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Abstract

Evaluating multi-modal public transportation networks is complicated and often the data

needed to conduct detailed analysis is not available or difficult to attain. Much research has

been done on methods to improve efficiency and redesign networks using mathematical and

simulated models, but there is a lack of holistic analysis on the state of current networks.

Holistic analysis allows efficient analysis requiring minimal equipment or software and can

be used to test different scenarios that affect traffic through the network easily. It can also

be used to determine where more critical analysis should be conducted.

This thesis develops a network of queues to evaluate parameters of a transportation

network consisting of multiple modes of transportation on a station-by-station basis, focusing

on wait times, station utilization, and queue lengths. The first formulation defines the

network as a set of nodes and arcs that are used to conduct the analysis. Second, an open

Jackson network is used to evaluate the effective arrival rate to then calculate the different

performance measures of the network. Finally, simulation using SIMIO is used to determine

the interarrival time data of passengers entering each station that is not available in published

data sets.

Using a case study and numerical experiments, this thesis analyzes both a network with

one mode of transportation and one with multiple modes. It also analyzes the impact of

changing aspects of these networks on performance measures of each station within it. We

observe what happens when passengers select a different transportation mode and how flow

is affected when stations are closed. Overall, we demonstrate that queueing theory provides

a method to quickly analyze a network without requiring complicated software.
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Chapter 1

Introduction

By 2050, it is expected that 70% of the population could be urbanized [2], up from the

56% currently living in urban areas [3]. In the United States, the Census Bureau estimates

that currently 80.0% of the U.S. population lives in an urbanized area [4]. While growth

is expected to occur mainly in developing countries that may not have an existing public

transportation system [2], the importance of the current transportation systems that already

exist for the 53 billion people around the world that use them cannot be discounted [1].

While many studies aim to determine how to improve public transportation systems, few

aim to evaluate the current systems holistically and instead choose to focus on a single route

or a single station to conduct a deep investigation into the efficiency of that part in the

system.

Figure 1.1: Passengers waiting at train station in Germany [1].
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Holistic analysis of a transportation network can be essential in identifying critical nodes

and links within the system as a starting point for where to focus more targeted study

[5]. It can also serve as a tool to conduct basic analysis of the effects of disruptions to the

network due to unforeseen incidents, whether from natural disasters or external threats to the

network [5]. In his book, Taylor [5] describes this type of analysis as vulnerability analysis.

The majority of the studies discussed in the section devoted to public transportation focus

on rail networks with mathematical models aiming to capture a specific vulnerability metric,

defined differently by each study. While this type of analysis can be useful and more robust

than what this research aims to show, these studies still require large amounts of data and

computation power to solve.

In this research, a Jackson Network is used to develop a queueing model of the transporta-

tion network to analyze the utilization of stations within the network as well as identify wait

times for passengers at each station. Using stochastic queueing theory allows us to determine

the stations most used and easily adjust parameters to study the effect on the network.

1.1 Queueing Models

According to Factory Physics, 3rd Edition queueing theory is the science of waiting in

a line and a queueing system is a system that combines an arrival process, service process,

and queue. Queueing theory is applied to queueing systems to “characterize performance”

using different parameters. These parameters include probability of there being a certain

number of items at a service station, expected wait time, expected time at a service station,

average number of items at a service station, and expected number of items in a queue for

a service station [6]. These parameters seek to give information about the steady state of

a system. Queueing systems are characterized by their arrival process, service process, and

the number of stations available to service an item [6]. Each process is characterized using

time distributions, with the most common being deterministic, exponential, and completely

general distributions [6].

There are three main topics where queueing theory has been significantly used to analyze
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systems: information systems, production systems, and service systems [7]. Queueing theory

began with Agner K. Erlang in 1909 and his paper on managing congestion in telephone lines

[8]. Since then, queueing theory has been instrumental in analyzing information systems to

include computer processing and Internet traffic [7]. Around the same time that queueing was

gaining popularity in the communications realm, mass production was emerging as was the

need to increase and gain efficiency [7]. To better analyze these systems, queueing theory was

applied. Much of queueing theory was devised with production and manufacturing systems

as the impetus [7]. Lastly, queueing theory started being applied to service systems, like

hospitals, call centers, and theme parks to analyze the system and inevitably change or alter

the design of them to decrease wait time [7]. While queueing theory applies to systems

where only one “service” is required before leaving the system, it is also possible to analyze

a network of queues, or when an item requires multiple different services before it exits the

system [8]. While there are multiple different ways to analyze a network of queues, the focus

of this research is on an open Jackson Network.

Jackson Networks were originally developed to model a queueing system for the overhaul

of aircraft engines [8]. However, more recently Jackson Networks have been used for planning

in medical centers [9, 10] and in supply chain analysis [11, 12]. A Jackson Network is

considered an open network of queues, wherein there is at least one arc allowing customers

to enter the network and at least one arc allowing customers to leave the network [13]. An

example of this type of network is shown in Figure 1.2. The network is fully defined once the

external arrival process and the number of servers at each queue, the routing through the

network, the service time at each queue, and the service discipline are defined [13]. In this

format, the routing through the network is stochastic and dependent on routing probabilities

[13]. It is possible then, that a customer could end up doing loops, or end up back in a queue

that they already were in.

Computer simulation is a common tool used to analyze queues. It is defined as a “com-

prehensive method for studying systems” [14]. Originally developed as a tool to help predict

the weather, computer simulation is now used by many different academic disciplines [14].

There are three main categories that simulation is used for: heuristics, predicting data that is
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Figure 1.2: Example of an open network of queues. [13]

not available or difficult to collect, and understanding complicated data that currently exists

[14]. Simulation is also a valuable tool to validate mathematical models used to explain real

stochastic phenomenon and vice versa [15]. Of these purposes, using simulation to generate

data and validate the mathematical model developed are utilized in this research.

1.2 Holistic Analysis and Transportation

Using holistic network analysis tools can be an instrumental way of identifying initial issue

or problems within an existing public transportation network. It is even more important now

in the years following the COVID-19 pandemic as ridership dropped significantly across all

modes of transportation [16]. Not only can it help identify issues, but it can also aid in

determining how a network responds to different potential situations, like closing a station

for repair or personnel manning issues. What if environmental factors change how riders use

the network and more people start riding the subway versus riding the bus? Determining

how passengers flow through the network and where congestion occurs are imperative to

any initial analysis of a public transportation network and there is surprisingly little data to

explore without modelling.

Therefore, conducting holistic network analysis through queueing theory is a valuable

tool. Queueing theory requires minimal amounts of data and can be applied easily using

spreadsheets, allowing for quick and dynamic analysis of multiple different scenarios quickly

without significant computational power [17]. Requiring minimal data is a key factor when
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considering public transportation, as often the data needed to conduct exacting evaluation is

not available. There are multiple reasons for the lack of data including limited data collection

budgets and inadequate tools for collection, especially in public transportation [18]. Even

in cities where data is collected, it can be old, or it can lack the specificity needed to run a

full study. For example, Washington D.C. collects ridership data and publishes it monthly.

However, the bus data only shows the number of riders on a given route and does not give

specifics for where the riders originate or get off the bus [19]. This makes finding any issues

or determining ramifications of network disruptions difficult.

1.3 Contributions of Research

This research contributes to the field of study by developing an easily accessible holistic

view of a transportation network with respect to the number of customers and their wait

time. It integrates simulation and Jackson networks to gain information on multi-modal

transportation networks. However, it is also beneficial in comparing the functionality of a

single mode of transporation within a transporation network to its function when combined

into a multi-modal system. Moreover, it develops an analysis method that is dynamic and

can be adjusted easily without the need for specialized software or long simulation runs.

This research provides transportation network managers with the ability to quickly check

scenarios of different types of station disruptions and make decisions on how to prioritize

or move assets around the network. It also allows network managers the ability to identify

more significant problems within the network that need detailed analysis.

1.4 Research Tasks

The main objective of this research is to develop a queueing model of a multi-modal

public transportation model to allow for holistic analysis of the network using expected

wait times, expected queue lengths, and station utilization. Simulation is utilized to create

essential arrival data to examine the network at the maximum feasible flow of passengers.
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Then the model is applied to a real transportation network as a case study to examine the

validity of the model and to conduct holistic analysis of the network. Three experiments are

conducted to demonstrate the type of analysis this model provides. Overall, this research

investigates the following: RQ1: What is the maximum flow of passengers into the network

every hour? RQ2: What are the ramifications on the network if passengers alter their mode

of transportation? RQ3: What are the ramifications on the network if stations of varying

types are closed for extended periods of time?

Answering these questions will provide understanding of the information that can be

collected from this type of analysis and its usefulness as an analytical tool for public trans-

portation networks.

1.5 Thesis Outline

This thesis is organized into five chapters. Chapter 2 provides a literature review of

material discussed in this thesis, focusing on applications of queueing theory and simulations

to solve transportation problems.

Chapter 3 discusses network and mathematical model formulation, which provides the

basic understanding for research questions two and three. It also discusses how to build the

simulation model that is used to answer research question 1.

Chapter 4 develops the simulation and mathematical analysis for the case study of a

small piece of the Washington D.C. public transportation network. This chapter provides

insight into all research questions.

Finally, Chapter 5 summarizes the model, results, and concludes with a discussion of

possible future work.
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Chapter 2

Literature Review

2.1 Stochastic Analysis and Public Transportation

2.1.1 Network Models

The intial focus of the literature review was on stochastic analysis of public transporta-

tion. Most articles focused on different stochastic elements in an optimization model to

improve public transportation efficiency or conduct network design. One such study aimed

to improve scheduling of public transportation using generalized stochastic Petri nets [20].

Another focused on identifying public transportation routes to deliver freight in accordance

with stochastic demand in an urban environment [21].

There were multiple papers using different stochastic applications to analyze rider be-

havior and choices. One focused on modeling the mode choice of riders in determining how

ride-sourcing services could be effectively integrated into the existing public transit network

[22]. Zhang et al [22] looked at two different means of transportation from origin to des-

tination, one using a ride-share service to get to the public transportation network, and

the other only using available public transportation. The stochastic elements used in this

paper were identified to be the wait time and fare for the ride share network. Another study

conducted research on mode choice behaviors using game theory [23]. This study aimed to

develop a method to determine when a passenger may choose to use public versus private
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transportation based on an identified indifference zone calculated by estimating the cost of

each mode of transportation. This cost was determined by combining the parameters of

traffic volume, value of time, travel time, and monetary cost. Then, the probability that a

passenger changes to a different mode could be expressed [23].

More recently, studies into incorporating shared autonomous vehicle dispatching into

public transportation have become more prevalent. Li et al [24] defined a car-sharing network

using autonomous vehicles with nodes representing both customers and vehicles, with arcs

connecting the vehicles and customers. Then they defined the waiting time for a customer

at a customer node as the probability of an arrival at any given time,

t

, the interarrival time between two different customers at the node, and a binary variable

representing if there is a customer at the node. Then the study continues to determine

a methodology to minimize the wait time of customers to solve. Levin [25] expanded on

Li et al’s [24] work to incorporate public transportation integration into the autonomous

ride sharing. However, while aspects of this research could be applied to the questions of

this thesis, integration of the public transportation had more effect on the optimization

methodology than in initial problem set up [25].

The basics for Li’s study were based on a study by Volkov [26], who developed a Markov-

based redistribution model for manned taxis. Again, customers would arrive in at nodes

throughout different regions in accordance with a Poisson process, where a routed taxi would

arrive to pick them up. Again, this was an optimization model to solve a pick up and delivery

problem that focused on minimizing the customer wait time [26]. While this arrival principle

can be applied to a public transportation network, customers are not waiting for a taxi at a

random location, they are waiting on a bus or train at a fixed location that is not changing.

Also, routing in the proposed problem is less specific. This study is not concerned with a

customer being delivered to an exact location. It is instead concerned at looking at each

node customers arrive to and determining network parameters associated with that node.
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2.1.2 Queueing Models

Markovian chains and their association with queueing were the most similar stochastic

ideas that could be applied to this research. Therefore, using this information the focus of

the literature review switched to queueing networks and how they have been applied to the

study of public transportation networks. Initial focus was specifically on Jackson Networks,

but then broadened to include queueing theory in general.

As with the stochastic analysis literature reviewed, the majority of articles establish a

Jackson Network model, and then optimize over a certain set of parameters to solve. For

example, Golam Alam et al [27] studied traffic congestion in urban areas by converting the

urban road networks into a Jackson Network and optimizing the waiting times to determine

appropriate service and arrival rates. In this research, they define each intersection as a

node in the network, and the roads with cars as the queues and the service and arrival

rates represent the flow of cars through the different intersections [27]. The optimization

they do aims to determine how to control the signals allowing traffic to move through the

intersections, while minimizing the time spent waiting at each intersection [27]. This is useful

for vehicle or car traffic analysis, but it does not help to gain a holistic understanding of the

network. It also solely focuses on private vehicles which can be useful in analyzing the road

network, but less so in analyzing public transportation. Analysis into public transportation

can provide insight into how to further improve those networks and therefore help alleviate

private vehicle congestion as public transit becomes easier.

A paper by Choi and Hanaoka [17] that aimed to examine a network holistically was

focused on humanitarian efforts and easily identifying wait times of aircraft at an airport

during disaster operations. In this study they applied a Jackson Network with servers repre-

senting varying aircraft purposes: medical, personnel transport, rescue, refueling, et cetera,

and applied different queueing disciplines like first come first serve, priority, and mixed to de-

termine which discipline reduced the waiting time of the aircraft on the ground [17]. Instead

of running an optimization on this problem, the goal was to determine the best system nu-

merically using easily accessible spreadsheets that would allow for more dynamic analysis as
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situations on the ground in emergencies changed [17]. While this paper shows good reasoning

for conducting holistic analysis of networks, it uses the Jackson Networks for analyzing the

ground network of an airport, not of an urban transit network.

Expanding the search more broadly to queueing and public transportation produced

more results, but nothing that aimed to provide holistic analysis of the network. In one

paper analysis of individual queues is presented for determination of whether a passenger

will continue to wait or will choose to leave the system [28]. Another discusses transient

behavior of networks, instead of analyzing the transit network using queueing theory [29].

Other papers focus on using the network analysis and queuing to optimize hub locations, like

one paper which discusses the best locations for car sharing system stations using queueing

theory [30]. In another paper, they focus on queue analysis at a single bus stop, but use

probability of late and on-time buses to determine the number of passengers in the queue

[31]. By modeling the queue as a bivariate Markov chain, they could conduct analysis on the

distribution of the queue length and the time before the next arrival. The systems defined in

this are solved numerically in discrete time [31]. This idea could potentially be applied as an

extension to this research, but as the focus was a holistic approach to quickly reviewing and

understanding the health of a network and where potential increased observation is required,

many of the other ideas examined are beyond the scope of the interest of this study.

2.2 Simulation Models and Public Transportation

Simulation has been broadly used in transportation studies to provide comparison and

validation of numerical methods mainly due to the complexity and scale of the networks

analyzed. For this research simulation is used not only as a comparison tool to validate

mathematical models, but also as a tool to create data that is otherwise not available and

too cumbersome to collect. As a review of multiple simulations stated, “it is necessary to rely

on tools such as simulation that allow the impact of changes observation without altering

the real system” [32].

In one paper forecasting passenger travel behavior, simulation is used to develop a “syn-
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thetic population” that allowed for initial estimates of passenger attributes [33]. They then

used these attribute distributions in their mathematical model to determine the routes a pas-

senger with a specific selection of attributes would travel. The initial simulation was derived

from population data and the resulting simulated population was compared to the original

data to validate the results [33]. This is similar to the simulation used in methodology of

the thesis, as simulation is used to develop the data needed to solve the mathematical model

due to a lack of available data.

Solecka and Zak [34] used simulation in a more traditional sense, using it to design alter-

native solutions by eliminating and changing components of the system. Then using their

results from the simulation, they could compare it to results from the current transportation

network. Using the simulation software, they compared travel times, waiting times, num-

ber of passengers, and the number of transfers. They also identified the ridership of up to

five different modes of transportation [34]. The simulation software used in this thesis has

a similar functionality, but as the purpose is to conduct network analysis quickly, running

simulations for anything outside of the basic data was beyond the scope of this study.

Another study used simulation data envelopment analysis to evaluate performance of

specific bus routes [35]. Using four quantifiable indexes calculated by the authors and a

virtual input, a value for operational efficiency was determined, and used to compare the

routes during peak hours and off-peak hours [35]. The operational efficiency was calculated

using MATLAB and a series of linear programming problems assigning weights to different

indexes, maximizing efficiency of each route [35]. While a useful way to analyze and compare

individual routes easily, this method failed to examine the network as a whole.

2.3 Gaps in Literature

In reviewing applicable literature, no papers were found integrating simulation with Jack-

son networks to conduct overall network analysis of public transportation networks. Many

methods aimed to optimize specific items in a single mode transportation network, but none

analyzed a multi-mode network using Jackson networks. Also, simulation was rarely used
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to develop data for use in a mathematical model. More importantly, queuing analysis and

simulation have not been used to develop an overview of the functioning of a single mode or

multi-mode public transportation network. In combining the use of simulation to develop

data and Jackson networks to conduct a holistic analysis of multi-mode public transporta-

tion networks, this research provides a method to conduct network diagnostics and allow

network managers the ability to make decisions quickly.
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Chapter 3

Stochastic Model for Public

Transportation Network

3.1 Mathematical Model: Multiple Modes of Trans-

portation

A public transportation network can be constructed as a network using a fully connected

graph G = (N,A), with a finite set of nodes N = {1, 2, 3, . . . ,m} and bidirectional arcs

A = {(i, j), (k, l), . . . , (s, t)} joining nodes in N [36]. In this case, each station represents

a node, and the arcs represent the routes connecting one station to another. The arcs are

bidirectional as someone could move from station i, iϵN to station j, jϵN , but also move

from station j back to station i. See Figure 3.1.

A person can be modeled traveling through the network, from node i to node j, using

a valid path, P , where P is a sequence of arcs such that the initial node of each arc is

the same as the terminal node of the preceding arc and each node is distinct [36]. In the

example in Figure 3.1, there are multiple valid paths from node 1 to node 3: P = {(1, 3)},

P = {(1, 2), (2, 3)}, and P = {(1, 2), (2, 4), (4, 3)} are three examples of valid paths.

Note that when considering multiple modes of transportation (bus and subway systems),
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Figure 3.1: Bidirected graph G = (N,A), where N = {1, 2, 3, 4} and A =
{(1, 2), (1, 3), (1, 4), (2, 3)(2, 4), (3, 4)}.

separating the full graph into two sub-graphs is necessary, Gb,Gs, where each subgraph

Gl = (Nl, Al), l = b, s may not be fully connected as some paths may only be valid in the bus

or subway network. Figure 3.2 presents an example of the two proposed subgraphs. Note

that the associated arcs within each sub-graph are different, showing the different routes the

transit modes follow, resulting in a complex model.

(a) Subgraph Gb = (Nb, Ab) (b) Subgraph Gs = (Ns, As)

Figure 3.2: Subgraphs from original graph

Additionally, in a public transportation network, the goal is to move people from a

starting point to an end point, but the stochastic nature due to uncertainty in travel times

and random choice of transportation modes adds complexity to the model. A stochastic

model is needed to fully capture the dynamics of the system. In literature, such models are
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explained using a Jackson network.

3.2 Jackson Network Model

To calculate parameters of the network, queueing theory must be considered in modeling

the problem. As each station has a flow of people external to the network entering the

system, the proposed system was modeled with two sub graphs using a Jackson network,

following M/G/1 queuing.

The previous subgraphs, Gb and Gs, are defined as networks corresponding to the bus and

subway networks respectively. It is assumed that each node ib, ibϵNb and is, isϵNs, where ib,is

represents the bus and subway stations at node i, iϵN in the original graph. The external

arrival rate of passengers into the system at node i is annotated to be γi, where γi = 1/ti

and ti is the mean interarrival time of passengers to station i. Therefore, the arrival rate

of passengers into node il, l = b, s, is represented by γil = γiril , l = b, s and ril represents

the probability of a passenger selecting transportation mode l on entering node i, l = b, s.

Then, at any node ib or is the server processes each passenger at a service rate of µib and µis

following a general distribution. After being serviced at node il passengers proceed to the

next station jl with probability pil,jl [8]. At each station, passengers can leave the network

as well, with probability qil = 1−
∑

jlϵNl
pil,jl . A depiction of this is shown in Figure 3.3.

Using this general framework, the average arrival rate to each node il, λil , is the mean

exponential external arrival rate, γil , plus the sum of the external arrival rates to node il

from nodes within the system as shown in Equation 3.1 [13].

λil = γil +
∑

jlϵNl
λjlpjl,il , ilϵNl (3.1)

By letting λl = [λ1l , λ2l , . . . , λml
], γl = [γ1l , γ2l , . . . , γml

], where ml is the total number

of nodes in Nl, and Pl is the ml ×ml routing matrix [pil,jl ], Equation 3.1 is rewritten to be

Equation 3.2 [13].
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Figure 3.3: Nodal breakdown of proposed Jackson Network.
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λl = γl + λlPl (3.2)

Solving for λl results in Equation 3.3 [13]:

λl = γl[I − Pl]
−1 (3.3)

Now with the average arrival rate performance measures of station utilization, average

queue length, average number in the system, and average time in the system can be defined.

First, these parameters are defined per station or node il. At station il the expected service

rate distribution and the average arrival rate, λil are known. Using the service rate distribu-

tion, the mean service rate, µil , the standard deviation, σil , and the coefficient of variation,

cv,il , can be determined for each station.

First the utilization of station il is defined as Equation 3.4 [37]:

ρil =
λil

µil

(3.4)

Next, the average time spent in the queue at station il, wq,il (Equation 3.5 [37]) and the

average time spent at station il, wil (Equation 3.6 [37]) is calculated.

wq,il =
1 + cv,il

2

2
· ρil
1− ρil

· 1

µil

(3.5)

wil =
1

µil

+ wq,il (3.6)

Then, the number of waiting passengers, Lq,il (Equation 3.7), and the number of passen-

gers at station il, Lil (Equation 3.8) are calculated using Little’s Law [37].

Lq,il = λilwq,il (3.7)

Lil = λilwil (3.8)
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To get the expected time people spend waiting in line for each mode of transportation,

Wq,l, the time spent at each station is summed across all nodes. See Equation 3.9 [6].

Wql =
∑
ilϵNl

wq,il (3.9)

The expected number of passengers in the queue for each mode of transportation, Ql, is

also calculated by summing the expected number in the queue, Lq,il (Equation 3.10 [6])

Ql =
∑
ilϵNl

Lq,il (3.10)

Finally, the expected number of passengers in the system waiting for and boarding each

mode of transportation, Tl, is calculated by summing Lil for all nodes (Equation 3.11 [6]).

Tl =
∑
ilϵNl

Lil (3.11)

The key to being able to evaluate system performance using the numerical method is

to determine the external arrival rate to each node. The external arrival rate is the rate

at which passengers not currently in the bus or subway network enter the system. Data

collection to determine the external arrival rates is a challenging task and is not found in

available data sets. Therefore, a simulation model is developed to determine arrival rates.

3.3 SIMIO Modelling

The purpose of constructing a simulation model for this problem is to determine the

maximum feasible flow of passengers into the network due to a lack of data allowing direct

calculation and data analysis. As the primary purpose for research is holistic network anal-

ysis, optimization software included in the simulation program to optimize flow was used.

The utilization of each station is maximized by iterating over the mean interarrival time of

passengers to each station. The rest of this section describes how the simulation model was

built.
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Each station has an external flow of passengers into the system of people not already in

and flowing through the network. As discussed in Section 3.2, to conduct analysis on all

stations for all modes of transportation, it is necessary to determine the effective arrival rate

λil to each station or node il. To do this, the overall external arrival rate γi to each node i

must be determined first. Therefore, the network is modeled and the mean interarrival time,

ti, is optimized.

First, the stations or nodes of the network are modeled as servers, separating out the sub-

graph nodes into different servers. For example, if node 1 exists in both Nb and Ns, then two

nodes 1b and 1s are modeled as two servers, represented as BusStation1 and SubwayStation1.

This allows for an easier method to manage the different processing times of the modes.

Servers were connected by unidirectional time paths, specifying the average time between

each station in accordance with the associated sub-graphs. Unidirectional paths were used

to ensure the correct travel between servers was maintained, and to ensure proper flow of

units in the system. Maintaining the example from Figure 3.2, the SIMIO model for the

two different sub-graphs is shown in Figure 3.4. Note that this only includes the servers and

paths or arcs between them. For this research, it is assumed that once someone selects a

mode of transportation, they remain in it and do not switch out.

Each server was connected to a sink, allowing for the representation of a passenger leaving

the system from any node or station in the network. Time was not taken into account for

theses connections as once a passenger chose to leave the network, the time it took for them

to leave was inconsequential. To determine routing within this model, output nodes on the

servers were set to be routed “By Link Weight”. The link weights associated between the

nodes were the transition matrix Pl defined in Section 3.2, and the link weights to the sinks

from server il are qil . Figure 3.5 shows the model with sinks connected and path weights

defined.

Then, the external sources were connected into the network. Each source was connected

to its associated servers. For example, in a two-mode network as proposed, “Source1” would

be connected to “BusStation1” and “SubwayStation1” as it provides the external flow for

both modes of transportation. If there were three modes of transportation at any given
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Figure 3.4: SIMIO model of servers and time paths showing the sub-graphs as specified in
Fig. 3.2
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Figure 3.5: Partial SIMIO model of servers and sinks example.

station, the source would be connected to three different servers. Figure 3.6 shows the full

model built in SIMIO for the example network. The sources all had exponentially distributed

interarrival times, ti, that were modeled as a state property, allowing the internal SIMIO

software to optimize ti for each source.

Once the base model was built, optimization was conducted using the OptQuest for

SIMIO add-in. The control, or independent variables were the different interarrival times,

ti, defined earlier as state properties in SIMIO. Response or dependent variables were set

corresponding to each node il to be the simulated utilization of each station. A multi-

objected weighted optimization model, with the subway stations weighted twice as much as

the bus stations was used to prioritize maximizing utilization of the subway network over the

bus network. An upper bound, ubl, was established for each response variable corresponding

to the maximum utilization of each station, or the percentage utilization that would ensure

infinite queues would not occur. The simulation run time was set to be a large value, M ,

allowing the simulation to reach steady state and to relate to the steady state calculations
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Figure 3.6: Full SIMIO model example.

of queueing theory. A warm-up time of M/20 was established to ensure the system reached

steady state before data was collected. The resulting optimal interarrival times were used

to calculate the external arrival rates.
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Chapter 4

Numerical Studies

4.1 Case Study for Bus and Subway Network

To demonstrate the effectiveness of this model, this research considered a simplified

network of the bus and subway systems of Washington D.C. and uses realistic ridership data

to calculate the performance measures using the proposed model.

The Washington D.C. public transportation network is vast and sprawling, with subway

and bus routes stretching miles outside the city to accommodate commuter traffic, as well

as containing many smaller local routes running across the city. To narrow the scope of the

research and reduce complexity, the focus was restricted to the commuter bus routes, shown

as thick black lines in Figure 4.1a [38]. Commuter routes were selected as it is expected

that those routes would have the most passengers on any given day. The analysis only

considers stations where multiple bus routes converge and a passenger could change between

bus routes. The stations selected are shown as light gray circles in Figure 4.1a [38].

Then the subway network was incorporated. Within the area considered for the bus

network, there were multiple subway stops. Like the bus network, to limit complexity,

subway stations that connected to the identified bus network and stations where a passenger

could change routes were the only ones considered. The resulting subway network is laid

over the bus network in Figure 4.1b [38], with dashed lines representing the subway lines
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and darker gray circles corresponding to the subway stations. Note that the map is not to

scale and the subway stations are generally underneath the bus stations.

(a) Bus network used for the case study. (b) Subway network overlaid on bus network.

Figure 4.1: Bus and subway networks used as a part of the case study. The bus network is
shown in thick black lines, with selected stations shown as light gray circles. The subway
network is shown as dashed black lines, with selected stations shown as dark gray circles.

The resulting network is comprised of nine bus stations and five subway stations that

moved passengers throughout the busiest areas of Washington D.C. Figure 4.2 shows the

simplified network not on a map. The bus routes are shown as solid lines and the subway

routes are shown as dashed lines. For simplicity, the subway and bus stations that overlap

are combined in this drawing.

Figure 4.2: Full case study network including both bus, shown as solid black lines, and
subway routes, black dashed lines.
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Using this basic network, the following undirected graph G = (N,A), where

N = {1, 2, . . . , 9, L} , A =


(1, 2), (1, L), (2, 3), (2, 5), (2, L), (3, 4), (3, 5),

(3, L), (4, L), (5, 6), (5, 8), (5, L), (6, 7), (6, 9),

(6, L), (7, 9), (7, L), (8, 9), (8, L), (9, L)


is shown in Figure 4.3. In this graph, arcs to node L represent passengers choosing to leave

the network. Subgraphs, Gb and Gs are shown in Figures 4.4a and 4.4b, respectively. The

nodes represent the stations and the undirected arcs are the routes between those stations.

Figure 4.3: Full graph of proposed network, G = (N,A).

(a) Subgraph, Gb = (Nb, Ab). (b) Subgraph, Gs = (Ns, As).

Figure 4.4: Subgraphs of proposed networks: Gb = (Nb, Ab) and Gs = (Ns, As).
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4.2 Experiment 1: Bus Only Network

The simulation model for the bus only network was set up as described in Section 3.3, with

the travel time as 15 minutes, the average time between the different stations as per the

Washington D.C. transit authority website [19]. See Figure 4.5a for simplified SIMIO bus

model construction. Each server was modeled to have a service time corresponding to the

time it takes for a person to load a bus. Stephen Arhin et al [39] presented time data for the

length of time it takes to board a bus, that is modified in this research to also accommodate

for the capacity of a bus and the time between bus arrivals. In this way, changes in bus

capacity or in arrival times of buses can be accounted for within the service time of each

station. The determined service time follows a triangular distribution with the minimum

time of 0.33 minutes, the maximum time of 0.54 minutes, and the most likely time of 0.43

minutes. The proposed SIMIO model is shown in Figure 4.5b.

Ridership data and educated judgements were used to assign probabilities to the decisions

a passenger would make at each station. The ridership data used was a filtered subset

from the Washington Metropolitan Area Transit Authority (WMATA) ridership data [19],

filtered by bus route from January 2015 to October 2022, which provided the total number

of passengers per day on a specific route. Bus routes used in this analysis were: 31, 38B, 32,

42, 52, S2, X2, 80, and 70.

To determine the probabilities of a passenger moving throughout the network, the passen-

gers flowing along a specific route was considered. For example, say a passenger is currently

at Station 2 in the proposed network. They can either leave the network or move to a dif-

ferent station. The linkages between Station 2 and Stations 1 and 3 may be composed of

different bus routes. Therefore, the total number of passengers traveling along routes into

and out of Station 2 are summed together, then the specific link is analyzed. So, if there

were a total of 1000 passengers traveling into and out of routes that Station 2 services, and

only 100 passengers travel the routes between Station 1 and Station 2, the probability of a

passenger moving from Station 2 to Station 1 is 10%. Applying this method to the entire

network the probability matrix Pb and qb were defined.
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(a) Simplified simulation model.

(b) Full simulation model.

Figure 4.5: Simplified and full simulation models of bus only network.
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Pb =



0 0.50 0 0 0 0 0 0 0

0.50 0 0.23 0 0 0 0 0 0

0 0.20 0.48 0.27 0 0 0 0 0

0 0 0.59 0 0 0 0 0 0

0 0 0.08 0 0 0.36 0 0.20 0

0 0 0 0 0.40 0 0.42 0 0.16

0 0 0 0 0 0.42 0 0 0.29

0 0 0 0 0.50 0 0 0 0.29

0 0 0 0 0 0.16 0.29 0.13 0



, qb =



0.50

0.27

0.05

0.41

0.36

0.02

0.29

0.21

0.42


An initial run was conducted for this initial study and determined that the most utilized

stations were 3, 5, and 7. Therefore, as optimization of the interarrival times was conducted,

we set the weights for the SIMIO optimization to prioritize the overloaded bus stations to

be twice that of the other stations. The upper bound for all response variables were set

to 80%. The optimal interarrival times found through SIMIO experimentation are found in

Table 4.1.

Table 4.1: Optimized interrival times for bus only network in minutes and associated uti-
lization with 95% confidence.

Station 1b 2b 3b 4b 5b
tib 1.0 2.8 2.4 2.5 3.7

ρib (%) 77.6± 0.6 68.4± 0.6 70.6± 0.3 51.1± 0.4 79.9± 1.0

Station 6b 7b 8b 9b
tib 4.6 2.6 4.5 1.5

ρib (%) 79.7± 0.8 71.2± 0.3 35.1± 0.5 72.6± 0.4

Then using Equation 3.3, the effective arrival rate, λib , could be calculated. The effective

arrival rates for the initial case study for one mode of transportation is in Table 4.2. Overall,

based on this effective arrival rate, 236 passengers per hour enter the system on average.

Then, the performance measures were calculated. On average, in the steady state of the

system, the utilization of a station is 67.3%, a passenger spends 8.85 minutes waiting for
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Table 4.2: Effective arrival rate, λib , in people per minute.

Station 1b 2b 3b 4b 5b 6b 7b 8b 9b
λib 1.00 0.36 0.42 0.40 0.27 0.22 0.38 0.22 0.67

and boarding the bus, there are a total of 8 passengers waiting for a bus, and a total of 14

passengers waiting for and actively boarding the bus at any given time. Table 4.3 shows the

totaled results.

Table 4.3: Expected wait time, expected number in queue, and expected number of passen-
gers waiting and boarding in the bus network.

Wqb 8.85 min
Qb 8
Tb 14

Note, the utilization calculated using queueing theory and the simulated values have

an average difference of 0.17%, therefore validating the mathematical model. Also, the

utilizations of Stations 5 and 6 are at the upper bound. This means that Stations 5 and 6

are not able to tolerate an increase in flow, and that more buses may be required to drop

the service times of those stations. As expected, the other parameters associated with both

Station 5 and 6 are also higher than those of the other stations. In fact, the time at Stations

5 and 6 accounts for 30% of the total time spent in a queue or boarding. Table 4.4 shows

the full results for each station.

Table 4.4: Performance measures for bus only network by station.

Station 1b 2b 3b 4b 5b 6b 7b 8b 9b
ρib 0.77 0.68 0.70 0.51 0.80 0.80 0.71 0.35 0.72

wq,ib (min) 0.75 0.47 0.52 0.23 0.88 0.86 0.54 0.12 0.58
wib (min) 1.19 0.90 0.95 0.66 1.32 1.30 0.97 0.55 1.01

Lq,ib 1.34 0.74 0.84 0.27 1.63 1.59 0.89 0.10 0.96
Lib 2.12 1.42 1.54 0.78 2.43 2.38 1.60 0.45 1.69
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4.3 Experiment 2: Bus and Train Network

Once a single mode of transportation was validated, the two-mode model for the bus and

subway networks was built. All aspects of the bus only network remained the same in this

model. As stated previously, it was assumed that passengers did not switch their mode

of transportation once they entered it. The simplified SIMIO model is shown in Figure

4.6a. The dashed lines in the figure represent the flow through the subway network and

solid lines represent flow through the bus network. In this model, Sources 2, 5, 6, 7, and

9 supply passengers to the bus network and the subway network because at these stations

both a bus stop and subway station exist. Therefore, a passenger can choose which mode of

transportation to take. The full SIMIO model is shown in Figure 4.6b.

The processing time at the subway stations was calculated using ridership data from the

WMATA ridership data [19], filtered by station from January 2015 to October 2022. The

stations used were: Foggy Bottom, McPherson Square, L’Enfant Plaza, Metro Center, and

Gallery Place. The ridership data gave the number of passengers entering a station during

rush hour and a daily total number of passenger entered. Using the number of passengers

entering and the capacity of the train, the time to board was determined by averaging

the time in between trains by the number of passengers that would need to board it. By

calculating this value for the two rush hours and daily total, the minimum, maximum, and

most likely time to board the train was determined.

Just like the bus network, ridership data was used to determine the likelihood a passenger

moved from one station to another resulting in probability matrix, Ps. In this model, Pb,

remained the same as given in Section 4.2. To determine the probability that a passenger

would take either the bus or subway, the ratio of total riders across the stations examined

was used. Therefore, from shared sources in the simulation, 71% of passengers were directed

into the subway network, and 29% were directed into the bus network.
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(a) Simplified simulation model.

(b) Full simulation model.

Figure 4.6: Simplified and full simulation models of bus and train networks.
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Ps =



0 0.50 0 0 0

0.33 0 0.33 0 0

0 0.33 0 0.33 0

0 0 0.33 0 0.33

0 0 0 0.5 0


, qs =



0.50

0.34

0.34

0.34

0.50


Then the same procedure was followed as described in Section 3.3 to determine feasible

interarrival rates. The results from the SIMIO optimization are found in Table 4.5.

Table 4.5: Optimized interrival times for bus and subway network in minutes and associated
utilization with 95% confidence.

Station 1 2 3 4 5
tib 1.5 0.4 2.5 3.6 1.7

ρib (%) 68.9± 0.4 79.7± 0.6 68.5± 0.5 44.8± 0.5 79.8± 0.6
ρis (%) - 25.6± 0.1 - - 23.7± 0.2

Station 6 7 8 9
tib 1.3 1.2 1.7 0.7

ρib (%) 72.9± 0.5 58.9± 0.4 49.4± 0.4 60.9± 0.5
ρis (%) 20.3± 0.2 21.1± 0.2 - 17.1± 0.2

Solving for the effective arrival rates using Equation 3.3, the effective arrival rates, λib

and λis , were calculated. The effective arrival rates for the bus and subway network is in

Table 4.6. This results in an average of 438 passengers entering the system every hour,

almost doubling that of the bus only network.

Table 4.6: Effective arrival rate, λib and λis , in people per minute.

Station 1 2 3 4 5 6 7 8 9
λib 1.58 1.83 1.58 1.04 1.84 1.68 1.35 1.14 1.41
λis - 2.55 - - 2.36 2.02 2.12 - 1.71

The effective arrival rates allow us to solve the system parameters we are interested in.

On average, in the steady state of the system, the utilization of a bus station is 64.7%,

while the average utilization of a subway station was 21.5%. Passengers should expect to
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spend 8.18 minutes waiting for and boarding the bus, but only 0.58 minutes waiting for and

boarding the subway. Also, there are a total of 7 passengers waiting for the bus as opposed

to only one passenger waiting on a subway at any given time. Overall performance measures

of both networks are shown in Table 4.7.

Table 4.7: Expected wait time, expected number in queue, and expected number of passen-
gers waiting and boarding in the bus and subway network.

Wqb 8.18 min Wqs 0.58 min
Qb 7 Qs 1
Tb 13 Ts 2

Adding in the subway network, the average utilization of bus stations does not signifi-

cantly change. In this case, this is because the interarrival times were decreased, resulting

in more passengers overall entering the network. Note that the average difference between

utilization calculated using the mathematical model and the simulation results was less than

half a percent. Table 4.8 shows the results for each bus station.

Table 4.8: Performance measures for bus stations in the two-mode network model.

Station 1b 2b 3b 4b 5b 6b 7b 8b 9b
ρib 0.69 0.79 0.68 0.45 0.80 0.73 0.59 0.49 0.61

wq,ib (min) 0.48 0.84 0.47 0.18 0.86 0.58 0.31 0.21 0.34
wib (min) 0.91 1.28 0.91 0.61 1.29 1.02 0.74 0.65 0.77

Lq,ib 0.76 1.55 0.75 0.18 1.57 0.98 0.42 0.24 0.48
Lib 1.44 2.34 1.43 0.63 2.37 1.71 1.01 0.74 1.09

From the utilization calculated from each subway station, the subway can facilitate the

flow of more passengers, making it less vulnerable to disruptions in the network. As with the

bus network, the calculated utilization is less than half a percent different than the simulated

values, validating the mathematical model. The full results for each train station are in Table

4.9.

In validating this model against the simulation there is only an average difference of

0.20% between the simulated utilizations found in SIMIO and the calculated utilizations

using the mathematical model. Therefore, the mathematical model is valid and can be used
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Table 4.9: Performance measures for subway stations in the two-mode network model.

Station 2s 5s 6s 7s 9s
ρis 0.26 0.24 0.20 0.21 0.17

wq,is (min) 0.02 0.02 0.01 0.01 0.01
wis (min) 0.12 0.12 0.11 0.11 0.11

Lq,is 0.05 0.04 0.03 0.03 0.02
Lis 0.30 0.28 0.23 0.24 0.19

to analyze the network. Also of note, is that by adding in the subway network twice as many

people can enter the network within an hour, however it does little to decrease the wait time

or number of people in the queues for buses.

4.4 Experiment 3: Increasing Percentage in Train Net-

work

After running two experiments to determine the system parameters, what changes would

occur if the ridership changed, and more riders elected to ride the subway? Therefore, the

model was so that 85% of passengers entering the network would choose to ride the subway,

ris = 0.85 and rib = 0.15. All other parameters remained the same.

Keeping the same interarrival times determined in Section 4.3 to give accurate com-

parison, then if more people elect to take the subway, unsurprisingly, the subway station

utilization increases, and the bus station utilization decreases. On average, the utilization

of bus stations decreased by 22.8% and the utilization of subways increased by 19.7%. See

Table 4.10 for overall system parameters.

Table 4.10: Expected wait time, expected number in queue, and expected number of pas-
sengers waiting and boarding in the bus and subway network if the ridership percentage of
the subway is increased.

Wqb 5.95 min Wqs 0.60 min
Qb 2 Qs 1
Tb 7 Ts 2
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With less utilization in the bus network, the total time waiting and boarding decreased

by 27.3% and the total number of passengers waiting in queues dropped 64.2%. However,

the decrease in bus stations not connected to subway stations saw less of a change. On

average, utilization of stations not connected to subway stations decreased by only 13%,

while the utilization of stations connected to subway stations dropped 30%. The remaining

performance measures showed similar trends as shown in Table 4.11. Therefore, as ridership

on subways increases, more attention should be paid to the standalone bus stations.

Table 4.11: Performance measures for bus stations if subway ridership increases.

Station 1b 2b 3b 4b 5b 6b 7b 8b 9b
ρib 0.57 0.57 0.59 0.40 0.61 0.49 0.38 0.43 0.41

wq,ib (min) 0.29 0.29 0.32 0.15 0.34 0.21 0.13 0.16 0.15
wib (min) 0.73 0.72 0.75 0.58 0.78 0.65 0.57 0.60 0.58

Lq,ib 0.39 0.37 0.43 0.14 0.48 0.24 0.12 0.16 0.14
Lib 0.96 0.94 1.02 0.54 1.09 0.74 0.50 0.59 0.55

While significant differences occurred in the bus network by dropping the percent of the

passengers entering the network, the changes in the subway network were more subtle. The

total time spend waiting and boarding only increased by an average 3.6% and, though the

total number of passengers waiting in the queue doubled, the number of passengers rounded

to the nearest whole person was still only one. The full results for the subway network are

shown in Table 4.12. In this way, the subway network remains less vulnerable to network

disruption and an increase in ridership by 14% does not significantly affect it.

Table 4.12: Performance measures for subway stations if subway ridership is increased.

Station 2s 5s 6s 7s 9s
ρis 0.31 0.28 0.24 0.25 0.21

wq,is (min) 0.02 0.02 0.02 0.02 0.01
wis (min) 0.12 0.12 0.12 0.12 0.11

Lq,is 0.07 0.06 0.04 0.05 0.03
Lis 0.38 0.34 0.29 0.30 0.23
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4.5 Experiment 4: Impact of Disruptions in Proposed

Network

The third experiment examined the effect of service disruptions within the network using

the base interarrival times and bus versus subway routing decisions used in Section 4.2. The

three disruptions examined were in a train station, a bus station, and in both the train and

bus stations. Station 7 was selected for disruption as it was one with the highest utilization,

but not the highest, which would theoretically create more changes in the networks.

4.5.1 Disruptions in Train Stations

In this first scenario, subway Station 7 was shut down. Passengers were allowed to enter the

bus station, but not the subway station. Also, the subway was allowed to go through the

station, but no passengers were able to leave the network from Station 7. To analyze this

scenario, parameter changes were required. Probability matrix, Ps, was changed as shown

below to remove the option to leave the network from the subway station. Utilization and

mean service time were forced to 0. Also, all passengers arriving to Station 7 entered the

bus network. The probability matrix, Pb, remained the same as in previous experiments.

Ps =



0 0.50 0 0 0

0.33 0 0.33 0 0

0 0.33 0 0.33 0

0 0 0.5 0 0.5

0 0 0 0.5 0


, qs =



0.50

0.34

0.34

0

0.50


If it is assumed all passengers who would normally take the subway from Station 7 take

the bus instead, then bus stations 5, 6, and 7 reach maximum utilization levels. All three

stations have utilization over 90%, with station 7 utilization reaching 99.5%. Due to the

high utilization, at any given time, a passenger waits at Station 7 for 48 minutes. Stations

5 and 6 also see significant increases in wait times, up from less than one minute for both
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to over 2 minutes and 7 minutes, respectively. See Table 4.13 for full results. Therefore,

if a train station needs to be shut down, more buses should travel along routes into and

out of Stations 5, 6, and 7 to accommodate the increase in traffic. Or, if possible, focus on

shutting down the train station during non-peak hours to reduce the traffic that enters the

bus network.

Table 4.13: Performance measures for bus stations if subway station is disrupted.

Station 1b 2b 3b 4b 5b 6b 7b 8b 9b
ρib 0.69 0.80 0.70 0.46 0.92 0.97 1.00 0.54 0.78

wq,ib (min) 0.48 0.86 0.51 0.18 2.58 7.46 48.22 0.26 0.78
wib (min) 0.92 1.30 0.94 0.62 3.01 7.90 48.65 0.69 1.21

Lq,ib 0.77 1.59 0.82 0.19 5.49 16.73 110.77 0.32 1.40
Lib 1.45 2.39 1.52 0.65 6.41 17.70 111.77 0.86 2.18

Eliminating external flow to the subway network at Station 7, removing ability to stop at

the station and option to leave the network at subway station 7, resulted in a small increase

in utilization among all other subway stations. Nothing as dramatic as in the bus network,

but an increase all the same. Wait times at all stations increased by about 0.01 minutes,

too. Table 4.14 shows the full results for the subway stations. Overall, shutting down the

subway station had a much greater impact on the bus network than on the subway network

and no significant changes need to be made to accommodate this disruption in the subway

network.

Table 4.14: Performance measures for subway stations if subway station is disrupted.

Station 2s 5s 6s 7s 9s
ρis 0.26 0.24 0.22 0.00 0.18

wq,is (min) 0.02 0.02 0.02 0.00 0.01
wis (min) 0.12 0.12 0.12 0.00 0.11

Lq,is 0.05 0.04 0.03 0.00 0.02
Lis 0.31 0.28 0.25 0.00 0.21
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4.5.2 Disruptions in Bus Stations

For the second case, bus Station 7 was shut down. Like before, passengers were allowed to

enter the train station, but not the bus station. Also, the bus route would still go through

Station 7, but the bus would not stop, and no one would get on or off the bus. The updated

transition matrix Pb is below. The transition matrix for the subway network was as in the

experiment discussed in Section 4.2. As in section 4.5.1, it was assumed all who would

normally get on the bus at Station 7 would get on the subway instead. Utilization and mean

service time of bus Station 7 were forced to 0.

Pb =



0 0.50 0 0 0 0 0 0 0

0.50 0 0.23 0 0 0 0 0 0

0 0.20 0.48 0.27 0 0 0 0 0

0 0 0.59 0 0 0 0 0 0

0 0 0.08 0 0 0.36 0 0.20 0

0 0 0 0 0.40 0 0.42 0 0.16

0 0 0 0 0 0.565 0 0 0.435

0 0 0 0 0.50 0 0 0 0.29

0 0 0 0 0 0.16 0.29 0.13 0



, qb =



0.50

0.27

0.05

0.41

0.36

0.02

0

0.21

0.42


Shutting down bus Station 7 slightly increased the utilization of all bus stations, though

the main increases were in bus stations 6 and 9, with an average increase of 14.0%. Queue

wait times, however, increased significantly. The wait time for station 6 increased by 75.5%

and the wait time for station 9 increased by 49.4%. Though stations 5 and 6 have utilizations

above 80%, the system is not fully out of control, though queues will start trending toward

infinity. However, the wait times are still under a minute and a half. Full results for the bus

stations are given in Table 4.15. No significant changes need to be made to the bus network

when a bus station is closed. There is some flexibility in the network, and it can handle this

type of disruption.
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Table 4.15: Performance measures for bus stations if a bus station is disrupted.

Station 1b 2b 3b 4b 5b 6b 7b 8b 9b
ρib 0.69 0.80 0.69 0.45 0.85 0.82 0.00 0.52 0.70

wq,ib (min) 0.48 0.85 0.49 0.18 1.22 1.02 0.00 0.67 0.94
wib (min) 0.91 1.29 0.92 0.61 1.65 1.46 0.00 0.67 0.94

Lq,ib 0.76 1.56 0.78 0.19 2.38 1.95 0.00 0.28 0.82
Lib 1.45 2.36 1.47 0.64 3.23 2.77 0.00 0.79 1.52

Though the amount of people entering the subway station increased, utilization of the

subway stations did not increase significantly. The largest increase in station utilization was

at subway Station 7, which increased by 16.1%. These minor changes to the flow through the

subway network otherwise did not affect the remaining parameters for the subway network

in any significant way. The wait times only increased by 0.01 minutes, but the average total

time spent waiting and boarding throughout the network remained the same. The full results

for the subway stations are below in Table 4.16.

Table 4.16: Performance measures for subway stations if a bus station is disrupted.

Station 2s 5s 6s 7s 9s
ρis 0.26 0.24 0.22 0.25 0.18

wq,is (min) 0.02 0.02 0.02 0.02 0.01
wis (min) 0.12 0.12 0.12 0.12 0.11

Lq,is 0.05 0.04 0.03 0.04 0.02
Lis 0.31 0.28 0.25 0.29 0.21

Therefore, there is not significant strain placed on the network when a bus station is

disrupted and no significant changes need to be considered or explored.

4.5.3 Disruptions in both Bus and Train Stations

For the last case, both the bus and train stations at Station 7 were shut down. For this, the

interarrival time, mean service time, and utilization for Station 7 was set to 0. Interarrival

times for stations surrounding Station 7 were not decreased as it was assumed passengers

elected to find alternate means of transportation instead of entering other stations in the
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network. Probability matrices were also changed as shown below.

Pb =



0 0.50 0 0 0 0 0 0 0

0.50 0 0.23 0 0 0 0 0 0

0 0.20 0.48 0.27 0 0 0 0 0

0 0 0.59 0 0 0 0 0 0

0 0 0.08 0 0 0.36 0 0.20 0

0 0 0 0 0.40 0 0.42 0 0.16

0 0 0 0 0 0.565 0 0 0.435

0 0 0 0 0.50 0 0 0 0.29

0 0 0 0 0 0.16 0.29 0.13 0



, qb =



0.50

0.27

0.05

0.41

0.36

0.02

0

0.21

0.42



Ps =



0 0.50 0 0 0

0.33 0 0.33 0 0

0 0.33 0 0.33 0

0 0 0.5 0 0.5

0 0 0 0.5 0


, qs =



0.50

0.34

0.34

0

0.50


The results in the bus network were surprising. When the station was removed and

there was no external flow into the bus network from Station 7, stations 6 and 9 had their

utilization increase by 36.7% and 37.7% respectively. The utilization of station 5 increased

by 17.6%. With these increases, the utilization of both station 5 and 6 surpassed 90%, with

station 5 reaching a utilization of 93.7% and station 6 reaching 99.4% utilization. While the

utilization of all stations did not reach the same levels as when the subway station was closed,

this is still a significant increase. The expected queue time at station six became to 37.74

minutes, as compared to 0.58 minutes in the base network scenario. This also demonstrates

the inability of the system to bring in excess capacity when a station is closed, at least on

the bus network side. Full results for the bus network are in Table 4.17.
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Table 4.17: Performance measures for bus stations if a bus and train station are disrupted.

Station 1b 2b 3b 4b 5b 6b 7b 8b 9b
ρib 0.69 0.80 0.70 0.46 0.94 0.99 0.00 0.55 0.84

wq,ib (min) 0.48 0.87 0.51 0.18 3.24 37.30 0.00 0.27 1.14
wib (min) 0.92 1.30 0.95 0.62 3.67 37.74 0.00 0.70 1.57

Lq,ib 0.77 1.60 0.83 0.19 7.00 85.58 0.00 0.34 2.20
Lib 1.46 2.40 1.53 0.65 7.93 86.58 0.00 0.89 3.04

By closing station 7, the largest increase in utilization of the subway stations from all

experiments occurred. All subway station utilization increased, with stations 6 and 9 in-

creasing by 36.7% and 37.7%, respectively. However, even with larger increases, no subway

utilization was greater than 30% so there were not significant changes to the wait times or

number of passengers in the queues. Results for the subway network are found in Table 4.18.

Table 4.18: Performance measures for subway stations if a bus and train station are disrupted.

Station 2s 5s 6s 7s 9s
ρis 0.27 0.27 0.28 0.00 0.24

wq,is (min) 0.02 0.02 0.02 0.00 0.02
wis (min) 0.12 0.12 0.12 0.00 0.12

Lq,is 0.05 0.05 0.06 0.00 0.04
Lis 0.32 0.32 0.34 0.00 0.28

To accommodate closing an entire station, more buses need to be available so that the

time in between bus arrivals is shortened. Also, getting the subway station open and op-

erational should be prioritized, as then the system behaves like in Section 4.5.2, where the

system remains in control.
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Chapter 5

Conclusions and Future Work

In this thesis, a network of queues model was developed to evaluate parameters of a

two-mode public transportation network. The parameters of expected wait time, station

utilization, and queue length were used to conduct a holistic analysis to identify potential

concerns within the network quickly without needing cumbersome software and very little

data. This is necessary when dealing with complicated public transportation networks to

aid in quick decision making. Public transportation networks also often have data that is

lacking, whether because the data is old or does not have the specificity needed for statistical

anaylsis.

This research differentiates itself by developing an easily accessible model with few data

requirements that provides a holistic view of a public transportation network. This type of

analysis is essential in identifying critical stations and arcs within the network and as an

intial step in more detailed analysis. It is a dynamic method of analysis which allows for

multiple different scenarios to be compared quickly. The analysis from the model allows

network managers to compare multiple scenarios easily and identify scenarios that cause the

least amount of disruption to the system. It also provides insight to where, if there is a

significant problem, more detailed analysis should be conducted.

First, the public transportation network was modeled as a series of nodes and arcs,

representing stations and routes between the stations, respectively. Due to complexity, the
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overall network was separated into subgraphs for each mode of transporation within the

network to accommodate differences within the network due to the different transportation

modes. Then, the subgraphs were modeled as a Jackson network, to allow for the flow of

passengers entering the system at every station.

Once modeled as an open network of queues, the system was modeled in simulation

software to determine the optimal interarrival time of passengers into the network, by max-

imizing utilization of the stations. The modeling in simulation software was necessary as

interarrival time data to each station is not available. If interarrival data is available for

statistical analysis the simulation model is not required.

With maximum feasible external arrival rates, the performance of the network could

be evaluated, focusing on station utilization, expected wait times, and queue lengths. This

performance evaluation gave information on which areas of the network were most congested

and where assets should be moved to within the system.

In the case study and experiments a real two-mode transit network was analyzed. In this

case study, bus stations were the most utilized and through experimentation the bus network

was most susceptible to disruptions. The train network was not significantly vulnerable to

network disruptions, most likely due to the increased capacity of the trains in comparison

to the buses.

Future work for this research may incluce expanding the realism of the study by including

batching into the queueing network. This could be a more realistic application of mode

capacity within the network. The model could also be adjusted to allow for changing of

transportation modes during travel. Finally, optimization of the service times of each station

could allow for better decision making of where to flex or assign assets in the network.
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