

Irrigation is very useful for mitigating against the impacts of climate extremes on crop 

productivity (Sadok et al., 2021; Schauberger et al., 2017; Troy et al., 2015). This is because, in 

addition to meeting crop water needs, irrigation helps to reduce crop heat stress by cooling the 

crop through evaporative effect (Li et al., 2020), giving an advantage in yield production compared 

to rainfed agriculture in areas with limited rainfall. However, because irrigating in response to 

extreme climate conditions would likely necessitate increased groundwater withdrawals, it is 

therefore essential that a well-adapted deficit irrigation management be implemented to maximize 

water savings without yield penalty. Deficit irrigation management strategies may be based on an 
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allowable percentage depletion of the plant available soil water, indices representing crop water 

stress, or based on crop evapotranspiration data (Ma et al., 2017). Also, when additional resource 

constraints, such as a limit on pumping capacity, render it difficult to meet peak crop water 

demands, growth-stage based irrigation management can be used as an alternative to full irrigation 

(Rudnick et al., 2019). In general, no single irrigation management strategy is well-adapted for all 

regions. This is largely because in addition to the irrigation scheduling techniques (Attia et al., 

2021), crop and water productivity response varies, depending on the crop type (Li & Troy, 2018), 

soil type (Araya et al., 2021), climate condition (Araya et al., 2017), and the water supply available 

(Xiang et al., 2020), among others. Therefore, the optimum irrigation technique for a given area 

can be chosen based on how well it preserves the region's scarce resources without negatively 

affecting agricultural output. Due to the limitation of water resources in western Kansas, the most 

effective irrigation scheduling technique is often determined by its ability to reduce water use 

while increasing output and water use efficiency under various conditions (Rudnick et al., 2019). 

Field experimental designs can be used to assess the capabilities of these irrigation scheduling 

techniques (Ko & Piccinni, 2009), but these experiments are usually cost and labor intensive. As 

an alternative approach, researchers are increasingly adopting process-based cropping system 

models, such as the Decision Support System for Agrotechnology Transfer (DSSAT) model. Due 

to its robust modeling framework, the DSSAT model has gained wide acceptance, since it offers 

an advantage of simulating crop growth processes given the weather, soil, crop and management 

information. The model has the capability of setting up automatic and controlled irrigation 

scheduling treatments based on soil water depletion, evapotranspiration accumulation or target 

growth stages. For example, the DSSAT model was used to assess the performance of varying 

levels of plant available soil water, controlled by irrigation frequencies (Araya et al., 2021) on the 
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maize crop and water productivity in western Kansas. Similarly, several other studies (Araya et 

al., 2017; Attia et al., 2021; Lone et al., 2020) have applied the DSSAT model assess crop response 

under varying climatic conditions. Therefore, the DSSAT model proves to be a useful tool for 

gaining insightful knowledge about how to best optimize water resources, and boost crop output 

while mitigating against the adverse effects of climate-induced conditions. 

  



10 

Chapter 3 - Evaluating the Impact of Future Seasonal Climate 

Extremes on Crop Evapotranspiration of Maize in Western Kansas 

Using a Machine Learning Approach 

Abstract 

  Data-driven technologies are employed in agriculture to optimize the use of limited 

resources. Crop evapotranspiration (ET) estimates the actual amount of water crops require at 

different growth stages, thereby proving to be the essential information needed for precision 

irrigation. Crop ET is essential in areas like the U.S. high plains, where farmers rely on 

groundwater for irrigation. The sustainability of irrigated agriculture in the region is threatened by 

diminishing groundwater levels and the increasing frequency of extreme events caused by climate 

change further exacerbates the situation. These conditions can significantly affect crop ET rates, 

leading to water stress which adversely affects crop yields. In this study, we analyzed historical 

climate data using a machine learning model to determine which climate extreme indices that most 

influenced crop ET. Crop ET was estimated using reference ET derived using the FAO-Penman-

Monteith equation which was multiplied with crop coefficient data estimated from remotely-

sensed normalized difference vegetation index (NDVI). We found that climate extreme indices of 

consecutive dry days and mean weekly maximum temperatures most influenced crop ET. It was 

found that temperature-derived indices influenced crop ET more than precipitation-derived 

indices. Under the future climate scenarios, we predict that crop ET would in-crease by 0.4% and 

1.7% in the near term, by 3.1% and 5.9% in the mid-term, and by 3.8% and 9.6% at the end-of-

century, under low greenhouse gas emission and high greenhouse gas emission scenarios 



11 

respectively. These predicted changes in seasonal crop ET can help agricultural producers to make 

well-informed decisions to optimize groundwater resources. 

Keywords: extreme weather events; crop evapotranspiration; climate change; machine 

learning 

 3.1 Introduction 

Crop evapotranspiration (ET), when estimated accurately, can enable agricultural 

producers to make effective irrigation management decisions. In areas such as the High Plains 

region, agricultural production relies heavily on groundwater resources (Dennehy et al., 2002). 

However, due to the declining amount of yearly precipitation, groundwater withdrawals have 

greatly surpassed recharge, posing a threat to the sustainability of agriculture in the future 

(Cotterman et al., 2018; Deines et al., 2019; Haacker et al., 2016).  Since crop ET is the estimate 

of the actual amount of water required by the crops at any given time during growing season, 

effective use of crop ET information can help mitigate this problem. Therefore, when incorporated 

into irrigation scheduling, crop ET data can help optimize the use of limited groundwater resources 

and ensure its sustainability by reducing the rate of groundwater pumping while also meeting crop 

water needs (Ajaz et al., 2020; Brauer et al., 2017). 

Crop ET rates and amounts, however, are affected by the variability of growing-season 

weather conditions. More specifically, the increased frequency and intensity of the occurrence of 

extreme climate events caused by climate change, influences in-season variation in the crop water 

requirement (Condon et al., 2020). Climate extremes are instances of harsh weather conditions, 

such as heat waves and highly variable precipitation. They have become a global concern to 

agricultural researchers and producers, especially due to the extent of the effect they can have on 

the hydrological cycle, and on crop productivity (Vogel et al., 2019). Many studies have assessed 
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the impact of climate extremes on the end-of-season yield of crops, and have discovered that 

relationships exist between climate extremes and crop yields (Powell & Reinhard, 2016; Troy et 

al., 2015; Wilson et al., 2022). For example, researchers (Lobell et al., 2013; Lobell & Asner, 

2003) report that extreme heat occurrences, which are conditions where the maximum temperature 

during the growing season exceeds 30°C, have a negative effect on maize yield. This is because 

prolonged exposure to high temperatures induces water stress by increasing the rate of soil 

evaporation and plant transpiration; as plants are then forced to close their stomata in order to 

prevent desiccation (Schauberger et al., 2017). A decreased yield at the end of the growing season 

is therefore likely, if sufficient water is not provided to relieve the water stress brought on by these 

extreme temperature conditions. These extreme weather conditions may even have more 

devastating effects on crop productivity, particularly if they occur at growth stages where the crops 

are most vulnerable to water stress (Comas et al., 2019). In an experimental study, (Hatfield & 

Prueger, 2015) reported that the reproductive stage of maize is most sensitive to warmer 

temperatures, and when com-pared to maize growth under normal temperatures, these warmer 

temperatures can re-duce the end-of-season yield by as much as 80% to 90%. A similar study 

(Suárez et al., 2019) also reported that with the exposure of crops to climate extremes, like 24 

hours under temperatures above 33°C, the biomass yield reduces by up to 3%. Maize is highly 

susceptible to water stress (Lobell et al., 2014), and it needs more adequate watering during its 

vegetative and tasseling stages, in order to prevent significant yield decline at the end of its 

growing season (Yilmaz et al., 2010). However, under well-managed conditions, maize responds 

well to irrigation in terms of production; yielding 673Kg/ha to 1009Kg/ha for every 25 mm of 

water applied. This makes maize the most heavily irrigated crop in Kansas; covering over half of 

the state's three million acres of maize-producing land. Rogers et al., (2012) reports that the full-
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season variety types of maize need between 500mm and 800mm of water, often at a rate of 9mm 

to 13mm per day, depending on the weather during the growing season. 

Variability in in-season weather conditions will likely impact on maize’s average crop 

water needs. Rising annual and seasonal temperatures resulting from increased greenhouse gas 

emissions due to human activities (Hayhoe et al., 2009), are already being reported in the Midwest 

(Seneviratne et al., 2021) and other parts of the world (Smith, 2011). These observed changes are 

expected, given that future climate estimates from global climate models (GCMs) show an upward 

trajectory in global warming and aridity in the future (Alexander et al., 2006). GCMs are models 

developed based on the knowledge of the earth's system and how its components interact. Using 

historically observed data, and scenarios that depict the levels of greenhouse gas emissions from 

human activities, these GCMs generate data for various climate parameters like temperature, 

precipitation, humidity, etc. at various regional and temporal scales. Four gas emission scenarios 

referred to as representative concentration pathways (RCPs) were developed and standardized by 

the intergovernmental panel on climate change (IPCC) in the IPCC fifth assessment report (IPCC,  

2014). Two of these scenarios commonly used in studies are the RCP4.5 scenario—a future in 

which mitigation efforts are implemented to reduce greenhouse gas emissions—and the RCP8.5 

scenario, which depicts a future in which greenhouse gas emissions continue to rise all through the 

twenty-first century. The scenarios serve as input data to over twenty GCMs that have been 

developed by the coupled model inter-comparison project (CMIP). The predictions from the 

GCMs are usually compared with historically observed data to estimate the severity of climate 

change to be anticipated in the future. The changes projected by these GCMs pose a significant 

threat to the sustainability of agriculture in semi-arid regions like the U.S. high plains region. 

Particularly, since the current limitation in groundwater resources might not be adequate to satisfy 
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a change in the growing season water requirement of maize in the future. Further-more, 

(Seneviratne et al., 2021) reported a likely increase, globally, in the frequency and severity of 

extreme weather events. 

The US high plains—a portion of the great plains—comprises of eight states which include 

South Dakota, Nebraska, eastern Colorado, southern Wyoming, western Kansas, northwestern 

Texas, eastern New Mexico, and northwestern Oklahoma. Together, these states produce more 

than 50 million tons of grain annually (Mrad et al., 2020). Agricultural production in the region 

depends heavily on irrigation activities, which accounts for approximately 90% of the yearly water 

use. Irrigation significantly lowers heat stress on maize, which is brought on by extreme climatic 

conditions during the growing season (Siebert et al., 2017). Research shows that irrigation 

increases the overall seasonal biomass yield of crops in the region by 51% (Mrad et al., 2020), 

approximately $3 billion today. However, irrigation induces a strain on water re-sources, as it 

further depletes the limited groundwater resources available (Rosa et al., 2018). A related study 

shows that the current groundwater management conditions in the high plains’ region are 

inadequate, and may lead to a decrease in maize production by acreage, by as much as 60%, if no 

further adaptation strategies are implemented (Cotterman et al., 2018). Furthermore, a long-term 

trend analysis of climate in Western Kansas, which is a part of the high plains’ region, revealed 

that the annual number of frost-free days has increased by 5.2 days (Lin et al., 2017). With this 

rate of warming, future moisture loss from evapotranspiration could rise, which would lead to a 

corresponding increase in the amount of water needed to irrigate the maize crop. This can 

eventually impact on the crop yield, as the limited amount of groundwater might not be adequate 

to support the irrigation demand which is deter-mined by the crop evapotranspiration estimates. 
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Crop evapotranspiration is often modeled as a function of the reference evapotranspiration 

(ETo) which accounts for most of the environmental influences like temperature, solar radiation, 

and wind, and the crop coefficients (Kc) which account for the effects of crop characteristics like 

crop height, albedo, canopy resistance and even evaporation from the soil (Allen & Pereira, 1998). 

ETo estimation models may be broadly classified into: (1) fully physically-based models such as 

the widely accepted Penman-Monteith equation, and the Surface Energy Balance System (SEBS) 

(Su, 2002) that incorporate mass and energy conservation principles; (2) semi-physically-based 

models like Surface Energy Balance Algorithm for Land (SEBAL),  the Mapping 

Evapotranspiration at high resolution with internalized Calibration (METRIC) model, and the 

Variable-Infiltration Capacity Model —often applied in spatiotemporal studies using remote 

sensing—which both combine empirical adjustments with either mass or energy conservation 

principles (Li et al., 2009; Liou & Kar, 2014; Srivastava et al., 2017); and (3) black-box or ma-

chine learning models based on artificial neural networks (Elbeltagi et al., 2022; Kumar et al., 

2011), adaptive neuro fuzzy computing (Kişi & Öztürk, 2007), and genetic algorithms (Yin et al., 

2016),which estimates ETo by learning patters and relationships from a given set of input data. 

Physically-based models are computationally demanding as they require a lot of data, and as a 

result, they can be cost intensive. In contrast, semi-physically based models (Li et al., 2009) offer 

less expensive options, especially when carrying out studies over larger areas.  

However, due to recent advances in technologies and processing capabilities, machine 

learning (ML) models are becoming popular in estimating ETo, and also in studying its associated 

climatic impacts. This is largely because machine learning models are more effective than other 

methods at predicting both linear and non-linear relationships, as is often the case for climate-

related phenomena (Kadkhodazadeh et al., 2022; Konduri et al., 2020). ML models such as random 
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forests (RF), support vector machine, artificial neural networks (ANN) and many more have been 

applied in predicting crop water demands, and crop water stress (Granata, 2019), for various 

vegetation types (Dou & Yang, 2018), and under limited climatic data (Mostafa et al., 2023; Torres 

et al., 2011). For example, a comparative study in China (Fan et al., 2018) evaluated the 

performance of simple tree-based machine learning models like random forests (RF), extreme 

gradient boosting (XGBoost), and M5 model in comparison to other related machine learning 

models like support vector machines (SVM). The result indicated that based on determining factors 

like complexity level, prediction accuracy, stability and computational costs, the RF model 

generally provided satisfactory estimates of ETo (R2 > 0.9) in the temperate continental, mountain 

plateau and temperate monsoon zones of China. In a similar study (Huang et al., 2019), the same 

determining factors were used to compare RF, SVM, and gradient boosting on decision trees with 

support for categorical features (Catboost), and it was revealed that in humid regions, the SVM 

generally exhibited more levels of accuracy and stability (R2 > 0.98) for ETo estimation under 

limited climatic data, although, it is worth noting that in the study, the RF model also demonstrated 

strong performance during the model’s training phase, suggesting a potential robustness across 

different climatic zones. Furthermore, in a comprehensive comparison of eight machine learning 

models conducted across multiple climatic regions in China (Wu & Fan, 2019), the SVM model 

demonstrated strong prediction capability. The study categorized the models into different types, 

including neuron-based models such as Generalized Regression Neural Network (GRNN), 

Multilayer Perceptron Neural Networks (MLP), and Adaptive Neuro-Fuzzy Inference System 

(ANFIS); kernel-based models like Support Vector Machine (SVM) and Kernel-based Nonlinear 

Extension of Arps Decline Model (KNEA); tree-based models like M5 model tree (M5Tree) and 

XGBoost, as well as a curve-based model called Multivariate Adaptive Regression Spline 
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(MARS). Among these models, the SVM model consistently performed well and exhibited strong 

predictive capabilities across the evaluated regions in China. 

In semi-arid regions like the high plains’ region of the United States, ML models have also 

demonstrated their effectiveness in accurately estimating evapotranspiration. In Kansas, the RF 

model was observed to effectively capture the temporal and spatial variability of irrigation amounts 

with a satisfactory accuracy (𝑅2 = 0.82) using hydrometeorological and remote sensing products 

(Wei et al., 2022). Similarly, in Texas, a comparative study between a linear regression model and 

two more advanced ML models—the artificial neural net-works (ANNs) and the Gaussian process 

models (GPs)—was conducted to predict daily reference ET. The findings indicated that the GP 

machine learning model yielded the highest estimation accuracy (R2 = 0.95) (Holman et al., 

2013.). These results highlight the effectiveness of ML models in accurately estimating ET in 

semi-arid regions, therefore showcasing the potential of capturing the complex relationships 

associated with ET estimation. However, most of these studies have been done using mean 

meteorological variables, and considering only the impacts of mean climate change conditions. 

The seasonal interactions of extreme climate conditions with crop evapotranspiration, which is a 

crucial component in determining crop yield, have not yet been extensively studied. 

To ensure well-informed decision-making with regard to irrigation, it is therefore necessary 

to study the impacts of these climate extremes on crop ET, especially in the face of climate change. 

There is also a need to quantify how much change in seasonal crop water requirements of a water-

intense crop like maize is likely to occur in the future given the likelihood of an increase in the 

intensity and duration of extreme climate occurrences. The objectives of this study, therefore, are: 

i) to analyze historical weather data to deter-mine which climate extremes most influence crop ET 
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and; ii) to use a machine learning-based model to quantify the seasonal change in crop ET for 

future climate change scenarios. 

 3.2 Data and Methods 

 3.2.1 Study Area 

The Southwest portion of Kansas is semi-arid. Its annual minimum and maximum 

temperatures are averaged at 4°C and 20°C respectively (Steward et al., 2013). Also, the mean 

annual precipitation is less than 500 mm, with a positive trend of only about 2.54 mm per decade 

(Araya et al., 2017). Finney County (Latitude = 38.0625°N, Longitude = 100.8903°W, elevation 

of 867m), which is located in the southwestern part of Kansas, was selected as the area of focus 

for this study. During the growing season–usually from May to October—Finney County 

experiences an average precipitation of 349 mm, a maximum temperature of 28.3°C, and a 

minimum temperature of 12.3°C, respectively (Araya et al., 2017). Furthermore, only 

approximately 35% of the reference evapotranspiration is met by the yearly precipitation and 

during the growing season, the percentage usually falls between 29 - 48% (Araya et al., 2017). The 

arid condition in the region can be seen in the 30-year time series plot of annual cumulative 

precipitation and evapotranspiration shown in figure 3.1 below. This makes groundwater supplies 

a crucial resource for agricultural productivity in the study area. There are 1,629 wells used for 

irrigation, however, the water table in some of the wells has dropped by 15 meters since 1950 

(Xiang et al., 2020), due to excess pumping. 
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Figure 3.1: A 30-year time series plot of annual cumulative precipitation and evapo-

transpiration in Finney County, Kansas. 

Maize is the second most widely grown crop in Finney County, after winter wheat. 

According to the 2020 USDA national crop data layer (National Agricultural Statistics Service 

(NASS) & Development Division (RDD) Geospatial Information Branch (GIB), 2020), it covers 

approximately 50,000 hectares (49,320 hectares) of cultivated land. The three most widely grown 

crops in Finney County, Kansas, as measured by the area of land cultivated, are shown on the 

typical county map in figure 3.2 below 
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Figure 3.2: Finney County, Kansas showing most cultivated crops by acreage. 

 3.2.2 Data and Data Sources 

 3.2.2.1 Historic climate extremes 

Weather data comprising of daily maximum and minimum temperature, and daily 

precipitation were extracted for Finney County from the High Plains Regional Climate Center 

(HPRCC), for a 30-year historical time period (from 1991 to 2020). Eleven indices (Table 3.1) 

representing agriculturally relevant climate extremes (Zhang et al., 2011) were calculated from 

HPRCC temperature and precipitation datasets following the procedure recommended by the 

expert team on climate change detection and indices (ETCCDI) (Karl et al., 1999; Zhang et al., 

2005). To represent moderate climate extreme indicators, a core set of 27 indices was first created 

by the ETCCDI. The initial set of indices developed, however, could not be used in many 

specialized disciplines, such as agriculture. The indices were then revised by the expert team on 
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sector-specific climate indices (ET-SCI) to make them useful for specific industries like 

agriculture. Therefore, the indices chosen for this study were those that were considered to be 

pertinent to agricultural crop production, particularly for growing maize. These indices were also 

selected based on their capability to be aggregated at a weekly temporal resolution, unlike other 

indices published by the ETCCDI, which were commonly aggregated at a monthly or an annual 

temporal scale. The calculated indices were aggregated to a weekly temporal scale for the maize 

growing period, to ensure the homogeneity of their temporal resolution with that of the crop ET 

data. Indices derived from precipitation and temperatures data were categorized as precipitation-

based indices and temperature-based indices, respectively. Indices of temperature expressed in 

percentages—which are commonly called warm spells—were further classified as percentile-

based indices. The maize growing season length that was defined in this study for Finney County, 

spanned between May 5th and October 7th as recommended by  Araya et al., (2017). 

Table 3.1: Agriculturally relevant climate extremes adapted from Zhang et al., (2011) 

Extreme indices Description unit 

Precipitation-based indices 

Consecutive dry days (CDD) Maximum length of dry spell: Maximum number of 

consecutive days with RR < 1mm 

day 

Consecutive Wet Days 

(CWD) 

Maximum number of consecutive days with precipitation > 

1mm 

day 

Total precipitation (PRPtot) Weekly total precipitation on wet days (PRPtot) mm 

Temperature-based indices 

Daily temperature range 

(DTR) 

Daily Temperature Range; difference between maximum and 

minimum temperature 

oC 

TM below 10 °C (Tmlt10) Weekly number of days when TM < 10 oC day 

TX of at least 30 °C (TXge30) Weekly number of days when TX > 30 oC day 

Mean TX (TX_avg) Mean daily maximum temperature oC 

Mean TN (TN_avg) Mean daily minimum temperature oC 

Tropical nights (TR) Number of days when TN > 20 °C day 

Percentile-based indices 

Amount of hot days (TX90p) Percentage of days when TX > 90th percentile % 

Amount of warm nights 

(TN90p) 

Percentage of days when TN > 90th percentile % 

*TN = Minimum Temperature, TX = Maximum Temperature, TM = Mean Temperature 
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3.2.2.2 Estimation of crop evapotranspiration 

The crop evapotranspiration (ETc) was estimated from two variables: the reference 

evapotranspiration (ETo), which was calculated from weather data extracted from the high plains 

regional climate center (HPRCC); and crop coefficient (Kc) data (Equation 3.1) using: 

Equation 3.1: Crop Evapotranspiration: 

 𝐸𝑇𝑐 = 𝐾𝑐 𝑥 𝐸𝑇𝑜 .  

Where, ETc is the crop evapotranspiration in mmday-1; Kc is the crop coefficient; and ETo 

is the reference evapotranspiration in mmday-1.  

This crop coefficient approach in Equation 1 above is recommended by the Food and 

Agriculture Organization (FAO) for estimating ETc more accurately from weather datasets when 

field measurements are not readily available (Allen et al., 2005). The step-by-step procedure 

applied is similar to one reported by Reyes-González et al. (Reyes-González et al., 2018), as shown 

in figure 3.3. The ETo was estimated using the FAO Penman-Monteith equation (Equation 3.2) 

(Allen et al., 2004), from weather datasets extracted for Finney County from the HPRCC using: 

Equation 3.2: Reference Evapotranspiration: 

 

𝐸𝑇𝑜 =  
0.408∆(𝑅𝑛 − 𝐺) + 𝛾

900
𝑇 + 273 𝑢2(𝑒𝑠 − 𝑒𝑎) 

∆ +  𝛾(1 + 0.34𝑢2)
. 

 

Where ETo is the reference evapotranspiration in mmday-1; Rn is the net radiation at the 

crop surface in MJm-2day-1; T is the average daily temperature at 2m height in oC; u2 is the wind 

speed at 2m height in ms-1; (es-ea) represent the saturation vapor pressure deficit in kPa; and ∆ is 

the  slope vapor pressure curve in kPaoC-1; γ is the psychometric constant (kPaoC-1); and G is the 

Soil heat flux in MJm-2day-1, which was considered to be equal to zero in accordance with 

recommendations by Allen et al. (Allen et al., 2004), for calculating ETo at daily time steps using 
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a hypothetical reference crop with height of 0.12m, albedo of 0.23 and a fixed surface resistance 

of 70sm-1 was assumed for well-watered condition. 

 
Figure 3.3: Flowchart showing procedure for modeling crop ET from crop coefficient and 

climate extreme indices. Adapted from Reyes-González et al. (2018) 

 

Crop coefficient (Kc) of maize crop was estimated from remotely sensed normalized 

difference vegetation index (NDVI). The FAO’s irrigation and drainage paper 56 (Allen & Pereira, 

1998) pro-vides Kc values for maize at the early, midseason, and late season phases of growth. 

However, these values do not take into consideration the daily and weekly variations of Kc values 

throughout the course of the full growing season. Several studies (Bausch, 1993; Campos et al., 

2017; Kamble et al., 2013; Neale et al., 1990) have reported that a linear relationship exists 

between the single Kc, and the NDVI.  (Wiederstein et al., 2022) compared Kc values of maize 
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estimated from several of these empirical relationships reported by researchers, using NDVI raster 

images extracted from the Landsat 7 satellite, and also from aerial images captured from un-

manned aircraft. He found that the (Kamble et al., 2013) empirical model for Kc produced the best 

results in Finney County. We therefore applied the (Kamble et al., 2013) empirical model in this 

study to determine Kc values for maize, using NDVI data. Surface reflectance images were 

extracted from both the Landsat 5 satellite for the period of 1991 to 2000; and the Landsat 7 

satellite, for the years 2001 to 2020. NDVI was computed using the surface reflectance values in 

near-infrared (NIR) and red region of the electromagnetic spectrum, in the widely applied NDVI 

index (Equation 3.3) (Kriegler et al., 1969)  

Equation 3.3: Normalized Difference Vegetation Index (NDVI):  

 
𝑁𝐷𝑉𝐼 =

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
. 

 

Where NDVI is Normalized Difference Vegetation Index; NIR is Percent reflectance of 

light in the near-infrared region of the electromagnetic spectrum; RED is Percent reflectance of 

light in the red region of the electromagnetic spectrum. 

The Images obtained by the Landsat satellite sensors are often subject to various influences, 

including atmospheric effects, and bidirectional reflectance distribution function (BRDF) which 

result from the sun’s position, sensor view angle, and the nature of the terrain (F. Li et al., 2010). 

Due to the combination of atmospheric influences with these BRDF effects, remote sensing 

techniques might be particularly challenging, especially in mountainous regions with steep slopes. 

Although the study area chosen for this research is a relatively flat area with an average slope of 

less than 2% and an elevation of 867 meters above sea level (Araya et al., 2017), the potential 

errors that may arise from variations in the elevation and slope, as well as potential atmospheric 

effects on the quality of the images, were taken into consideration. To address potential errors that 
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may occur due to the BRDF effects, the Landsat satellite surface reflectance products have been 

pre-processed (Masek et al., 2006), by using approximated BRDF parameters which are derived 

from complex algorithms (Li et al., 2012). To further eliminate atmospheric effects, the Landsat 

surface reflectance images underwent additional processing within in the google earth engine 

(GEE) code editor platform. This process involved filtering out only the days with no cloud cover 

(i.e. cloud cover = 0%). The filtered images were then clipped to a raster mask of maize-cultivated 

fields in Finney County using ESRI's ArcGIS pro software. The raster mask containing pixels for 

maize growing areas was extracted from the cropland data layer (CDL) of the USDA (NASS, 

2020). The clipped images of NDVI were then imported into GEE platform for additional 

processing. Since the NDVI data were only available for every 16 days because of the Landsat 5 

and Landsat 7 thematic mapper satellites' 16-day revisit cycle, further data processing was required 

in order to provide daily time series for NDVI. Several researchers have adopted statistical 

smoothing techniques such as the weighted least-squares linear regression method, Kernel, and 

Gaussian smoothing techniques to increase the data quality of time series NDVI (Cai et al., 2017; 

Cao et al., 2018; Shao et al., 2016). The Gaussian technique was applied to the NDVI curve using 

the 'gam' function in R (Hastie & Tibshirani, 2014), in order to extract the NDVI data at daily time 

steps. The power of polynomial (k=300) was found to produce the best approximation of the 

seasonal and temporal pattern of the estimated NDVI data. The smoothened daily NDVI values 

were then aggregated to weekly time steps to homogenize with the temporal resolution of the 

climatic extreme indices and the evapotranspiration data. The selected NDVI-based Kc model 

(Equation 3.4) (Kamble et al., 2013) was then used to estimate crop coefficient values from the 

30-year historical NDVI data. 
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Equation 3.4: Crop coefficient (Kc) 

 𝐾𝑐  =  1.4571 ∗ 𝑁𝐷𝑉𝐼 − 0.1725.  

The obtained values of Kc were then multiplied with the FAO Penman-Monteith reference 

ET to obtain the potential crop ET of maize, using Equation 1. The estimated crop coefficients 

were kept constant in historical and future time periods, because the effects of various weather 

conditions on crop evapotranspiration are largely accounted for by the reference 

evapotranspiration estimate (Allen & Pereira, 1998), while the crop-specific characteristics are 

integrated into the crop coefficient, which is primarily influenced by physiological development 

stages of the crop, irrigation management, and soil conditions. 

3.2.2.3 Future climate data and extreme indices 

Future climate data for Finney County were retrieved from twenty global climate models 

(GCMs) (Table 3.2), for a 75-year time period, which were divided into the near-term period 

(2025-2049), the mid-century period (2050-2074), and the end-of-century period (2075-2099). 

GCMs are chosen based on how well they perform in capturing the dynamics of various climate 

phenomena, including precipitation, the pacific oscillations, the dynamics of the El Nino-Southern 

Oscillation (ENSO), and robust simulations of future cli-mate scenarios. The ability of each GCM 

to model a particular climate process, however, varies because of the complexity of climate 

processes (Pierce et al., 2009). As a result, an ensemble of GCMs is frequently used in climate 

change research in order to account for the numerous errors and biases that may be present in the 

individual models. The Coupled Model Inter-comparison Project Phase 5 (CMIP5) output of daily 

statistically downscaled data (Abatzoglou, 2013), has been pre-processed to extract daily future 

temperature and precipitation data for the 20 GCMs available, by the University of Idaho at a 1/24-

degree spatial resolution. The data was downscaled using the multivariate adaptative constructed 

analogs (MACA) method, and was bias-corrected using a quantile mapping approach. The method 
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has also been validated for the Western regions of the United States  (Abatzoglou & Brown, 2012). 

In this study, two representative concentration pathways (RCPs) developed by the 

intergovernmental panel on climate change were taken into account: the RCP4.5 scenario, which 

projects that reduced greenhouse gas emissions stabilize radiative forcing at about 4.5 Wm-2, and 

the RCP8.5 scenario, which projects that greenhouse gas emissions increase radiative forcing 

above 8.5 Wm-2 by the end of the century., implying much higher warming in the future under 

RCP8.5 than under RCP4.5 scenario. These data were used to calculate the same set of climate 

extreme indices that had been previously calculated using historical weather data. The calculated 

indices were then used as input data to predict reference evapotranspiration for each GCM and for 

both the RCP4.5 and RCP8.5 scenarios. 

Table 3.2: Statistically downscaled Global Climate Models; adapted from (Abatzoglou & 

Brown, 2012; Taylor et al., 2012). 

S/N Model Name Model Agency Atmosphere 

Resolution (Lon x Lat) 

1. bcc-csm1-1_r1i1p1 Beijing Climate Center, China 

Meteorological Administration 

2.8 deg x 2.8 deg 

2. CanESM2_r1i1p1 Canadian Centre for Climate Modeling 

and Analysis 

2.8 deg x 2.8 deg 

3. CSIRO-Mk3-6-

0_r1i1p1 

Commonwealth Scientific and Industrial 

Research Organization/Queensland 

Climate Change Centre of Excellence, 

Australia 

1.8 deg x 1.8 deg 

4. HadGEM2-

CC365_r1i1p1 

Met Office Hadley Center, UK 1.88 deg x 1.25 deg 
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5. IPSL-CM5A-

LR_r1i1p1 

Institut Pierre Simon Laplace, France 3.75 deg x 1.8 deg 

6. MIROC-ESM_r1i1p1 Japan Agency for Marine-Earth Science 

and Technology, Atmosphere and Ocean 

Research Institute (The University of 

Tokyo), and National Institute for 

Environmental Studies 

2.8 deg x 2.8 deg 

7. bcc-csm1-1-m_r1i1p1 Beijing Climate Center, China 

Meteorological Administration 

1.12 deg x 1.12 deg 

8. GFDL-

ESM2G_r1i1p1 

NOAA Geophysical Fluid Dynamics 

Laboratory, USA 

2.5 deg x 2.0 deg 

9. HadGEM2-

ES365_r1i1p1 

Met Office Hadley Center, UK 1.88 deg x 1.25 deg 

10. IPSL-CM5A-

MR_r1i1p1 

Institut Pierre Simon Laplace, France  

11. MIROC5_r1i1p1 Atmosphere and Ocean Research 

Institute (The University of Tokyo), 

National Institute for Environmental 

Studies, and Japan Agency for Marine-

Earth Science and Technology 

1.4 deg x 1.4 deg 

12. MRI-CGCM3_r1i1p1 Meteorological Research Institute, Japan 1.1 deg x 1.1 deg 
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13. BNU-ESM_r1i1p1 College of Global Change and Earth 

System Science, Beijing Normal 

University, China 

2.8 deg x 2.8 deg 

14. CNRM-CM5_r1i1p1 National Centre of Meteorological 

Research, France 

1.4 deg x 1.4 deg 

15. GFDL-

ESM2M_r1i1p1 

NOAA Geophysical Fluid Dynamics 

Laboratory, USA 

2.5 deg x 2.0 deg 

16. inmcm4_r1i1p1 Institute for Numerical Mathematics, 

Russia 

2.0 deg x 1.5 deg 

17. IPSL-CM5B-

LR_r1i1p1 

Institut Pierre Simon Laplace, France  

18 MIROC-ESM-

CHEM_r1i1p1 

Japan Agency for Marine-Earth Science 

and Technology, Atmosphere and Ocean 

Research Institute (The University of 

Tokyo), and National Institute for 

Environmental Studies 

2.8 deg x 2.8 deg 

19. NorESM1-M_r1i1p1 Norwegian Climate Center, Norway 2.5 deg x 1.9 deg 

20. CCSM4_r6i1p1 National Center of Atmospheric 

Research, USA 

 

 

 3.2.3 Development of Machine Learning Model and Performance Evaluation 

The random forest (RF) regression model (Breiman, 2001; Hastie et al., 2009) was used to 

model the association be-tween climate extremes and crop ET. Studies show that when compared 

to linear and generalized additive models, the random forest machine learning (ML) model 
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performed better in estimating linear and non-linear relationships involving climate change 

parameters with minimal errors(Khanal et al., 2021; Konduri et al., 2020). RFs are regression-type 

ML techniques that are devised for creating a prediction ensemble utilizing numerous decision 

trees that are randomly trained on a subset of the input data (Breiman, 2001). Each decision tree is 

produced by randomly resampling the input data, using bootstrapping approach. The same sample 

of predictors may be chosen for splitting at each node, and the trees run independently of one 

another (Biau & Fr, 2012). The RF model was validated by splitting the dataset containing the 

eleven climate extreme indices into two parts; an initial 70% of the data, which was used to train 

the model, and then, the remaining 30% of the data which was used to test the model. To improve 

the RF model’s performance, the model parameters were adjusted through a process known as 

"tuning." The parameters tuned for optimum performance were the number of trees (ntree), which 

specifies the number of trees that can be generated, and the mtry parameter which randomly 

distributes the variables that are used as candidates at each split to form the datasets on which the 

trees are formed (Probst et al., 2019). Using the 70% of the data for the parameter tuning resulted 

in the optimal RF Model parameters being the number of variables randomly sampled at each split 

(mtry = 4) and the number of regression trees to build (ntree = 500). The coefficient of 

determination (R2), root mean squared error (RMSE), and mean ab-solute error (MAE) statistics, 

were used to assess the model's performance accuracy on both the training and the test data. The 

coefficient of determination given by (Equation 5) quantifies the percentage of variance in the 

response variable that can be explained by the predictor variables (Draper & Smith, 2014). 

Therefore, it indicates how well the data fits the model. Similarly, when comparing predicted 

values to actual values in a dataset, the root mean squared error (Equation 6) reveals the square 

root of the average squared difference between them. The lower the RMSE, the better the model 
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fits the data (Hyndman & Koehler, 2006). Additionally, the mean absolute error (Equation 7) is a 

measure of the average deviation of the predicted values of a model from the actual values 

(Willmott & Matsuura, 2005). These statistical metrics defined above were utilized to assess the 

RF model's effectiveness on both the test and training period data: 

Equation 3.5: Coefficient of determination 

 
R2 =  1 −  

∑ (Xi −  Yi)
2m

i=1

∑ (Ȳ −  Yi)2m
i=1

,                
 

Equation 3.6: Root mean squared error 

 

RMSE =  √
1

m
∑(Xi − Yi)2

m

i=1

  ,              

 

Equation 3.7: Mean absolute error  

 
MAE =  

1

m
∑|Xi −  Yi|.

m

i=1

                           
 

where Xi is the predicted value; Yi is the actual value; Ȳ is the mean of the actual values; m is the 

number of samples in the equations above. 

The influence of each climate extreme indices on crop ET was determined using a variable 

importance plot. The variable importance plot in a RF model illustrates how the elimination of 

each variable affects the mean squared error (MSE) of the model. Therefore, variables that have a 

greater influence on the MSE of the model will have a negative impact on evapotranspiration. 

Additionally, the variable importance plot is very useful for reducing the complexity of machine 

learning models, since it identifies and selects the most crucial predictors (Chen et al., 2020). As 

a result, it can be used to eliminate variables that have the least impact on the accuracy of the 

model, further simplifying the model. This process is commonly referred to as feature selection. 
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 3.2.4 Future Prediction of Crop Evapotranspiration 

Future prediction of weekly crop ETo were estimated with the RF model, using cli-mate 

extreme variables which were extracted from 20 GCMs each, under the two gas emission scenarios 

considered in the study, and for three future time periods; the near-term (2025–2049), mid-century 

(2050–2074), and the end-of-century (2075–2099). The confidence in the model predictions rely 

on the performance of the already developed RF model (Chambers & Hastie, 2018), which was 

assessed using statistical metrics. We computed the average ensemble of the ETo forecasts from 

the 20 selected GCMs for each scenario and time period. The ensemble of ETo forecasts were then 

multiplied with the crop coefficient values to estimate ETc. An analysis of variance (ANOVA) test 

(Girden, 1992) was performed at a 95% confidence level to determine if the forecasted mean crop 

ET values for all the future scenarios were significantly different from the historic time period, 

and from each other. Since an ANOVA test does not provide information about which of the future 

time periods show significant differences in means from each other, and from the historical time 

period, we further per-formed Dunnett’s test (Dunnett, 1955) on the forecasted crop ET values for 

the three time periods, using the historical crop ET values as the control group, and then compared 

each forecasted crop ET values with the crop ET determined from historical weather data, so as to 

quantify the expected percentage change in crop ET in the future. 

 3.3 Results and Discussions 

 3.3.1 Summary statistics for historic climate extreme indices 

Occurrences of unusually extreme weather conditions during the growing season, pose a 

threat to the sustainability of maize production in the high plains’ region. This is because they 

affect crop evapotranspiration rates, which may have an effect on the region's limited water 

resources. Climate extreme indices, which represent instances of extreme weather, and are thought 
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to affect the evapotranspiration rate of maize, were selected and used as input variables in a random 

forest model, in order to estimate reference evapotranspiration from which to determine the actual 

crop water requirement. Figure 3.4 below is a boxplot summary statistic showing the weekly 

variations in the occurrences of these eleven selected climate extreme indices during the maize 

growing season. Figure 3.4a shows the boxplot summary of indices derived from precipitation 

data, figure 3.4b represents summary of in-dices derived from temperature data, and figure 3.4c is 

a summary of indices of temperature expressed in percentages, represented here as percentile-

based indices. The mean weekly maximum number of consecutive dry days (CDD) over a 30-year 

period was 4.2 days, with a standard deviation of 2.1 days. Although the CDD showed less 

variability, as indicated by its coefficient of variation of 48.6%, the upper quartile (75th percentile) 

of the data revealed that there were instances of up to six consecutive days in the week being 

completely dry or having weekly rainfall amount of less than 1mm. Similarly, the mean weekly 

total precipitation was 12.8mm, with a SD of 17.6mm, while the mean of the consecutive wet days 

was 1.7 days, with SD of 1.6 days. The observed significant deviations from their mean explains 

their high coefficient of variations of about 137.7% and 92.8% respectively. A similar analysis of 

the distribution of rainfall in western Kansas (Rahmani & Harrington, 2019) showed that there is 

significant variability in the precipitation patterns due to the climate, with an overall tendency of 

drier conditions.  

Our analysis also showed high variations in the warm spells, which comprises of the 

weekly percentage of days with minimum temperature (Tmin) greater than the 90th per-centile 

(Mean = 26.2%, SD = 29.3%), and the weekly percentage of days with maximum temperature 

(Tmax) greater than the 90th percentile (Mean = 26.2%, SD = 29.3%). Both displayed CVs of 

116.3% and 111.9%, respectively. We observed up to 42.2% days in a week where temperature 
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was greater than the 90th percentile. This is similar to the study by (Anandhi et al., 2016), reported 

that for Kansas, the annual warm spells typically last up to 4 days on average (i.e., up to 60% of 

days in a week), especially in the summer months. Similarly, other temperature-derived indices 

such as the mean weekly minimum temperature (Mean = 14.2oC, SD = 4.8oC), the mean weekly 

maximum temperature (Mean = 29.5oC, SD = 5.3oC), the weekly number of days with Tmax 

greater than 30oC (Mean = 3.7 days, SD = 2.4 days), the daily temperature range (Mean =15.3oC, 

SD = 2.7oC) in a week, all showed less seasonal variation than the precipitation-based indices. 

Their CVs of 33.6%, 18.1%, 65.7%, 17.8%, and 92.8% respectively, implied that their individual 

weekly variations remained relatively constant throughout the entire growing season from year to 

year. Meanwhile, much higher variations surpassing those of all the other indices were observed 

in the weekly number of days with mean temperature less than 10oC (Mean = 0.1 days, SD = 0.5) 

and in the tropical nights (Mean = 0.6 and SD = 1.1); as indicated by the high coefficient of 

variation (CV) of 401.7%, and 188.4% respectively. These extremely high values were expected, 

however. This is due to the fact that their mean values were very close to zero, making the CV to 

become very sensitive to changes in the mean. However, the boxplot summary of the weekly 

number of days with mean temperature less than 10oC was skewed to the right with unusually high 

frequency of outliers, indicating multiple occurrences of cold temperatures with significantly 

higher magnitudes than the mean observations. 
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(a) 
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(c) 

Figure 3.4: Boxplots showing statistical summary of the selected climate extreme indices: 

(a) Precipitation-based indices; (b) Temperature-based indices; and (c) Percentile-based 

indices. 

 3.3.2 Estimated crop coefficient from maize pixels 

Using the (Kamble et al., 2013) linear regression model, the values of the average weekly 

crop coefficient (Kc) for the pixels of maize were determined from Landsat NDVI images. The 

estimated Kc curve (Figure 3.5) follows a similar trend with the maize crop coefficient curve 

reported in the FAO’s irrigation and drainage paper 56 (Allen & Pereira, 1998). The Kc curve 

typically starts out with low values at the initial growth stage of maize, and gradually increases 

over the first 4 weeks (0–30 days) after planting. It reaches its apex at the mid-season stage, when 

the canopy ground cover is between 25% and 60%, before declining to a constant value at the end 

stage, which typically occurs 12 to 24 weeks (50 to 170 days) after planting. During the early stage 

of growth, the estimated minimum Kc value was 0.46 while the maximum value observed was 

0.65. The observed mean value for the early growth season which was averaged over the 30-year 

historic time period was 0.55, indicating higher values than the Kc value of 0.35, which was 

reported by the FAO for the initial growth stage. This variation in the values can be attributed to 
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the differing field conditions and management practices of the corn fields in Finney County, 

compared to the conditions on which the FAO Kc values were developed. The FAO provides Kc 

values based on standard climate conditions involving a sub-humid climate with average minimum 

relative humidity of 45% and moderate windspeed of 2 ms-1. However, field conditions often 

differ significantly from that of the FAO, as also seen in a similar study by (Singh & Irmak, 2009), 

performed in southcentral Nebraska, and also by (Abedinpour, 2015) in New Delhi, India. 

Similarly, during the mid-season growth stage, where the crop reaches its peak, the values of Kc 

ranged between 0.55 and 0.99; with peak estimated values of up to 1.06. Meanwhile, the mean 

peak value of Kc for the 30-year period was 0.90, thus, showing slight under-estimation when 

compared to the typical FAO value of 1.2. This difference is likely due to the normalization of 

peak values of Kc, resulting from the averaging of all the Landsat NDVI values from pixels of 

maize-growing areas to produce a single value of NDVI for each day. During the late season, the 

Kc values ranged between 0.19 and 0.30. The mean value was estimated at 0.24. The FAO value 

for this phase typically ranges be-tween 0.60 and 0.35 depending on whether the crop was 

harvested fresh or dried, respectively. These findings suggest that the Kc values for maize are 

influenced by site-specific variables and therefore, underscores the importance of site-specific 

calibration of Kc values for accurate crop ET calculations. For semi-arid areas like Finney County 

in western Kansas, the FAO irrigation and drainage paper offers adjustment steps including 

considering the frequency of growing season irrigation events, to adjust the Kc values 

appropriately before they are used to calculate the actual crop ET. 
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Figure 3.5: Comparison of crop coefficients (Kc) estimated from Landsat NDVI using a 

linear model with the standardized Kc values of FAO 

 3.3.3 RF Model Performance Evaluation 

After training the RF ML model with 70% of the entire data and testing on the remaining 

30% of the data, our analysis showed that these selected climate extreme indices explained up to 

70% variability (R2 = 0.70) in crop ET on the training data and up to 71% variability (R2 = 0.71) 

on test data (Figure 3.6); implying a satisfactorily robust model. How-ever, we observed that the 

R2 also increased to about 80% when more variables of mean weather conditions such as the solar 

radiation and wind speed were added as inputs to the model. It was therefore evident that the R2 

is not always a good metric for evaluating the accuracy of the model, even though it has been 

recommended and widely accepted by researchers as a metric for evaluating machine learning 

models (Chicco et al., 2021). The training set's RMSE and MAE values were observed to be 
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5.73mm and 4.41mm, respectively. While on the test data, the RMSE and MAE values were 

5.35mm and 4.30mm respectively. A comparison between the observed evapotranspiration from 

the test data and the predicted evapotranspiration revealed that both very low and large levels of 

ET were underestimated by the model. This is probably because RF averages values at each node's 

end when building decision trees, causing extremely high values to be averaged with low values. 

This was observed in a similar study by (Khanal et al., 2021). 

 

Figure 3.6: Plot of actual evapotranspiration against predicted evapotranspiration: (a) 

training data; and (b) test data 

 3.3.4 Climate extreme indices influencing crop evapotranspiration 

Figure 3.7 is a variable importance plot that shows the influence of each climate extreme 

indices on reference evapotranspiration. The indices were ranked based on their individual 

influences on the mean squared error (MSE) of the random forest (RF) model. We found that by 
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removing the index representing maximum number of consecutive dry days (CDD), the MSE of 

the RF model increased by 29.7%, making it the variable with the greatest influence (Figure 3.7). 

This is expected because, without rainfall events over a significant number of days, the amount of 

water loss by evapotranspiration will continue to increase. And because there is no recharge of lost 

moisture through the soil and plants through precipitation, this situation can lead to yield loss, 

especially if it occurs at growth stages where the maize crop is most sensitive to water stress. Also, 

we found that the average weekly maximum temperature (tx_avg), when removed from the model, 

increased the MSE of the model by 27.2%, while, the daily temperature range (DTR) increased 

the model’s MSE by 21.3% when eliminated from the model, making the former to be the second 

most influential variable and the latter to be the third most influential variable in the model. 

Climate extreme indices such as the average weekly minimum temperature (tn_avg), the amount 

of hot days (tx90p), the total weekly precipitation (prp_tot), and the weekly number of days with 

maximum temperature more than 30oC (txge30), were found to influence the MSE of the model 

by a percentage ranging between 15% and 20%. When these indices removed individually from 

the model, the MSE increased by 19.1%, 18.7%, 17.8%, and 17.3% respectively. Meanwhile, other 

variables when removed from the model only affected the model’s MSE by 15% or less; the 

consecutive wet days (CWD) by 14.2%, the amount of warm nights (tn90p) by 10.5% and the 

tropical nights (tr) by 7.6%. The number of days with a mean temperature less than 10oC (tmlt10) 

had the least influence on evapotranspiration; increasing the MSE only by 3.5%.  

Although, the maximum number of consecutive dry days, which we found to be the single most 

influential variable, was derived from precipitation data alone, most of the other derived indices 

which had the most significant influence on crop ET were observed to be those relating to 

increasing temperatures. These outcomes are anticipated because temperature continues to be a 
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key driver of ET. This is because, more energy becomes available to turn water into vapor as the 

temperature rises. Therefore, prolonged periods of high temperature will eventually result in a 

great loss by evapotranspiration. However, similar studies performed under various climate types 

in Nigeria (Emeka et al., 2021), and in Iran, south-west Asia (Tabari & Talaee, 2014), showed that 

significant predictors of ET vary depending on the location, and field management conditions. In 

his study conducted for agricultural lands in the mid-western US regions, (Talib et al., 2021) 

observed that the key evapotranspiration predictors differed based on whether the fields were 

rainfed or irrigated. Furthermore, it is also important to note that the variable importance plot also 

pos-es some level of uncertainties as it tends be biased for large number of input variables (van 

der Laan, 2006), especially when the variables are correlated (Strobl et al., 2008). 

 

Figure 3.7: Variable importance plot showing influence of each variable on RF model 

accuracy 
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In figure 3.7 above, cdd represents the consecutive wet days, tx_avg is the weekly maximum 

temperature, dtr is the daily temperature range, tn_avg is the average weekly minimum 

temperature, tx90p is the amount of hot days, prp_tot is the total weekly precipitation, txge30 

represents the weekly number of days with maximum temperature more than 30oC, cwd represents 

the consecutive wet days, tn90p represents the amount of warm nights, and tr represents the 

tropical nights. 

 3.3.5 Projections of evapotranspiration in the future 

The ensemble of model predictions of crop ET from 20 GCMs were computed and 

averaged for both RCP4.5 and RCP8.5 future climate scenarios, for the near-term (2025-2049), 

mid-century (2050-2074) and end-of-century (2075-2099). The interquartile ranges of forecasted 

weekly Crop ET under RCP4.5 (Figure 3.8) were between 13.4mm and 31.0mm in the near term; 

13.5mm and 31.7mm in the mid-term; and 14.3mm and 31.8mm towards the end of century period. 

The boxplots for each scenario were slightly skewed to the right, as indicated by the upper whiskers 

being slightly longer than the lower whiskers. The mean weekly crop ET values were 21.9mm, 

22.6mm and 22.9mm in the near-term, mid-term, and end-of-century, respectively. 
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Figure 3.8: Boxplots summary of Crop ET predictions under RCP4.5 Scenarios 

Similarly, under RCP8.5 scenario (Figure 3.9), the interquartile ranges of the predicted 

crop ET values were observed to fall between 13.5mm and 31.5mm in the near term; 14.1mm and 

32.3mm in the mid-term; and 15.3mm and 33.1mm in the end of century period. Although the 

mean crop ET values gradually increased periodically in the near-term, mid-term and end of the 

century periods, under both RCP4.5 and RCP8.5 scenarios, the peak estimated value of crop ET 

(ETc = 55.4mm) was higher in the historical time period than the values in each of the future 

scenarios. This decline in peak values in the future scenario is likely because all the 20 GCMs 

were ensembled and averaged to get a representative value for each scenario. And as such, all 

predicted crop ET values were normalized over the individual GCMs. The overall results show an 

increment in mean crop ET under both RCP4.5 and RCP8.5 scenarios, but higher increments in 
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crop ET were predict-ed in the mid-term and end of century periods than in the near-term period 

of both RCP4.5 and RCP8.5 climate scenarios. Also, the wider interquartile ranges of the boxplots 

during the mid-term and end of century periods indicate a higher variability in crop ET values in 

both periods, than in the near term. 

 

Figure 3.9: Boxplots summary of Crop ET predictions under RCP8.5 Scenarios. 

The results of the ANOVA test at a 95% confidence level, indicated that there was no 

statistical difference in the mean values of crop ET (p-value > 0.05) under the RCP4.5 scenario. 

However, an ANOVA test under RCP8.5 scenario indicated that there were statistically significant 

differences (p-value < 0.05) in the means of the predicted ET values. But since an ANOVA test 

does not provide information about which of the future time periods under RCP8.5 showed 

significant differences in means from each other, and from the historical time period, we further 
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performed Dunnett’s test on the crop ET values for the three time periods, using the historical crop 

ET values as the control group. We found that the end of century crop ET values was significantly 

different from the near-term period but not significantly different (p-value > 0.05) from the mid-

term period. The plot below (Figure 3.10) shows the weekly crop ET values averaged over 25-year 

period for the historic period and the predicted crop ET values for the 75-year future time periods, 

for both RCP4.5 and RCP8.5 scenarios. 

 

Figure 3.10: Predicted average weekly crop ET values for (a) RCP4.5 and (b)RCP8.5 

scenarios 

Overall, when compared with historical data (Figure 3.11), the results of ET predictions 

under RCP4.5 showed a 0.4% increase (Mean = 22.1mm) in the weekly ET in the Near Term; a 

3.1% increase (Mean = 22.7mm) in the Mid Century; and 3.8% increase (Mean = 22.8mm) at the 

End of Century. While under RCP8.5, the results of predicted ET showed a 1.7% increase (Mean 
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= 22.4mm) in the weekly ET in the Near Term; 5.9% increase (Mean = 23.3mm) in the Mid 

Century; and 9.6% increase (Mean = 24.1mm) at the End of Century. The observed higher increase 

in crop ET under RCP8.5 scenario aligns with similar pre-dictions of ET under global temperature 

rise, caused by to high greenhouse gas emissions, leading to greater loss by evapotranspiration 

(Koukouli et al., 2019). Using an ensemble of three GCMs at three locations in Ethiopia, (Gurara 

et al., 2021) projected that by the end of the 21st century, there would be an increase in potential 

evapotranspiration by an amount between the range of 21.1% to 41% compared to historical time 

period, under the RCP8.5 scenario. 

 

Figure 3.11: Percentage change in Crop Evapotranspiration under both RCP4.5 and 

RCP8.5 Scenarios 
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 3.4 Conclusions and Recommendations 

This study analyzed historical data using a random forest model to determine which climate 

extreme indices most influenced crop evapotranspiration (crop ET) during the growing -season. 

We found that crop ET was most influenced by the maximum number of consecutive dry days and 

mean weekly maximum temperatures. Our analysis demonstrated that climate extremes can have 

a substantial effect on agricultural crop water de-mand. Given the current limitation of water 

resources in western Kansas, the persistence of these extreme conditions might lead to inability to 

meet the crop water demands of the maize crop. This has critical implications as inadequate water 

supply might impact crop productivity, and ultimately, food security. Although crop ET, have been 

reported to vary greatly based on a number of other factors such as the planting date and the 

irrigation management (Wu & Fan, 2019), it is advised that robust frameworks be put in place to 

monitor growing season climate extremes, and understand their likely impacts, so as to develop 

adaptation and mitigation strategies against the impacts. 

Furthermore, this study provided future projections of crop ET under two representative 

concentration pathway scenarios; RCP4.5 and RCP8.5. The projections, based on the ensemble of 

20 downscaled GCMs, revealed that crop ET would increase significantly under both scenarios in 

the near-century, mid-century, and end-of-century timeframes. More significant increases where 

predicted under the RCP8.5 scenario, emphasizing the necessity of reducing greenhouse gas 

emissions to lessen the effects of climate change on agriculture. In comparison to the historical 

time period, an average ensemble of the models under RCP4.5 indicated an increase in weekly ET 

by 0.4% in the near-term, 3.1% in the mid-century, and 3.8% by the end of the century, while 

predictions under RCP8.5 scenario indicated an increase in weekly ET by 1.7% in the near-term, 

5.9% in the mid-century, and 9.6% by the end of the century. The overall results of this study 
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imply a steady potential increase in crop water requirement in the future. With the aid of these 

predicted crop ET data, and anticipated changes in crop ET during the growing season, agricultural 

producers can be better informed in developing strategies to optimize their use of the limited water 

resources, particularly where limited water rights are allotted to producers. Some of the strategies 

may include adopting more efficient irrigation techniques, cultivating maize cultivars which are 

more drought-tolerant, and other precision agriculture techniques that could be relevant to in-

creasing crop productivity while reducing groundwater pumping. Additionally, it is imperative to 

assess the current management practices in the region to evaluate their adapt-ability to extreme 

climatic conditions. By identifying areas for improvement and implementing more efficient 

technologies, farmers and stakeholders can optimize production while reducing the vulnerability 

to climate extremes and ensuring the long-term sustain-ability of agriculture. 

The effects of these extremes on evapotranspiration, however, were examined by 

considering the individual influence of each extreme indices. However, some of these extreme 

conditions frequently take place in quick succession or all at once (Tavakol et al., 2020). These 

situations are frequently referred to as compound extremes. Recent studies (Bloomfield et al., 

2019; Li et al., 2009) have reported that the combined effects of dry periods and warming on the 

evaporative demand are likely responsible for changes in groundwater levels. Therefore, studying 

these compound extremes might therefore prove to be valuable since their combined effects could 

have a greater impact on crop ET and eventually, the end of season crop yield. Also, some indices 

such as the Combined Terrestrial Evapotranspiration Index (CTEI) (Elbeltagi et al., 2021), 

Evaporative Demand Drought Index (EDDI), and the Standardized Precipitation 

Evapotranspiration Index (SPEI), uses anomalies in atmospheric evaporative demand and 

precipitation to establish a relationship with climate extreme conditions, especially drought. These 
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indices might better estimate the nature of relationships be-tween climate extremes and crop water 

needs. 
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Chapter 4 - Investigating sustainable water management strategies 

for improving crop adaptation to extreme climate conditions in 

Western Kansas 

Abstract 

Semi-arid regions are often confronted with the challenge of depleting water resources, and 

optimal irrigation strategies play a pivotal role in minimizing excessive use of limited water 

resources while enhancing or maintaining agricultural productivity in these regions. The 

persistence of extreme climate conditions driven by climate change, exacerbates the challenge of 

depleting water reserves, as conditions such as increased temperatures during the crop growing 

season may affect the crop water demand, thereby threatening the long-term viability of agriculture 

in these regions. It is therefore pertinent to identify and implement deficit irrigation management 

strategies that are well-adapted to mitigate the potential impacts of extreme weather conditions on 

crop yield and water resources. In this study, the DSSAT model was used to evaluate the 

adaptability of evapotranspiration-based (ET-based) irrigation scheduling to extreme growing 

season weather conditions. A 30-year simulation was executed on twelve distinctive irrigation 

treatments, consisting of four ET accumulation thresholds (15mm, 20mm, 25mm and 30mm) at 

three deficit ET replacement levels (50%, 75%, 100%), and compared with a baseline scenario 

where irrigation is automatically triggered when plant available water in the soil falls below 50% 

(usually referred to as the farmers choice). The best performing treatment was selected based on 

its capability to minimize yield loss, optimize water savings, and water productivity. Overall 

results indicated that increasing the percentage levels of ET applied improves yield much higher 

than decreasing the accumulated ET threshold. When compared to the farmers’ choice, it was 
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found that applying a 75% deficit of the required ET amount when it reached the 30mm threshold 

proved to be a superior strategy. In this treatment, yield loss was limited to 6%, water savings 

increased up to 19%, and the water productivity improved by up to 6%, under normal weather 

conditions, as well as under increased maximum temperature and the duration of dry periods by 

up to 2°C and 1 day, respectively. Notably, when maximum temperature increased by up to 4oC, 

yield decline doubled, compared to normal conditions and mild temperature increases of 1 and 

2oC, indicating a threshold-like response of Maize to extreme heat stress. Overall, these findings 

show that the ET-based deficit irrigation strategy adapts well to extreme heat and water stress, 

bearing important implications for irrigation management decisions in the future. 

Keywords: Extreme weather events, Deficit irrigation, DSSAT crop model, water productivity 

 

 4.1 Introduction 

Irrigation, while essential, exerts substantial pressure on water reserves, accounting for 

over 70% of worldwide water consumption (Malik & Dechmi, 2019), and approximately 40% of 

annual freshwater withdrawals (Nie et al., 2021; Scanlon et al., 2012). In the United States, there 

are growing concerns about the sustainability of agriculture, especially in the arid and semi-arid 

regions. This is because agricultural production relies heavily on groundwater resources that are 

depleting due to excessive withdrawal for irrigation. Groundwater resources account for 60% of 

the water supplied to irrigated areas nationwide, while in the semi-arid regions of the nation, such 

as the eight states underlain by the high plains’ aquifer, 90% of ground water supply  is being used 

agricultural production (Mrad et al., 2020). In the Western U.S. Corn Belt, maize cultivation 

occupies a substantial 70% of the total cropland area, with approximately 43% of these maize-

growing regions relying on irrigation practices to support their annual production. Additionally, 

these irrigated areas contribute substantially to the region's maize output, accounting for roughly 
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58% of the total maize production in the Western U.S., as reported by Grassini et al., (2009). 

Therefore, improved irrigation management strategies are crucial in these regions to ensure the 

sustainability of agriculture. 

Groundwater depletion and its associated challenges are further compounded by 

prevalence of conditions of extreme climate during the crop growing seasons which have been 

reported in recent studies (Anandhi et al., 2016; Igwe et al., 2023; Lin et al., 2017; Rahmani & 

Harrington, 2019). This is because extreme conditions such as increased heat stress induced by 

increased temperature, as well as prolonged dryness have the potential to increase crop water 

demands (Tack et al., 2017). When these heightened demands are unmet, it may have significant 

adverse impact on crop yield. In a recent study conducted in Western Kansas, it was found that 

climate extreme conditions, especially increased maximum temperatures and prolonged duration 

of consecutive dry days may increase crop water demands of maize by approximately 10% by the 

end of the 21st century, potentially impacting on maize productivity (Igwe et al., 2023). Irrigation 

however, has notably proven to be useful in shielding crops from the adverse effects of persistent 

extreme conditions during crop growing seasons (Thiery et al., 2017, 2020). This is because 

irrigation not only provides the crop with the water it needs, but also cools the crop through 

evaporation to lessen crop heat stress. This  cooling effect is responsible for 16% of the 

improvement in yield over rainfed maize, with the remaining 84% going towards meeting crop 

water need and other processes (Li et al., 2020). This makes it particularly useful in regions 

experiencing extreme climate conditions caused either by climate change or climate variability.  

However, irrigating in response to extreme weather events may imply increase in 

groundwater withdrawals. It therefore becomes imperative to implement more advanced water 
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conservation methods that help to enhance crop adaptability to climate impacts (Ahmad et al., 

2020), without compromising on the overall crop yield, as well as the use of water resources 

Although, it has been shown that, under the current practices, groundwater resources may 

not be sufficient to support the U.S high plains region’s agricultural production in the future (Mrad 

et al., 2020), several strategies have been employed by researchers, in a bid to determine the best 

management practices that reduces excess withdrawal of groundwater resources. Some of these 

studies consider varying management operations such as planting dates (Araya, et al., 2017a), 

adopting alternative cropping systems (Araya, et al., 2017b), or implementing deficit irrigation 

approaches (Rudnick et al., 2019). Commonly utilized irrigation scheduling methods are broadly 

classified into those based on soil moisture depletion (Gu et al., 2020), evapotranspiration (Olberz 

et al., 2018), or plant physiological response to water stress (Jones, 2004). Scheduling irrigation 

based on soil moisture can increase water savings by 7.2 to 37%, while irrigation based on 

evapotranspiration data can increase water savings by 10 to 33% with higher water savings in wet 

seasons and lower savings in dry seasons (Zhao et al., 2023). However, most of the studies 

conducted evaluate the performance of irrigation scheduling methods under mean climate 

conditions without considering the conditions of extreme heat and water stresses on the crop that 

are caused due to increased temperatures and prolonged dryness, respectively. In this study, we 

aim to fill this gap by evaluating irrigation management practices that are adapted to mitigate the 

impacts of climate extreme conditions on the maize production. 

Due to the complex nature of crop growth and its interactions with the environment, 

process-based models (Holzworth et al., 2014; Jones et al., 2003; Raes et al., 2009; Stöckle et al., 

2003) are often used to study crop growth in response to environmental and management 

processes. For example, the root zone water quality model (RZWQM) was used to assess the 
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response of maize to ET-based irrigation scheduling (Ma et al., 2017) and the DSSAT model was 

used to assess optimal irrigation strategies for maize (Kisekka et al., 2016). These process-based 

models have also been used in combination with statistical (Roberts et al., 2017b), remote sensing 

(H. Zhao et al., 2023), or machine learning algorithms (Alibabaei et al., 2022), to improve the 

model performance. The DSSAT-CERES Maize model has also been used for climate impact 

investigations such as impact of increased temperatures, extended period of dryness, and CO2  

increase on maize production (Ahmad et al., 2020).  

The outputs of these models help researchers to understand complex underlying 

relationships and how they impact on crop and water, as well as nutrient productivities. Within the 

DSSAT ecosystem, irrigation application and management may be configured based on soil 

moisture’s minimum allowable depletion levels, or accumulated evapotranspiration threshold. The 

management operations may further involve varying the irrigation frequencies, depths and stages 

of irrigation application (Lopez et al., 2017). In this study, the ET-based routine of the DSSAT 

was used to assess best irrigation management practices for the study region under extreme climate 

conditions. The specific objectives of the study were to: (i) identify optimum evapotranspiration-

based irrigation scheduling treatment for maize, using a calibrated DSSAT-CERES Maize model; 

and (ii) assess crop yield and water productivity response under increased temperature and 

prolonged dryness.  

 4.2 Data and Methods 

 4.2.1 Study area 

The southwest research and extension center (SWREC), which is in Finney county and is 

in the southwest part of Kansas, was chosen as the study location for this study (Figure 4.1). This 

area is geographically located between the latitudes of and longitudes of 38.0625oN and 



56 

100.8903oW. The elevation of the study area ranges from 746.8 to 941.8 m above sea level with 

climate categorized as semiarid (Klocke et al., 2011). The region's reported mean annual maximum 

and lowest temperatures are 12.3°C and 28.3°C, respectively. The long term average rainfall and 

evapotranspiration recorded during the growing season are approximately 349mm and 962mm, 

respectively (Araya et al., 2017), while the annual number of frost-free days amounts to 170 days 

(Klocke et al., 2012). However, a recent long-term trend analysis of climate data shows that the 

number of frost-free days has increased by 5.2 days in the region (Lin et al., 2017). The dominant 

soil type is Ulysses silt loam which is made up of organic matter content of 1.5% and is slightly 

alkaline with a pH of 8.1 (Klocke et al., 2011). 

 

Figure 4.1: Map of Finney County, Kansas showing southwest research and extension 

center (SWREC) 
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 4.2.2 DSSAT model description 

The Decision Support System for Agrotechnology Transfer Cropping System Model 

(DSSAT-CSM) model (Jones et al., 2003) is a system that integrates weather, soil, crop and 

management data to simulate and analyze water, nitrogen and carbon processes, in addition to crop 

phenology and yield. Five different modules in the DSSAT are used to import data which are used 

to simulate these processes. The weather module or weatherman accepts or generates a minimum 

weather data input containing temperature, precipitation, and solar radiation or sunshine hours 

which are required to simulate the process of photosynthesis and potential transpiration. The soil 

module simulates dynamics such as soil water, inorganic soil nitrogen (N), phosphorus (P) and 

potassium (K). It also contains sub-modules for simulating soil organic matter, and the SBuild tool 

within the DSSAT is used to import information that describes the characteristics of the soil profile 

for the different soil horizons where plant roots can grow. The Soil-Plant-Atmosphere module 

(SPAM) performs the soil water balance routine soil where rainfall and irrigation are inflows into 

the system, evapotranspiration (soil evapotranspiration and plant transpiration), as well as drainage 

and surface runoff are outflows from the system. Rainfall is partitioned into infiltration and surface 

runoff using the SCS curve number method, while the drainage is modeled using a one-directional 

“Tipping bucket” approach (Ritchie, 1998). Depending on the availability of data, the 

evapotranspiration itself can be estimated using the Priestly-Taylor (Priestley & Taylor, 1972), 

FAO-56 (Allen & Pereira, 1998), or ASCE (Allen et al., 2005) standard methods. The plant module 

contains various sub-modules that simulate the growth and development process of various crop 

types. It contains models capable of simulating the growth and development process of over forty 

crops. The version 4.8 of the DSSAT-CERES Maize module, which is one of these sub-modules, 

simulates maize yield and yield components, as well as the phenological development and the 
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nutrient and water processes, from planting period to harvest. Finally, the management module 

models field operations such as planting event, irrigation application, fertilizer application, tillage 

event, organic matter and chemical application along with the harvest operation. For example, 

treatments can be setup to assess how different irrigation management operations such as varying 

irrigation depth, frequency, application timing and efficiency, etc. can affect crop output and the 

utilization of water resources. The XBuild tool in DSSAT is used to create or modify these 

operations in an experimental file commonly called the FileX. Simulations can be run for a single 

growing-season period or a seasonal analysis can be performed, where the year to year variation 

in crop productivity is simulated. 

 4.2.3 DSSAT Model setup 

Climatic data comprising of minimum and maximum temperature, precipitation, solar 

radiation over a 30-year period from 1991 to 2020 were extracted from the Kansas Mesonet 

(Kansas Mesonet, 2023) weather station located in Garden city, Kansas. Soil physical and 

chemical properties, along with their engineering characteristics at each soil depth were obtained 

from the Gridded Soil Survey Geographic (gSSURGO) database (gSSURGO, 2023) and were 

imported into the model using the SBuild tool of the DSSAT. The Ulysses silt loam soil type was 

used as it is the dominant soil type in the study area (Araya, et al., 2017). The planting date was 

set at May 15 which is common for the study region (Araya et al., 2021) and was fixed for each 

growing season over the entire 30-year period of simulations. The Priestly-Taylor approach and 

the Suleiman-Ritchie method were used to estimate soil evaporation and evapotranspiration, 

respectively, to calibrate and validate a maize model for the research site (Araya, et al., 2017). The 

crop management practices include uniform apply Urea fertilizer of 10 Kg N on the day of planting 

and at one month after planting. The seeds were planted 5 cm deep with a planting density of 7.6 
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plants/m2 and a row spacing of 76 cm, respectively. The selected cultivar applied in the study, as 

well as its genetic coefficients are presented in Araya et al., (2017). 

 

 4.2.4 Irrigation management scenarios 

 4.2.4.1 Baseline automatic irrigation scenario (Farmers’ choice) 

To represent the historically common irrigation management strategy for the study area, 

an automatic irrigation application with an irrigation depth of 1.2m was specified in accordance 

with the reported root zone depth of maize (Allen & Pereira, 1998). The initial soil moisture 

content was assumed to be at 60% of the field capacity. The field capacity and permanent wilting 

point have been reported to be 33% and 15% volumetric water content, respectively (Klocke et 

al., 2011). Based on prevalent practice—commonly called “farmers’ choice”—in the study area 

(Araya et al., 2021), the model was set to trigger an irrigation event when the depth of water in 

the upper 30cm depth of soil reaches the 50% threshold of the plant available soil water 

(PASW). The model was setup to apply 25mm of water per irrigation event, thereby always 

keeping the water in the soil above the 50% PASW threshold and avoiding potential water stress. 

The routine was set to apply 25mm of water per irrigation event with application efficiency 

assumed to be 80%.  

 4.2.4.2 Evapotranspiration-based irrigation scenario 

The evapotranspiration-based automatic irrigation routine in the DSSAT accumulates 

daily potential evapotranspiration (plant transpiration and soil evaporation), then subtracts 

infiltration (Rain – Runoff) to obtain an amount of evapotranspiration (ET) to be applied through 

irrigation. This is represented mathematically in the DSSAT irrigation subroutine as:  
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Equation 4.1: Daily accumulated evapotranspiration (daily potential ET demand)  

 𝐸𝑇_𝐴𝐶𝐶𝑈𝑀 =  𝐸𝑇_𝐴𝐶𝐶𝑈𝑀 +  (𝐸𝑂𝑃 +  𝐸𝑉𝐴𝑃)

−  (𝑅𝐴𝐼𝑁 −  𝑅𝑈𝑁𝑂𝐹𝐹) 

 

Where the ET_ACCUM is the daily potential ET demand or accumulated ET in mm/day; 

The EOP represents the plant transpiration, while the EVAP represents the soil evaporation. Both 

are summed up to obtain the potential ET for a given day. The RAIN represents rainfall amount; 

while RUNOFF represents water lost through runoff. Since this potential ET value ET_ACCUM 

is accumulated daily, it also represents the initial accumulated ET from the previous day(s), as 

shown in equation (1). The reference evapotranspiration is calculated using the Priestly-Taylor 

approach which was specified during the setup of the DSSAT CERES Maize model, and is then 

adjusted by the static crop coefficient for maize (equation 4.2) defined based on the leaf area 

index (LAI), in the DSSAT model (DeJonge et al., 2012). The resulting value then represents the 

potential evapotranspiration, as illustrated in equation 4.3, so that: 

Equation 4.2: Static crop coefficient  

 
Kcs = 1.0 + (Kc max − 1.0)  ×  

𝐿𝐴𝐼

6.0
. 

 

Equation 4.3: Potential evapotranspiration  

 Eo = Kcs  ×  ETo.  

Where Kcs is the static crop coefficient of maize; Kc max is the maximum Kcs at LAI value 

of 6.0; LAI is the leaf area index; Eo is the potential evapotranspiration; and ETo is the reference 

evapotranspiration. The water infiltration through the soil is obtained, using the soil conservation 

service (SCS) approach (Mishra & Singh, 2003). In the SCS method, the rainfall is split into runoff 

and infiltration based on a curve number which is derived by considering soil properties such as 

slope, texture and tillage. The SCS method was also further improved (Williams et al., 1984) to 

account for the antecedent soil moisture content at the time of the rainfall event, by adding any 



61 

irrigation amount applied prior to the rainfall event. Therefore, the rainfall value used in the SCS 

method to isolate infiltration, is a combination of both natural precipitation and any irrigation that 

may have been previously applied. A threshold value for accumulated ET (ET_ACCUM) in 

equation (1) was set such that when the set threshold was surpassed, the routine would trigger an 

irrigation event. This was done by modifying the IMDEP variable under the simulations control 

within the experimental file (hereafter referred to as “FILE X”) in DSSAT. Furthermore, the 

ITHRU variable was modified to constrain the model to apply only a percentage proportion of the 

accumulated ET amount. These modifications are performed within the raw experiment file, as the 

X-Build user interface for entering experimental data in the DSSAT version 4.8 model used in this 

study did not yet possess the capability to handle the input variables. Four thresholds for ET 

accumulation were defined; three distinctive treatments having ET amounts increased 

consecutively by 5mm, starting at 20mm; and a fourth treatment having an ET amount that was 

5mm lower than the starting ET amount. These thresholds were selected in line with a prior study 

by (Igwe et al., 2023), where he predicted that the average weekly crop evapotranspiration of maize 

during the growing season would significantly increase by up to 10% towards the end of the 21st 

century, relative to a historical average of 21mm. The irrigation routine was further programmed 

to replace different percentages (50, 75, and 100%) of the required potential evapotranspiration, 

making up a total of twelve distinctive treatments. 

 4.2.5 Statistical Analysis and irrigation performance assessment criteria 

Yield, irrigation amount and water productivity were used as criteria for assessing the 

performance of each irrigation treatment. Water savings were calculated in percentages as the 

reduction in the amount of water consumed during the growing season, relative to the baseline 

condition, while water losses were represented as the increase in the amount of water consumed 
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relative to the baseline. The water productivity (Li et al., 2016; Molden, 1997) was defined in this 

study as the amount of yield obtained per unit depth of irrigation water applied. Research shows 

that is a useful indicator of the level of management of irrigation and the crop (Kijne et al., 2004), 

as well as the limitations associated with crop production (Grassini et al., 2011).  

Although, the nature of relationship of maize with full and deficit irrigation has been 

debated (Comas et al., 2019; Trout & DeJonge, 2017), water productivity in this study was 

considered linear following the widely accepted practice in literature (Farré & Faci, 2006; Payero 

et al., 2006; Yilmaz et al., 2010). Therefore, an increase in the amount of water used, without 

corresponding increase in the yield, would imply a decline in the water productivity, as shown in 

the equation 4.4 below: 

Equation 4.4: Water productivity: 

 
𝑊𝑎𝑡𝑒𝑟 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =

𝑌𝑖𝑒𝑙𝑑 [𝐾𝑔/ℎ𝑎]

𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 [𝑚𝑚]
 

 

Where water productivity is measured in [(Kg/ha)/mm], yield is in Kg/ha, and irrigation 

amount is in mm.  

Following acceptable guidelines of hypothesis testing, an analysis of variance (ANOVA) 

(Girden, 1992) was performed along with post-hoc tests, particularly the Tukey's Honestly 

Significant Difference (TukeyHSD) test (Tukey, 1949), or the Dunnett’s test (Dunnett, 1955), 

where appropriate. The objective of these tests, performed at a 95% confidence level, were to 

ascertain if there were any statistically significant differences between the results produced under 

the various treatment scenarios, and when compared with the baseline which was represented by 

the automatic full irrigation scenario serving as the control. The null hypothesis, which was a 

crucial part of the analytical framework, proposed that there were no statistically significant 

differences between the different treatment outcomes when compared to one another or to the 
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baseline. The alternative hypothesis, on the other hand, argued that there were statistically 

significant differences between the results obtained. This strategy ensured a strong and 

methodologically sound evaluation, allowing us to make significant inferences about the impacts 

of the treatments and their relative differences from the control situation. 

 4.2.6 Extreme conditions through environmental modification 

To induce extreme environmental conditions during the crop growing season, we 

altered/changed specific variables within the DSSAT weather file. The variables chosen were those 

that have been shown to significantly affect the variability of evapotranspiration (ET) in an 

previous study by Igwe et al., (2023). These factors were determined to be the maximum 

temperature, which was represented as heat stress, and the maximum number of consecutive dry 

days, which was represented as water stress. In addition, as described by Igwe et al., (2023), the 

extent to which these stressors were forced was also based on the projected change in the future, 

in comparison to a 30-year historical period which ranged from the year 1991 to 2020, as shown 

in table 1 below. The projections were obtained from twenty global climate models (GCMs), and 

represented in three time slices as near-century (2025-2049), mid-century (2050-2074), and end-

century (2075-2099). As a result, the maximum temperature was raised by 1°C, 2°C, and 4°C to 

symbolize heat stress. Similar to this, the maximum number of consecutive dry days at the tasseling 

phase indicated by a month—which was identified by calculating the growing degree days 

corresponding to the tasseling stage for the selected Maize cultivar—was increased by 1 day over 

a 30-year period in the weather file, to represent water stress. The sensitive stage of corn growth 

such as the tasseling stage was chosen, since the grain producing capability of the plant is 

determined during this stage, as reported in the Kansas Corn Production Handbook and by  Jiang 

et al., (2016). As a result,  forcing water stress during this stage of crop growth results in a larger 



64 

loss of maize yield (Çakir, 2004; Mansouri-Far et al., 2010). The model was then independently 

run under these novel circumstances, and the outcomes were compared to the conventional 

farmers’ choice scenario. 

Table 4.1: Projected future changes in Finney County climate extremes relative to 

historical time period 

Future Period Change in Tmax (oC) Change in CDD (day) 

RCP4.5 

Near-Century +0.9 +0.71 

Mid-Century +2.13 +0.73 

End-Century +2.65 +0.72 

RCP8.5 

Near-Century +1.14 +0.73 

Mid-Century +3.01 +0.74 

End-Century +5.39 +0.77 

 

 4.3 Results and Discussions 

 4.3.1 Maize yield, water use and water productivity under normal climate 

conditions 

The farmer’s choice irrigation strategy consisted of an automatic irrigation schedule which 

triggered irrigation to apply 25mm irrigation per event. This was done to minimize water stress by 

maintaining the depth of water in the upper 30cm soil depth above 50% of the plant available 

water. Over the 30-year simulation period, the observed maize yield ranged from 10,871 to 11,915 

kg/ha, with a mean yield of 11,435 kg/ha. The irrigation amount applied varied between 379 to 

514mm, resulting in water productivity ranging from 21.6 to 29.1 Kg/ha/mm. The mean irrigation 

amount and water productivity were 456mm and 28.3 Kg/ha/mm, respectively.  
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Alternatively, employing ET-based irrigation produced yields which were comparable to 

the farmer’s choice. Statistical analysis showed that there was no significant difference (p-value > 

0.05) between the yields obtained under the ET-based strategy and the farmers’ choice. An 

exception was that yields produced at the 50% ET replacement level under the ET-based strategy. 

At this level, yield was significantly lower, which was expected since applying only 50% of the 

ET requirement at the specified ET requirement thresholds ranging from 15 to 30mm resulted in 

inadequate water supply, leading to increased water stress. The water supply was therefore, much 

lower than the farmer's choice, where its 25mm per irrigation event, aimed at maintaining the soil 

water content above 50% of plant available capacity was more likely to meet the crop water 

demands. 

Notably, yield slightly exceeded the farmer's choice when 100% of the ET requirement 

was replaced across the four ET thresholds of 15, 20, 25, and 30mm, as shown in figure 4.2(a). 

This is because ET-based irrigation at this level not only estimated the crop's actual water 

requirements, but fully applied it, gaining an advantage over the farmer's method which relied on 

a fixed 50% threshold of plant available water that might potentially not meet the crop water needs 

more accurately. However, it is essential to note that although, the 100% ET replacement treatment 

produced higher yield than the famers’ choice, the strategy may not be sustainable due to its higher 

water demand, as the irrigation amount at the 100% ET replacement treatment was observed to be 

substantially higher (p-value < 0.05) than the amount applied under the farmers’ choice, as 

indicated by figure 4.2(b). Consequently, since yield did not increase substantially with increase 

in irrigation amount, the water productivity at the 100% ET replacement level also significantly 

declined (p-value <0.05) compared to the 50% and 75% replacement levels, as shown in figure 

4.2(c).  

Irrigating at 75% ET replacement level presents a potentially more efficient strategy. This 

is because despite producing marginally lower yield compared to the conventional famers’ choice, 

statistical analysis reveals that the mean yields obtained from both the 75% ET replacement 

treatment and the famers’ choice were not significantly different from each other. This result 

implies that rather than applying the full 100% of ET requirement, applying 75% of the ET 

replacement can be used instead without substantially reducing the yield. This finding aligns with 

a similar study (Lamm & Trooien, 2003), which demonstrated that increasing percentage ET 

replacement beyond 75% of the required amount did not significantly increase maize yield. Mean 
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yields obtained at the 75% ET replacement level ranged from 10,861.7 to 11,042.5 kg/ha across 

the various ET requirement thresholds. The highest mean yield of 11,042.5 Kg/ha was obtained at 

the 25mm ET requirement, indicating a 3.4% decline in yield compared to the farmer’s choice, 

while the lowest mean yield of 10,861.7 Kg/ha was obtained at the 15mm ET threshold, which 

implied a 5% decline compared to the farmer’s choice. In a similar study (Ko & Piccinni, 2009), 

it was found that applying 75% of the ET amount helped maintain yield losses below 10%. 

Furthermore, less water was used by the 75% ET replacement treatment, conserving water by up 

to 14% and 19% at the 25mm and 30mm ET thresholds, respectively. Therefore, due to the reduced 

water use without significant decline in yield, the water productivity at both thresholds also 

increased by 0.2% and 6.2%, respectively. Therefore, implying that a 30mm ET threshold may be 

more effective in improving water productivity. 

 

Figure 4.2: (a) Maize yield, (b) Irrigation amount, and (c) Yield-irrigation distribution for 

ET-based irrigation under normal conditions  

The overall results revealed a consistent linear pattern of increasing yield, as the percentage 

of crop ET replaced increased from 50% to 100%, as shown in figure 4.3(A). The finding is 
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consistent with the study by Kresović et al., (2016), as well as Greaves & Wang, (2017), where 

they both demonstrated a linear increase in yield with greater crop ET and irrigation amounts, 

under temperate climate. Therefore, the observed pattern is likely due to the reduction in water 

stress that results from applying more water leading up to the required irrigation amount. 

Interestingly, the maize yield relationship with the ET requirement threshold, however, was not 

linear but rather exhibited a threshold-like relationship. This fact holds true, as the yield initially 

increased as the ET requirement increased from 15 to 20mm. It then peaked at the 25mm ET 

requirement, and finally declined at the 30mm ET requirement, as shown in figure 4.3 (A). This 

threshold-like relationship suggests that maize can endure water stress until a certain threshold. A 

higher ET requirement threshold implies that it will take a longer duration before an irrigation 

event is triggered. As a result, a decrease in yield might therefore, likely be the result of greater 

water stress. This pattern was however not the same at the 50% ET replacement level, as the yield 

was observed to vary erratically at this level. In his study, Hokam et al., (2011) demonstrated that 

at deficiency rates, maize yield rises with more frequent irrigation events. However, that might not 

apply in all cases, as excess water may result from irrigating at a low ET threshold, and study 

(Ahmad et al., 2020) shows that this can lead to loss in yield due to the leaching of available 

nutrient in the soil. Excess application of water has also been reported to account for an average 

reduction in maize yield (Liu et al., 2022), even by up to 17% (Li et al., 2019). Conversely, the 

irrigation amount increased gradually with increase in the ET percentage replacement and 

decreased with increase in the ET requirement threshold, as shown in figure 4.3(B) and figure 

4.4(B), respectively. In contrast, water productivity decreased with increase in ET percentage 

replacement (figure 4.3C) and increased linearly with increase in ET requirement threshold (figure 
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4.4 C). This result agrees with a similar study (Nasseri̇, 2021) which argued that under semi-arid 

conditions, limited water supply could be practiced to enhance water productivity in Maize. 

 

Figure 4.3: Relationship between (A) Yield, (B) Irrigation amount, and (C) Water 

productivity and ET percentage replacement level  

 

 

Figure 4.4: Relationship between (A) Yield, (B) Irrigation amount, and (C) Water 

productivity and ET requirement threshold 
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 4.3.2 Maize yield and water productivity response to extreme temperatures 

The observed trend in maize yield, irrigation amount and water productivity with respect 

to changes in the percentage ET replacements, as well as with respect to ET thresholds, were 

similar to that depicted under normal climate conditions, as shown in figures 4.3 and figure 4.4, 

respectively.  

When subjected to a 1oC increase in the maximum temperature, the yield slightly declined 

in comparison to the yields obtained under the normal climate conditions. This was expected as 

increasing temperatures often tend to decrease yield by shortening the growing season length 

(Bassu et al., 2014). When compared to the farmers’ choice, however, yields slightly declined 

under the ET replacement levels of 50 and 75%, but increased under the 100% ET replacement 

level (figure 4.5), as was previously observed for this treatment under normal climate condition. 

More interestingly, statistical analysis showed that the yield gains and losses at both the 100% and 

75% ET replacement levels, respectively, were not significantly different from the farmers’ choice, 

thereby suggesting that the 75% deficit irrigation might remain a more viable strategy. even under 

heat stress represented by a 1°C rise in temperature. This hypothesis was further supported by the 

fact that the 100% ET replacement level when compared to the farmers’ choice, required 

significantly higher amounts of irrigation water ranging from 38 to 47%, to produce the observed 

yields (as shown in figure 4.6). Moreover, since there was no significant increase in yield with 

increased water usage, the water productivity at the 100% ET replacement level declined 

significantly from the farmers’ choice by percentages ranging from 17 to 34%, as shown in figure 

4.7.  

In contrast, the 75% ET replacement treatment demonstrated superiority, conserving 

irrigation water by amounts ranging from 1 to 17%, across the various ET requirement thresholds 

when compared to the farmers’ choice. At the 75% replacement level, an overall minimum yield 

loss of 3.4% (figure 4.5) was observed at the 25mm ET threshold, indicating its potential superior 

performance over other ET requirement thresholds. However, higher water savings and water 

productivity were observed at the 30mm ET requirement threshold, than at the 25mm ET 

threshold. Statistically significant water savings of 12% and 17% were obtained at the 25 and 

30mm ET thresholds, respectively, as displayed in figure 4.6. Meanwhile, the water productivity 

decreased by 2.8% at the 25mm threshold, but increased by 2.7% at the 30mm ET thresholds, as 

shown in figure 4.7. Notably, the changes in water productivity at both thresholds were not 
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significantly different from each other, and from the farmers’ choice. These findings suggest that 

both threshold treatments could exhibit resilience to temperature increase of 1oC, depending on 

what component among yield, water use and water productivity is of priority to the producer. 

Although, this research has not applied a weighting factor to these variables that were used to 

assess the performance of the irrigation treatments, studies (Ali et al., 2007; Geerts & Raes, 2009) 

demonstrated that in cases where the most production-limiting factor is water, it might be best to 

maximize the water productivity more than yield. This approach allows more water to be allocated 

to irrigate other plots, potentially compensating for the initial yield loss. 

 When examining the impact of a 2oC increase in temperature, it was interesting to find that 

yield variability was very minimal, fluctuating only by approximately 1%, across all the twelve 

treatment combinations in comparison to the yields obtained from treatments under temperature 

increases of 1oC. Similar to the trends observed under a 1°C temperature rise, yield decline relative 

to the farmers’ choice, were observed at both the 50% and 75% ET replacement, while yield 

remained slightly higher under the 100% ET replacement. Importantly, statistical analysis 

reaffirmed that the yield changes observed at both the 100% and 75% ET replacement levels were 

not significantly different from the farmers’ choice, even under the 2°C temperature increase. 

Again, the 75% ET replacement treatments also proved to be a potentially robust strategy for 

improving crop adaptiveness to mild changes in temperature. This is because, in addition to 

maintaining the mean yield decline below 6% (figure 4.5), especially at the 25 and 30mm ET 

thresholds, water savings also increased significantly by 10.5% and 14.8% (figure 4.6), 

respectively when compared to the farmers’ choice. Whereas, the 100% ET replacement levels 

showed higher water usage, as indicated by increasing percentages ranging from 16% at 30mm 

threshold to 43.4% at 15mm ET threshold (figure 4.6). The decline in water productivity was also 

significantly higher at 100% ET replacement when compared to the farmers’ choice than at the 

75% ET replacement level, which only exhibited non-significant decline in water productivity by 

5.1 and 0.7% at the 25mm and 30mm ET threshold levels, respectively (as demonstrated in figure 

4.7). 

In contrast to the relatively gradual yield responses to mild temperature increases of 1°C 

and 2°C, yield variability was greater across all the ET replacement levels when maximum 

temperature was increased to 4oC. Although, yield did not vary significantly across the ET 

requirement thresholds of each ET replacement level, indicating a weak relationship between yield 
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and ET threshold, similar to what was previously observed under normal climate conditions (as 

depicted in figure 4.3 and 4.4).  Yield drastically declined at across all the ET replacement levels. 

The decline in yields at the 75% and 100% ET replacement levels—although not significantly 

different from the farmers’ choice except at the 30mm ET threshold at 75% ET replacement 

level—were particularly pronounced, approximately doubling the magnitude of yield loss when 

compared to the milder temperature increases of 1°C and 2°C (figure 4.5). These findings align 

with similar studies (Ahmad et al., 2020; Lone et al., 2020) which have reported a percentage loss 

in yield approximately twice as high when temperatures were increased from 2°C to 4°C. This 

underscores the heightened sensitivity of maize yield to extreme temperature increases and further 

emphasizes the need for adaptive strategies. The treatments at the 100% ET replacement level 

showed superior resilience by maintaining yield losses at approximately 3%, performing better 

than the treatments at the 75% ET replacement level which incurred yield losses of approximately 

12% across all ET thresholds (Figure 4.5). The result of the latter aligns with a similar study by 

(Ma et al., 2017), which demonstrated a 14% yield decline under temperature increases greater 

than 4oC. Other related studies indicate greater effect of extreme temperatures on maize grain yield, 

demonstrating that by increasing temperatures by greater than 3oC relative to the normal 

conditions, grain yield loss can increase by over 50% (Hatfield & Prueger, 2015; Jerry L. Hatfield 

& Christian Dold, 2018; Schlenker & Roberts, 2009). 

The superiority of the treatment at the 100% ET replacement level was tempered by its 

higher water usage, which increased significantly by percentages ranging from 23% to 49% across 

all ET thresholds (figure 4.6), and lower water productivity, with declines ranging from 29% to 

42% (Figure 4.7). Conversely, the 75% ET replacement level exhibited lower water usage, 

conserving significant amounts of water by 3% and 9% at the 25mm and 30mm ET thresholds, 

respectively (figure 4.6), as well as limiting the decline in water productivity to 17% and 12% at 

both thresholds, respectively (as shown in figure 4.7). Overall, these findings underscore the 

importance of adopting an irrigation strategy which applies a deficit 75% of the ET requirement, 

particularly at the 25mm and 30mm ET thresholds, to maintain both maize yield and water 

productivity under extreme temperature conditions. 
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Figure 4.5: Percentage change in yield under increased maximum temperatures  
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Figure 4.6: Percentage change in irrigation water use under increased maximum 

temperatures 
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Figure 4.7: Percentage change in water productivity under increased maximum 

temperatures 

 

 4.3.3 Maize productivity response to increased maximum number of consecutive 

dry days 

Introducing an additional consecutive dry day during the critical tasseling stage of maize 

development resulted in a mean yield decline relative to the conventional farmer's choice. The 

yield decline was similar to what was observed under a 1oC temperature increase. 

Notably, significant yield declines were only observed at the 50% ET replacement level, 

while the 100% ET replacement level exhibited a degree of resilience to water stress, modestly 

outperforming the farmer's choice by percentages ranging from 3% to 7%. However, the 100% ET 

replacement treatment, despite its resilience, was hindered by its significantly higher water usage 

and lower water productivity, making it a less favorable option for mitigating water stress.  

 Conversely, treatments at the 75% ET replacement level showcased remarkable resilience 

by maintaining yield losses below 6% across all ET accumulation thresholds. Particularly 
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noteworthy was the performance of the 25mm ET threshold, which incurred the lowest yield loss 

of 4.3% compared to the farmer's choice, as illustrated in Figure 4.8. However, the 30mm ET 

threshold, when compared to the farmer's choice, conserved 18% more water (as depicted in Figure 

4.9) and increased water productivity by 5% (as shown in Figure 4.10), thus surpassing the 25mm 

ET threshold treatment in overall effectiveness.  

Although the water productivity declines remained statistically insignificant under both 

heat and water stresses, represented by 1oC and 1 day increase in maximum temperature and 

number of consecutive dry days, respectively, the percentage decline in water productivity under 

increased water stress was much lower than observed under increased heat stress. This finding also 

implied that more water savings were observed under water stress than under heat stress, 

suggesting that temperature-associated impacts were more pronounced on maize yield than water-

limited impacts. This suggests the possibility of a more intricate interplay in the response of maize 

to heat and water stress at various growth stages, warranting further in-depth investigation. 

 

Figure 4.8: Percentage change in yield under increased number of consecutive dry days 
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Figure 4.9: Percentage change in irrigation amount under increased number of consecutive 

dry days 

 

 

Figure 4.10: Percentage change in water productivity under increased number of 

consecutive dry days 
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 4.4 Conclusion and Recommendations 

In summary, the overall findings of this study underscore important implications for 

sustainable agriculture. As temperature continues to increase due to climate change, deficit ET 

replacement, especially at a 75% threshold level may be a viable adaptation strategy for reducing 

the negative effects of heat stress on maize and water productivity. This relationship holds 

regardless of the fact that increasing the percentage of ET application have more pronounced 

impact on yield compared to variations in the accumulated ET threshold. The study further 

emphasizes the significance of considering both ET replacement levels and ET thresholds as 

important factors when optimizing crop yield and reducing water use under normal and extreme 

temperatures.  

The ET accumulation threshold of 25mm was observed to optimize yield production, while 

the 30mm ET threshold better optimized water savings and productivity. Both strategies are critical 

for improving crop adaptation to typical climate and under extreme conditions. Under normal 

conditions, and under both mild temperatures increase and increase in dryness by one day, the 75% 

Et replacement treatment at 25mm and 30mm ET thresholds limited yield loss to approximately 

6%. However, when the maximum temperature was substantially increased by up to 4oC, the yield 

loss doubled to approximately 12%. It is important to note that the yield losses were however, not 

statistically significant from the baseline, for all scenarios. Concurrently, the water savings 

increased up to 13% and 19%, under the 25 and 30mm ET threshold treatments, respectively. 

While the water productivity decline was less than 5% under both treatments, except under high 

temperature of 4oC where the reduction was significantly higher by up to 17%. Therefore, while 

noting that these results provide insights into the response of maize crops to a 4°C temperature 

increase, it's vital to consider that in semi-arid regions, temperature increases are often higher, and 

global climate models project potential temperature increases of up to 4°C by the end of the 21st 

century (Ahmad et al., 2020; Condon et al., 2020; Ma et al., 2017b). Therefore, the performance 

of irrigation strategies under such conditions warrants profound attention and further investigation 

in the context of climate change adaptation strategies. 

Also, the variable among yield and water use or productivity, which an agricultural 

producer prefers to optimize plays an important role in determining the best performing irrigation 

strategies. As demonstrated in other studies (Ali et al., 2007; Geerts & Raes, 2009), the variable to 

be optimized is dependent on knowledge of the most production-limiting factor in the area. For 
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example, research (Ao et al., 2021) shows that expanding a small irrigated farmland (usually 

between 0–80 hectares) by up to double its initial size, can save up to 1.2% in groundwater use, 

compared to the amount used individually by the initial farm sizes. Although, this was done 

assuming that there would be no changes in the technology and crop management, irrigation 

strategy would be considered to perform satisfactorily if it optimizes water productivity, such that 

water savings can be used to increase area of irrigated land. 

Like many other studies, this investigation has only considered extreme conditions applied 

here to be occurring independently. However, the conditions may happen concurrently (Haqiqi et 

al., 2020). Therefore, further assessments considering the impact of compound extremes may 

prove resourceful in better understanding crop responses under deficit irrigation management. 

Additionally, incorporating other metrics such as irrigation water use efficiency (Zou et al., 2021) 

might be useful to consider in future studies. In his study, (Ko & Piccinni, 2009) found that 

applying 75% of the ET amount increased water use efficiency by 1.6 gm-2mm-1 with an irrigation 

amount of 456mm of water, while (Kresović et al., 2016), also found that at 75% irrigation, the 

grain yield was satisfactory, and water use efficiency increased. Finally, assessing the response of 

other strategies like crop growth stage irrigation management (Comas et al., 2019), or even choice 

of irrigation technology (Frisvold & Bai, 2016), can help to increase crop adaptiveness to climate 

impacts. 
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Chapter 5 - Summary and Conclusions 

 5.1 Summary and Conclusions 

The first objective of this study was to evaluate the impact of climate extremes on seasonal 

crop water demands in Finney County, Western Kansas, using a machine learning model. The 

maximum number of consecutive dry days (CDD) and the weekly mean maximum temperatures 

were found to be the most common indices of climate extremes affecting crop evapotranspiration 

in the region, according to our research. While the mean maximum temperature accounted for 

27.2% variability in ETo, the CDD accounted for about 29% of its variability. Altogether, the 

eleven indices that were used to represent climate extreme conditions, explained up to 70% 

variability in ETo. Overall, indices derived from temperature data were more highly correlated 

with ET that those derived from precipitation data. Furthermore, an ensemble prediction from 

twenty global climate models (GCMs) under two representative concentration pathways (RCPs) 

all project potential increases in crop ET in the future starting from the near century to the end of 

21st century, which was defined in 25-year time periods from the year 2025 to 2099. Under the 

RCP4.5 scenario, crop ET was projected to increase by 0.4, 3.1 and 5.9% by the near, mid and end 

century, respectively. While under the RCP8.5 scenario, crop ET was projected to increase by 1.7, 

5.9 and 9.6% in the near, mid and end century, respectively. However, statistical analysis indicate 

that these increases are statistically significant under the RCP 8.5 scenario, compared to historical 

time period. 

The second objective aimed to investigate sustainable water management strategies for 

improving crop adaptation to extreme climate conditions in Finney County in Western Kansas. 

According to our research, implementing deficit evapotranspiration replacement, particularly at 

the 75% threshold level, shows promise as a successful adaptation method to lessen the negative 
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effects of heat stress on maize crop yield and water productivity. The obtained results demonstrate 

the need of simultaneously considering both ET replacement levels and ET accumulation 

thresholds as crucial elements when optimizing crop output and managing water resources, 

especially under both normal and high temperature circumstances.  

 5.2 Future Work 

In this study, the Priestly-Taylor method was chosen as the preferred method for estimating 

reference evapotranspiration, during the DSSAT model development. This is because the same 

method was initially used to calibrate the DSSAT model. However, since reference 

evapotranspiration which is a major component of the crop evapotranspiration is influenced by 

several factors, depending on the location, it is important to consider the influence of the most 

dominant factors in the study areas when selecting the method for estimating evapotranspiration.  

Furthermore, it is also important to explore alternative methods of irrigation application 

such as the drip irrigation system, within the framework of the DSSAT model. This is useful to 

comparatively evaluate the application efficiency of each method, as it plays a pivotal role in 

optimizing crop yield, conserving water resources, and enhancing agricultural productivity. 

Finally, alternative irrigation scheduling strategies such as one that synchronizes irrigation 

events with specific growth stages where the crop is less resistant to water stress may be explored. 

A comprehensive assessment of these strategies might prove to be instrumental in contributing to 

sustainable and more climate-resilient agricultural practices. 
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