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Abstract

Throughout nature, bodies in motion rarely move independent of each other but are

often not studied in this multiple body form. This is often due to the complex motion

exhibited by these bodies such as flocks of birds, pods of whales, or schools of fish. However,

on a more fundamental level, the control space required to study any of these multiple

body cases is immense and computationally unfeasible using traditional approaches. The

continuous adjoint-based approach applied to a three-dimensional, multiple body case allows

for a computationally feasible approach to study the complex flow-structure interactions

for optimization and physical understanding. The computational cost associated with an

adjoint-based approach is independent of the number of control parameters, making it an

ideal method to solve complex problems with large control space.

The traditional formulation of the adjoint equations utilize a fluid domain with fixed solid

boundaries. However, with the introduction of moving solid boundaries, inconsistencies and

ambiguity arise from the interaction between the Eulerian fluid domain and Lagrangian

solid boundary when perturbation is considered at the solid boundary. Traditional methods

utilize an unstable mapping function to mitigate the challenges of a moving boundary but

increase the computational cost drastically and tend to be too complex to feasibly derive.

To bypass the complexity required to use an unstable mapping function, application of non-

cylindrical calculus allows for the simplification of the mapped domain to only the moving

solid boundary. This approach, validated previously by the research group, is applied to

study the broadening of the approach to encompass multiple bodies in a three-dimensional

fluid flow and inherent challenges in implementation.

The adjoint-based approach is first applied to optimize the motion of a pair of spheroids

in an echelon formation to identify lift-generating regions behind a heaving leading body.

The echelon pair case also explores the effect of variations in size of the trailing body. The

lift-generation results identify a region directly behind a diving leading body and external



vortex wall that can attribute over a relative 500% increase in force. Future work applies the

approach to successively and collectively to optimize a formation of spheroids and identify

challenges in application to optimization of several bodies simultaneously.
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Nomenclature

A = area of the solid body
CD = coefficient of drag
D = spanwise diameter
g(ϕ) = gradient function
J = cost function
N (q) = operator for Navier-Stokes equations
N ∗(q)q∗ = operator for adjoint equations
n = normal direction
p = pressure
q = flow/primary variable that contains [p,u]T

r̄ = Cartesian coordinate array that contains [x, y, z]
Re = Reynolds number
S = solid boundary
T = period of oscillatory behavior
t = dimensional simulation time
U = incoming flow velocity
u = velocity
V = velocity at solid boundary
Z = derivative of boundary location with respect to control parameters (Lagrangian)
Γ∞ = far field boundary
∆t = time step for direct simulation and adjoint-based optimization
δij = Kronecker delta
ν = kinetic viscosity
ρ = density of solid body
σij = stress tensor
ϕm = control parameter of solid body m
ϕA = amplitude of control parameter
ϕθ = phase of control parameter
Ω = fluid domain
ω = vorticity
Superscripts

′ = derivative in Eulerian space
˙ = derivative in Lagrangian space
∗ = adjoint variables or operator
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Chapter 1

Introduction

Throughout nature, co-dependent animals move together in coordinated patterns and forma-

tions for safety and protection within the group but also to take advantage of fluid dynamic

interactions when pertaining to flight and aquatic motion. These interactions can range

from drafting effects to generation of propulsive forces. However, multiple body motion

is a very complex and computationally costly problem to study. Due to the size of the

domain and large control space required, the computational exploration of multiple body

systems cannot feasibly be studied using traditional approaches. In the following sections,

the motivational sources for the current work will be explored in detail along with various

optimization techniques and the progression on the current adjoint optimization method.

1.1 Multiple Bodies in Motion in Nature

Various aquatic animal species have adapted over millions of years to group together for social

protection and beneficial hydrodynamic interactions and remains and intriguing subject of

study for engineers. Study of individual motion and articulation has been and continues

to be researched for understanding1;2 and applied from an engineering perspective in bio-

mimicry applications.3 With the continued advancements in technology, the computational

resources available to researchers also continues to grow. Where initial research focused on

1



an individual specimen and its specific interactions with the natural world, research has

expanded into the study of interactions between individuals and collective behaviors.4. For

this work, motivation is taken from two sources found in nature: whales traveling in echelon

formations and structured formations of fish schools.

1.1.1 Echelon Pattern Formation: Whale Pods

With whales appearing in every ocean in the world, the biological impact of these creatures

cannot be understated. As a result, the behavior of whales and whale pods continues to be a

topic of observational research from the perspective of biology.5–10 From an engineering per-

spective, study of whales tend to focus on general individual undulating motion and specific

aspects of interaction with the fluid flows such as bio-mimicry passive flow control mechan-

ics.6;11 Therefore, the interactions between whales in close proximity remains to be explored

further. Initial and continuing research into echelon formation delves into the effect of undu-

lation for vortex harvesting12;13 and Bernoulli suction effect in dolphin drafting.14 However,

the behavior observed in mother-calf interactions5;8–10 over long distance migrations remains

relatively computationally unexplored. This behavior is the inspirational source for Chapter

3 as the interactions between a leading and trailing body of various sizes are explored to

identify lift generating behaviors in fluid structure interactions.

1.1.2 Diamond Pattern Formations: Fish School

Unlike whale pod formations, fish schooling exhibits a much more alluring draw for academic

pursuit from multiple disciplines. One aspect of fish schooling that is heavily studies is the

social interaction between independent elements that lead to the development of school

formations.15–19 However, studies into the social interactions tend to utilize a simplification

or omission of vortex shedding patterns and do not provide insight into the fluid structure

interactions within the school. Forays into fluid dynamic interactions have, until the past

decade, have been limited to two-dimensional cases of fixed formations20–23 or experimental

studies into two swimmer setups that explore the undulating motion of various species of

2



fish.12;24 Like the social interaction studies, the two-dimensional cases, although beneficial in

understanding, also make assumptions within the flow that simplify the problem and create

a skewed understanding of the interactions occurring. With increases to computing power,

study in three-dimensions is becoming more available outside of utilizing super-computing.

Recently, research has begun to delve into the three-dimensional and optimization aspect

of formations but uses traditional parametric studies and undulating motion from specific

species.13;25 With the application of adjoint-based optimization, as demonstrated in this

research, further exploration into fluid structure interactions and optimization of formations

is possible with a computationally feasible method.

1.2 Optimization for Motion

Optimization of a formation of solid bodies involves numerous control parameters to ade-

quately account for complex motion, deformation, and positioning. Due to the resulting size

of the required control space, a traditional parametric case becomes computationally impos-

sible. Due to its inherent properties, an adjoint approach is an ideal gradient-based method

to apply to a large control space. The adjoint approach is able to calculate the gradient

simultaneously for an arbitrary number of control parameters with a single computation in a

formulated adjoint domain. This reduces the computational cost immensely as the total cost

to calculate the sensitivity of the cost function is independent of the total number of control

parameters. This approach has been thoroughly implemented in the study of a flapping wing

and serves as the foundation for this research.26–30

1.3 Current Work

The original applications of the adjoint-based optimization approach include airfoil shape

optimization31, turbulence control32, and jet noise control.33 Recently, this approach evolved

through the use of non-cylindrical calculus to address problems with moving solid bound-

aries.28 These new capabilities were subsequently applied to two and three-dimensional flap-
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ping wings26;27 and a deforming three-dimensional wing.30 The logical progression is to then

apply the adjoint-based optimization approach to a multi body system. The existing com-

putational code evaluated single body movement in three-dimensions with the ability to im-

plement deformation into rigid bodies. This study expands the accessible control parameters

to include positional changes for optimization and introduces and implements the required

coding to control and optimize multiple bodies in the same flow. Therefore, the goal of this

research is to progressively apply the adjoint approach to an increasingly complex systems

to explore various natural phenomena and determine viability of the approach in a multiple

body environment. Exploration of an echelon pair formation identifies regions in the leading

body’s wake for generating lifting forces along with exploring the effect of variations in size

in the resulting optimization. With the viability of the approach determined in the echelon

pair formation study, future work will apply the adjoint approach to a diamond pattern

formation classically studied in two-dimensions while looking at drag reduction within the

entire system of bodies.

The subsequent thesis is organized in the following structure. The formulation of the

governing and adjoint equations, implemented concepts, non-cylindrical calculus derivation,

and numerical implementation are detailed in Chapter 2. The application of the adjoint-

based optimization method is then applied to the echelon pair formation in Chapter 3. Final

conclusion on the complete work are outlined in Chapter 4.
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Chapter 2

Theoretical Formulation and

Numerical Implementation

The formulation of the continuous adjoint equations utilized in this study build upon the fixed

domain derivation by Wei and Freund33 and the subsequent adaptation to moving boundary

conditions within a morphing domain utilizing non-cylindrical calculus by Xu and Wei28

This work applies these concepts to three-dimensional, multi-body incompressible, viscous

Navier-Stokes governed flows.34 The following chapter outlines the governing equations and

theories that are implemented into the numerical algorithms and conditions that are used to

formulate direct numerical simulation solutions to three-dimensional, multi-body flows.27;35;36

2.1 Foundational Formulation and Theory

The following formulation relies on non-dimensionality to reduce computational costs as-

sociated with material property interactions and prescribed solid motion that allows for

the flow field to be determined by the Navier-Stokes equations and solid boundary velocity

for velocity mapping. Therefore, the direct numerical simulation generated and optimized

flow structures utilize a prescribed solid motion that is discussed in subsequent chapters in

conjunction with specific implementations and implements the following derivation.
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2.1.1 Governing Equations

For the implementation discussed in this work, the flow is governed by the incompressible

Navier-Stokes equations in a fluid domain, Ω, and prescribed incoming velocity, V (t),

∇ · u = 0

∂u
∂t

+ (u · ∇)u = −∇p+ 1
Re
∇2u

(2.1)

with the following solid boundary conditions,

u = V on S,

u = U on Γ∞,

δp
δn

= 0 on Γ∞

(2.2)

where S and Γ∞ are respectively the solid boundary and the far-field boundary; n denotes

the unit normal vector at Γ∞; u is the velocity vector containing [u, v, w];and the respective

boundary velocity vectors are U and V . Eqn. 2.1 can be written operator form, N = 0,

with the flow variable defined as q = [p u]T where p is pressure,

N (q) =

 ∂uj

∂xj

∂ui

∂t
+

∂ujui

∂xj
− ∂2ui

∂x2
j
+ ∂p

∂xi

 = 0 (2.3)

This operator is later used in the derivation of the adjoint method for simplification purposes.

2.1.2 Immersed Boundary Method

To alleviate computationally expensive re-meshing of conformal grids in the numerical imple-

mentation of the derivation, the immersed boundary method developed originally by Peskin37

and later adapted by others38–43 is introduced and implemented. The immersed boundary

method has become a popular method for simulating complex flow-structure interactions

with many variations and refinements since its first development. The method utilizes a

fixed Eulerian grid for the fluid flow and a moving Lagrangian grid for the solid boundary

or immersed boundary as shown in Fig.2.1 and couples the grids with a forcing term applied

6



continuously or discretely to the governing equations.

Figure 2.1: Diagram of the Eulerian/Lagrangian mesh utilized by the immersed boundary
method. The fluid domain, Ω, utilizes a fixed Eulerian mesh. The boundary of the solid
body, S, utilizes a Lagrangian mesh. The interaction of the intersection of the two meshes
is captured by the immersed boundary method.

The original implementation by this work was influenced by immersed boundary concepts

adapted by Fadlun et al.42 Therefore, a discrete forcing function is used to enforce solid

boundary conditions and is applied to both forward (fluid flow) and backward (adjoint)

simulations. This allows for the implication that u on the boundary is different than V

such that the forcing function, f , rectifies the difference.42 With the implementation of the

immersed boundary method discrete forcing function, Eqn.2.1 becomes the following,

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u+ f , (2.4)

where the forcing term is defined as,

f =


[(u · ∇)u− 1

Re
∇2u]n + 1

∆t
(V − un), in S

0, otherwise,
(2.5)

In the immersed boundary formulation, n denotes the n-th time step of the discretization
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where ∆t is the associated time step. With the addition of additional bodies into the

fluid flow, each solid body, m, is controlled by some control parameter, ϕm, such that the

corresponding solid boundary, Sm, and velocity fields, V m, are defied as Sm,i = Sm,i(ϕm, t)

and Vm,i = Vm,i(ϕm, t).

2.1.3 Cost Function

In order to optimize and evaluate the fluid-structure interactions and vortex structures, the

cost function for force, J , is formulated to evaluate the forces acting on the solid bodies as

in any given direction in accordance with the Kronecker delta as,

J =
1

TD0

∫
T

∫
S
σijnjdsdt, (2.6)

where T is the period of oscillation; D0 = U2A/2 where A is the area of the spheroid; and

the stress is defined as,

σij = −p

ρ
δij + ν

(
∂ui

∂xj

+
∂uj

∂xj

)
(2.7)

where ρ and ν are equal to one to maintain non-dimensionality. The utilization of the

Kronecker delta allows for specific cost functions associated to cartesian directions. For

example, σ1j would denote forces acting in the x-direction where σ2j and σ3j would denote

forces in the y-direction and z-direction respectfully. In this work, we focus on lift forces

associated in the z-direction. Thus, with the cost function, J , defined, the sensitivity to any

control, ϕ, can be computed by the perturbed function, J ′, under an arbitrary perturbation,

ϕ′, which is defined by the Fréchet differential,

J ′ ≡ lim
ε→0

J (ϕ+ εϕ′)− J (ϕ)

ε
(2.8)

Thus when optimizing the cost function, the sensitivity analysis from Eqn. 2.8 informs the

gradient, g(ϕ), such that the control variables are iteratively update with a relaxation factor,

α, by,

ϕNEW = ϕOLD − αg(ϕ) (2.9)
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However, it is usually hard or impossible to directly compute the gradient function, g(ϕ),

when more than one control parameter exists in the problem.

2.2 Adjoint Formulation and Theory

Adjoint-based methods provide a unique way to compute the gradient function using a

combination of flow and adjoint variables. Most importantly, the computational cost of

adjoint-based method does not scale up with the increased control parameters. Thus, it

becomes the only feasible approach in dealing with various problems with a large control

space. However, due to the implementation of the immersed boundary method, traditional

adjoint methods are not viable for optimization of moving boundaries. Therefore, non-

cylindrical calculus is used to couple the fluid flow (Eulerian) and the moving boundary

(Lagrangian) frameworks in order to maintain a continuous adjoint formulation.44;45

Before proceeding into the application of the non-cylindrical calculus, it is important to

reestablish the frameworks defined previously to remain consistent with the governing equa-

tions in Eqn.2.1 and establish the need to couple the frameworks. All analysis is naturally

conducted in the Eulerian framework and contains the governing equations for the fluid flow

to include the derivatives and gradient equations. The application of dynamics and kine-

matics along the moving boundary often requires variables to be defined in a Lagrangian

framework.

It is possible to use an unsteady mapping function to map the entire fluid domain to

a fixed computational domain. However, the complexity of the derivation and formulation

makes it unfeasible for practical uses.45 The non-cylindrical calculus method only focuses

on mapping the change to the domain boundaries, greatly reducing the complexity, and

making it the practical choice for use.46 Protas and Liao45 proposed a new adjoint-based

approach using non-cylindrical calculus for mapping that was further developed by Xu and

Wei33 that provides the possibility to use a adjoint-based strategy for the optimization of

structure motion or morphing in a fluid flow domain as shown in Fig. 2.2.

9



Figure 2.2: Diagram of non-cylindrical calculus in a morphing domain versus classical cal-
culus in a fixed domain. Here, non-cylindrical calculus is applied to a boundary morphing
in time whereas classical calculus is cylindrical for a boundary fixed in time.

2.2.1 Non-Cylindrical Calculus

To begin the the application of the non-cylindrical calculus, the flow map, T (t, τ, ϕ) and

transverse flow map, T̄ (t, ε, ϕ), are defined for the fluid domain, Ω, and the control, ϕ,

respectfully as

T (t, τ, ϕ) : Ω(t, ϕ) → Ω(t+ τ, ϕ) (2.10)

T̄ (t, ε, ϕ) : Ω(t, ϕ) → Ω(t, ϕ+ εϕ′) (2.11)

which requires a boundary-to-boundary mapping. Similarly, the velocity flow maps, V and

transverse Z, are defined by taking the derivative with respect to the local time variance, τ ,

and the perturbed control parameter step, ε,

V(t, τ,x) =
∂T (t, τ, ϕ,x)

∂τ

∣∣∣∣
τ=0

(2.12)

Z(t, τ,x) =
∂T̄ (t, ε, ϕ,x)

∂ε

∣∣∣∣
ε=0

(2.13)
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Here, a new boundary condition is established such that the flow map velocity is equal to

the physical velocity on the solid boundary, S,

V(t, ϕ,x) = V (t, ϕ, s) on S (2.14)

To delineate between the Eulerian and Lagrangian frameworks for any given function f , a

derivative in a Lagrangian framework uses the notation ḟ where as a derivative in an Eulerian

framework uses the notation f ′. Therefore, a non-cylindrical material derivative, ḟ is defined

as

ḟ(t,x) ≡ lim
ε→0

f(t, ϕ+ εϕ′, T̄ (t, ε, ϕ,x))− f(t, ϕ,x)

ε
(2.15)

where ḟ is related to the non-cylindrical shape derivative, f ′ by

f ′ = ḟ − Z · ∇f (2.16)

Through the non-cylindrical material derivative, the flow map velocity and transverse veloc-

ity can also be related associated

V̇ =
dZ
dt

(2.17)

2.2.2 Linear Perturbation Equation

With the shape derivatives defined, they can now be applied to the Navier-Stokes equations,

Eqn. 2.1, to derive the new linear perturbation equations

N ′(q)q′ = 0 in Ω,

u′ = V̇− Z · ∇u on S,

u′|t=0 = 0 in Ω,

V̇ = dZ
dt

on Γ∞,

Z|t=0 = 0 on Γ∞

(2.18)
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where

N ′(q)q′ =

 ∂u′
j

∂xj

∂u′
i

∂t
+

∂u′
jui

∂xj
+

∂uju
′
i

∂xj
− ∂2u′

i

∂x2
j
+ ∂p′

∂xi

 (2.19)

Similar to the perturbation of the gradient, the flow variable, q, is also defined by Fréchet

differential such that,

q′(t,ϕ,x) ≡ lim
ε→0

q(t,ϕ+ εϕ′,x)− q(t,ϕ),x

ε
(2.20)

2.2.3 Adjoint Formulation

The formulation of the adjoint-based system of equations introduces the adjoint variables,

q∗ = [p∗ u∗]T and Z∗, as Lagrange multipliers to impose the fluid flow equations and

transverse mapping. The fluid flow equations and boundary conditions become

N ∗(q)q∗ = 0 in Ω,

u∗ = δij on S,

u∗ = 0 on Γ∞,

δp
δn

= 0 on Γ∞

(2.21)

where

N ∗(q)q∗ =

 ∂u∗
j

∂xj

∂u∗
i

∂t
+ uj(

∂u∗
i

∂xj
+

∂u∗
j

∂xi
) +

∂2u∗
i

∂x2
j
+ ∂p∗

∂xi

 (2.22)

Therefore, applying the adjoint conditions to the cost function established in Eqn. 2.6, the

gradient of the cost function with respect to the control parameter, ϕ, is

gl =
∂J
ϕl

= − 1

TD0

∫
T

∫
S

[
Zk,l

∂σij

∂xj

nk − Z∗
i (
∂Vi

∂ϕl

− Zk,l
∂ui

∂xk

)

]
dsdt (2.23)

where

Zi,j =
∂Si

∂ϕl
, Z∗

i = σ∗
ijnj + u∗

jujni (2.24)
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With this formulation, gradient updates to the control parameter move towards a decrease

in the cost function during optimization. For a complete, in depth derivation, refer to the

details within the original work by Xu and Wei.28 Since the formulation of the adjoint

and gradient equations is derived through a continuous approach, they are independent of

the numerical implementation. Thus, the gradient for optimization can be computed once

the forward (physical flow) and backwards (adjoint) equations are solved once where the

computational cost of the two runs is comparable.

2.3 Numerical Implementation

The computational domain utilizes a staggered Cartesian mesh with local refinement through

stretching functions for numerical efficiency and numerical stability.34;38;47 A second-order

central difference is implemented for spatial discretization with a second-order Adams-

Bashforth/Crank-Nicholson scheme used for time advancement. A Fast Fourier transform

(FFT) with a generalized cyclic reduction algorithm is used to solve the pressure Poisson

equation while a projection method for incompressible flow conditions is implemented. The

Courant-Friedrichs-Lewy (CFL) constraint,

CFL = ∆tmax(
|ui|
∆xi

) ≤
√
3 (2.25)

limits the time step for a third-order Runge-Kutta scheme. Once the gradient is calculated, a

Polak-Ribiere variant of the conjugate gradient method is used to update the main iterations.

Due to the considerations for nonlinear constraints are considered, the NLopt free/open-

source library is used to update the control parameter in sub-iterations. The NLopt library

is called directly with built in Fortran APIs by the in-house Fortran simulation code. The

NLopt library utilizes an internal line search method and is implemented to utilize a combined

optimization by linear approximation (COBYLA) scheme. This scheme builds successive

linear approximations of the cost function and imposed constraints via a simplex of n +

1 points in n dimensions that are optimized in a trust region for each time step.48 For

13



the sub-iterations, the optimal time step is calculated by the NLopt library. The software

requires between five and eight sub-iterations and three to five main iterations for convergence

depending on the number of control parameters and the associated error tolerances.

The Fortran code developed for this work ran on multi-core computer servers in the

Computational Science for Fluids and Acoustics (C-SOFA) Lab at Kansas State University.

The servers utilize Intel Xeon E5 processors operating at 2.4 GHz with a Linux operating

system. Computational runs utilize a Message Passing Interface (MPI) configuration to

access ten to twenty of the twenty-eight available core for three-dimensional simulations. Due

to system configurations and hardware limitations, the scope of the complexity of multi-body

simulations is limited by computational resources and downlink speeds for data files.
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Chapter 3

Optimization of Echelon Pair

Taking inspiration from observed mother-calf behavior observed in nature9;10, this chapter

explores the regions behind a heaving body that are available for generating lift by a trailing

or following body in a multiple moving body flow. The trailing body is optimized over five

active controls using the adjoint-based approach discussed in Chapter 2 to maximize the

coefficient of lift over one period of oscillation. The effect of variations in the size of the

trailing body is explored to further determine interactions between the bodies. Through this

case study, the challenges and limitations in the application of the adjoint-based optimization

approach are identified and discussed.

3.1 Kinematic Setup and Initial Conditions

Fig. 3.1 (a-b) shows the kinematic and motion decomposition parameters for the echelon

pair formation in this study. The solid bodies adhere to a 5 : 1 length to diameter ratio

with the leading body as the reference body for spacing calculations. The size of the trailing

body is varied in relation to the leading body in the respective following sections at 100%,

75%, 50%, and 25%.

Both bodies exhibit heaving motions as shown by the control parameters in Fig. 3.1 (b)

where only the trailing body motion and position is actively controlled during optimization

15



(a) (b)

Figure 3.1: Kinematic setup and motion decomposition. a) Schematic of the spatial position-
ing and layout for the study of the echelon pair formation. b) Schematic of the decomposition
of motion and active ( ) and fixed ( ) control parameters.

in this case study. The motion equations are

z(ϕz, t) = Az sin(2πft+ θz), ϕz = Az, θz

y(ϕy, t) = Ay sin(2πft+ θy), ϕy = Ay, θy

R(r̄, t) = R(t) + r̄, r̄ = (x, y, z)

(3.1)

Here, r̄ is the position vector containing the cartesian location of the solid body. Due to the

magnitude of the gradient in the x and y-direction, these position controls are fixed with the

position in the z-direction bounded by ±D. The amplitudes of the heaving motions are also

bounded by ±D. With the prescribed bounded box, it is important to note that this study

does not look at the efficiency of the trailing body while maximizing lifting forces. Finally,

the Reynolds number utilized for this study is set at 200 for computational efficiency in

exploring the applicability of the adjoint-based optimization approach.

Four time periods for initial condition fluid-structure interactions are documented in Fig.

3.3, along with the tabulated values for control parameter values in Table 3.1. The initial

conditions establish the following body outside of the wake of the leading body in a region of

unperturbed flow. Initial movement conditions force the trailing body into the lead body’s

wake and subsequently optimized from this interaction. The cost function for the echelon

16



Table 3.1: Initial and optimized values for the evaluated degrees of freedom of the trailing
body in the echelon pair formation at Re = 200. The initial condition for the x-location,
denoted as “ ”, varies by the prescribed value as dictated in the kinematic setup.

Simulation [Ay, θy] [Az, θz] [x, y, z] CL,0 CL

IC:Lead [ 0, 0] [ 0.5, 0] [ 0, 0, 0] * *
IC:Follow [ 0.25, 0] [ 0.1, 0] [ , 0.5, 0] * *
OPT:100% [ 0.42, 1.13] [ 0.5, -0.67] [ 1.0, 0.5, -0.5] 0.00243 0.02188
OPT:75% [ 0.5, 0.126] [ -0.5, -0.179] [ 0.9375, 0.5, -0.5] 0.00162 0.01260
OPT:50% [ -0.037, 0.024] [ -0.188, -0.266] [ 0.625, 0.5, -0.5] 0.00046 0.00279
OPT:25% [ -0.107, 0.394] [ -0.081, -0.768] [ 0.3125, 0.5, -0.5] 0.00003 0.00096

pair formation only considers the z-force generated by the trailing body under active control.

3.2 Evaluation of Fluid-Structure Interactions.

In order to visualize the fluid-structure interaction, an iso-surface of a positive Q criterion

with an overlay of the vorticity magnitude, ||ω||. The Q criterion is derived based on the

second invariant of the velocity gradient tensor. The velocity gradient, ∇v, can be simplified

into the following two parts: a symmetric part or the rate of strain, S, and a anti-symmetric

part or vorticity tensor, Ω, derived as

∇v =
1

2
(∇v +∇vT )−

1

2
(∇v −∇vT ) = S +Ω (3.2)

The Q criterion is then derived as

Q =
1

2
(||Ω||2 − ||S||2) (3.3)

By this definition, areas dominated by vorticity occur where Q > 0.49
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(a) 100% Size (b) 75% Size

(c) 50% Size (d) 25% Size

Figure 3.2: Trajectory Path for Optimized Values. Transcribed trajectories of optimized
values found in Table 3.1 of both optimized trajectory ( ) and initial trajectory ( .
The trajectory of the leading body on the right is not actively controlled and therefore
unchanged. All optimized paths travel in a clockwise direction in current depictions. The
optimized center position is denoted as “�”.

18



(a) 2πft = 0.0 (b) 2πft = π/2

(c) 2πft = π (d) 2πft = 3π/2

Figure 3.3: Initial Conditions for Optimization. Time-lapse of fluid-structure interactions
shown by vorticity magnitude, |ω|, overlaid on a +Q-criterion iso-surface at the period
intervals, 2πft, of a) 0, b) π/2, c) π, and d) 3π/2.
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3.3 Equal Size Optimization

In this section, an equal-sized body case is explored to maximize z-forces acting on the

trailing body. The active controls for the trailing body are

ϕfollow = (Az, Ay, ϕz, ϕy, z) (3.4)

with initial and optimized values tabulated in Table 3.1. The adjoint-based optimization

executed nineteen sub-iterations and five main iterations to update the gradient to a sufficient

convergence shown in Fig. 3.4, (a), with no unexpected variations in iterations. Due to initial

simulations converging too quickly, the error used in sub-iterations was decreased to 5×10−4

and main iteration allowed error to 10−3 and is maintained throughout the study. The history

of the lift coefficient, CL, is compared in Fig. 3.4, (b). The optimized motion whose new

trajectory is shown in Fig. 3.2, (a) allows for the trailing body to enter the centerline vortex

structure of the leading body. This allows for the body to be actively pushed up by the

inner edges of the hairpin vortex to increase the coefficient of lift, CL, by a relative 900%

from 0.00243 to 0.2188. From a physical perspective, this specific increase can be attributed

to the velocity of the rising flow underneath the leading body as it descends in the stream

directly impacting the trailing body. For the period of time where the trailing body is not

within the centerline vortex, it moves into the region of unperturbed flow to minimize the

detrimental effects of the rising lead body.

3.4 75% Original Size Optimization

With the equal sized body case established in the previous section, this and the subsequent

sections explore variations in size with respect to the trailing body. The size study cases

utilize the same initial conditions, constraints, and degrees of freedom as the previous case.

Fig. 3.6, (a), shows the convergence of the 75%-size case. Unlike the equal sized case, the 75%

case shows a large decrease in CL in the third main iteration. This event showcases one of the
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(a) (b)

Figure 3.4: Convergence and Optimization results for equal sized bodies. a) Shows the Suf-
ficient convergence of the NLopt:COBYLA method with continuous adjoint-based gradient
updates with a sub-iteration error of 5× 10−4 and main iteration error of of 10−3. b) shows
the effect on the coefficient of lift, CL, by comparing the initial conditions, lead body (- - -)
and trail body (- - -), and the adjoint-based optimized results, lead body ( ) and trail
body ( ).

limitations of the adjoint-based approach as the cost function transits between local maxima.

Since the adjoint-based optimization approach is a gradient method, it is susceptible to local

maxima and is dependant on initial conditions. Unlike a parametric study that maps the

complete control space, which is computationally unfeasible, the adjoint-based approach

optimized to a single optimized value and is thus sensitive to the initial conditions inputted.

However, like the equal sized case, the 75% case also enters the centerline vortex shown by

the trajectory in Fig. 3.2, (b), but due to its size is unable to maintain the optimal trailing

position due to its size and movement constraints show by the CL history in Fig. 3.6, (b),

and time lapse in Fig. 3.7. As a result, the coefficient of lift, CL, is increased from 0.00162

to 0.1260 denoting a relative 778% increase over a period of oscillation.
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(a) 2πft = 0.0

(b) 2πft = π/2

(c) 2πft = π

(d) 2πft = 3π/2

Figure 3.5: Equal Size Optimization Fluid-Structure Interactions. Time-lapse of fluid-
structure interactions shown by vorticity magnitude, |ω|, overlaid on a +Q-criterion iso-
surface at the period intervals, 2πft of a) 0, b) π/2, c) π, and d) 3π/2. Initial conditions
are shown on the left with optimized results on the right.
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(a) (b)

Figure 3.6: Convergence and Optimization results for 75% original sized trail body. a)
Shows the Sufficient convergence of the NLopt:COBYLA method with continuous adjoint-
based gradient updates with a sub-iteration error of 5× 10−4 and main iteration error of of
10−3. b) shows the effect on the coefficient of lift, CL, by comparing the initial conditions,
lead body (- - -) and trail body (- - -), and the adjoint-based optimized results, lead body
( ) and trail body ( ).

3.5 50% Original Size Optimization

Continuing the study on the variation of size, the 50% case is the first case where the

adjoint-based optimization places the trailing body outside of the centerline vortex position.

In this case after sufficient, normal convergence is reached as shown in Fig. 3.8, the overall

magnitude of CL is significantly reduced. The fluid-structure time lapse in Fig. 3.9, shows the

trailing body interacting with the outer wall of the leading body’s hairpin vortex. During this

interaction, the trailing body is able to contact positive z-directional fluid flow to increase

CL as shown in Fig. 3.8. The resulting motion results in a relative 611% increase from

0.00046 to 0.00279. However, based on the optimal values and trajectory in Fig. 3.2, (c),

performance of this optimization sought to minimize the variation in magnitude of the cost

function as evident by the smoothing of CL in Fig. 3.8 despite the effects from the vortex

wall interaction.
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(a) 2πft = 0.0

(b) 2πft = π/2

(c) 2πft = π

(d) 2πft = 3π/2

Figure 3.7: 75% of Original Size Optimization Fluid-Structure Interactions. Time-lapse of
fluid-structure interactions shown by vorticity magnitude, |ω|, overlaid on a +Q-criterion
iso-surface at the period intervals, 2πft, of a) 0, b) π/2, c) π, and d) 3π/2. Initial conditions
are shown on the left with optimized results on the right.
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(a) (b)

Figure 3.8: Optimization results for 50% original sized trail body. a) Shows the Sufficient
convergence of the NLopt:COBYLA method with continuous adjoint-based gradient updates
with a sub-iteration error of 5×10−4 and main iteration error of of 10−3. b) shows the effect
on the coefficient of lift, CL, by comparing the initial conditions, lead body (- - -) and trail
body (- - -), and the adjoint-based optimized results, lead body ( ) and trail body
( ).

3.6 25% Original Size Optimization

The final variation in size becomes an compilation of the challenges and issues identified

in the previous sections. To begin, the 25%case optimization shows the existence of local

maxima in the convergence shown in Fig. 3.10 and previously discussed in the 75% case.

Like the 50% case, the 25% case also travels into the outside vortex wall shown in Fig.

3.11 to achieve a more staggering 30,917% relative increase in CL from 0.00003 to 0.00096.

Although this case exhibits an abnormally large gain, this is primarily due to the near zero

force experienced by the body in the free-stream flow. Due to the size of the following body

in this case, it may experience additional effects not incorporated into this study such as a

Bernoulli suction force often exhibited by drafting dolphins.14

25



(a) 2πft = 0.0

(b) 2πft = π/2

(c) 2πft = π

(d) 2πft = 3π/2

Figure 3.9: 50% of Original Size Optimization Fluid-Structure Interactions. Time-lapse of
fluid-structure interactions shown by vorticity magnitude, |ω|, overlaid on a +Q-criterion
iso-surface at the period intervals, 2πft, of a) 0, b) π/2, c) π, and d) 3π/2. Initial conditions
are shown on the left with optimized results on the right.
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(a) (b)

Figure 3.10: Convergence and Optimization results for 25% original sized trail body. a)
Shows the Sufficient convergence of the NLopt:COBYLA method with continuous adjoint-
based gradient updates with a sub-iteration error of 5× 10−4 and main iteration error of of
10−3. b) shows the effect on the coefficient of lift, CL, by comparing the initial conditions,
lead body (- - -) and trail body (- - -), and the adjoint-based optimized results, lead body
( ) and trail body ( ).

3.7 Computational Cost of Implementation

Due to the complexity and size of the current control space, the previous cases would not

be possible using traditional methods. Since the adjoint-based approach used to calculate

the conjugate gradient is computationally insensitive to the number of control variables,

this approach is ideal to apply to larger and more complex cases. For a standard forward

simulation, the current computational time is 6.7 hours at 10, 000 iterations. A comparable

parametric study, assuming five values per control parameter, has a computational cost of

2.39 years (55 = 3125 simulations). However, the above cases only required 8.1 days at the

longest.

3.8 Summary of Echelon Pair Study

The cases studied in this chapter displayed some challenges and limitations of the current

implementation along with identifying specific regions in the centerline position and hairpin
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(a) 2πft = 0.0

(b) 2πft = π/2

(c) 2πft = π

(d) 2πft = 3π/2

Figure 3.11: 25% of Original Size Optimization Fluid-Structure Interactions. Time-lapse of
fluid-structure interactions shown by vorticity magnitude, |ω|, overlaid on a +Q-criterion
iso-surface at the period intervals, 2πft, of a) 0, b) π/2, c) π, and d) 3π/2. Initial conditions
are shown on the left with optimized results on the right.
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vortex with a beneficial influence to lifting forces for future study. The challenges facing

this implementation pertain to the susceptibility of optimized solutions to become limited

by a local minima or maxima. However, this susceptibility can be overcome with the future

utilization of NLopt global optimization methods with local gradient-based optimization in

future studies. By taking the time to study a simplistic multiple moving body scenario, the

viability and validity of the application of the adjoint-based optimization approach becomes

apparent for application to a larger, multiple moving body system as explored in ongoing

and future work.
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Chapter 4

Conclusion

Aided by non-cylindrical calculus, the adjoint-based optimization approach was expanded

and applied to three-dimensional flows interacting with multiple moving bodies. By opti-

mizing five control parameters, ϕfollow = (Az, Ay, ϕz, ϕy, z), that govern a following body’s

multi-directional heaving motion and relative vertical positioning, relative gains exceeding

600% were achieved. The resulting motion and variation in the trailing body sizing allowed

the trailing body to beneficially interact with the leading body’s wake with special empha-

sis the immediate centerline region and outer vortex wall of the resulting hairpin vortexes.

Although the positioning of the following body was also optimized, the effect of the position

gradient overpowered the effects of amplitude and stricter bounds were enforced. However,

the most important conclusion from this study is the validation of the application of the

adjoint-based optimization approach to three-dimensional flows interacting with multiple

moving bodies. Additionally, due to the immense reduction in computational costs, larger

and more complex problems are able to be studied with this approach.

Therefore, with a feasible application of the adjoint-based optimization approach to a

multiple moving body system, current ongoing and future work expands the purview to

the classical diamond formation undergoing pitching and heaving motions. The resulting

schematic and kinematic setup is shown in Fig. 4.1. This future work strives to address

additional considerations and controls required to evaluate convergence of the summation of
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(a) (b)

Figure 4.1: Future multiple body diamond formation kinematic setup and motion decom-
position. a) Schematic of the spatial positioning and layout for the study of the diamond
pattern formation. b) Schematic of the decomposition of motion and active ( ) and
fixed ( ) control parameters.

independent cost functions while optimizing more than one moving body.
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