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Abstract 

 

Wheat (Triticum aestivum L.) is the 4th largest staple crop produced worldwide. While 

global demand has increased over the last 15 years, the rate of increase of global cereal 

production has slowed or stagnated. Accurate information about crop production is key for local-

scale research, farmers, and decision-making evaluation due to the typically high spatial 

variability in agricultural production, especially in environmentally heterogeneous high-

producing regions. The main goal of this dissertation was to investigate the potential of satellite 

imagery in predicting winter wheat yields and analyze winter wheat yields by homogeneous 

subregions at field scale in Kansas, the largest producer of winter wheat in the U.S. The first 

chapter examined the performance of different satellite sensors (from coarse to moderate 

resolution - MODIS, Landsat, and Sentinel) in predicting winter wheat yields. The following 

chapters analyze the winter wheat yield prediction using environmentally distinct subregions 

regarding weather and management practices and multisource data (NDVI, weather, and 

climate). Linear Regression and a robust machine learning model, (i.e., Random Forest) were 

applied to predict winter wheat yields. The results, using NDVI predictor variables, were not 

enough to explain field-scale winter wheat yield variability across much of Kansas, where 

Landsat USGS achieved the lowest prediction error among all sensors (RMSE = 0.95 Mg ha-1). 

The results proved to be more accurate when using Landsat NDVI variables to predict winter 

wheat yields in more homogeneous subregions (NC, SC, and West), with the best prediction in 

NC (RMSE = 0.76 Mg ha-1). NC, SC, and West Kansas achieved the best results when including 

weather and management variables along with NDVI (RMSE of 0.59 Mg ha-1 , 0.66 Mg ha-1, and  

0.69 Mg ha-1in NC, SC, and West), and outperformed the prediction when using all fields-yields 



  

across Kansas ( RMSE=0.78 Mg ha-1). The prediction model showed that it is possible to predict 

yield in early crop developmental stages; however, after adding weather and management 

variables,  NDVI predictor variables in the late stages of the growing season were the most 

important for winter wheat yield prediction. NDVI was more significant in predicting winter 

wheat yields in NC and West than in SC Kansas. NC showed management of fertilizers ( N, P, 

Cl) as good yield predictors and could be used along with NDVI to estimate yields. SC and West 

predictor variables relied more on variables related to environmental conditions or management 

practices related to environmental conditions, such as fungicide application, soil water storage, 

and sowing date. Overall, this research demonstrates that the applicability of empirical winter 

wheat yield modeling using NDVI predictor variables in Kansas is environmentally dependent. 

Lastly, winter wheat yield prediction using satellite imagery at the field scale could be benefited 

using this subregional scheme in Kansas. 
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Chapter 1 - Introduction 

 1.1. Motivation 

Although growing at a slower pace, the world population is expected to raise to ~ 9.7 

billion by 2050 and ~ 10.9 billion by 2100 (Christensen et al., 2018). Increasing food production 

and improving food access while minimizing environmental impacts and maximizing social 

opportunities are main challenges in this century (Calicioglu et al., 2019). Currently, wheat 

(Triticum aestivum L.)  contributes about 20% of energy and protein in human diets worldwide 

and is crucial for food security (Shiferaw et al., 2013). Due to its dietary importance and 

agronomic adaptability to a wide of climatic conditions in many geographic regions (Slafer et al., 

2021), wheat is the most largely cultivated crop in the world, with China, India, Russia and the 

United States (U.S.) as the major producers (FAO,2023).  

The U.S. produces 8% of the world’s wheat, it ranks in the top three as a major wheat 

exporter. In the country, wheat ranks only behind corn (Zea mays L.) and soybeans (Glycine max 

L.) in terms of planted acreage, production, and gross farm receipts (U.S. Department of 

Agriculture, 2022). Approximately 9 million hectares are sown to winter wheat every year in the 

U.S. Southern Great Plains, which is the largest contiguous area of low-precipitation winter 

wheat cropland in the world (Fischer et al., 2014) . Located in the U.S Southern Great Plains, 

Kansas is the top producing state in the U.S., producing between 13 and 21% of the total winter 

wheat production (Obembe et al., 2021a). Most of the winter wheat is produced under rainfed 

conditions (Barkley et al., 2014; Schillerberg et al., 2019), and large geographic and temporal 

variability in environmental conditions impact winter wheat yields in this region (Couëdel et al., 

2021; Lollato et al., 2017; Lollato, Bavia, et al., 2020). 
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Extreme meteorological events, such as heat waves, heavy storms, or droughts, are 

expected to increase yield variability and affect winter wheat growth and development (Olesen & 

Bindi, 2002). In the US southern Great Plains, compound hot-dry-windy events which limit 

winter wheat yield are also expected to increase (Zhao et al., 2022)Average temperatures in 

Kansas have significantly trended up during the last 121 years, a period in which the daily 

minimum temperature increased faster than the daily mean maximum temperature (Lin et al., 

2017). The western half of Kansas, where the largest winter wheat production occurs, has 

experienced severe to extreme summertime drought for more than 25% of the 20th century 

(Cook et al., 1999). Thus, harsh environmental conditions in Kansas impact grain yield and 

interact with crop management outputs. For example, heat stress can impact wheat’s response to 

nitrogen fertilization (Sadras et al., 2022). More broadly, environmental conditions 

characterizing the growing season for winter wheat largely determine optimal crop management 

practices (Jaenisch et al., 2021; Munaro et al., 2020) to improve grain yield in the different 

regions of the state.   

Therefore, combined with the complexities of climate change, wheat productivity and 

food security will depend on the sustainable use and management of resources, including land, 

water and nutrients( Fischer et al., 2014; van Ittersum, 2016). A crucial component for food 

security is the accurate estimation of supply and demand of agricultural crops. The need for 

timely and efficient crop monitoring and yield estimation is key to update decision support 

systems and guarantee food supply(Komp & Haub, 2012). At a national and regional scale, this 

information can guide local governments to make decisions on food security or subsidies in case 

of extreme weather conditions, such as droughts, frost or heat events that can potentially damage 

crops (Franch et al., 2019; Zhong et al., 2019; Zhou et al., 2020). In the private sector, industry 
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and companies can promptly revise and define selling strategies ( Everingham et al., 2002). At 

the field scale, reliable crop assessment can inform farmers to identify low yield productivity 

zones and improve their management practices (Lobell, 2013; Řezník et al., 2020)  as well as 

insurance companies can use this data to update their insurance models (Bokusheva et al., 2016; 

Holman et al., 2023; Skakun et al., 2016). 

 

 1.2. Crop monitoring and yield assessment 

When assessing crop yields, forecasts and estimations are performed in different ways. 

Forecasting is performed before the entire crop has been harvested, whereas estimates are made 

shortly after the crop has been harvested (Basso & Liu, 2019a). The estimation and forecast of 

crop yields can be undertaken by different approaches. The conventional method is mostly 

through farmer self-reports and field survey (Huddleston, 1978; Lobell et al., 2019). Farmer self-

reports are made by interviews where farmers answer how much was harvested or what quantity 

they expect to harvest. Field survey or crop cut measure the grain weight harvested from a 

randomly selected portion of a farmer’s plot. A large number of crop cuts conducted in a region 

can therefore give a reliable measure of average yields (Fermont and Benson, 2011). 

 The National Agricultural Statistics Service of the US Department of Agriculture uses 

both strategies, phone interviews and field surveys to forecast the yield of several commercial 

crops, including maize , soybean, and wheat (Basso & Liu, 2019b). At each forecast time during 

the growing season, the end of season predictions assume normal weather conditions for the 

remainder of the growing season(Morell et al., 2016). Similar yield forecasting based on field 

measurements and surveys are performed in national programs of other countries: Field Crop 

Reporting Series in Canada (https://www.statcan.gc.ca/en/dai/btd/fcrs ),  Brazilian Crop 

https://www.statcan.gc.ca/en/dai/btd/fcrs
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Monitoring by National Supply Company (Conab) (https://www.conab.gov.br/info-agro/safras), 

Crop Estimates Committee (CEC) in South Africa (https://www.sagis.org.za/cec.html ), and 

General Crop Estimation Survey (GCEP) in India https://agricoop.nic.in/#gsc.tab=0 . While 

these reports provide reasonably accurate approach and assist policymakers in formulating 

successful strategies to tackle national food security issues, the extension and aggregation 

demanded by regional and national surveys requires substantial resources in terms of logistics, 

labor, and time. 

During the 1970s, with the greater availability of computing resources, empirical and 

mechanistic agricultural crop models developed rapidly (Passioura, 1996). Empirical models 

include statistical and machine learning (ML) approaches. The statistical modeling to forecast 

crops has been used for decades and establishes a function relation between yield predictors, 

commonly by agrometeorological data as inputs (e.g., precipitation and temperature) and the 

historical yield data ( Johnson et al., 2021). This relationship is commonly used through linear 

regression models (Ansarifar et al., 2021; Landau et al., 2000), Bayesian implementations 

(Shirley et al., 2020) and partial least squares regression (Guo et al., 2021; Hu et al., 2018). The 

ML method builds an analysis system through data learning which does not give explicit 

expressions of the functional relationships between yield predictors and the resulting yield (Zhu 

et al., 2021). ML algorithms have been largely used recently to overcome some limitations found 

in regression models, regarding nonlinearity and collinearity from complex and large datasets. 

For instance, Artificial Neural Networks, Random Forest and Support Vector Machines are the 

most widely used algorithms in crop yield prediction studies (van Klompenburg et al., 2020). 

Mechanistic models or process-based crop models assume that the system has a known 

structure, and that properties and processes of the components of the system can be described 

https://www.conab.gov.br/info-agro/safras
https://www.sagis.org.za/cec.html
https://agricoop.nic.in/#gsc.tab=0
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mathematically (Palosuo et al., 2011; Vandendriessche & van Ittersum, 1995). These models can 

capture major genotype × environment × management (G × E × M) interactions that govern crop 

development, growth, and yield. In other words, mechanistic models use weather, soil, crop, and 

management information as input to simulate plant development and growth. Unlike statistical 

models, mechanistic models do not regress observed end-of-season grain yield with within 

season observations, instead they account with the effects of the interaction between GxExM on 

grain and biomass yield. For instance, APSIM (McCown et al., 1996), CROPSYST (Stöckle et 

al., 2003), CERES (Ritchie et al., 1989), SWAP (van Lier et al., 2015) and WOFOST (Diepen et 

al., 1989) are among the most used process-based crop yield models. Although these models can 

give accurate predictions of yield and exceptional information regarding impacts of different 

management and weather in crop yields, they require extensive parameter inputs that describe 

characteristics of the modeled situation (Chen et al., 2019) . Also, these models are many times 

used to simulate in-season yield potential (van Ittersum et al., 2013) with applications previously 

done for Kansas and the US southern Great Plains (e.g., Jaenisch et al., 2021; Lollato et al., 

2017; 2019); which many times is well-above actual grain yields and thus not a realistic yield 

forecast. Thus, one of the potential limitations is the lack of proper spatial information and 

parameters at regional scale studies. 

 

 1.3. Satellite imagery for agricultural monitoring systems: A brief history 

Since the launch of the first remote sensing weather satellite (TIROS-1) in 1960 and the 

first Earth resources satellite in 1972 (Landsat-1), several satellites with a variety of remote 

sensing sensors have been launched to study the Earth land cover, oceans, atmosphere or to 

monitor the weather (Tatem et al., 2008). Satellite remote sensing is capable to gather timely and 
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repetitive information about earth’s surface, becoming a source of vegetation health information 

for crop condition monitoring and yield estimation at different scale levels (global, regional and 

local) (Lungu et al., 2020). In addition, remote sensing provides a spatial perspective (Day, 

2017). It can help to identify areas where agricultural production is being affected by 

environmental conditions (precipitation, temperature, soil nutrients) (Kaur et al., 2020; Ryu et 

al., 2022; Wang et al., 2018), and to differentiate husbandry practices such as irrigation (Serrano 

et al., 2020; Wei et al., 2022), ), tillage practices (Azzari et al., 2019),  fertilizer application 

levels (Guan et al., 2019; Zhang et al., 2018), crop rotation (Waldhoff et al., 2017), and row 

spacing (Kimes and Kirchner, 1983). 

During the 1970s new research programs were funded to create crop models that take 

advantage of the capabilities of remote sensing data to predict the yield of major crops. 

According to ( Becker-Reshef et al., 2010), during this period, unexpected severe wheat 

shortages in Russia drew attention to the importance of timely and accurate prediction of world 

food supplies. In 1974, the Large Area Crop Inventory Experiment (LACIE) was created and 

funded by The National Aeronautics and Space Administration (NASA), US Department of 

Agriculture (USDA), and National Oceanic and Atmospheric Administration (NOAA) to 

develop a method for estimating wheat production worldwide by using Landsat data (Erickson, 

1984).  

 The main objectives of LACIE were focused on: i) an economically important use of 

repetitive, multispectral, remote sensing from space; ii) test the capability of Landsat, together 

with climatological, meteorological, and conventional data sources, to estimate in advance the 

size of an important world food crop; and iii) to validate techniques that can provide timely 

estimates of crop production.  
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The successor to LACIE was a joint program for Agriculture and Resources Inventory 

Surveys Though Aerospace Remote Sensing (AgRISTARS) which began in 1978, and centered 

the research on major advancement in automation of large area crop classification and crop 

condition assessment (Wilson and Sebaugh, 1981). A series of field experiments were funded by 

AgRISTARTS to understand the spectral characteristics of major U.S crops that led to improved 

accuracies in classification and better understanding of the relationship between spectral changes 

in vegetation over the time and agronomics (Bauer, 1975; Gallo & Daughtry, 1987).The program 

focused also on the use of deterministic models to predict crop yields, where the performance 

relied on the availability of local climatic data with adequate spatial resolution (Doraiswamy et 

al., 2003). While substantial technological advances were brought to the crop modeling field, 

significant limitations were found as well, such as the limitation of remote sensing data 

availability to detect in detail the temporal changes in vegetation conditions and crop growth and 

cloud contamination that reduced the limited Landsat temporal coverage for the crop season. 

After these important foundations and further advances in radiometric, spectral and 

spatial resolution as well greater frequency of remote sensing data, the integration of remotely 

sensed data in crop yield models has evolved significantly. Currently, one of the recent efforts 

that NASA and USDA have initiated is the Global Agricultural Monitoring (GLAM) Project 

(https://ipad.fas.usda.gov/glam.aspx). The GLAM project focus on enhancing the agricultural 

monitoring and crop-production estimation capabilities using the new generation of NASA 

satellite observations, building one of the most comprehensive data management systems for 

remotely sensed based global agricultural monitoring (Becker-Reshef et al., 2010). The system 

currently includes a customized web-based information-analysis and data-delivery system 

combining the capabilities of different satellite sensors: Advanced Very High-Resolution 

https://ipad.fas.usda.gov/glam.aspx
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Radiometer (AVHRR) (1981- present), SPOT Vegetation (1998- present), MODIS (2000- 

present) and MODIS Rapid Response (2001-deprecated).  

Currently, several other crop monitoring projects at global and regional scale provide 

critical agricultural information: the USAID Famine Early Warning System (FEWS-NET) 

(Backer & Billing, 2021) and the JRC’s Monitoring Agricultural ResourceS (MARS) action of 

the European Commission (Baruth et al., 2008) with two different topics: agricultural production 

estimates of EU countries (Agri4Cast) and food security in food insecure countries (FoodSec); 

the European Union Global Monitoring of Food Security (GMFS) program (Komp & Haub, 

2012) and the Crop Watch Program at the Institute of Remote Sensing Applications of the 

Chinese Academy of Sciences (Wu et al., 2015). 

 

 1.4. Remote Sensing for crop yield modeling 

Remote sensing used for agriculture in general can be based on sensor platform and type 

of sensor. Sensors are typically mounted in satellites, aerial and ground-based platforms (Khanal 

et al., 2020). Since 1970, satellite products have been extensively used for crop monitoring and 

yield prediction at large scale. Recently, aerial platforms, which include aircraft and unmanned 

aerial vehicles and ground-based platforms (hand-held, free stating in the field and mounted on 

tractor or farm machinery) have been used for crop modeling within-field at local scale (Sishodia 

et al., 2020). Ground-based sensors have better temporal, spectral and spatial resolution in 

comparison to airborne and satellite sensors, being useful for forecasting yields, nutritional 

requirements of plants, crop plant disease detection(Cruppe et al., 2017) water demands and 

weed control. Yet, its efficiency is limited to small areas compared with aircraft and satellite 

sensors that can evaluate much larger areas at a time (Wójtowicz et al., 2010). 



9 

Sensors will vary in spatial, temporal, and spectral resolution. Spatial resolution affects 

the area of the smallest pixel that can be identified, or the minimum ground area in pixels that 

can be identified by remote sensing. As spatial resolution improves, the area of the smallest pixel 

decreases, and the homogeneity of soil or crop characteristics within the pixel increases. A 

coarse resolution means that the heterogeneity in soil or plant characteristics within the pixel will 

increase (Mulla, 2013). Temporal resolution is described as a revisit time or frequency allocated 

to any sensor (Ali et al., 2022). For example, a sensor with high temporal resolution is able to 

track changes in vegetation with more detail over time than a sensor with lower temporal 

resolution.  

Spectral resolution is associated to the sensors precision in characterizing the spectral 

response. The band wavelength of multispectral imaging equipment is generally between 400 

and 900 nm, mainly including blue, green, red, red edge and near-infrared. Hyperspectral sensors 

present a higher spectral resolution collecting reflectance data over a wide spectral range at small 

spectral increments (Verger et al., 2014). Compared to multispectral instruments that collect 

reflectance data in broadbands (greater than 40nm), hyperspectral present narrow bands 

(typically 10nm) allowing a better characterization and discrimination of distinct spectral 

features of objects found on the ground (Mulla, 2013). Although hyperspectral sensors have 

outstanding performance with high precision characterization of spectral response, they are 

expensive and involve more complicated data processing (Bian et al., 2022). 

Lastly, sensors can differ in passive or active sensors. Passive sensors are mostly 

multispectral or hyperspectral and rely on solar illumination to measure the radiation emitted 

from the surface. Active sensors generate their source of radar radiation, measuring the 

magnitude of transmitted energy scattered by the Earth back to the radar antenna (Hosseini et al., 
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2015). For instance, active sensors such as Synthetic Aperture Radar (SAR) instruments have 

their sources of energy divided into different categories including the X band (2.5–3.75 cm), C 

band (3.75–7.5 cm), and L band (15–30 cm) (Teimouri et al., 2019). Several studies have 

examined the potential of X , C and L bands to estimate Leaf Area Index (LAI) , a potential 

indicator of crop productivity (Hosseini et al., 2015; McNairn et al., 2002).  

Among the satellite sensors used for large scale analysis, coarse-resolution sensors with a 

spatial resolution between 250m and several kilometers, such as the Advanced Very High-

Resolution Radiometer (NOAA-AVHRR), Spot-Vegetation (VGT) and the Moderate Resolution 

Imaging Spectroradiometer (MODIS), have provided daily coverage and availability of historical 

datasets back to 1980-1990, and these sensors have extensively been used for building empirical 

models for crops yield forecasting (Bégué et al., 2018). With a higher spatial resolution (1 to 

30m), Sentinel-2, Landsat 8, RapidEye, WorldView-2 , SPOT-6 are utilized to assess and 

estimate agricultural production at regional and local scales (Jin et al., 2018). Table 1 shows the 

most used satellites and their popular applications in crop modeling.  
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Table 1-1- Spatiotemporal resolutions of the satellite sensors used for crop modeling 

applications.  

Satellite sensor Activity 

period 

Spatial/Spectral 

Resolution  

Temporal 

Resolution 

Application in crop 

modeling 

Landsat 1  1972-

1978 

MS 80 km 18 days Yield estimation, crop 

monitoring and 

identification (Odenweller 

and Johnson, 1989) 

AVHRR  1979-

present 

MS 1.1 km 1 day Yield prediction (Huang et 

al., 2013) 

Landsat 5 TM  1984–

2013 

MS 30m 16 days Biomass and crop yield 

estimation (Thenkabail et 

al., 1994) 

SPOT-1  

 

1986–

1990 

MS 20 m 2–6 days Spectral reflectance 

measurements (Gallo & 

Daughtry, 1987; Wiegand 

et al., 1992) and crop 

discrimination (Murakami 

et al., 2001) 

SPOT-2  1990–

2009 

MS 20 m 2–6 days Crop identification 

(Hubert-Moy, 2001) 

LiDAR  1995 VIS 10 cm N/A Crop discrimination 

(Andújar et al., 2013), crop 

height measurement and 

nutrient status (Eitel et al., 

2014) 

RadarSAT 1995-

2013 

C-band SAR 30 

m 

1–6 days Crop identification and 

monitoring (McNairn et 

al., 2002) 

IKONOS 1999-

2015 

MS 3 days Conventional and 

conservation tillage 

practices discrimination 

(Viña et al., 2003) . 

Landsat 7  1999–

present 

MS 30m 16 days Vegetation index time 

series for crop monitoring 

(Roy & Yan, 2020) 

EO-1 Hyperion 2000–

2017 

HS 30m 16 days Biophysical 

characterization and 

discrimination of crop 

types (Thenkabail et al., 

2013) 

MODIS  

Terra/Aqua 

 999– 

present, 

2002–

present 

MS 250–1000 m 1-2 days Monitoring, classification 

and yield estimation 

(Lopresti et al., 2015; H. T. 

T. Wardlow et al., 2007) 
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Table 1-1. Continued 

  

SPOT-4  

 

 

VGT-1 

1998-

2012 

 

MS  20 m 

 

 

1 km 

5 days 

 

 

10 days 

Vegetation indices for 

biophysical 

variability(Locke et al., 

2000) 

Vegetation trends in 

various agricultural 

systems (Yin et al., 2012) 

SPOT-5  

 

 

 

VGT- 2 

2002–

2015 

MS (Visible and 

NIR–10 m, 

SWIR–20 m) 

 

1 km 

2–3 days 

 

 

 

10 days 

Crop identification and 

yield estimation (Duro et 

al., 2012; C. Yang et al., 

2009) 

Crop discrimination 

(Kamthonkiat et al., 2005a) 

RADARSAT-2 2007- 

present 

C-band SAR 1–

100 m 

3 days Leaf Area Index (LAI)  

estimation (Hosseini et al., 

2015) 

RapidEye 2008-

present 

MS 6.5 m 1–5.5 days Nutrient estimation 

(Magney et al., 2017; 

Martins et al., 2019) 

WorldView-2  2009–

present 

MS 1.4 m 1.1 days Leaf Area Index (LAI)  

estimation (Guo et al., 

2021) and plant disease 

detection (Dhau et al., 

2018) 

SPOT-6  2012–

present 

MS 6 m 1-day Vegetation indices for 

measuring nitrogen status 

(Amirruddin & Muharam, 

2019) 

Landsat-8 OLI 2013–

present 

MS 30m 16 days Biomass and Leaf Area 

Index (LAI) estimation 

(Dong et al., 2020) and 

crop yield estimation  

(Skakun et al., 2019). 

SPOT-7 

 

2014–

present 

MS 6 m 1-day Vegetation indices for 

measuring nitrogen status 

(Yadegari et al., 2020)  

Worldview-3  2014–

present 

MS 1.24 m <1 day Identification of tillage 

practices  (Hively et al., 

2018) 

Sentinel-1 2014–

present 

C-band SAR 5–

40 m 

1–3 days Soil moisture assessment  

(El Hajj et al., 2017)  
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Table 1-1. Continued 

  

Sentinel-2  2015–

present 

MS (Visible and 

NIR: 10 m, Red 

edge and SWIR: 

20 m) 

10- 5 days Crop identification, 

monitoring and yield 

estimation (Hunt et al., 

2019; Y. Zhao et al., 

2020) 

SMAP  2015–

present 

L band SAR 1–3 

km 

2–3 days Soil moisture assessment  

(Chan et al., 2018) 

Planet/PlanetScope 2016 - 

present 

MS  3.7-4.1 m 

pixel size 

(resampled to 3 

m) 

1 day Within-field variability in 

crop growing conditions, 

precision agriculture and 

yield estimation (Houborg 

& McCabe, 2016; Pang et 

al., 2022) 
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Satellite sensors record information about the Earth’s surface by measuring the 

transmission of energy from the surface in different portions of the electromagnetic spectrum. 

Biophysical features of plants can be retrieved across these different parts of the electromagnetic 

spectrum since plant type, water content and canopy characteristics affects the light reflected in 

each spectral band differently (Knipling, 1970). Measured reflected light in ultraviolet, visible 

(blue, green, red) and near and mid infrared portions of the spectrum has commonly been used to 

develop various vegetation indices that provide useful information of plant structure and 

conditions, from crop growth to crop responses to stress (e.g., pests, diseases, temperature, soil, 

water, etc.) (Sishodia et al., 2020) .  

Healthy vegetation has a particular spectral behavior where there is a strong absorption of 

energy in the red band by chlorophyll and reflective energy in the near- infrared (NIR) by leaf 

cellular structures. Mathematical combinations using these reflectances are particularly useful for 

vegetation characterization (Tucker, 1979). The Normalized Difference Vegetation Index 

(NDVI) proposed by Rouse et al. (1974) measured by the difference in reflectance values in red 

and NIR regions, is one of the most popular indices used since the 70s. NDVI is related to 

structural properties of plants such as LAI and green biomass (Jiang et al., 2010), but also to 

properties of productivity, like absorbed photosynthetic active radiation and foliar nitrogen (Jiao 

et al., 2017; Parece & Campbell, 2017) . Consequently, NDVI provides useful information to 

analyze crop growth (Shammi & Meng, 2021; Shen & Evans, 2021; Wardlow et al., 2007) and to 

estimate crop yield (Gao et al., 2018; Luciano et al., 2021; Skakun et al., 2019).  

Along with NDVI, many other vegetation indices have been developed so far (Bannari et 

al., 1995; Leprieur et al., 1994). For instance, the green NDVI (GNDVI), enhanced vegetation 

index (EVI), and soil adjusted vegetation index (SAVI) have been broadly applied to tackle 
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potential limitations that may occur in NDVI, such as soil reflectance and signal saturation in 

dense vegetation (Adeniyi et al., 2020; Saad El Imanni et al., 2022; Shammi & Meng, 2021; 

Skakun et al., 2021). 

Remotely sensed data has been used for crop yield estimation and forecasting using 

mechanistic crop models or empirical models. Crop mechanistic models (process -based) are 

designed to simulate development in time of crop state variables, encompassing variables such as 

LAI, above ground biomass, soil moisture and nutrient fluxes at the crop, soil and atmosphere 

interfaces. . Because the simulation time profiles of these variables depend on the spatial 

distribution of soil properties, climate conditions, canopy state variables (.g., LAI and biomass), 

and on farming practices (e.g., sowing date, plant density, nitrogen availability, etc.), process-

based models are often developed at field scale studies (Levitan & Gross, 2018; Moulin et al., 

1998). Remote sensing data can improve crop models with spatial and temporal information of 

soil properties and canopy state variables at larger scales. Therefore, satellite imagery data and 

mechanistic crop models have been integrated using data assimilations methods to improve the 

prediction accuracy of canopy state variables and yield of different crops at local, regional and 

national levels (Jin et al., 2018; Kasampalis et al., 2018). 

For instance, there are four common approaches described by Delécolle et al. (1992) 

when integrating remote sensing data in mechanistic models: (i) the direct use of a driving 

variable (also called forcing method); (ii) the update of a state variable of the model derived from 

remote sensing i.e., continuously updating crop model simulation, assuming that a simulation 

data at day t can potentially improve the succeeding days; (iii) the re-initialization of the model, 

i.e., is the adjustment of an initial condition to obtain a simulation in agreement with the 
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remotely sensed derived observations and (iv) the calibration of the model, i.e., tuning the model 

parameters to obtain a simulation in agreement with remote data observations. 

State variables in mechanistic models such as LAI have been broadly retrieved from 

remote sensing data and used as input into crop models. Thorp et al. (2010), Tripathy et al. 

(2013) and Yao et al. (2015) have estimated LAI using different remote sensing data and the 

simulated results of crop models were directly replaced by the estimated LAI to improve the 

simulated LAI and yield crop models. de Wit et al. (2012) estimated regional winter wheat yield 

with WOFOST through the assimilation of green area index (GAI) retrieved from MODIS 

observations. In this study, through a calibration approach, model parameters were optimized by 

minimizing the difference between simulated and observed GAI.  

Mechanistic crop models have improved simulation ability of different crop growth status 

and crop yield under different stress environmental conditions at regional scales using remote 

sensing data. The main drawback is that they require expensive calculation and computing time, 

due to the substantial number of datasets and parameters. In contrast, empirical crop yield 

models do not incorporate information about processes that originate a response. As a result, 

empirical models are less data and computational intensive than mechanistic models (Kasampalis 

et al., 2018). Due to their straightforward implementation, statistical regression-based methods 

have a long history of using remotely sensed data within-season and actual crop yield to estimate 

yields ( Durgun et al., 2020; Gaso et al., 2019; Kern et al., 2018; Lobell, 2013).For example, Ji et 

al., (2021) built three groups of yield regression models using phenological metrics from remote 

sensing to predict the yield in 314 counties within the US Corn Belt. In Europe, Panek and 

Gozdowski, (2021) estimated grain yield at country level using linear regression and NDVI 

metrics from MODIS satellite data.  
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Recently ML approaches have also been increasingly used to deal with non-linearities 

and overfitting from large datasets (Johnson et al., 2016; Schwalbert et al., 2020). Pang et al., 

(2022) proved the feasibility of applying Random Forest modeling on high resolution satellite 

and yield “big data” to estimate regional and local scale wheat yields in Australia. In a multi-

source study using satellite imagery, climate data, soil maps and historical yield records in the 

U.S, Wang et al., (2020) found that ML approaches outperformed linear regression models, with 

the best performance being achieved from a AdaBoost model.  

 

 1.5 Challenges and opportunities in crop monitoring and yield estimation using remote 

sensing data. 

The suitable selection of appropriate spatial and spectral resolution, and the methods for 

image processing, are essential for reliable yield estimation based on remote sensing data 

(Luciano et al., 2021). For instance, the high temporal frequency combined with broad spatial 

coverage and low cost, has made low-resolution satellite sensors a preferred choice for national 

and regional scale applications (Rembold et al., 2013) . Since the beginning of studies using 

remote sensing for crop monitoring, many scientists have used coarse spatial resolution (MODIS, 

AVHRR and SPOT-VEGETATION) to retrieve canopy state variables over large areas ( Ji et al., 

2008; Kamthonkiat et al., 2005b; Wardlow et al., 2007). Government institutions have in many 

countries used these types of data for national and regional crop monitoring and yield 

forecasting. For example, the USAID-funded FEWSNET (Famine Early Warning Systems 

Network) regularly elaborate food security reports and outlooks for the most food insecure 

countries around the world using low-resolution satellite images and their integration with 

ground data (M. E. Brown, 2008).  
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For crop yield prediction, the main advantage of low-resolution over moderate to high 

resolution sensors is their longer historical time series, often crucial to relate present conditions 

with similar conditions in the past. Coarse resolution sensors are more efficient when analyzing 

large clusters of the same type of vegetation since the variability in spectral responses from 

different land use and land covers at large scale can be a potential limitation providing mixed 

signals (Bégué et al., 2018). 

Finer spatial and spectral resolution can explain the within field-crop variability during 

the growing season better than coarse resolution sensors, improving crop yield estimation 

(Skakun et al., 2021). Moderate satellite sensors such as the Landsat series and Sentinel-2 (30m 

and 10m) offer inexpensive delivery of information and are well suited for phenological 

monitoring (Hunt et al., 2019; Shen & Evans, 2021). The combination of Sentinel-2 

constellations A and B provide imagery every five days with a spatial resolution of 10 meters, 

which facilitates characterizing the entire crop life cycle at high temporal resolution. However, 

combined data from Sentinel -2 were only available in 2017 and globally after December 2018.  

Overall, moderate resolution sensors are most affected by the irregularities in cloud-free 

observations. Atmospheric contamination, such as cloud cover, reduce satellite imagery 

observations availability, compromising the assessment of timely biophysical information over 

the growing season (Skakun et al., 2017). High resolution sensors are the most adequate for 

within-field monitoring since it provides substantially more information for perceiving and 

predicting within-field physiological variations being crucial for farmers making decisions about 

where and when management should be varied across a field (Peralta et al., 2016). Recently, the 

Planet (www.planet.com) constellation (with 3 meters of spatial resolution) offers daily surface 

imagery increasing the chances of acquiring cloud-free images for crop yield prediction at field 

http://www.planet.com/
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scale. However, the acquisition of high-resolution data is still financially expensive for small 

farmers, whereas it is usually affordable to large commercial farms and private companies 

(Zhang et al., 2021). In addition, in studies focusing on crop monitoring at field scale across 

large regions, the main limitation of finer resolution is associated with the high costs in obtaining 

and processing large satellite imagery datasets (Rembold et al., 2013). 

Currently, increased free access to moderate and high-resolution satellite data has 

provided new opportunities in the development and improvement of crop monitoring and yield 

prediction. Cloud-platforms, such as Google Earth Engine (GEE), Amazon and Microsoft AI for 

Earth, have greatly improved the capabilities of satellite imagery data storage and processing 

(Khanal et al., 2020). With regards to missing data that greatly affects satellite sensors with 

sparse revisit frequencies such as the Landsat series (16 days revisit frequency), several methods 

to reconstruct the vegetation seasonal growth course have been applied. The approaches can be 

divided in two broad categories: (1) methods that enable precise capturing of short-term variation 

during the growing season, by employing different types of statistical filters (Jiang et al., 2010) 

and (2) methods that fit mathematical functions (sinusoidal, logistic, Gaussian etc.) to part of a 

season, full season or sequence of seasons . The most recently and widely used are Savitzy-

Golay filtering (Cao et al., 2018; X. Yang et al., 2022), least squares fits to asymmetric Gaussian 

functions(Ghaderpour & Vujadinovic, 2020; Jonsson & Eklundh, 2002), double logistic 

functions  (Durgun et al., 2020), and variations of spline smoothing (Atzberger & Eilers, 2011; 

Hermance et al., 2007).  

The application of remote sensing data in agriculture is continuously in development and 

improvement. With the increasing availability of satellite imagery data, cloud platforms, data 

processing approaches, and different crop modeling advances, there are many opportunities for 
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the analysis of crop monitoring and yield estimation at different scales. However, there are only 

a few studies dedicated to estimating yield at field scale (i.e. within the field) across large areas 

using methods based on remote sensing (Gaso et al., 2019; Schwalbert et al., 2020; Silvestro et 

al., 2017). This dissertation aims to fill the gap in the literature by investigating the potential of 

satellite imagery in predicting winter wheat yields and analyzing winter wheat yields by 

homogeneous subregions at field scale in Kansas. More specifically, this dissertation has three 

objectives: 

Objective 1: Predicting and evaluating winter wheat yields at field scale using different 

satellite imagery sensors. 

Objective 2: Evaluate the performance of winter wheat yields prediction using satellite 

imagery at field scale by subregions in Kansas. 

Objective 3: Predicting and evaluating winter wheat yields at field level integrating multi 

source data, including satellite imagery, climate, and management practices, by subregions in 

Kansas. 
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Chapter 2 - Estimating winter wheat yields at field scale using 

Normalized Difference Vegetation Index metrics from multiple 

sources of satellite data in Kansas, USA 

 2.1. Introduction 

Wheat (Triticum aestivum L.) is the 4th largest staple crop produced worldwide, reaching 

a record of 780 million tonnes in 2022 (Food and Agriculture Organization of the United 

Nations., 2023). While global demand has increase over the last 15 years with a growth of 25%, 

the rate of increase of global cereal production has slowed or stagnated. Although major 

improvements in wheat genetics resulted in higher grain yields, over the last 30 years, yield gains 

decreased, and yield stagnation has been reported in several major wheat producing regions in 

the world, such as U.S Southern Great Plains (Patrignani et al., 2014), Australia (Y. Zhao et al., 

2020), the North China Plain (Geng et al., 2019) and Germany (Bönecke et al., 2020). Thus, 

concerns about global and national food security along with sustainable production has increased 

recently, emphasizing the need for more precise and timely crop yield information. 

Total size of cropping area and crop yields information are key for the entire food supply 

chain at national, regional, and local level (Becker-Reshef et al., 2019). At a national and 

regional scale, winter wheat growth and yield knowledge are essential for international trading 

prices, decision-making policies (storage, transport, emergency responses), marketing, and 

insurance risk models. At a local level, the information is extremely helpful in guiding farmers to 

better crop management and financial decisions (Bokusheva et al., 2016; Luciano et al., 2021; Y. 

Zhao et al., 2020). 



22 

Crop yield statistical data by the U.S government is based on statistical data collected 

through interviews, questionnaires, and field surveys  (USDA-NASS, 2023b). However, the 

resulted harvested yields from these surveys does not allow early coping strategies to be 

implemented by policymakers and producers.  

Over the last four decades, satellite imagery data has increasingly been used for crop 

monitoring (Becker-Reshef, Justice, et al., 2010; M. Nguyen et al., 2020), crop mapping (Hunt et 

al., 2019; Mashonganyika et al., 2021; Skakun et al., 2017) and yield estimation (Johnson et al., 

2021; Luciano et al., 2021; Yao et al., 2015), at local, regional, national and global scales, 

providing low-cost and timely biophysical information during the crop growth period (Skakun et 

al., 2019).  The annual crop yield statistical data is limited to large scales (county to national 

level) and are often costly and time consuming, thus the additional use of satellite imagery data  

in crop yield monitoring is not only convenient but economical (Lungu et al., 2020).  

Coarse satellite sensors such as the Advanced Very High-Resolution Radiometer 

(AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) has provided 

consistent historical information about earth surface and has been widely used for national and 

regional scale crop yield forecasting (Becker-Reshef, Vermote, et al., 2010; Huang et al., 2013; 

Lopresti et al., 2015). An advantage from coarse resolution sensors is that is possible to have 

cloud-free images because of the higher revisit frequency (1-2 days). Compared to coarse 

satellite sensors, moderate spatial resolution (<30m) Landsat and Sentinel satellites has the 

potential to detect within-field variability and it has been used for crop yield estimation in 

smaller areas (Luciano et al., 2021; Saad El Imanni et al., 2022; Shen & Evans, 2021).  

Remotely sensed data from satellite sensors can gather important spectral information 

from vegetation status. Vegetation indices (VIs) calculated from these spectral responses can 



23 

serve as a proxy for plant biomass, being widely used to derive crop yield estimates (García-

Martínez et al., 2020; Z. Ji et al., 2021; Nolasco et al., 2021; Watson-Hernández et al., 2022). 

The Normalized Difference Vegetation Index (NDVI) developed based on the pioneering work 

by Rouse et al.(1974) and Tucker (1974) using the bands NIR and red domain, still one of  the 

most popular indices for crop yield assessment (Moriondo et al., 2007).  

Crop yield can be estimated with VIs using mechanistic or empirical approaches.  

Mechanistic crop yield models are more data intensive compared to empirical crop yield models 

as they use growth parameters such as crop physiological parameters, soil characteristics, and 

management information to run and calibrate plant growth models from which crop yield is 

derived (Huang et al., 2019; Kasampalis et al., 2018). When using an empirical approach, such 

as statistical models or machine learning, a VI is modeled as a function of crop yield, although 

other independent variables can be added to the model as well (Ji et al., 2021; Zhao et al., 2020).  

Despite the promise of satellite imagery data as an applicable source of information for 

operational use of high-resolution sensors for crop yield forecasts at local scale across large 

areas, agricultural monitoring systems and national statistical offices publish pre-harvest 

forecasts on state and country-levels. Nevertheless, accurate subnational level information about 

crop production is a prerequisite for local-scale research or policy evaluation due to the typically 

high spatial variability in agricultural production (Yli-Heikkila et al., 2022). 

Few studies have examined field-level yield across large areas prediction using remote 

sensing or crop modeling (Gaso et al., 2019; Schwalbert et al., 2018; Silvestro et al., 2017). 

Kansas is the largest producer of winter wheat in the U.S and could potentially benefit from 

timely and accurate yield prediction at field level, since the state is vulnerable to significant 
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volatility in yield due to climatic variability during the growing season (Lollato et al., 2017; 

Lollato, Bavia, et al., 2020; Tack et al., 2014, 2015)  

This chapter investigates the potential of satellite imagery of differing resolutions (10 m 

to 250 m, or moderate to coarse) to predict field-level winter wheat yields in Kansas. This study 

aims to answer the following questions:  

 

(i) Could remote sensing be used to predict winter wheat at the field level in Kansas?  

(ii) Which satellite sensor has the best performance for winter wheat yield 

prediction? 

 

 2.2. Material and Methods 

 2.2.1. Study Area 

The state of Kansas was selected as the study site for developing winter wheat yield 

prediction models, as it is the main winter wheat producing state in the U.S. In 2021, Kansas 

accounted for 10.4% of the state’s total agricultural receipts and 22.1% of the nation’s 

production, with an estimated direct impact of $1.3 billion in output and 3,231 jobs, playing an 

important role in the state’s economy (Kansas Department of Agriculture, 2021). 

The fields analyzed are located in Central and Western Kansas, where the majority of 

winter wheat is grown. There are steep gradients in precipitation, elevation, and temperature 

across Kansas, with precipitation ranging from ~450 mm in the west and ~1100 mm in the east ( 

Lollato et al., 2020) resulting in winter wheat growing season precipitation ranging from ~200 to 

650mm (Lollato et al., 2017). The average growing season temperature ranges from 7 to 12℃ 

from west to east due to elevation, which ranges from ~200 to 1200 m (Lollato et al., 2017). 
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 2.2.2 Datasets 

 2.2.2.1. Field- specific geo-coordinates and yield data 

Field-specific geo-coordinates were collected from a survey conducted by Jaenisch et al., 

(2021) during three consecutive seasons (i.e. harvest years of 2016, 2017, and 2018), in central 

and western Kansas, which represent ~92% of the state’s wheat area. P. Producers completed the 

survey by telephone, e-mail, email or face-to-face. 

 The 656 field-yields geolocations were employed to create 656 polygons representing 

the boundaries of each field. The annual USDA Cropland Data Layer (CDL) datasets  (USDA 

National Agricultural Statistics Service Cropland Data Layer, 2023) was used to evaluate the 

winter wheat geolocations. After removing records that did not correspond with winter wheat in 

the CDL, 499 samples remained (205 in 2016, 179 in 2017, and 115 in 2018). After applying 

additional data screening (see section: 2.2.4.2. NDVI time series), the final dataset comprised 

160 samples (field-yield pairs), with a total area of 6490. 9 ha (Figure 2-1). 
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Figure 2-1 The Kansas map shows the winter wheat croplands in green. The red dots represent 

the 160 sample locations examined in the study. Overlaid on the aerial imagery are field 

boundaries for some of the winter wheat fields. 

 

 2.2.2.2. Yield data and Management data. 

Grain yield from each field was collected in the same survey described above. Fields size 

ranged from 50,764 to 1,911,171 square meters approximately. Yields ranged from 0.4 to 7.05 

Mg ha-1, with a mean of 3.92 ha-1 and standard deviation of 1.18 Mg ha-1. A simulated anthesis 

date was produced using the mechanistic crop simulation model Simple Simulation Model 

(SSM) – Wheat (Soltani & Sinclair, 2012), which is a process based model that simulates wheat 

growth and developments under non limiting conditions. This crop model has been validated for 

growing conditions in the U.S Great Plains (Lollato et al., 2017, 2019). Simulated anthesis date 

in the 160 fields ranged from DOY (day of year) 93 to 163 and averaged DOY 129. 
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 2.2.3. Satellite data 

Four satellite remote sensing datasets from January 2016 to July 2018 were used in this 

study: Landsat 8 Operational Land Imager (OLI) Collection 1 Level 1; Landsat 8 OLI Collection 

2 Level 2; Sentinel-2 Multispectral Instrument (MSI) Level 1C; and Moderate Resolution 

Imaging Spectroradiometer (MODIS) Collection 6.  

 

 2.2.3.1. Landsat 8 

Landsat 8 OLI captures images of the Earth’s surface in nine spectral bands at a 30-m 

spatial resolution (15-m for panchromatic band). The dataset contains atmospherically corrected 

surface reflectance and land surface temperature. The study sites are covered by eight tiles 

(Table 2-1)  for which Landsat 8 OLI Collection 1 data were downloaded from the United States 

Geological Survey (USGS) website (https://earthexplorer.usgs.gov/ accessed in January 2021). 

An alternative Landsat 8 OLI Collection 2 dataset (Wulder et al., 2019) hosted in the Google 

Earth Engine (GEE) platform was also used. Differences between the OLI collections are 

described in (USGS, 2022). 

 

 2.2.3.2. Sentinel-2  

Sentinel-2 is a constellation that consists of twin satellites (2A and 2B) and is operated by 

the European Union (EU) Copernicus Program. Sentinel-2A was launched in June 2015 and 

Sentinel-2B in March 2017, with the satellites in the same orbit but situated 180 degrees apart to 

halve the revisit time. The Sentinel-2 data used in this study have a revisit frequency of 5-10 

days and a spatial resolution of 10 m. The dataset was accessed through GEE with a total of 22 

tiles covering the study area (Table 2-1). As Sentinel’s Surface Reflectance (SR) data were not 
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available on GEE for the study period, we used the Top of Atmosphere (TOA) reflectance data 

instead. TOA reflectance data have shown effective performance in identifying spectral 

differences between crop types (Wang et al., 2020), instilling some confidence in their use for 

this study. 

 

Table 2-1 - Tiles used in this study. 

Tiles ID 

Landsat-8 

OLI 

028/032, 028/033, 028/034, 029/032, 029/033, 029/034, 030/032, 

030/033, 030/034, 031/032, 031/033, 031/034 

Sentinel-2 14SKJ, 14SKH, 13SGC,14SKG, 13SGB, 14TLK, 14SLJ, 14SLH, 

14SMG, 14SMH, 14SMJ, 14TMK, 14TNK, 14SNJ, 14SNH, 14SNG, 

14SPG, 14SPH, 14SPJ, 14TPK, 14SQG, 15STB.   

 

2.2.3.3. MODIS  

MODIS NDVI data were extracted from the USGS EROS Data Center’s 250-m 

CONUS6 collection, which consists of weekly issued, biweekly maximum value composite 

imagery (Brown et al., 2015). Each field data sample was represented using a maximally interior 

pixel (Brown et al., 2013; Wardlow et al., 2007). Pixel-specific acquisition date information was 

used to precisely place (to the day) the raw time series values on the calendar, and these values 

were then linearly interpolated to create the regularly spaced, 7-day time series (calendar day 7, 

day 14, and so on) used in the analysis. 

 

 2.2.4. Methodology 

2.2.4.1. Satellite data preprocessing 

Detection and removal of ground-obscuring clouds and cloud shadows is essential for 

remote sensing data processing. For Landsat USGS, we applied a conditional using the Quality 

Assessment (QA) band (USGS, 2023),  preserving only pixels with clear terrain conditions or 
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low to no confidence of cloud conditions. For Landsat GEE and Sentinel-2, we removed cells 

with cloud contamination or cloud shadow using the QA and QA60 bands, respectively. 

 

 2.2.4.2. NDVI time series 

Time-series NDVI data are commonly used to monitor crop development throughout a 

growing season (Lai et al., 2018). For winter wheat grown in Kansas, the season starts between 

September and November of a year and finishes around June of the subsequent year. Still, the 

majority of crop growth takes place primarily during Jan-Jun (DOY 1-180) (Lollato et al., 2021; 

Lollato & Edwards, 2015) NDVI is computed using red (Red) and near-infrared (NIR) 

reflectance (Tucker,1974). 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
                                         (2-1) 

 

Data from several Landsat and Sentinel tiles were required for this study (Figure 2-2). If a 

field had representation in multiple tiles and multiple concurrent (to the day) NDVI values were 

available, then the maximum NDVI was used, in favor of the greenest vegetation pixels.  
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Figure 2-2. (a) Satellite tiles in yellow that are passing over the study area (Landsat-8 and 

Sentinel-2); (b) In detail, fields in red that are represented by multiple tiles (in overlapping tiles). 

 

NDVI time series were visually accessed and a threshold NDVI value of 0.2 during April 

to May period was set. This threshold was defined because Landsat NDVI time-series showed 

lower NDVI values during the peak season compared to MODIS and Sentinel. Landsat NDVI 

time series with values higher than 0.2 during the peak season were capable to indicate the 

seasonal changes and winter wheat growth. As an additional constraint to bolster signal 

completeness, only fields with at least one monthly NDVI observation in the February-June 

period were included. January was not included since there is still influence of snow cover, thus 
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NDVI values are close to 0 or missing. These data selection criteria was imposed so that all 

sensors were evaluated using the same fields and timeframe in the dataset. Landsat USGS, 

Landsat GEE and MODIS shared the same number of winter wheat fields covering the years of 

2016 to 2018 (n = 160). Since the NDVI time-series from the fields collected in 2016 using 

Sentinel did not match the selection criteria, the Sentinel dataset included only the years from 

2017 to 2018 (n = 80). 

 

 2.2.4.3. Time series interpolation 

VI time series obtained from remote sensing images are commonly affected by missing 

values (gaps). Using an up-sampling technique, we increased the frequency of the Landsat 

USGS, Landsat GEE, and Sentinel GEE to match with the weekly data from MODIS (Figure 

2-3). Specifically, we used linear interpolation between straddling NDVI values to fill gaps. 

Since some samples had their earliest available February-June NDVI observation as late as DOY 

56, we defined the study period to span DOY 56-182 (mid-February to end of June). 
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Figure 2-3- Sensor-specific, final NDVI profiles averaged across all samples (n = 160 for 

Landsat and MODIS; n = 80 for Sentinel). 

 

 2.2.4.4. NDVI predictor variables  

Two-time intervals were analyzed, DOY 56-182 (full season, mid-February to June) 

covering post-dormancy tiller development, stem elongation, heading, anthesis, grain fill, and 

ripening, and DOY 105-154 (peak season, April to early June), representing the peak of NDVI 

greenness and the phenological stages of flag leaf emergence, heading, anthesis, and grain fill. 

Intervals follow the winter wheat and development stages in Kansas as showed in (Lollato, 

2018). Accumulated NDVI (NDVI area under the curve, or AUC) and NDVI weekly data from 

the two-time intervals were used as independent variables and yields as the response variable. 

NDVI AUC was determined using the trapezoid rule for integral approximation. Thus, the 

independent variables for DOY 56-182 were: NDVI AUC and NDVI at DOY 56, 63, 70, 77, 84, 
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91, 98, 105, 112, 133, 140, 147, 154, 161, 168, 175, and 182. For interval DOY 105 to 154, 

independent variables were: NDVI AUC and NDVI at DOY 105, 112, 133, 140, 147, 154. 

 

2.2.4.5. Empirical methods for estimating winter wheat yields 

 Least absolute shrinkage and selection operator (LASSO)   

Adding more regressors in the model while having a limited number of observations 

(n=160), might lead to model overfitting, meaning that the model performance will improve on 

training data but will fail on testing (unseen) data. To prevent overfitting of the model with 

multiple regressors and decrease the effect of redundant features, the least absolute shrinkage and 

selection operator regression (LASSO) approach has been increasingly applied to improve the 

performance in crop yield models (Abbas et al., 2020; Correndo et al., 2021; Khaki & Wang, 

2019). In short, LASSO adds penalty into parameter estimation to shrink the near zero regression 

coefficients to zero, thus removing them out of selection result (Tibshirani, 1996) . Here, NDVI 

predictor variables were input to a least absolute shrinkage and selection operator (LASSO) 

available in Scikit-learn for Python 3.9. 

Although LASSO reduces redundant variables and overfitting, there may still be a need 

to remove remaining variables that are not statistically significant to the yield prediction model. 

Therefore, the final models (Linear regression and Random Forest) were built using only the 

most influential variables according to their influence in the final yield, selected by the 

regression coefficients from NDVI predictor variables. The NDVI predictor variables were 

selected by t-value score, p-value,  lowest residual standard error, and largest coefficient of 

estimation (𝑅2 ) analysis. The greater the T-value and the smaller the P-value, the higher the 

evidence against the null hypothesis, i.e., predictors are significant. In addition to that, in some 
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cases, the selection was made by analyzing if the addition or removal of a variable could 

improve the results (𝑅2  and residual standard error) or not. 

 

 Linear Regression 

Prediction models were performed using R programming language in R Studio (R 

Version 4.2.3). Linear regression used as input the NDVI predictor variables  of each interval 

(DOY 56-182 and DOY 105-154) from the four remote sensing collections and related it to the 

survey yields. As a simple approach, linear regression models are commonly used in crop yield 

estimation studies in different regions ( Johnson et al., 2021; Lobell, 2013; Lopresti et al., 2015).  

The model equation is given by: 

 

𝑌𝑖𝑒𝑙𝑑 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑛𝑋𝑛 + 𝜀   (2-2) 

 

Here, {𝑏0, 𝑏1, … } are the regression coefficients, {𝑋1, 𝑋2, … } are the NDVI predictor 

variables , and 𝜀 is the residual.  

 

 Random Forest Regression 

Random Forest (RF) followed the same fashion as the linear regression, where the NDVI 

predictor variables were used as independent variables and the survey yields as the response 

variable. RF has been used in several yield prediction studies since its capability to handle high 

data dimensionality, outlier detection and robustness against overfitting (Lee et al., 2020; 

Luciano et al., 2021; Pang et al., 2022). The model is an ensemble of trees, or a combination of 

tree predictors, considered a strong learner more capable in terms of prediction power than a 
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decision tree (Breiman, 2001). Each tree depends on the values of a random vector sampled 

independently and with the same distribution for all trees in the forest. The generalization error 

converges to a limit as the number of trees in the forest becomes large and will depend on the 

strength of the individual trees in the forest and the correlation between them. Important RF 

hyperparameters, 𝑀𝑡𝑟𝑦 (the number of variables randomly considered at each node) and 𝑁𝑡𝑟𝑒𝑒 

(the number of random trees to be grown) were optimized by tuning approaches. Hyperparameter 

tuning and statistical performance evaluation were performed using the ‘ranger’ package (Wright 

& Ziegler, 2017) in RStudio. 

 

2.2.4.6. Model Evaluation 

With a limited size of samples, the training process may need every possible data to 

determine model parameters (Kuhn & Johnson, 2013). Thus, in our study, it was impossible to 

keep a significant percentage of the database for the validation and the testing dataset. The cross-

validation approach is an effective and robust method to measure model generalization and 

goodness of fit of the yield models (Dinh & Aires, 2022). To tackle this limitation, several 

studies have applied a k-fold cross-validation procedure to obtain better accuracy and reduce 

overfitting (Fieuzal et al., 2020; Skakun et al., 2019;  Zhao et al., 2020).  

In this study, a 10-fold-cross validation was applied, where a single folder containing 

partial random sampling was retained as the cross-validation for testing the model, with the 

remnants samples in the nine folders used as training to fit the model. The cross-validation 

procedure was repeated 10 times resulting the average results from cross-validated coefficient of 

determination 𝑅2 , Root Mean Squared Error (RMSE) and Mean Absolute error (MAE), defined 

as follows:  
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𝑅2 = 1 −
∑ (𝑦𝑖− 𝑦𝑖̂)𝑛

𝑖=1

∑ (𝑦𝑖− 𝑦̅)²𝑛
𝑖=1

                                                      (2-3) 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖− 𝑦𝑖̂)²𝑛

𝑖=1

𝑛
                                                    (2-4) 

MAE =  
1

𝑛
 ∑ |𝑦𝑖− 𝑦𝑖̂|

𝑛
𝑖=1                                                    (2-5) 

 

 2.3. Results 

 2.3.1. NDVI time series of winter wheat  

The NDVI time series from each of the four remote sensing collections are shown in 

(Figure 2-4). NDVI values ranged from 0.07-0.60 for Landsat USGS, 0.08-0.51 for Landsat 

GEE, 0.08-0.82 for Sentinel and 0.15-0.96 for MODIS. Observing the mean NDVI time-series 

Landsat GEE NDVI time-series profiles generally appeared flatter than Landsat USGS, Sentinel, 

and MODIS. Additionally, Sentinel NDVI time series showed flat NDVI values during DOY 56-

70 while Landsat and MODIS showed an ascending pattern, perhaps reflecting increases in 

biomass after the winter dormancy period. Despite these discrepancies, the NDVI profiles from 

each sensor had roughly similar unimodal dynamics that correspond with the phenological 

development of winter wheat. 
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Figure 2-4 -Landsat USGS, Landsat GEE and MODIS NDVI time series profiles are shown for 

the 2016-2018 Kansas field samples (n=160). Sentinel NDVI time series profiles are shown for 

the 2017-2018 Kansas field samples (n=80). The red line represents the NDVI time-series average 

values. 

 

Vegetation peak was noticed between DOY 119 and 133 (second half of Apr, usually 

when anthesis occurs), whereas ripening and harvest happened between DOY 154 and 168 (end 

of May to first half of June). Table 2-2 shows the descriptive statistics between DOY when 

simulated anthesis occurred and the NDVI peak DOY for each field by sensor. The average for 

simulated anthesis occurred in DOY 129, comparing to Landsat USGS, MODIS and GEE the 

average was earlier DOY 119, 124 and 122 respectively. Sentinel showed the most approximated 

result with mean DOY 131. Figure 2-5 shows the relationships between DOY simulated anthesis 

and DOY with the peak NDVI DOY for each field. R² ranged from 0.16 to 0.21 but with a 

significant relationship. Sentinel showed the highest relationship (R² =0.22) with the DOY 

simulated anthesis. 
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Table 2-2- Descriptive statistics of DOY when simulated anthesis occurred and DOY when the 

peak NDVI occurred for each field. 

 Anthesis Vegetation peak DOY Anthesis Vegetation peak 

DOY 

Descriptive 
Statistics 

Simulated 

(N=160) 

Landsat 

USGS 

MODIS Landsat 

GEE 

Simulated 

(N=80) 

Sentinel 

Min 96 70 77 56 98 105 

Median 132 126 122.5 126 134 133 

Mean 129.2 119.7 124.2 122.1 130.8 131 

Max 163 182 182 182 163 182 
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Figure 2-5 - Relationships between DOY when the peak NDVI occurred versus the DOY when 

simulated anthesis occurred for each field. 

 

Figure 2-6 shows box plots illustrating yield and NDVI AUC distributions from 2016 to 

2018. Large differences in wheat yields were observed from 2016 to 2018, yields were the 

highest in 2016 with a median of 4.57 Mg ha-1, followed by 2017 with median yields of 4.03 Mg 
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ha-1, and finally 2018, with median yields of 3.02 Mg ha-1. Median yields and standard deviation 

from 2016 to 2018 was 3.90 Mg ha-1 and 1.18 Mg ha-1. The variation in NDVI AUC across the 

years corroborates with the variation in winter wheat yields, as it was the highest in 2016 for all 

sensors and lowest in 2018.  

 
Figure 2-6 - Boxplot of winter wheat yield and NDVI AUC from 2016 to 2018. LU, LGEE and 

SENT refer to Landsat USGS, Landsat GEE and Sentinel, respectively. 

 

 2.3.2. Sensors estimation yield performance using Linear Regresson (LR) and 

Random Forest (RF) with LASSO and coefficient analysis 

To compare how much LASSO improved the linear regression and RF model, Table 2-3 

shows the training and testing dataset results from both models without the aid of LASSO. The 

results showed overfitting in the linear regression, especially in the RF model. The cross-

validation results from RF were compared to the in-sample prediction RSME using all dataset, 

suggesting great overfitting in the RF model. MODIS had the best fit in the interval DOY 105-

154 using linear regression with R² of 0.37 and RMSE of 0.96 Mg ha-1 in the training dataset and 
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R² of 0.37 and RMSE of 0.97 Mg ha-1, mainly due to a higher degree of freedom, i.e., a smaller 

number of predictors by observations compared to interval DOY 56-182. 

 

Table 2-3- Descriptive statistics of training dataset and testing dataset using Linear Regression 

and Random Forest without LASSO. 

Linear Regression   

Intervals  Landsat 

USGS 

      MODIS Landsat GEE      Sentinel 

Metrics  Train Test Train Test Train Test Train Test 

DOY 56-

182 

R² 0.406 0.303 0.399 0.316 0.326 0.2 0.436 0.236 

RMSE(Mg 

ha-1) 

0.972 1.04 0.977 1.024 1.036 1.13 0.942 1.132 

DOY 

105-154 

R² 0.377 0.346 0.369 0.369 0.221 0.19 0.112 0.16 

RMSE(Mg 

ha-1) 

0.961 0.98 0.964 0.968 1.076 1.103 1.042 1.06 

Random Forest  

Intervals  Landsat 

USGS 

      MODIS Landsat GEE      Sentinel 

Metrics In-

sample 

Test In-

sample 

Test In-

sample 

Test In-

sample 

Test 

DOY 56-

182 

R² 0.914 0.322 0.915 0.298 0.933 0.191 0.936 0.253 

RMSE (Mg 

ha-1) 

0.432 0.993 0.432 1.017 0.461 1.088 0.439 1.01 

DOY 

105-154 

R² 0.905 0.289 0.906 0.308 0.913 0.167 0.907 0.212 

RMSE (Mg 

ha-1) 

0.461 1.024 0.446 1.011 0.492 1.108 0.484 1.058 

 

 

Figure 2-7 and Figure 2-8 shows the statistical performance of each sensor using linear 

regression and RF without LASSO. In the interval DOY 56-182, RF presented slightly higher R², 

and the lower RMSE and MAE among sensors than linear regression. Landsat USGS presented 

the highest R² 0.32, lowest prediction error RMSE of 0.99 Mg ha-1 and MAE of 0.79 Mg ha-1 in 

the RF model. In the linear regression model, MODIS presented the highest R² 0.32 and lowest 

prediction error with RMSE of 1.02 Mg ha-1 and MAE of 0.79 Mg ha-1. In the interval DOY 105 

-154, MODIS presented the highest R² of 0.37 and lowest prediction error with a RMSE of 0.97 
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Mg ha-1  using linear regression. Sentinel and Landsat GEE presented the lowest R² (< 0.25) and 

the largest prediction errors with RMSE higher than 0.98 Mg ha-1  when predicting winter wheat 

yields in both intervals.  

 

Figure 2-7- Statistical performance of each sensor using Linear Regression (LR) and Random 

Forest (RF) without using LASSO during the interval DOY 56-182.

 

Figure 2-8 - Statistical performance of each sensor using Linear Regression (LR) and Random 

Forest (RF) without using LASSO during the interval DOY 105-154. 

  



43 

 2.3.3. LASSO feature selection and coefficient analysis 

The NDVI predictor variables  included in the final model are shown in the tables (Table 

2-4 to Table 2-17). For each sensor there is first a table showing the regression coefficients from 

NDVI predictor variables selected by LASSO. A second table presents regression coefficients 

from NDVI predictor variables included in the linear regression and RF prediction model. The 

NDVI predictor variables were selected by t-value score, p-value, residual error and coefficient 

of estimation analysis. . In addition, in some cases, the selection was made by analyzing if the 

addition or removal of a variable could improve the results. In the interval DOY 56-182, Landsat 

USGS NDVI predictor variables DOY 56 and NDVI 154 presented the highest significance and 

were included in the final models. With smaller significance compare to NDVI DOY 56 and 

NDVI 154, NDVI DOY 133 was also included since its addition improved the regression results 

(Table 2-4 and Table 2-5). For MODIS, NDVI DOY 98 presented the lowest significance and it 

was the only predictor variable removed, predictor variables NDVI DOY 91, DOY 105, DOY 

140, DOY 154 were included in the linear and RF models (Table 2-6 and Table 2-7). NDVI 

predictor variables included in the final model from Sentinel were NDVI DOY 147 and DOY 

182. Although with lower significance than DOY 182, when DOY 147 was removed, the model 

showed a higher residual standard error (Table 2-8 and Table 2-9).  

For NDVI Landsat GEE ( Table 2-10 and Table 2-11), NDVI DOY 147 showed the 

highest significance. NDVI DOY 147, NDVI DOY 168, and NDVI DOY 84 achieved the lowest 

residual error and highest R² and were included in the final models. 
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Table 2-4-Regression coefficients from Landsat USGS NDVI predictor variables  selected  by 

LASSO 
 

Estimate Std.Error t value Pr(>|t|) 

(Intercept) 0.082 0.526 0.157 0.875 

AUC 0.013 0.032 0.434 0.664 

DOY56 3.647 1.618 2.253 0.025 

DOY133 2.418 2.389 1.012 0.313 

DOY154 4.626 1.547 2.991 0.003 

Residual 

standard 

error 

0.963    

R² 0.354  p-value: <.001 

 

Table 2-5 - Regression coefficients from Landsat USGS NDVI predictor variables  used in the 

linear regression and RF models 

Final 

model 

predictors 

Estimate Std.Error t value Pr(>|t|) 

(Intercept) 0.146 0.504 0.291 0.771  

DOY56 4.226 0.916 4.612 <.001 

DOY 133 3.081 1.834 1.680 0.094 

DOY154 4.948 1.354 3.653 <.001 

Residual 

standard 

error 

0.961    

R² 0.353  p-value: <.001 

 

Table 2-6-Regression coefficients from MODIS NDVI predictor variables selected  by LASSO. 
 

Estimate Std.Error t value Pr(>|t|) 

(Intercept) 1.045 0.696 1.5 0.135 

DOY91 0.927 1.627 0.57 0.569 

DOY98 0.710 2.743 0.259 0.796 

DOY105 0.740 1.626 0.455 0.649 

DOY140 1.372 1.164 1.178 0.240 

DOY154 1.682 0.926 1.815 0.071 

DOY182 -1.166 0.893 -1.306 0.193 

Residual 

standard 

error 

0.983    

R² 0.336  p-value: <.001 
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Table 2-7-Regression coefficients from MODIS NDVI predictor variables used in the linear 

regression and RF models. 

Final 

model 

predictors 

Estimate Std.Error t value Pr(>|t|) 

(Intercept) 1.016 0.685 1.482 0.140 

DOY91 1.295 0.790 1.638 0.103 

DOY105 1.079 0.959 1.125 0.262 

DOY140 1.403 1.155 1.215 0.226 

DOY154 1.679 0.924 1.818 0.071 

DOY182 -1.141 0.885 -1.289 0.199 

Residual 

standard 

error 

0.980    

R² 0.336  p-value: <.001 

 

Table 2-8- Regression coefficients from Sentinel NDVI predictor variables selected by LASSO 
 

Estimate Std.Error t value Pr(>|t|) 

(Intercept) 3.392 0.564 6.014 <.001 

DOY140 1.192 1.8 0.662 0.509 

DOY147 1.222 1.999 0.611 0.542 

DOY182 -3.718 1.182 -3.145 0.002 

Residual 

standard 

error 

0.990    

R² 0.197  p-value: <.001 

 

Table 2-9- Regression coefficients from Sentinel NDVI predictor variables used in the linear 

regression and RF models. 

Final 

model 

predictors 

Estimate Std.Error t value Pr(>|t|) 

(Intercept) 3.529 0.522 6.749 <.001 

DOY147 2.386 0.944 2.526 0.013 

DOY182 -4.019 1.086 -3.699 <.001 

Residual 

standard 

error 

0.987    

R² 0.192  p-value: <.001 
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Table 2-10 - Regression coefficients from  Landsat GEE NDVI predictor variables selected  by 

LASSO 
 

Estimate Std.Error t value Pr(>|t|) 

(Intercept) 1.961 0.624 3.143 0.002 

DOY56 0.933 2.132 0.438 0.662 

DOY84 2.472 6.590 0.375 0.708 

DOY91 -1.025 5.924 -0.173 0.862 

DOY147 9.284 1.822 5.094 <.001 

DOY175 1.727 4.508 0.383 0.702 

DOY168 -7.590 4.501 -1.686 0.093 

Residual 

standard 

error 

1.053    

R² 0.238  p-value: <.001 

 

Table 2-11- Regression coefficients from Landsat GEE predictor variables used in the linear 

regression and RF models. 

Final 

model 

predictors 

Estimate Std.Error t value Pr(>|t|) 

(Intercept) 2.068 0.544 3.799 <.001 

DOY84 2.201 1.092 2.016 0.045 

DOY147 9.013 1.727 5.218 <.001 

DOY168 -6.1 2.115 -2.883 0.004 

Residual 

standard 

error 

1.044    

R² 0.236  p-value: <.001 
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For interval DOY 105-154, NDVI predictor variables used for Landsat USGS in the 

linear regression and RF models were NDVI DOY 105 and DOY 154 (Table 2-12 and Table 

2-13). NDVI DOY 133 was removed since NDVI predictor variables DOY 105 and DOY 154 

presented a lower prediction error in the final models. As seen in Landsat USGS, MODIS NDVI 

predictor variable DOY 105 showed a high statistical relevance among the other variables, the 

predictor variables included in the models were DOY 105 and DOY 154 (Table 2-14 and Table 

2-15). Sentinel NDVI predictors from LASSO were kept the same in the final models (Table 

2-16) . Among all sensors Sentinel NDVI predictor variables in the interval DOY 105-154 were 

the only ones that did not show significant relationship with yields. NDVI Landsat GEE 

predictor variables DOY 105 and DOY 147 used in the final model were the same as the ones 

selected from LASSO (Table 2-17). 

 

Table 2-12- Regression coefficients from Landsat USGS NDVI predictor variables  selected 

by LASSO. 
 

Estimate Std.Error t-value Pr(>|t|) 

(Intercept) 0.0317 0.519 0.061 0.951 

DOY105 4.485 1.278 3.508 <.001 

DOY133 2.538 2.131 1.191 0.235 

DOY154 3.844 1.335 2.88 0.004 

Residual 

standard 

error 

0.986    

R² 0.319  p-value: <.001 

 

  



48 

 

Table 2-13 - Regression coefficients from Landsat USGS NDVI predictor variables  used in the 

linear regression and RF models. 
 

Estimate Std.Error t-value Pr(>|t|) 

(Intercept) 0.379 0.430 0.883 0.379 

DOY105 5.477 0.971 5.637 <.001 

DOY154 4.879 1.015 4.804 <.001 

Residual 

standard 

error 

0.987    

R² 0.313  p-value: <.001 

 

Table 2-14- Regression coefficients from MODIS NDVI predictor variables  selected by 

LASSO. 
 

Estimate Std.Error t-value Pr(>|t|) 

(Intercept) 0.209 0.473 0.442 0.658 

DOY105 2.541 0.531 4.782 <.001 

DOY140 1.684 1.127 1.494 0.137 

DOY154 1.597 0.902 1.769 0.078 

Residual 

standard 

error 

0.990    

R² 0.313  p-value: <.001 

 

Table 2-15- Regression coefficients from MODIS NDVI predictor variables used in the linear 

regression and RF models. 

Final model 

predictors 

Estimate Std.Error t-value Pr(>|t|) 

(Intercept) 0.519 0.427 1.215 0.226 

DOY105 2.934 0.463 6.329 <.001 

DOY154 2.635 0.578 4.554 <.001 

Residual 

standard 

error 

1.038    

R² 0.107  p-value: <.001 
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Table 2-16- Regression coefficients from Sentinel NDVI predictor variables selected by LASSO 

and used in the linear regression and RF models. 

Final 

model 

predictors 

Estimate Std.Error t-value Pr(>|t|) 

(Intercept) 2.352 0.460 5.103 <.001 

DOY112 0.924 0.719 1.286 0.202 

DOY140 1.432 1.192 1.201 0.234 

Residual 

standard 

error 

1.086    

R² 0.168  p-value: 0.08 

 

Table 2-17- Regression coefficients from Landsat GEE NDVI predictor variables  selected by 

LASSO and used in the linear regression and RF models. 

Final 

model 

predictors 

Estimate Std.Error t-value Pr(>|t|) 

(Intercept) 1.284 0.478 2.686 0.008 

DOY105 2.831 1.120 2.527 0.012 

DOY147 6.265 1.530 4.093 <.001 

Residual 

standard 

error 

0.990    

R² 0.313  p-value: <.001 

 

 2.3.4. Winter wheat yield estimation by sensor using Linear Regresson (LR) and 

Random Forest (RF). 

Table 2-18 shows the descriptive statistics of training dataset and testing dataset using 

linear regression and RF with the feature selection from LASSO. Surprisingly, satellite sensors 

NDVI predictor variables performed better using the linear regression model than RF in both 

intervals. The results show a decrease in prediction error in both models and reduced overfitting 

in linear regression. Although showing high RMSE and moderate R², Landsat USGS presented 

the best model fit among all the sensors in both intervals. With training R² of 0.35 and testing R² 
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of 0.37 and training RMSE of 0.96 Mg ha-1 and RMSE of 0.95 Mg ha-1 using NDVI predictor 

variables in the interval DOY 56-182, and training R² of 0.31 and testing R² of 0.34 and training 

RMSE of 0.98 Mg ha-1 and RMSE of 0.976 Mg ha-1 using NDVI predictor variables in the 

interval DOY 105-154. Sentinel and Landsat GEE presented the largest discrepancies between 

train and test results. 

Table 2-18- Descriptive statistics of training dataset and testing dataset using Linear Regression 

and Random Forest using LASSO. 

Linear Regression   

Intervals  Landsat 

USGS 

      MODIS Landsat GEE      Sentinel 

Metrics  Train Test Train Test Train Test Train Test 

DOY 56-

182 

R² 0.353 0.377 0.33 0.354 0.198 0.257 0.236 0.281 

RMSE(Mg 

ha-1) 

0.961 0.953 0.981 0.977 0.99 1.044 1.045 0.971 

DOY 

105-154 

R² 0.313 0.345 0.295 0.342 0.168 0.204 0.107 0.219 

RMSE(Mg 

ha-1) 

0.987 0.976 0.994 0.981 1.086 1.08 1.038 1.019 

Random Forest  

Intervals  Landsat 

USGS 

      MODIS Landsat GEE      Sentinel 

Metrics In-

sample 

Test In-

sample 

Test In-

sample 

Test In-

sample 

Test 

DOY 56-

182 

R² 0.865 0.326 0.892 0.318 0.883 0.191 0.842 0.267 

RMSE(Mg 

ha-1) 

0.505 0.991 0.479 0.998 0.545 1.08 0.534 1.007 

DOY 

105-154 

R² 0.847 0.264 0.863 0.273 0.868 0.149 0.845 0.15 

RMSE(Mg 

ha-1) 

0.526 1.060 0.509 1.037 0.556 1.121 0.564 1.101 

 

Figure 2-9 shows the statistical performance of each sensor using linear regression and 

RF during the interval DOY 56 -182. Landsat USGS presented the best performance (R² 0.37, 

RMSE 0.95 Mg ha-1, MAE 0.75 Mg ha-1) among the other sensors using linear regression using 

the NDVI predictor variables DOY 56, DOY 133 and DOY 154. MODIS presented the second-

best performance with R² 0.35, RMSE 0.97 Mg ha-1, MAE 0.77 Mg ha-1. MODIS NDVI 

predictor variables used were DOY 91, DOY 105, DOY 140, DOY 154. Landsat GEE and 
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Sentinel presented the lowest performance with a R² 0.25, RMSE 1.04 Mg ha-1, MAE 0.84 Mg 

ha-1 and a R² 0.28, RMSE 0.97 Mg ha-1, MAE 0.78 Mg ha-1, respectively.  

In the same interval ( Figure 2-9 ) the RF model showed a similar ranking of sensor 

performance, but overall reduced prediction accuracy than linear regression. Landsat USGS 

showed the highest R² of 0.32 and lowest prediction error (RMSE 0.99 Mg ha-1) in the interval 

DOY 56-182. Again, MODIS showed the second-best performance with R² 0.31, RMSE 0.99 

Mg ha-1, MAE 0.78 Mg ha-1. Landsat GEE and Sentinel presented the lowest performance with a 

R² 0.19, RMSE 1.08 Mg ha-1, MAE 0.87 Mg ha-1 and a R² 0.26, RMSE 1 Mg ha-1, MAE 0.78 

Mg ha-1, respectively. 

 

Figure 2-9 Statistical performance of each sensor using Linear Regression (LR) and Random 

Forest (RF) during the interval DOY 56-182. Error bars represent the standard devaition from 

CV results. 

 

In interval DOY 154-105 (Figure 2-10), the linear regression attained the best results 

compared to RF. With the linear regression model, NDVI Landsat USGS achieved the best 

performance with a R² of 0.34, RMSE 0.97 Mg ha-1 and 0.77 Mg ha-1, using NDVI predictor 
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variables DOY 105 and DOY 154. MODIS have the second-best result, with a R² of 0.34, RMSE 

of 0.98 Mg ha-1 and MAE 0.77 Mg ha-1, using NDVI predictor variables  DOY 105 and DOY 

154. Landsat GEE and Sentinel presented the lowest performance, with a R² 0.20, RMSE 1.08 

Mg ha-1 and MAE 0.86 Mg ha-1 and R² of 0.21, RMSE of 1.01 Mg ha-1 and MAE of 0.79 Mg ha-

1, respectively. 

RF results in interval DOY 105-154 showed that MODIS achieved the highest R² 0.27 

and the lowest RMSE of 1.03 Mg ha-1 and MAE 0.80 Mg ha-1, followed by Landsat USGS with 

a R² of 0.26, RMSE of 1.06 Mg ha-1 and MAE 1.03 Mg ha-1. Landsat GEE and Sentinel 

presented a R² of 0.14, RMSE of 1.21 Mg ha-1 and MAE 0.91 Mg ha-1 and R² of 0.15, RMSE of 

1.10 Mg ha-1 and MAE 1.19 Mg ha-1, respectively showing the lowest performance among all 

intervals and sensors. RF results indicated a higher standard deviation in Landsat GEE and 

Sentinel results (except for Landsat GEE in the interval DOY 105-154) compared to Landsat 

USGS and MODIS in both intervals.  
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Figure 2-10 Statistical performance of each sensor using Linear Regression (LR) and Random 

Forest (RF) during the interval DOY 105-154. 

 

 2.4. Discussion 

The results indicated an agreement between the NDVI time-series profiles and the 

phenological characteristics (growth stages) of winter wheat in Kansas, especially with Landsat 

USGS and MODIS. These dynamics include lower crop growth in the February-March 

timeframe, followed by an increase in crop growth until heading and anthesis, followed by a 

general decrease in NDVI as the crop senesces (Lollato et al., 2021; Lollato & Edwards, 2015). 

The yield distributions, including greater 2016 yield, followed by average 2017, and lower 2018, 

agree with USDA-reported yield data for Kansas (USDA-NASS, 2023a) are were mostly 

function of different precipitation averages across the state as previously reported (Jaenisch et 

al., 2021).  

New in this study, the NDVI AUC distributions also appeared to behave consistently 

across the three independent data years and follow those patterns observed in the yield data. 

NDVI dynamics tracked seasonal changes and aided in monitoring winter wheat growth in 
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Kansas, agreeing with previous studies (Filippa et al. 2018; Mashonganyika et al. 2021; 

Wardlow et al. 2007). Compared to the simulated anthesis DOY for each field, the peak of NDVI 

appeared slightly earlier in the Landsat USGS, Landsat GEE and MODIS time-series, while 

sentinel mean NDVI peak DOY was the closest to the simulated anthesis DOY. From an 

agronomical perspective, these results align with curves of nitrogen uptake by the wheat crop 

which may maximize at anthesis depending on weather conditions during grain fill (Giordano et 

al., 2023; Lollato et al., 2021).  

 When observing the NDVI profiles and boxplots, Landsat GEE showed different results 

from Landsat USGS, with lower NDVI values. Landsat USGS dataset is part of Collection 1 

where improvements were made in terms of radiometric and geometric parameters. Landsat GEE 

dataset is part of the latest improvements in Collection 2 Level-2, and it has improvements in 

radiometric calibration, enhanced quality assessment bands and atmospheric corrected data. 

However, the technique for cloud removal applied in the Landsat USGS dataset was different 

than in Landsat GEE, where we preserved only the pixels attributed to clear conditions as listed 

in Landsat Collection 1 Level 1 Quality band (USGS, 2023). In the Landsat GEE, a simple 

masking approach was utilized. This technique has been applied in previous studies using 

Google Earth Engine (Fink et al., 2022). The masking was based on the respective cloud 

detection and quality assessment bands where any pixel classified as cloud or cloud shadow was 

eliminated. The low NDVI values could have occurred by pixels containing atmospheric 

contamination that were not included in the masking method. 

Although Sentinel-2 has the highest spatial resolution (10 m), only 2 fields in the year 

2016 matched with the methodology criteria. Until March of 2017, Sentinel 2A was the only 

satellite in orbit, leaving Sentinel 2 data with a temporal resolution of ten days. The year 2016 
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(n=80) had the largest number of observations compared to 2017 (n=39) and 2018 (n=40). Thus, 

Sentinel was disadvantaged in terms of dataset availability. The small dataset  2017 and 2018 

may have contributed to the low performance of Sentinel when predicting winter wheat yields 

compared to the other sensors. NDVI signal variability observed in the Sentinel NDVI time 

series (Figure 2-4) may be related to the application of the Sentinel 2 cloud mask band (QA60) 

which has been recently pointed out to underestimate the presence of clouds (Nguyen et al. 2020; 

Tiede et al. 2021). Overall, the performance of the QA60 cloud mask can be low, especially 

under critical conditions. These two aspects (data availability and cloud contamination) may 

explain the Sentinel NDVI poor performance when predicting winter wheat yields. 

Regarding the feature selection from LASSO, improvements were observed in most 

cases, with the increase of R² and decrease of RMSE in most all results. In the linear regression, 

LASSO prevented overfitting and enhanced the model generalization ability in most all cases 

except using MODIS NDVI predictor variables in the interval DOY 105 to 154. In the RF, 

LASSO improved the estimation across all sensors in the interval DOY 56 to182. In interval 

105-154, the RF model performed better without the feature selection approach. 

RF model indicated a poor performance compared to the linear regression model. RF 

achieved the best performance using Landsat USGS during the interval DOY 56-182, with a 

RMSE of 0.99 Mg ha-1 compared to a RMSE of 0.96 Mg ha-1 using linear regression. RF is a 

non-linear model that handles unbalanced data and overfitting well. Many studies have used non-

linear models especially when working with a combination of different types of data (e.g. 

satellite imagery, climate, soil) to estimating yields (Cai et al., 2019; Evans & Shen, 2021). The 

reason that the RF model did not show advantage in estimating yields over linear regression may 

be related to the small dataset in this study and the relationship of sensor NDVI predictor 
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variables and yields being essentially linear (Johnson et al., 2016). The results of Johnson et 

al.,(2016) showed that a linear regression using MODIS-NDVI predictor variables to predict 

barley (Hordeum vulgare vulgare L.), canola (Brassica) and spring wheat in the Canadian 

Prairies performed slightly better than non-linear models Bayesian Neural Networks and model-

based recursive partitioning. Vannoppen et al., (2020) found similar performance when using 

only NDVI predictor variables to estimate winter wheat yields in Latvia, where linear regression 

presented a residual standard error of 0.55 Mg ha-1 and RF 0.58 Mg ha-1.  

Using the NDVI predictor variables from the interval DOY 56-182 in a linear regression 

model produced the best results, with Landsat USGS reporting the best performance (R² 0.37, 

RMSE 0.95 Mg ha-1, MAE 0.75 Mg ha-1) among the other sensors. The most significant NDVI 

predictor variables were DOY 56 and DOY 154, with DOY 56 characterizing very early season 

NDVI and DOY 154 late grain filling stage. The benefit of higher early season NDVI (end of 

February and mid-March) may be related to different aspects regarding this specific dataset and 

the wheat crop in general. Regarding this specific dataset, the 2016 season was characterized by 

temperatures that were mostly above normal all winter, which resulted in an earlier dormancy 

break and initiation (Paulsen & Heyne, 1983) and sub-regional levels (Lollato et al., 2019; 

Lollato, Roozeboom, et al., 2020) .Regarding a strong signal of DOY 154 in predicting wheat 

yield, this reflects wheat growth in early June, where wheat is going through ripening stages of 

development when the grain test weight is determined and grain moisture decreases (Lollato, 

2018). Greater levels of leaf area at this stage – here represented by greater NDVI – may 

associate with higher wheat yield due to practices associated with stay-green, such as greater N 

rates and the adoption of foliar fungicides (Cruppe et al., 2021; Jaenisch et al., 2019, 2022). 
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Disentangling the impacts of management practices on wheat yield and NDVI was beyond the 

scope of this work. 

MODIS was the second most accurate sensor to predict winter wheat yields. The NDVI 

predictor variables from interval DOY 105-154, without feature selection, appeared to be the 

best for yield prediction using MODIS. The results showed that MODIS NDVI may perform 

better during the peak of crop development (i.e., flag leaf emergence, heading, anthesis, and 

grain filling). Using MODIS and AVHRR, Mkhabela et al., (2011) also found correlation 

between anthesis and grain filling period NDVI with grain yields. In another study in Argentina, 

MODIS NDVI during head emergence and anthesis stage appeared to be the best predictor for 

winter wheat yields (Lopresti et al., 2015). However, besides this individual result, MODIS 

presented a higher prediction error compared to Landsat USGS when analyzing all approaches 

and intervals. Coarser pixels, such as those in the MODIS dataset at a scale of 250 m, are often 

mixed and of questionable utility for field-scale analyses (Li et al. 2021).  

MODIS and Sentinel presented 2 coefficients negative regarding the variable DOY 182 

(Table 2-7 and Table 2-9), meaning a opposite relationship between NDVI and yields at the end 

of the season. This issue may be related to an agronomic issue such as the detection of late-

emerging weed patches in wheat (Travlos et al., 2021), or noise from neighboring fields if the 

winter wheat field has a particular small size. 

In this study, the lowest prediction error reported was a RMSE of 0.95 Mg ha-1 , which 

can produce uncertainties of winter wheat estimation at field scale.  In previous research using 

Landsat imagery, Gaso et al., (2019) found that fields of smaller size had the highest values of 

RMSE, probably associated to low number of pixels and possible uncoordinated scales between 

yield estimated yield and the observed yield in the same grid of satellite image. As a result, 



58 

although the winter wheat NDVI signal was different from surrounding areas, they were 

calculated with neighboring pixels containing different land-uses.  

While the results that we obtained were promising n that they suggested a good 

representation of crop growth and development dynamics by satellite-derived NDVI values, they 

also reflected the challenge of relatively low yield predictability as addressed in many studies 

using satellite imagery to estimate yields at field level over large areas (Engen et al., 2021; N. 

Zhang et al., 2017). We hypothesize that, because Kansas has environmental and agronomic 

characteristics that contrast among regions (Jaenisch et al., 2021) increasing the spatial 

heterogeneity of winter wheat yields (Dong et al., 2020), winter wheat yield variability was not 

fully captured by NDVI and it may require finer spatial information regarding climate, soil 

characteristics, used wheat varieties, and management practices to better represent yield at the 

field level. Another limitation was not fully exploring the higher temporal and spatial resolution 

from Sentinel-2 AB due to the dataset unavailability in 2016. In the future, adding new winter 

wheat field-yields in the dataset may improve the linear and RF algorithms.  
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Chapter 3 - Improving winter wheat yield estimation at field scale 

using Normalized Vegetation Difference Index metric from Landsat-

8 OLI by homogenous subregions in Kansas, USA. 

 

 3.1. Introduction 

Understanding the spatial differences of winter wheat yields (Triticum aestivum L.) and 

the environmental influencing factors are of great significance in increasing regional crop yields, 

promoting sustainable development of regional agriculture, and ensuring regional and national 

food security. Kansas is the largest winter wheat producing state in the U.S  (Kansas Department 

of Agriculture, 2021) with the majority of wheat production located from central to western 

Kansas. The climate across these areas are affected by different physical features, including 

elevation, natural latitudinal and longitudinal gradients in temperature, precipitation and 

atmospheric evaporative demand (Lollato et al., 2017, 2020), proximity to lakes and rivers, and 

topography. The eastern part of the state is characterized by moderate elevations and abundant 

precipitation (more than 1,000 mm of annual precipitation) conditions of the lower Missouri 

basin and the western region by the drier High Plains lying along the eastern slope of the Rockies 

(with less than 500 mm of annual precipitation (Flora, 1948). 

Since the environmental properties of agricultural areas in Kansas are heterogeneous, the 

growing condition for crops and the associated management practices adopted by producers can 

be highly variable (Jaenisch et al., 2021). The accurate yield information becomes indispensable 

and a challenge in major producing areas with high variable weather conditions (Kang et al., 

2009). Currently, national and regional crop yield statistics are the commonly used to monitor 
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and evaluate causes of crop yield change, where the yield information is often collected by costly 

and time-consuming annual surveys, with limited spatial resolution and temporal frequency 

(Vannoppen & Gobin, 2021). 

Satellite remote sensors offer a timely and cost-effective means of estimating the yield 

potential and understanding spatial-temporal yield variability enhancing the local, regional, and 

national production and helping to reduce environmental impacts (Evans & Shen, 2021). In 

addition, satellite remote sensor data has attracted attention by its capability in monitoring and 

mapping vegetation enabling the analysis of vegetation dynamics, such as phenological stages of 

crop development and the seasonal growth of crop types over different scales (Siachalou et al., 

2015)  

There are many choices of data sources estimation, ranging from handheld radiometers to 

drones, airborne and satellite platforms. High resolution sensors such as handheld radiometers, 

drones, airborne, and recently satellite sensors such as Quick Bird, SPOT5, Planet provide very 

fine details of crop growth monitoring and yield estimation within-field (Houborg & McCabe, 

2016; Yang et al., 2009), however data processing may be costly and computationally intensive 

limiting their general use (Dorigo et al., 2007). Coarse resolution from MODIS (250m-1km) 

provides valuable historical dataset (17 years) and daily temporal resolution, key for regional, 

national, and global crop monitoring. However, the main drawback is that MODIS pixels has 

limited representative of finer pixels due saturation of mixed reflective signals, especially when 

investigating variability of crop yield at field (He et al., 2018; Meng et al., 2021; Zhang et al., 

2019). 

For instance, due to its moderate spatial resolution (10m - 30m) satellite sensors such as 

the Landsat series and Sentinel- 2 products have been commonly used in studies at field scale 
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across large areas (Fieuzal et al., 2020; Skakun et al., 2017). With global coverage at 30m 

resolution which is sufficient for within field monitoring, Landsat series has free availability and 

long-term record remote sensing data dating back to 1982 (Belward & Skøien, 2015). Sentinel-2 

had its first satellite launched in June 2015 and its second in March 2017, both with a spatial 

resolution at 10m and revisit time of 10 days (resulting in 5 days), providing more opportunities 

in crop monitoring and yield estimation at a finer spatial-temporal resolution than Landsat 

(Sudmanns et al., 2020). Thus, Sentinel -2 AB are available for Kansas only since 2017 and 

cannot be used to produce long-term time series, its dataset availability and usability will depend 

on the period analyzed (Shen & Evans, 2021) . 

Vegetation indices (VI’s) derived from satellite data are the most used parameters to 

estimate yields due to their relationship to canopy architecture, biomass, and chlorophyll content 

(Moriondo et al., 2007; Shen & Evans, 2021). Among different vegetation indices, the 

normalized difference index (NDVI) is frequently used for crop growth and yield related 

research since is associated to crop net primary production, which can be defined as the amount 

of carbon taken by plants to create new biomass (Jiao et al., 2017; Parece & Campbell, 2017). 

Methods to estimate crop yield using remote sensing data are diverse but empirical 

models and mechanistic models are the most commonly used in the literature (Gaso et al., 2019; 

Kern et al., 2018; Landau et al., 2000; Palosuo et al., 2011; Yao et al., 2015). Mechanistic 

models use weather, soil, crop, management information and vegetation indices as parameters to 

simulate plant development and growth. Aboveground biomass and grain yield are output 

variables of crop simulation models (Basso & Liu, 2019b). The main drawback of these models 

is that they require numerous crop specific inputs to simulate crop development.  Empirical 

models don’t require parameters from underlying plant biophysical mechanisms that drive crop 
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growth, instead, these are based on empirical relationships between historic yields and vegetation 

indices or other independent variables (Becker-Reshef, Vermote, et al., 2010; Johnson et al., 

2021). The relationship between the predictor variables and the outcomes have traditionally been 

explored through linear regression, but non-linear approaches, such as machine learning (e.g., 

artificial neural network, support vector machine or random forest) can also be used too (Joshil 

Raj & SivaSathya, 2014; Lee et al., 2020). A fundamental requirement for the empirical 

approach is access to reliable and deep historical yield datasets, thus the limiting factor of 

empirical crop yield models is that it cannot be easily extrapolated to other areas (Schwalbert et 

al., 2018). 

Crop yield models are challenged by very heterogeneous geographic areas, in this case, it 

is often necessary to recognize homogeneous areas with comparable initial conditions and 

parameters values (Gaso et al., 2019). Zonal schemes (FAO, 1978) such as agro-climatic crop 

zones (CZs) based on homogeneity in weather variables that have greatest influence on crop 

growth and yield, and agro-ecological zones (AEZs) based on geographic regions with  similar 

climate and soils for agriculture have been used in several studies. For instance, CZs and AEZs 

have helped in identifying yield variability (Kouadio et al., 2014) and limiting factors for crop 

growth (Nabati et al., 2020), regionalize optimal crop management recommendations (Di Mauro 

et al., 2018; Heinemann et al., 2016), compare yield trends (Gupta & Mishra, 2019), determine 

suitable locations for new crop production technologies (Řezník et al., 2020; Taghizadeh-

Mehrjardi et al., 2020), to maximize the impact of research and development efforts while 

minimizing costs(Rattalino Edreira et al., 2018), and to analyze impacts of climate change on 

agriculture (Fischer et al., 2005; Larina et al., 2022). 
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Long term weather data has been used to subdivide regions in crops grown in areas with 

smaller year-to-year variation (van Wart et al., 2013) For crops grown in regions with small 

year-to-year variability in gran yield, such as soybeans (Glycine  max  L.) in North Central 

U.S.A, this regional subdivision has accounted for up to 96% of the yield variability (Rattalino 

Edreira et al., 2017) .Kouadio et al., (2014) reduced 40% of mean absolute percentage error 

(MAPE) when forecasting winter wheat in Canada using MODIS NDVI and EVI and 

agroclimatic variables by ecodistricts (areas with distinct climate, soil, landscape, and ecological 

aspects). However, the same performance is unlikely to occur for crops grown in less predictable 

environments such as winter wheat in the U.S Great Plains, where the clustering based on long 

term annual weather only accounted for 46% of the yield variability (Jaenisch et al., 2021) 

Recently some studies have tried to address this issue related to crops grown in 

heterogeneous environments, Chen et al., (2018) analyzed the similarity of phenological stages 

(dates of green-up and heading) using remote sensing data among winter wheat fields to 

subdivide a heterogeneous region in the North China Plain and improve regional winter wheat 

yield estimation data. Grouping crop fields into distinct levels of management adoption also 

helped identifying the causes of yield gap in a data-rich analysis in central Argentina (Di Mauro 

et al., 2018). Along with long-term weather data, sub-region specific management factors (e.g. 

seeding rate, previous crop and sowing date) were found important in determining winter wheat 

yield in Kansas (Jaenisch et al., 2021; Munaro et al., 2020). For example, in Kansas the range in 

sowing dates varies from an early and short sowing period in cooler, semi-arid, high altitude 

subregions (Northwestern Kansas), to a later and wider sowing period in warmer, subhumid, low 

altitude regions (South central Kansas) (Munaro et al., 2020). Jaenisch et al., (2021) identified 

the optimum sowing date of days of the year (DOY) 272, 284, and 268 for North Central (NC), 
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South Central (SC), and West Kansas; which is similar to optimum sowing date from previous 

work (275 in NC, 281 in SC, and 271 in the West) (Munaro et al., 2020). 

Thus, this work explore the potential of using three subregions in Kansas (North Central, 

NC; South Central, SC; and West) based on their long-term climatology (long-term annual 

cumulative growing degree days, aridity index, and temperature seasonality) and regional-

specific cropping systems (seeding rate, previous crop and sowing date) elaborated by Jaenisch 

et al., (2021) to estimate winter wheat yields at field scale. The main objective was to determine 

if the derived Landsat-8 NDVI estimates into a subregional model can result in improved crop 

yield estimation for winter wheat in Kansas. The main questions are: 

 

(i) Is the subregional scheme helpful to show the spatial heterogeneity in winter wheat 

NDVI time-series dynamics in Kansas? 

(ii) How much improvement the winter wheat yield models can obtain from a subregional 

analysis? 

 

3.2 Material and Methods 

 3.2.1. Study Area 

This study focused on central and western Kansas, where winter wheat is the 

predominant crop grown. Winter wheat is mostly non-irrigated (i.e. rainfed) representing 96 % of 

the wheat in the region (USDA-NASS, 2019). The climate in Kansas is subhumid in the east and 

semi-arid in the west (Barrow, 1992). Consequently, there are steep gradients in precipitation, 

elevation, and temperature across Kansas, with precipitation ranging from ~450 mm in the west 

and ~1100 mm in the east (Lollato et al., 2020) resulting in winter wheat growing season 
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precipitation ranging from ~200mm to 650mm.  The average growing season temperature ranges 

from 7 to 12℃ from west to east due to elevation, which ranges from ~200 to 1200 m (Lollato et 

al., 2017). Common soil textures are silt loam and silty clay loam which possesses ideal qualities 

of a prairie soil with the best combination of physical and chemical characteristics for growing 

crops and grasses (USDA NRCS, 1993; USDA-NRCS, 2017) 

 

 3.2.2 Datasets 

 3.2.2.1.  Field polygons 

Using the survey field-specific geo-coordinates, was collected from a survey conducted 

by Jaenisch et al., (2021) during three consecutive seasons (i.e. 2016-2018). A total of 656 

polygons were created representing the boundaries of each field. To assess the winter wheat field 

geolocations, the corresponding annual USDA Cropland Data Layer (CDL) datasets was 

retrieved  (USDA National Agricultural Statistics Service Cropland Data Layer, 2023). After 

removing records that did not correspond with winter wheat in the CDL, 499 samples remained 

(205 in 2016, 179 in 2017, and 115 in 2018). After applying additional data screening (3.2.3.2. 

NDVI time series), the final dataset comprised 220 samples (field-yield pairs), with a total area 

of 87,854,542.5 square km (Figure 3-1). 
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Figure 3-1- Kansas map shows the three sub- regions studied in Kansas (North Central, NC; 

South Central, SC; and West) as different colors. The red dots represent the 220 sample locations 

examined in the study. Overlaid on the aerial imagery are field boundaries for some of the winter 

wheat fields. 

 

 3.2.2.2. Yield and Management data 

Grain yield (Mg ha-1) and crop management (seeding rate, previous crop, and sowing 

date) data were collected in the field survey conducted by Jaenisch et al., (2021), and a simulated 

anthesis date by each field-yield was provided from the same study. The simulated anthesis date 

was processed using the using the Simple Simulation Model (SSM) – Wheat, (Soltani & Sinclair, 

2012), which is a process based model that simulates wheat growth and developments under non 

limiting condition in the U.S Great Plains (Lollato et al., 2013). 

 

 3.2.2.3. Satellite data 
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 Landsat 8-OLI 

Landsat 8-OLI captures images of the Earth’s surface in nine spectral bands at a 30-m 

spatial resolution (15-m for panchromatic band). Images are collected on a 16-day temporal 

cycle. The study sites are covered by eight tiles for which Landsat 8 OLI Collection 1 data were 

downloaded from the United States Geological Survey (USGS) website 

(https://earthexplorer.usgs.gov/  accessed in January 2021). The dataset contains atmospherically 

corrected surface reflectance and land surface temperature.  

 

 3.2.3. Methodology 

 3.2.3.1. Satellite data preprocessing 

Detection and removal of ground-obscuring clouds and cloud shadows is essential for 

remote sensing data processing. A conditional was applied using the Quality Assessment (QA) 

band (USGS, 2023), preserving only pixels with clear terrain conditions or low to no confidence 

of cloud conditions. Satellite data processing and vegetation indices calculation developed using 

Python scripting in ArcGIS PRO. 

 

 3.2.3.2. NDVI time series 

Time-series NDVI data are commonly used to monitor crop development throughout a 

growing season (Lai et al., 2018), which primarily takes place during January to June (DOY 1-

180) for Kansas winter wheat. NDVI is computed using red (Red) and near-infrared (NIR) 

reflectance (Tucker,1974): 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
                                                (3-1) 

https://earthexplorer.usgs.gov/
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Several Landsat tiles were required for this study ( Figure 3-2), thus if a field had 

representation in multiple tiles and multiple concurrent (to the day) NDVI values were available, 

then the maximum NDVI was used. 

 

Figure 3-2 - (a) Landsat-8 scenes in yellow that are passing over the study area (b) In detail, 

fields in red that are represented by multiple scenes. 

 

NDVI time series were visually accessed and a threshold NDVI value of 0.2 during April 

to May period was set. This threshold was defined because Landsat NDVI time-series showed 

lower NDVI values during the peak season compared to MODIS and Sentinel. Landsat NDVI 

time series with values higher than 0.2 during the peak season were capable to show the winter 
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wheat growing season. As an additional constraint to bolster signal completeness, only fields 

with at least one monthly NDVI observation in the February-June period were included. January 

was not included since there is still influence of snow cover, thus NDVI values are close to 0 or 

missing. In this chapter, NDVI predictor variables are from the satellite remote sensing dataset 

that exhibited the best performance in the previous Chapter 2 - . Without the need to compare to 

other sensors, we used all field samples (n=220) available that matched this selection criteria. 

 

 3.2.3.3. Time series interpolation 

Landsat VI time series are commonly affected by missing values (gaps). Using an up-

sampling technique, we increased the frequency of the Landsat NDVI observations by every 7 

days(Figure 3-3). Specifically, we used linear interpolation between straddling NDVI values to 

fill gaps. Since some samples had their earliest available February-June NDVI observation as 

late as DOY 56, we defined the study period to span DOY 56-182 (mid-February to end of June). 
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Figure 3-3- Final NDVI profiles averaged across all samples (n=220) with weekly DOY (56-

182). 

 

 3.2.3.4. NDVI predictor variables  

The interval of DOY 56-182 (full season, mid-February to June) covering post-dormancy 

tiller development, stem elongation, heading, anthesis, grain fill, and ripening defined the 

accumulated NDVI variable (NDVI area under the curve, or AUC). NDVI AUC was determined 

using the trapezoid rule for integral approximation. NDVI weekly values and NDVI AUC were 

used as independent variables. Thus, 20 independent variables were used as winter wheat yield 

predictor variables: NDVI AUC, DOY 56, . 
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 3.2.3.5. Regional analysis 

In this study, three subregions were used to subdivide field-specific data as previously 

established in Jaenisch et al. (2021). Briefly, winter wheat fields were clustered into three 

surveyed zones based on long-term climate data (long-term cumulative growing degree days, 

aridity index, temperature seasonality) and cropping systems, following a similar but coarser 

approach than that proposed by van Wart et al., (2013)). Subregions were clustered based on the 

following weather classification: North-central (635-890mm annual precipitation and 3,792-

4,829 °C annual thermal units), south-central (635-890mm, 4,830-5,949 °C annual thermal 

units), and west (<625mm, 3,792-4,829°C annual thermal units).  

We also note that these intrinsic weather characteristics among regions result in different 

management practices adopted by winter wheat growers within each region, as summarized in 

Jaenisch et al., (2021). For example, (i) the optimal sowing dates are earlier in in NC and West as 

compared to SC (DOY 275 and271 versus 281); (ii) seeding rate are greater in NC and SC (90-

95 kg ha-1 and 88-95 kg ha-1, respectively) than West (68 kg ha-1); (iii) row spacing are narrower 

in SC and NC versus the West (19 cm or less to 25.4 cm or 30.5 cm, respectively); (iv) no-till 

adoption, occurring in 75%, 52%, and 40% of the fields in NC, SC and West; and (v) crop 

sequence, where 75% of winter wheat fields were in a fallow-crop rotation in the West, and the 

majority of previous crop in NC and SC were soybeans (44 and 30%) or wheat (42 and 51%). 

This division resulted in 75 field-yields in NC, 109 in SC and 38 in West Kansas. 

 

3.2.3.6. Empirical methods for estimating winter wheat yields 
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 Least absolute shrinkage and selection operator (LASSO)  

LASSO was used as a method to remove variables that are redundant and reduce 

overfitting. In short, LASSO adds penalty into parameter estimation to shrink the near zero 

regression coefficients to zero, thus removing them out of selection result (Tibshirani, 1996) . 

Lambda is the hyperparameter that tunes the intensity of the penalty term, the larger the 

parameter of lambda the greater number of coefficients will be shrunk to zero (Fonti & Belitser, 

2017). Values between 0.01 and 10 were evaluated using cross-validation to find the best lambda 

value. NDVI predictor variables were input to a least absolute shrinkage and selection operator 

(LASSO) available in Scikit-learn for Python 3.9. 

Although LASSO greatly reduces redundant variables and overfitting, there may still be a 

need to remove remaining variables that are not statistically significant to the yield prediction 

model. Therefore, the final models (Linear regression and Random Forest) were built using only 

the most influential variables according to their influence in the final yield, selected by the 

regression coefficients from NDVI predictor variables. The NDVI predictor variables were 

selected by t-value score, p-value, residual error and coefficient of estimation analysis. In 

addition to that, in some cases, the selection was made by analyzing if the addition or removal of 

a variable could improve the results or not.  
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 Linear Regression 

Prediction models were performed using R programming language in R Studio (R 

Version 4.2.2). Linear Regression was trained to predict winter wheat yields using the NDVI 

predictor variables across all field-yields and fields by subregion. As a simple approach, linear 

regression models are commonly used in crop yield estimation studies in different regions 

(Johnson et al., 2021; Lobell, 2013; Lopresti et al., 2015).  

 

The model equation is given by: 

𝑌𝑖𝑒𝑙𝑑 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑛𝑋𝑛 + 𝜀                (3-2) 

 

Here, {𝑏0, 𝑏1, … } are the regression coefficients, {𝑋1, 𝑋2, … } are the NDVI predictor 

variables , and 𝜀 is the residual.  

 

 Random Forest 

Random Forest (RF) regression followed the same scheme from linear regression to 

estimate winter wheat yields. RF model is an ensemble-based learning algorithm where each tree 

comprises random set of variables and samples of the dataset. RF is an ensemble learning 

technique elaborated by (Breiman, 2001) constructed by a large set of decision trees, with each 

tree being built using a random set of features and samples.  

The generalization error converges to a limit as the number of trees in the forest becomes 

large and will depend on the strength of the individual trees in the forest and the correlation 

between them. RF then calculates the average of prediction from the terminal nodes to make the 

final prediction. Important RF hyperparameters, 𝑀𝑡𝑟𝑦 (the number of variables randomly 
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considered at each node) and 𝑁𝑡𝑟𝑒𝑒 (the number of random trees to be grown) were optimized by 

tuning approaches. Hyperparameter tuning and statistical performance evaluation were 

performed using the ‘ranger’ package (Wright & Ziegler, 2017) in RStudio. 

 

 3.2.3.7. Model Evaluation 

Linear regression and RF models were evaluated using a repeated 10-fold cross 

validation (CV). In K-fold CV, the entire available data is randomly partitioned into folds of 

equal size, then the training of the model is done on k-1 parts and one part is left out for testing. 

This process is repeated k times, where each of the folds is used once to measure the prediction 

accuracy. The resulting error measures of each interaction is averaged to calculate the final error 

(Hastie et al., 2009). K-fold CV estimation has a variation due to randomness of partitioning the 

sample into k-folds (Efron & Tibshirani, 1997). To reduce the internal variance the whole 

process of partitioning and estimating was repeated 10 times (Kim, 2009).  

Model performance was assessed using the coefficient of determination (R²) to estimate 

how much variation in the observations was explained by the model, Root Mean Squared Error 

(RMSE) as an average squared errors-based statistic that penalizes large errors, and Mean 

Absolute error (MAE) as an average magnitude of the errors, defined as follows:  
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                                                     𝑅2 = 1 −
∑ (𝑦𝑖− 𝑦𝑖̂)𝑛

𝑖=1

∑ (𝑦𝑖− 𝑦̅)²𝑛
𝑖=1

                                                 (3-3) 

                                                     𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖− 𝑦𝑖̂)²𝑛

𝑖=1

𝑛
                                               (3-4) 

                                                    MAE =  
1

𝑛
 ∑ |𝑦𝑖− 𝑦𝑖̂|

𝑛
𝑖=1                                                (3-5) 

 

 3.3 Results 

 3.3.1. Subregional winter wheat NDVI time series  

The NDVI time series from each subregion are shown in Figure 3-4. NDVI values ranged 

from 0.07-0.60 using all fields, 0.07-0.56 for NC fields, 0.09 -0.53 for SC fields and 0.08-0.60 

for West fields. Landsat NDVI time series were capable of detecting distinct patterns from each 

sub-region. Observing the mean NDVI time-series, NC presented flatter shaped curve from DOY 

56 to 91 compared to SC and West Kansas which showed an ascending pattern during the early 

growing season. The vegetation peak across all fields was noticed between DOY 119 and 133 

(second half of April, usually when anthesis occurs), whereas ripening and harvest happened 

between DOY 154 and 168 (end of May to first half of June). SC NDVI time-series presented an 

earlier vegetation peak DOY 119 compared to NC NDVI time-series and West NDVI time-

series, close to DOY 126. After vegetation peak, NDVI values appeared to decrease earlier in 

SC, compared to NC and West, suggesting earlier ripening and harvest. 
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Figure 3-4- Landsat NDVI time series profiles are shown using all field-yields samples (n=220), 

NC field samples (n=73), SC field samples (n=109) and West field samples (n=38) from 2016-

2018. 

 

Table 3-1 shows the descriptive statistics between DOY when simulated anthesis 

occurred and the NDVI peak DOY for each field by region. The average for simulated anthesis 

across all fields occurred in DOY 128, compared to when the NDVI peak occurred the average 

was earlier, DOY 120. In NC, SC, and West the average NDVI peak DOY occurred DOY 128, 

DOY 112, and DOY 126, earlier than the simulated anthesis, DOY 134, DOY  122, DOY 135, 

respectively. NC showed the most approximated result with mean DOY 128. Average NDVI 

peak DOY occurred earlier in SC (DOY 122) than in NC and West (DOY 128 and DOY 126). 

Figure 3-5 shows the relationships between DOY simulated anthesis and DOY and the peak 

NDVI DOY for each field by subregions. R² was low and ranged from 0.08 to 0.17, with a 

significant relationship in all regions, expect West. All fields and NC showed the highest 

relationship (R² =0.17 and R² =0.12) with the DOY simulated anthesis. 

 

Table 3-1- Descriptive statistics of DOY when simulated anthesis occurred and DOY when 

the peak NDVI occurred for each field. 

Descriptive  

Statistics  

Simulate

d  

Anthesis 

(All) 

All Simulated  

Anthesis 

(NC) 

NC Simulated  

Anthesis 

(SC) 

SC Simulate

d  

Anthesis 

(West) 

West 

Min 80 70 96 98 80 70 102 98 

Median 132 126 136 126 125 119 134 126 

Mean 128 120 134 128 122 112 135 126 

Max 163 182 163 182 146 133 157 154 
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Figure 3-5-Relationships between DOY when the peak NDVI occurred versus the DOY when 

simulated anthesis occurred for each field all fields and by subregions (NC, SC, West) Kansas. 

 

Table 3-2 shows the statistical summary of yields in all fields in Kansas and by 

subregions. Yields were the highest in the West with a median of 4.64 Mg ha-1, followed by SC 
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with median yields of 3.76 Mg ha-1 and NC 3.66 Mg ha-1. Figure 4 shows box plots illustrating 

yield and NDVI AUC distributions by subregions. The variation in NDVI AUC across the 

subregions corroborates with the subregional variation in winter wheat yields. NDVI AUC was 

the highest in West, followed by SC and NC (Figure 3-6). 

 

Table 3-2-Statistical summary of winter wheat yields from 2016 to 2018, using all fields and by 

subregions (NC, SC, West) Kansas. 

Yields 

statistical 

summary  

Regions 

ALL NC SC West 

Max 7.056 6.048 5.913 7.056 

Min 0.403 1.949 0.403 1.210 

Mean 3.866 3.664 3.827 4.364 

Median 3.830 3.427 3.763 4.637 

SD 1.156 0.960 1.143 1.403 

 

 

Figure 3-6 - Boxplot of winter wheat yield and NDVI AUC from fields in NC, SC, and West .  

 

 3.3.2 LASSO and coefficient analysis for feature selection  

As a final examination, regression coefficients from the NDVI predictor variables 

selected by LASSO were analyzed and only the most significant variables influencing grain yield 
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were included in the linear regression and RF model prediction. For each sensor there is first a 

table showing the regression coefficients from NDVI predictor variables selected by LASSO. A 

second table presents regression coefficients from NDVI predictor variables included in the 

linear regression and RF prediction model. The NDVI predictor variables were selected by t-

value score, p-value, residual error and coefficient of estimation analysis. In addition to that, in 

some cases, the selection was made by analyzing if the addition or removal of a variable could 

improve the results or not. NDVI predictor variables when using grain yield from all fields 

across Kansas included in the prediction models were NDVI AUC, DOY 56, DOY 105, DOY 

154. NDVI predictor variable DOY 105 was discarded due its low t-value and p-value >.05 

(Table 3-3 and Table 3-4) . 

 In NC, the NDVI predictor variables remained the same from LASSO selection and  

NDVI predictor variables DOY 56, DOY 105, DOY 154 were included in the linear regression 

and RF models ( Table 3-4 and Table 3-5). In SC, NDVI DOY 63, DOY 133, DOY 154 

prediction variables combination presented the lowest Residual standard error and were included 

in the prediction models (Table 3-6 and Table 3-7). In West Kansas, NDVI predictor variables 

DOY 133 and DOY 140 selected from LASSO results were the same used in the final models 

(Table 3-8). 
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Table 3-3- Regression coefficients from all field-yields NDVI predictor variables selected by 

LASSO. 

Predictors Estimate Std.Error t value Pr(>|t|) 

(Intercept) 0.180 0.430 0.419 0.675 

AUC 0.048 0.041 1.164 0.245 

DOY56 2.413 1.347 1.79 0.074 

DOY105 0.031 2.563 0.012 0.990 

DOY154 3.853 1.624 2.372 0.018 

Residual 

standard 

error 0.946    

R² 0.343  p-value: <.001 

 

 

Table 3-4- Regression coefficients from all field-yields NDVI predictor variables included in the 

linear regression and RF models. 

Final model 

predictors 

Estimate Std.Error t value Pr(>|t|) 

(Intercept) 0.178 0.406 0.44 0.660 

AUC 0.049 0.020 2.43 0.015 

DOY56 2.409 1.312 1.837 0.067 

DOY154 3.841 1.255 3.06 0.002 

Residual 

standard 

error 0.943    

R² 0.343  p-value: <.001 

 

Table 3-5- Regression coefficients from NC NDVI predictor variables included in the linear 

regression and RF models. 

Final 

model 

predictors 

Estimate Std.Error t value Pr(>|t|) 

(Intercept) 0.677 0.541 1.251 0.215 

DOY56 1.555 2.134 0.729 0.468 

DOY105 3.231 2.401 1.346 0.182 

DOY154 4.904 1.559 3.145 0.002 

Residual 

standard 

error 0.773    

R² 0.377  p-value: <.001 
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Table 3-6- Regression coefficients from SC NDVI predictor variables selected by LASSO. 

Predictors Estimate Std.Error t value Pr(>|t|) 

(Intercept) -0.109 0.6516 -0.169 0.866 

DOY56 0.010 5.5533 0.002 0.998 

DOY63 4.573 5.4791 0.835 0.405 

DOY133 3.155 2.0381 1.548 0.124 

DOY154 5.731 2.5629 2.236 0.027 

Residual 

standard 

error 0.954    

R² 0.328  p-value: <.001 

 

Table 3-7- Regression coefficients from the SC NDVI predictor variables included in the linear 

regression and RF models 

Final 

model 

predictors 

Estimate Std.Error t value Pr(>|t|) 

(Intercept) -0.110 0.616 -0.179 0.858 

DOY63 4.583 1.078 4.252 <.001 

DOY133 3.155 2.028 1.556 0.122 

DOY154 5.732 2.507 2.286 0.024 

Residual 

standard 

error 0.949    

R² 0.328  p-value: <.001 

 

Table 3-8- Regression coefficients from West NDVI predictor variables included in the linear 

regression and RF models. 

Final 

model 

predictors 

Estimate Std.Error t value Pr(>|t|) 

(Intercept) -1.695 0.991 -1.71 0.096 

DOY133 10.004 5.133 1.949 0.059 

DOY140 4.178 5.546 0.753 0.456 

Residual 

standard 

error 0.987    

R² 0.532  p-value: <.001 
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 3.3.3. Subregional winter wheat yield estimation with NDVI predictor variables. 

Table 3-9 shows the descriptive statistics of training dataset and testing dataset using 

linear regression and RF. As seen in Chapter 2 - , NDVI predictor variables performed better 

using the linear regression model than RF. LASSO and the coefficient analysis helped in 

preventing overfitting in the linear regression. The training results below from RF are the in-

sample R² and RMSE from RF prediction using all dataset and shows a R² of 0.88 and low 

RMSE of 0.45, the results from 10-fold cross validation using all fields show a R² of 0.30 and 

high RMSE of 0.98 suggesting great discrepancy between results and that overfitting is occurring 

in the RF model. In the linear regression, NDVI predictors variables from all fields presented the 

best fit in training and testing data (R² of 0.34 and 0.35 and RMSE of 0.94 and 0.93, 

respectively). NC and SC showed a good fit in training and testing prediction error, with RMSE 

of 0.77 and 0.76 in NC, RMSE of 0.949 and 0.934 in SC. West presented the largest 

discrepancies between train and test results with R² of 0.53 and 0.61 and RMSE of 0.98 and 

0.953, respectively. 

 

Table 3-9- Descriptive statistics of training dataset and testing dataset using Linear Regression 

and Random Forest using LASSO. 

                                                                                               Regions 

Models Metrics  

 

ALL       NC SC      West 

Train Test Train Test Train Test Train Test 

Linear  

Regression 

R² 0.343 0.359 0.373 0.419 0.328 0.376 0.532 0.617 

RMSE(Mg 

ha-1) 

0.943 0.939 0.770 0.761 0.949 0.934 0.986 0.953 

  In-

sample 

Test In-

sample 

Test In-

sample 

Test In-

sample 

Test 

Random 

Forest 

R² 0.886 0.302 0.86 0.422 0.874 0.324 0.981 0.554 

RMSE(Mg 

ha-1) 

0.456 0.984 0.393 0.764 0.489 0.974 0.502 1.037 
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Figure 3-7 shows the subregional statistical performance of Linear Regression (LR) and 

Random Forest (RF) yield prediction model. 

 

Linear regression outperformed the RF model when using NDVI predictor variables from 

all fields and subregions.  Linear regression results showed that the yield estimation using all 

fields NDVI predictor variables achieved lower performance compared to NC and SC, with a R² 

of 0.30, RMSE of 0.98 Mg ha-1 and MAE of 0.77 Mg ha-1. NDVI predictor variables in NC 

obtained the best results with a R² of 0.41, RMSE of 0.76 Mg ha-1 and  MAE of 0.60 Mg ha-1, 

followed by SC NDVI predictor variables with a R² of 0.37, RMSE of 0.93 Mg ha-1 and MAE of 

0.71 Mg ha-1. 

RF presented similar ranking in terms of region performance. NC obtained the best 

prediction results, with a R² of 0.42, RMSE of 0.76 Mg ha-1 and MAE of 0.609Mg ha-1 followed 

by SC R² of 0.32, RMSE of 0.97 Mg ha-1 and MAE of 0.74 Mg ha-1. NDVI predictor variables 

from all fields achieved a R² of 0.30, RMSE of 0.98 Mg ha-1 and MAE of 0.77 Mg ha-1 .West 
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reported poor performance in both models (RMSE > 0.95 Mg ha-1) and high standard deviation, 

possibly due its relatively small sample (n=39) causing more overfitting. 

 

Figure 3-7- Subregional statistical performance of Linear Regression (LR) and Random Forest 

(RF) yield prediction model.  

 

 3.4. Discussion 

NDVI time series tracked seasonal changes and detected distinct patterns of winter wheat 

growth by subregions (NC, SC and West) in Kansas. Distinct spectral-temporal differences were 

observed in green-up, vegetation peak and maturity timing in NC, SC and West. For instance, SC 

presented higher green-up NDVI values than NC and West. Vegetation peak occurred earlier in 

DOY 119, while in NC and West, DOY 126 respectively. After vegetation peak, SC experienced 

a faster decline in NDVI values than the other regions. For example, the mean SC NDVI values 

in DOY 133 were 0.37 and decreased to 0.27 in DOY 147. NC and West showed more gradual 

decrease in NDVI after reaching maturity, in NC NDVI values were 0.40 and in DOY 147, 0.35 

and West DOY 133 mean NDVI values were 0.43 and DOY 147, 0.40.  In a study using crop 

phenology and long-term weather data in the U.S Southern Great Plains, Lollato et al., (2020) 
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showed that the heading of winter wheat follows a strong latitudinal and less apparent 

longitudinal gradient, increasing from south to north , whereas maturity followed an east-west 

gradient, which may explain the early development in the SC NDVI time series and late 

development in West NDVI time-series. These results also align well with previous simulation 

studies using long-term weather data (Lollato et al., 2017) and more regional studies on wheat 

heading dates ( Zhao et al., 2020). The earlier crop maturity in south central Kansas as opposed 

to northwest Kansas is multi-faceted, owing to: (i) lower latitudes resulting in warmer 

temperatures and thus accelerated crop phenology (Lollato et al.,  2020); (ii) lower elevation 

(thus, warmer nights) inducing shorter maturity, and (iii) choice of adapted varieties which are 

naturally shorter-cycled than those adopted in the west (Jaenisch et al., 2021). 

Some of the NDVI time series in NC presented a distinct pattern compared to the other 

regions, with increasing NDVI values in DOY 63 (early March), sharp drop in DOY 84 (mid-

March) followed with a great increase in DOY 91 (end of March). These NDVI time series refer 

to fields clustered in the northernmost area in NC Kansas (Figure 3-8). By mid- March wheat 

enters the greening up state after dormancy, causing the NDVI to increase rapidly. Such pattern 

was observed in previous work using MODIS NDVI time series in the US Central Great Plain 

(Masialeti et al., 2010; Wardlow et al., 2007) and NDVI winter wheat in China (Ren et al., 

2008). However, the severe decrease in NDVI values in Mid- March seems atypical although 

freeze still can happen this time of the year (Lingenfelser et al., 2018). Another reason is clouds 

and poor atmospheric conditions, each of these reduces NDVI values. Although the conditional 

masking technique performed effectively in removing sources of signal error in most of the 

imagery dataset, in this scene a small portion of pixels flagged as “clear conditions” remained 
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neighboring or within-field causing the low values in NDVI. Figure 3-8 shows the winter wheat 

fields and the masked NDVI imagery in DOY 84. 

 

Figure 3-8- The map above shows the fields in NC Kansas with low NDVI value in DOY 84 and 

the masked NDVI imagery overlayed (orange/yellow color). On top, the NC NDVI time series 

(in the left) and the fields boundaries overlaying the masked NDVI imagery from Landsat-8  

 

Winter wheat yield estimation using NDVI predictor variables performed better in linear 

regression than in RF. Non-linear methods (i.e., RF, Support Vector Machine, and Artificial 

Neural Networks) are known to outperform the linear methods when most relationships between 

yield and different variables (e.g., satellite imagery, climate, soil, management). are non-linear 

(Sun et al., 2022; Y. Wang et al., 2020). The small dataset and the linear relationship between 
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NDVI and yields (Lopresti et al., 2015) could potentially explain why simple regression was 

better at capturing this relationship than the RF (Johnson et al., 2016; Mallick et al., 2021)  

When analyzing all fields NDVI predictor variables, the linear regression achieved a 

RMSE of 0.93 Mg ha-1, a higher prediction error than NC and SC, except for West. NDVI AUC 

and NDVI weekly predictor variables DOY 56 and DOY 154 were the most significant variables 

and included in the model. The presence of NDVI AUC as one of the best predictor variables 

agrees with many studies that have successfully used NDVI AUC to estimate crop yields 

(Azadbakht et al. 2022; Skakun et al. 2019). NDVI predictor variables around DOY 56 and 63 

may be related to different aspects regarding this specific dataset and the wheat crop in general. 

Regarding this specific dataset, the 2016 season was characterized by temperatures that were 

mostly above normal all winter, which resulted in an earlier dormancy break and initiation 

(Paulsen & Heyne, 1983) and sub-regional levels (Lollato et al., 2019; Lollato, Roozeboom, et 

al., 2020). Regarding a strong signal of DOY 154 in predicting wheat yield, this reflects wheat 

growth in early June, where wheat is going through ripening stages of development when the 

grain test weight is determined and grain moisture decreases (Lollato, 2018). Greater levels of 

leaf area at this stage – here represented by greater NDVI – may associate with higher wheat 

yield due to practices associated with stay-green, such as greater N rates and the adoption of 

foliar fungicides (Cruppe et al., 2021; Jaenisch et al., 2019, 2022). Disentangling the impacts of 

management practices on wheat yield and NDVI was beyond the scope of this work. 

NC NDVI predictor variables presented the best performance in predicting winter wheat 

yields using linear regression with the lowest prediction error RMSE of 0.76 Mg ha-1. The NDVI 

prediction variables in NC represented three distinct stages of winter wheat growth: DOY 63 and 

DOY 154 indicating green-up and ripening stage (as mentioned previously), and DOY 105 
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representing heading and anthesis stage. The strongest correlation was seen in using DOY 154 

NDVI predictor variables (early June), in NC wheat was harvest between June 11th and July 5th 

from 2016 to 2018 (Jaenisch et al., 2021). Studies have shown NDVI has a good prediction 

ability of wheat grain in late growing stages. For example, using LASSO regression for spring 

wheat yield prediction, Shafiee et al., (2021) showed that NDVI achieved the highest prediction 

ability for grain yield at dates toward maturity. 

SC NDVI predictor variables showed the second lowest prediction error, with a RMSE of 

0.93 Mg ha-1. Among the NDVI predictor variables DOY 56, DOY 154 and DOY 133 included 

in the SC model, the strongest correlation was seen in using DOY 56 NDVI predictor variables 

(early Spring). These findings align with the widespread use of early-season NDVI to forecast 

winter wheat grain yield potential to help guide the determination of nitrogen rates in this region 

( Raun et al., 2001; Stone et al., 1996; see discussion Beres et al., 2020 for full history). Using 

Sentinel-2 in Morocco, Imanni et al., (2022) found strong correlation in tillering and maturity 

stages with wheat yields. Panek and Gozdowski, (2021) found a strong relationship between 

grain yields and the NDVI from the very early growth stages in Central Europe. A limitation in 

using NDVI at early stages is that anything that happens to the crop after the forecast date is not 

reflected in the crop yield estimate. For example, if after the forecasting date a drought, freeze 

events, or pests outbreak happens, especially during the critical period of development, the 

model would most likely to show erroneous crop yield forecasting results (Lopresti et al., 2015; 

Mkhabela et al., 2011) .  

Uncertainty in prediction using early NDVI in more homogeneous environments with 

moderate climates, such as the study in Central Europe, is lower than in heterogeneous 

environment regions such as Kansas, vulnerable to freezes and severe heat during anthesis and 
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grain-filling stages, respectively (Paulsen, 1997). For instance, from 2016 to 2018, SC Kansas 

experienced freezing temperatures and hailstorm during the months of April and May and heat 

stress in early June in Western Kansas (Lingenfelser et al., 2017, 2018). Since anthesis represents 

the reproductive stage of winter wheat, very low temperatures can result in sterility which has an 

impact on yields (Paulsen, 1997; Shroyer et al., 1995; Y. Zhang et al., 2022). Stress caused by 

extreme temperatures has a stronger impact during the grain-fill stage reducing grain moisture 

and size (Lollato, 2018). 

West showed the lowest accuracy (RMSE=0.93 Mg ha-1) possibly due to the small 

number of samples reducing linear regression and RF model effectiveness. However, the 

prediction model presented the highest R², where the predictors could explain 61% of yield 

variability. The NDVI predictor variables used to predict yields in West Kansas were DOY 133 

and DOY 140, which falls into the flowering and grain-filling periods.  

Overall, the results showed that is possible to predict in earlier stages of the growing 

season; however, its accuracy will depend on weather conditions. NDVI also performed well 

during late growing stages, agreeing with other studies that have indicated that yield estimation 

accuracy reaches the maximum in the late stage of growth (Sun et al., 2022). Since forecasting 

crop production differs from prediction as it requires interpreting future observations only using 

the past data (Griffiths et al., 2010), considering only the late growing stages to use a forecast 

model to inform farmers may not be sufficient (Shahhosseini et al., 2020).  

The results in NC and SC indicated the potential of using more homogeneous regions to 

predict winter wheat yields using satellite imagery, especially in heterogenous environments, 

such as Kansas. Lastly the results support the original contribution in subdividing Kansas into 

smaller and more homogeneous crop zones using long-term weather conditions and since 
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weather interacts with management, taking in account the agronomic practices that are region-

specific (Jaenisch et al., 2021). 
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Chapter 4 - Improving winter wheat yield estimation at field scale 

using management and climate data by homogeneous subregions in 

Kansas, USA. 

 

 4.1. Introduction 

Crop yield is strongly influenced by numerous variables including environment (e.g. 

climate, soil properties), genetics, and management (Mathieu & Aires, 2018). In Kansas, the 

largest producer of winter wheat (Triticum aestivum L.) in the U.S.A, improvements in winter 

wheat crops were made through the development and adoption of technological advances in 

genetics, agronomic and resource use practices (Jaenisch et al., 2022; Maeoka et al., 2020; Rife 

et al., 2019). Still, winter wheat is a long duration crop that can face different temperatures 

ranges and experience damage during the growing season, thus weather and climate are the 

prominent drivers of yield variability (Obembe et al., 2021b). Rainfed winter wheat grown in 

Kansas is impacted by high precipitation variability and increased temperatures during critical 

wheat development spring and grain filling period (Nelson et al., 2022; Tack et al., 2015). All of 

which could become more frequent and intense under climate change (Lollato et al., 2020), 

reinforcing the need for accurate and timely predictions of crop yield in an uncertain climate. 

Climate data and soil properties describe the environmental information that constrains 

the growing condition of the crop, and it has been extensively used as parameters in crop yield 

models (Alvarez, 2009; Hammer et al., 2000; Morell et al., 2016). Satellite remote sensing 

provides timely and accurate information to monitor crop growth and have the ability to collect 

radiances in the visible and near-infrared portions of the electromagnetic spectrum which are 
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useful for vegetation monitoring (Tucker,1979). In the last decades, research focused on using 

vegetation indices (Vis) (García-Martínez et al., 2020; Kouadio et al., 2014; Moriondo et al., 

2007) and biophysical parameters, such as the leaf area index (LAI) and photosynthetically 

active radiation (FPAR), (Cammalleri et al., 2022; D. M. Johnson, 2016; Tripathy et al., 2013) 

derived from satellite images have proven a potential improvement of crop yield estimations.  

Vegetation indices can serve as potential proxies of plant biomass, identifying vegetation 

health status variations at both small (within-field) and large scales (regional scales, national and 

global). For large scale studies, VIs have been mainly obtained from Moderate Resolution 

Imaging Spectroradiometer (MODIS) ( Johnson et al., 2021; Kouadio et al., 2014; Lopresti et al., 

2015). At smaller scales, Landsat imagery and recently Sentinel have been the most used 

(Fieuzal et al., 2020; Shen & Evans, 2021; Yli-Heikkila et al., 2022). Among different indices, 

NDVI is frequently used for crop growth and yield-related research as a remote sensing 

parameter due its relationship with net primary production and biomass (Kogan et al., 2012; Lai 

et al., 2018; Moriondo et al., 2007).  

Commonly modeling approaches using remotely sensed data for predicting crop yield are 

mechanistic models (process-based) and empirical models (de Wit et al., 2012; Gaso et al., 2019; 

Lai et al., 2018; Luciano et al., 2021). In mechanistic models, remotely sensed data is usually 

assimilated as one of the parameters in the model to simulate physiological processes of crop 

growth and development in response to environmental conditions and management practices. For 

example, Chen et al., (2018) assimilated leaf area index (LAI) to a crop model (MCWLA-

Wheat) to improve its reliability in estimating winter wheat yields, producing more accurate 

yield estimates at regional scale than without assimilation.  
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Empirical modeling estimates direct relationships between VIs and crop yield in a given 

data set without considering the underlying processes in crop physiology and ecology. Skakun et 

al., (2019), used vegetation indices to derive different metrics to build empirical regression 

winter wheat models at regional scale in Ukraine. Recently, new machine learning approaches 

capable of capturing the nonlinear relationships between crop yield and large set of predictors 

have shown significant improvement in empirical modeling. For instance, Schwalbert et al., 

(2020) used vegetation indices and precipitation independent variables to estimate soybean 

yields in Brazil and found a better performance using LTSM neural networks than other 

regression algorithms (random forest and ordinary linear squared regression). 

Although encouraging results have been achieved by using VI and biophysical 

parameters from satellite imagery data, other intrinsic driving factors in weather, or variability in 

soil properties and management operations still pose an obstacle for widespread use of remote 

sensing for yield estimation and  have not been yet fully explored in crop yield models (Huang et 

al., 2019; Lee et al., 2020). Very recently, researchers started to assess multi-source data to 

address these issues. For example, Wang et al., (2020) found that combining multiple sources 

(satellite images, climate data, soil maps, and historical yield records) outperformed single 

source satellite data, with the highest accuracy being obtained when the four data sources were 

all considered in the model development. In a multi-source data analysis using Random Forest, 

Sun et al., (2022) achieved a better winter wheat yield forecasting using satellite data, climate 

data and geographic information (spatial information data). 

In this study, different types of data, including satellite imagery, climate, soil and 

management data were used as the predictors to forecast the winter wheat yield at the field scale 



95 

in Kansas. Two linear regression methods, multiple linear regression and Random Forest were 

built and compared. The goal of the study was to answer the following two questions:  

 

(i) How much improvement can be obtained by combining different data types 

(satellite, management, and climate)? 

(ii) How much improvement can be obtained in prediction at field scale by combining 

satellite, management, and climate data and by analyzing three homogeneous 

subregions in Kansas? 

 

 4.2.  Material and Methods 

 4.2.1.Study Area 

This study focused on central and western Kansas, located in the U.S Central Great 

Plains, the largest contiguous area of low-precipitation winter wheat in the world (T. Fischer et 

al., 2014) (Figure 4-1). Winter wheat is the predominant crop cultivated in this area, grown 

continuously or in rotation with other cereal (e.g. corn [ Zea mays L]) or legumes (e.g. soybeans 

[Glycine  max  (L.)]), or after a fallow period that can range from 3 months in central Kansas to 

11-14 months in western Kansas. Usually, winter wheat sowing happens from mid-September 

until mid-November, and harvest occurs from early June to early July, depending on location and 

crop sequence (Munaro et al., 2020). Kansas’s major soil is Harney silt loam, which possesses 

the ideal qualities of a prairie soil with the best combination of physical and chemical 

characteristics for growing crops and grasses (USDA NRCS, 1993) 

Given the mid latitude and mid continental location, pronounced thermal and hydrologic 

seasonality characterizes the climate of Kansas. For example, a steep spatial gradient in average 
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precipitation is present ranging from ~450 mm in the west and ~1100 mm in the east (Lollato et 

al., 2020) resulting in winter wheat growing season precipitation ranging from ~200 to 650mm. 

The climate is semi-arid in the west and humid subtropical in the east with most of the 

precipitation occurring in spring and summer. The annual average temperature in Kansas is 

between 11◦C and 13◦C. The average growing season temperature ranges from 7 to 12℃ from 

west to east due to elevation, which ranges from ~200 to 1200 m (Lollato et al., 2017 ).  

 

 4.2.2 Datasets 

4.2.2.1. Survey Data 

Field-level grain yield, management practices, and environmental data (weather and soil 

data) were collected and processed from a field survey conducted by Jaenisch et al., (2021) 

during the winter wheat harvest seasons of 2016, 2017 and 2018 in Kansas, USA. The survey 

data focused on non-irrigated fields, which represent 96% of the wheat in the region (USDA-

NASS, 2019) 

 

 Yield and Management data 

Field-specific management practices data collected from each field are shown in Table 

4-1. For more details about data collection and processing, please see Jaenisch et al., (2021). 

Briefly, a total of 48 field specific management variables were collected either directly or 

indirectly calculated. Nitrogen (N) was divided by the first application and second application, 

with different sources (Urea, urea ammonium nitrate, or anhydrous ammonia), timing (during 

tillering, joint or pre sowing), and application methods (streamer nozzle, broadcast, or knife) 

characterizing the full nitrogen management of a field. Variety names were asked from growers 
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and this nominal variable was translated into more biologically relevant varietal ratings for given 

agronomic characteristics, using a 1-to-9 scale, where one is highly resistant (StripeRust, 

LeafRust, WSM and Drought), early maturity (Maturity), and short (Height); and nine is highly 

susceptible, late maturity, and tall. 
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Table 4-1- List of agronomic management variables collected from commercial wheat fields in 

Kansas during three crop seasons (2016-2018). 

Agronomic management data Units (or classes) 

Sowing date Day of year 

Variety or blend name Unitless, used to retrieve different seven variety 

traits 

Pre-plant control of volunteer wheat Yes/No 

Row spacing cm 

Seeding rate Kg ha-1 

Fungicide seed treatment Yes/No 

Insecticide seed treatment Yes/No 

Both seed treatment Yes/No 

Grazing Yes/No 

Manure Yes/No 

Tillage Conventional or no-till 

In-furrow phosphorus Yes/No 

Broadcast or banded phosphorus Yes/No 

Phosphorus rate Kg ha-1 

First Nitrogen source Urea, urea ammonium nitrate, or anhydrous 

ammonoia 

First Nitrogen rate Kg ha-1 

First Nitrogen application method Streamer nozzle, broadcast, or knife 

First Nitrogen timing Pre-plant, Zadoks’ 20 or 31 

Second Nitrogen source Urea, urea ammonium nitrate, or anhydrous 

ammonoia 

Second Nitrogen rate Kg ha-1 

Second Nitrogen application method Streamer nozzle, broadcast, or knife 

Second Nitrogen timing Pre-plant, Zadoks’ 20 or 31 

Total Nitrogen rate Kg ha-1 

Sulfur Yes/No 

Chloride Yes/No 

Zinc Yes/No 

Fungicide application (jointing stage) 

(Zadoks 25− 31) 

Yes/No 

Fungicide application (flag leaf stage) 

(Zadoks 39− 55) 

Yes/No 
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Table 4-1. Continued. 

 

 

Previous Crop 

Corn Yes/No 

Fallow Yes/No 

Soybean Yes/No 

Wheat Yes/No 

Other Yes/No 

Varieties Leaf rust variety 

resistance 

1-9 

Stripe rust variety 

resistance 

1-9 

WSM variety 

resistance 

1-9 

Maturity - variety 

maturity rating 

1-9 

Height - variety 

maturity rating  

1-9 

Drought - variety 

drought tolerance 

rating 

1-9 

Straw strength- 

variety rating 

1-9 

 

  



100 

 Environmental data 

Climate data: Mean maximum temperatures (Tmax), and minimum temperatures (Tmin), 

and precipitation data were collected from the National Weather Service Cooperative Observer 

Program and Automated Surface Systems in Kansas, which includes 455 stations. Daily solar 

radiation and reference evapotranspiration were collected from 62 Kansas Mesonet stations. The 

daily dataset was filtered for the following conditions: (i) outliers were characterized as 

presenting more than 3.5 standard deviations away from climatological mean temperature for the 

day  (Frich et al., 2002); (ii) daily homogeneity of temperature and precipitation observations 

were observed visually by the monthly average time series. Site weather data were then 

interpolated by using natural neighbor interpolation method (Amidror, 2002) on a daily step.  

Weather variables included in this study were cumulative rainfall and mean daily Tmax 

and Tmin for the growing season and for the grain filling period, cumulative solar radiation for 

the growing season, and the photothermal quotient (PTQ, the ratio between incident solar 

radiation and average temperature) for the critical period (20 days before anthesis until 10 days 

after anthesis) using a 𝑇𝑏𝑎𝑠𝑒 = 0℃. 

Soil data: included available water capacity (AWHC) at the 0-20cm and 20-200cm 

depths and simulated initial plant available water at sowing, the initial moisture conditions. The 

dataset includes soil depth and available water capacity and was retrieved from the Web Soil 

Survey database (USDA-NRCS, 2015). Dataset collection followed the steps: (i) creating an area 

of interest using the field boundaries, (ii) quantifying the percentage of each different soil class 

within each field, and (iii) calculating the weighted-average AWHC across the different soil 

types for each depth. Soil curve number, albedo, bulk density, and drainage factor were retrieved 

from Soltani and Sinclair (2012)  and Ratliff et al., (1983). The initial plant available water was 
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calculated using the Simple Simulation Model (SSM) – Wheat, (Soltani & Sinclair, 2012) 

depending on the previous crop harvested. When wheat was sown following fallow, the model 

initiated at 50% available water and the soil water balance component estimated the available 

water at wheat sowing (Lollato et al., 2016). When wheat was sown immediately after a summer 

crop, the initial plant available water was calculated preceding soybeans or maize modules of the 

SSM model.  

 

4.2.2.2.  Field polygons 

Initially, the survey field provided 656 field-specific geo-coordinates and 656 polygons 

were created representing the field boundaries. To evaluate the winter wheat field geolocations, 

we used corresponding annual USDA Cropland Data Layer (CDL) datasets (USDA National 

Agricultural Statistics Service Cropland Data Layer, 2023). Some of the survey geo-coordinates 

provided did not correspond with winter wheat in the CDL and were removed from the analysis, 

499 samples remained (205 in 2016, 179 in 2017, and 115 in 2018). After applying additional 

data screening (4.2.4.2. NDVI time series), the final dataset comprised 220 samples (field-yield 

pairs) (Figure 4-1). 
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Figure 4-1- Kansas map shows the three sub- regions studied in Kansas (North Central, NC; South 

Central, SC; and West) as different colors. The red dots represent the 220 sample locations 

examined in the study. Overlaid on the aerial imagery are field boundaries for some of the winter 

wheat fields. 

 

 4.2.3. Satellite data  

Landsat 8 OLI captures images of the Earth’s surface in nine spectral bands at a 30-m 

spatial resolution (15-m for panchromatic band). The dataset contains atmospherically corrected 

surface reflectance and land surface temperature. The study sites are covered by eight tiles for 

which Landsat 8 OLI Collection 1 data were downloaded from the United States Geological 

Survey (USGS) website (https://earthexplorer.usgs.gov/ accessed in January 2021). 

 

 4.2.4 Methodology 

 4.2.4.1. Satellite data preprocessing 
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Detection and removal of ground-obscuring clouds and cloud shadows is essential for 

remote sensing data processing. For Landsat USGS, we applied a conditional using the Quality 

Assessment (QA) band (USGS, 2023), preserving only pixels with clear terrain conditions or low 

to no confidence of cloud conditions. 

 

 4.2.4.2. NDVI time series 

Time-series NDVI data are commonly used to monitor crop development throughout a 

growing season (Lai et al., 2018; Shammi & Meng, 2021; Shen & Evans, 2021), which is for 

winter wheat in Kansas displayed from January to June (DOY 1-180) (Masialeti et al., 2010; 

Wardlow et al., 2007). NDVI is calculated by the difference of red (Red) and near-infrared (NIR) 

reflectance bands (Rouse and Haas, 1974; Tucker, 1974), according to equation 1: 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
                                                   (4-1) 

 

Data from several Landsat scenes were required for this study. If a field had 

representation in multiple tiles and multiple concurrent (to the day) NDVI values were available, 

then the maximum NDVI was used (Figure 4-2). 

NDVI time series were visually accessed and a threshold NDVI value of 0.2 during April 

to May period was set. This threshold was defined because Landsat NDVI time-series showed 

lower NDVI values during the peak season compared to MODIS and Sentinel. Landsat NDVI 

time series with values higher than 0.2 during the peak season were capable to represent the 

winter wheat growing season. As an additional constraint to bolster signal completeness, only 

fields with at least one monthly NDVI observation in the February-June period were included. 
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January was not included since there is still influence of snow cover, thus NDVI values are close 

to 0 or missing. In total, 220 fields matched this criteria and were used in this analysis.  

 

Figure 4-2- (a) Landsat-8 scenes in yellow that are passing over the study area (b) In detail, fields 

in red that are represented by multiple scenes. 

 

 4.2.4.3. Time series interpolation 

Landsat VI time series are commonly affected by missing values (gaps). Using an up-

sampling technique, we increased the frequency of the Landsat NDVI observations by every 7 

days(Figure 4-3). Specifically, we used linear interpolation between missing NDVI values to fill 
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gaps. Since some samples had their earliest available February-June NDVI observation as late as 

DOY 56, we defined the study period to span DOY 56-182 (mid-February to end of June). 

 

Figure 4-3 - Final NDVI profiles averaged across all samples (n =220). 

 

 4.2.4.4. NDVI predictor variables  

NDVI area under the curve (or AUC) and NDVI weekly data were selected to serve as 

potential predictors of winter wheat yields. We selected the interval DOY 56-182 to define the 

accumulated NDVI predictor variables (NDVI AUC). DOY 56- 182 covers the full season, (mid-

February to June), comprising post-dormancy tiller development, stem elongation, heading, 

anthesis, grain fill, and ripening. NDVI AUC was determined using the trapezoid rule for integral 
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approximation. Consequently, 20 independent variables were used as winter wheat yield predictor 

variables: NDVI AUC, DOY 56, . 

 

 4.2.4.5. Regional analysis 

Regional heterogeneity in Kansas poses challenges for winter wheat yield prediction. 

Subdividing a heterogenous region into smaller, more homogeneous subregions considering the 

biophysical determinants can potentially improve winter wheat yield prediction (Rattalino 

Edreira et al., 2020; Wardlow et al., 2007). In this study, three subregions were used to subdivide 

field-specific data as previously established in Jaenisch et al. (2021). Briefly, winter wheat fields 

were clustered into three surveyed zones based on long-term climate data (long-term cumulative 

growing degree days, aridity index, temperature seasonality) and cropping systems, following a 

similar but coarser approach than that proposed by van Wart et al., (2013) Subregions were 

clustered based on the following weather classification: North-central (635-890mm annual 

precipitation and 3,792-4,829 °C annual thermal units), south-central (635-890mm, 4,830-5,949 

°C annual thermal units), and west (<625mm, 3,792-4,829°C annual thermal units).  

 

4.2.4.6. Empirical methods for estimating winter wheat yields. 

Least absolute shrinkage and selection operator (LASSO) 

LASSO was applied to minimize overfitting and prediction error. The model performs 

regularization and feature selection and it was first formulated by Tibshirani, (1996). LASSO 

applies a shrinkage (or regularization) process where it penalizes the coefficient of regression 

variables, shrinking some of them to zero. The variables that still have non-zero coefficients after 

the shrinkage process are selected to be part of the model. In this study, the tuning parameter to 
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of shrinkage penalty was determined using 10-fold cross validation. The length of the path (min 

lambda and max lambda) was chosen to be 0.01 and 10 default values along the regularization 

pass were tested to find the best lambda value. LASSO was performed using Scikit-learn in 

Python 3.9.  

Although LASSO greatly reduces redundant variables and overfitting, there may still be a 

need to remove remaining variables that are not statistically significant to the yield prediction 

model. Therefore, the final models (Linear regression and Random Forest) were built using only 

the most influential variables according to their influence in the final yield, selected by the 

regression coefficients from NDVI predictor variables. The NDVI predictor variables were 

selected by t-value score, p-value, residual error and coefficient of estimation analysis. In some 

cases, the selection was also made by analyzing if the addition or removal of a variable could 

improve the results or not.  

 

Linear Regression  

Linear regression is a popular and straightforward technique in crop yield prediction 

studies, often used as a benchmark with other models. Linear regression predicts the dependent 

variable 𝑌𝑖 (Yields) using a set of independent variables 𝑋𝑖𝑗(NDVI, management and weather). 

The model is expressed by: 

 

𝑌𝑖𝑒𝑙𝑑 = ∑ 𝐵𝑗𝑋𝑖𝑗 +  𝜀𝑖
𝑘
𝑗=1                                        (4-2) 

 

Where 𝑘 is the number of independent variables, 𝐵𝑗is a regression coefficient, 𝑋𝑖𝑗 is the 𝑗 

value for the observation 𝑖, and 𝜀𝑖is the residual error. 
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Random Forest 

The same data used for training the linear regression model was used in the Random 

Forest (RF) model for comparison purposes. Along with linear regression, RF is one of the most 

used models for crop yield prediction (Everingham et al., 2016; Pang et al., 2022; van 

Klompenburg et al., 2020) RF is an ensemble learning technique elaborated by (Breiman, 2001) 

constructed by a large set of decision trees, with each tree being built using a random set of 

features and samples.  

The generalization error converges to a limit as the number of trees in the forest becomes 

large and will depend on the strength of the individual trees in the forest and the correlation 

between them. RF then calculates the average of prediction from the terminal nodes to make the 

final prediction. Important RF hyperparameters, 𝑀𝑡𝑟𝑦 (the number of variables randomly 

considered at each node) and 𝑁𝑡𝑟𝑒𝑒 (the number of random trees to be grown) were optimized by 

tuning approaches. Hyperparameter tuning and statistical performance evaluation were 

performed using the ‘ranger’ package (Wright & Ziegler, 2017) in RStudio. 

 

 4.2.4.7. Model Evaluation 

Linear regression and RF models were evaluated using a repeated 10-fold cross 

validation (CV). In K-fold CV, the entire available data is randomly partitioned into folds of 

equal size, then the training of the model is done on k-1 parts and one part is left out for testing. 

This process is repeated k times, where each of the folds is used once to measure the prediction 

accuracy. The resulting error measures of each interaction is averaged to calculate the final error 

(Hastie et al., 2009). K-fold CV estimation has a variation due to randomness of partitioning the 
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sample into k-folds (Efron & Tibshirani, 1997). To reduce the internal variance the whole 

process of partitioning and estimating was repeated 10 times (Kim, 2009).  

RF model performance was assessed using the coefficient of determination (R²) to estimate 

how much variation in the observations was explained by the model, Root Mean Squared Error 

(RMSE) as an average squared errors-based statistic that penalizes large errors, and Mean Absolute 

error (MAE) as an average magnitude of the errors, defined as follows: 

 

                                                       𝑅2 = 1 −
∑ (𝑦𝑖− 𝑦𝑖̂)𝑛

𝑖=1

∑ (𝑦𝑖− 𝑦̅)²𝑛
𝑖=1

                                               (4-3) 

                                                         𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖− 𝑦𝑖̂)²𝑛

𝑖=1

𝑛
                                           (4-4) 

                                                       MAE =  
1

𝑛
 ∑ |𝑦𝑖− 𝑦𝑖̂|

𝑛
𝑖=1                                             (4-5) 

 

4.3. Results 

 4.3.1. LASSO and coefficient analysis for feature selection  

Using all field-yields (Table 4-2 and Table 4-3), NDVI predictor variables, NDVI AUC 

and DOY 140, along with the management variables flag leaf foliar fungicide, seed fungicide 

application, total N, initial plant available water, variety leaf rust resistance, manure fertilizer, 

second N application stage (during tillering) and first N source (urea); and the weather variable 

cumulative rainfall during growing season were the most significant variables. All variables 

presented positive impact in yields, except for the first nitrogen source using urea and seed 

fungicide application. 

In NC (Table 4-4 and Table 4-5), the NDVI predictor variables DOY 105 and DOY 154 

along with the management variables previous corn crop, variety height, phosphorus (P) rate, 

total N rate, chloride (Cl) application, zinc (Zn) application, and the weather variables mean 
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maximum temperature and initial plant available water were the most significant and included in 

the prediction models. Among all variables, only Zn application and previous crop corn had an 

negative correlation with winter wheat yields. 

In SC (Table 4-6 and Table 4-7), the only NDVI predictor variable included was DOY 

133, among the management and weather variables, insecticide seed treatment, flag leaf foliar 

fungicide, total N rate, manure fertilizer, urea as the first N source, broadcast as the first nitrogen 

method, second N stage (during joint), mean maximum temperature during grain filling and 

water holding capacity of the soil in the upper 20 cm layer were incorporated in the prediction 

model. Seed insecticide application, first N source (urea), first N method (broadcast), second N 

stage (during joint), and mean maximum temperature during grain filling had negative impact in 

the yields. Lastly, in the West (Table 4-8 and  

Table 4-9), the most significant variables were NDVI predictor variable DOY 133, 

sowing date, initial plant available water and mean maximum temperature. Sowing date and 

maximum temperate had a negative effect on the winter wheat yields.  
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Table 4-2- Regression coefficients from all field-yields using NDVI, climate, and management 

predictor variables selected by LASSO. 

Predictors Estimate Std.Error t value Pr(>|t|) 

(Intercept) 1.081 1.413 0.765 0.445 

AUC 0.030 0.017 1.782 0.076 

DOY133 -0.341 2.750 -0.124 0.901 

DOY140 3.606 2.341 1.54 0.125 

Leaf rust variety resistance 0.063 0.029 2.165 0.031 

Total Nitrogen rate 0.006 0.002 2.973 0.003 

Fungicide seed treatment (yes) -0.305 0.138 -2.215 0.027 

Fungicide application - flag 

leaf stage (yes) 0.484 0.135 3.571 <.001 

First Nitrogen source -urea 

(yes) -0.248 0.133 -1.863 0.063 

Second Nitrogen timing (tiller) 0.206 0.129 1.592 0.112 

Initial plant available water 0.001 0.0004 4.664 <.001 

Cumulative rainfall 0.0009 0.0005 1.692 0.092 

Max temp during grain-fill -0.051 0.040 -1.276 0.203 

Manure (yes) 0.493 0.286 1.721 0.086 

Residual 

standard 

error 0.778    

R² 0.578  p-value: <.001 
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Table 4-3- Regression coefficients from all field-yields NDVI predictor variables included in the 

linear regression and RF models. 

Predictors Estimate Std.Error t value Pr(>|t|) 

(Intercept) -0.632 0.442 -1.431 0.153 

AUC 0.037 0.012 3.085 0.002 

DOY140 2.420 1.083 2.233 0.026 

Fungicide application - flag 

leaf stage (yes) 0.531 0.130 4.08 <.001 

Initial plant available water 0.001 0.0004 4.529 <.001 

Cumulative rainfall 0.001 0.0005 2.384 0.018 

Total Nitrogen rate 0.006 0.001 3.566 <.001 

Leaf rust variety resistance 0.060 0.028 2.094 0.037 

Fungicide seed treatment 

(yes) -0.316 0.137 -2.302 0.022 

Manure(yes) 0.506 0.285 1.771 0.078 

Second Nitrogen timing 

(tiller) 0.213 0.129 1.645 0.101 

First Nitrogen source -urea 

(yes) -0.243 0.132 -1.83 0.068 

Residual 

standard 

error 0.773    

R² 0.575  p-value: <.001 
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Table 4-4- Regression coefficients from NC predictor variables selected by LASSO. 

Predictors Estimate Std.Error t value Pr(>|t|) 

(Intercept) -6.445 3.666 -1.758 0.0842 

DOY105 2.541 1.428 1.779 0.080 

DOY154 2.514 1.467 1.714 0.092 

Previous crop – other(yes) 0.394 0.634 0.622 0.536 

Previous crop -corn (yes) -1.019 0.439 -2.318 0.024 

Height 0.112 0.057 1.971 0.053 

Phosphorus rate 0.020 0.009 2.287 0.026 

Total nitrogen rate 0.011 0.005 2.166 0.034 

Broadcast or banded 

phosphorus (yes) 0.135 0.202 0.669 0.506 

Chloride application (yes) 1.036 0.463 2.236 0.029 

Zinc application (yes) -0.387 0.200 -1.932 0.058 

Second Nitrogen application 

method (streamer) -0.219 0.288 -0.76 0.450 

Initial plant available water 0.001 0.0007 1.4 0.167 

Max Temp 0.337 0.218 1.547 0.127 

Min Temp -0.065 0.160 -0.408 0.684 

PTQ during critical period 0.713 0.863 0.826 0.412 

Residual 

standard 

error 0.569    

R² 0.721  p-value: <.001 
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Table 4-5- Regression coefficients from NC predictor variables included in the linear regression 

and RF models. 

Predictors Estimate Std.Error t value Pr(>|t|) 

(Intercept) -5.446 1.693 -3.216 0.002 

DOY105 2.8951 0.959 3.019 0.003 

DOY154 3.028 1.264 2.394 0.019 

Previous crop -corn (yes) -1.016 0.426 -2.382 0.020 

Height 0.128 0.052 2.468 0.016 

Phosphorus rate 0.022 0.007 2.99 0.003 

Total nitrogen rate 0.010 0.004 2.294 0.025 

Chloride application (yes) 0.945 0.436 2.165 0.034 

Zinc application (yes) -0.487 0.164 -2.953 0.004 

Initial plant available water 0.001 0.0006 2.349 0.022 

Max Temp 0.302 0.101 2.972 0.004 

Residual 

standard 

error 0.555    

R² 0.712  p-value: <.001 
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Table 4-6- Regression coefficients from SC predictor variables selected by LASSO. 

Predictors Estimate Std.Error t value Pr(>|t|) 

(Intercept) 3.911 4.27 0.914 0.363 

AUC 5.42E-05 0.027 0.002 0.998 

DOY133 1.672 2.5123 0.666 0.507 

DOY154 1.156 2.263 0.511 0.610 

Leaf rust 0.020 0.042 0.476 0.635 

Drought -0.086 0.089 -0.972 0.333 

Total nitrogen rate 0.003 0.003 1.09 0.278 

Insecticide seed treatment 

(yes) 

-0.736 0.335 -2.193 0.030 

Manure (yes) 0.413 0.385 1.073 0.286 

Sulfur application (yes) -0.15 0.199 -0.752 0.454 

First Nitrogen source – urea 

(yes) 

-0.528 0.264 -1.998 0.048 

First Nitrogen application 

method – broadcast (yes) 

-0.265 0.228 -1.162 0.248 

Second Nitrogen timing – 

tiller (yes) 

0.077 0.201 0.384 0.702 

Second Nitrogen timing – 

joint (yes) 

-0.668 0.271 -2.46 0.015 

Fungicide application (flag 

leaf stage) 

0.731 0.183 3.987 0.0001 

Max temp during grain-fill -0.137 0.079 -1.731 0.086 

Soil water holding capacity 

(upper 20 cm layer) 

0.296 0.108 2.726 0.007 

Initial plant available water 0.001 0.0008 1.575 0.118 

Cumulative rainfall 7.73E-05 0.001 0.064 0.949 

PTQ during critical period 0.881 1.807 0.488 0.626 

Residual 

standard 

error 0.662    

R² 0.723  p-value: <.001 
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Table 4-7- Regression coefficients from SC predictor variables included in the linear regression 

and RF models. 

Predictors Estimate Std. Error t value Pr(>|t|) 

(Intercept) 5.838 1.356 4.305 <.001 

DOY133 1.836 1.255 1.463 0.146 

Total nitrogen application 0.006 0.002 2.378 0.019 

Insecticide seed treatment 

(yes) -0.847 0.295 -2.872 0.005 

Manure (yes) 0.682 0.320 2.129 0.035 

First Nitrogen source – 

urea (yes) -0.423 0.213 -1.988 0.049 

First Nitrogen application 

method – broadcast (yes) -0.390 0.188 -2.068 0.041 

Second Nitrogen timing – 

joint (yes) -0.935 0.224 -4.16 <.001 

Fungicide application (flag 

leaf stage) 0.692 0.160 4.322 <.001 

Max temp during grain-fill -0.181 0.042 -4.227 <.001 

Soil water holding capacity 

(upper 20 cm layer) 0.333 0.101 3.286 0.001 

Residual 

standard 

error 0.650    

R² 0.706  p-value: <.001 
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Table 4-8- Regression coefficients from West predictor variables selected by LASSO. 

Predictors Estimate Std. Error t value Pr(>|t|) 

(Intercept) 20.049 8.262 2.427 0.021 

DOY133 9.833 3.879 2.535 0.016 

DOY140 1.516 4.289 0.353 0.726 

Previous crop – other (yes) -0.164 0.671 -0.245 0.808 

Fungicide application (flag 

leaf stage) 0.240 0.329 0.73 0.471 

Sowing date -0.043 0.022 -1.897 0.067. 

Initial plant available 

water 0.002 0.0009 2.281 0.030 

Max temp -0.546 0.216 -2.519 0.017 

Cumulative rainfall during 

grain-filling -0.001 0.004 -0.478 0.636 

Residual 

standard 

error 0.735    

R² 0.784  p-value: <.001 

 

Table 4-9 - Regression coefficients from West predictor variables included in the linear 

regression and RF models. 

Predictors Estimate Std. 

Error 

t value Pr(>|t|) 

(Intercept) 23.866 7.139 3.343 0.002 

DOY133 11.087 1.775 6.246 <.001 

Sowing date -0.052 0.019 -2.651 0.012 

Initial plant available water 0.002 0.0007 3.558 0.001 

Max temp -0.638 0.159 -4.006 <.001 

Residual 

standard 

error 0.706    

R² 0.773  p-value: <.001 

 

 4.3.2. Predicting winter wheat yields using NDVI, climate, and management predictor 

variables.  

Table 4-10 shows the descriptive statistics of training dataset and testing dataset using 

linear regression and RF. The subregional approach with additional use of management practices 

and environmental data along with NDVI greatly benefited the prediction models, although 
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overall linear regression still performed better than RF. Prediction error was higher using all 

field-yields than in subregions NC, SC and West, with a RMSE of 0.78 Mg ha-1. For instance, 

NC Kansas presented the lowest prediction error among all regions (RMSE=0.58 Mg ha-1). 

Contrasting the results from the previous Chapter 3 - , SC Kansas achieved the best fit between 

training and testing data with training results of R² of 0.70 and RMSE 0.65 Mg ha-1 and testing 

results R² 0.70 and RMSE 0.66 Mg ha-1.West presented the third best performance with 

prediction error of 0.69 Mg ha-1.  

In the RF the prediction performance across all fields was slightly higher than linear 

regression, with a R² 0.57 and RMSE 0.78 Mg ha-1. While better than the previous results from 

Chapter 2 -  and Chapter 3 - , RF persisted with overfitting. The RF training results are the in-

sample R² and RMSE from the prediction results using all dataset and shows high R² (>0.9) and 

low RMSE (<0.46 Mg ha-1), whereas the results from 10-fold cross validation overall showed a 

R² < 0.71 and  RMSE > 0.59 Mg ha-1, this discrepancy between results suggest that great 

overfitting is occurring in the model. 

 

Table 4-10. Descriptive statistics of training dataset and testing dataset using Linear Regression 

and Random Forest. 

                                                                                                        Regions 

Models Metrics  

 

ALL NC SC West 

Train Test Train Test Train Test Train Test 

Linear  

Regression 

R² 0.575 0.545 0.712 0.663 0.706 0.704 0.773 0.736 

RMSE (Mg 

ha-1) 

0.773 0.786 0.555 0.584 0.6505 0.662 0.706 0.693 

Random 

Forest 

R² 0.931 0.576 0.925 0.658 0.924 0.680 0.93 0.711 

RMSE (Mg 

ha-1) 

0.370 0.787 0.307 0.593 0.373 0.711 0.461 0.834 
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 Figure 4-4 shows the results from linear regression and RF yield prediction model in all 

field-yields and by subregions NC, SC and West in Kansas using NDVI, climate, and 

management predictor variables. Since the objective is prediction yield performance, the major 

focus is on the prediction error, the RMSE and MAE rather than R². Linear regression results 

showed that the yield estimation using all fields NDVI predictor variables achieved lowest 

performance compared to the subregions NC, SC and West. NC obtained the best results with a 

R² of 0.66, RMSE of 0.58 Mg ha-1 and MAE of 0.48 Mg ha-1, followed by SC with a R² of 0.70, 

RMSE of 0.66 Mg ha-1 and MAE of 0.52 Mg ha-1. West achieved a R² of 0.73, RMSE of 0.69 

Mg ha-1 and MAE of 0.59 Mg ha-1. Although with better results than all fields in Kansas, West 

showed the highest standard deviation from the 10 K-Fold cross-validation results, which may be 

related to its limited dataset (n=39). 

NC showed the lowest prediction error in the RF model with RMSE of 0.59 Mg ha-1, 

followed by SC with RMSE of 0.77 Mg ha-1, and when using all field-yields RMSE of 0.78 Mg 

ha-1. West Kansas showed the lowest performance in the RF model with a R² of 0.71, RMSE of 

0.83 Mg ha-1 and MAE of 0.69 Mg ha-1. All fields and NC Kansas presented similar performance 

than the linear regression results, however with slightly lower R² and higher RMSE and MAE. 
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Figure 4-4- Statistical performance of Linear regression (LR) and Random Forest (RF) yield 

prediction model in all field-yields and by subregions NC, SC and West in Kansas using NDVI, 

climate, and management predictor variables. 

 

Figure 4-5 compare the linear regression predicted and observed yield for all fields, and 

NC, SC and West subregions, respectively. There was a close clustering of data around the 

reference line for all field-yields between 3 to 4.5 Mg ha-1, while this was seen for the NC 

between 2.5 to 3.5 Mg ha-1. In NC, linear regression performed better predicting field with lower 

yields than higher yielding ones. SC the data was clustered between 3.5 Mg ha-1 and 4.5 Mg ha-1. 

Lastly, West displayed quite widely dispersed data, although some points are slightly clustered 

around 4 and 5.5 Mg ha-1. 
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Figure 4-5 - Comparison of predicted vs. observed yield for all field-yields; NC ; SC and West. 

 

 4.4. Discussion 

Linear regression and RF using the combinations of multiple sources (NDVI, climate and 

management) by subregions outperformed the single data source results in Chapter 3 - . 

Although machine learning models have been shown to outperform traditional linear regression 

models in explaining variability in data and for crop yield predictions (Cai et al., 2019; 

Schwalbert et al., 2018; Sun et al., 2022). In this study, linear regression performed better than 

RF. Some of the reasons related to the lack of improvement in the RF may be related to (i) the 

number of predictors for the given sample size, which may have driven down the effective 



122 

degrees of freedom of the RF modeling framework, (ii) the small number of observations due the 

lack of Landsat records matching with the criteria (see section 4.2.4.2. NDVI time series ), which 

limited the study from 656 field-yields to 220 field-yields, with smaller observations by 

subregions, NC (n=73), SC(n=109) and West (n=38), (iii) the level of complexity of the dataset . 

In this case, if the relationship between predictors and yields is mainly linear, that may affect the 

relative performance of the RF algorithm and lead the model to overfit.  

When analyzing all field-yields, RMSE was the highest compared to the other subregions 

with a 0.78 Mg ha-1, showing the best prediction for fields with yields between 3 to 4.5 Mg ha-1. 

Using a linear mixed-effects model, Lai et al., (2018) found that the integrated Landsat NDVI 

was useful to estimate wheat yield at within-field scale in Australia across large spatial regions. 

In contrast, Vannoppen and Gobin (2021) found weak relationship between integral NDVI and 

yields when predicting winter wheat yields in northern Belgium, differing from previous work 

where the integral NDVI along with climate data could explain up to 95% of variance in a 

regional approach in Latvia (Vannoppen et al., 2020).  

Foliar fungicide, precipitation and initial plant water storage were also observed in 

previous studies as important variables to determine wheat yields in Kansas. Using a 

parsimonious CIT approach, Jaenisch analyzed the full survey dataset (n=656 field-yields) used 

in this chapter, and the results indicated cumulative growing season rainfall as the most 

important factor associated with increased winter wheat yields. According to the authors, in 

fields receiving more than 388mm of precipitation, yields ranged from 3.0 to 5.6 Mg ha-1, with 

the highest yields related to foliar fungicide application during flag leaf. When receiving less 

precipitation, fields ranged from 2.5 to 3.0 Mg ha-1 and depended more on initial plant water 

storage. In a different study, Munaro et al.,(2020) used winter wheat variety performance trails 
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from U.S central Great Plains to quantify effects of management practices on crop yields 

variability and found that foliar fungicides were the variable more consistently associated with 

wheat yields across the region. For total N, the estimate coefficient showed that a smaller change 

in the mean of yield given one unit shift in the N variable than the other variables mentioned 

previously, however it shows as an important management fertilizer and potential predictor for 

winter wheat yields across the region. 

NC achieved the highest accuracy among all subregions and better prediction than using 

all field-yields across Kansas, with a prediction error of 0.593 Mg ha-1, and performing better in 

predicting in fields with yields between  2.5 to 3.5 Mg ha-1. The NDVI DOY 105 predictor 

variable presented the strongest significance with wheat yields with the highest t-value among all 

variables. DOY 105 is identified as the period of ascending NDVI values in the NC NDVI time 

series (Figure 3-4 ) and may be related to flag leaf and heading stages before it reaches the 

vegetation peak around DOY 126, close to anthesis. According to Lollato, (2018) the flag leaf 

period and the next last leaf is a key stage that accounts for 70 to 90 percent of the 

photosynthates used for grain fill, a main source of energy for grain development and growth 

(Kong et al., 2010). Previous studies have indicated the good performance of NDVI during 

heading stage to predict winter wheat yields. For example, Magney et al., (2016) found that 

using NDVI data during heading stage reduced the model RMSE error from 1.44% to 1.09%.  

Ren et al., (2008) could achieve a good prediction at the booting-heading stage with a relative 

error of yield estimation from 4.62% to 5.40% . Among the weather variables, mean maximum 

temperature during growing season had a positive effect in winter wheat yields. Lollato et al., 

(2020) found strong latitudinal gradients in temperatures from southern to northern locations in 

the U.S Great Plains, with mean maximum temperature and minimum temperature decreasing 
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from 26.2 and 11.0 ◦C in southern locations to 17.4 and 2.5 ◦C in northern locations. Thus, 

assuming the colder weather in northern Kansas than the other subregions, mean maximum 

temperatures during growing season still a positive factor related to increasing winter wheat 

yields, while rising temperatures in southern areas are often related to reduced yields (Hatfield et 

al., 2018; Lollato et al., 2017). In addition, increased yields due warmer temperatures in northern 

areas of the US Great Plains have been related to an increase of growing degree days during 

critical growth stages that can be beneficial for winter wheat yields (Stewart et al., 2018).Some 

studies have mentioned that rising temperatures is making winter wheat production more 

challenging in southern areas than in northern areas of the U.S Great Plains (Barkley et al., 2014; 

Zhao et al., 2022).  

Management of fertilizer, P,N and Cl presented a positive association with yields 

showing as good predictors of winter yields in NC. Curiously, Zn presented a negative influence 

on wheat yields. Some studies indicated that yield may affect mineral concentrations though the 

dilution effect in high yielding fields or concentration effect in low yielding fields (Fan et al., 

2008; Liu et al., 2014). Thus, high concentration of Zn in lower yielding fields in NC may 

explain the negative relationship with yields and does not necessarily imply that reducing Zn 

application overall could produce gains in yields (Morgounov et al., 2007) . Plant height was also 

associated with final yield. In a study using different biological measurements from a long-term 

winter wheat study in Oklahoma, USA, Girma et al., (2006) indicated that mid-season 

measurements of NDVI, chlorophyll content, total nitrogen uptake and plant height was found as 

good predictors of final winter wheat grain yield.  

NC showed greater predominance of predictor variables related to management 

fertilizers, while SC and West presented predictor variables, accounting with the management 
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ones, more related to weather as the most important for predicting winter wheat yield. SC and 

West regions are typically more exposed to heat stress and water deficit stress, respectively while 

NC presents a more favorable environment and cooler weather (Couëdel et al., 2021). As 

mentioned in (Jaenisch et al., 2021), the results provide insights about the greater importance in 

management practices and NDVI in determining yields in less erratic environments.  

SC achieved the second-best result with RMSE of 0.66 Mg ha-1.With the best prediction 

in fields with yields between 3.5 Mg ha-1 and 4.5 Mg ha-1.NDVI predictor variable DOY 133 was 

not as significant as weather variables and management variables. The most important predictors 

in SC were fungicide application during flag leaf, mean maximum temperature during grain 

filling, soil water holding capacity and second N application timing (during joint). Maximum 

temperature during grain filling showed a negative correlation with wheat yields. In SC Kansas 

winter wheat is often threatened by high temperatures, precipitation and evapotranspiration, a 

combination that supports the results of mean maximum temperature during grain fill and soil 

water capacity as good predictors of grain yield (Couëdel et al., 2021). 

SC greater moisture levels during growing season can also induce fungal disease 

development in winter wheat (Byamukama et al., 2019). Thus, fungicide application during flag 

leaf was positively related to grain yield and a potential good predictor for winter wheat yields. 

Nonetheless, application of foliar fungicide should be based on current weather conditions since 

drought stress during early spring is also a common phenomenon in the U.S Southern Great 

Plains (Cruppe et al., 2022). In this regard, although not included in the final model since it did 

not increase the prediction performance, drought was one of the variables previously selected 

from LASSO, presenting negative impact on yields in SC. The variable second N timing (during 

jointing) showed a significant negative impact in winter wheat yields in SC. However, due to the 
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already small dataset in SC, the number of observations of fields that applied second N during 

jointing stage was very small n=12, a larger dataset would provide more assertive results 

regarding the potential of estimation from this particular variable. Same results were observed 

for insecticide seed treatment and first application of N using urea, there was only 8 observations 

that applied seed treatment and 24 observations across the 109 samples.  

The result in SC shows that early NDVI predictor variables were removed from LASSO 

feature selection when adding weather and management predictor variables. These results 

emphasize that using NDVI at earlier stages of the growing season to predict winter wheat yields 

may provide misleading prediction of grain yields, especially in vulnerable environments, since 

extreme weather conditions during anthesis and grain-filling stages can negatively impact the 

final yields (Kadam et al., 2014; Vallentin et al., 2022). An accurate prediction will depend on 

meteorological and management conditions that will occur during grain fill and harvest. Unlike 

crops whose production consists of total above-ground biomass, wheat grain is contained in 

storage organs and its yield is sensitive to meteorological conditions at critical growth stages. 

Consequently, there is uncertainty of yield prediction, since the above-ground biomass may be 

high, but the grain yield may not be commensurately large (Reeves et al., 2005). 

In the West, the results showed that the NDVI predictor variable DOY 133, along with 

mean maximum temperature during growing season, initial plant available water and sowing 

were the most important variables for winter wheat yield prediction. The linear regression 

presented a RMSE of 0.69 Mg ha-1  and the highest R² among the other subregions, where the 

predictors could explain 73% of yield variability. The NDVI predictor variable DOY 133 

showed the strongest relationship with yields compared to the other variables. During DOY 133, 

the NDVI values were still high and the descending NDVI values shows in a slower pace than 
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the other subregions (Figure 3-4), perhaps describing a late development and maturity. The 

results agree with Jaenisch et al., (2021), that also found later maturity varieties related to higher 

yields than early maturity ones in West Kansas. Mean maximum temperature during growing 

season was the second most influential variable and had a negative impact in winter wheat yields 

in West Kansas. A handful of studies have indicated winter wheat yield loss due extreme 

temperatures and water supply variability in the semi-arid Western Kansas (Lin et al., 2017; 

Lollato et al., 2017). Analyzing hot-dry-windy (HDW) events in the U.S Great Plains, Zhao et 

al., (2022) found that HDW has increased from 1982 to 2020 and were the most impactful 

drivers for wheat yield loss, especially in the southwest Kansas and the panhandle areas of 

Oklahoma and Texas.  

Initial plant water storage appeared as an important component in predicting winter wheat 

yields in the West. Since West Kansas is a drought prone area, water supply is a key component 

for winter wheat growth, explaining 82% of yield variability in this region (Lollato et al., 2017). 

Lastly, sowing date had a negative effect in winter wheat yields in West. Optimum sowing dates 

are often earlier in the West than in NC and SC subregions in Kansas (Jaenisch et al., 2021; 

Munaro et al., 2020). Due the cooler air and soil temperatures, sowing starts earlier in the 

northwest around September 10th and lasts until the end of September, while in Southeastern 

Kansas it can start as late as October 5th. Thus, sowing in colder soils can delay wheat emergence 

and impact tiller development reducing winter hardiness during winter (Shroyer, 1996).  

Overall, empirical winter wheat yield modeling using NDVI predictor variables in 

Kansas is environmentally dependent, especially in SC and West Kansas. Nevertheless, the use 

of management region-specific variables provided important information, where NC showed 

management of fertilizers ( N, P, Cl) as good predictors and could be used along with NDVI to 
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estimate yields. SC and West predictor variables relied more on variables related environmental 

conditions, such as fungicide application, soil water storage, sowing data. For future work, a 

larger sample size could potentially improve machine learning modeling and prediction accuracy 

using NDVI, especially in NC and West Kansas. 
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Chapter 5 - Conclusion 

This dissertation focused on analyzing the potential of using satellite imagery to predict 

winter wheat yields at the field scale in Kansas. The study is quite unique since it uses remote 

sensing to predict yield at field scale across a large region that is environmentally heterogeneous. 

The work involved evaluating different satellite sensors, from coarse to moderate resolution, 

using Normalized Vegetation Index Data, and assessing winter wheat yields by more 

homogeneous regions using different types of data (NDVI, climate, and weather). 

In Chapter II, the study aimed to investigate the potential of satellite imagery of different 

resolutions to predict field-level winter wheat in Kansas. The results indicated an agreement 

between the NDVI time-series profiles and the phenological characteristics (growth stages) of 

winter wheat in Kansas, especially with Landsat USGS and MODIS. Landsat USGS presented 

the lowest prediction error among all sensors analyzed with an RMSE of 0.95 Mg ha-1 using 

linear regression. Generally, the NDVI predictor variables were not enough to explain field-scale 

winter wheat yield variability across much of Kansas. Nevertheless, the chapter presented 

interesting outcomes, such as using the NDVI weekly data as predictor variables, indicating that 

Landsat USGS NDVI variables performed better in the early season DOY 56 and near the end of 

the growing season (DOY 154) while MODIS NDVI variables performed better at peak season 

(from DOY 105-154). Overall, the results show the challenge in predicting winter wheat yields at 

field scale over a very heterogeneous region. Thus, when the NDVI is not enough to detect yield 

variability, it may require more spatial information regarding climate, soil characteristics, and 

management practices. In addition, it is important to highlight challenges and limitations in this 

chapter, such as the small dataset caused by mismatching field geolocations that reduced the 

number of winter wheat samples and missing data from satellite imagery; and not fully exploring 
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the higher temporal and spatial resolution, from Sentinel-2 AB due the dataset unavailability in 

2016. 

In Chapter 3, the main objective was to evaluate improvements in winter wheat yield 

estimation by more homogeneous regions using satellite imagery at the field scale in Kansas. 

NDVI time series presented to be capable of tracking seasonal changes and detect distinct 

patterns of winter wheat growth in NC, SC, and West Kansas. The results proved more accurate 

when using NDVI variables to predict winter wheat yields in more homogeneous regions (NC, 

SC, and West) than when using fields across all three regions combined. For instance, NC 

performed best with an RMSE of 0.71 Mg ha-1 followed by SC with a RMSE of 0.93 Mg ha-1 . 

SC presented a high prediction error, however, lower than when using all field-yields. NDVI 

during late growing season stages was the most associated with yields, showing that yield 

estimation accuracy reaches the maximum in the late growth stage. Wheat yield estimates made 

at the end of the growing season might allow state agencies to improve the accuracy of regional 

yield forecasting, however they are too late for promoting early to mid-season farm management 

decisions. The prediction model also showed that is possible to predict in the earlier stages of the 

growing season; however, its accuracy will depend on weather conditions. The results indicated 

that the improved performance in NC may be related to its favorable environment compared to 

SC and Western Kansas. Overall, the results confirmed the importance of using more 

homogeneous regions in Kansas to predict winter wheat yields using satellite imagery. 

In the fourth chapter different types of data, including satellite imagery, climate, soil, and 

management data, were used as the predictors to forecast the winter wheat yield by subregions at 

the field scale in Kansas. A zonal approach (NC, SC, West) that includes weather and 

management variables along with NDVI was found to improve field-scale yield estimation in 
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Kansas. NC, SC, and West Kansas performed better than when estimating yields using all field 

yields. NC achieved the highest accuracy among all subregions and better prediction than using 

all field-yields across Kansas, with a prediction error of 0.59 Mg ha-1 . In addition, the use of 

management region-specific variables provided important information, where NC showed 

management of fertilizers ( N, P, Cl) as good predictors and could be used along with NDVI to 

estimate yields. SC predictor variables relied more on environmental conditions, such as soil 

water storage and management practices associated with weather conditions (fungicide 

application). Although also relying on weather variables, West Kansas showed the potential of 

using NDVI predictor variables during grain filling stages and the importance of management 

region-specific variables such as showing date. In Chapter 3, the Linear regression model 

showed that it is possible to predict in earlier stages of the growing season; however, its accuracy 

will depend on weather conditions. Thus, empirical winter wheat yield modeling using NDVI 

predictor variables in Kansas is environmentally dependent, especially in SC and West Kansas. 

Linear regression performed better than RF across all studies, in chapters 2 to 4. Some of 

the reasons related to the lack of improvement in the RF may be related to (i) the number of 

predictors for the given sample size, which may have driven down the effective degrees of 

freedom of the RF modeling framework, (ii) the small number of observations of satellite 

imagery data matching the criteria, which limited the study to 160 fields when comparing 

satellite sensors and 220 fields when using only Landsat, consequently with smaller observations 

by subregions, NC (n=73), SC(n=109) and West (n=38), (iii) the level of complexity of the 

dataset. In this case, if the relationship between predictors and yields is mainly linear, that may 

affect the relative performance of the RF algorithm and lead the model to overfit. 
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Although there is still plenty of room for improvement, the main contribution from this 

work is showing that the NDVI is environmentally dependent, that means even though climate 

and management practices can drive substantial variability in the NDVI, there are still human 

practices and environmental conditions on the ground that satellite imagery was not able to 

perceive. For example, NC showed management of fertilizers as a good predictor and could be 

used along with NDVI to estimate yields. SC predictor variables relied more on environmental 

conditions than NDVI, such as soil water storage and management practices associated with 

weather conditions (e.g., fungicide application). Lastly, West Kansas showed the potential of 

using NDVI predictor variables during grain filling stages and the importance of management 

region-specific variables such as sowing date. Thus, this study provides important insights in 

using satellite imagery to predict winter wheat yields at field scale across different subregions, 

considering important subregional environmental and management practices that can potentially 

improve a winter wheat yield prediction model in Kansas. 

Among the limitations, Landsat imagery is usually constrained by missing data due to its 

low temporal frequency (one image every 16 days at best in most cases) and frequent cloud 

cover; thus, we anticipate that future work to use additional observations of the measured yield 

data to improve the ability of yield estimation at field scale in Kansas. We also consider the 

application of different vegetation indices and a combination with satellite imagery in the yield 

prediction model. 
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