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Abstract

Fluid-structure interaction (FSI) is ubiquitous in nature, and has drawn great attention

in fluid mechanics community for about a century. However, the complexity of FSI has

perplexed the physical analysis and understanding on this problem. In addition, FSI of-

ten brings a huge parametric space when moving solid boundaries exist, which makes the

parametric space too computationally or experimentally costly to explore thoroughly.

In the present thesis, first a global proper orthogonal decomposition (POD) and Galerkin

projection based reduced-order model (ROM) has been developed to represent the essential

physics of a FSI system with moving solid boundaries. The ROM is able to work on both

numerical and experimental two-dimensional (2D) and three-dimensional (3D) dataset, and

has shown adequate accuracy in the reconstruction of flow dynamics and the prediction of

key aerodynamic properties, while keeping the computational cost very low. Then an adjoint

approach has been derived, based upon the ROM and the conventional adjoin approach, to

achieve fast flow control and optimization of a FSI system with moving solid boundaries.

Different strategies have been designed to guarantee the accuracy of ROMs during the op-

timization process. The adjoint-ROM has been applied to the stabilization of the flow field

as well as the aerodynamic force optimization of 2D flows past oscillating cylinders and

NACA0012 airfoils. The adjoint-ROM approach has been proved effective and fast, of which

the computational cost saving may make a near-real-time flow control possible.

Additionally, the adjoint-based approach has been leveraged to study two important

yet sophisticated FSI problems: the gust mitigation problem, and the hydrofoil schooling

problem. The gust mitigation has been investigated for 2D and 3D heaving-pitching wing

models under low Reynolds numbers. The streamwise gust and the transverse gust have

been mitigated for both models. The non-cylindrical enabled full-order model (FOM) based

adjoint approach has been used for all cases, while the adjoint-ROM developed in the present



work has been used for 2D weak gust mitigation only. The mitigation of gust has been realized

by minimizing a well-designed objective function to recover the mean lift of the base flow,

while keeping the lift profile as steady as possible. The FOM-based adjoint approach was

applied to both 2D and 3D strong gusts, and was highly effective in recovering the target lift,

while keeping a reasonable computational cost. The adjoint-ROM approach was used for

2D weak gusts. It was able to mitigate the gust impact with relatively lower controllability

and partially recovered lift. Moreover, its online computation was fast enough for real-time

control.

The hydrofoil schooling problem has been studied by FOM-based adjoint approach for

the first time to optimize the hydrodynamic force on trailing hydrofoils in a school. Both 2D

oscillating rigid hydrofoils and undulating flexible hydrofoils have been studied at modest

Reynolds numbers. It was found the adjoint approach effectively optimized the motion and

the formation of the hydrofoil school to achieve huge drag reduction as well as drag-to-thrust

conversion on trailing hydrofoils. The vortex-foil interaction was investigated and was found

to be crucial for the optimization of hydrodynamic force.
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Chapter 1

Introduction

1.1 Fluid-structure interactions: challenges and inspi-

rations

Fluid-structure interaction (FSI) is ubiquitous in nature2. It occurs at a variety of biological

scales, from the cells moving in the human body, the blood flowing through the circulation

system3, to the swimming fish in the ocean, and flying insects and birds in the sky. In

human society, fluid-structure interaction is still omnipresent, as can be found from the huge

turbines of wind farms, jet aircraft, and small-scale unmanned-air vehicles (UAVs). In all

those biological phenomena and engineering applications lies rich fluid physics, which has

drawn the attention of fluid mechanics community for almost a century. To analyze and

understand the physics numerically, a model that can resolve both fluid and structure is

needed4. However, there are still many existing difficulties in building computational FSI

models, including the formulation, boundary conditions, numerical discretization, and the

treatment of fluid-structure coupling, as summarized in Bazilevs et al. 5 . The complexity of

the FSI problem has raised many questions to be answered as follows. (1) Considering the

high computational cost to resolve complicated FSI problem, is it possible to find a simplified

model that can capture the essence of the physics in FSI while keep the computational cost

relatively low at the same time? (2) FSI often results in a massive parametric space that
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may be too huge to thoroughly explore. Therefore, flow optimization with FSI is usually

sophisticated, yet highly desirable for the design of aircrafts and marine vehicles. Is there

any approach that is able to find the optimal solution in an FSI system while also avoiding

the heavily costly computation? If the simplified model mentioned in question (1) exists,

can it be applied to the optimization as well? As a matter of fact, these questions have been

the major inspiration for the author to propose the current work. In the rest of chapter

1, the numerical model of FSI is introduced in section 1.2, which lays the very foundation

of all reduced-order modeling and optimization approaches developed and applied in this

thesis. Then, modal decomposition enabled reduced-order modeling methods are introduced

in section 1.3. The fundamental formulations and algorithms of conventional adjoint-based

flow optimization are introduced in section 1.4. Highlights of this thesis are summarized in

section 1.5. An outline of the remaining chapters is presented in section 1.6.

1.2 Direct numerical simulation of FSI

The flow studied in the present work is unsteady, incompressible and viscous, thus is governed

by the continuity equation and the incompressible Navier-Stokes equation:

∇ · u = 0

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u, with u = V at ∂Ωs.

(1.1)

The above equations are non-dimensionalized by a characteristic length L, a reference ve-

locity U∗ (the incoming flow velocity in this thesis), and the density ρ and viscosity µ of the

fluid. The normalization produces a dimensionless parameter Reynolds number Re:

Re =
ρU∗L

µ
. (1.2)

With appropriate boundary conditions (BCs), and proper temporal and spatial discretiza-

tion, the equation 1.1 can be solved numerically.
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However, when there is a solid structure immersed in the fluid as shown in figure 1.1, extra

efforts might be needed for the spatial discretization and the setup of boundary conditions.

A conventional approach is to deploy structured or unstructured meshes conforming to the

solid body. The task of mesh generation for a complex solid body can be significantly

costly. Depending on the numerical methods used sequentially based on the conformal mesh,

a transformation of governing equations from the physical domain to the computational

domain might be required, which will increase the computational cost at each grid point.

Additionally, an eminent drawback of the conformal mesh appears when the solid structure

is moving and deforming in the fluid domain, which means a new mesh needs to be generated

at every time step, with the old solution being projected onto the new mesh. These steps

will clearly have negative impact on the simplicity, accuracy, and computational cost of

the solving process6. The aforementioned difficulties have prompted researchers to develop

new approaches, among which is the immersed boundary method (IBM) used in the present

thesis.

IBM was first developed in a series of marvelous pioneering works of Charles S. Peskin

and his colleagues on the simulation of blood flow through heart valves7–11. The most

distinguishing feature of IBM is that the numerical simulation with FSI can be performed

on a Cartesian mesh, regardless of the number or shape of the solid structure, as shown in

figure 1.1. When using a Cartesian mesh the solid boundary (∂Ωs) may cut through the

grid. Then the key step is to impose appropriate boundary conditions on the solid boundary

(the black dots in figure 1.1) that is not conforming to the grid, which is usually realized

by modifying the governing equations in the vicinity of the solid boundary (the grey area

around the solid body in figure 1.1). The major advantage of IBM over the conventional

approach is that the mesh generation process is more straightforward and efficient, since

only one stationary, non-deforming mesh needs to be built before the simulation, regardless

of the type and motion of solid bodies. Therefore, IBM has become an extremely appealing

alternative method to simulate flows with FSI, despite that it usually requires more grid

points than the conformal mesh for better resolution of the solid boundary6.

In order to satisfy the solid boundary condition on a Cartesian mesh, IBM introduces a
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Figure 1.1: The sketch of a solid structure immersed in the fluid, and the discretization of
the computational domain with Cartesian mesh. Ω represents the fluid domain, Ωs represents
the solid structure, and ∂Ωs is the solid boundary.

body-force field f such that the desired velocity distribution V on the solid boundary can

be assigned properly, accordingly the Navier-Stokes equation is modified as:

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u+ f . (1.3)

Generally there are two specific categories of forcing-type IBM: the continuous forcing ap-

proach, where the forcing is incorporated in to continuous equations, and the discrete forcing

approach, where the forcing is added after the equations are discretized6. The discrete forc-

ing approach is highly dependent on the spatial discretization, but it has the capability to

avoid the “diffuse boundary” problem caused by the continuous forcing approach, which can

ultimately lead to a sharp fluid-structure interface with high resolution. Therefore, this ap-

proach has gained higher popularity recently, with different methods in this category being

developed in Mohd-Yusof 12 ; Fadlun et al. 13 ; Mittal et al. 14 ; Taira and Colonius 15 ; Mittal

et al. 16 ; Zhao et al. 17 . The discrete IBM was also applied in the previous work of the author’s

group18–21, as well as in this thesis.

Without loss of the generality, a time-discretized modified equation 1.3 with a simple

first-order time-forward scheme is:

un+1 − un

∆t
= [−∇p− (u · ∇)u+

1

Re
∇2u]n + f , (1.4)
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where the superscript n denotes the values at time step tn. Implementing the discrete

forcing approach with sharp interface as developed in Mittal et al. 16 , the forcing term f can

be expressed nominally as:

f =


[(u · ∇)u− 1

Re
∇2u]n + 1

∆t
(V − un), in Ωs

0, otherwise,
(1.5)

where f only takes effect in the solid occupied domain Ωs. All following work on the reduced-

order modeling and the flow optimization will be developed based on modified governing

equations 1.4 and 1.5.

1.3 Reduced-order modeling

Even a seemingly simple flow configuration under modest conditions, such as the supercritical

flow past a fixed cylinder22, may produce rich and complex fluid dynamics with a wide

range of spatial and temporal features, not to mention the perplexing fluid physics of flows

with more sophisticated FSI. Fortunately for many flows, there are often physically more

important features that stand out and can represent the core characteristics. Therefore,

extracting these physically important features would be a natural first step in the analysis

of complex flows. Typically these steps will start with a modal decomposition of either

experimental or numerical data of the fluid flows. Then with the modes obtained through

the modal decomposition, a reduced-order model (ROM) can be constructed usually by

projection method to obtain the lower-order dynamics which can represent the essential

physics of the original flow fields. An analogy of the modal decomposition may be made

by image compression. Figure 1.2 shows different images of the author’s cat. The original

photo was taken with the highest resolution which consists of 1960 × 1878 pixels. Each of

other three pictures was compressed, and can be regarded as the reconstruction of “lower-

order modes” with smaller size. It can be observed clearly that excessive compression may

cause some of them to lose most of the information from the original picture (more blurry).
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(a) (b)

(c) (d)

Figure 1.2: The pictures of cat “Piggy” before and after the image compression. (a)
1960× 1878 pixels (the original); (b) 11.67% size, 100 modes; (c) 2.33% size, 20 modes; (d)
1.16% size, 10 modes.

Therefore, some criterion is needed to determine how many lower-order modes are necessary

to keep the reconstruction of the original data accurate enough, which will be addressed

later.

1.3.1 Modal decomposition: basics of proper orthogonal decom-

position

Modal decomposition based ROM methods have been studied for decades, including proper

orthogonal decomposition (POD)23;24, balanced proper orthogonal decomposition (balanced
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POD)25;26, spectral proper orthogonal decomposition (spectral POD)27;28, dynamic mode

decomposition (DMD)29, and so on. These approaches are all data-driven, which means the

construction of modes required the data fed by experimental measurements or numerical

simulations30. Among all modal decomposition approaches, POD is arguably the most pop-

ular one and the bedrock of modal decomposition techniques to extract coherent structures

from the flow data. Since it was invented back in 1960s31, POD has been extensively used in

fluid mechanics community. The major success of POD is that it is able to provide physically

interpretable spatial-temporal decompositions of flow data32. The details of POD method

will be reviewed as follow.

Considering the governing partial differential equations (PDEs) 1.1, the velocity vector

field u(x, t) would be the solution, though the highly nonlinear PDEs themselves can hardly

be solved analytically. But some ideas can still be borrowed from one common technique to

analytically solve linear PDEs, which is the separation of variables. When using this method,

a specific form of solution is presumed where space and time are independent:

u(x, t) = a(t)φ(x). (1.6)

Although the strong nonlinearity of equations 1.1 makes it impossible to obtain a trivial

solution as equation 1.6, a series of basis functions, which hierarchically represent different

dimensions of the complex fluid flow system, may still be able to construct the solution and

split the space and time:

u(x, t) =
∞∑
i=0

ai(t)φi(x), (1.7)

where ai(t) is the time coefficients representing the temporal dimension, and φi(x) are the

modes representing the spatial dimension. Note that the upper limit of the superposition

1.7 is infinity, corresponding to the infinite dimension of a fluid flow system. Now, the

primary task is to determine the coefficient ai(t) and the mode φi(x) respectively. Figure

1.3 briefly summarizes the procedure of modal decomposition with POD. When applying

POD on u(x, t), φi(x) are POD modes accordingly. The modes can be regarded as a set
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Figure 1.3: POD of a 2D flow past a fixed cylinder under Re = 200. The illustrations
shows the nonlinear flow being captured by the mean flow and the first two POD modes.

of basis functions that represent flow field u(x, t) optimally. First, for flow fields at all time

moments, the temporally averaged flow field ū(x) should be subtracted from each u(x, t),

which generates a collection of finite-dimensional data vectors u′(t) as the fluctuation of

unsteady flow fields:

u′(t) = u(x, t)− ū(x) ∈ RN , t = t1, t2, ...., tM , (1.8)

where N and M are the dimension of space and time respectively. It was proved that

seeking optimal basis functions φi(x) can be converted to solving an eigenvalue problem of

the covariance matrix R23;24, which is constructed as:

R =
M∑
m=1

u′(tm)u′T (tm) = XXT ∈ RN×N , (1.9)

where the matrix X is the assembly of M snapshots of fluctuation data u′i:

X = [u′1 u′2 ... u′M ] ∈ RN×M . (1.10)
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Note that N is usually a massive number for fluid flows, which is equal to the spatial degrees

of freedom of flow data (number of grid points) times the number of flow variables (2 for 2D

flows, for example). The eigenvalue problem is formulated as:

Rφi = λiφi, φi ∈ RN , λ1 ≥ ... ≥ λN ≥ 0. (1.11)

By solving the above equation, the eigenvectors φi(x) can be found which are also POD

modes. One important feature of POD modes is that they are orthogonal, which means the

inner product (denoted by bracket operator 〈·〉) between the modes satisfies:

〈φi,φk〉 =

∫
Ω

φi · φkdΩ = δik, i, k = 1, ..., N, (1.12)

where Ω is the domain of inner product and δ is the Kronecker symbol. The eigenvalues λi

show how well the original flow field is captured by each POD mode in terms of the kinetic

energy. In other words, the larger the λi is, the more important role the corresponding φi

plays in capturing the kinetic energy of the flow field. As a result, λi can be leveraged to

determine the number of POD modes needed to represent the original flow field. An example

of the eigenvalues for the flow past a fixed cylinder under Re = 200 is shown in figure 1.4. It

can be found that the first two λi are much larger than the rest, and the first 10 POD modes

have already captured nearly 100% of the total kinetic energy. Therefore, practically the

leading r out of N modes (in decreasing order with respect to the value of λi) are retained

to produce a lower-order representation of the flow such that:

r∑
i=1

/
N∑
i=1

≈ 1. (1.13)

The modes with order higher than r are truncated, considering they are negligible from the

energy perspective. With these modes being selected, the flow field can be represented with

9



(a) (b)

Figure 1.4: An example of eigenvalues λi obtained by solving POD of 2D flow past a fixed
cylinder under Re = 200. (a): The first 25 eigenvalues; (b): the cumulative percentage of
kinetic energy captured by the first 25 POD modes.

finite series of r modes in an optimal manner:

u(x, t)− ū(x) = u′(t) ≈
r∑
i=1

ai(t)φi(x), (1.14)

where the temporal expansion coefficients ai(t) can be obtained by projecting the fluctuation

field u′(t) onto POD modes:

ai(t) = 〈u′(t),φi(x)〉. (1.15)

The POD method introduced above is called classical POD. A major drawback of it is

that the dimension of the covariance matrix R is usually so huge (N×N) that the eigenvalue

problem (equation 1.11) is impossible to solve practically. Instead of tackling R directly, the

method of snapshots has been developed to solve the eigenvalue problem of an alternative

matrix with a much smaller size23:

(XTX)ψi = λiψi, ψi ∈ RM , (1.16)

where the matrix XTX has a dimension of M ×M . Note that M is the number of discrete

time levels, thus is much smaller than N . Equation 1.16 is solvable and it still shares the

same nonzero eigenvalues λi with the original equation 1.11. Moreover, the POD modes can

10



be recovered by the new eigenvectors ψi as well:

φi = Xψi
1√
λi
, j = 1, 2, ...,M. (1.17)

The method of snapshots is arguably the most widely used POD method in fluid mechanics

due to the drastic reduction in computational time and memory resources, so it was also used

in the present work. Note that the above derivation is based on the snapshots generated on

a domain discretized by uniform mesh. Practically, when POD is performed on a domain

with non-uniform mesh, the matrix XTX in the eigenvalue problem 1.16 should be modified

as XTWX, where Wn×n is the weight matrix that holds the spatial weight (i.e. the size of

each mesh cell).

It is worth to know that POD modes can also be computed in an equally swift manner by

singular value decomposition (SVD). Using the same matrices X and W as aforementioned,

a new matrix Y can be generated:

Y = W
1
2X. (1.18)

Then a thin SVD can be performed as:

Y = UΣV T . (1.19)

Accordingly, a correlation matrix can be obtained by:

Y TY = V ΣUTUΣV T = V Σ2V T . (1.20)

It is easy to find that:

Y TY V = V Σ2, (1.21)

which means the columns of V are the eigenvectors of matrix Y TY , which is equivalent to
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the matrix XTWX used in the method of snapshots. So the POD modes φ are solved by:

φ = (W− 1
2Y )V Λ−

1
2

= W− 1
2UΣV TV Λ−

1
2

= W− 1
2U .

(1.22)

More details of SVD-based technique can be found in the book by Brunton and Kutz 32 .

At the end of this section the pros and cons of POD are briefly summarized. As demon-

strated earlier, the most attractive property of POD is the orthogonality of its modes, which

allows for the construction of reduced-order model with minimal number of modes. In ad-

dition, POD modes are simple to compute, of which the method of snapshots is able to

deal with high-dimensional fluid flow datasets. However, POD ignores the correlations that

are higher than the second order. The importance of the modes is assessed by the order of

kinetic energy they capture, instead of by the order of dynamical importance, but this draw-

back can be addressed and improved by balanced POD and DMD method. Furthermore, for

some highly turbulent flows, the number of POD modes required to satisfy equation 1.13 is

very large, which overshadows the goal to significantly reduce the order of the original flow

system. Despite the above limitations, the flows studied in the present work are mostly in

the laminar flow regime with modest Reynolds numbers, thus the POD method still remains

robust here.

1.3.2 Galerkin projection based ROM

Through the modal decomposition by POD, a subspace consisting of r leading POD modes is

constructed, and the lower-order dynamics of the original snapshots u(x, t) is also obtained

as ai(t). However, so far ai(t) contains no dynamics beyond the range of u(x, t), thus is still

infeasible to predict the flow dynamics of future time moments. Fortunately, ai(t) at arbitrary

time moments can be achieved by solving another equation built upon the original Navier-

Stokes equation, the velocity decomposition (equation 1.14), and the Galerkin-projection.
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First, the velocity expanded with the first r POD modes

u(x, t) ≈ ū(x) +
r∑
i=1

ai(t)φi(x) (1.23)

is substituted in equation 1.1. Then the Galerkin projection is performed with the same

definition of inner product as equation 1.12, where each term in equation 1.1 is projected

onto the subspace, i.e. POD modes φi. Due to the orthogonality of POD modes, a group of

ordinary differential equations (ODEs) about ai(t) can be derived:

dai
dt

=
r∑
j=0

Lijaj +
r∑
j=0

r∑
k=0

Qijkajak, i = 1, 2, ..., r, (1.24)

where

Lij =
1

Re
〈∇2φj,φi〉,

Qijk = −〈∇ · (φjφk),φi〉.
(1.25)

For the purpose of brevity, the mean flow ū(x) is absorbed in the velocity expansion (equa-

tion 1.24) and φ0 = ū(x) hereafter, with a0(t) = 1. The ODEs in equation 1.24 are the

general POD-Galerkin projection based reduced-order model (ROM) of the original flow

system. Note that the pressure term in Navier-Stokes equation is not accounted for ROM.

As discussed by Noack et al. 33 , pressure term can be neglected when appropriate boundary

conditions are proposed, which is the situation of the present work.

The POD-Galerkin ROM has been proven successful over decades. However, there are

still limitations even for a configuration as simple as the flow past a fixed 2D cylinder.

Some major limitations are well summarized in Loiseau et al. 34 , including stability issue,

difficulties in transient flows, and so on. Another big issue of the existing ROM methods is

the challenge brought by moving or deforming solid boundaries immersed in the flow domain,

which intrigues the present work on the global POD-Galerkin ROM approach. The details

of this new ROM approach will be presented in chapter 2.
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1.4 Flow optimization and adjoint approach

As demonstrated by Gunzburger 35 , flow control and optimization basically has been a long-

lasting,s ancient practice of mankind. For instance, the construction and application of any

dam, canal, irrigation ditch, etc., all are efforts attempting to control the fluid flow to benefit

the human life. In the fluid mechanics community, flow optimization has also been exercised

and studied for more than a century. Back in early 1900s, Prandtl, a pioneer of modern fluid

mechanics, experimentally studied boundary layer control on the suction side of a cylinder in

incoming laminar flow, to reduce the drag by delaying flow separation36. Generally speaking,

a well-posed flow optimization problem has three main ingredients:

1. the objective to achieve for the problem, which can be drag reduction, lift/thrust

enhancement, delay of turbulent transition, etc.;

2. the control parameters, which can be tuned to reach the desirable objectives;

3. the constraints, which here are the physical laws and governing equations to describe

the fluid dynamics properly, and ultimately set up the range for control parameters.

Based on the physical understanding of a given flow, the control parameters that might

possibly have impact on the objective can be determined. Then these control parameters

can form a parametric space. In principle, the optimal objective can be found as long as

the parametric space is completely explored through either experiments or numerical simula-

tions. However, for a complicated flow such as flow with FSI studied in the present work, the

parametric space is often too massive to thoroughly explore, thus a brute-force parametric

study will be impossible. The dilemma of huge parametric space has stimulated the de-

velopment of flow optimization methods based on mathematics. Among all these methods,

gradient-based methods have been widely used, due to their high efficiency and accuracy

to find the local minimum on a convex manifold in even a huge parametric space, thus it

is also an ideal choice for optimizing complicated FSI problems. Tuncer and Kaya 37 used

gradient-based method to optimize the thrust and propulsive efficiency of the 2D flow over
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a plunging and pitching wing. The gradient was computed by perturbing the control pa-

rameters and computing the unsteady flow field numerically, which resulted in the excessive

computational cost of solving the Navier-Stokes equations as many times as the number of

control parameters. As a different route, the adjoint-based approach allows for an inexpen-

sive computation on the gradient, regardless of the number of control parameters. Figure

1.5 illustrates the relation between the computational cost and the number of control pa-

rameters for different methods. The computational cost of parametric study usually grows

exponentially as the number of control parameters increases. On the contrary, when using

adjoint-based approach, the computational cost barely grows even with a huge parametric

space. This is one of the biggest advantages over other methods, specifically for cases where

the inputs (control parameters) outnumber the outputs (objectives). In fact, for the most of

adjoint-based applications, only one objective is controlled. The formulations of the adjoint-

based approach will be reviewed in the following subsection to demonstrate how it is able to

obtain the gradient quickly during the optimization.

Computational cost

Number of control parameters

Parametric study

Conventional gradient-based

Adjoint-based

Figure 1.5: An illustration of computational cost versus the number of control parameters
for different methods. The cost is an estimation.

1.4.1 Generic adjoint formulations

Typically, the adjoint-based approach is classified into two categories: continuous adjoint38;39

and discrete adjoint40;41, where the former formulates all adjoint equations for the optimiza-

tion and then discretize them numerically, while the latter spatially discretizes the governing
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equations before determining the adjoint counterpart42. The continuous adjoint approach

was chosen in the present work, due to the fact that it has better clarity in the adjoint

equation with terms actually showing physical meaning. Therefore, the term ”adjoint-based

approach” appearing hereafter only refers to the continuous adjoint approach.

The adjoint-based approach was first derived for the optimization of incompressible tur-

bulent channel flows where the control was introduced by adding an unsteady wall-normal

velocity γ at the boundary Γ38;42. Three vectors containing flow variables are required to

build the adjoint formulations: the flow state variables q = [p u]T , the flow perturbation

variables q′ = [p′ u′]T , and the adjoint variables q∗ = [p∗ u∗]T . Considering the boundary

condition and for the brevity of the expression, the Navier-Stokes equation 1.1 is rewritten

as:

N (q) = 0,

u = −γn on Γ,

(1.26)

where N (q) is the nonlinear Navier-Stokes operator:

N (q) =


∂uj
∂xj

∂ui
∂t

+ uj(
∂ui
∂xj

+
∂uj
∂xi

)− 1
Re

∂ui
∂x2j

+ ∂p
∂xi

 , (1.27)

An analytical objective function J of physical interest is needed for the optimization. For

the purpose of demonstration, the turbulent kinetic energy in the flow domain Ω is optimized

here:

J =
1

2

∫ T

0

∫
Ω

|u|2dΩdt. (1.28)

With a well-defined objective J and control γ, the essential procedure of optimization

is to determine the sensitivity of J to small perturbations of γ. This sensitivity can be
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quantified by using a Fréchet derivative43 of J such that:

J ′ = lim
ε→0

J (γ + εγ′)− J (γ)

ε
,

=

∫ T

0

∫
Ω

g(γ)γ′dΩdt.

(1.29)

By computing the nominal first-order derivation of J with respect to an arbitrary control γ

as above, the sensitivity is now evaluated by the gradient g(γ). With the same differentiation

rule and equation 1.28, the perturbation of the objective is:

J ′ =
∫ T

0

∫
Ω

u · u′dΩdt. (1.30)

As the control γ is perturbed by a small fraction, it is physically intuitive that the flow

state variables q should be perturbed by an amount of q′ as well. The perturbed Navier-

Stokes equation can be derived based on q′ with the same fashion of Fréchet derivative:

N ′(q′) = 0,

u′ = −γ′n on Γ,

(1.31)

where N ′(q′) is the linearized Navier-Stokes operator:

N ′(q′) =


∂u′j
∂xj

∂u′i
∂t

+ u′j(
∂u′i
∂xj

+
∂u′j
∂xi

)− 1
Re

∂u′i
∂x2j

+ ∂p′

∂xi

 , (1.32)

Using the perturbed Navier-Stokes equations, the adjoint variables q∗ are introduced

as Lagrangian multipliers to impose the flow equations 1.26, as the whole problem is re-

garded as a constrained optimization problem subject to the governing equation. Then the

perturbation of enhanced objective function is rewritten as:

J ′ =
∫ T

0

∫
Ω

u · u′dΩdt+

∫ T

0

∫
Ω

q∗ · N ′(q′)dΩdt. (1.33)
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Using the adjoint identity

〈N ′(q′), q∗〉 = 〈q′,N ∗(q∗)q∗〉, (1.34)

the adjoint equation can be derived by performing integration by parts on the second term

of equation 1.33:

N ∗(q∗) = F∗,

u∗ = 0 on Γ,

(1.35)

where

N ∗(q∗) =


−∂u∗j
∂xj

−∂u∗i
∂t
− u∗j(

∂u∗i
∂xj

+
∂u∗j
∂xi

)− 1
Re

∂u∗i
∂x2j
− ∂p∗

∂xi

 , (1.36)

and F∗ = [0 u]T . Note that the adjoint equation needs to be solved backward in time, due

to the sign of the time derivative and viscous term. Consequently equation 1.33 is converted

as:

J ′ = B +

∫ T

0

∫
Ω

q′ · [N ∗(q∗)−F∗]dΩdt, (1.37)

where B comprises all boundary-related terms:

B =

∫
Ω

(u∗ju
′
j)|T0 dΩ+

∫ T

0

∫
Γ

nj[u
∗
i (uju

′
i+u

′
jui)+p∗u′j−

1

Re
(u∗i

∂u′i
∂xj
−u′i

∂u∗i
∂xj

)+u∗jp
′]dΓdt. (1.38)

With carefully imposed boundary conditions for q∗ and by comparing B against equation

1.29, the gradient g(γ) is obtained:

g(γ) = p∗. (1.39)

This simple expression of g(γ) indicates that for this particular example, the adjoint pressure

field p∗ is the measure of the sensitivity of the turbulent kinetic energy which is controlled by

the wall-normal blowing or suction. In theory, regardless of the number of control parameters

in γ, similar steps can be taken to derive the adjoint equation. Once adjoint equation is

solved, the gradient can be computed momentarily with adjoint variables.
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1.4.2 Control updates: conjugate gradient method

Algorithm 1: The generic algorithm of adjoint-based flow optimization in a main
iteration k.

Iteration k begins

1. Solve governing equations 1.26 with γk → q,J k

2. Derive adjoint equations 1.35, solved backward in time → q∗

3. Compute gradient gk

4. Solve equation 1.42 → βk

5. Solve equation 1.41 → dk

Line-search sub-iteration begins

6. Calculate temporary γt = γk + αdk, then solve equation 1.26 with this γt
if α is equal to argminαJ (γt) then

αk = α;
else

Repeat step 6.
end
Line-search sub-iteration ends
7. Update control γk+1 = γk + αkdk

if |J k+1 − J k| < ε (ε is a very small number) then
Iteration k ends, optimization is converged

else
Repeat step 1 to 7.

end

With the gradient g achieved in the prior section, the Polak-Ribiere variant of the con-

jugate gradient method44 was used in the present work to update the control parameters

iteratively. The control parameter γ can be updated by:

γk+1 = γk + αkdk, (1.40)

where the superscript indicates the times of main iteration, d is the fastest descent di-

rection, α is the optimal step size obtained from the line-search computation such that

α = argminαJ (γ). Initially d1 is set to be −g1, and computed thereafter by

dk = −gk + βkdk−1. (1.41)
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βk is determined by

βk =
(gk − gk−1) · gk

gk−1 · gk−1
, (1.42)

where gradient gk is already obtained by solving corresponding adjoint equations. The

generic algorithm of adjoint-based flow optimization is summarized in algorithm 1.

Note that the adjoint-based approach reviewed in this section is derived under the frame-

work of fixed flow domain. However, when extending it to a domain with moving/deforming

solid boundaries, some problems will emerge due to ill-defined integration over a morphing

domain. Therefore new techniques are needed to address these difficulties. The improved

adjoint-based approach will be introduced in chapter 3.

1.5 Highlights of this work

In order to answer the questions asked in the end of section 1.1, the present work is focused

on:

• developing a ROM that is able to represent the essential physics of a FSI system with

moving solid boundaries;

• developing a fast optimization method based on adjoint-ROM equations for a FSI

system with moving solid boundaries;

• applying adjoint-based approach to the optimization of complicated FSI problems:

including gust mitigation with heaving-pitching airfoil, and the hydrofoil schooling

problem

Highlights and contributions of the present work can be summarized as:

1. A global POD-Galerkin ROM was developed for flows with moving solid boundaries,

which can work for both numerical and experimental dataset. The ROM showed

adequate accuracy in the reconstruction of flow fields and the prediction of key aero-

dynamic features, while the computational cost remained very low.
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2. Based on the new global POD-Galerkin ROM, an adjoint enabled fast flow optimiza-

tion method was developed for the first time for FSI with moving solid boundaries.

Different strategies to choose proper ROM during the optimization were studied. The

adjoint-ROM approach was then applied to the optimization on 2D flows over moving

cylinder and heaving-pitching airfoil. The results demonstrated the effectiveness of the

approach, and the computational cost was reduced drastically for all cases.

3. Gust mitigation with a 2D/3D heaving-pitching wing was studied using an adjoint-

based approach for the first time. Effective controls on the wing motion were achieved

by optimization to not only recover the original mean aerodynamic force on the wing,

but also alleviate the unsteadiness of the force to some extent. The full-order model

(FOM) based adjoint approach was able to handle relatively strong gusts with very

good recovery of the lift force, while the adjoint-ROM approach was able to mitigate

weak gusts, with lower controllability but within extremely short computational time.

4. Adjoint-based approach was extended to optimize the FSI system with multiple mov-

ing solid bodies for the first time. The drag force of 2D rigid and flexible hydrofoils

in different arrangements of formation was optimized by controlling the motion and

formation of trailing hydrofoils. Significant drag reduction and drag-to-thrust conver-

sion were achieved by adjoint-based optimization. The analysis on vortex-structure

interactions of optimal schooling shed some light upon the hydrodynamic mechanisms

of fish schooling behavior.

1.6 The outline of the remainder

The rest of this thesis is arranged in the following manner: Chapter 2 introduces the devel-

opment of a global POD-Galerkin projection based ROM, and its application on numerical

as well as experimental datasets; chapter 3 reviews non-cylindrical calculus enabled adjoint

approach based on FOM equations, and then introduces the development of an adjoint-ROM

based fast flow optimization approach, and its application on 2D flows over moving cylinder
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and heaving-pitching airfoil; chapter 4 implements both FOM-based adjoint approach and

adjoint-ROM approach to solve the gust mitigation problem for 2D and 3D heaving-pitching

wings; chapter 5 leverages FOM-based approach on the hydrodynamic performance opti-

mization of multiple rigid and flexible hydrofoils; the conclusions are drawn in chapter 6,

with the insights into future work being discussed.
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Chapter 2

Global POD-Galerkin ROM approach

for flows with moving solid boundaries

2.1 Introduction

High-fidelity large-scale numerical simulation plays a critical role in research to understand

and analyze fluid dynamics. This is particularly true in fluid-solid systems with complex

motion and interactions, such as the classical dynamic stall problem which has attracted the

attention of the fluid dynamics community for decades45–47. However, the direct application

of high-fidelity computation is hindered by its computational cost in situations where com-

putational speed is critical. Thus, a reduced-order model (ROM) is often needed to provide

a feasible low-fidelity solution with much lower computational cost and lower-but-sufficient

computational accuracy48;49.

Just as reviewed in chapter 1, proper orthogonal decomposition (POD)-Galerkin projec-

tion24;50has been one of the most popular approach in the category, and has shown success

in many research areas including incompressible free shear layers51;52, the flow past fixed

cylinder53–56, compressible flows57;58, aeroacoustics in cavity flows59;60, etc. A common fac-

tor enabling the success of these ROMs is that the flows considered are defined in a fixed

fluid domain with either fixed solid boundaries or no-solid boundary (i.e. infinite domain),
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which is required by the original derivation of the approach. Recently, more efforts have

been made to extend the application of POD-Galerkin projection to a domain with moving

solid boundaries or structures61–64. To model the flow past a heaving airfoil, Lewin and Haj-

Hariri 65 defined the POD modes in the coordinate fixed on the airfoil to avoid the domain

problems caused by the motion and allow for an almost direct application of traditional

POD-Galerkin projection. The only modification required in their approach was to change

far-field boundary conditions and add extra non-inertial terms to the governing equations

before projection, which was based on the new body-fixed coordinate in a periodic heaving

motion. Aside from the inconvenience caused by non-inertial coordinates, the approach was

only applicable to non-deforming bodies with prescribed simple motions. For flow past an

oscillatory cylinder, Noack et al. 66 and Tadmor and Noack 67 introduced an additional actua-

tion mode for moving-boundary-imposed unsteadiness, as well as a cylinder-fixed coordinate,

to effectively represent the local motion while still using the POD modes constructed on a

fixed domain. The separate actuation mode allowed for an easy formulation for direct flow

control using the same actuation. However, the approach was limited to simple motions

which can be sufficiently described by a single actuation mode.

Similar to its application in numerical simulation, a Lagrangian-Eulerian framework may

also be applied in model reduction to map a physical domain with moving boundaries to a

computational domain with fixed boundaries, thus the application of POD-Galerkin projec-

tion in the fixed computational domain became straightforward. The mapping idea was suc-

cessfully applied in the modeling of an inviscid and irrotational flow passing a cylinder with

streamwise oscillation68;69, incompressible viscous flow passing a pitching and plunging foil70,

and experimental data of the flow passing a pitching and plunging foil71;72. Though promis-

ing and mathematically rigorous, the Lagrangian-Eulerian approaches were often complex in

formulation due to the complexity of mapping functions and associated Jacobian in govern-

ing equations. More importantly, the applications were mostly limited to small amplitudes

for the solid body motion or deformation to avoid ill-conditioned matrices in computation.

Wang and Shoele 73 proposed to use conformal mapping to largely reduce the complexity

in the transformation between the moving physical domain and the fixed computational
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domain. However, their approach was restricted to two-dimensional configurations.

To avoid complex mapping functions, a completely different route was taken to define

an arbitrary stationary domain including both fluid and solid while allowing a direct ap-

plication of POD-Galerkin projection on a modified equation in the combined fluid-solid

domain62–64;74. A recent work by Liberge and Hamdouni 74 , extended from their earlier work

on one-dimensional Burgers equation75, defined global POD modes from a global fluid-solid

velocity field and successfully built a ROM for the flow passing a spring-attached cylinder

oscillating at small amplitude. The same idea, to define global POD modes in a combined

fluid-solid domain, was leveraged in the current work as well as our earlier work on ROMs

for flows around flapping wings and moving cylinders62–64. However, there was a notable

difference in Galerkin projection on the modified equation in the combined fluid-solid do-

main: the derivation by Liberge and Hamdouni 74 was based on so-called fictitious domain

method76;77 while the current work was based on immersed-boundary method (IBM)6;12;13.

When solid mechanics and material properties are not considered, such as in applications

with solid boundaries moving with prescribed motion or deformation, the IBM-based formu-

lation is more convenient in derivation and more easily extended to applications with large

motions and deformation.

In the persent work global POD modes are defined in a combined fluid-solid domain

to avoid the problem caused by a morphing fluid domain with moving solid boundaries.

The governing equation is defined in the same combined domain as a modified Navier-

Stokes equation with an IBM-based formulation. The Galerkin projection of the modified

equation in the combined domain on the global POD modes leads to a global ROM capable of

capturing fluid dynamics with moving solid boundaries, which are represented by additional

terms coming from the modification to the original Navier-Stokes equation. Those additional

terms are used to describe solid-motion effects come from an integration of terms embedded

only in the solid domain with motion/deformation. So, the additional terms for a global

ROM need to be updated constantly to keep up with their constant motion.

Based on two different methods to describe solid motion, there are two different numer-

ical implementations for the update of these additional ROM terms: (1) Continuous Solid
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Domain Method (CSDM) where the solid motion is described as a continuous motion of a

continuous solid domain; (2) Decomposed Solid Domain Method (DSDM) where the solid

motion is further decomposed to a superposition of solid modes and needs to be computed

on-the-fly by a separate “solid ROM”. The CSDM implementation is straightforward and

accurate, but is computationally more expensive; the DSDM implementation is much faster

by modeling the solid motion, at the cost of slightly reduced accuracy. Both CSDM and

DSDM are implemented in the global POD-Galerkin projection framework and compared

in this work. It is worth noting that the focus of current study is to consider an arbitrary

solid motion with one-way coupling from solid to fluid only, and fully-coupled fluid-structure

interaction is not considered here but such extension is possible.

In the remainder of the chapter, section 2.2 briefly introduces the formulations for POD

modes, then describes the new methodology to build ROM for moving solid boundaries. In

section 2.3, the new ROM approach is applied on different cases for 2D and 3D numeri-

cal simulation or experiments, and related discussion is provided. At the end, section 2.4

summarizes and concludes the chapter.

2.2 Methodology

2.2.1 Global POD-Galerkin projection in a time-varying fluid do-

main

As reviewed in section 1.3, the traditional approach of POD-Galerkin projection requires

fixed fluid domain, which is not the case for flows with moving solid boundaries and struc-

tures. In recent studies63;74;78, a globally stationary domain including both fluid and solid

areas is considered in both POD and Galerkin projection to solve the theoretical challenges

posed by the time-varying fluid domain with moving solid boundaries or structures. Though

there is distinct difference in application areas, the current usage of a combined fluid-solid

domain for simplicity resembles the same idea behind a popular numerical simulation ap-

proach for moving boundaries, the immersed boundary method6–8;10. This method leverages
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the combined domain to allow simple fixed meshes for discretization, where the effect of

moving boundary/structure is represented as extra body-force terms added to the original

Navier-Stokes equation in specific “solid” area. More details about IBM can be found in

chapter 1.

Figure 2.1: Fluid and solid domains in a global POD-Galerkin projection, with Ωs being
the solid domain moving at velocity V (t) and Ω being the combined fluid-solid domain.

As shown in figure 2.1, the combined fluid-solid domain is Ω and a moving solid domain

Ωs is defined with V (t) as its velocity. A global POD is defined in the combined domain

Ω with a mathematically rigorous inner product (defined by Hilbert space) in the same Ω.

For clarity, in the rest of this chapter, 〈 , 〉 is used for an inner production defined over the

whole combined domain Ω and 〈 , 〉s is used for an inner product over the solid domain Ωs

only. To be consistent, a global Galerkin projection is applied on the same domain Ω, which

would require a modified Navier-Stokes equation 2.1 as introduced in chapter 113;16–18:

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u+ f , (2.1)

where f is the body forcing term numerically added in solid domain Ωs to define the trajec-

tory of solid motion and to satisfy boundary conditions for fluids12;13. Similar to the forcing

term 1.5 reviewed in section 1.3, the body force f may be defined to advance the time from
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tn to tn+1:

f =


[(u · ∇)u− 1

Re
∇2u]n + 1

τ
(V − un), in Ωs

0. otherwise
(2.2)

Note that the notation of the above forcing term is slightly different than equation 1.5

introduced in section 1.3, for the time step inherited from DNS is denoted as τ . The time

step of DNS is denoted as ∆0 only for this chapter, to distinguish it from the time step of the

discretized ROM equations. The velocity of solid motion V (t) would be satisfied at the end

of each time advancement τ , which represents the time scale to match the dynamic changes

in this process. However, selecting a value of τ the same as the time step used in ROM

computation may not lead to an optimal solution due to the time relaxation and delay in

complex dynamic systems. The value of τ used in the ROM computation in the current work

has been adjusted by trial and error for better accuracy, though choosing the same value

as ∆t used in current ROM computation provided computational results with comparable

accuracy. A theoretical estimation to give a range for reasonable τ will be discussed later.

2.2.2 Continuous Solid Domain Method (CSDM)

A standard Galerkin projection of equation 1.3 on to the first N global POD modes φi leads

to a global ROM for fluid-solid domain:

dai
dt

=
N∑
j=0

(Lij − L′ij)aj +
N∑
j=0

N∑
k=0

(Qijk −Q′ijk)ajak + C ′i, i = 1, 2, ...., N, (2.3)

which is similar to the traditional ROM in equation 1.24, but with extra parameters repre-

senting the solid motion with velocity V embedded in solid domain Ωs:

L′ij = 〈( 1

Re
∇2φj +

1

τ
φj),φi〉s

Q′ijk = −〈∇ · (φjφk),φi〉s

C ′i = 〈1
τ
V ,φi〉s,

(2.4)
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while the old parameters Lij and Qijk keep the same definitions but over the extended domain

Ω.

The above method is named Continuous Solid Domain Method (CSDM) for an overall

global POD-Galerkin approach, since an integration over a continuous solid domain is nec-

essary to provide the correction parameters representing solid motion. CSDM method is

simple and promising in applications63. However, the integrations of coefficients in equation

2.4 at each time step to accommodate the time-variant solid domain is very computationally

expensive and overshadows the computational merits of ROMs.

2.2.3 Decomposed Solid Domain Method (DSDM)

To reduce computational cost on equation 2.4, another variation of the global POD-Galerkin

approach, Decomposed Solid Domain Method (DSDM) is developed. DSDM decomposes

the time-variant solid domain into Lagrangian POD modes, just as Eulerian POD modes are

developed for fluid dynamics. Thus the solid motion may be described by a reduced-order

model of the solid modes. The impact of solid motion to fluid dynamics may be represented

by the solid modes and their dynamic ROM to avoid expensive computation in equation 2.4.

In fact, a separate ROM for solid motion also brings the convenience to further development

of two-way fluid-solid coupling as shown below.

In DSDM, a characteristic scalar function χs(x, t) (a.k.a. shape function) is introduced:

χs(x, t) =


1, in Ωs

0, otherwise
, (2.5)

which allows for rewriting the coefficients in equation 2.4 as:

L′ij = 〈( 1

Re
∇2φj +

1

τ
φj), χsφi〉

Q′ijk = −〈∇ · (φjφk), χsφi〉

C ′i = 〈1
τ
V , χsφi〉,

(2.6)
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defined by an inner product of a fixed combined domain Ω. Similar to the fluid field, the solid

domain and its motion, defined now by the characteristic function χs, can also be decomposed

to individual modes ψm(x) (i.e. Lagrangian POD modes) to reduce a continuous solid domain

to its low-dimensional representation with a truncation in the number of modes:

χs(x, t) =
∞∑
m=0

bm(t)ψm(x) ≈
M∑
m=0

bm(t)ψm(x). (2.7)

The decomposition of the solid domain and its motion provide an approximation of the

coefficients in equation 2.4:

L′ij ≈
M∑
m=0

〈( 1

Re
∇2φj +

1

τ
φj), ψmφi〉bm(t) =

M∑
m=0

L∗ijmbm(t)

Q′ijk ≈ −
M∑
m=0

〈∇ · (φjφk), ψmφi〉bm(t) =
M∑
m=0

Q∗ijkmbm(t)

C ′i ≈
M∑
m=0

〈1
τ
V , ψmφi〉bm(t) =

M∑
m=0

C∗imbm(t),

(2.8)

where new coefficients L∗ijm, Q∗ijkm and C∗im are all time-independent and need only to be

computed once at the beginning like other coefficients in equation 2.3. The new model,

which removes expensive inner product integration to update coefficients, is:

dai
dt

=
N∑
j=0

(Lij−
M∑
m=0

L∗ijmbm)aj+
N∑
j=0

N∑
k=0

(Qijk−
M∑
m=0

Q∗ijkbm)ajak+
M∑
m=0

C∗imbm, i = 1, 2, ...., N,

(2.9)

To close this system, a level-set-type equation79 depicting the evolution of the solid boundary

is introduced:
∂χs(x, t)

∂t
+ V · ∇χs(x, t) = 0, (2.10)

and it is projected onto solid modes ψm for the time evolution of bi:

dbi
dt

= −
M∑
m=0

〈V · ∇ψm(x), ψi(x)〉bm, i = 1, 2, ....,M, (2.11)
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where V is the velocity at the fluid-solid interface and it is assumed known in cases with

prescribed solid motion. In a general three-dimensional rigid body motion, the Eulerian

velocity V (t) has 6 degrees of freedom:

V (t) =
6∑
p=1

Tp(t)Xp(x), (2.12)

where {Tp} = {Vx(t), Vy(t), Vz(t), ωx(t), ωy(t), ωz(t)} represents the time-varying prescribed

translations and rotations respectively on the extended coordinateX = (nx,ny,nz,Rx,Ry,Rz).

Thus, the temporal variation components of the motion may be separated from the compu-

tation in equation 2.9 and equation 2.11 for terms:

C∗im = 〈1
τ
V , ψmφi〉 =

1

τ

6∑
p=1

Tp(t)〈Xp, ψmφi〉 and

〈V · ∇ψm(x), ψi(x)〉 =
6∑
p=1

Tp(t)〈Xp · ∇ψm(x), ψi(x)〉.
(2.13)

The separation of time-varying components reduces the computationally-intensive spatial

integration of ROM coefficients from needing to be computed at each time step to only once

at the beginning, and it drastically reduced the online computational time. The dramatic

speed-up of the above DSDM ROM formulation offers the capability of real-time computation

with lower but adequate resolution to study fluid problems with moving solid boundaries.

Both CSDM ROM and DSDM ROM equations were solved numerically with semi-implicit

scheme which guaranteed 2-order temporal precision. The details of this numerical scheme

are presented in appendix A.

2.3 Results and discussion

The global POD-Galerkin projection approach, both CSDM and DSDM, were applied in

this section on different types of high-fidelity high-resolution 2D/3D computational and

experimental databases. The ROM results were benchmarked against the original datasets
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for accuracy and efficiency.

2.3.1 Flow past 2D oscillatory cylinder

The global ROM approach was first applied to a canonical case of the two-dimensional

flow past an oscillatory cylinder under a prescribed sinusoidal motion along the vertical

(transverse) direction y:

y(t) = y0 sin(2πft), (2.14)

where y0 = 0.65 and f = 0.1568, non-dimensionalized by the cylinder diameter D and the

far-field incoming flow velocity U∗. At Reynolds number Re = 200, the chosen parameters

led to a “P+S” type of vortex street22, as shown in figure 2.2. The numerical simulation, in

this case and other cases of the paper, was performed by a well-validated incompressible flow

solver63;64;80 with the moving boundaries handled by the immersed-boundary method16;81.

The computational domain was 30×30, non-dimensionalized by the cylinder diameter D, and

it had a non-uniform mesh at 601× 601 which was fine and nearly uniform in the near-field

of the oscillatory cylinder and gradually stretched coarser moving towards the far-field.

Figure 2.2: A typical snapshot of the flow past 2D oscillatory cylinder contoured by vor-
ticity.

After the initial numerical and physical transition, data snapshots were taken every 50

time steps which were uniformly chosen at ∆t0 = 0.0016 in computation, and a total of
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326 snapshots were taken between the dimensionless time t = 640.0 and t = 666.0 which

covered four periods of vortex shedding from the cylinder. These snapshots were used to

provide POD modes for model order reduction. In the current case, N = 20 global POD

flow modes were used to build both CSDM ROM (equation 2.3) and DSDM ROM (equation

2.9). M = 20 POD solid modes were used in the DSDM ROM (equation 2.11) to model the

solid motion. It is worth noting that larger spatial scales represented by low-order modes

in ROM equations allowed for a coarser temporal discretization with larger time steps of

∆t = 0.1 in the ROM computation (compared to ∆t0 = 0.0016 in DNS). The time scale

τ = 0.05 was used for this calculation. Figure 2.3 shows the mean flow (zeroth mode) and

the first 5 POD modes of the flow field. For DSDM ROM in particular, the solid motion

was also decoupled to POD solid modes, and figure 2.4 shows the first 6 POD solid modes.

(a) (b) (c)

(d) (e) (f)

Figure 2.3: The leading POD modes of the flow past 2D oscillatory cylinder: (a) the mean
flow (zeroth mode) and (b – f) the first 5 global POD modes, contoured by horizontal velocity
vx.

As shown by the phase portraits of the leading fluid modes in figure 2.5 (a) and (b), both

CSDM ROM and DSDM ROM successfully captured the dynamics compared to the direct

low-order projection from the original DNS data (notated by “L-DNS” in the figure). For

DSDM ROM, the phase portraits of leading solid modes are shown in Fig. 2.5 (c) and (d)

and they also match well with the exact solid motion trajectory used in DNS.

For a more intuitive comparison in physical domain, figure 2.6 compares the flow fields
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(a) (b) (c)

(d) (e) (f)

Figure 2.4: The first 6 solid POD modes ψi of the shape function: (a – f) for mode 1 – 6
respectively.

with the same contours of vorticity, from the original DNS, L-DNS, CSDM and DSDM

methods. The L-DNS representation was calculated from the reconstruction of the first 20

POD modes and their time coefficients computed by a direct projection of DNS data (i.e. an

exact presentation of DNS data in a 20-mode space for a fair comparison), while the CSDM

and DSDM were reconstructed based on ROMs which also used the first 20 POD modes.

Flow snapshots were taken at three consecutive moments within one vortex-shedding period:

t = 662.4, t = 664.0 and t = 666.0. Overall, the CSDM and DSDM methods compared quite

well with the DNS, and L-DNS results. In the region near the oscillating cylinder, noise and

“shadows” appear in all low-dimensional representations including the low-order projection

of DNS and CSDM/DSDM ROMs. If the low-order projection of DNS in the same space

is considered the “exact solution”, both CSDM and DSDM ROMs were able to accurately

capture flow dynamics.

For a more quantitative comparison, the horizontal velocity component vx was extracted

along the centerline at y = 0 from the left (x = −2) to the right (x = 10) of the domain

from the DNS, low-order projection of DNS, CSDM and DSDM data respectively, in figure
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(a) (b)

(c) (d)

Figure 2.5: The phase portraits of the time coefficients of the leading global POD modes
and solid modes: (a) a1 versus a2; (b) a1 versus a3; (c) b1 versus b2; (d) b1 versus b3.

2.7. For all three time moments, there was a good agreement across most of the center line

except for the region near x = 0, where is the area with large solid motion which makes it

sensitive to low-order approximations.

The drag and lift forces exerted on the cylinder surface were also computed and shown in

figure 2.8. Note that, since pressure was not involved in the POD or ROM calculations, the

drag and lift coefficients CD and CL for low-order projection of DNS and ROM reconstruction

were computed by a method proposed by Noca et al. 82 and Noca et al. 83 , which uses the

velocity field only for force calculation. The detailed derivation can be referred to appendix

B. The forces calculated from the DNS results were smooth but exhibited significant “noise”

caused by small-scale, high frequency structures in the flow. These smaller scale features

were truncated by the POD mode downselect (20 modes), resulting in smoother curves.

Essentially, the force history plotted from POD reconstruction is similar to a smoothed DNS
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(a)
DNS

t = 662.4
(b)

t = 664.0
(c)

t = 666.0

(d)
L-DNS

(e) (f)

(g)
CSDM

(h) (i)

(j)
DSDM

(k) (l)

Figure 2.6: The flow field contoured by vorticity at different time moments (t = 662.4,
664.0, and 666.0): (a – c) the original DNS data; (d – f) the low-order projection of DNS
data with 20 modes; (g – i) CSDM ROM with 20 global POD modes; (j – l) DSDM ROM
with 20 global POD modes and 20 solid modes.

plot. The force history plotted from the CSDM and DSDM ROMs covering two periods

predicted the lift force CL well and matches with the plot of low-order projection of DNS in

its amplitude and time periodicity. The ROM results are less accurate in their prediction of

the drag force CD in terms of the amplitude.

2.3.2 Flow past 3D oscillatory sphere

The global ROM method was then applied to a three-dimensional case to study the flow

past an oscillatory sphere. Similar to its two-dimensional counter-part, the sphere oscillated
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(a) (b)

(c)

Figure 2.7: The horizontal velocity vx along the center line (y = 0) from x = −2 to x = 10
obtained from DNS, the low-order projection of DNS, CSDM ROM computation and DSDM
ROM computation respectively: (a) t = 662.4, (b) t = 664.0, and (c) t = 666.0. The shade
indicates the area that may be inside the cylinder.

(a) (b)

Figure 2.8: The drag (CD) and lift (CL) coefficients obtained from DNS, low-order pro-
jection of DNS, CSDM ROM computation, and DSDM ROM computation.

vertically with a sinusoidal motion z(t) = z0 sin(2πft), where z0 = 1.0 and f = 0.16 were

chosen here and non-dimensionalized by the diameter of the sphere D and the far-field

incoming velocity U∗ (figure 2.9). The Reynolds number Re = 200 was based on the same

characteristic parameters. The computational domain was 15×8×8 non-dimensionalized by

D. Symmetric boundary conditions were enforced along y and z, both directions normal to

37



the incoming flow. A non-uniform mesh at 301×161×161 was used to increase the near-field

resolution of the flow surrounding the moving sphere. After the flow was fully developed

and reached a stable vortex shedding state, data snapshots were taken every 20 time steps

which were uniformly chosen at ∆t0 = 1.54 × 10−3, and a total of 401 data snapshots were

taken between the dimensionless time t = 30.8 and t = 43.1 to cover two periods of vortex

shedding from the sphere.

z(t) = z0 sin2p!

computa"onal domain

z x

y
U*

Figure 2.9: The sketch of a 3D oscillatory sphere with incoming flow in a computational
domain.

(a) (b) (c)

(d) (e) (f)

Figure 2.10: The leading POD modes of the flow past 3D oscillatory sphere: (a) the mean
flow (zeroth mode) and (b – f) the first 5 global POD modes, denoted by the iso-surfaces
of streamwise velocity vx: (a) iso-surfaces vx = 0.75 and vx = 0.95 are shown; (b – f)
iso-surfaces vx = 0.05 and vx = −0.05 are shown.

The mean flow (zeroth mode) and the first 5 POD modes are shown in figure 2.10. A time

step of ∆t = 0.05 and time scale τ = 0.1 were used for the ROM calculations. Considering the
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significantly increased cost to compute a three-dimensional inner product, which is required

by the CSDM approach for every single time step, DSDM became the only feasible solution

to develop an ROM in this case.

(a) (b)

(c) (d)

Figure 2.11: The phase portraits of the time coefficients of the leading global POD and
solid modes: (a) a1 versus a2; (b) a1 versus a3; (c) b1 versus b2; (d) b1 versus b3.

To compare the dynamics computed by the DSDM ROM to the original dynamics of the

flow, figure 2.11 plots the phase portraits of leading fluid and solid modes. The red lines

represent the original dynamics by a direct projection of the original DNS data to the same

low-order space of the POD modes used in ROM computation, while the blue circles are

the DSDM ROM results. The comparison shows a good agreement between the dynamics

reproduced by the ROM and the original dynamics of DNS data in both fluid flow and solid

motion.

Figure 2.12 shows the time coefficients of the first two POD modes, obtained by the direct

projection of the original flow onto POD modes, and solving DSDM equation (equation 2.9).

Twenty POD modes as well as twenty solid modes were used for DSDM. It is found that
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(a) (b)

Figure 2.12: The time coefficients of the first two POD modes as functions of dimensionless
time.

DSDM is capable of capturing the dynamics in 3D case in terms of amplitude and periodicity.

The total energy of the system is strictly conserved which guarantees the stability of long-

term simulation as the amplitude of ai(t) is well reserved. As shown in figure 2.12, the time

coefficients by DSDM can keep the same amplitudes and periods even beyond the time range

of the snapshots which POD modes are based on.

It can be seen that DSDM ROM captured the flow dynamics successfully compared to

the direct projection from the original DNS data, with only small discrepancy between the

limit cycles in figure 2.11 (b). The solid motion in DNS was also well captured by solid

modes as shown in figure 2.11 (c) and (d).

The flow field was then reconstructed in a low-order space from the ROM computation.

figure 2.13 compares snapshots of flow field at two different time moments t = 40.0 and

t = 43.1, which are plotted respectively from the original full-order DNS data, the direct

projection of the DNS data to the low-order space of the first 20 POD modes, and the flow

reconstruction from the DSDM ROM in the same low-order space. The flow reconstruction

by the DSDM ROM accurately represented the flow features (e.g. vortex shedding and wake

structures) of the DNS flow, especially its low-order representation. In fact, it is arguably

more fair to compare the DNS results and ROM results on the same low-order space (L-

DNS). In the near-solid region, spurious flow structures appear in a way similar to the earlier

two-dimensional case, as a result of lower resolution and higher sensitivity in the region.

For a quantitative comparison of the ROM’s prediction of aerodynamic performance,
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(a)

DNS

t = 40.0 (b) t = 43.1

(c)

L-DNS

(d)

(e)

DSDM

(f)

Figure 2.13: The flow field at t = 40.0 and t = 43.1: (a – b) the original DNS data; (c –
d) the low-order projection of DNS data with 20 modes; (e – f): DSDM ROM with 20 global
POD modes and 20 solid modes. The iso-surface of Q = 0.01? is chosen here to compare
three-dimensional vortex structures.

(a) (b)

Figure 2.14: The drag (CD) and lift (CL) coefficients obtained from DNS, the low-order
projection of DNS, and DSDM ROM.
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drag and lift coefficients were computed from different flow reconstructions and plotted

in figure 2.14. The original DNS data used in model reduction covers the time period

between t = 30.8 and t = 43.1, which were indicated by the start and the end of drag

and lift coefficients computed from the DNS and the low-order projection of DNS data.

There was close matching of drag/lift force provided by the DSDM-ROM in the same time

period. Notably, it is even more exciting to observe the ROM’s capability to extend the force

prediction beyond the original data as shown in the time period between t = 43.1 and t = 50.

Though it is not a surprise in terms of the dynamics in a periodic system, the capability

and robustness of the current ROM shown in its extended prediction (without forcing any

periodicity) is remarkable and implies opportunities in its practical application.

2.3.3 Flow past 2D pitching-up NACA0012 airfoil: experimental

data

The global ROM approach may also be applied to an experimental database in the same

way as a numerical simulation database. With the turbulence from higher Reynolds number

and noise from experimental measurement, the application on experimental data creates new

challenges. In this section, the same methodology was applied to high-quality wind-tunnel

PIV data of the flow past a pitching-up NACA0012 airfoil. The PIV data was taken in

the Microsystem Aeromechanics Wind Tunnel (MAWT) facility at the Army Research Lab

(ARL). For the clarity of the current paper, the experimental facility and its setup78;84 were

not detailed here. The experiment was conducted at Re = 12, 000 defined by the incoming

flow speed and airfoil chord length. The airfoil began with angle of attack α = 0, and started

to pitch up at t = 16.5 with angular velocity ω = 0.2 around its quarter-chord point until

reaching the maximum angle of attack α = 55◦. It is noted that the angular velocity is

nondimensionalized by the same incoming flow and airfoil chord length for consistency, and

it makes twice the value of the reduced pitching rate commonly used in other literatures

with slightly different normalization84.

A total of 394 PIV snapshots were taken for the entire process including the time period
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before and after the pitching-up. To focus on the rapid evolution of dynamics during the

pitching-up, the snapshots before and after the pitching-up were removed and only the 59

snapshots between t = 16.5 to t = 21.6 were used for POD analysis and ROM construction.

Since the mesh and resolution of the raw experimental data are different from the compu-

tational framework for model reduction, a 2nd-order linear interpolation was used to fit the

data of all frames to the same mesh of a computational domain 1.8×1.25 (chord length based

dimensionless size). The first 20 global POD modes computed from the 59 PIV snapshots

were used to build the ROM, which also used 20 solid modes computed directly from the

pitching-up motion of the NACA0012 airfoil. A time scale of τ = 0.0075 was used, while the

time step used in ROM computation was ∆t = 0.01, which is smaller than previous cases

due the higher Reynolds number in experiment.

(a) (b)

Figure 2.15: The time coefficients of the first 2 global POD modes during the pitching-
up of airfoil: a comparison between the direct low-order projection of DNS, CSDM ROM
computation, and DSDM ROM computation.

Figure 2.15 compares the time coefficients of the first 2 POD modes computed by CSDM

and DSDM ROMs with the ones directly projected from the original PIV data in the same

low-order space (i.e. “L-EXP”). Although the Reynolds number in the experiment was much

higher than previous simulation cases, the dynamic behavior of the dominant energetic modes

were accurately represented by both CSDM and DSDM ROMs. The ROMs also preformed

well with the transition dynamics, which was considered more challenging to capture than

previous limit-cycle dynamics (i.e. periodic fluid flow).

To have a more complete picture of flow dynamics, the original flow fields obtained
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(a)

EXP

t = 18.8 (b) t = 20.6

(c)

L-EXP

(d)

(e)

CSDM

(f)

(g)

DSDM

(h)

Figure 2.16: The comparison of flow fields from (a – b) original experimental data, (c –
d) the low-order projection of experimental data with 20 POD modes, (e – f) CSDM ROM
with 20 fluid modes, and (g – h) DSDM ROM with 20 fluid and 20 solid modes, at t = 18.8
when α = 26◦ (left) and t = 20.6 when α = 45◦ (right). All flow fields are contoured by
vorticity and overlaid with velocity vectors.

from the raw PIV data (i.e. “EXP”), the low-order projection with the first 20 global POD

modes (for fluid and solid) of experimental data (i.e. “L-EXP”), and the reconstructions

from 20-mode CSDM/DSDM ROM computations are compared in figure 2.16. The two time
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moments are chosen to focus on two distinct dynamic events during the pitching-up process:

the growing and separation of leading-edge vortex (LEV) and the LEV shedding from the

airfoil to pair with the trailing-edge vortex (TEV) towards the end of the pitching motion.

The 20-mode low-order projection of experimental data, shown in figure 2.16 (c) and (d),

represents the original flow data in a nearly identical fashion, demonstrating the possibility

of maintaining the original dynamics in a low-order space (at least by an “ideal” ROM).

More importantly, the flow fields computed directly from CSDM/DSDM ROMs, shown in

figure 2.16 (e – h), resemble well the main dynamic features including the location and

strength of LEVs. On the other hand, it is apparent that ROM reconstructions have some

spurious flow structures near the airfoil surfaces and struggle in capturing TEV structures

accurately. Furthermore, since CSDM uses the solid motion directly and DSDM uses a

discrete representation of the actual motion, the flow reconstructions by CSDM ROM show

less spurious structures.

(a) (b)

Figure 2.17: The horizontal velocity component vx as a function of x along y = 0 line at:
(a) t = 18.8 and (b) t = 20.6.

A more quantitative comparison is shown in figure 2.17 by retrieving streamwise velocity

vx along the centerline y = 0 from the same snapshots in figure 2.17. The streamwise velocity

plotted from the direct projection of data is almost identical to the one from the original

experimental data. The velocity computed by both CSDM and DSDM ROMs shows overall

good agreement with the original flow at the beginning of the pitching-up when the angle

of attack is small or medium and the LEV is still attached. However, when the the angle

of attack increases and triggers vortex shedding and pairing, the ROM calculation becomes
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inaccurate in the dynamically intense region near the pitching-up airfoil, though the ROM

computation remains accurate in areas before and after the near-field region.

2.3.4 Flow past 2D rotating elliptic airfoil: experimental data

The experiment was conducted with the same equipments as used for pitching-up NACA0012

airfoil case at Re = 12, 000. A full-span wing model with an elliptical shaped airfoil with

a chord of 12 cm and thickness of 1.8 cm was pitched about mid-chord at a constant pitch

rate. The pitch rate was held at a constant value of Ω∗ = 0.12. The schematic illustration

of the experimental model is shown in figure 2.18. Again the turbulence at higher Reynolds

number and the noise from experimental setup and measurement put the proposed ROM

methodology in more challenges. POD was first applied on PIV snapshots for the bases, then

the global Galerkin projection on the POD modes led to a global ROM. Different approaches

for the integration of solid domain, CSDM and DSDM, are implemented and compared. A

total of 360 PIV snapshots were used to compute POD modes for fluid flow. 20 POD fluid

modes were used for both CSDM and DSDM, and another 20 POD solid modes were used

for DSDM implementation. τ was set to be 0.0075 for the construction of ROM equations.

Figure 2.18: Schematic drawing of the rotating elliptical airfoil.

Figure 2.19 presents the time coefficients of first 2 POD modes. Although the Reynolds

number was significantly high, the pitching motion is still dominant, thus the low-dimension
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(a) (b)

Figure 2.19: The evolution of the time coefficients a1 and a2 for the experimental data at
Re = 12, 000 by L-EXP, the CSDM ROM, and the DSDM ROM.

flow dynamics remained periodic. However, more fluctuations were observed in this exper-

imental data. This might arise from experimental uncertainty, repeatability of the phase

averaging, or even a transition to turbulence in some regions. It can be seen that both

CSDM and DSDM accurately modeled the coefficients from the L-EXP of the experimental

data. However, the DSDM results had slightly more fluctuation compared to the POD and

CSDM, which may have been caused by the use of a smaller number of solid modes (20) in

the DSDM computation. Such results show that the current global ROM methodology is

able to accurately model the time coefficients with robustness for more complex flows even

with uncertainties.

Flow fields with velocity vector and contours for vorticity at different phase angles are

shown in figure 2.20 for both the experimental data (a – d) and CSDM rebuilt flow fields

(e – h). Only near-field structures are shown due to the limited experimental resources

and time. Since the same flow would repeat twice during one period it is enough to study

the first half period. As expected, the flow is periodically dominated by DSV, TEV and

the traditional bluff body shedding. When α = 90◦, DSV and TEV form simultaneously,

and those two vortices are not symmetric, with the TEV being slightly more pre-dominant

than the DSV. In figure 2.20 (e) it can be seen that ROM reconstruction can capture such

asymmetry as well as the positions of the two vortices with a good level of accuracy. When

the ellipse was pitched up to 135◦, the flow was DSV dominated. Figure 2.20 (f) shows some

non-physical fluctuations near the airfoil by ROM rebuilt, which may relate to the exclusion
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 2.20: The comparison of flow field with snapshots from PIV (a – d) and a recon-
struction from ROM with CSDM (e – h) at different time and phase angles: α = 90◦ for (a)
and (e), 135◦ for (b) and (f), 180◦ for (c) and (g), and 225◦ for (d) and (h). The vectors
are for velocity field and the contours are for vorticity.

of higher order information in the ROM. However TEV can still be captured clearly despite

the non-physical results upstream of the airfoil. When α = 180◦ both DSV and TEV had

convected downstream resulting in bluff body shedding to dominate the flow. The ROM

reconstruction for this flow state accurately reconstructed the experimental flow field data.
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At α = 225◦, figure 2.20 (h), which shows the early formation of the DSV, the ROM also

accurately reconstructs the shear layer vortex (SLV) near the trailing edge.

(a) (b)

Figure 2.21: The drag coefficient CD and lift coefficient CL obtained from for experimental
measurements, L-EXP reconstruction and CSDM ROM reconstruction. The variation of the
pitching angle is shown by the top x-axis.

An analysis of the lift and drag coefficients was done and results are shown in figure 2.21.

Forces were computed directly from velocity data of experiments, then the results from

L-EXP reconstruction and ROM reconstruction with CSDM were calculated by the same

method. While the L-DNS is able to recreate the lift and drag behaviors of the experimental

data with high accuracy, the CSDM ROM deviated somewhat. In general it performed very

well at predicting peak lift and drag values, although it over-predicted the negative lift peak

as seen in figure 2.21 (b). Despite this, the timing of peak lift aligned well, while drag peaks

had a slight lag. The accuracy of these results could potentially be improved by the inclusion

of more modes in the ROM or by investigating the non-physical flow features that appear

near the airfoil at some times (figure 2.20).

2.3.5 Computational cost analysis

Computational costs by DNS and CSDM/DSDM ROMs of all cases studied in prior sections

are listed in this section to highlight the computational saving of the proposed method.

Though two cases were based on experimental data, the computational cost of their ROMs

remains meaningful in their comparison to the tremendous experimental cost in preparing

the PIV data. The computational cost includes two parts with distinct nature, the offline
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cost and the online cost. The offline cost refers to the time consumed in computing POD

modes and the integration of all time-independent coefficients in ROM construction; the

online cost refers to the time consumed in the all computation to advance the actual ROMs

in time, including the time integrator of ROMs, and the potential update of time-dependent

terms or coefficients in some approaches such as the CSDM coefficients in equation 2.4,

which changes along with the solid motion. For a fair comparison, all computational costs

(i.e. wall time) listed in table. 2.1 are measured by running on the same computer. The 2D

computation for the flow past oscillatory cylinder and all ROM computation ran as a serial

code, and the 3D computation for the flow past oscillatory sphere ran as a parallel code with

5× CPU power.

Table 2.1: Comparison of the computational time of ROMs to the original data.

Original data CSDM DSDM

2D oscillatory cylinder (DNS): 20h15m
offline: 5m

online: 11h37m
offline: 1h22m

online: 4s

3D oscillatory sphere (DNS): 6h38m† N/A
offline: 26h37m

online: 44s

Pitching-up airfoil (EXP)
offline: 6m

online: 22h33m
offline: 47m
online: 13s

Rotating elliptic airfoil (EXP)
offline: 7m

online: 27h24m
offline: 1h8m
online: 14s

† run in parallel with 5× CPU power.

The data in table 2.1 indicate a much improved computational efficiency by ROMs es-

pecially in the online portion. For the 2D oscillatory cylinder case, CSDM ROM reduced

the computational cost to 57% and DSDM ROM reduced to only 6.7%. More important,

DSDM ROM moves most of the computational cost to offline, which is computed only once

in the initial development of ROMs, and reduces the mission-critical online cost to only 4

seconds (0.005% of the original computation) for the entire event which allows to run ROMs

in real-time for computation, optimization, and control. For the 3D oscillatory sphere case,

the original DNS cost is scaled by a factor of 5 to 33h10m to count for parallel computation,
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and the overall DSDM ROM cost reduced to 81% of the scaled time. However, the mission-

critical online cost of the DSDM ROM was reduced to a total of 44 seconds and 0.037% of

the original cost, which allows again a real-time computation. For the experimental data

of NACA0012 airfoil, the online cost of DSDM ROM was reduced to 13 seconds. Similar

huge reduction of online cost is also observed for the experimental data of elliptic airfoil

(only 14 seconds). The high computational effiiciency opens up the possibility of future

work on real-time flow-control in scenarios such as real-time response to the dynamics stall

of a pitching-up airfoil or a rotating airfoil. It is worth noting that the computational saving

of ROMs comes from two factors: one is the drastic order reduction in degree of freedom

of ROM equations, and the other is that much larger scales resolved by ROMs also allow

integration within the ROM equations with much larger time steps in computation.

2.3.6 Error analysis

Lastly, the accuracy of ROMs is investigated for its sensitivity to a few key control parame-

ters: the number of global POD modes N , the number of solid modes M in DSDM, and the

nominal time scale τ for solid motion. The study focuses only on DSDM ROM as it is the

only feasible choice for real-time online computation as shown in the prior section.

The amplitude of the first two modes, A =
√
a2

1 + a2
2, is often used to measure the

behavior of attracters in their low-order phase portraits54. An averaged error E for ROM

accuracy may therefore be defined by

E =
1

T

∫ T

0

|AROM − AL−DATA|dt, (2.15)

where T is the total time of ROM computation, AROM is the amplitude computed by ROMs,

and AL−DATA is a direct lower-order projection of the original data (i.e. L-DNS or L-EXP).

Figure 2.22 shows the impact to model accuracy from choosing different number of modes,

N for the global POD modes and M for the solid POD modes, while the time scale τ is fixed

respectively at 0.05 and 0.1 for the two numerical simulations. For the two experimental
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cases, τ = 0.0075 and τ = 7.5×10−4 were used for the pitching-up airfoil and rotating elliptic

airfoil case respectively. In the study, when N is compared, all M is fixed at 20; when M is

compared, all N is fixed at 20. In the first two numerical simulations, the average error is not

sensitive to the choice of N between 10 and 30, and remains below 4%. In the experimental

case of NACA0012 airfoil, however, the error first decreases from 9.5% to below 6% as N

increases from 10 to 20, then the error increases again with additional modes. Larger error

is found for the rotating elliptic airfoil case, with the lowest error around 10% achieved

when N = 10 and M = 20. The increase of error with the number of global fluid modes

N is from the inclusion of spurious high-frequency components in higher POD modes which

are noisier in experimental data and also harder to resolve at high Reynolds number. On

the other hand, the increase of solid modes M shows more consistent contribution to the

model accuracy by improving the resolution of moving solid boundaries. For most of the

computation in this paper, N = 20 and M = 20 are used as a balanced choice for ROMs of

all three cases.

Contrary to the relatively low sensitivity to N , the error for all four cases is found more

sensitive to M . As seen in figure 2.22, when increasing M for 10 to 20, the error decreased

by about 2% for two-dimensional DNS case, about 4% for three dimensional DNS case and

about 8% for the experimental case of pitching-up NACA0012, respectively. In addition,

the error for the experimental case of rotating elliptic airfoil even decreased by one order

of magnitude when M was increased from 5 to 20. Since solid modes are the low-order

representations of the solid motion, it is crucial to keep enough number of solid modes when

building ROM to maintain a relatively low error.

The dependence of τ on the error was also investigated with N and M both fixed at 20.

As derived in equation 2.2, τ is originated from the discretization of Navier-Stokes equation

with IBM, so its value should be closely related to the numerical treatment on the original

Navier-Stokes equation. However, the choice of τ still remains open, for it does not necessarily

have to be the same value as in DNS, furthermore there is no τ whatsoever in experiments.

Therefore, it would be practical for a new ROM setup if an a priori τ can be estimated.

A simple way to estimate the proper value of τ for ROM is provided, which leverages the

52



(a) (b)

(c) (d)

Figure 2.22: ROM sensitivity to the number of POD modes for fluid N and for solid M
in: (a) the flow past 2D oscillating cylinder; (b) the flow past 3D oscillating sphere; (c) the
flow past pitching-up airfoil in the experiments; (d) the flow past rotating elliptic airfoil in
the experiments, the y axis is in logarithmic scale.

numerical stability criterion of the original DNS. A third-order Runge-Kutta scheme (RK3)

was used in DNS, thus the stability limit the Courant–Friedrichs–Lewy number (CFL) can

be given by CFL =
√

313. With this CFL the criterion is designed as follow20:

τ0 = CFL× min{∆x,∆y,∆z}
Umax

, (2.16)

where Umax is the maximum flow velocity in the associated FOMs, which can be approximated

by the velocity of incoming flow, thus Umax = 1 was used for all four cases in this work. Then

with the mesh size used for the inner product in the computations of ROMs, an analytical

estimation τ0 for an optimal τ can be obtained, as shown in table 2.2.

On the other hand, the optimal τ can also be found numerically by parametric study,

which is denoted as τopt. Figure 2.23 presents the variation of errors in terms of τ for DNS

and experimental cases. It is found that for all cases, as τ increases, the error decreases first
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Table 2.2: τ0 estimation and the optimal τopt for smallest error obtained from the numerical
study for different cases.

case min{∆x,∆y,∆z} τ0 τopt

2D oscillatory cylinder 0.008 0.0138 0.025

3D oscillatory sphere 0.0154 0.0266 0.075

pitching-up NACA0012 airfoil 0.00313 0.0054 0.0075

rotating elliptic airfoil 0.003 0.0087 0.00075

(a) (b)

(c) (d)

Figure 2.23: ROM sensitivity to the time scale τ used in: (a) the flow past 2D oscillating
cylinder; (b) the flow past 3D oscillating sphere; (c) the flow past pitching-up airfoil; (d) the
flow past rotating elliptic airfoil. x axes are in logarithmic scale. τ0 is given by Eq. 2.16.

then grows, though specifically for the rotating elliptic airfoil case, only slight decrease of the

error was observed. Therefore, τopt can be obtained to minimize the error, which is presented

in table 2.2. It is found that for each case, τopt obtained from numerical experiments has

the same order of magnitude as the associated τ0, except for the rotating elliptic airfoil case,

where τ0 is an order higher of τopt. The comparison shows that though the criterion by
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equation 2.16 is preliminary, it may still provide a reasonable and handy guidance to seek

a proper τ for ROM, instead of going through a tedious trial-and-error process. However,

more rigorous criteria are needed to determine a more accurate estimation of τ0, considering

the present criterion performs not so well for the rotating elliptic airfoil case.

2.4 Concluding remarks

In this chapter, a global POD-Galerkin projection for model order reduction was proposed

to develop ROMs for complex fluid flows with moving solid structures. The method was

based on globally defined POD modes in the combined fluid-solid domain and the projection

of a modified Navier-Stokes equation simultaneously describing fluid and solid in the same

combined domain. The global definition allowed for convenient application of POD-Galerkin

projection in a fixed fluid-solid domain and avoided using complex and often expensive

techniques, such as unsteady mapping functions, in its handling of a morphing fluid domain.

To implement the impact from solid motion to the global fluid-solid ROM, two different

descriptions for solid domains led to two types of global POD-Galerkin ROMs, namely CSDM

and DSDM ROMs. CSDM ROM implemented the solid motion by defining its impact as

an integration in the solid domain and therefore must be updated at each time step as the

solid domain morphing continuously; DSDM ROM further decoupled the solid motion to the

motion of discrete modes (i.e. shape functions) to replace the expensive integration with a

few dynamic equations of these solid modes and speed up the computation to a real-time

fashion at the cost of reduced accuracy in boundary resolution.

The global ROM methodology was applied to build ROMs from two numerical simulation

datasets and one from experimental data. For all cases the use of 20 global POD modes and

additional 20 solid modes (for DSDM only) allows ROMs to accurately capture basic dynam-

ics. The accuracy of the prediction by both type of ROM equations was demonstrated by its

close match with the original DNS and experimental data. This accuracy was demonstrated

using the evolution of leading modes, reconstructed flow field, and key aerodynamic mea-

sures such as lift and drag. Though CSDM ROM provides a simplified dynamic equation for
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analysis and also reduces the original cost significantly, its online computational cost remains

too high for applications requiring real-time responses. On the other hand, DSDM ROM,

by moving some computational cost to offline and at the expense of reduced boundary res-

olution, achieves real-time computational capability while retaining an accurate description

of key dynamic features.

The sensitivity of the error of DSDM ROM to the number of POD modes N , the number

of solid modes M , and the time scale τ , was studied. For both DNS cases, the error was

found insensitive to N , which was lower than 4% for all N when M was fixed at 20. For

the experimental cases, the lowest error was less than 6% when N = 20 for the pitching-up

NACA0012 airfoil case, while a lowest error of 9% was achieved for the rotating elliptic airfoil

case . M was found to have more impact on the error, for increasing M from 10 to 20 can

significantly reduce the error all four cases. Additionally, it is found that an optimal τ exists

to minimize the error for all cases, which can be preliminarily estimated priorly by the CFL

criterion.
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Chapter 3

Fast flow optimization with

adjoint-ROM approach

3.1 Introduction

Moving body actuated flows are ubiquitous in the nature, which help natural flyers or swim-

mers to attain better performance of flying. Among these motions, the pitching-flapping-wing

motion has drawn the interests of fluid mechanics community for a long time85, since it effec-

tively promotes the aerodynamic efficiency and maneuverability of many birds and insects.

Although some understanding of its mechanism has been achieved by high-fidelity direct

numerical simulations (DNS)16;18;86–88 or well-designed experiments89;90, the huge parameter

space of this problem often prevents further physical understanding and optimization through

a direct parametric study, let alone the real-time control. Many efforts have been made to

reduce the complexity of the physical model or the dimension of the parameter space, such

as the works by Berman and Wang 91 , Trizila et al. 92 , and Ghommem et al. 93 , which limited

the dimension of the control parameters. However, the computational cost for these optimal

controls remained high, even when surrogate models were used. Gradient-based approaches

have been applied to optimization94;95, but the process was still computationally expensive

due to the way the gradient was calculated.
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Contrary to the aforementioned methods, adjoint-based methods pave a way to tackle a

large number of control parameters simultaneously with computational cost not significantly

scaling up38;96. The fundamentals of the conventional adjoint-based flow optimization was

detailed in chapter 1. However, for the most problems in the present work, there exist moving

solid boundaries in the flow domain, therefore the conventional adjoint approach which is

derived on a fixed flow domain cannot be applied directly. Nadarajah and Jameson 97 used

a domain transformation to map the physical domain with a moving solid boundary to a

computational domain with only fixed boundary, to optimize the shape of a plunging airfoil

for better aerodynamic performance with conventional adjoint-based approach. However,

the mapping function would greatly increase the complexity as well as the computational

cost of the optimization, which made it impossible for controls on moving solid trajectory

or dynamic morphing solid boundaries. To avoid the difficulty of handling the domain

mapping, non-cylindrical calculus has been leveraged as a powerful tool to deal with the

difficulty of moving solid boundaries, and has been successfully applied to the optimization

of heat transfer and shape control with FSI98;99. Recently, the author’s research group has

developed non-cylindrical calculus enabled adjoint approach to optimize the aerodynamic

force and the power efficiency of flows over a flapping wing, which has shown its effectiveness

on the optimization of flows with complicated FSI and morphing solid boundaries80;88;100;101.

Despite the fact that the adjoint-based method is able to reduce the computational cost

for large control spaces, numerical simulation is still required for most studies, which can

still be computationally expensive, especially for 3D flows. Therefore, the real-time control

for 3D flows is still not feasible with the current adjoint methods. A surrogate model might

be developed to mitigate these challenges, which has lower dimension but can adequately

capture the essential physics of the original flow system. Then the optimization can be

conducted on this surrogate model instead of the original high-dimensional full-order model

(FOM). An appropriate surrogate model would potentially enable real-time flow control due

to the significant reduction in computational costs. Proper orthogonal decomposition (POD)-

Galerkin projection based reduced-order model (ROM) is one of the most popular surrogate

models, and has been successful when applied to numerous flows52;54;58;102;103. Recently, a
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global POD-Galerkin projection based ROM has been developed to handle flows with moving

solid boundaries62–64;78;104–106. This ROM was shown to be reasonably successful in capturing

the dynamics of different 2D and 3D DNS and experimental databases, as comprehensively

introduced in chapter 2. Hence it is a natural choice for the current study on the optimal

control of flows with actuations from moving solid boundaries.

Some previous researchers also studied using ROMs for flow control. Noack et al. 66 and

Tadmor and Noack 67 proposed an energy-based control scheme to control the vortex shedding

behind a circular cylinder with a four-dimensional Galerkin ROM. The control approach

yielded the optimal parametric amplitude for the smallest fluctuation energy, but had a very

narrow region of validity in the control parameter space. Tallet et al. 107 , Oulghelou and

Allery 108 , and Oulghelou and Allery 109 proposed a POD-ROM based flow control approach

with adjoint method, to study the temperature control of the heated lid-driven cavity flow.

Model adaptation methods, including Lagrangian interpolation on the mean fields (IMF) and

modal interpolation based on properties of the tangent subspace of the Grassmann manifold

(ITSGM), were embedded in the control process to enhance the robustness of the approach.

ROM-based optimal control was also performed on driven cavity flows and backward-facing-

step channel flows by Ito and Ravindran 110 , Ravindran 111 , and Ravindran 112 . A simple

ROM based on the reduced-basis method with Hermite and Lagrange function was used in

Ito and Ravindran 110 , then later it was extended to POD-Galerkin ROM in Ravindran 111

and Ravindran 112 . The control approach was demonstrated to be feasible for the cases with

boundary surface movement introduced as control. Despite the success in controlling specific

flows in the above works, these methods were still limited to a fixed-domain framework. In

the works by Bergmann et al. 113 and Bergmann and Cordier 114 , the adjoint method was used

for the optimal control of the 2D cylinder wake based on a POD-Galerkin ROM. The control

was introduced by a azimuthal oscillation of the cylinder. By implementing the trust-region

proper orthogonal decomposition (TRPOD) approach, the mean drag in those works was

reduced by about 30% through the optimal control. However, this approach required extra

kinds of modes, including the steady base flow, the rotary actuation mode, and shift modes,

to construct the ROM. In addition, in spite of a rotating solid body involved in the study,
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the whole computational domain still remained fixed. As a result, it is hard to extend the

method to other control problems where the controls are imposed by arbitrary solid motions.

In the present work, a new adjoint based approach using the global POD-Galerkin ROM

was developed for the optimal control of the flows actuated by moving solid boundaries. One

advantage of the present approach is its flexibility of being able to tackle arbitrary actuations

introduced by solid motions, thus greatly broadening the scope of applications, for instance,

to study the flows of natural flyers and swimmers. Moreover, leveraging ROM as a surrogate

model can drastically reduce computational time compared to DNS-base methods, which can

possibly enable the real-time or near-real-time flow control. To guarantee the accuracy and

robustness of ROMs used in the optimization where the flow condition may change, different

strategies were designed to select the proper ROM for the control. Then the adjoint-ROM

approach was applied to the optimal control of flows past moving 2D cylinders and oscillating

2D airfoils. The rest of this section is arranged in the following manner. Section 3.2 first

reviews the derivation of non-cylindrical calculus enabled adjoint approach, then it details

the comprehensive derivation of the adjoint-ROM approach for the fast optimal flow control,

followed by the introduction of different strategies to select ROMs for the optimization. The

applications of adjoint-ROM approach are introduced in section 3.3 on flows past moving

cylinders and airfoils. In the end the concluding remarks are made in section 3.4.

3.2 Methodology

First the non-cylindrical calculus enabled adjoint approach is introduced for full-order model

(FOM) based flow optimization. Then the adjoint-ROM approach developed in the present

work is derived for fast flow optimization with moving solid boundaries. At last, different

strategies to select ROMs for better accuracy of the surrogate model during the optimization

is introduced.
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3.2.1 Adjoint approach for moving solid boundaries

As depicted in figure 3.1 (a), when there is no motion nor deformation on the solid body in

a domain, the flow control usually introduced by changing the flow velocity at the boundary,

for example, the suction and blowing imposed in Bewley et al. 38 , and the conventional

adjoint-based approach can succeed in this scenario. When the control is introduced by

moving or translating the solid body as shown in figure 3.1 (b), non-cylindrical calculus can

avoid mapping the whole physical domain, but only transform the moving solid boundaries

by using the transverse map velocity function Z, which dramatically simplifies the adjoint

formulation and the computational cost.

𝑽!

𝑹

𝑽!(𝑡)

𝑽!(𝑡 + ∆𝑡)

𝛺(𝑡, 𝛾)

𝛺(𝑡 + ∆𝑡, 𝛾) 𝛺(𝑡 + ∆𝑡, 𝛾 + 𝜀𝛾′)

𝛺(𝑡, 𝛾)

(a) (b)

Figure 3.1: The sketches of domain mapping for: (a) fixed solid boundary with control
introduced by changing the velocity at boundaries; (b) moving solid boundary with control
introduced by solid velocity and translation.

A boundary-to-boundary mapping T is defined to describe the time evolution of the

physical domain Ω with control γ:

T (t, γ) : Ω(t, γ)→ Ω(t+ ∆t, γ). (3.1)

As shown in figure 3.1 (b), the domain Ω evolves in time because of the motion of solid

boundaries with moving velocity V (t, γ,x), therefore it is reasonable to define V as the
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first-order derivative of the mapping function T with respect to the time variance ∆t:

V (t, γ,x) =
∂T (t, γ,x)

∂∆t
|∆t=0. (3.2)

Meanwhile, a transverse mapping T̃ which maps the domain Ω with original control γ to the

domain with perturbed control (γ + εγ′) at the same time moment:

T̃ (t, γ,x) : Ω(t, γ)→ Ω(t, γ + εγ′). (3.3)

Then the transverse mapping velocity Z can be defined similarly with respect to ε:

Z(t, γ,x) =
∂T̃ (t, γ,x)

∂ε
|ε=0 (3.4)

Given a general continuous function f , the non-cylindrical material derivative in a Lagrangian

framework ḟ is defined by:

ḟ(t,x) = lim
ε→0

f(t, γ + εγ′, T̃ )− f(t, γ,x)

ε
, (3.5)

and the non-cylindrical shape derivative in an Eulerian framework f ′ is related to ḟ by:

f ′ = ḟ −Z · ∇f. (3.6)

With the non-cylindrical material derivative, the relation between the transverse map veloc-

ity Z and the solid boundary velocity V can be determined by:

V̇ =
dZ

dt
. (3.7)

Now that the fundamentals of non-cylindrical calculus are given, the perturbed governing

equations with moving solid boundaries based on equation 1.31 can be modified with new
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boundary conditions:

N ′(q′) = 0 in Ω,

u′ = V̇ −Z · ∇u on ∂Ωs,

V̇ =
dZ

dt
on ∂Ωs,

Z|t=0 = 0 on ∂Ωs,

(3.8)

where Ωs is the solid domain. For the purpose of demonstration, the same objective function

as equation 1.28 is used again here. By introducing the same adjoint variables q∗, the pertur-

bation of the enhanced objective function J ′ by using the non-cylindrical shape derivative

is given as:

J ′ =
∫ T

0

∫
Ω

u · u′dΩdt+

∫ T

0

∫
Ω

q∗ · N ′(q′)dΩdt+

∫ T

0

∫
∂Ωs

Z∗ · (dZ
dt
− V̇ )dsdt. (3.9)

Similarly using integration by parts to group the perturbation terms, J ′ is simplified to have

the same form as the equation 1.37 but different contents in each term, where B is updated

as:

B =

∫
Ω

(u∗ju
′
j)dΩ|T0 +B∞ +

∫ T

0

∫
∂Ωs

u∗iσ
′
ijnjdsdt

−
∫ T

0

∫
∂Ωs

u′i[σ
∗
ijnj + u∗juini + u∗i (uj − Vj)nj]dsdt

+

∫
∂Ωs

ZiZ
∗ds|T0 −

∫ T

0

∫
∂Ωs

(
dZ∗i
dt

+ Z∗i div|∂ΩsV )Zidsdt−
∫ T

0

∫
∂Ωs

V̇iZ
∗
i dsdt,

(3.10)

where B∞ comprises all far-field terms, and tangential divergence of solid moving velocity

div|∂ΩsV is defined by:

div|∂ΩsV =
∂Vi
∂xi
|∂Ωs −

∂Vi
∂xi

njni. (3.11)
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J ′ can be further simplified if the following conditions are satisfied for the adjoint equations:

N ∗(q∗) = F∗,

u∗ = 0 on ∂Ωs,

dZ∗i
dt

+ Z∗i div|∂ΩsV = (∇u)T · σ · n on ∂Ωs,

Z∗|t=T = 0 on ∂Ωs.

(3.12)

By solving the above adjoint equation, J ′ is simplified as:

J ′ = −
∫ T

0

∫
∂Ωs

V̇i(σ
∗
ijnj + Z∗i )dsdt. (3.13)

Comparing this J ′ against equation 1.29, the gradient gi is readily to be found as:

gi = −(σ∗ijnj + Z∗i ). (3.14)

Indeed the first term of the gradient is equivalent to equation 1.39, which is derived on a

fixed domain. The second term is unique due to the moving solid boundary.

3.2.2 Adjoint-ROM approach

The full-order model of the incompressible flows are governed by the Navier-Stokes, equation

1.1. In order to resolve the moving solid boundary numerically on a fixed Cartesian grid,

the discrete immersed boundary method (IBM) is used to represent the solid boundary

conditions by adding a body force term to the right-hand side of Navier-Stokes equation.

The same modified Navier-Stokes equation 1.3 as reviewed in chapter 1 is rewritten here for

the readers’ convenience:

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u+ f , (3.15)
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with the forcing term f :

f =


[(u · ∇)u− 1

Re
∇2u]n + 1

τ
(V − un), in Ωs

0, otherwise,
(3.16)

where Ωs is the domain occupied by solid body, and the superscript n denotes the discrete

variables at n-th time step. By solving Navier-Stokes equation, high-fidelity solutions of the

flow field can be obtained.

Using the database generated by DNS, a global POD-Galerkin projection approach is

applied to construct a ROM on the combined domain for both fluid and solid, which is later

leveraged as the surrogate model for optimal control. As introduced in chapter 2, global

POD modes (φ) defined on the combined domain for fluid and solid can be generated by

the method of snapshots. Only DSDM ROM is used in this chapter due to its extremely

low online computational cost may allow for real-time or near-real-time flow control. For

brevity, the DSDM ROM equations are rewritten as:

dai
dt

=
N∑
j=0

(Lij −
M∑
m=0

L∗ijmbm)aj +
N∑
j=0

N∑
k=0

(Qijk −
M∑
m=0

Q∗ijkbm)ajak +
M∑
m=0

C∗imbm, i = 1, 2, ...., N,

dbi
dt

= −
M∑
m=0

P ∗imbm, i = 1, 2, ....,M,

(3.17)

where P ∗im = 〈V · ∇ψm, ψi〉 represents the coefficients shown in equation 2.11. Here τ is

still the time scale as introduced in chapter 2, of which the value is chosen to stabilize the

numerical integration of ROMs and to minimize the error. V is the prescribed velocity of the

rigid solid body, and will be specified for different flow configurations. This ROM is then used

as a surrogate model which represents the essence of the flow dynamics of the original system

(FOM), therefore the optimal solutions of the ROM should be approximately the same as

of the associated FOM. However, ROMs are usually sensitive to changes in parameters,

which would definitely happen during the control process. Therefore, different strategies to
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select an appropriate ROM for the flow control loop will be designed later in section 3.2.3 to

guarantee capability of ROMs to represent the original flow system when control parameters

change.

Following previous notations, the adjoint-ROM approach is derived as follow. First, a

well-defined objective function J is still needed as the target of flow control. Different from

the equation 1.28 introduced in chapter 1, here a J is chosen to reach a prescribed velocity

field u0 in a observation zone Ω0 in the downstream:

J =

∫ T1

T0

∫
Ω0

|u− u0|2dΩdt. (3.18)

This objective function is a proper mathematic description for the stabilization of perturbed

flows. The sensitivity of the objective function to the control γ can be computed by the

perturbation of J subjected to a perturbation of γ with Fréchet differential (the same as

equation 1.29):

J ′ = lim
ε→0

J (γ + εγ ′)− J (γ)

ε
. (3.19)

When considering optimization, the general gradient function g(γ) can be derived from the

above sensitivity analysis as:

J ′ = g(γ) · γ ′. (3.20)

As previously noted, the state equations used in the present paper are the ROM equa-

tions as a surrogate model, and the control is introduced by solid motion, thus the control

parameter γ is restricted to the velocity of solid motion V . For a more concise expression,
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the coefficients in equation 3.17 are further simplified as:

L′ij = Lij −
M∑
m=0

L∗ijmbm

Q′ijk = Qijk −
M∑
m=0

Q∗ijkbm

C ′im = C∗im

P ′im = P ∗im.

(3.21)

It is worth noting that hereafter the limits of summations are from 0 to N when the subscript

is j or k; the limits are from 0 to M when the subscript is m by default. Let the ROM

equation be F i(qi)−Ri = 0, where

F i(qi) =


ȧi −

∑
j L
′
ijaj −

∑
j

∑
kQ
′
ijkajak −

∑
mC

′
imbm

ḃi +
∑

m P
′
mibm

 , (3.22)

and Ri = 0. Here q = [ai bi]
T are the state variables of ROM. Then the perturbed ROM

equations F ′i(q′i)−R′i = 0 can be obtained:

ȧ′i =
∑
j

L′ija
′
j +

∑
j

∑
k

(Q′ijkaja
′
k +Q′ijka

′
jak)−

∑
j

∑
m

L∗ijmajb
′
m

−
∑
j

∑
k

∑
m

Q∗ijkmajakb
′
m +

∑
m

〈1
τ
γ, ψmφi〉b′m +

∑
m

〈1
τ
γ′, ψmφi〉bm

ḃ′i = −
∑
m

(〈γ ′ · ∇ψm, ψi〉bm − 〈γ · ∇ψm, ψi〉b′m)

(3.23)

The adjoint variables q∗i = [a∗i b∗i ]
T can be introduced as Lagrange multipliers in the

same fashion as equation 1.33 to impose the state equations, so that the shape derivative of
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the objective function, which is subjected to the constraints of state equations, is:

J ′ =
∫
T

∫
Ω0

2(u− u0) · u′dtdΩ +
∑
i

∫
T

q∗i · [F ′i(q′i)−R′i]dt. (3.24)

In the above equation, the target velocity u0 in the observation zone Ω0 is obtained from

the snapshots by which the POD modes are generated. u is the instantaneous velocity of

the controlled flow, which is given by POD-ROM reconstruction. Note that the ranges of i

in the summation of the second term of equation 3.24 are from 1 to N for a∗i related terms

and from from 1 to M for b∗i related terms respectively.

Using integration by parts, then separating the perturbation terms, we can have:

J ′ = B −
∑
i

∫
T

q′i · [F∗i (q∗i )−R∗i ]dt, (3.25)

where

F∗i (q∗i ) =


da∗i
dt

+
∑

j[L
′
ji +

∑
k(Q

′
jik +Q′jki)ak]a

∗
j

db∗i
dt

+
∑

j[C
′
ji −

∑
k(L

∗
jki +

∑
mQ

∗
jkmiam)ak]a

∗
j −

∑
m P

′
mib
∗
m

 ,

R∗i =

 2(
∑

jKjiaj −
∑

jMjia0j)

0

 ,
(3.26)

New coefficients Kij and Mij can be obtained by area integration of POD modes over Ωs:

Kij =

∫
Ω0

φi · φjdΩ,

Mij =

∫
Ω0

φ0i · φjdΩ,

(3.27)

where φ0 are the POD modes of the target flow and φ the POD modes of the controlled

flow. For simplicity during optimization, the control parameters are chosen in a way such

that the POD modes will not change drastically when control is imposed, thus φ = φ0.
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The equations

F∗i (q∗i )−R∗i = 0 (3.28)

are the adjoint equations. With those equations being satisfied, the only term left in J ′

(equation 3.25) is B:

B =
N∑
i=1

[a′ia
∗
i |
T1
T0
− 1

τ

∫ T1

T0

∑
m

bm〈γ ′, (ψmφi)〉a∗i dt]+
M∑
i=1

[b′ib
∗
i |
T1
T0

+

∫ T1

T0

∑
m

〈γ ′ ·∇ψm, ψi〉bmb∗i dt].

(3.29)

It can be noticed that equation 3.29 can be further simplified if the following conditions are

imposed:

a∗(T0) = 0,

b∗(T0) = 0,

a′(T1) = 0,

b′(T1) = 0.

(3.30)

Equation 3.28 with initial and final conditions defines the adjoint equation, where t = T1 is

regarded as the ’initial’ time, since the adjoint system typically evolves backwards in time.

With the definition of the adjoint formulations, equation 3.29 can be further reduced, and

by comparing to equation 3.20, g(γ) can be eventually derived. However, for different flow

configuration, the form of g(γ) varies accordingly, which will be presented later when the

application to different flows are discussed.

The optimal control problem can be solved iteratively. Here g(γ) is a function of both

q and q∗. Therefore in each iteration, q is obtained first by solving the state equations

(equation 3.17), after that objective function is updated. Then the adjoint equation (3.28)

is solved backward in time, which generates the adjoint information q∗. By evaluating

equation 3.29, the gradient function is obtained. Then the control parameters can be updated

iteratively by equation 1.40. It is worth noting that the above derivation is not the only

way to obtain adjoint-ROM equations, for example, an alternative derivation is presented in
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appendix C.

Adjoint-ROM formulations for force control

Adjoint-ROM formulations need modifications when the objective function is the aerody-

namic forces on the moving solid body. Similar to the application in chapter 2, the aerody-

namic forces is obtained solely by the velocity fields:

F = − d

dt

∫
Ω

udV +

∮
∂Ω

n̂ · ΓdS −
∮
∂Ωs

n̂ · (uu)dS, (3.31)

It is worth noting that, for the applications studied in this paper, the term −
∮
∂Ωs
n̂ · (uu)dS

in equation 3.31 is negligible, which will be shown later in the case study. So the following

derivations will only use the first two terms in equation 3.31. After normalization, the forces

can be rewritten by force coefficient CF = [CD, CL], of which the two components are drag

and lift coefficients.

Now the objective function can be defined to represent the mean forces in a time window

[0, T ]:

J =
1

T

∫ T

0

CFdt. (3.32)

With velocity decomposition given by global POD, J can be rewritten as a function of POD

modes φi and t:

J =
1

T

∫ T

0

∑
i=0

{dai
dt

[ĈF1(φi) + ĈF2(φi, t)] + aiĈF3(φi) +
1

2

∑
j=0

aiajSij}dt, (3.33)

where

ĈF1(φi) =

∮
∂Ω

−[(x · φi)I + xφi] · n̂dS, (3.34)

ĈF2(φi, t) = −
∫

Ωs(t)

φidV, (3.35)

ĈF3(φi) =

∮
∂Ω

{ 1

Re
[(x · ∇2φi)I − x∇2φi] +

1

Re
(∇φi +∇φTi )} · n̂dS (3.36)
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and

Sij =

∮
∂Ω

[(φi · φj)I − 2φiφj − 2φiψj] · n̂dS, (3.37)

with ψi = x × (∇ × φi). The reconstruction of velocity field at each time step to solve

equation 3.31, which is very time-consuming, can be completely avoided by using this ob-

jective function. Instead, all spatially dependent coefficients in equation 3.33 except ĈF2 are

time-independent, which can be calculated offline. Therefore, the computational cost can be

greatly reduced by applying above transformation.

With this J , the adjoint-ROM equations can be derived as:

F∗i (q∗i ) = R∗i , (3.38)

where

F∗i (q∗i ) =


da∗i
dt

+
∑

j[L
′
ji +

∑
k(Q

′
jik +Q′jki)ak]a

∗
j

db∗i
dt

+
∑

j[C
′
ji −

∑
k(L

∗
jki +

∑
mQ

∗
jkmiam)ak]a

∗
j −

∑
m P

′
mib
∗
m

 ,

R∗i =

 1
2T

∑
j=0 aj(Sij + Sji)− 1

T
∂ĈF2

∂t
+ 1

T
ĈF3

0

 .
(3.39)

It can be seen that the only difference is in R∗i compared to equation 3.26.

Benchmark on a simple ODE system

The newly developed adjoint-ROM approach is worth validating on simple ordinary differen-

tial equations (ODEs), since ROM is also a group of ODEs. Key criteria to assess the adjoint

approach include the accuracy of the optimal solution, as well as the accuracy of gradient.

Here the approach was tested on the heat conduction problem in an object immersed in

constant ambient temperature, with its spatial dimension being neglected. The problem is
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governed by Newton’s cooling law about the temperature T :

Ṫ = k(Tr − T ), with T|τ=0 = T0, (3.40)

where k is the heat conductivity and Tr the room temperature. τ represents the time. This

equation has an analytical solution when initial condition is properly given:

T (t) = Tr + (T0 − Tr)e−kτ . (3.41)

With k = 2, Tr = 25 and T0 = 40, the numerical result and analytical one are compared in

figure 3.2 to show the accuracy of the numerical solution.

Figure 3.2: The solution of Newton’s cooling equation.

Then optimal control of this equation is conducted by the adjoint approach. The room

temperature Tr is the control parameter. The objective function J with a penalty term is

designed as such that a local minimum can be achieved with Tr ∈ [15, 70]:

J =
1

τ

∫
τ

(T 2 + p(Tr − Tr0)2)dτ, when Tr < Tr0;

J =
1

τ

∫
τ

T 2dτ, otherwise.

(3.42)

The variations of J with respect to Tr obtained by parametric study is shown in figure. 3.3.

By introducing the Lagrangian multiplier T ∗, a modified objective function L is generated
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as:

L =
1

τ

∫
τ

(T 2 + p(Tr − Tr0)2)dτ +

∫
τ

T ∗ · [Ṫ − k(Tr − T )]dτ, when Tr < Tr0;

L =
1

τ

∫
τ

T 2dτ +

∫
τ

T ∗ · [Ṫ − k(Tr − T )]dτ, otherwise.

(3.43)

Let ∂L
∂T

= 0 and by integrating by parts, the adjoint equation is given as:

Ṫ ∗ − kT ∗ − 2T

τ
= 0. (3.44)

And the gradient g can be obtained by g = ∂L
∂Tr

;

g = −
∫
τ

kT ∗dτ +
2

τ

∫
τ

p(Tr − Tr0)dτ, when Tr < Tr0;

g = −
∫
τ

kT ∗dτ, otherwise.

(3.45)

Tr0 = 30 is used here. Then optimal solution is Tr,opt = 28.59 which gives J = 873, it matches

the minimum found by parametric study as shown in figure 3.3. Lastly the gradients achieved

by solving adjoint equation was compared against the benchmark given by finite difference

method are shown in figure 3.4. Again, a good agreement is found which demonstrates the

accuracy and effectiveness of the adjoint approach.

Figure 3.3: The objective function versus Tr obtained by parametric study.
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Figure 3.4: The gradient at each iteration. Blue line is the gradient by solving adjoint
equation, orange line is the benchmark of gradient obtained numerically by finite difference
method.

3.2.3 ROM selecting strategies

One of the biggest challenges for ROM-based optimization is keeping the accuracy of ROMs

when control parameters alter. Unfortunately, there is arguably no rigorous mathematical

assurance that the optimal solution given by ROM would always correspond to the local

optimizer for the original high-fidelity system during the optimization process. Previously

some efforts have been made to tackle this challenge113;114. In those studies, DNS had to

be conducted to obtain new POD basis, once the old ones were not able to represent the

physics of the original system as the flow was changed by control. By using this method,

however, time-consuming DNS still has to be performed numerous times during the online

process, which is not ideal for real-time flow control.

In the present work, two strategies have been designed to guarantee the accuracy of

ROMs when control parameters change during the optimization, while keeping the online

computational time low enough for possible real-time control. The first one is the “one-

ROM” strategy, as illustrated in figure 3.5 (a). This strategy is used in cases where the

control parameters do not change drastically so that there is no transition of flow regime

taking place. A single ROM will be generated base upon the database of either the original

flow or the perturbed flow, depending on the specific type of problems. This ROM is accurate

to represent the flow dynamics of the whole parametric space studied (rendered by blue in

figure 3.5 (a)), as long as the control parameters at each iteration are still located in this
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domain. Nevertheless, a posteriori validation should be required after the optimization by

comparing the FOM and ROM results of the optimal flow, to evaluate the robustness of the

single ROM during the whole optimization process.

The second strategy is the “ROM-switching” strategy, as illustrated in figure 3.5 (b). It

is designed for cases where the control parameters change too much to make single ROM

valid for the whole parametric space. This strategy managed to move time-consuming DNS

calculations from a cyclic calculation with updated ROMs to one database of pre-calculated

ROMs. Practically, for any control γ, the range of its possible values is often known before

the optimization. Then in that range, M different γp ∈ {γ1,γ2... γM} can be chosen to

fundamentally represent the parametric space. For each γp, a DNS will be performed to

generate snapshots for that specific control parameter. With POD-Galerkin projections, M

ROMs in total will be built corresponding to these M controls (for example, in figure 3.5 (b),

M = 4). Although the ROM is still locally sensitive to the change of control parameters,

as long as γ changes in small increments within each iteration of the optimization, the

adaptive ROM for this slightly altered γ can still be accurate. These M ROMs then form a

library for the optimization. Consequently, during the online optimization process, no new

DNS will be needed to guarantee ROMs for various control parameters. Instead, an existing

ROM from the library will be selected whenever the control γ changes. The rule to select a

proper ROM is given as such: for the current γ, if the minimum of |γ − γp| is achieved for

a γp ∈ {γ1,γ2... γM}, then the ROM based on γp will be used for the current iteration

(for example, as shown in figure 3.5 (b), only the first and the forth ROM are used for

the optimization). This rule guarantees that the ROM used at each iteration contains the

physics that is closest to the original system based on the current γ.

3.3 Results and discussion

The adjoint-ROM method was applied to the optimal control of 2D flows past an oscillat-

ing cylinder as well as a heaving-pitching NACA0012 airfoil. The control was imposed by

changing the motion of solid body. For the oscillatory motion of the cylinder or the airfoil, a
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Figure 3.5: The schematic illustration of two different strategies to select ROM during
the optimization in a 2D parametric space: (a) one-ROM strategy, which uses a single ROM
built upon the database of either the original flow or the perturbed flow; (b) ROM-switching
strategy, which first generates several ROMs representing different control parameters in the
parametric space offline before the optimization, then uses one ROM for the online iteration.
Green dots show the control parameter at which the ROM is generated. Blue shade indicates
that certain ROM is used for the optimization. Red arrows represent the change of control
parameters at each iteration.

group of universal harmonic functions are used to describe the possible oscillation in vertical

or azimuthal direction:

Y (t) = A sin(2πft),

Θ(t) = θ sin(2πft+ φ),

(3.46)

where A is the heaving amplitude, θ the pitching amplitude, and φ the phase delay angle

between heaving and pitching motion. The number of control parameters was up to three for

all cases studied in this section, with possible γ = [A, θ, φ]. Two objectives were optimized.

The first objective was to match a target flow field by minimizing the difference between

velocity fields. The second objective was to optimize the aerodynamic force. Due to the

different forms of the solid velocity for different configurations, the form of the gradient

function was modified accordingly for different cases.
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3.3.1 Optimal control of the flow past a 2D oscillatory cylinder

First the adjoint-ROM method was applied to the optimization of flow past a 2D oscillatory

cylinder. Initially the cylinder was located at the origin of a 10× 10 domain (normalized by

the diameter of the cylinder D) discretized by a 601×401 non-uniform Cartesian mesh, which

was denser in the area close to the cylinder. The Reynolds number based on D was Re = 50.

The time t was normalized by the diameter of the cylinder D and incoming flow velocity U .

Then the cylinder was oscillating in the vertical direction with a sinusoidal velocity based

on equation 3.55:

V = 2πfγ sin(2πft)ey. (3.47)

The schematic of the flow configuration is briefly shown in figure 3.6 (a).

(a) (b)

Figure 3.6: (a): The schematic of the flow configurations, the red rectangular zone is Ω0.
(b): A snapshot of the target flow (γt = 0.1) contoured by the vorticity ω.

The control parameter γ only had one degree of freedom which was the amplitude of

the velocity A, thus for this case only γ was used interchangeable with A. The frequency

f = 0.2 was fixed. The gradient with one degree of freedom g(γ) was thus given by:

g =

∫
T

[
N∑
i

(−1

τ

∑
m

bm〈ey, ψmΦi〉a∗i ) +
M∑
i

(
∑
m

〈ey · ∇ψm, ψi〉bm)b∗i ]Vγdt, (3.48)

where Vγ is defined as:

Vγ = 2πf sin(2πft), (3.49)
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by computing the shape derivative of V .

The target flow was computed when γt = 0.1. As shown in figure 3.6 (b), there was a

coherent wake flow in the downstream because of the very small amplitude of oscillation.

Then POD was performed on 500 snapshots from dimensionless time t = 500 to t = 520.

Then two variants of initial controls were chosen:

γ(0) = 0.2, (3.50)

and

γ(0) = 0.5. (3.51)

Twenty POD modes as well as solid modes were used to build the ROM. The time step used

to solve ROM and adjoint equations was ∆t = 0.005. Note that the adjoint equation usually

has stricter stability requirement than the ROM equation, thus ∆t is smaller than that used

in the ROM solution.

The ROM results of the target flow and controlled flows are presented in figure 3.7 by

the phase portraits of the time coefficients of the first two POD and solid modes. It can be

seen that, with the initial control γ(0) the flow has quite different dynamics compared to the

target flow. Through the control process by the oscillation of the cylinder, the flow dynamics

should approach that of the target flow when the whole process was converged.

Then the optimal control was conducted to minimize the objective function given by

equation 3.18 with “one-ROM” strategy. The observation zone Ω0 was set in the downstream

(1.4 < x < 1.6 and −0.2 < y < 0.2), which is sketched in figure 3.6 (a). In theory, since

the objective function is designed to “match” the velocity of the target flow in Ω0, once the

objective function was converged, the value of control γ should be identical to the target

one γi. Therefore the objective function chosen here can not only be used to stabilize a

perturbed flow, but also provide a feasible way to validate the adjoint-ROM method.

As shown in figure 3.8 (a) and (b), when the initial control was set as γ(0) = 0.2, J

is about 10−1 at the beginning, then converges down to well below 10−10 after only three
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iterations. As expected, the control parameter γ(3) after three iterations matches the target

control parameter γt = 0.1. For γ(0) = 0.5 case, the similar variations of J and γ can also

be observed. As shown in figure 3.8 (c) and (d), after three iterations γ(3) converged to 0.1

with J < 10−10.
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Figure 3.7: The phase portraits of the time coefficients of the first two POD and solid
modes for target flow with γt = 0.1 and controlled flow with initial controls γ(0) = 0.2 and
γ(0) = 0.5, respectively. (a): a1 versus a2; (b): b1 versus b2.

During the optimization process, the gradient of the objective function g is crucial to the

accuracy of the approach. In order to validate the value of g given by solving the adjoint

equations 3.28 and equation 3.48, the gradient computed by directly solving equation 3.19

with a finite difference method was also presented as a benchmark. The perturbation ε was

set to 10−4. The comparisons between the gradients are shown in figure 3.8 (e) for γ(0) = 0.2

and in figure 3.8 (f) for γ(0) = 0.5 respectively. It is seen that overall the two gradients are in

very good agreement for both cases, which indicates the gradient g given by adjoint method

was accurate enough for the optimization approach.

The advantage of adjoint-based methods is generally more apparent with a higher di-

mension parametric space. Here a second control parameter was added to the vertically

oscillating cylinder case described above. Reynolds number was increased to Re = 100 for

rich flow dynamics in the wake. The 2-DoF control was introduced to the oscillatory motion
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(a)
γ(0) = 0.2

(b)
γ(0) = 0.5

(c) (d)

(e) (f)

Figure 3.8: Variation of the objective function J ((a) and (b)); variation of the control γ
((c) and (d)); and variation of the absolute value of the gradient g ((e) and (f)) with respect
to the iteration number for γ(0) = 0.2 (left) and γ(0) = 0.5 (right). In (c) and (d), horizontal
dashed lines show the target control parameter γt = 0.1. In (e) and (f), blue dashed lines
with hollow squares are the gradients given by adjoint method, and orange dashed lines with
solid squares are the gradients given by equation 3.19 numerically.

with a velocity as

V =
2∑
i=1

2πfiAi cos(2πfit)ey, (3.52)

where the frequencies were fixed at fi = [0.1, 0.2], and the two amplitudes Ai were op-

timized as a 2-degree-of-freedom (DoF) vector controller γ = [A1, A2]. The corresponding

80



(a) (b)

Figure 3.9: (a): A snapshot of the two DoF control flow past a oscillatory cylinder
contoured by the vorticity; (b) The time coefficients of the first two POD modes by the direct
projection of the full-order model onto POD modes (L-DNS, solid lines) and by solving DSDM
ROM equations (Eq. (3.17), dashed lines).

gradient gl for each control parameters γl is updated as:

gl =

∫
T

[
N∑
i

(−1

τ

∑
m

bm〈ey, ψmΦi〉a∗i ) +
M∑
i

(
∑
m

〈ey · ∇ψm, ψi〉bm)b∗i ]Vγldt, l = 1, 2, (3.53)

where

Vγl = −2πfl sin(2πflt), l = 1, 2, (3.54)

is the shape derivative corresponding to each control parameters.

The target flow was computed with γ = [0.1, 0.2] which serves as the theoretical

solution of the optimization. Figure 3.9 (a) shows a typical snapshot of the target flow.

The target flow snapshots were used to compute POD modes and build a ROM for the

optimization (from flows with off-target controls). POD modes were computed from a total

of 151 snapshots between dimensionless time t = 505.0 to t = 520.0. Only 10 POD modes

and another 10 solid motion modes were used in this case to build the ROM. As shown in

figure 3.9 (b), the flow dynamics presented by the time coefficients of the first two POD

modes was accurately captured by the 10-mode ROM in its comparison to the coefficients

from direction projection of the full-order model (i.e. DNS data).

The same observation zone was used as in the earlier cases, and the objective function J

was also the same as in equation 3.18. The initial control was chosen with γ(0) = [0.25, 0.25].
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(a) (b)

(c) (d)

Figure 3.10: Variation of the objective function J (a); variation of the control γ (b); and
variation of the absolute value of the gradient g ((c) and (d)) with respect to the iteration
number. In (b), horizontal dashed lines indicate the target control parameter γt = [0.1, 0.2].
In (c) and (d), blue dashed lines with hollow squares are the gradients given by adjoint
equation, and orange dashed lines with solid squares are the gradients given by equation 3.19
numerically.

By implementing the same ROM-based adjoint optimal control method, J was converged to

less than 10−13 after 6 iterations, as shown in figure 3.10 (a), and both control parameters

reached the target values, γ(6) = [0.1, 0.2], as shown in figure 3.10 (b). Figure 3.10 (c) and

(d) compared both components of the gradient g from the adjoint computation, which shows

very good agreement with the benchmarks.

3.3.2 Optimal control of the flow past a heaving-pitching airfoil

The adjoint-ROM was next applied to the optimization of flow past a 2D heaving-pitching

NACA0012 airfoil with Re = 100. The schematic view of the flow configuration is presented

in figure 3.11. Originally the quarter-chord point of the airfoil was located at the origin of a

15× 10 domain (normalized by the chord length of the airfoil c) discretized by a 751× 501

non-uniform Cartesian mesh, which was denser in the area close to the airfoil. The airfoil
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Figure 3.11: The schematic illustration of the flow past a heaving-pitching NACA0012
airfoil. The red box indicated the observation zone Ω0. The size is not to scale.

can heave in the vertical direction (Y ) and pitch in the azimuthal direction (Θ) freely as

described by the harmonic function 3.55, which resulted in the velocity of the oscillation as:

Vy(t) = 2πfA cos(2πft)ey,

Vθ(t) = 2πfθ cos(2πft+ φ)er,

(3.55)

where ey = [0 1]T and er = [−y x]T .

The control vector γ = [A, θ, φ], which made the problem a 3-DoF optimal control. The

frequency f still remained 0.2. The objective was the same as previous cases of flow past an

oscillating cylinder to match the flow field in the observation zone Ω0, which was located in

the downstream at 1.4 < x < 1.6 and −0.2 < y < 0.2. Thus J was calculated by equation

3.18. Due to multiple control parameters, the gradient g is modified accordingly as:

g1 =

∫
T

[
N∑
i

(−
∑
m

bmCim1)a∗i +
M∑
i

(
∑
m

bmKim1)b∗i ]V1γdt

g2 =

∫
T

[
N∑
i

(−
∑
m

bmCim2)a∗i +
M∑
i

(
∑
m

bmKim2)b∗i ]V2γdt,

(3.56)

where subscript “1” represents vertical (Y ) direction and subscript “2” is azimuthal (Θ)
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direction, and

Cim1 =
1

τ
〈ey, (ψmφi)〉

Cim2 =
1

τ
〈er, (ψmφi)〉

(3.57)

and

Kim1 = 〈ey · ∇ψm, ψi)〉

Kim2 = 〈er · ∇ψm, ψi)〉
(3.58)

Additionally, using equation 3.55 the first-order differentiations of V respective to control

parameters are:

V1γ = [2πf cos(2πft) 0]T ,

V2γ = [2πf cos(2πft+ φ) − 2πfθ sin(2πft+ φ)]T .

(3.59)

The target flow was generated when γt = [0.2, 30◦,−30◦], and this γt was also regarded

as the theoretical benchmark of the optimization. Figure 3.12 (a) shows a typical flow field

of the target flow. It can be seen that a single vortex street was formed in the wake without

strong vortex pairing. The POD was performed based on 281 snapshots of the target flow

covering dimensionless time t = 149.8 to t = 159.9. 20 global POD modes plus 20 solid modes

were used to build DSDM ROM. τ was set to 0.03 for the stability and accuracy of ROM.

The flow was perturbed by altering the control parameters abruptly to γ(0) = [0.4, 45◦, 30◦].

After the perturbation, the flow structures changed significantly as shown in figure 3.12.

Due to high instantaneous angle of attack (AoA), apparent flow separation happened on

both sides of the airfoil, which generated strong leading edge vortex (LEV) and trailing edge

vortex (TEV). These vortices started pairing in the wake, altering the velocity field in the

observation zone Ω0 significantly.

“One-ROM” strategy was utilized for the optimization. The results of flow optimization

are presented in figure 3.13. When the flow was highly perturbed, J was at aboutO(10), then
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(a) (b)

Figure 3.12: A typical flow field at t = 159.9 contoured by vorticity. (a): The target (base)
flow with γt = [0.2, 30◦,−30◦]; (b): the perturbed flow with γt = [0.4, 45◦, 30◦].

(a) (b)

Figure 3.13: Variation of the objective function J (a) and the variation of the control
γ = [A, θ, φ] (b). The horizontal dashed lines indicate the target control parameters γt =
[0.2, 30◦,−30◦].

the flow control successfully decreased J by over 6 orders of magnitude after 32 iterations.

It is noticed that due to the big perturbation and the increase of DoF of control, it took

many more iterations to reach the convergence, compared to the oscillatory cylinder case

in prior section. However, the control parameters γ were all converged to the theoretical

benchmark γt in the end.

Each component of the gradient vector g was validated by comparing the value given by

solving adjoint equations 3.28 and equation 3.56, against the gradient computed by directly

solving equation 3.19 with finite difference method. The perturbation ε in finite difference

computation was set to 10−4. The comparisons between the gradients are shown in figure

3.14. It is seen that small mismatch existed for gA and gθ at some intermediate iterations,

but eventually can have good agreement with the benchmarks when the optimization was
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(a) (b)

(c)

Figure 3.14: Variation of the absolute value of gradient g with respect to each parameter
in γ: (a) the gradient of A; (b) the gradient of θ; (c) the gradient of φ. Blue dashed lines
with hollow squares are the gradients given by adjoint equation, and orange dashed lines with
solid squares are the gradients given by equation 3.19 numerically.

converged. For gφ, very good match was found at every iteration between the value from

adjoint-ROM equation and the benchmark. It is worth noting that from about 4th iteration

to 22nd iteration, the gradient was already low and nearly unchanged, which also corresponds

to the very slow change of J and γ as shown in figure 3.13. That is the common challenge

for all gradient based methods that sometimes the optimization would reach a low gradient

region, which would take more iterations to move out to the real convergency. Such low

gradient region would slow down the convergency of the optimization, and may even lead to

a local optimum instead of the global optimum.

So far only one observation zone has been studied to evaluate the perturbation. Practi-

cally in either experiments or industrial designs, multiple probes or sensors are often used

to detect the change of flow field. Therefore, with the same flow configuration and the same

initial γt, another observation zone Ω0b was set in the area of 0 < x < 0.2 and 0.4 < y < 0.8,

with the same size as Ω0 but located above the moving airfoil. Accordingly the integration
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(a) (b)

Figure 3.15: Variation of the objective function J (a) and the variation of the control
γ = [A, θ, φ] (b) when there are two observation zones. The horizontal dashed lines indicate
the target control parameters γt = [0.2, 30◦,−30◦].

in equation 3.18 was calculated in both observation zone. The results of optimal control

are presented in figure 3.15. It can be found that with 2 observation zones, J can still be

reduced by almost 6 orders of magnitudes, with all three control parameters recovered to the

theoretical benchmarks at the end of the optimization. It is worth noting that with one more

observation zone, much less iterations are required to reach the same level of convergency, as

the number of iterations decreased from 32 to 18. It can be deduced that more probes may

further enhance the controllability of the flow optimization and speed up the convergence.

3.3.3 Optimal force control of the flow past a moving cylinder

Lastly the adjoint-ROM was applied to aerodynamic force control of the flow past a 2D

azimuthally oscillating cylinder. The control was imposed by changing the prescribed angular

velocity Vθ(t) of the cylinder:

Vθ(t) = θ sin(2πft)er, (3.60)

where only the amplitude θ was controlled. Therefore, in this section below θ will be substi-

tuted by γ to avoid any confusion. The frequency f was fixed to be 0.1, and the Reynolds

number was Re = 200, which was normalized by incoming flow velocity U and diameter of

the cylinder D. The original flow was generated by DNS on a 60 × 60 domain (normalized

by D), which was discretized by a 701 × 701 non-uniform Cartesian mesh. The numerical

method for DNS was the same as the cases in prior sections. The flow configurations and a
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snapshot of the flow field are presented in figure 3.16.

Figure 3.16: The flow configurations and a snapshot when γ = 0.25 for the flow past a 2D
azimuthally oscillating cylinder. The snapshot is contoured by vorticity field.

With the given control parameter, the gradient function g can be derived accordingly:

g =

∫
T

[
N∑
i

(−1

τ

N∑
m

bm〈R, ψmΦi〉a∗i ) +
N∑
i

(
N∑
m

〈R · ∇ψm, ψi〉bm)b∗i ]Vγdt, (3.61)

where

Vγ = sin(2πft), (3.62)

The “ROM-switching” strategy was used for this case, because the objective function

(aerodynamic forces) studied here was more sensitive to the flow condition and control pa-

rameters. The library for the control consisted of seven different ROMs, generated with γ

varying from 0.15 to 0.75 by step of 0.1. The aerodynamic forces of the flow when γ = 0.25

are shown in figure 3.17. It is found that the drag and lift given by the DNS, the direct

projection of the original flow onto POD modes (L-DNS) and the ROM are very close to

each other, especially for lift CL, which demonstrates that the essence of the physics of the

original flow can be captured accurately by ROMs. Moreover, the approximations of CD and

CL by equation 3.33 are also compared to the real forces, which shows a good agreement

with both forces. Similar results were also obtained for other γ in the chosen range. There-

fore, the objective function equation 3.33 is valid and suitable for the force control problem.
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Practically, after obtaining the force history, Fourier analysis was performed to determine

the period T of the force in equation 3.18.

(a) (b)

Figure 3.17: The drag (a) and lift (b) coefficients for the cylinder flow when γ = 0.25,
computed by DNS, L-DNS and ROM. CD and CL used in the objective function equation
3.18 are presented by purple dashed-dotted lines.

Two initial control parameters, γ(0) = 0.25 and γ(0) = 0.75 were studied. The variations

of the objective function J and corresponding γ after each iteration are presented in figure

3.18. For both initial control parameters, a local optimum was found by the adjoint-ROM

approach to maximize the drag to CDmax = 1.418. Correspondingly, the optimal solution

γopt = 0.499 was obtained for both cases, which shows the good convergence this approach

can achieve with different initial control parameters.

(a) (b)

Figure 3.18: The variations of the objective function J (a) and the control parameters
γ (b) with the number of iterations. Initial controls are γ(0) = 0.25 for solid lines and
γ(0) = 0.75 for dashed lines respectively.

In order to validate the accuracy of the optimal solution calculated by the adjoint-ROM

approach, a parametric study was performed by DNS as complement. As shown in figure
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3.19, nine numerical simulations by DNS in total were run for γ in the range of [0.15, 0.75],

which indicated that a local maximum exists at γ ≈ 0.5. It can be seen that the optimal

solution given by the adjoint-ROM approach is quite accurate compared against the result

of parametric study.

Figure 3.19: The drag CD obtained by DNS for different control parameters γ (red line
and squares) and the optimal solution given by ROM-adjoint approach (green circle). The
vertical dashed line indicates γopt.

3.3.4 Computational cost analysis

A key motivation of the current study is reducing the computational cost of adjoint-based

optimal control. Table 3.1 lists the computational time for the optimal control of all cases

studied in the previous sections. A comparison is also made with the DNS-based adjoint op-

timal control method as used in previous works80;100;101 as well as the adjoint-ROM approach

developed in the present work. For the adjoint-ROM approach, online time is spent on the

fast optimization process, while the offline time is spent in computing the database by DNS,

as well as building ROMs. Note that the first three cases were optimized with “one-ROM”

strategy when using adjoint-ROM while the last case was optimized with “ROM-switching”

strategy. It can be found that by using the DNS-based optimization, the first three cases

need over 10 hours or even days to search for the optimal solution, though it is already

much more inexpensive compared to parametric study. For the forth case, the DNS-based
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Table 3.1: Computational time for using DNS-based adjoint approach and adjoint-ROM
approach (including online and offline time) of different cases.

Cases DNS-based
optimal
control

adjoint-
ROM

(online)

adjoint-
ROM

(offline)

Oscillatory cylinder (γ(0) = 0.2) 10h48m 13m10s 1h20m

2-DoF oscillatory cylinder 36h12m 14m22s 1h43m

3-DoF heaving-pitching NACA airfoil (one Ω0) 52h25m 29m 2h

Force control on pitching cylinder (γ(0) = 0.25) N/A 32m 14h

optimization was not perform, but for a single DNS run, it took about 5 hours, not to men-

tion that each iteration of line-search process requires several runs of DNS. In comparison,

by using adjoint-ROM approach, the online computational time for all cases studied is less

than or about 30 minutes. As can be seen in table 3.1, the reduction in computational

time is 98.0% for the oscillating cylinder case, 99.3% for 2-DoF oscillating cylinder case, and

99.1%for 3-DOF moving airfoil case when using adjoint-ROM with “one-ROM” strategy

compared to the DNS-based method. It is worth noting that the offline computational time

of using adjoint-ROM is actually much longer than the online computational time. When

using “one ROM” strategy, building the ROM takes one to two hours. When using “ROM-

switching” strategy, since several ROMs are needed to construct the library of ROMs, about

14 hours are spent on offline computation. However, these computations are all conducted

offline which will not add any burden to the optimization process. In a word, the huge sav-

ings in computational cost achieved through adjoint-ROM optimization methods with both

strategies have shown great promise for the prospects of near-real-time flow control.
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3.4 Concluding remarks

In this chapter an adjoint-ROM based optimal control method has been developed, which

can handle the control introduced from moving solid boundaries. Two different strategies

to guarantee the accuracy of ROMs during the optimization process have also been devel-

oped. The first strategy was “one-ROM” strategy. It was used to control the 2D flow past

an oscillatory cylinder and a heaving-pitching NACA0012 airfoil perturbed by an abrupt

change in the solid motion, with up to three control parameters. The optimization was real-

ized by matching the velocity field in designated observation zones. This objective function

can not only be used to easily evaluate the convergence of the adjoint method, but also be

implemented for the stabilization of a perturbed flow deviating from the targeted working

condition. For all the cases using “one-ROM” strategy, the target control parameters were

able to recovered after few iterations, with a good convergence of the objective function. The

gradients g derived by the adjoint method were compared with the gradients generated by

finite difference method which are regarded as benchmarks. Good agreements between the

gradients were achieved for all cases. The second strategy was “ROM-switching” strategy. It

was used to optimize the aerodynamic force of the 2D flow past a moving cylinder perform-

ing rotational oscillation, with pitching amplitude as the control parameter. The accuracy

of the adaptive ROM can be guaranteed by using different ROMs even when the control

parameters change greatly during the control process. A new objective function to evalu-

ate the drag and lift has been derived based on the force calculating approach introduced

in Noca et al. 83 , and the velocity decomposed with time coefficients and POD modes. It

has also been demonstrated that the objective function developed accurately recreated the

aerodynamic forces for use in optimal control strategies. The optimization has been carried

out with two different initial controls, both of which have resulted in the same optimal so-

lution that has been validated by the parametric study. The results presented in this study

indicate that the adjoint-ROM based approach with “ROM-switching” strategy is effective

to optimize aerodynamic properties like lift and drag.

The computational time on adjoint-ROM based optimal control process was studied and
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compared to the time spent by using DNS-based approach. It is found that by using ROM-

based approach with both strategies, the computational can be saved by over 90% for all

cases, compared to DNS-based approach, let alone parametric study. The drastic saving in

computational cost makes the present approach promising for the near-real-time flow control.

The case studied here by using “ROM-switching” strategy used seven ROMs for the

construction of the library, which was shown to be sufficient. It can be inferred that if

more control parameters are involved, more ROMs may be needed to keep the cost function

accurate throughout the control process, therefore the offline time spent on preparing those

ROMs may increase accordingly, which will eventually overshadow the benefit of time saving

brought by using adjoint-ROM approach. In order to make the approach practical for more

applications, more robust ROMs are desirable to guarantee the accuracy of cost function

after each iteration while still keeping the computational cost low. One possible way to

avoid generating many ROMs for different parameters is leveraging the interpolation between

existing modes to generate adaptive ROMs at a new working condition. Some approaches,

including the one based on Grassmann manifold which was carried out by Amsallem and

Farhat 115 , have shown limited success in the application to aeroelasticity. However, the

application of these methods in the current study is beyond the scope of this dissertation.
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Chapter 4

Adjoint-based gust mitigation

4.1 Introduction

In the past few decades, unmanned air vehicles (UAVs) have drawn great attention for their

extensive applications in military surveillance, reconnaissance, and logistic support116. UAVs

usually operate in a highly unsteady and unpredictable aerodynamic environment, such as

gusty winds117. Due to their relatively small size and low flying speed, the disturbance of the

gust may easily reach the same order of magnitude as the flight speed of the vehicles, making

them more vulnerable to the impact of gust. In order to alleviate the negative influence

of gusts on the aerodynamic performance of UAVs, an effective flow control strategy is

desperately needed based on in situ unsteady flow conditions. However, the highly nonlinear

transient flow in the gust-UAV interaction sophisticates the development of viable gust-

mitigation approaches.

The seminal works by Küssner 118 and Von Karman and Sears 119 studied the interaction

between a sharp-edged gust and a thin airfoil theoretically by using potential flow theory

on the thin airfoil model. The model had limited success in predicting the lift changes

during the gust encounter of large-scale aircraft, yet it was not accurate for the operating

condition of modern UAVs120, due to the assumptions of low gust ratios (GRs), inviscid flows,

and attached flow boundaries. Since then, many experimental and numerical studies have
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been conducted to better understand the mechanisms of the interaction between nonlinear,

highly unsteady gusts and static or moving wings, which may ultimately aid in the design

of effective gust mitigation strategies. Corkery et al. 121 studied the interactions between

a steady top-hat shaped gust and a flat-plate wing by particle image velocimetry (PIV)

me asurements. Similar wing models with different types of transverse gusts were also

investigated experimentally and numerically by Badrya et al. 122 and Biler et al. 123 . The

transient aerodynamic forces were found dependent on the effective angle of attack (AoA)

at the leading edge. The impact of effective AoA as well as effective flow angle on the force

coefficients when the static airfoil encounters the gust was also investigated experimentally by

Smith et al. 120 , Perrotta and Jones 124 , and Stutz et al. 125 , in which some updated theoretical

models have been developed to predict the lift during gust interactions.

It can be inferred from the above results that changing the AoA of a static airfoil may

reduce the aerodynamic force burst during the gust encounter, therefore the oscillating wing,

which is able to adjust its effective AoA flexibly, becomes a natural choice for gust mitigation.

In fact, some studie on flying birds and insects have already found that oscillating wings can

play an important role in attenuating the disturbance of unsteady gusts126–128, which has also

inspired the design of UAVs129. Lian and Shyy 130 and Lian 131 used numerical simulation

to investigate the effect of oscillating wings on alleviating the freestream gust fluctuation,

and found multiple parameters may determine whether the gust can be mitigated. Poudel

et al. 132 implemented the pitch-down maneuver and wing oscillation to mitigate the influence

of a long-lived transverse gust on the NACA0012 airfoil numerically. The study found the

optimal reduced pitching frequency to overcome the disturbance brought by the gust, but

increasing the aerodynamic force at the same time, which might be undesirable for a stable

flight. In the work of Andreu-Angulo and Babinsky 133 , the unsteady pitch motion designed

based on the classic theoretical solutions by Küssner 118 with unsteady flow modifications

could achieve up to 90% lift alleviation during the top-hat transverse gust encounter modeled

in a water tow tank. Some simple closed- and open-loop control strategies have been applied

to mitigate gust effects with oscillating wings lately. Sedky et al. 134 and Sedky et al. 135

developed a closed-loop control strategy for lift regulation during a transverse gust encounter,
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based on a proportional feedback controller with pitch acceleration input. The effective

mitigation of the peak lift force was obtained. A follow-up study implemented and compared

three different open-loop control maneuvers experimentally for the gust mitigation with

respect to the lift force and pitch moments136. In the work of Pohl et al. 137 and Herrmann

et al. 138 , the gust mitigation was performed by a closed-loop control with an active trailing

edge flap. The effectiveness of different control strategies at reducing lift fluctuations was

validated by experimental results.

Due to the complexity of gust-wing interactions, numerous parameters have been found

to have impact on the aerodynamic response of the oscillating wing, including plunging

and pitching amplitude, effective and mean AoA, reduced frequency, and so on117. The

parametric study is impractical or even impossible to find the optimal solution when facing

a massive parametric space. The existing control schemes have had limited success in the

gust mitigation, but to the best of author’s knowledge, none of them has optimized multiple

control parameters simultaneously. Additionally, usually different control strategies were

required for different objectives in order to obtain better mitigation performance. All these

challenges expose the constraints of existing approaches for addressing the gust mitigation

problem.

As reviewed in chapter 1 and chapter 3, the non-cylindrical calculus enabled adjoint

approach is able to optimize the aerodynamic performance of a moving airfoil, which shows

its effectiveness on the optimization of flows with complicated FSI80;88;100;101. Therefore, it

is natural to apply the similar approach to the gust mitigation with heaving-plunging wings,

with reasonable modifications on specific control objectives.

In this work, the gust responses were evaluated by the deviation of the lift after gust

encounter to the mean lift over one oscillating stroke. The mitigation of the gust was realized

by minimizing an objective function to recover the mean lift while reducing the unsteadiness

of the lift profile at the same time. The adjoint-based approach was implemented not only for

a full-order model (FOM) of gust-wing interaction simulated by solving the Navier-Stokes

equation with high fidelity, but also for the global POD-Galerkin projection based ROM

with lower fidelity but extremely short computational time. The remainder of this chapter is
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outlined as follows. The computational configurations, gust models, FOM- and ROM-based

adjoint approach are introduced in section 4.2. The results of adjoint-based gust mitigation

is presented in section 4.3, with the discussion on flow physics and control effectiveness.

Section 4.4 gives the concluding remarks of this work.

4.2 Methodology

4.2.1 Gust models and computational setup

In this work, the high-fidelity DNS were carried out for the FOM of interactions between

gusts and an NACA0012 airfoil. The airfoil was able to heave in vertical (y) direction as

well as pitch about its 1/4 chord point harmonically, specifically given as follows:

Y (t) = A sin(2πft),

Θ(t) = θ sin(2πft+ φ)− β,
(4.1)

where A is the heaving amplitude, θ the pitching amplitude, φ the phase delay angle between

heaving and pitching motion, and β the mean AoA of the airfoil. In the rest of this paper, the

control will be focused on these four parameters which may have impact on the aerodynamic

force of wings. To describe the control parameters more concisely, they are summarized in a

control vector γ = [A, θ, φ, β] for both 2D and 3D flows. The total degrees of freedom (DoF)

of the control space were up to four.

As summarized in Jones 117 , gusts can fall into one of following three categories: stream-

wise gust, transverse gust and vortical gust. In this work, a uniform streamwise gust and an

unsteady transverse gust were studied. The streamwise gust was generated by changing the

incoming flow velocity U∗, which also led to the change in the Reynolds number Re = U∗c/ν,

where ν is the kinetic viscosity of the flow, and c the chord length of the wing. The unsteady

transverse gust was introduced by adding a jet of periodic vertical velocity profile ahead of

the airfoil from a gust inlet at the bottom boundary of the computational domain. The
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velocity of the unsteady transverse gust Vg is given by the following sinusoidal function:

Vg = α[1 + sin(2πft)], (4.2)

where α is the dimensionless gust intensity normalized by the incoming flow velocity, f

is the frequency which is equal to the frequency of the airfoil oscillation. Details of the

computational setup are introduced in the following sections for 2D and 3D configurations

respectively.

The 2D and 3D simulations were performed by solving equation 1.3 numerically, with a

second-order central difference scheme for spatial discretization, and a third-order Runge-

Kutta/Crank-Nicolson scheme for time advancement. The numerical solver used in this

work has been well validated in previous studies of the author’s research group80;100;101;139.

For the specific cases studied in this chapter, mesh independence study was still conducted,

which is introduced in the following subsections. The time step ∆t was constrained by fixing

Courant-Friedrichs-Lewy (CFL) number to 0.1.

2D flow configuration

As depicted in figure 4.1, the 2D simulation was performed on a rectangular computational

domain of 60c×12c. The domain was discretized by a 901×676 non-uniform Cartesian mesh,

with minimal mesh size ∆xmin = 1.11× 10−2c. The mesh was fine and uniform in the near

field of the airfoil and gradually stretched towards the far field. The transverse gust inlet was

located at the bottom boundary in the range of [−0.5c, 0.5c], with a width of 1c. Initially,

the quarter-chord point of the airfoil was located at the origin, and the distance between the

bottom boundary and the rotating center of the airfoil was 1c. A constant incoming flow U∗

was imposed at the left boundary. When simulating streamwise gust condition, Neumann

boundary condition was set for all other boundaries. As for the transverse gust condition,

these boundary conditions remained almost the same except an inflow boundary imposed

specifically at the gust inlet.

The study on grid independence for the flow past oscillating airfoil was conducted for
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Figure 4.1: An illustration of 2D computational domain. The dimension of the sketch is
not to scale.

three different meshes from coarse to dense at Re = 200 and with γ = [0.5, 5◦, 0, 15◦]. The

mean drag and lift coefficients were evaluated for each mesh under no-gust and transverse-

gust conditions. As presented in table. 4.1, force coefficients obtained on different meshes

become converged as mesh size becomes finer, with merely 0.5% difference in C̄D and 0.1%

difference in C̄L for no-gust condition, and 1.0% difference in C̄D and 0.2% difference in

C̄L for transverse-gust condition between 1201× 676 mesh and 901× 676 mesh. Therefore,

901× 676 mesh was considered fine enough and was used for all 2D simulations.

Table 4.1: Mean drag and lift coefficients obtained on different 2D meshes before and after
transverse gust encounter.

Mesh size
C̄D

(no gust)
C̄L

(no gust)
C̄D

(with gust)
C̄L

(with gust)

701× 561, ∆xmin = 1.49× 10−2c 0.395 0.659 0.500 1.119

901× 676, ∆xmin = 1.11× 10−2c 0.392 0.678 0.497 1.125

1201× 676, ∆xmin = 6.67× 10−3c 0.390 0.679 0.492 1.127
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3D flow configuration

As shown in figure 4.2, the 3D simulation was performed in a 20c × 5c × 4c rectangular

domain. The domain was discretized by a 601 × 381 × 161 Cartesian mesh, with minimal

mesh size ∆xmin = 1.00 × 10−2. The mesh was non-uniform in streamwise (x) and vertical

(y) direction, which is fine and uniform in the near field of the airfoil, and stretched towards

the far field. In spanwise (z) direction the mesh was uniform. The gust configurations were

similar to the 2D counterparts. The streamwise gust was generated by changing the Reynolds

number based on the incoming flow velocity, while the transverse gust was introduced by

adding a vertical flow through a 1c×1c gust inlet located in the area of x ∈ [−0.5c, 0.5c] and

z ∈ [−0.5c, 0.5c] at the bottom boundary. Initially, the quarter-chord axis of the airfoil was

located in line with x = 0, with the vertical distance to the bottom boundary equal to 1c. A

constant incoming flow U∗ was introduced from the upstream. Zero-flux boundary condition

was set for other flow boundaries, except for the gust inlet when simulating transverse gust.

The 3D NACA airfoil model is also presented in Fig. 4.2, with the aspect ratio equal to 2.

The solid mesh consists of 17768 triangular elements on airfoil surface.

𝑼∗ 𝑉"
20𝑐

4𝑐

5𝑐

1𝑐

2𝑐 𝑐

Figure 4.2: An illustration of 3D computational domain and the 3D wing mesh.

The 3D simulation was run in parallel on 20 CPU cores with the computational domain
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being divided equally in spanwise (z) direction. The mesh independence study for the flow

with gust in this work was performed on 3 different meshes as presented in table 4.2 at

Re = 100 with γ = [0.2, 5◦, 0, 15◦], where the force coefficients were evaluated as did for 2D

simulations. It was observed that between the finest mesh and 601 × 381 × 161 mesh, the

difference in both C̄D and C̄L is 0.2% for no-gust condition, while 0.7% in C̄D and 0.1% in C̄L

for transverse-gust condition. The mesh-independent study indicated that 601 × 381 × 161

mesh was fine enough thus used for all 3D simulations.

Table 4.2: Mean drag and lift coefficients obtained on different 3D meshes before and after
transverse gust encounter.

Mesh size
C̄D

(no gust)
C̄L

(no gust)
C̄D

(with gust)
C̄L

(with gust)

521× 361× 161,
∆xmin = 1.25× 10−2c

0.435 0.503 0.541 1.840

601× 381× 161,
∆xmin = 1.00× 10−2c

0.435 0.506 0.538 1.846

641× 401× 161,
∆xmin = 9.09× 10−3c

0.436 0.505 0.534 1.848

4.2.2 The assessment of gusts: objectives and gradients

It has been widely reported that during the gust-wing interaction, the aerodynamic force on

the wing can change so largely that it may cause detrimental impact on the aerodynamic

performance. In the present work, the goal of gust mitigation was trying to recover the

original aerodynamic lift before gust encounter, while keep the unsteadiness of the lift as low

as possible. Two different adjoint-based algorithms were developed for the gust mitigation:

one using FOM to take advantage of its high fidelity to mitigate arbitrary gust with rea-

sonable computational cost; and the other using ROM to treat specific weak gust due to its

lower fidelity, while having the potential for real-time control because of its extremely short

computational time. Generally, the objective function can be described by:

J =
1

T

∫
T

|CL − C̄L0|2dt, (4.3)
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where C̄L0 is the target mean lift before gust encounter, and the lift coefficient is calculated

by:

CL =
1

D0

∫
∂Ωs

σ2jnjds, (4.4)

where D0 = ρU∗2c/2. The concrete form of J was dependent on the model (FOM or ROM)

used in the optimization, which will be corroborated in the following sections.

FOM-based adjoint approach

The objective function J with FOM is given by:

J =
1

T

∫
T

| 1

D0

∫
∂Ωs

σ2inids− C̄L0|2dt. (4.5)

With J , the similar adjoint equation 3.12 was solved, except that the boundary condition

needs modification due to a different objective function:

u∗i = −D2δ2i on ∂Ωs, (4.6)

where

D2 = 2(
1

D0

∫
∂Ωs

σ2inids− C̄L0). (4.7)

The corresponding gradient with γ = [A, θ, φ, β] as control parameters is:

gl =
1

T

∫
T

D2

∫
∂Ωs

[Zk,l
∂σ2j

∂xj
nk − V̇i,l − Zk,l

∂ui
∂xk

Z∗i ]dsdt, (4.8)

where the subscript l stands for each control parameter in γ.

Adjoint-ROM approach

Combining equation 3.17 and 4.3, the objective function for ROM is derived as:

J =
1

T

∫
T

∑
i=0

{dai
dt

[ĈF1(Φi) + ĈF2(Φi, t)] + aiĈF3(Φi) +
1

2

∑
j=0

aiajSij − C̄L0)}dt, (4.9)
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With this J , similar to the derivation in chapter 3, the adjoint-ROM equation F∗i (q∗i )−R∗i =

0 is obtained:

F∗i (q∗i ) =


da∗i
dt

+
∑

j[L
′
ji +

∑
k(Q

′
jik +Q′jki)ak]a

∗
j

db∗i
dt

+
∑

j[C
′
ji −

∑
k(L

∗
jki +

∑
mQ

∗
jkmiam)ak]a

∗
j −

∑
m P

′
mib
∗
m

 ,

R∗i =

 [ 1
T

∑
j=0 aj(Sij + Sji)− 2

T
∂ĈF2

∂t
+ 2

T
ĈF3](CL − C̄L0)

0

 ,
(4.10)

By solving equation 4.10 backward in time, the gradient gl can be calculated as:

gl =

∫
T

[
N∑
i

(−
∑
m

bmCiml)a
∗
i +

M∑
i

(
∑
m

bmKiml)b
∗
i ]Vlγdt, l = 1, 2 (4.11)

with l corresponding to the heaving (l = 1) and pitching (l = 2) motion respectively,

coefficients Ciml and Kiml are given as:

Cim1 =
1

τ
〈ey, (ψmφi)〉,

Cim2 =
1

τ
〈er, (ψmφi)〉,

Kim1 = 〈(ey · ψm),φi〉,

Kim2 = 〈(er · ψm),φi〉.

(4.12)

Vlγ = ∂Vl

∂γ
. Based on equation 4.1,

V1γ = [2πf cos(2πft) 0]T ,

V2γ = [2πf cos(2πft+ φ) − 2πfθ sin(2πft+ φ)]T .

(4.13)

It can be seen from the above derivation of Vlγ , that the mean AoA β is cancelled out after

the first-order differentiation, thus under the current framework of adjoint-ROM approach,

the impact of β cannot be involved in gl. As a result, β is not controlled for ROM-based gust
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mitigation. The total degrees of freedom are three with γ = [A, θ, φ]. The conjugate gradient

method was also implemented for adjoint-ROM optimization, as a result the optimal γ can

be determined iteratively.

Special caution should be used when using the ROM-based approach. As discussed in

chapter 3, almost all data-driven, projection-based ROM is highly sensitive to the change

of flow condition, which means the ROM built upon the base flow may not be valid for the

flow with strong perturbations of the gust, and vice versa. However, the ROM is usually

adaptable for a flow condition that does not deviate too far from the one it is built upon,

albeit the criterion to evaluate such deviation is usually empirical. In the present work,

all ROMs for the gust mitigation were built upon the data of base flows throughout the

optimization process. Therefore, only “weak” gusts were taken into account in this study to

guarantee the accuracy of ROMs when control parameters changed. Moreover, a posterori

validations were made for these gusts to guarantee the robustness of ROMs.

4.3 Results and discussion

In this section, the results of adjoint-based gust mitigation are presented together with the

physical analysis and discussions. For 2D gusts, the streamwise gust and the transverse gust

were mitigated by both FOM- and ROM-based adjoint approach. For 3D gusts, only FOM-

based adjoint approach was applied, considering the offline computational cost to build the

3D ROM is high thus may overshadow the benefit of using ROM-based fast flow control

method. The Reynolds number was kept modest for this study, thus the flows remained

laminar even with the gust encounter.

4.3.1 2D streamwise gust mitigation

FOM-based control

The original flow without gust was generated at Re = 200 with an initial control γi =

[0.5, 5◦, 0, 15◦] and oscillating frequency f = 0.1. The streamwise gust here was realized
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by increasing the Reynolds number to 500, which was mimicking a gust from upstream.

In order to prevent a deep dynamic stall event at high AoA, β was restricted in a range

of [−20◦, 20◦]. The objective function was given by equation 4.3 with period T = 10. In

this complete stroke, the airfoil is heaving upward first in [0, T/2], and then downward in

[T/2, T ]. As presented in figure 4.3, the objective function was reduced by two orders of

magnitude, or 97.8%, after 4 iterations of optimal control. The variations of γ are shown in

figure 4.4. It can be observed that the heaving amplitude A and pitching amplitude θ were

both reduced notably, with A = 0.058 and θ = −1.7◦ in the end. The negative final pitching

amplitude indicated that the airfoil started pitching in the direction opposite to the initial

pitching motion. On the contrary, the phase delay angle φ and the mean AoA β barely

changed when the optimization was converged, which indicated that these two parameters

were not as important as A and θ to mitigate the streamwise gust.

Figure 4.3: The objective function J at every main iteration in the optimization.

The lift coefficients of the base flow, the perturbed flow with streamwise gust, and the

optimal flow are compared in figure 4.5. Initially, the lift profile was periodic, with the net

mean lift C̄L0 equal to 0.678. After the airfoil encountered the streamwise gust, due to much

higher incoming flow velocity, the mean lift on the airfoil was increased to 0.785, with higher

peak value during the downward stroke. However, the lift profile remained nearly sinusoidal,

implying no transition in the flow regime happened with the impact of gust. When the

optimal control was applied, there was a decrease in the heaving and pitching amplitude,
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(a) (b)

Figure 4.4: The variations of 4 control parameters in γ at every main iteration. (a): The
variations of A, θ, φ; (b) the variation of mean AoA β.

(a) (b)

Figure 4.5: The lift coefficients of the base flow, the perturbed flow with gust, and the
optimal flow after gust mitigation. (a): Lift profile; (b): mean lift.

causing the magnitude of CL to decrease drastically, and the lift history was not sinusoidal

anymore, but still oscillating. As a result, the mean lift was reduced to 0.632, as shown in

figure 4.5 (b), with the deviation to C̄L0 decreasing from 15.8% to 6.8%. Although the mean

lift of the base flow was not completely recovered, the deviation was still cut down by over

half, which demonstrates the effectiveness of the gust mitigation approach. However, these

results suggest that the fundamental flow of the optimal control case had shifted from the

original, pre-gust case.

The flow fields at two typical time moments tU∗/c = 290 and tU∗/c = 295, where the

airfoil was heaving upward and downward respectively, are presented in figure 4.6 for the

base flow, the perturbed flow, and the optimal flow. It can be observed that for the base

flow, the flow remained attached to both sides of the airfoil when it was heaving up and
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(a) tU∗/c = 290 (b) tU∗/c = 295

(c) (d)

(e) (f)

Figure 4.6: The flow field contoured by vorticity at two typical time moments (tU∗/c = 290
and tU∗/c = 295) for: (a) and (b) base flows; (c) and (d) perturbed flows; (e) and (f) optimal
flows

pitching down, while the flow began to separate at the leading edge with the leading edge

vortex (LEV) being formed as it was heaving down and pitching up. The generation of LEV

led to a high instantaneous lift. After the streamwise gust occurred, the vortices were pairing

earlier during the first half of the stroke, while the LEV was still generating and shed into the

wake, with higher vorticity. The flow structures did not change dramatically with the impact

of gust. However, after the optimization, the single vortex pair in the wake changed to a

single vortex street, with much weaker heaving and pitching airfoil motion, as seen in figure

4.6 (e) and (f). Such wake structure directly resulted in a CL with much lower magnitude,

but the period of the wake had shifted significantly. The optimal control done here shows

that when optimizing for mean lift, the results shifted to a case with almost no motion and

did not align with the original oscillation behavior. Despite a big transition occurring in

the flow field, the mean lift can still be recovered by over 50%, but care must be taken in

defining the objective function in cases where the original motion must be preserved.
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ROM-based control

The pre-gust flow was first generated by 2D DNS at Re = 200 with an initial control

γi = [0.2, 5◦, 0], a fixed mean AoA β = 5◦, which was smaller than β in the FOM-based

counterpart, and oscillating frequency f = 0.1. The streamwise gust was introduced by

decreasing the incoming flow Reynolds number from 200 to 50, which mimicked a gust

blown from the downstream. The reason to decrease Re instead of increasing it as done in

FOM-based case is to guarantee the stability of the ROM during the whole optimization

process. Then the global POD modes were extracted based on 300 snapshots with the flow

under Re = 50 covering dimensionless time from tU∗/c = 161 to 171, for one wing stroke.

With the first 20 leading POD modes and solid modes, a global POD-Galerkin ROM was

built for the gust mitigation in lower-dimensional subspace. The accuracy of the ROM was

validated first for the base flow as well as the perturbed flow with streamwise gust. Figure

4.7 compares the time coefficients of the first two POD modes between the direct linear

projection of DNS data (L-DNS) and the solution of ROM equation, for the base flow and

the perturbed flow with gust. The L-DNS results was regarded as the benchmarks as it was

the direct projection of the high-fidelity FOM data. It is found that the time coefficients

given by ROMs are in good agreement with both benchmarks for the base flow and the

perturbed flow, which indicates that ROMs can appropriately capture the low-dimensional

flow dynamics under various flow conditions. In addition, the lift coefficients computed by

the DNS (FOM) and the ROM reconstruction are compared in figure 4.8. It can be seen

that for both flows, the lift profiles reconstructed by ROMs can match the ones by DNS

with good agreement, with only slight mismatch. Considering the objective function was

the mean lift, the error between DNS and ROM results would be even smaller. Hereafter,

only the ROM built upon the perturbed flow (Re = 50) was used for the gust mitigation.

The objective function was calculated by equation 4.9 with period T = 10. The variation

of J during the gust mitigation iterations is presented in figure 4.9. It is found that the

objective function was decreased by 79.8% after the optimal control was converged after 4

iterations. As shown in figure 4.20, to the achieve the optimal J , the heaving amplitude A
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(a) (b)

Figure 4.7: The time coefficients ai of the first two POD modes by the L-DNS and by
solving ROM equation for: (a) the base flow; (b) the perturbed flow with gust.

(a) (b)

Figure 4.8: The lift coefficients computed by DNS and ROM for: (a) the base flow; (b)
the perturbed flow with gust.

had to increase by 25.0%, and the pitching amplitude θ was also increased by 14.1%. The

phase delay angle φ remained insignificant for the lift recovering with close to zero value

throughout the control iterations.

Now that the optimal solution of the surrogate model in the subspace (ROM) was ob-

tained, it is crucial to test if the optimal solution obtained in this subspace can precisely

represent the optimal solution of the original high-order space (i.e. the FOM). The accuracy

of the ROM for the optimal flow was assessed by comparing the lift coefficient computed

by DNS and the one reconstructed by ROM as presented in figure 4.11. It can be found

that the lift generated by ROM has a good agreement with the benchmark given by DNS.

Therefore, it can be confirmed that ROM still kept accurate for the optimal flow, and the

optimum of the surrogate model was exactly the one of the original model (FOM).
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Figure 4.9: The objective function J at every main iteration in the optimization.

Figure 4.10: The variations of 3 control parameters in γ = [A, θ, φ] at every main iteration.

Lastly, the lift coefficients of the base flow, the perturbed flow with streamwise gust,

and the optimal flow are compared in figure 4.12. The lift coefficients shown here were all

reconstructed by corresponding ROMs. The initial lift was sinusoidal with a net mean lift

C̄L0 = 0.281. The weak streamwise gust altered the peak and valley values of the lift profile

during one stroke period, which resulted in a mean lift of 0.241, or a 14.2% decrease, as

shown in figure 4.12 (b). By increasing both A and θ, the mean lift was recovered very well,

with C̄L = 0.258 at the end of the optimization, as shown in figure 4.12 (b). The deviation

to C̄L0 was reduced from 14.2% to 8.2%. Although the deviation was cut down by nearly

half, the ultimate mean lift was still lower than the target value, which implies the limited
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Figure 4.11: The lift coefficients of the optimal flow after gust mitigation, computed by
DNS (solid line) and reconstructed by ROM (dashed line) respectively.

(a) (b)

Figure 4.12: The lift coefficients of the base flow, the perturbed flow with gust, and the
optimal flow after gust mitigation. (a): Lift profile; (b): mean lift.

controllability of adjoint-ROM approach.

It is worth noting that the airfoil had different optimal motion when the streamwise gust

blew from different directions in FOM-based and ROM-based cases. Such different motion

may be related to the strength of the gust as well as the controllability of different methods.

In FOM-based case, the change of Re was large which led to a strong gust. Therefore, the

airfoil may need to nearly stop its oscillation to reach a different flow regime in order to

retain the pre-gust mean lift. In ROM-based case, the gust was much weaker, which resulted

in relatively small deviation in the mean lift. Therefore the airfoil may still maintain its

oscillating motion after the optimization.
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4.3.2 2D transverse gust mitigation

FOM-based control

The original flow without gust was the same as the one used in the case of FOM-based

streamwise gust mitigation. The transverse gust here was introduced by adding a periodic

velocity profile from the bottom boundary with the gust intensity α = 1.0 and f = 0.1

in equation 4.2. The mean AoA β was still restricted in a range of [−20◦, 20◦] to prevent

particularly deep dynamic stall events. The objective function was also given by equation

4.3 with period T = 10. The wing motion was the same as the case of streamwise gust

mitigation. As presented in figure 4.13, the objective function was decreased by 61.3%

when the optimal control was converged after 6 iterations. Correspondingly, the heaving

amplitude A was decreased by 28.9% , as shown in figure 4.14 (a), with a final A = 0.356.

The pitching amplitude θ remained small after optimization with a reduction of 46.8%. The

phase delay angle φ still did not have significant impact on the gust mitigation. The mean

AoA β was decreased from 15◦ to 3.2◦ in the end of the optimization, indicating that the

airfoil tends to dive into the gust inlet to mitigate the lift surge caused by the gusty wind.

Similar adjustment of the wing motion has also been found in previous research with different

descriptions of gust effect under much higher Reynolds numbers132.

Figure 4.13: The objective function J at every main iteration in the optimization.

The lift coefficients of the base flow, the perturbed flow with transverse gust, and the
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(a) (b)

Figure 4.14: The variations of 4 control parameters in γ at every main iteration. (a):
The variations of A, θ, φ; (b) the variation of mean AoA β.

optimal flow are compared in figure 4.15. The initial lift was the same as in FOM-based

streamwise gust mitigation case with a net mean lift C̄L0 = 0.678. The unsteady transverse

gust significantly changed the lift profile during one stroke period. As seen in figure 4.15 (a),

CL was no longer purely sinusoidal, implying a transition in the flow dynamics was taking

place due to the gust. Instead, the former lift valley without gust became a lift peak, followed

by another lift plateau. As a result, the mean lift surged by 65.9%, as indicated by figure 4.15

(b). The optimal control managed to recover most of the initial mean lift by reducing A, θ,

and β. This set of control parameters caused almost the entire lift curve to shift downward.

However, the overall shape of the lift profile almost remained unchanged compared to the

perturbed case, and the pre-gust lift profile was not retained by the optimization, just as

observed in FOM-based streamwise gust mitigation case. After the optimization, the mean

lift was reduced to 0.648, as shown in figure 4.15 (b), with the deviation to C̄L0 decreasing

from 65.9% to 4.4%. The FOM-based gust mitigation approach was proved effective again

by successfully reducing the deviation to C̄L0 by over 90%.

The flow fields at two typical time moments tU∗/c = 290 and tU∗/c = 295, where the air-

foil was heaving upward and downward respectively, are presented in figure 4.16 for the base

flow, the perturbed flow, and the optimal flow. It can be seen in figure 4.15 (a) that at these

two time moments, the lift profile prior to the gust reached the minimum and the maximum

respectively. The transverse gust not only shifted the phase of CL, but also changed the mo-

ment where the maximal lift was generated. The base flow was the same as shown in figure
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(a) (b)

Figure 4.15: The lift coefficients of the base flow, the perturbed flow with gust, and the
optimal flow after gust mitigation. (a): Lift profile; (b): mean lift.

4.16 (a) and (b). After the transverse gust blowing from the bottom boundary, the vortices

were pairing earlier with stronger intensity during the upstroke. During the downstroke,

part of the gust was merged into the wake, and interacted with the LEV separated from the

airfoil surface. The gust changed the wake structure completely, with the upwash greatly

enhancing the vortex shed from the trailing edge, and finally suppressing the shedding of

LEV. As a result, the mean lift surged by the upwash effect, and the original vortex pairing

disappeared. After the optimization, although no significant transition of vortex structures

occurred, the vortex intensity was reduced with weaker vortex pairing in the wake as seen

in figure 4.16 (e) and (f). The upwash caused by the gust was alleviated, resulting in a

down shift of the lift profile as well as a much lower mean lift. It is demonstrated that when

encountering a transverse gust, the stable flight can be maintained with merely slight change

in the mean lift by controlling the maneuver of airfoil, without changing the flow structures

and flow dynamics dramatically.

ROM-based control

The base flow was first generated by 2D DNS at Re = 200 with an initial control γi =

[0.2, 5◦, 0], a fixed mean AoA β = 5◦, and oscillating frequency f = 0.1. The transverse gust

was introduced by the similar way to the one used in FOM-based transverse gust mitigation

case, but with a lower gust intensity α = 0.5. Note that α is smaller than the one in FOM-

based case in order to keep ROM accurate. Then the global POD modes were extracted
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(a) tU∗/c = 290 (b) tU∗/c = 295

(c) (d)

(e) (f)

Figure 4.16: The flow field contoured by vorticity at two typical time moments (tU∗/c =
290 and tU∗/c = 295) for: (a) and (b) base flows; (c) and (d) perturbed flows; (e) and (f)
optimal flows

based on 300 snapshots with transverse gust covering dimensionless time from tU∗/c = 161

to 171 for one wing stroke. With the first 20 leading POD modes and solid modes, a

global POD-Galerkin ROM was built for the gust mitigation in lower-dimensional subspace.

The accuracy of the ROM was validated first for the base flow as well as the perturbed

flow with transverse gust. Figure 4.17 compares the time coefficients of the first two POD

modes between the direct linear projection of DNS data (L-DNS) and the solution of ROM

equation, for the base flow and the perturbed flow with gust. The L-DNS results can be

regarded as the benchmarks. It is found that the time coefficients given by ROMs can match

the benchmarks with high accuracy, which demonstrates ROMs can appropriately capture

the low-dimensional flow dynamics. In addition, the lift coefficients computed by DNS and

ROM reconstruction are also compared in figure 4.18. It can be seen that for both flows,

the lift profiles reconstructed by ROMs can almost collapse onto the one by DNS, with only

sight disagreements. Hereafter, only the ROM built upon the perturbed flow was used for
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(a) (b)

Figure 4.17: The time coefficients ai of the first two POD modes by the L-DNS and by
solving ROM equation for: (a) the base flow; (b) the perturbed flow with gust.

(a) (b)

Figure 4.18: The lift coefficients computed by DNS and ROM for: (a) the base flow; (b)
the perturbed flow with gust.

the mitigation.

The objective function was calculated by equation 4.9 with period T = 10. The variation

of J during the gust mitigation iterations is presented in figure 4.19. It is found that the

objective function was decreased by 26.9% when the optimal control was converged after 4

iterations. As shown in figure 4.20, the heaving amplitude A was decreased by 83.1%. Note

that the negative final A indicates the opposite heaving direction. The pitching amplitude

θ was also decreased by 37.9%. The phase delay angle φ kept nearly 0 throughout the

optimization process, which shows it did not affect the outcome of lift recovering.

The entire on-the-fly mitigation was performed in the subspace, therefore it is intriguing

to assess if the optimal solution obtained in this subspace can indeed represent the one of

the original high-order space (i.e. the FOM). The accuracy of the ROM for the optimal flow
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Figure 4.19: The objective function J at every main iteration in the optimization.

Figure 4.20: The variations of 3 control parameters in γ = [A, θ, φ] at every main iteration.

was evaluated by comparing the lift coefficient computed by DNS and the one reconstructed

by ROM as presented in figure 4.21. It can be found that the lift generated by ROM is

in good agreement with the benchmark given by DNS. Therefore, it can be confirmed that

ROM still kept accurate for the optimal flow.

The lift coefficients of the base flow, the perturbed flow with transverse gust, and the

optimal flow are compared in figure 4.22. Note that the lift coefficients shown here were all

reconstructed by corresponding ROMs. The initial lift was sinusoidal with a net mean lift

C̄L0 = 0.281. The weak transverse gust altered the phase of the lift profile during one stroke

period. with a higher minimum instantaneous lift. As a result, the mean lift was greatly
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Figure 4.21: The lift coefficients of the optimal flow after gust mitigation, computed by
DNS (solid line) and reconstructed by ROM (dashed line) respectively.

(a) (b)

Figure 4.22: The lift coefficients of the base flow, the perturbed flow with gust, and the
optimal flow after gust mitigation. (a): Lift profile; (b): mean lift.

increased by 91.8% as shown in figure 4.22 (b), despite the magnitude of CL remaining small.

The optimal control was able to alleviate the surge in C̄L by reducing A and θ. With the

optimal maneuver of the airfoil, the phase of the lift profile was changed with a near complete

phase shift compared to the initial lift profile. However, the periodicity of the lift profile was

still retained. After the optimization, the mean lift was reduced to 0.383, as shown in figure

4.22 (b), as the deviation to C̄L0 was reduced significantly from 91.8% to 36.3%, albeit still

higher than the target mean lift of the initial flow. This suggests that the fidelity or accuracy

of the ROM may limit the effectiveness of the optimization for control of mean lift.
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4.3.3 3D streamwise gust mitigation

For this case, the original flow without gust was generated at Re = 100 with an initial

control γi = [0.2, 5◦, 0, 15◦] with oscillating frequency fixed as f = 0.5. The streamwise gust

was generated by increasing the Reynolds number of incoming flow to Re = 350. In order

to prevent a severe dynamic stall event at high AoA, β was again restricted to a range of

[−20◦, 20◦]. The objective function was given by equation 4.3 with period T = 2. In the

motion for this case, the airfoil was heaving upward first in [0, T/2], and then downward in

[T/2, T ]. The effect of mitigation is shown in figure 4.23 which presents the variation of the

objective function at each iteration. The objective function was found to decrease by nearly

two orders of magnitude, or 98.7%, after 2 iterations of optimal control. The corresponding

variations of γ are shown in figure 4.24. It can be seen that the heaving amplitude A

and pitching amplitude θ were both reduced to almost zero, with A = −1.46 × 10−3 and

θ = −0.035◦. The phase delay angle φ remained nearly zero without much difference after the

optimization. The mean AoA β was found almost unchanged, with a slight reduction from

15◦ to 13.8◦. Comparing the change of γ against the 2D counterpart, it can be found that

in both cases, in order to mitigate the streamwise gust, the amplitudes of oscillation needed

to decrease to make the wing almost static. The similar change of γ for both cases implies

the same mechanism might determine the effect of streamwise gust mitigation regardless

whether the model is 2D or 3D.

Figure 4.23: The objective function J at every main iteration in the optimization.
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(a) (b)

Figure 4.24: The variations of 4 control parameters in γ at every main iteration. (a):
The variations of A, θ, φ; (b) the variation of mean AoA β.

(a) (b)

Figure 4.25: The lift coefficients of the base flow, the perturbed flow with gust, and the
optimal flow after gust mitigation. (a): Lift history; (b): mean lift. The small figure in (b)
is the zoom-in view of the mean lift of base flow and optimal flow.

The lift coefficients of the base flow, the perturbed flow with transverse gust, and the

optimal flow are compared in figure 4.25. The initial lift profile was sinusoidal with a net

mean lift C̄L0 = 0.507. The streamwise gust from the upstream brought a small change to

the lift profile, with slight phase alteration and slightly higher magnitude. As a result, the

mean lift C̄L appeared to increase by 21.7% to 0.617 as shown by figure 4.25 (b). By the

optimal control with A, θ being reduced to almost zero, it can be found that the lift profile

changed drastically from a periodic profile to a nearly steady profile. Correspondingly the

initial mean lift of the base flow was recovered by 73.6% , as seen in figure 4.25 (b), to

C̄L = 0.536 in the end of the optimization. The huge alteration of CL profile indicates the

flow regime might change as well, which will be studied by analyzing the flow structures as

follow.
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(a)
tU∗/c = 20.7

(b)
tU∗/c = 21.7

(c) (d)

(e) (f)

Figure 4.26: The Q = 0.1 iso-surfaces contoured by vertical (y) velocity at two typical
time moments (tU∗/c = 20.7 and tU∗/c = 21.7) for: (a) and (b) base flows; (c) and (d)
perturbed flows; (e) and (f) optimal flows.

The flow fields were rendered by Q = 0.1 iso-surfaces at two typical time moments

tU∗/c = 20.7 and tU∗/c = 21.7, as presented in figure 4.26 for the base flow, the perturbed

flow, and the optimal flow. In addition, the corresponding vorticity fields at the spanwise

central plane z = 0 are illustrated in figure 4.27. It can be observed that for the base flow,

due to the heaving and pitching wing motion, a single vortex street was formed even with

a modest Re = 100. The flow separation already happened on the upper side of the wing

as shown in figure 4.27, with a trailing edge vortex (TEV) rolling up simultaneously. As
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(a)
tU∗/c = 20.7

(b)
tU∗/c = 21.7

(c) (d)

(e) (f)

Figure 4.27: The vorticity field on the z = 0 central plane at two typical time moments
(tU∗/c = 20.7 and tU∗/c = 21.7) for: (a) and (b) base flows; (c) and (d) perturbed flows;
(e) and (f) optimal flows.

the streamwise gust blown from the upstream, stronger vortices of separation were generated

with more active pairing in the wake. Such change of vortex structures led to a small increase

in the mean lift. After the optimization, the wing almost stopped its oscillation, leading to

the wake structure that the flow past a static bluff body would have, as seen in figure 4.27

(e) and (f). The flow reattachment and weaker vortex pairing in the wake may lead to the

nearly steady CL, which may further result in a good recovery and stabilization of the lift.

4.3.4 3D transverse gust mitigation

The original flow without gust was generated at Re = 100 with an initial control γi =

[0.2, 5◦, 0, 15◦] and oscillating frequency f = 0.5. The transverse gust was generated in the

way that was introduced in section 4.2, with α = 1.0 and the same frequency as the wing

oscillation f = 0.5. In order to prevent the severe dynamic stall event at high AoA, β was

also restricted to a range of [−20◦, 20◦]. The objective function was still given by equation
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4.3 with period T = 2. In this motion profile, the airfoil was able to heave upward first in

[0, T/2], and then downward in [T/2, T ]. As shown in figure 4.28, the objective function was

reduced by over two orders of magnitude, or 98.6%, after 6 iterations of optimal control.

The corresponding variations of γ are shown in figure 4.29. It can be observed that the

heaving amplitude A and pitching amplitude θ were both reduced notably, with A = 0.021

and θ = 0.13◦. The phase delay angle φ remained close to zero without much change after

the optimization. The mean AoA β was found significantly reduced from 15◦ to −16.2◦,

which means the wing pitched down dramatically towards the direction of the gust inlet.

Comparing the change of γ against the 2D counterpart, it can be found that in both cases,

in order to stabilize the aerodynamic performance when the transverse gust occurred, the

amplitudes of oscillation needed to decrease, with the whole wing pitching downward to the

gust inlet to adjust the incident angle. The similar change of γ for both cases implies the

same mechanism for the gust mitigation regardless of 2D or 3D model.

Figure 4.28: The objective function J at every main iteration in the optimization.

The lift coefficients of the base flow, the perturbed flow with transverse gust, the optimal

flow are compared in figure 4.30. The initial lift was the same as in 3D streamwise gust

mitigation case with a net mean lift C̄L0 = 0.507. The unsteady transverse gust overall

enhanced the lift greatly, with some shift in the phase of the lift profile as well. As a result,

the mean lift appeared to surge by 256.5% as indicated by figure 4.30 (b). Such strong

disturbance of the lift will definitely harm the flight stability of the 3D wing. However, by
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(a) (b)

Figure 4.29: The variations of 4 control parameters in γ at every main iteration. (a):
The variations of A, θ, φ; (b) the variation of mean AoA β.

(a) (b)

Figure 4.30: The lift coefficients of the base flow, the perturbed flow with gust, and the
optimal flow after gust mitigation. (a): Lift history; (b): mean lift. The small figure in (b)
is the zoom-in view of the mean lift of base flow and optimal flow.

the optimal control with reduced A, θ, and β, the initial mean lift of the base flow was able to

be mostly recovered, as seen in figure 4.30 (b), to C̄L = 0.523 in the end of the optimization.

The optimal maneuver of the wing can effectively reduce the force peak caused by the gust,

with the whole lift profile becoming more steady. The optimal mean lift had a deviation

to C̄L0 of only 3.2%, which demonstrates the high effectiveness of the present FOM-based

gust mitigation approach on 3D models. Note that different than the 2D counterpart, the

oscillation of the original lift was almost suppressed by the optimization, though the mean

lift was well recovered.

The flow fields were rendered by Q = 0.1 iso-surfaces at two typical time moments

tU∗/c = 20.7 and tU∗/c = 21.7, as presented in figure 4.31 for the base flow, the perturbed

flow, and the optimal flow. In addition, the corresponding vorticity fields at the spanwise
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(a)
tU∗/c = 20.7

(b)
tU∗/c = 21.7

(c) (d)

(e) (f)

Figure 4.31: The Q = 0.1 iso-surfaces contoured by vertical (y) velocity at two typical
time moments (tU∗/c = 20.7 and tU∗/c = 21.7) for: (a) and (b) base flows; (c) and (d)
perturbed flows; (e) and (f) optimal flows.

central plane z = 0 are illustrated in figure 4.32. The base flow is the same as analyzed in

3D streamwise gust case. As the unsteady transverse gust with α = 0.5 occurred, the vortex

structures were altered significantly. A horseshoe-like LEV was generated with strong flow

separation on the upper side of the wing. In addition, the LEV started intertwining with the

gust, which resulted in a much more complicated flow structure in the near-solid field. The

regular single vortex street disappeared, while the LEV and TEV shed from the wing began

to pair. Eventually, the strong perturbation brought the upwash that was able to shifted
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(a)
tU∗/c = 20.7

(b)
tU∗/c = 21.7

(c) (d)

(e) (f)

Figure 4.32: The vorticity field on the z = 0 central plane at two typical time moments
(tU∗/c = 20.7 and tU∗/c = 21.7) for: (a) and (b) base flows; (c) and (d) perturbed flows;
(e) and (f) optimal flows.

mean lift up by over 200%. However, after the optimization, the flow structures changed

dramatically again, with LEV almost reattaching to the upper side of the wing. The TEV

became weaker as well, as seen in figure 4.32 (e) and (f). The flow reattachment and weaker

vortex pairing in the wake directly resulted in a more steady CL with much lower magnitude.

Similar to the 2D case, the upwash caused by the gust can still be mitigated effectively by

pitching downward into the direction of the gust inlet, in order to generate more coherent

flow structures on the wing instead of huge separation, which further resulted in a good

recovery of the original mean lift, but with a dissimilar motion profile.

4.3.5 Computational cost estimation

The computational cost of adjoint-based optimal control was studied for the 2D and 3D

streamwise gust mitigation cases by using FOM-based or ROM-based adjoint approach, as

shown in table 4.3. An estimation was made on the computational time by using parametric
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Table 4.3: Computational time for DNS-based adjoint optimal control process and adjoint-
ROM optimal control process of both 2D and 3D streamwise gust mitigation. The computa-
tional time of parametric study is estimated by assuming to have 5 attempts for each control
parameter based on the online computational time of a single simulation. Only online com-
putational time is presented.

Case Single
simulation

Parametric
study

Adjoint-based
optimization

2D, FOM-based, 4DoF 45m 19d 8h12m

2D, ROM-based, 3DoF 10s 25m 3m

3D, FOM-based, 4DoF† 4h16m 111d 2d16h

† run in parallel with 20× CPU power.

study such that 5 simulations are presumably performed for each control parameter. As for

a 4-DoF control, such assumption would result in 54 simulations in total to find the optimal

solution by parametric study. For cases using FOM-based approach, 45 minutes are needed

for a 2D simulation and over 4 hours are required for a 3D case even running with 20 CPU

cores. Consequently the parametric study based on the aforementioned assumption would

take weeks or even months, which is infeasible. As a comparison, the FOM-based adjoint

approach is able to complete the optimization in about 8 hours for 2D case, and in less

than 3 days for 3D case respectively. This results in over 98% computational time reduction

was achieved for both cases, with the adjoint approach enabling flow optimization that is

impossible by the parametric study. For the case using an adjoint-ROM approach, due to the

fact that the online computational time of ROM simulation can be as short as seconds, the

parametric study is feasible, yet it still takes too much time to conduct real-time control. By

using adjoint-ROM approach with “one-ROM” strategy, the computational cost was further

reduced by 88%, which allows for a quick optimization in 3 minutes and opens up a way for

near-real-time control.
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4.4 Concluding remarks

In this chapter, the adjoint-based flow optimization approach has been applied to gust miti-

gation for both 2D and 3D heaving-pitching wings. The streamwise gust and the transverse

gust were studied separately, where the streamwise gust was introduced by changing the

Reynolds number of the incoming flow, and the transverse gust was generated by imposing

a sinusoidal velocity profile from a gust inlet at the bottom boundary of the computational

domain. The FOM-based adjoint approach was used for all cases, while the adjoint-ROM

approach developed in chapter 3 was used for 2D gusts only. The gust responses were eval-

uated by the deviation of the lift after gust encounter to the mean lift over one oscillating

stroke. The mitigation of gust was realized by minimizing the objective function to recover

the mean lift of the base flow, while keeping the lift profile as steady as possible.

The FOM-based adjoint approach was effective to mitigate relatively strong streamwise

and transverse gusts for both 2D and 3D flows. For the streamwise gust, the wing tended to

stop its oscillation to stay nearly static, in order to lower the extra lift caused by the gust

blown from upstream, as well as to reduce the magnitude of the life profile for a more steady

aerodynamic load. The phase delay angle φ and mean AoA β were found insignificant for

the gust mitigation. After the optimization, a transition in the flow regime had occurred

for both 2D and 3D flows, with wake structures very close to the one of flow past a fixed

bluff body. The deviations to the mean lift of the base flow could be reduced by up to

73.6%. For the transverse gust, the wing tended to reduce its oscillating amplitudes, while

pitching down towards the gust inlet with significantly lower β, to mitigate the great surge

in lift when encountered the gust. The phase delay angle φ remain almost irrelevant to the

effect of gust mitigation. For the 2D gust, the flow control did not change the flow dynamics

with the gust completely. But by reducing the vortex intensity as well as the vortex pairing

activity in the wake, the whole lift profile was shifted down to overcome the upwash caused

by transverse gust, which further recovered the original mean lift by over 90%. For the 3D

gust, however, a transition of the flow dynamics was observed, where the LEV and TEV

generated from flow separation due to the gust started reattaching to the wing surface. The
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flow reattachment and weaker vortex pairing in the wake resulted in a more steady lift profile

with much lower magnitude, eventually led to a final mean lift with only 3.2% deviation to

the original mean lift.

The adjoint-ROM approach was applied to cases with weak gusts, and without mean AoA

as a control parameter. The “one-ROM” strategy was implemented for both gusts where a

single ROM built upon the perturbed flow was used throughout the control process. The

ROM was validated by comparing the lower-order flow dynamics by solving ROM equations

as well as the lift reconstruction against the results of FOM. Overall, adjoint-ROM was able

to effectively reduce the deviation of mean lift after gust encounter to the original mean lift

by over 50%. It was realized by only controlling the lower-order flow dynamics, while the

optimal mean lift achieved from this surrogate model was proved accurate compared to the

one from FOM.

129



Chapter 5

Adjoint-based optimization for

hydrofoil schooling

5.1 Introduction

It has been hypothesized for decades that the swimming animals may be able to make

use of flows induced by neighboring swimmers when schooling, to obtain hydrodynamic

benefits, including reducing the drag, boosting the thrust, and enhancing the propulsion

efficiency140–142. Extensive work has been done attempting to elucidate the mechanisms of

possible benefits brought by schooling, as well as to seek the ways of schooling that can lead

to better hydrodynamic performance. Some pioneering work has been conducted by using

living fishes and fish-like robotics, which has indicated that through the collective motion

and vortex phase matching, individuals in a fish school can achieve hydrodynamic benefits

such as lower energy consumption143–145. However, since the number of swimmers in a fish

school is usually huge, the interactions between swimmers and surrounding flows are very

complicated, which makes it difficult to thoroughly analyze the hydrodynamic performance

by merely studying living fish school. Therefore, fish schooling has usually been studied

by simplified models. Some work has modeled the fish school as self-propelled particles,

which can only take into account limited hydrodynamics146. On the other hand, in order to
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further investigate the complex hydrodynamic interaction of fish schooling, more work has

been focusing on models consisting of moving foils and fins with different arrangements of

formations. There have been two major categories of foil models that have attracted the

most attention from fluid mechanics community. One is the rigid flapping hydrofoil model

which could heave and pitch freely in a prescribed incoming flow. This model has been found

to be effective at aiding in the identification of the fundamental mechanisms of fish schooling

by enabling precise control, and measurement of motions and forces147–154. In addition, the

experimental design and manufacturing of rigid foils is usually easier. Another model is the

flexible undulatory hydrofoil model. This model is derived from the spine motion of fish155,

and has been widely used to study the effects of spatial arrangement of the fish and features

of tail beating on the hydrodynamic performance of fish schooling156–160. In general, the

hydrodynamic performance of schooling has been found highly dependent on the motion of

each fish (i.e., flapping, undulating. etc.), as well as the spacing or the formation of the fish.

These two major factors are reviewed as follow.

For rigid swimmers, most of the research focusing on the effect of hydrofoil motion has

studied harmonic pitching for each foil. Boschitsch et al. 147 and Dewey et al. 148 investigated

the propulsive performance of two unsteady hydrofoils schooling in in-line and side-by-side

configurations experimentally. It was found that the thrust production as well as the propul-

sive efficiency was highly dependent on the phase delay angle between oscillating foils for

both formations. Similar dependence of propulsive performance on the phase delay angle

for side-by-side formation was also observed at higher Reynolds number (Re) by direct nu-

merical simulations (DNS)161. Two flapping wings in tandem were studied experimentally

and numerically at Re = 5000 by Lua et al. 150 . Two types of wing-wake interactions were

discovered and a maximum thrust was achieved on the rear wing when the phase angle was

0◦. Multiple-foil schooling systems have been further studied with more foils. Yuan et al. 149

has reported that the propulsive performance of the triple-foil schooling system could be sig-

nificantly enhanced compared to the dual-foil counterpart by choosing proper phase delays.

In the work by Han et al. 153 , triple-foil schooling system was also investigated numerically

for both two-dimensional (2D) and three-dimensional (3D) models over a wide range of phase
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delay angles between foils from 0◦ to 360◦. It was found that by a comprehensive parametric

study, some optimal phase delay angles can be determined in a limit parametric space to

maximized the thrust as well as the propulsive efficiency. A 2D flapping motion including

harmonic heaving and pitching for foils arranged in tandem formation was studied by Ji

et al. 162 . An active learning method was leveraged to optimize the propulsion performance

by tuning the flapping motion. Using flexible swimmers model, Gao and Triantafyllou 156

studied the effect of swimmer’s caudal fin pitching on the reduction of self-propulsion energy

in the wake of an upstream swimmer. Park and Sung 157 studied the schooling behavior

of flexible fins by adding transverse heaving motion on the leading edge of each fin, while

the body is passively driven by the surrounding fluid to undulate. It was found that the

following swimmers were able to reduce the heaving amplitude to optimize the propulsive

efficiency regardless whether they were schooling in triangle or diamond formation.

The geometrical arrangements of formation and the spacing distance between swimmers

have also been found to play important roles in the hydrodynamic performance of schooling.

For rigid hydrofoils, Newbolt Joel et al. 151 investigated uncoordinated swimmers experimen-

tally, and found the flapping kinematics can control the locomotion of the follower in the

wake which promoted group cohesion consequently. Heydari and Kanso 152 utilized vortex

sheet model to analyze the locomotion dynamics of actively flapping swimmers. They found

different heaving and pitching motion can lead to different cohesion behavior to achieve

energetic benefits. The findings were consistent with many previous numerical and exper-

imental results, which indicated such modulated formation is robust to the flapping mode.

As for the flexible swimmer model, Hemelrijk et al. 163 numerically studied various schooling

configurations, and suggested the optimal lateral distance for a diamond formation was 1.6

times the body length (BL) of swimmer. Daghooghi and Borazjani 164 studied the rectangu-

lar formation with 3D numerical simulation, and found the optimal power efficiency can be

achieved with lateral distance equal to 0.4 BL. Recently, high-fidelity DNS was conducted

by Pan and Dong 158 to investigate the density effect of a diamond formation on the hydro-

dynamic performance of schooling. It was found that dense school can achieve higher thrust

production as well as higher propulsive efficiency. The lower spacing induced a wall effect to
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generate an angled jet, which eventually benefitted the thrust production.

Despite ample studies having been conducted on the complex flow interactions of school-

ing, no study has demonstrated the conclusive reasoning for schooling behaviors. Moreover,

the optimal motion or formation of swimmers that correspond to the optimal hydrody-

namic performance is still too difficult to achieve using current numerical or experimental

approaches, because of the huge parametric space fish school can have. Recently, Ji et al. 162

proposed leveraging an active learning method to optimize the propulsion performance as

reviewed earlier. Nonetheless, the data training was still computationally expensive which

may limit the size of parametric space the method can feasibly explore. Additionally, deep

learning based approaches often struggle to provide comprehensive physical understandings

of fluid flows.

As a different route, the adjoint-based approach is able to handle a large number of

control parameters simultaneously without significantly increasing the computational cost, as

reviewed and used in previous chapters. Therefore it became a natural choice to optimize the

hydrodynamic performance of swimmer schooling. In this work, the high-fidelity numerical

code used in previous chapters was upgraded to allow for multiple 2D solid bodies. The

hydrodynamic performance was evaluated by the horizontal forces (i.e., drag or thrust)

on following hydrofoils. For convenience, hereafter in this chapter ”swimmers” will also

be used to refer to hydrofoils. Both rigid and flexible swimmer models were studied for

optimized swimmer motion and formation to achieve lowest drag or highest thrust at low

Reynolds numbers. The adjoint-based approach was implemented with full-order model

(FOM) simulated by solving incompressible Navier-Stokes equation. The remainder of this

chapter is outlined as follows. Section 5.2 introduces the validation of the numerical code,

computational configurations, swimmer models, and the objective functions. The results of

optimizations of hydrofoil schooling are presented in section 5.3, with the discussion on flow

physics. Section 5.4 draws the concluding remarks of this work.
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5.2 Methodology

The flow past multiple solid bodies is still governed by the incompressible Navier-Stokes

equation modified with the forcing term from the immersed boundary method (IBM) (equa-

tion 1.3). The 2D solver has been well validated for flows past a single solid body. In the

present work, the 2D solver has been modified and upgraded to allow for simulations with

multiple solid bodies. The new version of this 2D solver will be validated first in the following

section.

5.2.1 Validation of numerical code

The validation of aforementioned numerical code was conducted by simulating the flow past

dual fixed 2D cylinders in tandem and side-by-side formations. Re = 200 and two different

distances (L = 1.5D and L = 3D where D is the diameter of each cylinder) between the

centers of cylinders were studied. The flow domain had a size of 80D × 60D, which was

discretized by a non-uniform Cartesian mesh. Two typical snapshots of the flow field with

L = 1.5D for both configurations are shown in figure 5.1. First the independence of the

(a) (b)

Figure 5.1: The vorticity fields of flow past dual fixed tandem (a) and side-by-side (b)
cylinders. Re = 200.

results on mesh was examined by using three different grids for both arrangements, then a

mesh with size of 1001 × 501 was implemented for all tandem cases and 901 × 801 for all

side-by-side cases in this section. The Courant-Friedrichs-Lewy (CFL) number was fixed

to 0.1 to guarantee the precision of all simulations. The quantitative validation on average
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forces and Strouhal numbers is presented in table 5.3 for tandem cases and table 5.2 for

side-by-side cases, compared to the results reported in Meneghini et al. 1 with the same flow

configurations. It can be found that the average drag and lift for both configuration are

overall in good agreement with benchmark results, with the biggest error in average drag

and lift equal to 7.1% and 4.5% respectively. The Strouhal numbers (St) can also match

the benchmarks well with the biggest error equal to 3.2%. The validation results indicate

that the current numerical code is able to accurately resolve the flow dynamics with multiple

solid bodies.

Table 5.1: Drag and Strouhal numbers in the present work (before the slash) in comparison
with Meneghini et al. 1 (after the slash) for tandem cases. Subscript “1” means the leading
cylinder and “2” means the trailing cylinder.

L CD1 CD2 St1 St2

1.5D 1.092/1.06 −0.193/− 0.18 0.163/0.167 0.163/0.167

3D 0.997/1.0 −0.122/− 0.08 0.121/0.125 0.121/0.125

Table 5.2: Forces in the present work (before the slash) in comparison with Meneghini
et al. 1 (after the slash) for side-by-side cases. Subscript “1” means the upper cylinder and
“2” means the lower cylinder.

L CD1 CD2 CL1 CL2

1.5D 1.39/1.32 1.39/1.32 0.418/0.40 −0.418/− 0.40

3D 1.51/1.41 1.51/1.41 0.116/0.10 −0.116/− 0.10

5.2.2 The objective function and the gradient

The main goal of this work is to optimize the horizontal hydrodynamic force on the trailing

solid bodies. Therefore, the objective function J is defined accordingly as:

J =
1

TD0

∫
T

∫
∂Ωs

σ1jnjdsdt, (5.1)
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where D0 = 1/2ρU∗2D, σ is the viscous stress, T is one period of solid oscillation, and

subscript “1” represents the horizontal direction. Note that during the optimization, a

positive J represents the drag, and a negative J represents the thrust. The FOM-based

adjoint approach enabled by the non-cylindrical calculus toolbox, as implemented in chapter

4, was used here. Within this framework, the adjoint equation N ∗(q)q∗ − F∗ = 0 based on

the objective function (equation 5.1) is given as:

N ∗(q)q∗ =


∂u∗j
∂xj

∂u∗i
∂t

+ uj(
∂u∗i
∂xj

+
∂u∗j
∂xi

) + ν
∂∗u∗i
∂x2j

+ ∂p∗

∂xi

 ,
F∗ = 0, in Ω

u∗i = −δ1i, on ∂Ωs.

(5.2)

And the adjoint equation for transverse map velocity variable Z is:

Z∗i = −(σ∗ijnj + u∗juini) on ∂Ωs. (5.3)

By solving adjoint equation 5.2 and equation 5.3 the gradient g can be obtained as:

g =
1

TD0

∫
T

∫
∂Ωs

Zk(−
dZ∗k
dt
− Z∗kdiv∂Ωsγ − Z∗i

∂ui
∂xk

+
∂σ1j

∂xj
nk)dsdt. (5.4)

The above derivation is focused on the optimization of a single solid body. In fact, it is

more practical to consider the hydrodynamic performance of all solid bodies of interest at

the same time. This was accomplished by introducing a weight wi for each solid body of

interest in the present work, where wi ∈ [0, 1] and
∑

iwi = 1. With wi multiple objectives

might be optimized by the modified J :

J =
∑
i

wiJi, (5.5)
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where Ji has the form of equation 5.1. The gradient is modified accordingly as:

g =
∑
m

wm
1

TD0

∫
T

∫
∂Ωs,m

Zk,m(−
dZ∗k,m
dt
− Z∗k,mdiv∂Ωs,mγ − Z∗i,m

∂ui
∂xk

+
∂σ1j

∂xj
nk)dsdt. (5.6)

5.2.3 Flow configurations and computational setup

The 2D simulation was performed on a rectangular computational domain of 40c × 20c,

where c was the chord length of each hydrofoil. The domain was discretized by a 1001× 501

non-uniform Cartesian mesh, with minimum mesh size ∆xmin = 1.5 × 10−2c. The mesh

was fine and uniform in the near field of all hydrofoils in a 9c × 6c area, and gradually

stretched towards the far field. In the present work, two hydrofoil models were considered,

as shown in figure 5.2. The first one was the rigid hydrofoils with NACA0012 shape, which

can heave vertically and pitch azimuthally. This model has been popular in many previous

studies151–154 for its advantages of modeling fish fins and precision in control. Two different

formations including triple foils in tandem (figure 5.2 (a)) and quadruple foils in diamond

(figure 5.2 (b)) were studied for the rigid hydrofoil model. The second model was the flexible

hydrofoils, which is able to heave vertically, and to undulate along its center line at the same

time. This model has also been widely used previously142;158;160;165, for it can mimic the fish-

like swimming by introducing prescribed traveling wave kinematics on the swimmer. For

both models, the horizontal tip-to-tail distance between neighboring swimmers is denoted as

L. In the diamond formation, the vertical distance between the upper (or the lower) swimmer

and the leading swimmer is denoted as H. The scenario of the research was set to be the

schooling of multiple swimmers following a leading swimmer, where the leading swimmer is

moving on its own regardless of the motion and location of followers, while all followers need

to adjust their motion or location to gain hydrodynamic benefits. Therefore, the control is

only enforced on followers. For the rigid swimmer model, both motion and formation of the

following swimmers may be controlled, which resulted in the following equations to describe
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the kinetics of each controllable swimmer:

Xi(t) = δxi,

Yi(t) = Ai sin(2πft) + δyi,

Θi(t) = θi sin(2πft+ φi),

(5.7)

where Ai is the heaving amplitude, θi the pitching amplitude, φi the phase delay between

the heaving and pitching motion, and δxi and δyi the displacement in horizontal and vertical

direction. Subscript “i” stands for the number of swimmer. If three swimmers are studied,

then i = 2, 3 because the leading swimmer will not be controlled. Then the control vector is

given by γi = [Ai, θi, φi, δxi, δyi], of which the total dimension of the control can be up to 5

for each of the following swimmers.

For the flexible swimmer model, similar to some previous work158;165;166, the carangiform

undulating motion was modeled in the present work, considering that many sorts of carangi-

form fish have been reported to swim in schools, such as mackerel (Scomber scombrus). The

following traveling wave function was used to prescribe the undulation:

z(x, t) = P (x) · sin[2π(
x

λ
− ft)], (5.8)

where the position variables, x and z, are normalized by c already. Therefore locally x = 0

denotes the leading edge of the hydrofoil and x = 1 is the trailing edge. This wave function

actually expresses the undulating motion of the midline of the hydrofoil, which can be

regarded as the spine of swimmers. So z(x, t) represents the lateral deviation of any point

on the midline of the body at time moment t. λ is the wavelength of the traveling wave over

an undulating body, which will be controlled. P (x) is the amplitude envelope of a lateral

motion and has a quadratic polynomial form:

P (x) = a2x
2 + a1x+ a0, (5.9)
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Figure 5.2: The illustrations of two swimmer models studied in the present work. (a):
Three Rigid hydrofoils that can heave vertically and pitch azimuthally in tandem formation.
(b): Four Rigid hydrofoils that can heave vertically and pitch azimuthally in diamond forma-
tion. (c): Flexible hydrofoils that can heave vertically and have the carangiform undulating
motion in tandem formation. Numbers are used in following sections to refer to correspond-
ing swimmers.

where a0 = 0.02, a1 = −0.0825, a2 = 0.1625 as measured in experiments for the carangiform

motion167. The amplitude envelope of the carangiform motion used in the present work is

presented in figure 5.3 for different time moments in a tail-beat period. Besides undulation,

the vertical heaving motion as well as the formation of following swimmers will still be

studied for the flexible swimmer model. So combining equation 5.7 and equation 5.8, the

control vector of each follow is given as γi = [Ai, λi, δxi, δyi], of which the total dimension of

the control is up to 4 for each of the following swimmers.
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The study on mesh independence for the flow past multiple swimmers was carried out

for three different meshes from coarse to dense at Re = 200. The rigid hydrofoil model was

used with three swimmers lining up in tandem formation. All three swimmers were heaving

and pitching synchronously with γi = [0.5, 5◦, 0]. The mean drag and lift coefficients were

evaluated for each mesh on every swimmer, and the Strouhal number of the wake was also

compared. As presented in table 5.3, force coefficients obtained on different meshes would

converge as mesh size becomes finer, with merely 0.5% difference in ¯CD1, 0.75% difference in

¯CD2, and 1.5% difference in ¯CD3 between the most coarse mesh and mid-size mesh. Moreover,

no difference was found in C̄D between the mid-size mesh and the finest mesh. For all

three meshes, CL remained nearly zero or exactly zero, and St remained 0.1. Therefore,

1001 × 501 mesh was considered good enough and was used for simulations with rigid and

flexible swimmer models.

It is worth noticing that practically when the formation of multiple swimmers is being

optimized, a collision between swimmers might happen in control iterations to hamper the

physical meaning of optimal solutions. Therefore, it is crucial to impose restrictions to

constrain the possible displacement of each swimmer, and an effective algorithm to detect

collision is needed. In the present work, the separating axis theorem (SAT) was utilized to

detect if collision occurs between any swimmers during each iteration168. This algorithm has

been proved effective and easy to implement for any 2D convex shapes, the details of which

can be found in appendix D.

Figure 5.3: Traveling wave amplitude of a carangiform motion at different time moments
in one undulatory period.
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Table 5.3: Mean drag and lift coefficients on each rigid hydrofoil and the Strouhal number
on 3 different meshes

801× 401
∆xmin = 2.14× 10−2c

1001× 501
∆xmin = 1.5× 10−2c

1201× 601
∆xmin = 8.0× 10−3c

¯CD1 0.199 0.20 0.20

¯CD2 0.132 0.133 0.133

¯CD3 0.134 0.132 0.132

C̄L1 -0.001 0.0 0.0

C̄L2 0.0 0.0 0.0

C̄L3 -0.001 0.0 0.0

St 0.1 0.1 0.1

5.3 Results and discussion

In this section, first the rigid swimmer model was used for optimization of triple swimmers

in tandem formation and quadruple swimmers in diamond formation. Triple swimmers

initially moving synchronously in tandem formation was studied for the optimized heaving

and pitching motion to gain the lowest drag or the highest thrust on the followers. For

the quadruple swimmers, only one trailing swimmer was controlled for not only the optimal

motion but also the optimal formation. Then the flexible swimmer model was investigated

on triple swimmers in tandem formation.

5.3.1 Heaving-pitching hydrofoils in tandem formation

Three rigid swimmers were initially performing harmonic heaving and pitching motion that

was given by equation 5.7 at Re = 200, with horizontal spacing L = 0.5c. Formation was

not controlled in this case therefore γi = [Ai, θi, φi]. The total dimension of the control

was 6 considering both following swimmers. For the initial synchronous motion, all three
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swimmers had the same γ
(0)
i = [0.5, 5◦, 0]. In order to avoid erratic motion for each swimmer,

prescribed limits were imposed to all control parameters, as −1 ≤ Ai ≤ 1, −30◦ ≤ θi ≤ 30◦,

and −90◦ ≤ φi ≤ 90◦. The oscillating frequency was fixed as f = 0.1. All force coefficients

were averaged in one oscillating stroke with T = 10. A snapshot of the initial flow field is

presented in figure 5.4. It can be observed that the vortices shed from the swimmers ahead

were almost blocked by the followers, and eventually merged into the wake after the third

swimmer, resulting in a single vortex street. Net mean drag was found on all three swimmers,

with the leader experiencing the highest drag ¯CD1 = 0.2, while the two followers experiencing

almost the same drag as ¯CD2 = 0.133 and ¯CD3 = 0.132. The benefit of schooling can already

be reflected on the lower drag the followers experience compared to the leader, even without

any optimization.

Figure 5.4: The flow field of triple swimmers oscillating synchronously in tandem forma-
tion contoured by vorticity.

Then optimization was carried out to minimize the drag of the following swimmers. The

objective function 5.5 was utilized with different wi. The control started with all weight on

the 3rd swimmer to minimize its own drag, then with less weight on it but higher weight on

the 2nd swimmer to evaluate the overall drag reduction on both followers. The variations of

the objective function and control parameters are shown in figure 5.5 for different w. When

only ¯CD3 was optimized, it can be clearly seen that not only the drag was minimized, but it

was converted to thrust. The reduction on ¯CD3 was 133%, with thrust coefficient C̄T3 = 0.044

142



(a)

J
(b)

γ2

(c)

γ3

(d) (e) (f)

(g) (h) (i)

Figure 5.5: The variations of objective function J (left column), γ2 (mid column) and
γ3 (right column) with respect to optimization iterations. (a – c): w = [0, 0, 1]; (d – f):
w = [0, 0.2, 0.8]; (g – i):w = [0, 0.5, 0.5].

after 7 iterations. The 2nd swimmer increased the heaving amplitude to nearly upper limit,

and decreased the phase delay. Pitching amplitude almost remained unchanged. The 3rd

swimmer appeared to heave similarly to the 2nd one with A3 = 1. φ3 was decreased more to

−60◦ and θ3 was increased to about 20◦. In order to gain thrust on the 3rd swimmer, two

followers both attempted to move in a different pace than the leader, but themselves were still

coordinating to swim with similar heaving amplitude and certain phase delay in oscillation.

This optimal motion for the highest C̄T3 is not necessarily optimal for the 2nd swimmer. In

fact, the mean drag on the 2nd swimmer was decreased by 12.4%. However, when w2 was

increased, better hydrodynamic performance can be achieved for the 2nd swimmer as well.

As seen in figure 5.5 (d) and (g), the drag on the 2nd swimmer is reduced more by 76.8%

when w2 = 0.2 and w3 = 0.8, and ¯CD2 was eventually converted to net thrust when both

w2 and w3 were 0.5. On the contrary, lower enhancement in thrust was observed for the 3rd

swimmer as w3 was decreased. To achieve lower drag or net thrust, θ2 was found to increase
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(d) (e)
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Figure 5.6: The horizontal force coefficient profile in one oscillating stroke before and
after optimization for the 2nd and the 3rd swimmer. (a – b): w = [0, 0, 1]; (c – d): w =
[0, 0.2, 0.8]; (e – f): w = [0, 0.5, 0.5].

to about 20◦, with more decrease in φ2 to lower than −60◦. The 3rd swimmer did not change

its moving pattern significantly. It is intriguing to find that when the drag on both followers

are taken into account equally, they will move almost synchronously while having apparent

different moving pattern than the leading swimmer.

The horizontal force coefficients before and after optimization in one oscillating stroke

for two followers are compared in figure 5.6 with different w. Before the optimization, the

force on both followers was above zero for the most of time in one stroke, which resulted

in net drag. Conversely, after the optimization, two following swimmers were experiencing

high negative horizontal force (thrust) during over half of the stroke, regardless of w. The
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(j) (k) (l)

Figure 5.7: The flow fields at three typical time moments contoured by vorticity. (a – c):
The initial flow; (d – f): the optimal flow with w = [0, 0, 1]; (g – i): the optimal flow with
w = [0, 0.2, 0.8]; (j – l): the optimal flow with w = [0, 0.5, 0.5]. Black arrows indicate the
velocity vectors.

original periodic force profiles was found to change with more complicated oscillation of both

following swimmers, as their heaving and pitching motion both altering significantly. The

periodicity of the force profile was barely kept with smaller fluctuations.

To understand the change of the instantaneous horizontal force better, the corresponding

flow fields contoured by vorticity were studied as shown in figure 5.7. To make a fair com-

parison, all pressures were normalized into the scale of [−1, 1]. Three typical time moments

were chosen here. For the initial flow, at tU∗/c = 304.6 both swimmer experienced net drag
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which has not reached the peak value yet. At tU∗/c = 306.4, CFx3 was almost peaking with

CFx2 declining yet still positive. At tU∗/c = 308.4, horizontal forces on both swimmers were

close to zero. As seen in figure 5.7 (a) to (c), the drag was higher when leading edge vortex

(LEV) was separated from two following swimmers, while drag was close to zero when LEVs

reattached to the hydrofoil. Due to low pitching amplitude, the flow separation caused by

LEV was not strong. After the optimization, stronger flow separation at leading edges of

both followers appeared more frequently at the same 3 time moments regardless of w. LEVs

with higher vorticity brought significant enhancement in negative pressure on the upper sur-

face when swimmers pitching down, which resulted in strong suction to pull both swimmers

forward. At the same time, the vortices shed from the leader with clockwise rotation (i.e.

positive vorticity) increased the positive pressure on the lower leading edge as well, which

further boosted the thrust of the following swimmers. At tU∗/c = 308.4, both following

swimmers were pitching up. The flow reattachment on the 2nd swimmer may correlated to

the instantaneous drag increase. While for the 3rd swimmer, the vortices shed from the 2nd

swimmer appeared to bring enough suction in the region ahead of it, which eventually may

lead to a “tow effect” on the 3rd swimmer to pull it forward, thus an instantaneous thrust

was still observed in figure 5.6 (h). In a word, the following swimmers managed to take ad-

vantage of the vortex-swimmer interaction when swim off of the pace of the leading swimmer

while with nearly synchronous heaving motion for more thrust generation by performing the

optimal heaving and pitching motion.

5.3.2 Heaving-pitching hydrofoils in diamond formation

To study the diamond formation, four rigid swimmers were initially performing harmonic

heaving and pitching motion that was governed by equation 5.7 at Re = 200 in diamond

formation. L = 0.5c and H = 0.5c were set for the initial formation. In this case, the

motion and the position of the forth (4th) swimmer (left most swimmer in figure 5.2 (b))

was controlled for the optimal horizontal force. That led to 5 control parameters in total with

γ4 = [A4, θ4, φ4, δx4, δy4]. Initially all four swimmers were performing synchronous motion
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Figure 5.8: The flow field of quadruple swimmers oscillating synchronously in diamond
formation contoured by vorticity.

(a) (b)

Figure 5.9: The variation of objective function J (a) and the variations of δx4 and δy4

(b) with respect to optimization iterations.

with γ
(0)
i = [0.5, 5◦, 0, 0, 0]. Constraints were also set on γ4 to prevent erratic motion, with

as −1 ≤ A4 ≤ 1, −30◦ ≤ θ4 ≤ 30◦, and −90◦ ≤ φ4 ≤ 90◦. The oscillating frequency f was

still set to be 0.1, and the period of one oscillating stroke was T = 10. A snapshot of the

initial flow field is shown in figure 5.8. It can be observed that the 4th swimmer was basically

moving in the wake of the first swimmer, while the wake of upper and lower swimmer did

not have much impact on the 4th swimmer. Due to wider distance between the 1st and the

4th swimmer than the previous triple-hydrofoil setup, however, the drag on the 4th swimmer

remained at ¯CD4 = 0.208, similar to the drag a single swimmer was experiencing.

Two optimal controls was performed on the 4th swimmer. The first control was to

optimize the formation of the 4th swimmer only (i.e. γ4 = [δx4, δy4]), and the second control
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was to conduct the full control with γ4 = [A4, θ4, φ4, δx4, δy4] to seek both optimal motion and

formation. The reason for designing two controls was to evaluate the benefit brought by both

optimal motion and formation compared to the result with only one factor (the formation in

this study) being optimized. The variations of the objective function and control parameters

in the first and second control are present in figure 5.9 and figure 5.10, respectively. It

can be seen that mean drag on the 4th swimmer was reduced by 50.7% to ¯CD4 = 0.102

in the first control. To achieve such drag reduction, the 4th swimmer shifted backward by

about 2c and upward by about 0.05c as indicated in figure 5.9 (b). In comparison, ¯CD4 was

reduced by 64.0% to 0.075 when both motion and formation were controlled. As shown in

figure 5.10 (c), the 4th swimmer was still placed farther from the three leading swimmer

by about 1.9c in horizontal direction, while barely changed its position in vertical direction

with δy4 = −3.5 × 10−3c. The change of formation is almost the same as the first control

results. As seen in figure 5.10 (b), the optimal pitching motion was able to further reduce

the drag by 13.3%, with a higher pitching amplitude and the phase delay angle of −9.3◦.

The heaving amplitude A4 was found insignificant in terms of the drag reduction.

The horizontal force coefficients on the 4th swimmer before and after optimization for

both controls are shown in figure 5.11. Initially the drag profile was periodic due to the

synchronous oscillation of all four swimmers. The whole profile remained above zero, as

the 4th swimmer was experiencing net drag all the times during one stroke. After the

optimization, the periodicity of the force profile was similar, with apparently lower peak drag

values for both controls. The 4th swimmer was found to experience instantaneous thrust

(negative CFx) for longer time during one stroke when both motion and formation were

optimized, which resulted in an overall lower mean drag compared to optimizing formation

only.

The flow fields contoured by vorticity at three typical time moments are plotted in figure

5.12 for the initial flow and the optimal flows of two different controls. It can observed that

initially when the vortex shed from the 1st swimmer impinged with the 4th swimmer (at

tU ∗ /c = 316 and 319), the drag on the 4th swimmer was increasing. The drag was lower

when the vortex shed from the leader merged into the wake of the 4th swimmer, without
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(a)
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Figure 5.10: The variation of objective function J (a), the variations of A4, θ4 and φ4

(b), and the variations of δx4 and δy4 (c) with respect to optimization iterations.

direct impingement onto its surface. After the optimization, the 4th swimmer positioned

itself farther from three swimmers ahead. By doing so, the wake of the 1st swimmer had

even weaker impact on the 4th swimmer. However, it started frequently interacting with the

wake of upper and lower swimmer. As observed in figure 5.12 (d) and (g), when all swimmers

were moving in downstroke, a strong separation vortex was generated on the lower surface

of the 4th swimmer and then shed downstream. The wake of the 2nd swimmer merged into

vortex which was about to separate at the leading edge of the 4th swimmer, resulting in the

reattachment on the upper surface and a stronger wake. As swimmers kept in downstroke

(figure 5.12 (e) and (h)), the 4th swimmer moved into the wake of the 3rd swimmer, and the

flow separation happened on the upper surface instead. During the downstroke, net drag

was found on the 4th swimmer. When swimmers moved in upstroke, at tU∗/c = 319 the

flow separation occurred on both sides of the 4th swimmer, which may result in temporary

negative CFx (i.e. thrust). The optimal pitching motion only changed flow structures slightly,

therefore the extra drag reduction the 4th swimmer can obtained was limited, which was
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(a) (b)

Figure 5.11: The horizontal force coefficient profile in one oscillating stroke before and after
optimization for the 4th swimmer. (a): Optimization on γ4 = [δx4, δy4]; (b): optimization
on γ4 = [A4, θ4, φ4, δx4, δy4].

already reflected in figure 5.9 and figure 5.10.

5.3.3 Heaving-undulating hydrofoils in tandem formation

To study undulating motions, three flexible swimmers were initially performing harmonic

undulation governed by equation 5.8 at Re = 200 in tandem formation as illustrated in

figure 5.2 (c), with horizontal spacing L = 0.5c. The swimmers were able to heave freely

in vertical direction as well. The control was focused on motion first, then based on the

optimal motion, an optimization on the position was carried out. Both optimizations aimed

at optimizing the horizontal force on the 3rd swimmer. For the optimization on motion the

control parameters were γi = [Ai, λi] with i = 2, 3, leading to 4 control parameters in total.

For the initial synchronous undulation, all three swimmers had the same γ
(0)
i = [0, 1.0]. A

snapshot of the initial flow field is presented in figure 5.13. The frequency was fixed to be

0.2. Ai was limited in a range of [−1, 1], and the wave length λi was constrained in a range of

[0.1, 2]. All force coefficients were averaged in one undulating period with T = 5. With only

undulation, initially flow attached onto three swimmers with no shedding vortex forming in

the wake. The two followers initially had net mean drag as ¯CD2 = 0.122 and ¯CD3 = 0.104.

The variations of J and γi during the motion optimization are shown in figure 5.14.

Two different weights were used to construct J . The first case had a weight w = [0, 0, 1]

which only optimized the 3rd swimmer. The second case had equal weight on both following
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Figure 5.12: The flow fields at three typical time moments contoured by vorticity. (a –
c): The initial flow; (d – f): the optimal flow after optimization on γ4 = [δx4, δy4] ; (g – i):
the optimal flow after optimization on γ4 = [A4, θ4, φ4, δx4, δy4]. Black arrows indicate the
velocity vectors.

swimmers with w = [0, 0.5, 0.5]. It can be seen that when only the 3rd swimmer was

controlled, ¯CD3 was effectively reduced by 279%, then eventually converted to a net thrust

equal to 0.187. However, ¯CD2 was conversely increased by 12.3% to 0.137, which implies the

2nd swimmer indeed sacrificed its own hydrodynamic performance to aid the 3rd swimmer.

The heaving amplitude of both following swimmers increased drastically, as A2 = 0.41 and

A3 = 1.0, which was the upper limit set for heaving amplitude. The wave length of the

undulation also altered, with λ2 decreased by 68.9% and λ3 increased by 47.1%. When

both following swimmers were controlled, γ changed differently yet with the similar trend

to achieve optimal hydrodynamic performance as indicated in figure 5.14 (d – f) . In terms

of heaving motion, both A2 and A3 were increased to 0.88 and 1.0 respectively. The 2nd

swimmer had to heave more actively to achieve higher thrust. While for the undulation,
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Figure 5.13: The flow field of triple flexible swimmers undulating synchronously in tandem
formation contoured by vorticity.

(a)
J

(b)
γ2

(c)
γ3

(d) (e) (f)

Figure 5.14: The variations of objective function J (left column), γ2 (mid column) and
γ3 (right column) with respect to optimization iterations. (a – c): w = [0, 0, 1]; (d – f):
w = [0, 0.5, 0.5].

λ2 decreased by 39.0% and λ3 increased by 65.2%. By conducting optimal motion, both

following swimmers obtained drag-to-thrust conversion to boost the final thrust to CT2 =

0.124 and CT3 = 0.181 respectively. The thrust on the 3rd swimmer achieved by equal

weight in J was merely slightly lower than controlling the 3rd swimmer only, showing that

w = [0, 0.5, 0.5] was a better choice for both following swimmers.

With the optimal motion, the horizontal force profile in one period was also changed

dramatically for following swimmers, as plotted in figure 5.15. Initially with synchronous
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(a) (b)

(c) (d)

Figure 5.15: The horizontal force coefficient profile in one undulating period before and
after motion optimization for the 2nd (left column) and the 3rd (right column) swimmer. (a
– b): w = [0, 0, 1]; (c – d): w = [0, 0.5, 0.5].

undulation, CFx was almost steady. However, after the optimization it became highly un-

steady with bigger magnitudes, which implies drastic change has also taken place in the flow

field. When only controlling the force of the 3rd swimmer, the 2nd swimmer still experienced

net drag in one period, while the 3rd swimmer spent over half of the period experiencing

negative CFx, which resulted in the net thrust over one period. When having equal weight

for both following swimmers, the 2nd swimmer had a significantly different force profile with

much time having negative CFx. The force profile of the 3rd swimmer overall had the similar

shape to the previous case, with larger peak and valley values of CFx.

The flow structures before and after the optimization are shown in figure 5.16. It can

be seen that strong vortex shedding was induced by heaving motion and undulating with

different wave lengths after the optimization for both weight settings. LEVs were generated

on both 2nd and 3rd swimmer, and were strengthened by the wake of the leading swimmer.

Active and complex vortex pairing occurred in the wake of the 3rd swimmer. There was not

only the interaction between the LEV and the TEV of the 3rd swimmer, but also the vortex
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.16: The flow fields at three typical time moments contoured by vorticity. (a – c):
The initial flow; (d – f): the optimal flow after optimization on γi = [Ai, λi] with w = [0, 0, 1];
(g – i): the optimal flow after optimization on γi = [Ai, λi] with w = [0, 0.5, 0.5]. Black
arrows indicate the velocity vectors.

shed from the 2nd swimmer intertwining with vortices separated from the 3rd swimmer.

When the 2nd swimmer was not optimized, the very short wave length of its undulation

had negative impact on the LEV shedding, making it noticeably less intense, which might

impede the interaction with the wake of the leading swimmer, and eventually hamper its

own hydrodynamic performance in terms of the drag. When both swimmers were controlled,

they moved with similar pace to generate strong LEVs. The suction effect brought by these

more active LEVs may contribute greatly to the thrust enhancement.

Based on the motion optimization results, the formation of the following swimmers were

further optimized. Here only w = [0, 0.5, 0.5] was studied, considering it was able to achieve

drag-to-thrust conversion for both following swimmers. The optimization started right with

the optimal motion obtained in the previous control, with A2 = 0.89, A3 = 1.0, λ2 = 0.61,
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(a) (b) (c)

Figure 5.17: The variations of objective function J (a), γ2 (b) and γ3 (c) with w =
[0, 0.5, 0.5].

and λ3 = 1.65 being fixed for the formation control. Therefore, the control vector can be

written as γi = [δxi, δyi] where i = 2, 3. The variation of the objective function as well

as γi is shown in figure 5.17. It can be seen that formation control can effectively keep

minimizing the objective function including CFx for both following swimmers based on the

optimal motion. The overall thrust of following swimmers increased by 37.5%, with C̄T2

increased to 0.229 and C̄T3 to 0.212. As seen in figure 5.17, the 2nd swimmer was located

farther from the leading swimmer by 0.47c, and was moved downward by 0.065c from its

equilibrium position. The 3rd swimmer was also positioned backward by 0.091c, and was

moved downward by 0.095c from its equilibrium position. The most significant formation

change occurred to the horizontal position of the 2nd swimmer, which led to big alterations

in horizontal force profile too as shown in figure 5.18.

As shown in figure 5.18 (a), much lower minimal CFx values were achieved on the 2nd

swimmer, which were approximately two times the minimal CFx after motion optimization.

Peak values of CFx were increased as well, nevertheless the change of force profile still

contributed to 59.0% enhancement of mean thrust on the 2nd swimmer. Contrary to the

2nd swimmer, the amplitude of CFx3 became smaller after the optimization on position, but

the average thrust in one undulating period still managed to increase by 14.6% when both

following swimmers were positioned in the optimal manner.

The flow structures after the formation optimization at the same time moments are shown

in figure 5.19. It can be seen that the vortex structures were quite different than the ones

shown in figure 5.16 (g – i) due to the change of distance between swimmers. The impact of

the vortices shed from the leading swimmer was weaker when both following swimmers were
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(a) (b)

Figure 5.18: The horizontal force coefficient profile in one undulating period before and
after formation optimization for the 2nd (a) and the 3rd (b) swimmer with w = [0, 0.5, 0.5].

(a) (b) (c)

Figure 5.19: The flow fields at three typical time moments contoured by vorticity with
w = [0, 0.5, 0.5]. Black arrows indicate the velocity vectors.

placed farther into the downstream. The LEV of the 2nd swimmer had higher intensity to

provide more suction ahead of the solid body, resulting in stronger thrust. Smaller distance

between two following swimmers made them interact with the wake as a single moving

bluff body, inducing a single vortex street instead of the complicated vortex pairing after

optimization on the motion. It can be inferred that for the following swimmers, moving as

one swimmer and closer the spacing between them to depress the vortex generated in the

gap may contribute to the mean thrust enhancement.

5.4 Concluding remarks

In this chapter, the FOM-based adjoint approach was first extended to handle 2D flows

with multiple moving solid bodies, the hydrofoil schooling was optimized with respect to
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the drag on the following swimmers by controlling the motion and formation of them. The

optimization was performed under modest Reynolds number equal to 200. Two models of

swimmer were investigated: the rigid hydrofoil with the capability of heaving and pitching;

and the flexible hydrofoil with the capability of heaving and undulating in a carangiform

manner. Triple swimmers in tandem and quadruple swimmers in a diamond formation

were studied as the initial spatial arrangement of swimmers for the rigid hydrofoil model.

The flexible hydrofoil model was only focused on triple swimmers in tandem formation.

All swimmers were moving synchronously before the optimization to mimic the schooling

behavior.

For triple rigid swimmers in tandem formation, the motion of the following two swimmers

was optimized. It was found that by increasing the heaving and pitching amplitude, as well as

by decreasing the phase delay angle between heaving and pitching motion, the hydrodynamic

drag was greatly reduced and could be converted to thrust for all 3 different weight functions

used in objective functions. The higher the weight in the weight function on a particular

swimmer, the more drag reduction or thrust enhancement was obtained. Two following

swimmers experienced high thrust generation after the optimization. Oscillations on the

force profile were closely related to the interaction between separation vortices induced by

the optimized motion and the following swimmers. A strong negative pressure region at the

leading edge of both following swimmers resulted in the suction effective to eventually boost

the thrust.

For quadruple rigid swimmers in a diamond formation, the motion and the formation of

the 4th swimmer was optimized for its own hydrodynamic performance. Up to 64.0% drag

reduction was achieved on the 4th swimmer, by moving into the wake of the 2nd and the 3rd

swimmer to benefit from more active and stronger LEVs and TEVs. The optimal formation

contributed more to the drag reduction than the optimal heaving and pitching motion in

this case.

For the case with three flexible swimmers in tandem formation, the heaving and un-

dulating motion of the following two swimmers, as well as their position, was optimized.

Drag-to-thrust conversion was achieved first by motion optimization when both following
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swimmers were weighted equally. It was found to be beneficial for thrust enhancement to

increase the heaving amplitude of both swimmers thus making them oscillating more syn-

chronously in vertical direction. As for the undulating motion, the 2nd swimmer decreased

its wave length while the 3rd swimmer increased the wave length for better thrust produc-

tion. Based on the optimal motion, the optimization on the position further boosted the

thrust to move the 2nd and 3rd swimmers farther from the leader, while positioning them-

selves closer. The optimal formation was able to strengthen the LEV of the 2nd swimmer to

generate more suction effect, while decreasing the vortex interaction between the following

swimmers for a more coherent vortex structure in the wake.

An estimation of the computational cost saving by the adjoint-based approach can be

made briefly here. All optimizations made in this chapter were converged in less than 3 days,

with a single DNS or adjoint simulation taking about 1 hour. Considering the dimension of

the parametric space, the brute-force parametric study can easily cost weeks or even months

of computation. Therefore the adjoint-based approach is still able to drastically reduce the

computational cost.
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Chapter 6

Conclusions

The present work was dedicated to simplifying, analyzing, and optimizing complex flows with

fluid-structure interactions (FSI). First a global proper orthogonal decomposition (POD) and

Galerkin projection based reduced-order model (ROM) has been developed to capture the

essential physics of a FSI system with moving solid boundaries, while significantly lowering

the dimension of the original flow system. Two different descriptions for moving solid do-

mains led to two types of global POD-Galerkin ROMs, namely CSDM and DSDM ROMs.

Both ROMs were able to handle numerical and experimental two-dimensional (2D) and

three-dimensional (3D) data, and have shown adequate accuracy in the reconstruction of

flow dynamics and structures, and in the prediction of key aerodynamic properties including

drag and lift force. The computational cost of solving ROMs, especially DSDM-ROMs, was

extremely low compared to DNS or other CFD methods, which allowed for rapid reductions

in computational time required.

Based upon the ROM and the conventional adjoint approach, a new adjoint approach has

been development to achieve fast flow control and optimization of an FSI system with mov-

ing solid boundaries. Two different strategies, “one-ROM” strategy and “ROM-switching”

strategy, have been designed to guarantee the accuracy of ROMs during the optimization

process. These new adjoint-ROM approaches have been applied to the stabilization of the

flow field as well as the aerodynamic force optimization of 2D flows past oscillating cylinders
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and NACA0012 airfoils. The adjoint-ROM approach has been proved effective and fast, of

which the computational cost saving may make a near-real-time flow control possible.

The adjoint-based approach has also been applied to analyzing two complicated FSI

problems for the first time. First the adjoint-based flow optimization approach has been

applied to the gust mitigation for both 2D and 3D heaving-pitching wings. The streamwise

gust and the transverse gust were studied separately. The full-order model (FOM) based

adjoint approach was used for all cases, while the adjoint-ROM approach developed in the

present work was used for 2D gusts only. The objective function was designed to minimize

the difference between the instantaneous lift in one oscillating period and the mean lift of

the original flow. Optimal control of the wing motion was achieved to not only recover the

original mean aerodynamic force on the wing, but sometimes alleviated the unsteadiness

of the force history. It was found that the optimal wing motion may transition the flow

into different flow regime to retain the mean lift. The FOM-based was able to handle

relatively strong gusts with very good recovery of the lift force, and the computational

cost was reasonably low. The adjoint-ROM was able to mitigate weak gusts with lower

controllability, and the optimization took significantly less computational time.

Then the FOM-based adjoint approach was extended to optimize the schooling of multiple

hydrofoils. The drag force of 2D rigid and flexible hydrofoils in different arrangements of

formation was optimized by controlling the motion and formation of the trailing hydrofoils.

Significant drag reduction and drag-to-thrust conversion were achieved by adjoint-based

optimization. The analysis of vortex-structure interactions of optimal schooling shed some

light upon the hydrodynamic mechanisms of fish schooling behavior.

Future work can be focused on the following four problems:

1. Currently the time scale τ in ROMs is empirically determined with the help of a loose

theoretical estimation. A more rigorous rule to pick valid τ will greatly simplify the

offline preparation of building ROM.

2. Algorithms to further guarantee the robustness of ROMs in adjoint-ROM optimization

with less offline computation will be desirable.
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3. The gust mitigation cases so far have only considered flows with modest Reynolds

numbers. However, many gusts taking place in real life are highly chaotic and even

turbulent. Therefore the extension of the current method to turbulent flow will be

meaningful to guide the design of aircrafts.

4. The current flow optimization on 2D schooling behavior opens up a way for more

realistic 3D case. The adjoint-approach is more powerful in 3D scenario considering the

huge computational time reduction. Some preliminary studies have been conducted169,

and it shows the capability to optimize more complicated 3D schooling by the present

approach.
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Appendix A

The semi-implicit scheme to discretize

ROM equations

The semi-implicit scheme for temporal integration of ROM equation 2.3 is addressed here.

With 2nd-order Adams-Bashforth scheme considered for convective and forcing terms, and

2nd-order Crank-Nicholson scheme for viscous term, equation 2.3 can be discretized as:

an+1
i − ani

∆t
=

1

2
(3EXP n

i − EXP n−1
i ) +

1

2
[(

N∑
j=0

Lijaj)
n + (

N∑
j=0

Lijaj)
n+1], (A.1)

where

EXPi ≡
N∑
j=0

N∑
k=0

Qijkajak + Ci. (A.2)

With some rearrangement of terms the equation can be given as:

an+1
i − (

∆t

2

N∑
j=0

Lijaj)
n+1 =

∆t

2
(3EXP n

i − EXP n−1
i +

N∑
j=0

Lija
n
j ) + ani , (A.3)

which can be written as a linear system with noting [∆t
2

(3EXP n
i −EXP n−1

i +
∑N

j=0 Lija
n
j )+ani ]

as RHSi:

Ax = b, (A.4)
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where A is an N × (N + 1) matrix:

A =


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(A.5)

x an (N + 1) dimensional column vector:

x = [a0 a1 a2 · · · aN ]T (A.6)

and b an N dimensional right-hand side vector:

bi = RHSi (A.7)

Since a0 is corresponding to mean flow which is fixed as 1 constantly, A and right-hand side

vector b can be degenerated to:

A′ =
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(A.8)

and

b′i = RHSi − (
∆t

2
Li0a0), (A.9)

where A′ is an N ×N square matrix and b′ as new right-hand side vector. The new linear

system A′x = b′ is solved by MKL of Intel Fortran.
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Appendix B

Calculate aerodynamic force without

pressure

The method to calculate the aerodynamical forces without using pressure is presented here

briefly. The fundamental equation for the aerodynamic forces from flow-field quantities is

the momentum equation in integral form, which can be written as:

F = − d

dt

∫
V

udV +

∮
S

n̂ · [−pI − uu+ T ]dS −
∮
Sb

n̂ · (uu)dS, (B.1)

where V is an arbitrary fixed control volume (CV) which must contain the solid body at

any snapshot and S is the surface surrounding it (for 2D case it is the contour instead), Sb

is the surface of the solid body. According to Noca et al. 83 , equation B.1 can be converted

by using several identity relations to:

F = − d

dt

∫
V

udV +

∮
S

n̂ · ΓdS −
∮
Sb

n̂ · (uu)dS, (B.2)
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where Γ is a second-order tensor having the form of:

Γ =
1

2
u2I − uu− 1

Nd − 1
u(x× ω) +

1

Nd − 1
ω(x× u)

− 1

Nd − 1
[(x · ∂u

∂t
)I − x∂u

∂t
] +

1

Nd − 1
[x · (∇ · T )I − x(∇ · T )] + T ,

(B.3)

where Nd is the dimension of the problem, which can be 2 or 3 here. Now the aerodynamic

forces can be computed without knowing the pressure field.

As addressed in Noca et al. 83 , the raw data from experiments often suffer from unex-

pected vibrations of experimental devices, which may lead to a bit noisy force computation

results. In order to reduce such unphysical high-frequency oscillations, a 5th-order Butter-

worth scheme as used in Noca et al. 83 was implemented to filter the experimental data,

which was realized numerically by a built-in function in Matlab.
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Appendix C

An alternative way to derive

adjoint-ROM equations and gradient

This derivation starts with the same objective function J , and can derive exactly the same

form of adjoint equations and gradient as the method used chapter 3 without using the

method of variation.

Using the same J , and considering the whole problem as a constrained optimization, J

can be rewritten as:

J̃ =

∫ T1

T0

∫
Ω0

|u− u0|2dΩdt+
∑
i

∫
T

q∗i · [F i(qi)−Ri]dt, (C.1)

where q∗i is the Lagrangian multiplier, and the restriction of this optimization should be that

the governing equation F i(qi)−Ri = 0 is satisfied.

The modified J̃ ≡ J̃ (qi, q
∗
i ,γ). When the extrema of J are reached, the following
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conditions must be satisfied:

∂J̃
∂qi

= 0 (C.2)

∂J̃
∂q∗i

= 0 (C.3)

∂J̃
∂γ

= g(γ) (C.4)

Solving equation C.3 will recover the governing equations immediately. Solving equation C.2

will generate two groups of equations:

∂J̃
∂ai

= 0 (C.5)

∂J̃
∂bi

= 0 (C.6)

With integration by parts, equation C.5 yields:
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∗
j ]dt = 0

(C.7)

Let all the terms in the integral be 0 and

Kij =

∫
Ω0

Φi ·ΦjdΩ,

Mij =

∫
Ω0

Φ0i ·ΦjdΩ,

(C.8)

and with the help of relations:

∂aj
∂ai

= δij

∂bj
∂bi

= δij,

(C.9)
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then it can be derived that

ȧ∗i +
∑
j

L′jia
∗
j +

∑
j

∑
k

(Q′jik +Q′jki)aka
∗
j − 2

∑
j

(Kjiaj −Mjia0j) = 0 (C.10)

Similarly, by solving equation C.6, it can be derived that:

ḃ∗i +
∑
j

[C ′ji −
∑
k

(L∗jki +
∑
m

Q∗jkmiam)ak]a
∗
j −

∑
j

P ′jib
∗
j = 0, (C.11)

where

C ′ij =
1

τ
〈V ,Φiψj〉

P ′ij = 〈V · ∇ψj, ψi〉
(C.12)

It can be found easily that equation C.10 and equation C.11 are identical to the adjoint

equations in chapter 3.

By solving equation C.4, the gradient can be obtained as the optimality of the system.

As mentioned the exact form of gradient varies for different forms of controls. Use one-

degree-of-freedom control of a 2D oscillatory cylinder flow for example, the solid velocity

V = 2πfγ sin(2πft)ey. (C.13)

Plug it into equation C.4, the gradient is obtained as:

g(γ) =

∫
T

[
N∑
i

(−
∑
m

bmC
′
im)a∗i +

M∑
i

(
∑
m

bmP
′
im)b∗i ] · Vγdt, (C.14)

where

C ′ij =
1

τ
〈ey,Φiψj〉

P ′ij = 〈ey · ∇ψj, ψi〉,
(C.15)
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and Vγ = 2πf sin(2πft).
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Appendix D

Separating axis theorem to detect

collision between swimmers

The separating axis theorem (SAT) is a mathematical algorithm to determine if two 2D

convex polygons intersect or not168, which can be adopted to detect collision between 2D

swimmers. The basic idea is to check if there is an axis that separates the two swimmers. If

such an axis exists, then two swimmers will not collide into each other. The algorithm can

be summarized as follow by pseudo code:

Algorithm 2: The collision detection function using SAT in iteration k.

Function checkCollision(swimmer i, swimmer j):
for each edge in swimmer i:

axis = perpendicular(edge) # get the perpendicular axis to the edge
min1, max1 = projectSwimmer(axis, swimmer i) # project every vertex of
swimmer i onto the axis
min2, max2 = projectSwimmer(axis, swimmer j) # project every vertex of
swimmer j onto the axis
if (min1 > max2 or min2 > max1): # checking collision

return False # two swimmers are separated by the axis, no collision
Repeat above steps for swimmer j
return True # no separating axis is found, collision will happen

This algorithm can only work for 2D convex shapes, so it is not viable for 3D or concave

shapes. However, the extension to these shapes is beyond the scope of this work.
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