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Abstract 

The encroachment of woody plants is rapidly shifting tallgrass prairie into evergreen dominated 

ecosystems, mainly due to exclusion of fire. This increase in woody vegetation increases the 

potential for forest crown fires, specifically due to expansion of native eastern red cedar 

(Juniperus virginiana; henceforth, ERC), which are more dangerous due to their ability to spread 

much faster and cast embers far beyond the edge of fires. Many of the places where fire is being 

excluded are areas of high population density, potentially causing eastern red cedar to become 

dense surrounding residential areas. In drier and variable climates like the Central Great Plains, 

the question is not if, but when conditions will allow wildfires to spread. The goal of this project 

was to determine the spatial variability in forest fire risk in Manhattan, Kansas, as an emerging 

semi-urban zone that exemplifies exurban expansion into the remaining grasslands of the central 

Great Plains. This thesis assesses two key questions: 1) how effective are two of the U.S. 

government’s USDA National Agriculture Imagery Program (NAIP) and National Ecological 

Observation Network (NEON) products for classifying grass-shrub-tree mosaics? and 2) is there 

an emerging wildland urban interface (WUI) forming around Manhattan KS and if so, does it 

have high wildfire risk? For chapter 2, we compared accuracies of land use maps created from 

aerial imagery from two freely available government sources (NAIP and NEON) and two 

commonly used machine learning techniques (random forests and support vector machines). 

NEON provides a much greater suite of data products, including hyperspectral and light 

detection and ranging (LiDAR), but NAIP covers a much larger area. We found that land cover 

maps created using NEON inputs were more accurate and relied almost entirely on LiDAR. 

NAIP created maps, however, severely undercounted ERC, indicating that land cover maps 

created on a larger scale (outside of NEON extent) need some other inputs to accurately detect 

ERC. We also found very little difference in accuracy between machine learning methods, but 

random forests ran the model in substantially less time than support vector machines. For chapter 

3, we classified land cover using NAIP imagery, aerial imagery captured in the winter, and 

random forests. We then used this land cover map to analyze the extent and spatial patterns of 

ERC in Manhattan and thirteen neighborhoods, representing approximately 11,261 homes and 

out-dwelling units (structures from hereon). Structures in each neighborhood were identified 



  

using FEMA USA Structures polygons. Landscape metrics were calculated based on an 800m 

buffer of each neighborhood. We found that ERC currently covers 9.1% (2,062 ha) of 

Manhattan, and ranges from 5-23% cover across neighborhoods. There is currently low 

connectivity between eastern red cedar patches but high cohesion, meaning that patches of ERC 

are growing close together but not touching yet. However, the gaps between ERC patches are 

small enough to disappear in coming years due to the speed of encroachment. We also calculated 

number of houses within different distances to ERC patches based on three levels of danger: 

direct flame (within 4m of houses), extreme radiant heat (within 20m of houses), and embers 

(within 800m of houses). We also looked at three patch sizes within each of those distances: 

patches ≥ 10m2, ≥ 1000m2, and ≥ 5000m2. All thirteen neighborhoods have over 50% of houses 

within 4m of ERC patches ≥ 10m2, and ten neighborhoods have 75% of houses within 4m of 

ERC patches ≥ 10m2. This indicates that a substantial number of homes are in danger of damage 

from direct flames of wildfires. Furthermore, seven neighborhoods have 100% of houses within 

800m of ERC patches ≥ 5000m2, and four more have over 75% of houses within 800m of ERC 

patches ≥ 5000m2, signifying that almost all houses in most neighborhoods are within falling 

distance of embers and in danger of a spot fire. Therefore, if a wildfire breaks out in or around 

Manhattan, most structures could be in danger from either from the fire directly, or through 

rouge embers causing spot fires unless preventative measures are taken.   
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Chapter 1 - Introduction 

Tallgrass prairies in the Central Great Plains are one of the most endangered ecosystems, 

with less than 1% of the historical range still existing, due to conversion to agricultural land and 

human development (Samson and Knopf 1994). The only remaining landscape of tallgrass 

prairie is the Flint Hills of eastern Kansas and Northern Oklahoma, which supports a large 

pasture-raised cattle industry, intertwined with expanding human settlements into intact 

grassland ecosystem ecosystems. In the tallgrass prairie that remains, the largest conservation 

concern is woody encroachment, which is the growth and expansion of woody plants into 

grassland ecosystems, including shrubs and native conifers such as Eastern Red Cedar 

(Juniperus Virginiana: henceforth, ERC). Expansion can occur at rapid speeds (Twidwell et al. 

2013, Galgamuwa et al. 2020, Moser et al. 2013), turning an open prairie into a closed canopy 

forest in as little as 40 years in the absence of fire (Briggs et al. 2002).  

Many impacts of woody encroachment are well-studied, including negative effects on 

species diversity (Swengel 1996, Lettow et al. 2018, Albrecht et al. 2016), bird populations 

(Engle et al. 2008, Lautenbach et al. 2017), and groundwater levels (Keen et al. 2022, Zou et al. 

2018). ERC encroachment can also change the fire risk from prairie ground fires to forest crown 

fires due to their volatile nature (Twidwell et al. 2013). Crown fires are fires which exist in the 

canopy of trees and spread faster, travel further, and are more difficult to control than ground 

fires (Scott and Reinhardt 2001). Crown fire potential is based on a combination of factors: fuel 

availability, ladder fuels, canopy density, and weather (Scott and Reinhardt 2001). With branches 

that grow to the ground, ERC trees provide their own ladder to carry fire from the ground to the 

crown, and tend to grown into dense, closed-canopy stands, indicating high crown fire potential. 

My goal was to create a high-resolution land use land cover map in order to quantify the current 
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level of ERC encroachment and to calculate the number of houses exposed to three different fire 

risks.  

Most wildfires occur in the wildland-urban interface (WUI), where humans and human 

developments intermix with wildland vegetation, and are mostly located in forested ecosystems 

(Stein et al. 2013). Wildfires costs billions of dollars each year, including the cost of fire 

response and direct damage (UNEP 2022, Hurst 2022), and millions of dollars more spent on fire 

prevention and research to determine areas of high wildfire risk (Stein et al. 2013, UNEP 2022). 

For example, between 2002-2007, Florida spent an average of $500,000 per year on wildfire 

prevention education (Stein et al. 2013). However, most of the Central Great Plains are not 

considered part of the WUI (Stein et al. 2013) and are often left out of wildfire studies; but 

woody encroachment is quickly turning much of the Great Plains into woodlands (Briggs et al. 

2002, Ratajczak et al. 2016). Therefore, instead of the common movement of people into the 

WUI, people are settling in grasslands and a fire prone WUI is potentially being created as 

humans suppress fires and woody fuel loads grow (Figure 1.1).  

Defensible space, or the space around homes which has been modified to stop or slow the 

spread of wildfire, is often promoted as the best way to reduce risk of damage from wildfire. 

Defensible space generally refers to three different zones of space at different distances from the 

house, each with specific instructions to reduce risk of fire damage, such as xeriscaping or 

thinning trees (Figure 1.2; FEMA 2008, FireSmart Canada 2023). For example, the first zone 

closest to homes is advised to have no flammable objects, including wood decks, any flammable 

vegetation, and firewood (FEMA 2008). However, initial anecdotal observations of Manhattan 

show that there is little to no defensible space around residences (Figure 1.1). The UN 

Environmental Assembly calls on governments around the world to start spending more time and 
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money on prevention and preparedness to reduce the costs of response and recovery (UNEP 

2022); being prepared and taking precautions will be one of the most effective ways to reduce 

risks associated with wildfires as they continually increasing around the world (UNEP 2022). 

However, no preparation can or will be done if people are not aware of the risk (McCaffrey et al. 

2011). Some areas similar to my study site have already acknowledged this new risk and have 

begun taking measures to reduce the risk by burning and removing large stands of ERC 

(Twidwell et al 2013). In order to quantify the current state of risk, we need to be able to map the 

current extent of ERC on the landscape, and especially near human developments. 

Woody encroachment of ERC is already well underway in Texas and Oklahoma, is 

quickly spreading up through Kansas, and we expect this “green glacier” of trees to continue 

spreading north into Nebraska (Engle et al. 2008). Furthermore, the number of wildfires in 

Oklahoma is increasing each year (Donovan et al. 2017), and woody vegetation is more 

conducive to extreme wildfires (Donovan et al. 2020). Thus, the number of structures lost to 

wildfires is much greater in Texas and Oklahoma than Kansas (Stein et al. 2013). As ERC 

continues to encroach into Manhattan neighborhoods, we could see a similar increase in large 

wildfires and structures lost. Therefore, it is important to start developing monitoring tools that 

1) enable proactive management of encroachment through prescribed fire and other techniques; 

2) capture the actual extent of wildfire risk for human structures; and 3) engage with local 

stakeholders to communicate risk and learn from their challenges and experiences. The goal of 

this thesis is to advance objectives one and two by creating a high-resolution land cover map 

with high woody plant accuracy and determining the current extent of ERC in proximity to 

human structures.  
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Most studies looking at wildfires and many studies tracking woody encroachment use 

coarse resolution aerial imagery (>10 m2). However, small patches of ERC (<10 m2) can be 

dangerous in the wrong places and newly encroached areas tend to have many small ERC trees 

spread out that are missed in coarse resolution aerial imagery. Therefore, it is critical to classify 

ERC extent using finer resolution inputs. Another benefit of this early detection is that smaller 

trees can be controlled by the reintroduction of controlled surface fires (Briggs et al. 2002). The 

US government has been investing in fine resolution (< 2 m2) remote sensing through United 

States Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) and 

more recently, the National Ecological Observatory Network (NEON), which provide different 

data products and each cost millions of dollars annually. In chapter 2 of this thesis, I compared 

two common methods of machine learning classification of land cover (random forests and 

support vector machines) factorially crossed with these two freely available remotely sensed 

platforms. I found that all models had very high overall classification accuracy (>91%), but 

NEON-based models correctly classified woody vegetation far better than NAIP models. 

Specifically, NAIP’s accuracy for ERC was 55-83% compared to 78-89% in NEON models. I 

conclude that NAIP alone is not sufficient to accurately classify woody vegetation.  

 Using insights from chapter two, I used random forests and two large-scale remote 

sensing products (NAIP and Kansas NG911—a wintertime mapping campaign) to create a much 

larger land cover map of Riley County and surrounding areas. Using this data-product, my third 

chapter aimed to analyze the extent and spatial patterns of ERC in Manhattan and thirteen 

neighborhoods, representing approximately 11,261 homes and out-dwelling units (structures 

from hereon). Structures in each neighborhood were identified using FEMA USA Structures 

polygons. Landscape metrics were calculated based on an 800 m buffer of each neighborhood. I 
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found that ERC currently covers 9.1% (2,062 ha) of Manhattan, and ranges from 5-23% cover 

across neighborhoods. There is currently low connectivity between ERC patches but high 

cohesion, meaning that patches of ERC are growing close together but not touching yet. 

However, the gaps between ERC patches are small enough to disappear in coming years due to 

the speed of encroachment and realistic assumptions of flame length under extreme drought 

conditions. I also calculated number of houses within different distances to ERC patches based 

on three levels of danger: direct flame (within 4 m of houses), extreme radiant heat (within 20 m 

of houses), and embers (within 800 m of houses). I also looked at three patch sizes within each of 

those distances: patches ≥ 10 m2, ≥ 1000 m2, and ≥ 5000 m2. These patches represent different 

types of risk, where small patches are more likely to be near homes, but less likely to burn in 

crown fire complexes.  Averaged across all thirteen neighborhoods, I found that 82.4% of houses 

are in danger of direct flames, 20.3% are in danger of radiant heat, and 89.7% of houses are in 

danger of embers. This indicates that a substantial number of homes are in danger of damage 

from direct flames of wildfires, and almost all houses in most neighborhoods are within falling 

distance of embers and in danger of a spot fire. Therefore, if a wildfire breaks out in or around 

Manhattan, most structures could be in danger from either from the fire directly, or through 

rouge embers causing spot fires unless preventative measures are taken. 
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Figure 1.1: Aerial image of an Eastern Red Cedar encroached neighborhood. 
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Figure 1.2: FEMA’s version of defensible space around homes (FEMA 2008). 
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Chapter 2 - NEON’s LiDAR increases woody plant detection in a 

grassland using machine learning 

Please note: This paper is formatted for Ecosphere journal 
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 Abstract 

Woody encroachment, or invasion of woody plants, is shifting many grasslands and savannas 

into shrub and evergreen dominated ecosystems. Tracking the pace and extent of woody 

encroachment is difficult because shrubs and small trees are much smaller than the coarse 

resolution of common remote sensing platforms (> 10 m2) and ground-based approaches are 

slowed by the impassibility of encroaching woody thickets. However, the US government has 

been investing in fine resolution (< 2 m2) remote sensing through United States Department of 

Agriculture (USDA) National Agriculture Imagery Program (NAIP) and more recently, the 

National Ecological Observatory Network (NEON), which provide different data products and 

each cost millions of dollars annually. We compared two common methods of machine learning 

classification of land cover (random forests and support vector machines) factorially crossed 

with these two freely available remotely sensed platforms to determine if and how much NEON 

adds to classification accuracy. All models had very high overall classification accuracy (>91%), 

with the NEON-based models a few percent more accurate than NAIP. A model using both 

inputs had the highest accuracy. This was mostly due to the models correctly classifying non-

woody vegetation. However, there were differences between accuracies of NAIP and NEON 

models for woody vegetation: compared to NEON, NAIP’s accuracy was 55-83% compared to 

78-89% for evergreen trees, 83-93% compared to 96-98% for shrubs, and 78-91% compared to 

94-97% for deciduous trees. The NEON-based models rely on canopy height (LiDAR) to make 

classifications, whereas the several bands of light make similar contributions to accuracy in the 

NAIP models. Finally, models using the same data sources were nearly identical in accuracy, 

indicating no important difference between random forests and support vector machines in 
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classifying vegetation. We conclude that the addition of LiDAR through the NEON program will 

increase our ability to accurately track woody plant encroachment. 
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 Introduction 

Woody encroachment, or the expansion of woody plants in grasslands, is negatively affecting 

grasslands around the world (Briggs et al. 2002, Galgamuwa et al. 2020, Moser et al. 2013, 

Twidwell et al. 2013). The Flint Hills in Kansas and Oklahoma, United States is witnessing 

Tallgrass Prairie rapidly being converted to shrublands and woodlands of Eastern Red Cedar 

(Juniperus virginiana; henceforth, ERC) (Briggs et al. 2005, Engle et al. 2008, Meneguzzo and 

Liknes 2015, Ratajczak et al. 2014). When fire is excluded in tallgrass prairie, ERC can expand, 

becoming a closed canopy in as little as 40 years (Briggs et al. 2002). In the Flint Hills, the 

largest remaining landscape of tallgrass prairie, 45% of current grasslands are burned so 

infrequently that they are likely to transition to woodlands in the next ten to thirty years unless 

management practices change (Ratajczak et al. 2016). As woody species increasingly takeover 

grasslands, many grassland obligate species could decline further, such as Monarch butterflies 

(Swengel 1996), native bees (Lettow et al. 2018), Lesser Prairie Chickens (Lautenbach et al. 

2017), and others (Albrecht et al. 2016). Woody encroachment can also have economic impacts 

by reducing freshwater recharge (Keen et al. 2022) and forage for commercial grazers (Anadon 

et al. 2014). One of the challenges in studying woody plant encroachment is logistical 

difficulties. Woody encroachment creates thickets of dense and often thorny vegetation, which 

can be difficult to pass through, and in some cases, is impassable without altering the vegetation 

itself. Therefore, remote sensing could allow grassland ecologists to study woody encroachment 

more accurately, more quickly, and at a larger spatial extent than is possible with on-the-ground 

approaches. In this study, our goal was to determine what combinations of machine learning 

approaches and data sources produce the most accurate and fastest combination for remote 

sensing of woody plant encroachment. 
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Remote sensing (RS) and machine learning (ML) have long been used to classify land 

use and land cover (LULC). Until recently, many studies on land-use classification using RS and 

ML are done at coarse resolutions of >10 m2 (Allred et al. 2021, Galgamuwa et al. 2020, 

Kranjčić et al. 2019, Nguyen et al. 2020, Thanh Noi and Kappas 2018). However, woody 

encroachment can be difficult to track at coarse resolutions because shrubs and smaller trees are 

often smaller than the minimum grain-size of common satellite-derived data (e.g., >9 m2; 

Whiteman and Brown 1998). The growing availability of higher resolution remote sensing from 

unmanned vehicles, low flying planes, and advanced satellites could rapidly improve our ability 

to remote sense shrubs and other forms of woody encroachment (Toth and Jóźków 2016). For 

instance, high resolution remote sensing was recently used to identify millions of small trees 

across Northern Africa—a region thought to house few trees, because more coarse resolution 

data-products could not identify the smaller trees of this region (Brandt et al. 2020).  

The utility of ML and other classification methods might also be constrained by the types 

of data available. In the United States, the United States Department of Agriculture (USDA) 

National Agriculture Imagery Program (NAIP) has provided the most consistent, widespread, 

and freely available high-resolution RS data in the United States. This product was a large 

investment, with mixed impact (Maxwell et al. 2017). Recent investments from the U.S. National 

Foundation have begun to provide another set of high-resolution remote sensing data through the 

National Ecological Observatory Network’s (NEON) aerial observation platform (AOP) 

(reviewed by Nagy et al. 2021). NEON’s AOP covers a much smaller spatial extent than NAIP 

(81 total sites versus the entire continental U.S.), but provides a much wider range of data, 

including LiDAR, hyperspectral data, and a suite of derived products, such as estimated canopy 

height and canopy nitrogen. These additions are promising, but because their adoption by 
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ecologists is still nascent, several questions remain unanswered: how accurate are NEON’s 

derived products? Is the learning curve of using these products preventing widespread use? For 

instance, at one site, a recent study found that some derived NEON products were weakly 

correlated with ground-based measurements (Pau et al. 2022).  

The number of machine learning approaches is large, growing, and becoming more 

accessible through a growing number of open-source methods and training vignettes. Most ML 

methods follow the same general workflow: 1) train the model with remote sensed inputs and 

polygons or pixels of known cover class types; 2) apply the model to a dataset of known points 

or polygons to assess accuracy; and 3) apply the model to an unknown dataset to classify 

unknown values (Kranjčić et al. 2019). There are many methods of ML available to classify RS 

aerial imagery, but random forests (RF) and support vector machines (SVM) have emerged 

toward the top of the field in the past decade (Sheykhmousa et al. 2020), so we compared these 

two.  

Here we assess the value-added of NEON for remote sensing woody plant encroachment, 

over the more widely available and longer running NAIP program. This is a timely question 

given the cost of NEON ($469 million USD initially, with a current operating budget >$70 

million USD per year; Mervis 2016, NEON FY 2022 Budget Request). While a larger number of 

data products and more complex machine learning methods might produce the most accurate 

product, the inputs are extremely data-heavy, require substantial computing power, and are not 

accessible to many users. We aim to determine the method and inputs necessary to maximize 

accuracy while limiting computational effort and using data products that would be available to a 

reasonably skilled graduate student, post-doc, or professor. Therefore, we restricted our use of 

NEON data to “off the shelf” data-products, such as NEON’s data product “estimated canopy 
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height” based on LiDAR. This decision was motivated by observations that a lack of certain 

computational skills might be impeding the wider usage of NEON remote sensing products (see 

Nagy et al. 2021 for a review). We performed a set of factorial analyses that explore the role of 

more rich data (NAIP RGB, NEON vegetation indices, and NEON LiDAR) and model 

sophistication (SVMs, RFs). 

We hypothesized that:1) NEON would increase accuracy, primarily due to the addition of 

canopy height estimated using LiDAR; 2) shrubs would have the lower accuracy than grasses 

and trees, because their height and traits fall in between these two functional groups; 3) ERC 

would have high accuracy, given its unique leaf type compared to other plant functional groups 

we considered, which are all deciduous. 

 

 Methods 

 Site Description 

Konza Prairie Biological Station (KPBS), is a National Science Foundation long-term ecological 

research (LTER) site with 3,487 ha of native unplowed tallgrass prairie located in the Flint Hills 

in northeastern Kansas (Fig. 2.1). KPBS has high seasonal variability with an average high of 

26.6⁰ C in July and -2.7⁰ C in January. KPBS receives an average annual rainfall of 835 mm, 

with 75% falling during the growing season (April-October). The soils are non-glaciated with 

thin rocky upland soils (mostly from the Florence series), deeper lowlands (often from the Tully 

series), and complex benches, outcrops, and slopes that connect these two soil types. 

KPBS is split into 60 different management units, with replicates spanning 1-, 2-, 3-, 4-, 

and 20-year fire frequencies, as well as ungrazed, grazed by bison, or grazed by cattle. These 

different treatments have created a mosaic of contrasting land covers, including areas that are 
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dominated by herbaceous species, shrubs, deciduous trees, or evergreen trees. The herbaceous 

dominated areas can be floristically diverse, with high grass dominance in areas without bison or 

cattle, and mosaics of tallgrasses, short-grass grazing lawns, and patches of tall forbs in areas 

with bison and cattle. Areas dominated by shrubs typically have little to no herbaceous species 

(Briggs et al. 2002, Ratajczak et al. 2011, Ratajczak et al. 2014) and dominant shrubs (primarily 

the species Cornus drummondii) are all clonal, creating “islands” of ramets that can reach over 

10 m in diameter. Heights range from <0.5 m tall for young clonal stems to over 3 m tall for 

older stems. At the lowest elevations and some intermittent streams, a full riparian forest has 

become established, dominated primarily by oaks (mostly Chinqapin oak, Quercus 

muehlenbergii and Burr oak, Quercus macrocarpa). Outside of these lowlands, the height and 

continuity of deciduous trees is lower, with species including honeylocust (Gleditsia 

triacanthos), red buds (Cercis canadensis), and several elm species. The only evergreen trees 

known to occur on site is ERC (Juniperus virginiana), which is primarily in areas without bison 

and without frequent fire.  

 

 Imagery 

Two data sources were used for this project: USDA NAIP and NSF NEON. Each data source 

was tested alone and then together (NAIP+NEON) for a total of three models for each ML 

method, resulting in six models. Table 2.1 outlines the inputs used for each image. The images 

were taken in separate years, but between these two years there was no major change in climate 

(Ratajczak et al. 2022) and no major fires occurred. Therefore, major changes in vegetation 

between these two time periods is unlikely. 
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 NAIP Imagery 

An image was sourced from the USDA NAIP (USDA 2019a&b, the final product we used can 

be found at Noble and Ratajczak 2022). The image was captured on July 10, 2019 by low-flying 

aircrafts and has a resolution of 0.6 m2. We used bilinear interpolation to transform each image 

to 2 m2 pixels and snapped to a common grid with all other images and inputs.  

The image sourced from NAIP contains nine bands, four are provided in the imagery 

(red, green, blue, infrared), and five more were calculated (red neighborhood, green 

neighborhood, blue neighborhood, infrared neighborhood, and normalized difference vegetation 

index [NDVI]; Table 2.1). Neighborhood calculations take the average value of all surrounding 

pixels. The red neighborhood calculation, for example, averages the redness of the pixels 

immediately surrounding each pixel. We added these neighborhood averages after a first 

application of machine learning found that some single pixels of deep shadows were 

misclassified as ERC. 

 

 NEON Imagery 

NSF NEON imagery was captured in June 2020 by low-flying airplanes and has a resolution of 1 

m2, which was upscaled to the same resolution and grid as NAIP using bilinear interpolation 

(NEON 2020a&b, the final product we used can be found at Noble and Ratajczak 2022). NEON 

provides many data products which are derived from physical measurements. For example, 

NDVI is a product derived from dividing the difference between near-infrared (NIR) and red 

bands by the addition of NIR and red bands. NEON offers several of these derived products in 

addition to hyperspectral RS bands. We used 8 derived vegetation indices from this image: 

enhanced vegetation index (EVI), normalized difference nitrogen index (NDNI), normalized 
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difference lignin index (NDLI), soil-adjusted vegetation index (SAVI), atmospherically resistant 

vegetation index (ARVI), NDVI, NDVI neighborhood, and canopy height (LiDAR; Table 2.1). 

Leaf area index was not included because it is calculated using SAVI. NEON’s 10-cm RGB was 

unusable due to distortions along seamlines, however these distortions were not in the derived 

products.  

 

 Machine Learning Methods 

Machine learning uses a small set of user inputs (training data) to learn and classify unknown 

data. We compared two different methods of supervised ML for this project, SVM and RF, as 

these are the most common methods used in RS today (Thanh Noi and Kappas 2018, 

Sheykhmousa et al. 2020).  

 

 Support Vector Machines 

Support Vector Machines (SVM) are a supervised nonparametric classification technique which 

use a fixed optimal hyperplane to split the data into the desired number of discrete categories 

(Burges 1998). In the simplest form, a linear line separates two-dimensional data into two 

categories (Mountrakis et al. 2011; Fig. 2.2), but SVM are popular for their ability to work with 

high-dimensional data (Sheykhmousa et al. 2020).  

Each pixel of a RS image is a series of numbers, one value from each input, which are 

mapped with each input as a new dimension during SVM model creation. The points which lie 

the closest to the hyperplane are support vectors and are the most important in determining the 

decision boundary. While many linear hyperplanes may exist in the data, SVM chooses the 

largest margin between points, allowing for some misclassification. In real life applications, 
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many datasets do not have a linear break between data; SVM can easily circumvent this problem 

by shifting the data into a higher dimension using kernels, which separates the data even further 

to allow for a linear hyperplane to split the data. Furthermore, SVM are often used in the RS 

field for their ability to be accurate even with small training sets (Thanh Noi and Kappas 2018, 

Mantero et al. 2005), making them a strong choice for large study areas.  

SVM were run in program R (v4.0.5; R Core Team 2021) using the ‘e1071’ package and 

model inputs were optimized using the ‘best.svm’ function (v1.7-6; Mayer et al. 2021; see Table 

A.1 for final model parameters). 

 

 Random Forests 

RF are a non-parametric supervised ML technique. The building block of RF are decision trees, 

which use nodes to split data into smaller and smaller subsets to predict the pixel class. RFs use a 

bagging approach when building trees, where each decision tree is built with a random selection 

of input variables, creating a forest of different tree structures to limit overfitting (Evans et al. 

2011). The user can set the number of decision trees for each model (ntree) and the number of 

input variables used to split each node (mtry), but many users rely on the default values of ntree 

(500) and mtry (square-root of number of inputs; Thanh Noi and Kappas 2018). RF make 

predictions based on majority voting; each individual decision tree outputs a predicted class and 

the class which is predicted the most times in the forest is the overall predicted classification 

(Sheykhmousa et al. 2020). For example, if a RF has 100 trees, and 76 of them predict a pixel as 

grassland, the model predicts that pixel to be grassland. Adding decision trees can improve 

accuracy, but it will increase the model run time and required computing capacity. Models with 

an excessive number of trees yield diminishing returns in accuracy. Lastly, RF models can 
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determine the GINI decrease for each input, which measures the amount of accuracy lost with 

the removal of an input variable, indicating the relative importance of each.  

RF models were run in program R (v4.0.5; R Core Team 2021) using the ‘randomForest’ 

package and model inputs were optimized using the ‘best.randomForest’ function (v4.6.14; Liaw 

and Wiener 2002). The NAIP+NEON model had an ntree of 500 and mtry of 4, and both single-

source models (NAIP and NEON) had an ntree of 500 and mtry of 3.  

 

 Training Data 

The study area had five categories of LULC: (1) grassland (herbaceous dominated areas); (2) 

shrubs; (3) deciduous trees; (4) ERC trees; (5) and other (roads, water, and buildings). Training 

datasets were created by a combination of ground-truth points collected using high-precision 

GPS units (with below 2 m error) and computer-drawn polygons. Ground-truth points data 

collection occurred from June to August 2021 and were collected using a random sampling 

approach, with a few locations where all vegetation within the area was sampled. Computer-

drawn polygons were traced using a combination of the 2020 NEON RGB-10 cm2 imagery and 

publicly available 1 m2 RGB (a 2019 image from Maxar technologies available at Google Earth); 

neither of these images were used in the SVMs or RFs. Polygons were drawn in locations where 

species was confirmed in the field or where classes were obvious (in particular, buildings, water, 

and roads). A total of 3,635 training polygons were collected, resulting in 300,328 2 x 2 m pixels 

of known vegetation type, totaling 3.42% of the total area (Table 2.2). 70% of the points were 

used to train the models and the remaining 30% were held for evaluation of the models.   
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 Accuracy Assessment 

When assessing the accuracy of each model, four aspects are considered: producer accuracy 

(PA), user accuracy (UA), overall accuracy (OA), and Kappa. PA refers to the number of pixels 

correctly classified from the training data. In other words, the proportion of ‘grassland’ pixels in 

the evaluation data also appear as ‘grassland’ in the final classified image. UA refers to the 

number of pixels which are classified as, for instance, grassland and are actually grassland on the 

ground (i.e., in the training data). OA is an estimate of accuracy among all predicted cover types 

and is a ratio of the total number of correctly classified pixels to the total number of pixels. 

Lastly, the Kappa coefficient measures the accuracies by comparing the classification outcome 

versus randomly assigning values. Kappa ranges from -1 to 1, with 0 indicating that the model 

performed on par with randomly assigning values, <0 indicating that the model performed worse 

than random, and >0 indicating that the model performed better than random.  

 

 Run Time and Other Logistics 

Run time can become a consideration for some machine learning approaches, requiring PIs 

and/or students to learn new techniques to complete more computationally intensive tasks. We 

recorded and report run time for both model training and extrapolation to the remainder of our 

site, to give an estimate of trade-offs between model accuracy versus computational efficiency. 

For reference, these models were run on a Dell XPS 8930, with relevant specifications of 64 GB 

RAM and an Intel® Core™ i9-9900K processor, with 3.6 GHz speed, 8 cores, and the ability to 

perform 16 threads. Note that program R runs most processes through the RAM.  
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 Results 

Our two modelling approaches (SVMs vs RFs) yielded nearly identical OA (<3.2% difference; 

Table 2.3). In general NEON performed better than NAIP, and the NAIP+NEON models were 

more accurate than either single-source model. NAIP+NEON had almost no difference between 

RF (OA: 98.4%, Kappa: 0.973) and SVM (OA: 98.2%, Kappa: 0.969; Table 2.3). NEON also 

had very little difference in accuracies between RF (OA: 97.9%, Kappa: 0.964) and SVM (OA: 

97.3%, Kappa: 0.953; Table 2.3). NAIP had the largest difference between classification method, 

with RF (OA: 94.3%, Kappa: 0.899) a few percentage points more accurate than SVM (OA: 

91.2%, Kappa: 0.842; Table 2.3). Classified maps comparing all three data sources are shown in 

Fig. 3d-e, where the ML method was RFs for all panels.  

For all models, the grassland and “other” categories had values of 95% or above for both 

UA and PA for all combinations of machine learning methods and data sources (Table 2.3). 

However, the three categories of woody plants (shrubs, deciduous trees, and ERC) were more 

difficult to classify accurately. Shrubs and deciduous trees had very high PA and UA accuracies 

(>94%) in NEON and NAIP+NEON, but NAIP alone performed slightly worse, with PA of 83-

93% for shrubs and 78-82% for deciduous trees, and UA of 85-89% for shrubs and 85-91% for 

deciduous trees (Table 2.3). Deciduous trees were most often misclassified as shrubs, and shrubs 

were most often misclassified as grassland (Tables 2.4-2.9). All models had the lowest 

accuracies for ERC, but NAIP performed particularly poorly. PA and UA for NAIP-based ERC 

were both low, but PA was especially low at 55-61%, compared to 83% UA (Tables 2.3-2.5). 

This low PA means that the models are undercounting ERC by classifying it as something else 

(mostly deciduous trees), rather than misclassifying other categories as ERC (Tables 2.4 & 2.5).  
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 Importance of Different Data Inputs 

For NAIP, the most valuable input variable was red neighborhood (visualized in Fig. 2.3b), 

followed by blue neighborhood, red, and blue (Fig. 2.4a). The most valuable input variable for 

NEON was canopy height (visualized in Fig. 2.3c), followed very far behind by NDVI and 

NDVI neighborhood (Fig. 2.4b). NAIP+NEON also largely relies on LiDAR, followed by five 

inputs from NAIP: red neighborhood, blue neighborhood, red localized, blue localized, and green 

neighborhood. In the combined model, NEON derived products (other than canopy height) 

provided very little GINI decrease (Fig 2.4c).  

 

 Model Run Time and Other Logistics 

The amount of time it took to train each model varied greatly, with the shortest time at only 23 

minutes for RF NEON, and the longest took 4 hours and 49 minutes to run SVM NAIP (Table 

A.2). More specifically, RF and SVM models had large differences between training run times, 

with the longest RF model taking 1 hour and 5 minutes, and the shortest SVM run time at 1 hour 

and 37 minutes (Table A.2). The time it took the models to predict the entire study site was 

drastically different between RF and SVM; RF classification took 7:20-10:43 minutes, and SVM 

classification took 2:05-6:15 hours (Table A.3). For SVM, model run time was negatively 

correlated with accuracy, with the NAIP+NEON model taking the least amount of time to both 

train and classify, and was the most accurate (Tables 2.3, A.2, & A.3). However, for RF, the 

most accurate model (NAIP+NEON) took the longest time to train, but the shortest time to 

classify (Tables 2.3, A.2, & A.3).  
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 Discussion 

Until recently, NAIP was the only widely available high-resolution open source of aerial remote 

sensing in the U.S. We found that with a few manipulations (use of neighborhoods) and readily 

available ML methods, NAIP succeeds at identifying grasslands and to some extent shrubs and 

deciduous trees. However, additional data, such as NEON, greatly increased our ability to 

correctly identify all forms of woody vegetation and especially ERC. The addition of NEON also 

made classification less subject to choices of ML methods. Therefore, in the limited locations 

where NEON is available (81 total sites vs entire continental US for NAIP coverage), NEON is a 

potential replacement for NAIP or the two data-sources could be used synergistically—NEON 

for its addition of LiDAR and NAIP for its undistorted red, green, blue, and NIR. 

Eastern Red Cedar is a native evergreen encroaching rapidly in tallgrass prairies, 

negatively impacting species diversity and ecosystem services (Briggs et al. 2002, Limb et al. 

2010, Van Auken 2009, Zou et al. 2018). Detecting ERC is important for monitoring and 

managing the impacts of woody encroachment (Meneguzzo and Liknes 2015). However, ERC 

had the lowest accuracy in all models, with PA lower than UA (Table 2.3), indicating that ERC 

is being substantially undercounted (in some cases by almost half) because many ERC pixels are 

being classified as deciduous trees. This problem was particularly acute when we only used 

NAIP imagery (Tables 2.4 & 2.5). We hypothesized that ERC would have much higher 

accuracy, since it has a much different leaf structure and water content than other woody plants 

in the area—characteristics that are supposed to be measured by NEON derived products (e.g., 

NDVI, NDLI, NDNI). However, our hypothesis proved incorrect, which has implications for 

using these models to make predictions of the rate and volume of current and future woody 

encroachment. Other studies also had difficulty detecting ERC in aerial imagery, specifically 
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when ERC was at low densities (Kaskie et al. 2019, Kaskie et al. 2022). At densities below 30%, 

Kaskie et al (2019) found <50% accuracy ERC classification using aerial imagery alone. 

However, using other predictor variables such as slope, aspect, and Euclidean distance to nearest 

ERC pixel, Kaskie et al (2022) was able to increase accuracy of ERC at low densities (<15%) to 

84.7%. ERC density is low across our site, but accuracy was fairly high (78-94%; Table 2.3) in 

NEON models. Therefore, NEON appears to overcome some challenges of low-density ERC 

detection. However, more work needs to be done to determine better and more efficient methods 

to accurately classify ERC at low densities.  

We found that NEON imagery adds a substantial amount of accuracy when using ML 

methods to classify woody vegetation. Comparing the two single-source models (NEON vs 

NAIP), NEON increased accuracy by 8-43% for ERC, 7-21% for deciduous trees, and 5-15% for 

shrub cover (measured as percent increases going from NEON to NAIP; Table 2.3). In both 

models that included NEON data, canopy height data (based on NEON LiDAR), was by far the 

most influential input for accurately classifying our vegetation classes when using RF models 

(Fig. 2.4), indicating that LiDAR alone seems to be responsible for the increase in accuracy for 

woody plants. This was somewhat surprising given that all estimated values of canopy height <2 

m are truncated to a value of zero as part of NEON’s data cleaning, and some areas dominated 

by woody vegetation on site are in the range of 1.5 to 2 m height. However, this is consistent 

with many other studies which also found that LiDAR-based canopy height was among or the 

most important input for accurately classifying vegetation types (Scholl et al. 2020, Pervin 2022) 

and that LiDAR increases classification accuracy (Bork and Su 2007, Jin and Mountrakis 2022). 

Jin and Mountrakis (2022) analyzed 37 studies which compared accuracy using multispectral 

imagery alone versus classification with LiDAR added and found increases in model accuracy 
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for almost all studies, with accuracy increasing as much as 68%. This again points towards value 

added from NEON, but specifically from the addition of LiDAR, since NEON vegetation indices 

other than canopy height played very little role in increasing model accuracy in the 

NEON+NAIP model (Fig. 2.4). However, NEON also provides a full suite of hyperspectral data, 

which were not tested here, but could have yet more value added on top of NEON’s LiDAR 

product.  

Shrubs and small trees have been difficult to classify in the past because they are often 

smaller than the resolution of remotely sensed aerial imagery (> 9 m2; Whiteman and Brown 

1998), leading to undercounting of shrubs and small trees (Brandt et al. 2020). Thus, we had 

hypothesized that shrubs would be among our lowest accuracy by class. However, despite having 

a higher resolution than previous studies (2 m2), it appears that the addition of LiDAR (canopy 

height) is important for overcoming challenges of shrub classification. Contrary to our 

hypothesis, we found high accuracy for shrubs in all models using LiDAR (96-98%; Table 

2.3)—more accurate, in fact, than both deciduous and ERC trees. In the NAIP only models 

(without LiDAR), shrub accuracy was much lower (83-93%; Table 2.3). While NAIP accuracy is 

still fairly high, this indicates that LiDAR-based canopy height can boost our ability to detect 

shrubs and small trees. 

Finally, we found that two commonly used ML techniques had mostly similar 

performance. RF models added a very small amount of accuracy (< 3.2%), but the runtimes of 

readily available RF model implementations (both training and predicting) were faster than 

readily available SVM models in program R (Table A.2 & A.3); prediction times for RF took 

minutes while SVM took hours. RF was also slightly less sensitive to the source of data, whereas 

SVMs performed quite poorly using only NAIP imagery. Finally, RF also have the advantage of 
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easily parsing the importance of different input variables, which could again, be valuable for 

using multiple remote sensing platforms synergistically. 

 

 Conclusion 

Management of woody plant encroachment, including mature ERC stands and clonal shrublands 

is costly in money, time, and effort (Bidwell et al. 2002). Timely detection of small individual 

shrubs and trees can allow managers to engage in preventative management while woody plants 

are still at low densities and less resistant to disturbances, such as fire. Tools like NEON’s 

LiDAR increases accuracy of ERC classification, which can help implement management 

interventions and identify areas of elevated wildfire risk. Furthermore, increase in all class 

accuracies when using NEON creates more accurate overall vegetation mosaics, allowing other 

users to use these derived LULC maps for applications including hydrology (Keen et al. 2022) 

and habitat use (e.g. Silber et al. In prep).  
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 Figures 

 

Figure 2.1: An estimate of the historical extent of arid and semi-arid Great Plains 

grasslands (light grey; based on EPA ecoregions), temperate Great Plains grasslands (dark 

grey; based on EPA ecoregions), the Flint Hills ecoregion (orange), and our study site 

(black star). The map inset shows an elevation map of our study site, Konza Prairie 

Biological Station.  
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Figure 2.2: Simple linear form of SVM. Adopted from Burges 1998, which is the type of 

SVM used in this study.  
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Figure 2.3: A) Aerial imagery from NAIP RGB (red-green-blue; naked eye view); B) visual 

of values in most important NAIP input for model training; C) visual of values most 

important NEON input for model training; D-F) visuals of RF classified models for all 

three images.  
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Figure 2.4: Average importance of each variable in Random Forest model building for: A) 

NAIP only; B) NEON only; and C) NAIP and NEON together. Mean GINI decrease 

essentially measures the amount of accuracy lost when that variable is removed. See Table 

1 for input definitions. 
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 Tables 

Table 2.1: Summary of input variables and their descriptions used from each source. 

Source 
# 

bands 
Inputs Input Description 

USDA 

NAIP 
9 

Red Redness of each pixel 

Green Greenness of each pixel 

Blue Blueness of each pixel 

Red Neighborhood Avg. redness of surrounding pixels 

Green Neighborhood 
Avg. greenness of surrounding 

pixels 

Blue Neighborhood 
Avg. blueness of surrounding 

pixels 

Near-infrared Value of near-infrared wavelength 

Near-infrared Neighborhood 
Avg. values of near-infrared of 

surrounding pixels 

NDVI 

Calculated from NIR and red 

bands, indicates live green 

vegetation density 

NSF 

NEON 
8 

Enhanced vegetation index (EVI) 
Similar to NDVI, estimates 

vegetation greenness and biomass 

Normalized difference nitrogen 

index (NDNI) 

Relative nitrogen concentration in 

canopy 

Normalized difference lignin index 

(NDLI) 

Uses shortwave IR to estimate 

lignin content in canopy 

Soil-adjusted vegetation index 

(SAVI) 

Reduces soil brightness in areas 

where vegetation cover is low 

Atmospherically resistant 

vegetation index (ARVI) 

Reduces atmospheric noise from 

dust, smoke, rain, etc. 

NDVI 

Calculated from NIR and red 

bands, indicates live green 

vegetation density 

NDVI neighborhood 
Avg. NDVI values of surrounding 

pixels 

Canopy height (LiDAR) Height of canopy above bare earth 

NEON 

+  

NAIP 

17 All of the above 
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Table 2.2: Summary of training points  

Class 

# 

ground-

truthed 

polygons 

# 

computer-

drawn 

polygons 

Total 

polygons 

Total 

Pixels 

Total 

area (m2) 

% of 

total 

training 

Deciduous 

Trees 
68 620 688 

37,215 
150,533.5 12.7% 

Grass 246 160 406 179,799 719,013.9 60.3% 

Easter 

Red Cedar 
51 506 557 

5,537 
22,751.6 1.9% 

Shrubs 341 1578 1919 71,101 285,690.1 24% 

Other* 0 65 65 6,676 13,484.3 1.1% 

Total 706 2929 3635 300,328 1,191,473 100% 

*Other = water, roads, and buildings 
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Table 2.3: Accuracy results of all image and ML methods. 

Source 
ML 

Method 
OA Kappa Accuracy 

Deciduous 

Trees 
Grassland ERC Shrubs Other* 

NAIP 

SVM 0.912 0.842 
PA 0.78 0.98 0.55 0.83 0.95 

UA 0.85 0.95 0.83 0.85 0.98 

RF 0.943 0.899 
PA 0.82 0.98 0.61 0.93 0.98 

UA 0.91 0.97 0.83 0.89 0.98 

NEON 

SVM 0.973 0.953 
PA 0.94 0.99 0.78 0.96 0.95 

UA 0.97 0.98 0.89 0.96 0.99 

RF 0.979 0.964 
PA 0.95 0.99 0.79 0.98 0.98 

UA 0.97 0.99 0.89 0.96 0.99 

NAIP 

+ 

NEON 

SVM 0.982 0.969 
PA 0.96 0.99 0.84 0.97 0.98 

UA 0.97 0.99 0.94 0.97 0.99 

RF 0.984 0.973 
PA 0.96 0.99 0.83 0.98 0.99 

UA 0.98 0.99 0.92 0.97 0.99 

OA: overall accuracy; PA: producer accuracy; UA: user accuracy. 

*Other = water, roads, and buildings  
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Table 2.4:  Confusion matrix for SVM NAIP; columns represent class of training pixels, 

and rows represent class of model predicted pixels. 

SVM 

NAIP 

Deciduous 

Trees 
Grassland 

Eastern 

Red Cedar 
Shrub Other 

User 

accuracy 

Deciduous 

Trees 
8671 15 500 971 19 0.852 

Grassland 260 52908 126 2614 59 0.945 

Eastern 

Red Cedar 
122 13 926 38 19 0.828 

Shrub 2042 991 134 17776 1 0.849 

Other 8 23 2 0 1875 0.983 

Producer 

accuracy 
0.781 0.981 0.549 0.831 0.950  
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Table 2.5: Confusion matrix for RF NAIP; columns represent class of training pixels, and 

rows represent class of model predicted pixels. 

RF NAIP 
Deciduous 

Trees 
Grassland 

Eastern 

Red Cedar 
Shrub Other 

User 

accuracy 

Deciduous 

Trees 
9127 18 443 437 8 0.910 

Grassland 226 53000 98 1065 20 0.974 

Eastern 

Red Cedar 
178 23 1027 11 4 0.826 

Shrub 1566 883 117 19886 0 0.886 

Other 6 26 3 0 1941 0.982 

Producer 

accuracy 
0.822 0.982 0.608 0.929 0.984  
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Table 2.6: Confusion matrix for SVM NEON; columns represent class of training pixels, 

and rows represent class of model predicted pixels. 

SVM 

NEON 

Deciduous 

Trees 
Grassland 

Eastern 

Red Cedar 
Shrub Other 

User 

accuracy 

Deciduous 

Trees 
10470 12 230 91 23 0.967 

Grassland 53 53548 17 794 63 0.983 

Eastern 

Red Cedar 
129 2 1325 19 9 0.893 

Shrub 447 372 116 20495 4 0.956 

Other 4 16 0 0 1874 0.989 

Producer 

accuracy 
0.943 0.993 0.785 0.958 0.950  
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Table 2.7: Confusion matrix for RF NEON; columns represent class of training pixels, and 

rows represent class of model predicted pixels. 

RF NEON 
Deciduous 

Trees 
Grassland 

Eastern 

Red Cedar 
Shrub Other 

User 

accuracy 

Deciduous 

Trees 
10495 11 239 49 6 0.972 

Grassland 49 53559 10 409 20 0.991 

Eastern Red 

Cedar 
139 7 1341 14 6 0.890 

Shrub 413 358 98 20927 2 0.960 

Other 7 15 0 0 1939 0.989 

Producer 

accuracy 
0.945 0.993 0.794 0.978 0.983  
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Table 2.8: Confusion matrix for SVM NAIP+NEON; columns represent class of training 

pixels, and rows represent class of model predicted pixels. 

SVM 

NAIP+NEON 

Deciduous 

Trees 
Grassland 

Eastern 

Red Cedar 
Shrub Other 

User 

accuracy 

Deciduous 

Trees 
10687 15 184 76 12 0.974 

Grassland 31 53728 17 550 27 0.989 

Eastern Red 

Cedar 
72 2 1423 15 7 0.937 

Shrub 308 194 63 20758 0 0.974 

Other 5 11 1 0 1927 0.991 

Producer 

accuracy 
0.963 0.996 0.843 0.970 0.977  
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Table 2.9: Confusion matrix for RF NAIP+NEON; columns represent class of training 

pixels, and rows represent class of model predicted pixels. 

RF 

NAIP+NEON 

Deciduous 

Trees 
Grassland 

Eastern 

Red Cedar 
Shrub Other 

User 

accuracy 

Deciduous 

Trees 
10657 7 215 37 4 0.976 

Grassland 25 53722 9 369 14 0.992 

Eastern Red 

Cedar 
107 7 1401 10 4 0.916 

Shrub 310 202 62 20983 0 0.973 

Other 4 12 1 0 1951 0.991 

Producer 

accuracy 
0.959 0.996 0.829 0.981 0.989  
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Chapter 3 - Emergence of encroached wooded WUIs in grassland 

settlements: An analysis of changing fire risk 

Please note: This chapter is formatted for the International Journal of Wildland Fire   
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 Abstract 

Woody encroachment of Eastern Red Cedar (Juniperus virginiana; henceforth, ERC), a 

native conifer, is quickly turning large swaths of tallgrass prairie into woodlands. This 

encroachment has many negative effects on grassland ecosystems, including a potential to shift 

the natural fire regime from ground fires to more dangerous forest crown fires. In drier and 

variable climates like the Central Great Plains, the question is not if, but when conditions will 

allow wildfires to spread. The goal of this project was to determine the spatial variability in 

forest fire risk in Manhattan, Kansas, an emerging semi-urban zone that exemplifies exurban 

expansion into the remaining grasslands of the central Great Plains. This study used fine-

resolution aerial imagery to create a land use land cover map, which was then used to determine 

the extent and spatial patterns of ERC in Manhattan and thirteen neighborhoods, representing 

approximately 11,261 homes (structures from hereon). We found that ERC currently covers 

9.1% (2,062 ha) of Manhattan, and ranges from 5-23% cover across neighborhoods. There is 

currently low connectivity between ERC patches but high cohesion, meaning that patches of 

ERC are growing close together but not touching yet. However, the gaps between ERC patches 

are small enough to disappear in coming years due to the speed of encroachment and considering 

the long typical flame length of ERC crown fires. We calculated number of houses within 

different distances to ERC patches based on three levels of danger: direct flame (within 4 m of 

houses), extreme radiant heat (within 20 m of houses), and embers (within 800 m of houses), and 

factorially crossed this analysis with calculations of distance to different patch sizes of ERC: 

patches ≥ 10 m2, ≥ 1000 m2, and ≥ 5000 m2, as patch size could potentially influence fire 

behavior (e.g. large patches are more likely to produce long-distance embers). We found that a 

substantial number of houses were at risk for direct flame fire damage, but only from small 
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patches of ERC, indicating that fire must first spread from large patches to smaller patches for 

direct flame risk to occur. Furthermore, we found a small risk of radiant heat damage from all 

size ERC patches (11-20%). Lastly, an average of 90% of houses in neighborhoods are at risk for 

embers, with seven neighborhoods having 100% of houses within 800 m of ERC patches ≥ 5000 

m2. These large patches are more likely to create extreme fire behavior such as updrafts, 

signifying that almost all houses in most neighborhoods are within falling distance of embers and 

in danger of a spot fire. Therefore, if severe wildfire conditions and ignitions are combined in 

these neighborhoods, most structures could be in danger from either direct flames or wind-blown 

embers causing spot fires unless preventative measures are taken. This example is quite different 

than the typical image of wildfire prone wildland urban interface (WUI), where humans move 

into an area with high fuel loads typical of flammable forests. Instead, the Central Great Plains 

example here involves humans moving into a low fuel load system, sustained by frequent ground 

fires, which is switching to a high fuel load system after humans create settlements and suppress 

fire. The end result is still quite similar—human settlements are intertwined with vegetation that 

poses high wildfire risk, especially due to embers and spot fires. 
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 Introduction 

Wildfire is a national and international phenomenon which endangers humans, 

infrastructure, and in some cases, key ecosystems functions. Each decade, forest fires are 

breaking records for size, severity, and damage caused, a trend which is only expected to 

increase (UNEP 2022), especially in grassland biomes (Donovan et al. 2017). While wildfires are 

necessary for maintaining many ecosystems, they can cause damage when they encounter human 

systems. Wildfires cause damage to houses, businesses, powerlines, and water systems. In the 

U.S. alone, the amount of money spent on firefighting has increased more than 170% in the past 

decade, to $1.9 billion spent annually (UNEP 2022). In 1985, the average cost to fight a wildfire 

was $2,905, but has since grown 1,228% to $38,575 per wildfire in 2020 (Hurst 2022). Wildfires 

close to humans have many negative health effects, including damage to respiratory and 

cardiovascular systems from smoke inhalation (UNEP 2022). In many cases, humans are moving 

into woodlands already at risk for wildfire, and these risks have been well studied (Parisien et al. 

2020, UNEP 2022). However, in the Great Plains and other grasslands, people appear to be 

moving into grasslands and excluding fire and/or large grazers, resulting in transitions to 

woodlands that could increasing the risk of wildfire (Log and Gjedrem 2022, Ratajczak et al. 

2016, Mariani et al. 2022).  

Woody encroachment—the expansion of woody plants in grasslands and savannas—is 

occurring in the Great Plains at rapid speeds (Briggs et al. 2002, Twidwell et al. 2013, 

Galgamuwa et al. 2020, Moser et al. 2013). Much of this invasion is Eastern Red Cedar 

(Juniperus virginiana; henceforth, ERC), the most widespread native conifer in the United States 

(Briggs et al. 2002). Just a century ago, the Central Great Plains was largely devoid of ERC, but 

as homesteaders settled the Great Plains, they planted ERC by the millions as windbreaks to help 
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protect soils from desiccation and wind erosion, and to provide food, nesting sites, and thick 

cover for wildlife, as well as the wood itself being economically important to the Great Plains 

(Meneguzzo and Liknes 2015). Furthermore, even without active planting, an open prairie can 

turn into a closed canopy ERC forest in as little as 40 years without fire, due to seed sources 

from riparian forests (Briggs et al. 2002). One study found that the growing stock volume of 

ERC increased by 15,000% in Kansas between 1965-2010 (Moser et al. 2013), while another 

focusing only on riparian areas in Kansas found ERC increases of 139-539% from 1986-2017 

(Galgamuwa et al. 2020). In areas that remain grasslands, approximately 45% are burned so 

infrequently that they are likely to transition to ERC woodlands in the next ten to thirty years 

(Ratajczak et al. 2016). What remains unknown is how close ERC expansion is to human 

settlements and their potential future effects. 

Wildfires are becoming more common in the Great Plains, increasing in frequency more 

than any other ecosystem (Donovan et al. 2017), possible due to the increasing woody 

encroachment (Donovan et al. 2020) overlapping with extremely dry and windy weather 

(Donovan et al. 2017). Recent years with extreme drought and/or wind speeds were associated 

with especially large increases in wildfire incidence (Donovan et al. 2017), and these conditions 

are projected to become more common (Cook et al. 2015). Woody vegetation is more likely to 

burn in wildfires than other land types in the Great Plains (Donovan et al. 2020), and are more 

conducive to extreme wildfires due to their ability to create crown fires, which are fires that exist 

in the canopy of trees and spread faster, travel further, and are more difficult to control than 

ground fires (Scott and Reinhardt 2001). The danger for a crown fire increases with high tree 

density, connectivity, and fuel availability. When grassland burns, the flame lengths can vary 

between <0.1m to 3.4 m, while crown fires in ERC woodlands can produce flame lengths of >14 
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m (Twidwell et al 2013). This large flame length means that fires can jump over breaks in the 

trees (e.g., roads, grassland where woody encroachment is still semi-sparse, etc.), allowing the 

fire to continue in new areas. Furthermore, ERC has a much longer spotting distance than 

grassland fires—under wildfire conditions, ERC woodlands can send embers that could start new 

fires up to 5 km away, whereas grasslands in the same conditions can only send embers up to 1.3 

km away (Donovan et al. 2023). 

Most studies looking at wildfires and many studies tracking woody encroachment use 

coarse resolution aerial imagery, with at best 10 m2 but often >250 m2. However, small patches 

of ERC (<10 m2) can be dangerous in the wrong places and newly encroached areas tend to have 

lots of small ERC trees spread out that are missed in coarse resolution aerial imagery. Coarse-

grain products also fail to represent the connectivity of fire-prone vegetation, which is major 

oversight because small amounts of ERC could represent disproportionally large potential for 

wildfires if ERC trees are aggregated. Therefore, this study utilizes fine resolution aerial imagery 

to 1) track the current extent and spatial distribution of woody encroachment; and 2) determine if 

there an emerging fire-prone WUI forming around Manhattan KS and quantify how many houses 

are at risk for different types of wildfire danger. 

 

 Methods 

 Study Site 

Manhattan is a city in eastern Kansas, United States, located on a floodplain at the 

junction of the Kansas and Big Blue rivers. Although historically a tallgrass prairie, Manhattan 

gets an average of 835 mm of rainfall each year and can support a woodland in the absence of 

fire. Prior to European colonization, the area was controlled by a series of Native American 
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groups, such as the Kaw Nation and Osage, who purposely increased fire occurrence (Stambaugh 

et al. 2013). These fires probably occurred every 2 to 10 years, with an average fire return 

interval of around three years, which at the time, was sufficient to avoid widespread expansion of 

woody plants (Stambaugh et al. 2013). After European-Americans seized control of the area in 

the 1850s, the city grew quickly but the fire was almost entirely excluded from the system. 

Within the first 11 years of settlement, a public university and railroad were established, and the 

town became a significant mining supply town, allowing the population to grow substantially. 

Manhattan’s population has continued to grow every decade since its founding, and has a current 

population of over 98,000 people in the Manhattan metropolitan area (U.S. Census Bureau 

2015). An average of 17 new houses built each year within the city limits (Planning and 

Development Environmental Health Annual Report 2021) and even more being built on the 

edges of town. Fire has since been reintroduced into many public lands and private rangelands in 

the surrounding region, but is still absent from areas around dense settlements.  

 

 Creating Land Use Land Cover Map 

We created a land use land cover (LULC) map using supervised random forest machine learning 

and two different sources of aerial imagery: USDA NAIP and Kansas NG911 (USDA 2019a&b, 

Kansas NG911 Coordinating Council 2023). The USDA NAIP imagery was captured on July 10, 

2019 by low-flying aircrafts and has a resolution of 0.6 m2. We used four inputs from NAIP, red, 

green, blue, and near infrared, and calculated five more bands, neighborhood values for each 

given band and normalized difference vegetation index (NDVI). Neighborhood values are 

calculated by taking the average of all adjacent pixels, which can help reduce errors caused by 

shadows. NDVI is a commonly used vegetation index which quantifies vegetation greenness. 
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The Kansas NG911 image was also captured by a series of low flying planes from February 26-

April 11, 2021 and has a resolution of 1 ft2. This resulted in a true color image with red, green, 

and blue bands and we calculated neighborhood values for each band, using a total of six bands. 

An added value of this winter image is that ERC is the only evergreen native to the state of 

Kansas and houses covered by tree canopies are visible in this image. We used bilinear 

interpolation to transform each image to 1.8 m2 pixels that shared a common grid, which helped 

reduce model run times and excessive pixilation of small features like shadows.  

We collected training polygons for ten categories of land use using a combination of in 

situ and ex situ methods: buildings, pavement, gravel, deciduous trees, ERC, shrubs, grasslands, 

water, agriculture, and other. Training data in some land use types were cropped to equalize 

across all types of land cover, except for two classes (gravel and other) which had the lowest 

cover, totaling 208,920 pixels, or about 677,000 m2, in the final data set. 70% of pixels were 

used to train the model while the other 30% was used to evaluate model performance. Random 

forest models were run in program R (v4.0.5; R Core Team 2021) using the ‘randomForest’ 

package (v4.6.14; Liaw and Wiener 2002), with 400 trees (the ‘ntree’ parameter) and 4 input 

variables assessed at each node of each tree (the ‘mtry’ parameter). Figure 3.1 shows the final 

LULC map. This follows our approach in Chapter 2 (Noble and Ratajczak, in review), with the 

exception that in that effort we had LiDAR available, whereas in this effort the added product to 

NAIP imagery is a winter image. The LULC map has an overall accuracy of 93.3%, with the 

most important land types, ERC and buildings, performing especially well. ERC has a producer 

accuracy, which measures the proportion of evaluation pixels classified correctly in the LULC 

map, of 94.8%, and a user accuracy, which measures the proportion correctly classified pixels in 

the LULC map based on our evaluation pixels, of 96.7%. Buildings have a producer accuracy of 
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96.3% and a user accuracy of 94.9% (Table B.1). Therefore, our two most important land cover 

types had very high overall accuracy and low potential for both errors omission and commission.  

 

 Fire Risk 

 Neighborhood Delineation 

We identified and analyzed thirteen neighborhoods in and around Manhattan (Fig. 3.2), 

delineated based on average age and house price. We intentionally tried to leave out non-

residential buildings such as schools or businesses, but did not crop or segment neighborhoods to 

reach this goal. The thirteen neighborhoods do not encompass all houses in and around 

Manhattan, but were drawn to include sprawling suburbs and other neighborhood types. Four 

neighborhoods were drawn well within the confines of the city (neighborhoods 1, 3, 10, and 13), 

six on the edge of the city (neighborhoods 5, 6, 8, 9, 11, and 12), and three well outside the city 

(neighborhoods 2, 4, and 7) (Table 3.1). Average home value and age were calculated from a 

random sample of twenty houses per neighborhood except for neighborhood 1, which we could 

only find information on 18 houses) using information gathered from Zillow. In general, 

neighborhoods further from the urban core ten to be newer and have a higher proportion of 

single-family suburban homes. Each neighborhood was then buffered 800 m to include relevant 

surrounding vegetation that could generate wildfires that pose risks to each neighborhood; the 

LULC map was cropped to each buffered neighborhood. Landscape metrics were calculated for 

Manhattan and for each neighborhood individually.   

 

 Eastern Red Cedar Encroachment 
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Landscape metrics were run in program R (v4.0.5; R Core Team 2021) using the 

‘landscapemetrics’ package (Hesselbarth et al. 2019) to analyze the following landscape metrics 

for ERC in Manhattan and each neighborhood: percent cover, average patch size, cohesion, 

contiguity, and average Euclidean distance to the nearest neighbor. Percent cover measures the 

proportion of each class relative to the landscape. Average patch size is the average size of all 

patches for each class, measured in square meters. Patches are defined as sets of contiguous 

vegetation of the same type—in our case 1.8 x 1.8 m ERC pixels. Cohesion is an aggregation 

metric that explains the spatial distribution of patches; the unit is a percentage and values ranging 

from 0 to 100, with values close to 0 being that patches are isolated and values close to 100 being 

that patches are entirely aggregated together. Contiguity measures the spatial connectedness of 

patches; it is a unitless metric and values range from 0 to 1, with 0 being that each patch is a 

single pixel and 1 being that the entire class is one single patch. Average Euclidean nearest 

neighbor measures the average distance between patches, measured in meters. All landscape 

metrics were run in the queen’s rule, with 8-connectedness between pixels.  

 

 Quantifying Homes in Danger 

All ERC pixels from the LULC map were transformed into polygons, with all touching ERC 

pixels representing a single patch of ERC and transformed into a single polygon. Structure 

polygons were soured from FEMA (FEMA 2022) and structures were cropped in each 

unbuffered neighborhood. Note that these polygons were separate from those used to train the 

random forest model. Structures include houses and other large buildings, but do not include 

smaller structures such as sheds or detached garages.  
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There are three different ways that houses are at risk from a wildfire: direct flame, extreme 

radiant heat, and embers. These different risks are found at different distances to homes. Some 

studies suggest that danger from direct flame can be within 10 m of a home, danger from radiant 

heat can be up to 30 m, and danger from falling embers (i.e., spotting distance) can be up to 5000 

m in extreme conditions (FireSmart Canada 2023, Donovan et al. 2023), but values have not yet 

been calculated for ERC so we used more conservative values as not to overestimate wildfire 

risk. Therefore, we analyzed the number of houses within three distances from ERC patches: 4 

meters to estimate potential exposure to direct flames, 20 meters for radiant heat, and 800 meters 

for embers and other forms of spot fires.  

The exposure to these three types of fire risk likely varies with ERC patch size. All size 

patches of ERC can create flames and put houses in danger of direct flame risk. However, patch 

sizes of < 10 m2 were likely to be map errors or single trees which are difficult to catch on fire, 

therefore we disregarded any ERC patches less than ten square meters in size. Medium patch 

sizes (≥1000 m2) can pose risks from direct flames and are likely the minimum patch size 

required to burn hot enough to create danger from radiant heat ≤20 m away from structures. 

Finally, large patches (≥5000 m2) are the most likely to burn due to their high connectivity, and 

the resulting wildfires are more likely to burn hot enough to spread to smaller patches due to 

their higher fuel availability. Large crown fire can also produce updrafts and that spread embers 

further than embers produced by smaller burning patches. We analyzed the six factorial 

combinations of patch size and distance from structures: ERC patches ≥10 m2, ≥1000 m2, and 

≥5000 m2 within 4 m of structures, patches ≥1000 m2 and ≥5000 m2 within 20 m of structures, 

and patches ≥5000 m2 within 800 m of structures. 
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 Results 

 Eastern Red Cedar Encroachment 

ERC covers 9.1% of Manhattan, and ranges from 5-23% across neighborhoods (Fig. 3.3, Table 

B.2). Patches of ERC average 95.4 m2 in Manhattan, with a range of average cover of 39.5 to 

176.9 m2 among neighborhoods. Cohesion values are high and had little variation across all 

neighborhoods, ranging from 89-98% with an average of 94.7%, indicating that ERC tends to 

aggregate on the landscape. Contiguity, however, is quite low across neighborhoods with low 

variability, with values ranging from 0.22-0.27, meaning that patches of ERC tend to be 

disconnected (Table B.2). However, the average Euclidean nearest neighbor for ERC patches 

ranges from 6.6-8.2 m, indicating that, on average, gaps between patches are small (Table B.2). 

Therefore, while ERC connectivity is low, trees tend to grow in the same areas with small gaps 

between patches. Furthermore, flame lengths of ERC can be longer than these gap distances 

(Twidwell et al. 2013), suggesting that patches of ERC still tend to be functionally connected 

throughout much of Manhattan and its outlying neighborhoods. 

The most encroached neighborhoods were on the edge of town. ERC covered an average 

of 13.5% of edge neighborhoods, versus an average of only 10% of interior neighborhoods and 

6.6% in exterior neighborhoods (Fig. 3.3). The neighborhood with the worst encroachment, 

Neighborhood 9 located on the edge of Manhattan, has ERC coving 23% of the landscape, with 

an average patch size of 176.9 m2, and a cohesion value of 98.8 (Table B.2).  

Surprisingly however, the neighborhoods on the outside of town have the least 

encroachment. Two of the three have ERC only covering around 5% of the landscape (Fig. 3.3, 

Table B.2). However, average patch size in outside neighborhoods varied greatly; neighborhood 
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7 has the smallest average patch size across neighborhoods, while neighborhood 4 has the second 

largest average patch size.  

 

 Quantifying Homes in Danger 

On average, there is a high risk for direct flame and embers, but low risk for radiant heat. 

Currently, there are 82,363 patches of ERC 10 m2 or larger within our drawn boundary of 

Manhattan. Across all thirteen neighborhoods, 84.3% of houses are within 4m of ERC patches ≥ 

10m2 (Fig. 3.4, Table B.3). All thirteen neighborhoods have over 50% of houses within 4m of 

ERC patches ≥ 10m2, and ten neighborhoods have 75% of houses within 4m of ERC patches ≥ 

10m2. This indicates that a substantial number of homes are in danger of damage from direct 

flames of wildfire in neighborhoods. 

There are 1,419 patches of ERC 1000 m2 or larger in Manhattan. An average of 10.9% of 

houses are within 4m of ERC patches ≥ 1000m2 for all thirteen neighborhoods, with values 

ranging from 0-31% of houses. An average of 20.3% of houses are within 20m of ERC patches ≥ 

1000m2 across neighborhoods, with only one neighborhood with over 50% of houses within 20 

m of ERC patches ≥ 1000 m2, and eight neighborhoods with less than 25% of houses within 20 

m of ERC patches ≥ 1000 m2 (Fig. 3.4). 

There are 345 patches of ERC 5000 m2 or larger in Manhattan. Only 7% of houses in 

neighborhoods are within 4 m of large patches, but values range from 0-23% between 

neighborhoods (Table B.3). 11% of houses are within 20 m of ERC patches ≥ 5000 m2, and 

neighborhood three has 50% of houses in this distance. There is an average of 89.7% of houses 

are within 800m of ERC patches ≥ 5000 m2 across all neighborhoods, with seven neighborhoods 

having 100% of houses within 800m of ERC patches ≥ 5000 m2, and four more have over 75% 
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of houses within 800m of ERC patches ≥ 5000 m2, signifying that almost all houses in most 

neighborhoods are within falling distance of embers and in danger of a spot fire (Fig. 3.4). 

However, large patches of ERC tend to currently exist outside of neighborhoods, so radiant heat 

and direct flame risk is low when only considering large ERC patches.  

Direct flame risk was high when looking at all size patches of ERC (10 m2 or larger), but 

low when only considering medium (1000 m2 or larger) and large (5000 m2) size patches. An 

average of 84% of houses in all neighborhoods are within 4 m of an ERC patch 10 m2 or larger, 

whereas an average of only 11% of houses are in danger of direct flame from ERC patches of 

1000 m2 or larger, and only 7% of houses are within 4 m of ERC patches 5000 m2 or larger. This 

means that a crown fire must spread to smaller patches first in order to pose a danger. However, 

given the high cohesion and small distances between ERC patches, fire spread between patches 

is possible.  

Fire risk to homes varied between location. Edge neighborhoods had the highest average 

percentage of houses within direct flame risk for ERC patches 10 m2 or larger (90%), exterior 

neighborhoods had the highest average percentage of houses within radiant heat and ember risk 

(25.3% and 91.9%, respectively, Fig. 3.4). Interior neighborhoods had the lowest average 

percentage of houses within both direct flame and ember risk (77.3% and 87.1%, respectively, 

Fig. 3.4). 

 The average number of houses at risk for all combinations of patch size and distance to 

houses across neighborhoods was higher than for the average of all Manhattan (Fig. 3.4, Table 

B.3). For radiant heat risk, neighborhoods have an average of 20.3% of houses within 20 m of 

ERC patches ≥ 1000 m2, but only 10.5% of all buildings across Manhattan meet that criteria 

(Fig. 3.4). Furthermore, direct flame risk is 3.5% higher and ember risk is 8.6% higher in 
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neighborhoods compared to Manhattan (Fig. 3.4). Therefore, it appears that dense residential 

areas have a disproportionally higher fire risk.  

 

 Discussion 

Aerial photographs and on the ground accounts from the early 1900s suggest that 

Manhattan and its metropolitan area were largely devoid of woody vegetation, except along 

rivers and deep values (Abrams 1986, Bragg and Hulbert 1976, Briggs et al. 2002). Over 100 

years later, shrubs and ERC trees have encroached much of the area, leading to higher fire 

danger. The most encroached neighborhood has high fire risk for all types of fire danger 

(neighborhood 9), but this was variable between neighborhood location and across type of fire 

danger (Tables B.2&B.3). Neighborhoods outside of Manhattan had relatively low 

encroachment, but had the highest percentage of houses at risk of radiant heat and ember 

damage. Interior neighborhoods had the lowest average patch size of ERC, but highest 

proportion of houses within 4 m of ERC patches ≥ 5000 m2 (10%), compared to edge 

neighborhoods (5%) and exterior neighborhoods (4%). Our results reiterate the importance of 

landcover configuration, which is only measurably with high-resolution high accuracy remote 

sensing.  

Much of the Great Plains is not considered part of the Wildland-Urban Interface (WUI), 

which refers to areas where human settlements are intermixed with flammable wildland 

vegetation (Radeloff et al. 2018, Stein et al. 2013). A recent study found an increase in WUI area 

in Texas and Oklahoma (Radeloff et al. 2018), where woody encroachment of Juniper species is 

further along (Engle et al. 2008). However, the increase in WUI area was due to increases in 

housing density and population, rather than changing vegetation (Radeloff et al. 2018).  
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However, our results indicate that much of Manhattan and its neighborhoods are fairly 

well forested by a fire-prone ERC with high functional connectivity and a substantial number of 

houses are at risk for multiple types of forest fire danger, indicating that a WUI now exists in 

Manhattan. Most WUIs in the United States are created by people moving into forests, but in this 

case, humans are settling in grasslands and creating a WUI through fire suppression, allowing 

woody fuels to increase, a relatively new and understudied phenomenon.  

Our results indicate that a significant percentage of structures are at risk of damage from 

wildfires, but there are easy and fairly low-cost ways to reduce and mitigate risk. Common 

guides to reduce risk of damage to homes suggest three zones of defensible space (FEMA 2008, 

FireSmart Canada 2023), with different actions to reduce risk in each zone. Reducing radiant 

heat risk requires management of land up to 20 m from houses, including tree removal and 

trimming low branches, which is expensive (FireSmart Canada 2023). Reducing the risks of 

direct flame and embers, however, are much easier and less costly because both focus on the 

zone immediately surrounding homes (within 4 m). While embers can come in from up to 800 m 

away, making changes on or near the home reduces the risk of home damage, such as adding 

mesh covers on chimneys and vents, keeping gutters clear of dry leaves, and moving flammable 

materials (wood piles, etc.) away from structures. Similarly, reducing risk of direct flame 

damage requires reducing flammable surfaces within a small barrier of houses. Therefore, while 

risk of damage from wildfires is high across Manhattan, there are easy methods to reduce this 

risk.  

Values for critical patch size and connectivity required for an ERC crown fire to occur 

and spread are unknown. However, wildfires are more likely to occur and spread in extremely 

dry and windy conditions (Donovan et al. 2023, Reid et al. 2010) and our estimates are assuming 
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those extreme conditions. Therefore, high fire danger for houses is only relevant in extreme 

wildfire conditions, but extreme wildfire conditions (e.g., very dry and windy) are expected to 

occur more often in the Great Plains with a changing climate (Cook et al. 2015). It's also 

important to note that this study is probably undercounting homes at risk by using conservative 

values for distances to homes at which fire is dangerous. For example, some studies suggest that 

danger from direct flame can be within 10 m of a home, danger from radiant heat can be up to 30 

m, and danger from falling embers (i.e., spotting distance) can be up to 5000 m in extreme 

conditions (FireSmart Canada 2023, Donovan et al. 2023), but values have not yet been 

calculated for ERC. However, even using conservative values and possibly undercounting risk, 

we still found a substantial proportion of Manhattan homes in danger.  

The trend of woody encroachment increasing fire prevalence is occurring across the 

Great Plains (Stein et al. 2013, Donovan et al. 2017). In the southern Great Plains, where ERC 

encroachment is more established (Engle et al. 2008), the number of large wildfires is increasing 

(Donovan et al. 2017), disproportionately burning woody vegetation (Donovan et al. 2020). 

Riley County, which encompasses our study site, has seen an increase in wildfires with several 

just in April 2022, but no structure damage thus far (Riley County Fire District No. 1 2023a, 

2023b, 2023c, 2023d). However, as wildfire conditions continue to increase in frequency and 

intensity, wildfires will increase and structure damage becomes more and more likely.  

Many areas outside of the Great Plains are also seeing woody encroachment into WUIs 

with increased fire frequencies and structure damage (Filkov et al. 2020, Log and Gjedrem 2022, 

Mariani et al. 2022). Wildfires in Australia are common, but becoming much more frequent and 

intense due to encroachment of shrubs (Mariani et al. 2022), leading to higher rates of 

destruction of lives and property (Filkov et al. 2020). Furthermore, in Portugal, areas with shrub 
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encroachment burn disproportionately higher than any other land type, including native conifer 

forests (Moreira et al. 2009). Even in places where wildfires are rare, such as an island in 

Norway, similar woody encroachment of a native juniper due to fire suppression has resulted in a 

wildfire which damaged several structures (Log and Gjedrem 2022). 

 

 Conclusion 

Woody encroachment is quickly spreading through Manhattan KS, particularly in edge 

neighborhoods. Patches of ERC are growing close together on the landscape, with gaps between 

patches smaller than possible flame lengths of crown fires, and likely to disappear in coming 

years with the current speed of encroachment, indicating high functional connectivity. Most 

houses in Manhattan neighborhoods are close to ERC patches and within distances to direct 

flames and embers if a wildfire breaks out. However, there are low-cost ways to reduce this risk 

by reducing flammability of surfaces immediately surrounding homes and covering any entry 

points to protect from embers. While we only focused on metropolitan area, given the 

universality of woody encroachment and settlement expansion across the Central Great Plains, 

we expect our results apply to other towns and cities throughout the region or in similar 

grassland landscapes. 
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 Figures 

 

Figure 3.1: Land Use Land Cover Map of Manhattan, Kansas 
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Figure 3.2: Map of neighborhoods used in study. Yellow polygons indicate exterior 

neighborhoods, light green polygons indicate edge neighborhoods, and dark green polygons 

indicate interior neighborhoods.  
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Figure 3.3: Percent cover of Eastern Red Cedar. “Average” is across all thirteen 

neighborhoods, “MHK” is across all Manhattan. Numbers represent neighborhoods. 

  



62 

 

 

Figure 3.4: Percentage of structures in each neighborhood A) within 4 m of ERC patches ≥ 

10 m2, B) within 20 m of ERC patches ≥ 1000 m2, and C) within 800 m of ERC patches ≥ 

5000 m2. “Average” is across all thirteen neighborhoods, “MHK” is across all structures in 

Manhattan. Numbers represent neighborhoods.  



63 

 Tables 

 Table 3.1: Summary of Manhattan neighborhoods used in this study

Neighborhood 
Area 

(ha) 
# Houses 

House 

Density 

Location  

Avg Age Avg. price 

1 24.6 289 11.7 Interior 21.3 180 272 

2 67.5 63 0.9 Outside 24.5 485 615 

3 17.7 26 1.5 Interior 65.2 294 800 

4 347.7 286 0.8 Outside 47.5 268 828 

5 266.5 728 2.7 Edge 42.4 337 995 

6 361.4 2214 6.1 Edge 34 184 170 

7 304.7 1080 3.5 Outside 10.7 389 725 

8 608.5 1442 2.4 Edge 15.3 398 943 

9 169.2 547 3.2 Edge 34.2 282 272 

10 143.7 736 5.1 Inside 76.4 322 200 

11 315.9 1285 4.1 Edge 36.1 421 200 

12 548.4 1107 2.1 Edge 15.1 437 078 

13 264.2 1758 6.7 Inside 80.7 259 430 

Manhattan 17552.8 17634 1.004 -- -- -- 
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Chapter 4 - Conclusion 

Woody encroachment of Eastern Red Cedar (Juniperus virginiana; henceforth ERC) is 

quickly spreading from the southern Great Plains northward into Kansas in a “green glacier” of 

trees, and is expected to continue infilling throughout Kansas and spread up through Nebraska 

(Engle et al. 2008). The intensity of woody plant encroachment in Oklahoma is several decades 

ahead of most of Kansas, and in Oklahoma the number of wildfires in Oklahoma is increasing 

each year (Donovan et al. 2017). This increase in large wildfires in Oklahoma tracks ERC 

encroachment because woody vegetation is more conducive to extreme wildfires (Donovan et al. 

2020). In contrast, grasslands tend to be burned under prescribed conditions, as part of a 

reciprocal relationship between local economies and maintaining tree-free ecosystems.  

Consequently, the number of structures damaged in wildfires is much greater in the southern 

Great Plains than in areas where woody vegetation is less established (Stein et al. 2013). As ERC 

continues to encroach into the Flint Hills, including Manhattan neighborhoods, we could see a 

similar increase in large wildfires and structures lost. This issue would be especially acute during 

years that combine dry conditions and high wind speeds (Donovan et al. 2017). 

Most studies on wildfires or woody encroachment use coarse resolution aerial imagery 

(>10 m2). However, the U.S. government now provides access to free high-resolution remote-

sensed aerial imagery which can be used to paint a more accurate picture of the landscape. We 

used USDA NAIP and NSF NEON to create a land use land cover (LULC) map with 2 m2 

resolution. We found that NEON inputs alone were more accurate than NAIP-only inputs (97.9% 

vs. 94.3%, respectively), but most of that accuracy relied on LiDAR (Figure 2.4). Accuracy was 

highest when inputs were used in conjunction with each other (98.4%), and again relied heavily 

on NEON’s LiDAR, but the next five inputs used for determining land cover were NAIP inputs. 
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However, NAIP alone is not enough to accurately classify land use. We also found no difference 

in accuracy between using random forest and support vector machines for classification, but 

random forest models took several minutes to run while support vector machines took several 

hours to run. Therefore, for large-scale map projections support vector machines will only be 

viable with largescale cloud or cluster computing, and even then, could prove time consuming.  

Using insights from chapter 2, I created a much larger land cover map of Riley County 

and surrounding areas using random forests and two large-scale remote sensing products: NAIP 

and Kansas NG911, a fine-scale winter aerial image. Using this map, my third chapter aimed to 

analyze the extent and spatial patterns of ERC in Manhattan and thirteen neighborhoods, 

representing approximately 11,261 homes. I found that ERC encroachment is well underway in 

Manhattan; ERC currently covers 9.1% (2,062 ha) of Manhattan, and ranges from 5-23% cover 

across neighborhoods. Connectivity between ERC patches is currently low, but cohesion of ERC 

is high, meaning that these stands of ERC tend to grow together but are not touching yet. 

However, the average gap between ERC patches is low (7 m), which is small enough for the 

ERC flame lengths to jump (especially in extreme conditions), and could disappear in coming 

years due to the speed of encroachment.  

We also quantified how many houses were in three different ranges of fire risk. We found 

a substantial number of houses at risk for direct flame, but only for small patches of ERC, which 

are unlikely to be part of a crown fire complex. An average of 84% of houses in all 

neighborhoods are within 4 m of an ERC patch 10 m2 or larger, whereas an average of only 11% 

of houses are in danger of direct flame from ERC patches of 1000 m2 or larger, and only 7% of 

houses are within 4 m of ERC patches 5000 m2 or larger. This indicates that danger of damage 

from direct flames of wildfires is high but only if a wildfire first spreads to smaller patches. 
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Furthermore, there is a very high danger for spot fires, which are fires created by falling embers. 

Seven of thirteen neighborhoods have 100% of houses within 800m of large ERC patches 5000 

m2 or larger, and an additional four neighborhoods have over 75% of houses within ember falling 

distance of large ERC patches.  

Much of the Great Plains is not considered part of the Wildland-Urban Interface (WUI), 

which refers to areas where human settlements are intermixed with flammable wildland 

vegetation (Stein et al. 2013). However, our results indicate that much of Manhattan and its 

neighborhoods are fairly well forested by a fire-prone ERC with high functional connectivity and 

a substantial number of houses are at risk for multiple types of forest fire danger, indicating that 

a WUI now exists in Manhattan. Most WUIs in the United States are created by people moving 

into forests, but in this case, humans are settling in grasslands and creating a WUI through fire 

suppression, allowing woody fuels to increase, a relatively new and understudied phenomenon.  

A commonly recommended method to reduce wildfire risk to homes in the WUI is 

defensible space, which is the space around homes which has been improved to stop or slow the 

spread of wildfire. Defensible space generally refers to three different zones of space at different 

distances from the house, each with specific instructions to reduce risk of fire damage, such as 

xeriscaping or thinning trees (FEMA 2008, FireSmart Canada 2023). The most expensive 

actions, thinning trees and trimming branches further away from homes, are to reduce risk of 

radiant heat. However, only a low percentage of houses in Manhattan neighborhoods are at risk 

for this damage (20%). Actions to reduce direct flame or ember damage, on the other hand, are 

relatively low-cost and only require action to the house and the zone immediately surrounding 

the house, such as adding mesh covers to chimneys or vents, moving firewood piles away more 

than 10 m away, and removing any trees or shrubs. Despite risk currently being high, there are 
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relatively easy methods to reduce this risk. Wildfires are already beginning to increase around 

neighborhoods in Manhattan, with several burning just in April, 2023 (Riley County Fire District 

No. 1 2023a, 2023b, 2023c, 2023d). Luckily, no homes or other structures have been damaged in 

wildfires thus far, but it is better to be proactive and take measures to reduce risk so that we can 

limit the damage to structures in the future.  

While our study focused on a single city in Kansas, U.S., this issue of increasing forest 

fire risk due to woody encroachment is not limited to the southern Great Plains; grasslands 

across the globe are being encroached by potentially flammable woody species, creating new 

WUIs (Archer et al. 2017). Wildfires are already becoming more frequent and severe around the 

globe (UNEP 2022), and could become even more so as woody encroachment shifts grasslands 

into fire-prone woodlands. As wildfire activity increases, the risk and danger to humans and 

human structures continues to grow as well, even in places thought to have low fire danger.  
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Appendix A 

Table A.1: Best SVM model inputs calculated in R. Kernel refers to the method of data 

transformation. Degree is the degree of the polynomial kernel function. Gamma is the 

kernel coefficient which determines how much curvature will be in the decision boundary. 

Cost helps control error, a lower cost will accept a lower number of misclassified pixels. 

Image Kernel Degree Gamma Cost 

NAIP Radial 3 0.1111 1 

NEON Radial 3 0.125 1 

NAIP+NEON Radial 3 0.0588 1 
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Table A.2: Time to train models. 

Model Run Time NAIP NEON NAIP+NEON 

SVM 4:49:00 1:43:00 1:37:00 

RF 0:30:00 0:23:00 1:05:00 
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Table A.3: Time to use models to predict (classify) entire study site 

Model Run Time NAIP NEON NAIP+NEON 

SVM 6:15:25 3:05:08 2:04:59 

RF 0:09:59 0:10:43 0:07:20 
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Appendix B 

Table B.4: Confusion Matrix of LULC map accuracy 

 Agriculture Buildings 
Deciduous 

Trees 
Grassland Gravel ERC Other Pavement Shrub Water 

User 

Accuracy 

Agriculture 6722 11 61 147 2 18 62 0 1 5 0.956 

Buildings 0 5956 5 0 42 12 57 196 0 6 0.949 

Deciduous 

Trees 
80 15 7100 70 25 340 87 13 443 0 0.869 

Grassland 170 1 168 5978 7 39 61 0 257 0 0.895 

Gravel 0 40 26 7 3769 4 36 114 0 0 0.943 

ERC 15 0 211 16 1 8488 21 0 22 3 0.967 

Other 29 32 17 8 27 3 1941 13 2 6 0.934 

Pavement 0 130 11 0 193 3 27 6088 0 0 0.944 

Shrub 1 0 503 149 0 46 29 0 5560 0 0.884 

Water 0 1 0 0 0 0 0 0 0 6486 0.999 

Producer 

Accuracy 
0.958 0963 0.876 0.938 0.927 0.948 0.836 0.948 0.885 0.997 0.933 
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Table B.5: Landscape Metrics 

Neighborhood Location 

Area 

buffered 

(ha) 

% ERC 

Cover 

Avg. Patch 

Size (m
2

) 
Cohesion Contiguity 

Average Euclidian 

nearest neighbor 

1 Interior 403 14.3 73 94.6 0.25 6.4 

2 Outside 575.1 4.9 89 94.6 0.26 8.2 

3 Interior 350.1 9.9 55 95.1 0.22 7.1 

4 Outside 1337.8 9.3 128 96.8 0.27 7.5 

5 Edge 1090.1 13.3 84 97.2 0.25 6.5 

6 Edge 1232.5 6.3 48 94.1 0.23 7.2 

7 Outside 1152.7 5.5 47 88.7 0.25 6.8 

8 Edge 2022.7 15.3 107 97.1 0.25 6.7 

9 Edge 796.9 23.0 177 98.8 0.25 6.5 

10 Inside 867.4 9.2 49 91.0 0.25 6.7 

11 Edge 1124 11.2 60 94.0 0.25 6.6 

12 Edge 1641.2 11.9 103 97.0 0.25 7.1 

13 Inside 1138.2 6.2 40 91.3 0.23 7.3 

Average - - 10.8 81 94.7 0.25 6.9 

Manhattan - 2033.7 9.1 95 97.3 0.24 7.3 
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Table B.6: Proportion of houses in each danger zone 

 Distance 

from 

structures 

(m) 

≤4 ≤4 ≤4 ≤20 ≤20 ≤800 

ERC Patch 

size (m2) 
≥10 ≥1000 ≥5000 ≥1000 ≥5000 ≥5000 

1 0.58 0.01 0 0.08 0.03 1 

2 0.75 0.11 0.03 0.25 0.06 1 

3 0.88 0.31 0.23 0.58 0.5 1 

4 0.83 0.18 0.1 0.38 0.22 1 

5 0.93 0.14 0.12 0.19 0.15 0.66 

6 0.81 0 0 0.002 0.0005 0.77 

7 0.95 0.08 0.001 0.12 0.004 0.77 

8 0.92 0.07 0.03 0.16 0.06 1 

9 0.92 0.23 0.18 0.35 0.25 1 

10 0.89 0.09 0.02 0.19 0.04 0.85 

11 0.9 0.18 0.02 0.27 0.09 1 

12 0.86 0.03 0.004 0.06 0.02 0.99 

13 0.74 0.001 0.001 0.005 0.005 0.63 

Avg. 0.84 0.11 0.07 0.2 0.11 0.9 

MHK 0.81 0.06 0.02 0.1 0.045 0.81 


