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Abstract 

Fractured reservoirs are complex and multi-scale systems composed of matrix and 

fractures. Accordingly, modeling flow in such formations has been a great challenge. In this 

study, we investigated the effect of matrix and fracture network characteristics on the effective 

permeability (𝑘!"") in matrix-fracture systems of different sizes (𝐿 = 22.5, 30, 50, and 70 m). 

We generated fracture networks, embedded within a matrix of permeability, 𝑘# = 10-18 m2, using 

the discrete fracture network approach. Fracture length followed a truncated power-law 

distribution with exponent 𝛼 = 1.5, 2.0, and 2.5, minimum fracture length 𝑙#$% = 0.02 m, and 

maximum fracture length 𝑙#&' = 20 m. The logarithmic ratio of fracture permeability (𝑘") to 

matrix permeability (𝑘#) was set equal to 2, 4, and 6. We numerically simulated fluid flow to 

determine the 𝑘!"" for 36 sets of simulations (3 𝛼 × 3 log( 𝑘" 𝑘#)⁄  × 4 𝐿) over a wide range of 

fracture density (0 ≤ 𝜌 ≤ 1). Numerical results showed that the impact of 𝛼 and 𝐿 on the 𝑘!"" 

became more significant as log(𝑘" 𝑘#⁄ ) increased. Percolation-based effective-medium 

approximation (P-EMA) was fit to the simulated 𝑘!""-𝜌 data, with an average 𝑅( = 0.99, and its 

parameters, 𝜌) (critical fracture density) and 𝑡 (scaling exponent), were optimized. We found 𝜌) 

positively correlated to 𝛼 and 𝐿, while 𝑡 negatively correlated to 𝛼, 𝐿, and log(𝑘" 𝑘#⁄ ). We also 

extended our results to infinitely-large reservoirs and presented regression-based models to 

estimate 𝜌) and 𝑡 from other characteristics.  

 

Keywords: Effective permeability, Matrix-fracture systems, Numerical simulation, 

Percolation-based effective-medium approximation, Finite-size scaling theory 
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Chapter 1 - Introduction 

Accurate estimation of effective permeability (𝑘!""), the overall capability of a geologic formation 

to pass fluid through it, is essential for various processes, such as hydrocarbon exploration and 

production, aquifer management and remediation, hydrogen and carbon storage, and geothermal 

energy. However, modeling flow and transport in fractured geologic formations are challenging 

because they are complex and multi-scale systems typically composed of two components: (1) 

rock matrix, and (2) fractures, each of which contributes to reservoir properties, such as porosity 

and permeability. The 𝑘!"" value is, therefore, affected by both matrix (𝑘#) and fracture (𝑘") 

permeabilities in fractured reservoirs. Depending on the density of fractures, the contribution of 

𝑘" to 𝑘!"" may be significant and orders of magnitude greater than that of 𝑘# (Berre et al., 2019). 

Fracture networks have been extensively investigated in the literature (Nordqvist et al., 1992; 

Madadi et al., 2003; Bogdanov et al., 2003; Maillot et al., 2016; Viswanathan et al., 2018). For 

instance, the scale dependence of fracture networks has been well documented in the literature 

(Neuman 1994; de Dreuzy et al., 2002; Baghbanan & Jing, 2007; Azizmohammadi & Matthäi 

2017; Forstner & Laubach, 2022). Vast evidence also indicates that 𝑘!"" depends on the fracture 

length power-law distribution and its exponent (e.g., de Dreuzy et al., 2001a; Berkowitz et al., 

2000). The impact of fracture orientation on 𝑘!"" has been also investigated, with early work by 

Teufel et al. (1993) and recently by Zhu (2019). For a more recent review, see Viswanathan et al. 

(2022). Interconnected fractures within rock matrix tend to provide preferential pathways to fluid 

flow, and thus, dominantly control the overall permeability of such media. The 𝑘!"" value depends 

on geometrical and topological properties of fractures, such as aperture, width, length, orientation, 

and fracture density 𝜌 (Ebigbo et al., 2016).  
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Various numerical methods were proposed and applied to study fluid flow and to determine the 

𝑘!"" in fracture networks (Oda 1985; Long et al., 1985; Cacas et al., 1990; Durlofski 1991; Lough 

et al., 1997; Koudina et al., 1998; Nakashima et al., 2000; Jourde et al., 2002; Mustapha & 

Mustapha 2007). Among them, the discrete fracture network (DFN) approach was widely 

employed to model flow and transport (Dverstorp et al., 1992; Painter & Cvetkovic, 2005; Berrone 

et al., 2018). In the DFN method, governing equations of flow or transport are numerically solved 

in individual fractures. Although ingenious, this approach overlooks the permeability contribution 

from the rock matrix, assuming it to be negligible. To address this limitation, Sweeney et al. (2020) 

introduced the upscaled discrete fracture matrix (UDFM) model, an alternative to the traditional 

DFN approach, to more accurately capture interactions between fractures and surrounding rock 

matrix. Those authors demonstrated their model applicability to complex heterogeneous fractured 

media and validated it by comparing with numerical and analytical benchmarks.  

In addition to numerical methods, theoretical models were developed to study 𝑘!"" in fracture 

networks and matrix-fracture systems. One of the early models is the power-law averaging 

(Journel et al., 1986; Deutsch, 1989). For instance, Zanon et al. (2002) applied power-law 

averaging to formations constructed of high-permeability sandstone and low-permeability shale 

grids. Those authors found that the power-law exponent (ω) depended on geological properties, 

such as the percentage of sandstone and anisotropy ratio. Years later, de Dreuzy et al. (2001b) 

applied the power-law averaging to permeability in two-dimensional fracture networks with 

apertures lognormally distributed. They reported that the exponent ω varied with network size, 

fracture length power-law distribution exponent, and fracture density.  In another study, 

Mourzenko et al. (2011) proposed a heuristic model based on the asymptotic behavior of 

permeability in three-dimensional fracture networks, consistent with numerical data simulated 
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over a wide range of network densities. However, their model is not applicable to matrix-fracture 

systems where matrix contributes to fluid flow at very low fracture densities (𝜌	 < 	𝜌) where 𝜌 and 

𝜌) are respectively fracture density and its critical value). More recently, following the work of 

Sævik et al. (2013), Ebigbo et al. (2016) evaluated various effective medium-based models, such 

as symmetric and asymmetric self-consistent, differential, and Maxwell, as well as the heuristic 

model of Mourzenko et al. (2011). They numerically simulated effective permeability in three-

dimensional fractured rock masses composed of spheroidal fractures with different aspect ratios. 

In their simulations, Ebigbo et al. (2016) considered both mono- and poly-disperse fracture 

networks and varied the matrix permeability to fracture permeability ratio from 1.2 × 10*- to 

4.8 × 10*.. They found good agreement between theoretical estimations and numerical 

simulations for the self-consistent effective-medium approximation. Ebigbo et al. (2016) also 

reported that the heuristic model of Mourzenko et al. (2011) was accurate, particularly for mono-

disperse networks.  

Percolation-based effective-medium approximation (P-EMA) proposed in physics literature by 

McLachlan (1987;1988) provides another theoretical framework to study fluid flow in two-

component systems. However, to the best of our knowledge, neither has it been applied to matrix-

fracture systems nor has it been attempted to model effective permeability in fractured reservoirs. 

Therefore, the main objectives of this study are to: (1) apply the P-EMA to fit 𝑘!"" as a function 

of 𝜌, (2) investigate how the P-EMA parameters (critical fracture density 𝜌) and scaling exponent 

t) vary with fractures and reservoir properties, (3) study effects of heterogeneity on the 𝑘!"" in the 

matrix-fracture systems, and (4) address the effect of finite size on fractured reservoir and 

simulation of fluid flow through them.  
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Chapter 2 - Numerical Simulations 

For the DFN simulations, we applied a parallelized computational platform called dfnWorks 

developed at the Los Alamos National Laboratory (Hyman et al., 2015). In contrast to the 

continuum model that represent the matrix-fracture system as a single continuous medium, the 

DFN method explicitly represents individual fractures in the network based on their attributes, 

such as length, orientation, and density. However, the DFN method does not account for the 

presence of rock matrix. To overcome this limitation, we utilized the Upscaled Discrete Fracture-

Matrix (UDFM) model developed by Sweeney et al. (2020), which incorporates the effect of rock 

matrix and its contribution to the 𝑘!"". In the following sections, we explain the fracture networks 

and flow simulations in further detail. 

 

 2.1. Fracture network generation 

Within the dfnWorks computational platform, fracture networks are generated using the dfnGen 

package, which utilizes two different libraries: (1) feature rejection algorithm for meshing (FRAM) 

and (2) Los Alamos grid toolbox (LaGriT). Each DFN is constructed so that all features in the 

network, e.g., length of intersections between fractures and distance between lines of intersection 

of a fracture are greater than a user-defined minimum length scale (Hyman et al., 2015). Like most 

DFN modeling techniques, one of the key advantages of the feature rejection algorithm is its 

flexibility in accommodating any statistical survey of a fractured site for fracture network 

generation. This allows the generation of DFNs that are representative of naturally fractured sites.  

Observational data from fractured media in nature show that the probability density function of 

fracture lengths (l) is broad and typically conform to the following truncated power-law probability 

density function (Bonnet et al., 2001; de Dreuzy et al., 2012; Hyman et al., 2018): 
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𝑓(𝑙) = 𝑐/𝑙*0 ,						𝑙#$% ≤ 𝑙 ≤ 𝑙#&'         (1) 

where 𝑙#$%  and 𝑙#&'   are the minimum and maximum fracture lengths, respectively, cl is a constant 

coefficient (a normalization factor), and 𝛼 is the exponent that controls the frequency of fracture 

length and, therefore, the heterogeneity of the network (de Dreuzy et al., 2012). The value of 𝛼 

varies typically between 1 and 3 (Bonnet et al., 2001).  

Within the dfnWorks framework, each fracture has a specific orientation, which is sampled from 

the Fisher distribution 

𝑓(𝛽, 𝜅) = 	 1 234(6)!
!"#$	(')

89234:	(1)
                                                                            (2) 

where 𝛽, which is the mean orientation vector, is the dip angle, 𝜅 is a concentration parameter 

controlling the uniformity and heterogeneity of the fracture orientation. The range of 𝜅 is wide and 

typically varies from 0 to ∞. 𝜅 values closer to zero tend to generate a more uniform distribution 

with all fracture orientations equally likely to be generated, while larger 𝜅 values tend to generate 

fracture orientation clustered around the mean orientation, 𝜙 and 𝛽. 

Following Vermilye and Scholz (1995), we set 𝑙#$% = 0.02 m and 𝑙#&' = 20 m, in accord with the 

experimental observations reported for Florence Lake. Three different 𝛼 values were considered 

(𝛼 = 1.5, 2.0, and 2.5) to cover the experimental range reported by Bonnet et al. (2001). We also 

assumed that fracture length and aperture were correlated. To further generate a polydisperse 

fracture network that matched the experimental data, we set 𝜅 = 0.1. As an example, we 

demonstrate several DFNs generated in this study in Fig. 1.  
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Figure 1. Stochastically generated DFNs with size 𝐿 = 50 m using 2000 fractures. The left plots 

refer to log	(𝑘"/𝑘#) = 2, while the right ones to log	(𝑘"/𝑘#) = 6. 𝛼 = 2.5 in top plots (a) and 

(b), 2 in middle plots (c) and (d), and 1.5 in bottom plots (e) and (f). Network generated at 𝛼 = 

(a) (b) 

(c) (d) 

(e) (f) 
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1.5 appears to have more fractures, and specifically, longer fractures in the network, leading to 

early percolation relative to network generated at 𝛼 = 2.0 and 2.5. 

  

Although in all cases shown in Fig. 1 the number of fractures was 2000, the DFNs corresponding 

to 𝛼 = 2.5 seem to be sparser compared to those corresponding to 𝛼 = 1.5 and 2.0. This is because 

within the dfnWorks framework, isolated clusters are eliminated. As can be seen in Fig. 1, the 

networks generated with 𝛼 = 1.5 tended to have longer fractures and better connected compared 

to the networks with 𝛼 = 2 and 2.5. As Fig. 1 shows, the DFN generated with 𝛼 = 2.5 composed 

of shorter fractures, which ultimately resulted in relatively high percolation threshold because 

more fractures are needed to form a sample spanning cluster percolating the network.   

To minimize uncertainties in the stochastically generated matrix-fracture systems and to obtain 

representative and statistically reliable results, we had multiple realizations. The number of 

realizations varied from one system to another depending on the value of 𝛼 and the system size 

(𝐿). We explain criteria used to determine the number of realizations and detail in the following 

section.  

 

 2.2. Meshing 

We applied an octree-refined continuum mesh (Sweeney et al., 2020) to adequately capture the 

geometrical features of the generated matrix-fracture systems. The generated matrix-fracture 

systems were mapped onto a uniformly discretized hexahedral mesh to account for the presence 

of rock matrix which serve as the background of the mesh. After mapping the DFN onto the 

hexahedral mesh, the mesh was then binarized into fracture and matrix cells with cells intersected 

by fracture tagged “fracture cells” and cells not intersected by fracture tagged “matrix cells”. The 
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resolution of the mesh depends on the proximity to individual fractures within the fracture network. 

Higher mesh resolutions were employed near the fractures in the system which enabled us to 

capture the dynamic processes that occurs between the fractures and the surrounding matrix. The 

octree method utilizes two user-defined parameters: (1) edge length of the original hexahedral 

mesh before refinement (l) and (2) the number of refinement level (r) in the final octree mesh. In 

our simulation setup, 𝑙 was set equal to 𝐿/10 and 𝑟 equal to 2. Sweeney et al. (2020) conducted 

simulations using the UDFM method using three different values of 𝑟 = 1, 2, and 3 and set 𝑙 = 

𝐿/10.  Results from their simulations revealed that the value of 𝑟 is less likely to significantly 

impact 𝑘!"". However, they noted it was an important parameter to consider for solute transport 

problems. Therefore, our choice of 𝑟 = 2 was to reduce the computational cost involved in meshing 

while ensuring more accuracy in 𝑘!"" calculation.  

 

 2.3. Fluid flow 

Following the binarization of the system into fracture and matrix cells, their respective 

permeabilities (i.e., 𝑘" and 𝑘#) were upscaled into their respective cells. The upscaled properties 

were incorporated in the fluid flow simulation, and accordingly the value of 𝑘!"" was determined 

at different 𝜌 values between 0 and 1. Fluid flow was simulated using PFLOTRAN, a parallel 

subsurface flow and reactive transport finite volume code (Lichtner et al., 2015). The PFLOTRAN 

employs the Richards' equation, extensively applied in subsurface hydrology for modeling flow 

under a single phase, variably saturated, isothermal, and steady stay conditions, to compute the 

outlet volumetric flow rate. Pressure boundary conditions at the inlet and outlet was set at 

1.1 × 10< and 1.0 × 10<	𝑃𝑎, respectively. We then numerically invert the Darcy’s equation (Eq. 

(3)) to calculate the 𝑘!"" of individual DFN in the network.  
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𝑞 = 	−𝑘!"" . ∆𝑝 𝐿⁄           (3) 

𝑘!"" =	−𝑞. 𝐿 ∆𝑝⁄           (4) 

where 𝑞 is the Darcy’s flux, calculated by dividing the volumetric flow rate 𝑄, which is computed 

by PFLOTRAN, by the area of the system (𝐿 × 𝐿), ∆𝑝 is the change in pressure from the inflow 

to outflow boundary, and 𝐿 is the system size.  

In this study, the 𝑘# was set equal to 10*+,	𝑚( in accord with shale matrix permeability values 

reported by Best and Katsube (1995) and Wang et al. (2009). Three fracture permeability values 

𝑘" = 10*+(, 10*+8, and 10*+<	𝑚( corresponding to log	(𝑘"/𝑘#) = 2, 4, and 6 were considered. 

These values, 𝑘# and 𝑘", were upscaled in their appropriate cells, i.e., matrix or fracture cell.  

For a given complete simulation, we extracted the value of 𝑘!"" and computed the corresponding 

fracture density (𝜌), i.e., the fraction of volume occupied by fracture within the matrix-fracture 

system to the overall volume of the system, which were subjected to further analyses. The equation 

for fracture density is given by: 

𝜌 = 	𝑣"/𝑣           (5) 

Where 𝑣" is the volume occupied by fracture in the system while 𝑣 is the total volume of the 

system. 

As stated earlier, we conducted iterations of the matrix-fracture system generation and fluid flow 

simulations to obtain statistically reliable results. We started with 10 iterations at each 𝜌, and then 

computed average, variance and 95% confidence intervals (CIs) of the 𝑘!"". The mean 𝑘!"" was 

then plotted against the corresponding mean 𝜌 including the 95% CIs. We added individual 

iteration to the plot, eliminated any iteration that falls outside the 95% CIs from further analyses, 

and calculated the standard deviation of the iterations that fall within the 95% CIs. More iterations 
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were conducted, and the above process is repeated until the standard deviation no longer changed 

with the number of realizations.  

The total number of iterations required to achieve statistically reliable results for each matrix-

fracture system realization is dependent on the level of heterogeneity, which is largely controlled 

by 𝛼 and L. For 𝛼 values of 2.5 and 2.0, a minimum of 10 iterations were conducted for each 𝜌 in 

a complete set of simulations, comprising 6 data points. However, due to the increased 

heterogeneity near the critical fracture density, which is the minimum 𝜌 required for percolation 

to occur within the system, a minimum of 20 iterations were conducted at intermediate fracture 

densities where the transition of 𝑘# to 𝑘" happens. Consequently, a single matrix-fracture system 

realization generated at 𝛼 values of 2.5 and 2.0 and 𝐿	 ≥ 50	𝑚 had a total of at least 80 iterations. 

For smaller values of 𝐿, where we observed an increased heterogeneity, such as 𝐿 = 22.5 and 30 

m, we conducted at least 20 iterations for each data point irrespective of the value of 𝛼. The DFNs 

generated with 𝛼 = 1.5, as discussed earlier, has a higher tendency to generate longer fracture in 

the network, which significantly increased the level of heterogeneity in the matrix-fracture system 

relative to the DFNs generated with 𝛼 = 2.5 and 2.0. Therefore, for 𝛼 = 1.5, we had at least 20 

iterations for each 𝜌 value in a complete set of simulation, and a minimum of 30 iterations were 

conducted around the critical fracture density. In total, we conducted over 5000 simulations for 

different matrix-fracture systems studied here and the summary is detailed in Table 1 below. 
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Table 1. Summary of simulation inputs and the corresponding number of simulations generated. 
𝜶 𝐥𝐨𝐠	(𝒌𝒇 𝒌𝒎⁄ ) 𝑳 (m) 𝐓𝐨𝐭𝐚𝐥	𝐧𝐮𝐦𝐛𝐞𝐫	𝐨𝐟	𝝆 

(range) 

Average 

number of 

iterations for 

each 𝝆 

Total number 

of runs 

1.5 2, 4, 6 22.5, 30, 50, 

and 70 

6 (0 – 1) 30 2160 

2.0 2, 4, 6 22.5, 30, 50, 

and 70 

6 (0 – 1) 20 1440 

2.5 2, 4, 6 22.5, 30, 50, 

and 70 

6 (0 – 1) 20 1440 
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Chapter 3 - Theory 

Percolation-based effective-medium approximation (P-EMA) is an upscaling technique from 

statistical physics originally proposed by McLachlan (1987;1988) for media with low- and high-

conductivity components. It includes percolation theory and effective-medium approximation as 

its special cases (Ghanbarian and Daigle, 2016). Although previously applied to study electrical 

conductivity, thermal conductivity, permeability and Young’s modulus in binary composites 

(Deprez et al., 1988; McLachlan, 2021), its applications to porous rocks and reservoirs have been 

very limited. To the best of our knowledge, the P-EMA has not yet been applied to model the 𝑘!"" 

in matrix-fracture systems.  

Within the P-EMA framework, the relationship between 𝑘!"" and 𝜌 is given by  

(1 − 𝜌)
=+
,
- *=.//

,
-

=+
,
- >?,01212

@=.//

,
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=/
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->?,01212

@=.//

,
-
= 0       (6) 

where 𝜌) is the critical fracture density and t is the scaling exponent. In Eq. (6), 𝑘!"" is implicitly 

explained in terms of 𝜌. Rearranging Eq. (6) gives 𝜌 explicitly as a function of 𝑘!"" as follows 

ρ =  
A=.//

,
- *	=+

,
- BAC2=/

,
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A=/
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,
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       (7) 

Note that for 𝜌	 < 𝜌), 𝑘!"" is mainly controlled by the rock matrix, while for r > 𝜌), 𝑘!"" is 

dominated by the fracture network and its properties. In this study, we fit Eq. (7) to the averaged 

𝜌 − 𝑘!""  curves using the nonlinear least square optimization method, optimized the P-EMA 

model parameters i.e., 𝜌) and 𝑡, and explored the relationship between the matrix-fracture system 

properties and the P-EMA model parameters.  
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Chapter 4 - Results and Discussion 

In this section, we present the results of 𝑘!"" as a function of 𝜌 for different matrix-fracture 

systems, fitting the P-EMA model to the 𝑘!"" – 𝜌 simulations for 36 matrix-fracture systems, 

relationship between the P-EMA model parameters and matrix-fracture system properties, and the 

extension of our results to an infinitely-large fractured reservoirs. 

 

 4.1. Effect of 𝜶 on 𝒌𝒆𝒇𝒇 in matrix-fracture systems 

Fig. 2 shows the behavior of 𝑘!"" as a function of 𝜌 for 𝛼 = 2.5, log;𝑘" 𝑘#⁄ < = 6, and 𝐿 = 50	m. 

As observed, at lower 𝜌 values, 𝑘!"" remains nearly constant and the hydraulic properties of the 

matrix-fracture system are controlled by the rock matrix. At some intermediate fracture density, 

however, fluid finds a conductive pathway through the fracture network as a result of fracture 

connectivity, which results in a significant increase in 𝑘!"". At higher 𝜌 values, the increase in 

𝑘!"" become stable and the 𝑘!"" − 𝜌 curve become flattened toward 𝑘" yielding a sigmoidal shape 

(Fig. 2). This intermediate fracture density corresponds to the percolation threshold; therefore, we 

identified two distinct regions: (1) the matrix-controlled region which is below the percolation 

threshold and (2) the fracture-controlled region which is above the percolation threshold. 
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Figure 2. Effective permeability 𝑘!"" as a function of fracture density 𝜌 alongside fracture 
network generated at each 𝜌 value. The region colored in blue, where we have sparse fracture 
networks, is regarded as the matrix-controlled region, and the region in red, where we have 
denser fracture networks, is the fracture-controlled region.  
 

Fig. 3 shows that for 𝛼 = 1.5 the transition from the matrix-controlled region to the fracture-

dominated one occurred at a lower fracture density 𝜌 compared to 𝛼 = 2.5. Additionally, as 

observed in Fig. 3, the transition from matrix permeability to fracture permeability becomes clearer 

and more significant as the log(𝑘"/𝑘#) value becomes greater.  

Results presented in Fig. 1 confirm that lower 𝛼 values resulted in longer fractures within the 

fracture network, which significantly impacted connectivity and consequently the 𝑘!"". This is 

consistent with the results of Berkowitz et al. (2000) and others who reported that the connectivity 

of fracture networks was dependent on the exponent 𝛼. Accordingly, we expect the lower alpha 

values to have early percolation of the fracture network relatively to fracture network generated at 

higher 𝛼 values.  
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Figure 3. Effective permeability, 𝑘!"", versus fracture density, 𝜌, for (a) log	(𝑘"/𝑘#) = 2, (b) 

log	(𝑘"/𝑘#)  = 4, and (c) log	(𝑘"/𝑘#) = 6 and different 𝛼 values. In all cases, the system size, L 

= 50 m and the matrix permeability  𝑘# = 10*+,	𝑚(. Each data point represents the average over 

multiple iterations and the error bars correspond to one standard deviation. The impact of 𝛼 

appears to be more significant with increasing log	(𝑘"/𝑘#). 

 

Zhu et al. (2021) investigated how geometrical properties of fracture networks, such as length, 

orientation, aperture, and position of fracture centers, affect macro-scale flow properties in shale-

like formations. They represented the fracture network as a graph where individual fracture is a 

node, and used global efficiency, which is the average inverse shortest path length between all 

pairs of nodes in the graph, to measure the network's connectivity. They found that as the fracture 

length power-law distribution exponent (𝛼) increased, the global efficiency of the network 

(a) (b) 

(c) 
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decreased, i.e., the connectivity of the system decreased with increasing values of 𝛼, and more 

fractures were required to achieve percolation. Additionally, they reported that flow rate increased 

as 𝛼 decreased, which is consistent with our results shown in Fig. 3. 

 

 4.2. Effect of 𝐥𝐨𝐠(𝒌𝒇/𝒌𝒎) on 𝒌𝒆𝒇𝒇 in matrix-fracture systems  

In Fig. 4, we show the value of 𝑘!"", averaged over several realizations, as a function of 𝜌 for 

log(𝑘"/𝑘#) = 2, 4, and 6 and 𝛼 = 1.5, 2, and 2.5. Our results clearly indicate that the percolation 

threshold became more significant with increasing value of log	(𝑘" 𝑘#⁄ ), as illustrated in Fig. 4. 

This means that in a connected fractured media, the magnitude at which fracture controls flow is 

dependent on the ratio of fracture to matrix permeability, log	(𝑘" 𝑘#⁄ ). Comparing Figs. 4a, 4b, 

and 4c also shows that such a transition happened at a larger fracture density as the value of 𝛼 

increased from 1.5 (Fig. 3a) to 2.5 (Fig. 3c). 

Our results on percolation threshold being more significant as the value of log	(𝑘" 𝑘#⁄ ) increases 

agree with the results of Hyman et al. (2018) who reported that the magnitude of effective 

permeability increase around the percolation threshold was greater in matrix-fracture systems of 

greater log(𝑘"/𝑘#). Results presented in Fig. 4 are also consistent with those reported by Ebigbo 

et al. (2016) who found that in systems with small perturbations in matrix and fracture permeability 

values, the simulated 𝑘!"" − 𝜌 data exhibited nearly a linear trend with smooth transition from 

matrix to fracture permeability. However, the percolation threshold was more distinctive as the 

perturbation increased. In their study, the ratio of matrix to fracture permeability was observed to 

impact the effect of 𝛼 and 𝐿 on percolation within the matrix-fracture systems. Finally, in 

agreement with Zhu et al. (2021) where they reported that flow rate increases with increasing ratio 
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of matrix and fracture permeability, at 𝜌	 > 	𝜌), 𝑘!"" was observed to increase with increasing 

values of log(𝑘"/𝑘#). 

 

            

     

Figure 4. Effective permeability, 𝑘!"", versus fracture density, 𝜌, for (a) 𝛼 = 1.5, (b) 𝛼 = 2.0, 

and (c) 𝛼 = 2.5 and different log	(𝑘"/𝑘#) values. In all cases, the system size, L = 50 m and the 

matrix permeability  𝑘# = 10*+,	𝑚(. Each data point represents the average over multiple 

iterations and the error bars correspond to one standard deviation.  

 

 4.3. Effect of scale L on 𝒌𝒆𝒇𝒇 in matrix-fracture systems 

Understanding the scale dependence of intrinsic properties of porous media such as permeability 

is important for making inference about behavior of such properties at the global scale from local 

scale simulations. We investigated the scale dependence of 𝑘!"" in matrix-fracture systems by 

plotting 𝑘!"" as a function of 𝜌 for different 𝐿 values (Fig. 5). For a given simulation with 

(a) (b) 

(c) 
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consistent input parameters at different values of 𝐿, at 𝜌 < 	𝜌) we observed that 𝑘!"" remained 

almost the same for 𝐿	= 22.5, 30, 50, and 70 m. At 𝜌 > 	𝜌), we found that lower 𝐿 values exhibited 

higher 𝑘!"" and 𝑘!"" tended to decrease as 𝐿 increased, which is consistent with the findings of 

Lei et al. (2015). de Dreuzy at al. (2001a) also reported similar behavior for DFNs generated at 

𝛼 < 3, consistent with the range of 𝛼 considered in our simulations.  

 

           

       

Figure 5. Effective permeability, 𝑘!"", versus fracture density, 𝜌, for (a) 𝛼 = 1.5, (b) 𝛼 = 2.0, 

and (c) 𝛼 = 2.5 and different L values. In all cases, log	(𝑘"/𝑘#)  = 6 and the matrix permeability  

𝑘# = 10*+,	𝑚(. The critical fracture density tends to increase with increasing 𝐿. Each data point 

represents the average over multiple iterations and the error bars correspond to one standard 

deviation. 

 

(a) (b) 

(c) 
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As observed from Fig. 5, percolation occurred relatively early at low 𝐿 values, and the percolation 

threshold tends to increase with increasing 𝐿, in accord with the finite-size scaling analysis 

(Stauffer and Aharony, 2018) as we discuss later. This observation is consistent for the networks 

generated at 𝛼 values of 1.5, 2.0, and 2.5. However, for 𝛼 = 1.5 (Fig. 5a), the percolation threshold 

for 𝐿 = 30, 50, and 70 m were observed to be very close to one another. A plausible explanation 

for this finding could be as a result of networks generated with 𝛼 value of 1.5 tend to have higher 

frequency of longer fractures as exemplified by Fig. 1, which results in early percolation of the 

network irrespective of the system size. Additionally, it was also noted that at 𝛼 value of 1.5, 

networks generated at 𝐿 = 22.5 m were observed to have a much earlier percolation relative to 

networks generated at 𝐿 = 30, 50, and 70m. We suggested that this observation could be due to the 

fact that the system size, 𝐿 = 22.5 m is closer to the 𝑙#&' defined in our simulation setup, which is 

20 m. This means that for a matrix-fracture system generated at 𝛼 = 1.5, where the 𝐿 is closer to 

the 𝑙#&', there is a higher probability that a single fracture can propagate the system, causing a 

much earlier percolation of the system.  

 

 4.4. Percolation-based effective-medium approximation 

Using the Curve Fitting Toolbox of MATLAB, the P-EMA, Eq. (7), was fit to the 𝜌 − 𝑘!"" 

simulations averaged over various realizations. The optimized values of the P-EMA parameters, 

𝜌) 	and 𝑡, for the different matrix-fracture systems studied here are summarized in Table 2. As an 

example, the P-EMA fits for L = 50 m and different values of log	(𝑘"/𝑘#) and 𝛼 are shown in Fig. 

6.  
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Figure 6. The fit of the P-EMA to the 𝑘!"" − 𝜌 simulations for (a) 𝛼 = 1.5, (b) 𝛼 = 2.0, and (c) 

𝛼 = 2.5 and different log	(𝑘"/𝑘#) values. In all cases the system size 𝐿 = 50 m. The optimized 

parameters of the P-EMA are summarized in Table 1. 

 

The high values of R2 (= 0.99) reported in Table 2 imply that the P-EMA (Eq. 7) fit the data well. 

We observed that the smaller the 𝛼 value the lower the 𝜌), meaning that the lower 𝛼 values resulted 

in early percolation of fracture network. We found the lowest value of 𝜌) in the matrix-fracture 

systems with 𝛼	= 1.5, followed by 𝛼 = 2.0, while the matrix-fracture systems with 𝛼 = 2.5 had the 

highest value of 𝜌). Our results, however, are not consistent with those of de Dreuzy et al. (2000) 

who reported that by increasing 𝛼 the percolation threshold in three-dimensional fracture networks 

decreased. de Dreuzy et al. (2000) stated that such a trend may be attributed to truncation effect 

because in their study elliptical fractures truncated by the sides of system had an internal 

(a) (b) 

(c) 
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characteristic length less than the original one. In addition to that, in their study 𝛼 ranged between 

2.5 and 5, while in our study between 1.5 and 2.5 in accord with the experimental range reported 

for naturally fractured site (Bonnet et al., 2001). Recall that 𝛼 controls the frequency of fracture 

length; the lower the 𝛼 value, the greater the number of longer fractures (Fig. 1). Therefore, the 

correlation between 𝜌) and 𝛼 seems reasonable. 

Scaling exponent, 𝑡, which is the other parameter of the P-EMA model, was observed to decrease 

as the value of 𝛼 increased. For example, the average value of 𝑡 for all matrix-fracture system 

realizations considered when 𝛼 = 1.5 is 2.07, but decreases to 2.02 and 1.85 for 𝛼 = 2.0 and 𝛼 = 

2.5 respectively. Additionally, increasing the system size, 𝐿, was also observed to result in a 

decrease in value of 𝑡. For 𝐿 values of 22.5 m, 30 m, 50 m, and 70 m, the corresponding average 

values of 𝑡 for all matrix-fracture system realizations considered are 2.15, 2.05, 1.87, and 1.84 

respectively. Moreover, our analyses revealed that 𝑡 exhibits an inverse relationship with 

log	(𝑘" 𝑘#⁄ ). The average values of 𝑡 for log	(𝑘" 𝑘#⁄ )	= 2, 4, and 6 are 2.19, 1.92, and 1.83 

respectively for all matrix-fracture system realizations considered. Since log	(𝑘" 𝑘#⁄ ) controls the 

shape of the 𝑘!"" − 𝜌 curve and it is inversely correlated to 𝑡, one may expect that the lower value 

of the scaling exponent 𝑡  results in sharper increase in the 𝑘!"" corresponding to larger contrast 

in matrix and fracture permeabilities.  
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Table 2. The optimized values of the P-EMA model parameters for different matrix-fracture 

systems generated in this study. 𝑘# = 10-18 m2 consistent with shale matrix permeability. 

Reservoir 𝜶 System size 𝑳 (m) 𝐥𝐨𝐠	(𝒌𝒇 𝒌𝒎⁄ ) 𝝆𝒄 𝒕 𝑹𝟐 
1 2.5 22.5 2 0.13 2.33 0.99 
2 2.5 22.5 4 0.11 2.07 0.99 
3 2.5 22.5 6 0.12 1.98 0.99 
4 2.0 22.5 2 0.09 2.39 0.99 
5 2.0 22.5 4 0.07 2.15 0.99 
6 2.0 22.5 6 0.07 2.07 0.99 
7 1.5 22.5 2 0.00 2.43 0.99 
8 1.5 22.5 4 0.00 2.05 0.99 
9 1.5 22.5 6 0.00 1.99 0.99 
10 2.5 30 2 0.16 2.25 0.99 
11 2.5 30 4 0.12 1.97 0.99 
12 2.5 30 6 0.12 1.90 0.99 
13 2.0 30 2 0.09 2.36 0.99 
14 2.0 30 4 0.07 2.04 0.99 
15 2.0 30 6 0.06 1.99 0.99 
16 1.5 30 2 0.06 2.48 0.99 
17 1.5 30 4 0.06 2.04 0.99 
18 1.5 30 6 0.08 1.90 0.99 
19 2.5 50 2 0.26 1.81 0.99 
20 2.5 50 4 0.23 1.65 0.99 
21 2.5 50 6 0.22 1.63 0.99 
22 2.0 50 2 0.17 2.32 0.99 
23 2.0 50 4 0.17 1.81 0.99 
24 2.0 50 6 0.18 1.73 0.99 
25 1.5 50 2 0.06 2.50 0.99 
26 1.5 50 4 0.05 2.09 0.99 
27 1.5 50 6 0.06 2.03 0.99 
28 2.5 70 2 0.28 1.77 0.99 
29 2.5 70 4 0.24 1.64 0.99 
30 2.5 70 6 0.24 1.63 0.99 
31 2.0 70 2 0.22 2.03 0.99 
32 2.0 70 4 0.19 1.77 0.99 
33 2.0 70 6 0.19 1.69 0.99 
34 1.5 70 2 0.13 2.33 0.99 
35 1.5 70 4 0.07 2.12 0.99 
36 1.5 70 6 0.06 2.07 0.99 
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 4.5. Relationships between P-EMA parameters and matrix-fracture system 

properties 

In this section, we further investigated the relationship between the P-EMA model parameters (𝜌) 

and 𝑡) and other matrix-fracture system properties through stepwise multiple-linear regression 

analysis. We should emphasize that our aim here is to better understand statistically which 

properties control variation in 𝜌) and 𝑡 values.  

To establish multiple-linear regression models, two dependent variables, 𝜌) and 𝑡, and several 

independent variables, i.e., 𝛼, 𝐿, log	(𝑘" 𝑘#⁄ ), 𝑙#$% 𝐿⁄ , 𝑙#&' 𝐿⁄ , 𝑘# 𝐿⁄ , V𝑘# 𝐿⁄ , V𝑘#/𝑙#$%, and 

V𝑘#/𝑙#&' were used. We found 

𝜌) = 0.002 + 	0.122𝛼 − 	0.204(𝑙#&' 𝐿⁄ ), R2 = 0.94    (8) 

𝑡 = 	3.044 − 0.218𝛼 − 	0.089 Xlog;𝑘" 𝑘#⁄ <Y − 	0.006𝐿, R2 = 0.83  (9) 

Regression-based results showed that 𝜌) was significantly and statistically linked to 𝛼 and 𝐿 (p-

value of < 0.0001) consistent with our previous results stated earlier. Although positive correlation 

between 𝜌) and 𝛼 was also reported by Mourzenko et al. (2005) for fracture networks with 𝛼 < 3, 

Sahimi and Mukhopadhyay (1996) found an inverse relationship. They, however, studied the scale 

dependence of percolation threshold in networks with long-range correlations. Drawing upon our 

previous analysis of the impact of 𝐿 on 𝑘!"", we found that when holding all other input parameters 

constant, an increase in 𝐿 leads to an observed increase in the percolation threshold within the 

system. This implies that the creation of more fractures is required in larger system configurations 

in order to achieve percolation relative to smaller 𝐿. This supports the results obtained from our 

regression analysis, which confirms that 𝐿 has a significant influence of 𝜌). Specifically, the 

observed increase in the percolation threshold with increasing 𝐿 can be attributed to the fact that 
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larger 𝐿 results in a longer possible path for connectivity to occur, thus necessitating the generation 

of a larger number of fractures for the system to percolate. In contrast, for smaller values of 𝐿, the 

system is simpler and has a shorter possible path for percolation to occur, which means that 

relatively fewer fractures are required for the system to percolate.  

log	(𝑘" 𝑘#⁄ ), however, was observed to have no statistically significant relationship with 𝜌), as 

revealed by a p-value of 0.09, which exceeds the defined level of significance of 0.05. This 

outcome is reasonable given permeability ratio of fracture and rock matrix is a hydraulic property 

of the system and not a geometric property. Geometric properties of the system are only anticipated 

to impact 𝜌). 

Our regression-based results showed that the independent variables 𝛼, log	(𝑘" 𝑘#⁄ ), and 𝐿 

statistically and significantly contributed to the dependent variable 𝑡 (p-value < 0.0001). We also 

found that 𝑡 was negatively correlated to 𝛼, 𝐿, and log	(𝑘" 𝑘#⁄ ) (see Eq. (9)). such dependencies 

suggest that 𝑡 is influenced by geometrical properties of the matrix-fracture system as well as the 

hydraulic properties of the system.  

 

 -Predicting P-EMA parameters 

We applied the developed regression-based model, i.e., Eq. (8) and Eq. (9) to predict 𝜌) and 𝑡 

respectively. We conducted new set of simulations based on outcrop data of a naturally fractured 

site in order to evaluate the model performance on different input data. The summary of the input 

parameters for the simulations alongside the corresponding predicted values of 𝜌) and 𝑡 is 

presented in Table 3. 
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Table 3. Summary of simulation inputs and the corresponding predicted values of 𝜌) and 𝑡. 
Reservoir 𝜶 𝐥𝐨𝐠	(𝒌𝒇 𝒌𝒎⁄ ) 𝑳	(𝒎) 𝒍𝒎𝒊𝒏	(𝒎) 𝒍𝒎𝒂𝒙	(𝒎) Predicted 𝝆𝒄 Predicted 𝒕 

1 1.75 5 100 0.5 13 0.19 1.51 

2 1.75 7 100 0.5 13 0.19 1.33 

3 2.25 5 100 0.5 13 0.25 1.62 

4 2.25 7 100 0.5 13 0.25 1.44 

5 2.83 9 18 1.1 10 0.23 1.52 

6 2.37 9 6 0.3 3 0.19 1.69 

 

 

 Data from the first four rows were obtained from the Culpeper quarry fractured site (Vermiyle 

and Scholz, 1995) and data from the fifth and sixth rows were obtained from the Hornelen1 bed 

(Azizmohammadi and Matthäi, 2017) and Kilve bed (Lei et al., 2015) of the Bristol channel basin. 

The predicted values of 𝜌) and 𝑡 were then inserted in Eq. (7) and used to predict the 𝑘!"" as a 

function of 𝜌. Fig. 7 shows the plot of 𝑘!"" as a function of 𝜌 for the new set of simulations as 

well as the prediction. As observed from Fig. 7, the predictions closely match the simulated 

datapoint with an average 𝑅( of 0.98 and absolute error ranging from 16.45 % to 75.26 % which 

suggests a good performance of the model.  
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Figure 7. Effective permeability 𝑘!"" as a function of fracture density 𝜌. Each plot shows the 
simulated data in circle and prediction in solid black line. 
 

 4.6. Extrapolation to infinitely-large fractured reservoirs 

Modeling fluid flow within the actual size of a matrix-fracture system as observed in nature, which 

may be considered as an infinitely-large medium, would be challenging due to computational 

costs. In this section, we apply concepts of finite-size scaling analysis (Stauffer and Aharony, 

2018), to approximate the value of 𝜌) in fractured reservoirs whose dimensions are infinitely large. 
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We also use an empirical exponential relationship proposed by Matyka et al. (2008) to estimate 

the value of 𝑡 in large matrix-fracture systems.   

 

 - 𝝆𝒄 for infinitely large systems  

Within the finite-size scaling analysis framework, one can explain the scale dependence of 𝜌) as 

follows (Stauffer & Aharony, 2018): 

𝜌)(𝐿) −	𝜌)(𝐿 → ∞) = 𝐶𝐿*
,
9         (10) 

where 𝜌)(𝐿) and 𝜌)(𝐿 → ∞) are the critical fracture densities for a finite- and infinite-sized matrix-

fracture systems, respectively, C is a constant coefficient whose units depends on the system units, 

and 𝜈 is the correlation length exponent equal to 0.88 in three dimensions (Hunt et al., 2014). 

Finite-size scaling analysis has been widely applied in the literature (Sahimi, 2011). For example, 

Ji et al. (2004) let C and 𝜈 to be fitting parameters, fit Eq. (10) to simulations on two-dimensional 

fracture networks and reported C = 0.15 and 𝜈 = 1.27. The latter is slightly less than the universal 

𝜈 value in two dimensions i.e., 1.33 (Hunt et al., 2014). Mourzenko et al. (2011) also applied a 

model similar to Eq. (10) to extrapolate permeability to infinitely large networks. 

Fig. 8 shows 𝜌) as a function of 𝐿*
,
9 and the fit of Eq. (10) to the corresponding data. As can be 

seen, Eq. (10) fit the data well with an average R2 = 0.98. We found that the optimized value of 𝐶, 

reported in Fig. 8, decreased with increasing log	(𝑘" 𝑘#⁄ ). For instance, for log(𝑘" 𝑘#⁄ ) = 2, 4, 

and 6, 𝐶 was respectively 6.93, 6.58, and 6.5 when 𝛼 = 1.5, while 4.60, 3.68, and 3.20 when 𝛼 = 

2.5.   
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Figure 8. Relationship between critical fracture density (𝜌)) and system size (Fitted red line 

indicates the finite-size scaling equation (Eq. 7)). (a) plot generated at 𝛼 = 2.5 and log	(𝑘"/𝑘#) = 

2, (b) plot generated at 𝛼 = 2.5 and log	(𝑘"/𝑘#) = 4, (c) plot generated at 𝛼 = 2.5 and 

(c) (d) 

(e) (f) 

(g) (h) 

(i) 

(a) (b) 
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log	(𝑘"/𝑘#) = 6, (d) plot generated at 𝛼 = 2.0 and log	(𝑘"/𝑘#) = 2, (e) plot generated at 𝛼 = 2.0 

and log	(𝑘"/𝑘#) = 4, (f) plot generated at 𝛼 = 2.0 and log	(𝑘"/𝑘#) = 6, (g) plot generated at 𝛼 = 

1.5 and log	(𝑘"/𝑘#) = 2, (h) plot generated at 𝛼 = 1.5 and log	(𝑘"/𝑘#) = 4, and (i) plot 

generated at 𝛼 = 1.5 and log	(𝑘"/𝑘#) = 6. 

 

The optimized value of 𝜌)(𝐿 → ∞) for all nine matrix-fracture systems is presented in Table 4. 

Similar to our previous 𝜌) results, we found that the value of 𝜌)(𝐿 → ∞) increased with the 

increase of 𝛼. Results tabulated in Table 4 also show that the value of 𝜌)(𝐿 → ∞) in systems with 

the same 𝛼 (particularly 𝛼 = 1.5 and 2) did not change from log(𝑘" 𝑘#⁄ ) = 2 to 6, which means 

that 𝜌)(𝐿 → ∞) is dependent on the value of 𝛼 than log(𝑘" 𝑘#⁄ ). This finding further strengthens 

the outcome of our regression analysis used to explain variability in 𝜌), which found no statistical 

evidence of a relationship between 𝜌) and log(𝑘" 𝑘#⁄ ). 

 

Table 4. Summary of 𝜌) and 𝑡 for infinitely large matrix-fracture systems. 

Reservoir 𝐥𝐨𝐠(𝒌𝒇 𝒌𝒎⁄ ) 𝜶 𝝆𝒄(𝑳	 → 	∞) 𝒕𝒊𝒏𝒇 
1 2 1.5 0.15 2.20 
2 4 1.5 0.13 1.91 
3 6 1.5 0.13 1.84 
4 2 2.0 0.25 2.06 
5 4 2.0 0.24 1.72 
6 6 2.0 0.24 1.60 
7 2 2.5 0.34 1.70 
8 4 2.5 0.30 1.61 
9 6 2.5 0.29 1.60 
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 - 𝒕 for infinitely large systems 

Matyka et al. (2008) proposed an empirical relationship to study the scale dependence of tortuosity 

and determine its value for an infinitely-large medium. Similarly, we applied the following 

exponential relationship to explain the scale dependency of the exponent 𝑡 and extrapolate its value 

for 𝐿 → ∞  

𝑡(𝐿) = 	𝑡$%" + 𝑏exp	(−𝑐𝐿)	 	 	 	 	 	 	 	 (11)	

where b and c are two constant coefficients and 𝑡$%" is the value of 𝑡 for an infinite-sized matrix-

fracture system. In Eq. (11), as 𝐿 approaches infinity, 𝑡 tends to 𝑡$%".   

We plotted 𝑡 against 𝐿 and apply Eq. (11) to fit the data. Results presented in Fig. 9 show that Eq. 

(11) fit the 𝑡 − 𝐿 data well with an average R2 value of 0.99. We also listed the value of 𝑡$%" for 

all nine matrix-fracture systems in Table 4. As can be seen, the value of 𝑡$%" decreased as the value 

of log(𝑘" 𝑘#⁄ ) increased. We also observed that greater 𝛼 values corresponded to smaller 𝑡$%" 

values, which is in well accord with our regression-based results presented in Eq. (9).  

The decreasing trend of 𝑡 with increasing 𝐿 shown in Fig. 9 is consistent with the results of 

Tremblay and Machta (1989) who theoretically demonstrated that the scaling exponent 𝑡 is scale 

dependent and numerically showed that its value decreased as L increased in two and three 

dimensions. 
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Figure 9. The scaling exponent 𝑡 against the system size L for (a) 𝛼 = 2.5 and log	(𝑘"/𝑘#) = 2, 

(b) 𝛼 = 2.5 and log	(𝑘"/𝑘#) = 4, (c) 𝛼 = 2.5 and log	(𝑘"/𝑘#) = 6, (d) 𝛼 = 2.0 and log	(𝑘"/𝑘#) 

= 2, (e) 𝛼 = 2.0 and log	(𝑘"/𝑘#) = 4, (f) 𝛼 = 2.0 and log	(𝑘"/𝑘#) = 6, (g) 𝛼 = 1.5 and 

(c) (d) 

(e) (f) 

(g) (h) 

(i) 

(a) (b) 
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log	(𝑘"/𝑘#) = 2, (h) 𝛼 = 1.5 and log	(𝑘"/𝑘#) = 4, and (i) 𝛼 = 1.5 and log	(𝑘"/𝑘#) = 6. The red 

line represents the fit of Eq. (8) to the data. 

 

 - Estimating the 𝒌𝒆𝒇𝒇 − 𝝆 curve for infinitely-large systems 

To extend our results to infinitely-large systems, we replaced 𝜌) and 𝑡 in Eq. (7) with the calculated 

values of 𝜌)(𝐿	 → 	∞) and 𝑡$%" reported in Table 4 and determined the 𝑘!"" at various 𝜌 values 

via the P-EMA. Results are given in Fig. 10 for 𝛼 = 1.5, 2.0, and 2.5, and log(𝑘"/𝑘#) = 2, 4, and 

6. Fig. 10 also shows the 𝑘!"" − 𝜌 curves corresponding to L = 22.5, 30, 50, and 70 m. As can be 

observed, 𝑘!"" − 𝜌 curves for L = 22.5m, 30m, 50m, 70m, and infinity and log(𝑘"/𝑘#) = 2 are 

almost inseparable (Figs. 10a, 10d, and 10g) meaning that the effect of scale on 𝑘!"" was negligible 

when log(𝑘"/𝑘#) = 2. However, due to higher level of heterogeneity, the influence of scale 

became more substantial as the value of log(𝑘"/𝑘#) increased from 2 to 6, which further reveals 

the impact of log	(𝑘" 𝑘#⁄ ) on scale dependence of 𝑘!"". This means that the greater the 

log(𝑘"/𝑘#) value, the more pronounced the scale dependence of 𝑘!"" in matrix-fracture systems. 

We also found that the value of log(𝑘"/𝑘#) also impacted the shape of the 𝑘!"" − 𝜌 curve. At 

log(𝑘"/𝑘#)	= 2, 𝑘!"" was observed to keep increasing at 𝜌	 ≥ 	𝜌) until 𝑘!"" reaches 𝑘" near 𝜌 =

1, resulting in an increasing concave upward trend. As the value of log(𝑘"/𝑘#) increased to 4 and 

6, the magnitude of increase in 𝑘!"" at 𝜌	 ≥ 	𝜌) was found to start becoming smaller at some 𝜌 

value, typically around 𝜌 > 0.5, until the curve flattens out as 𝑘!"" approaches 𝑘" resulting in a 

sigmoidal shape.  
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Figure 10. Scale dependence of the effective permeability, 𝑘!"", in matrix-fracture systems with 

(a) 𝛼 = 2.5 and log	(𝑘"/𝑘#) = 2, (b) 𝛼 = 2.5 and log	(𝑘"/𝑘#) = 4, (c) 𝛼 = 2.5 and log	(𝑘"/𝑘#) = 

6, (d) 𝛼 = 2.0 and log	(𝑘"/𝑘#) = 2, (e) 𝛼 = 2.0 and log	(𝑘"/𝑘#) = 4, (f) 𝛼 = 2.0 and 

log	(𝑘"/𝑘#) = 6, (g) 𝛼 = 1.5 and log	(𝑘"/𝑘#) = 2, (h) 𝛼 = 1.5 and log	(𝑘"/𝑘#) = 4, and (i) 𝛼 = 

(c) (d) 

(e) (f) 

(g) (h) 

(i) 

(a) (b) 
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1.5 and log	(𝑘"/𝑘#) = 6. The 𝑘!"" − 𝜌 curves corresponding to infinitely-large systems (𝐿	 →

	∞) were determined using the P-EMA and 𝜌)(𝐿 → ∞) and 𝑡$%" values reported in Table 4. 
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Chapter 5 - Conclusions 

In this study, we investigated the effective permeability, 𝑘!"", in the matrix-fracture systems by 

means of numerical simulations and theoretical modeling. We assumed that the fracture length 

distribution followed the truncated power-law probability density function with exponent 𝛼 = 1.5, 

2, and 2.5 and generated nine matrix-fracture systems based on field observations. More 

specifically, we set minimum and maximum fracture lengths equal to 0.02 and 20 m, respectively, 

and considered log(𝑘"/𝑘#) = 2, 4, and 6 (where 𝑘" and 𝑘# are respectively fracture and matrix 

permeability values). To address the effect of scale, four system sizes L = 22.5, 30, 50, and 70 m 

were considered, and, overall, 36 matrix-fracture systems were studied. We numerically simulated 

fluid flow at six fracture densities by solving Richards' equation. The simulations were iterated at 

least 10 times at each fracture density with more than 5000 iterations in total. The simulated 𝑘!"" −

𝜌 curves were then averaged and fit by the percolation-based effective-medium approximation (P-

EMA) and its parameters, 𝜌) (critical fracture density) and 𝑡 (scaling exponent), were optimized. 

Results demonstrated that both 𝜌) and 𝑡 were scale dependent. We also found that the effect of 

scale was more significant in systems with greater log(𝑘"/𝑘#) values (= 4 and 6). Our numerical 

simulations indicated that the P-EMA parameters 𝜌) and 𝑡 depended on the matrix-fracture 

characteristics, such as 𝛼, log(𝑘"/𝑘#), maximum fracture length (𝑙#&'), and system size (L). 

Using the stepwise multiple-linear regression analysis, we developed models that linked 𝜌)  and 𝑡 

to other matrix-fracture properties. We found good performance of the regression-based model to 

predict 𝜌) and 𝑡 for different realization of matrix-fracture systems. We also extended our 

simulations to infinitely-large fractured reservoirs by determining the values of 𝜌) and 𝑡 at 𝐿 → ∞.   
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Appendix A - Discrete Fracture Network (DFN) generation script  

/====================================================================

========== 

//Gereral Options & Fracture Network Parameters:  

 

stopCondition: 0 

    /* 0: stop once nPoly fractures are accepted (Defined below) 

       1: stop once all family's p32 values are equal or greater than the families 

                   target p32 values (defined in stochastic family sections) 

    */              

 

nPoly: 15000      /* nPoly means number of fractures defined */ 

     /* Used when stopCondition = 0 

           Total number of fractures you would like to have  

            in the domain you defined. The program will complete  

            once you have nPoly number of fractures,  

            maxPoly number of polygon/fracture rejections,  

            rejPoly number of rejections in a row, or reach a  

            specified fracture cluster size if using  

            stoppingParameter = -largestSize  */ 

 

 

outputAllRadii: 0   

/* 0: Do not output all radii file. 

   1: Include file of all raddii (acepted+rejected fractures) 

      in output files. 

*/ 

                       

 

domainSize: {70,70,70}  
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     /* Mandatory Parameter. 

        Creates a domain with dimension x*y*z centered at the origin.*/ 

 

numOfLayers: 0    //number of layers 

 

 

layers:  

{-500,0} 

{0,500} 

 

/*  Layers need to be listed line by line 

    Format: {minZ, maxZ} 

     

    The first layer listed is layer 1, the second is layer 2, etc 

    Stochastic families can be assigned to theses layers (see stochastic 

    shape familiy section)  

*/    

 

 

numOfRegions: 0 // Number of regions 

regions:  

{} 

 

/*  Regions need to be listed line by line 

    Format: {minX, maxX, minY, maxY, minZ, maxZ} 

     

    The first region listed is region 1, the second is region 2, etc 

    Stochastic families can be assigned to theses layers (see stochastic 

    shape family section)  

*/    
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orientationOption: 0  

/* Fracture Orientation Option 

    0 : Spherical Coordinates 

    1 : Trend / Plunge  

    2 : Dip / Strike  

*/ 

 

 

 

 

h: 0.050 

  /* Minimum fracture length scale(meters) 

    Any fracture with a feature, such as and intersection, of less than h will be rejected. */ 

 

    

//====================================================================

======// 

/* Fracture Network Parameters:                                             */ 

 

tripleIntersections: 1 

/* Options:     0: Off 

                1: On    */ 

 

printRejectReasons: 0 

/* Useful in debugging,  

   This option will print all fracture rejection reasons as they occur. 

        0: disable 

        1: print all rejection reasons to screen 

*/ 
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visualizationMode: 1 

/* Options: 0 or 1  

   Used during meshing:  

   0: creates a fine mesh, according to h parameter; 

   1: produce only first round of triangulations. In this case no  

   modeling of flow and transport is possible. */  

 

seed: 92731535 

    //Seed for random generator.  

         

 

domainSizeIncrease: {0,0,0}  

          //temporary size increase for inserting fracture centers outside domain 

          //increases the entire width by this ammount. So, {1,1,1} will increase 

          //the domain by adding .5 to the +x, and subbtracting .5 to the -x, etc 

 

 

keepOnlyLargestCluster: 0 

    /* 0 = Keep any clusters which connects the specified  

           boundary faces in boundaryFaces option below 

        

       1 = Keep only the largest cluster which connects  

           the specified boundary faces in boundaryFaces option below 

    */ 

 

ignoreBoundaryFaces: 1   

/* 

     0 = use boundaryFaces option below  

 

     1 = ignore boundaryFaces option and keep all clusters and 

     will still remove fractures with no intersections                
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*/ 

      

           

boundaryFaces: {1,1,0,0,0,0} 

/*  DFN will only keep clusters with connections to domain boundaries which are set to 1: 

 

    boundaryFaces[0] = +X domain boundary 

    boundaryFaces[1] = -X domain boundary 

    boundaryFaces[2] = +Y domain boundary 

    boundaryFaces[3] = -Y domain boundary 

    boundaryFaces[4] = +Z domain boundary 

    boundaryFaces[5] = -Z domain boundary     

     

    Be sure to set ignoreBoundaryFaces to 0 when using this feature.      

*/ 

                           

 

rejectsPerFracture: 10  /*If fracture is rejected, it will be re-translated to a new 

                         position this number of times.  

                          

                         This helps hit distribution targets for stochastic families  

                         (Set to 1 to ignore this feature)    */ 

 

 

 

 

 

//====================================================================

======= 

//                  Shape and Probability Parameters 
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//====================================================================

======= 

 

//user rectangles and user Ellipses defined in their cooresponding files 

 

famProb: {.5,.5}  

/* Probability of occurrence of each family of randomly distrubuted rectangles 

   and ellipses. 

   User-ellipses and user-rectangles insertion will be attempted with 100%  

   likelihood, but with possability they may be rejected. 

   The famProb elements should add up to 1.0 (for %100). 

   The probabilities are listed in order of families starting with all stochastic 

   ellipses, and then all stochastic rectangles. 

    

   For example:  

        If  then there are two ellipse families, each with probabiliy .3,  

        and two rectangle families, each with probabiliy .2, famProb will be: 

        famProb: {.3,.3,.2,.2} Notice: famProb elements add to 1          

*/ 

  

  

  

  

/*===================================================================

========*/ 

//====================================================================

======= 

//                      Elliptical Fracture Options                                      

//      NOTE: Number of elements must match number of ellipse families   

//            (first number in nShape input parameter)                          
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//====================================================================

======= 

/*===================================================================

========*/ 

 

//Number of ellipse families 

nFamEll: 0 

    //Having this option = 0 will ignore all rectangle family variables 

 

eLayer: {0,0} 

    /* Defines which domain the family belongs to. 

     Layer 0 is the entire domain. 

     Layers numbered > 0 corresponds to layers defined above 

     1 corresponds to the first layer listed, 2 is the next layer listed, etc */ 

 

eRegion: {0,0} 

    /* Defines which domain the family belongs to. 

     Region 0 is the entire domain. 

     Regions numbered > 0 corresponds to layers defined above 

     1 corresponds to the first region listed, 2 is the next region listed, etc */ 

 

 

//edist is a mandatory parameter if using statistically generated ellipses  

edistr: {2,3}   /* Ellipse statistical distribution options: 

                      1 - lognormal distribution 

                      2 - truncated power law distribution    

                      3 - exponential distribution 

                      4 - constant */ 

                                                                                        

                       

ebetaDistribution: {1,1}   /* Beta is the rotation around the polygon's normal 
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                    vector, with the polygon centered on x-y plane at the orgin  

                     

                    0 - uniform distribution [0, 2PI]     

                    1 - constant angle (specefied below by "ebeta")    */                 

     

     

e_p32Targets: {.1,.1}  

/* Elliptical families target fracture intensity per family. 

When using stopCondition = 1 (defined at the top of the input file), families will  

be inserted untill the families desired fracture intensity has been reached.  

Once all families desired fracture intensity has been met, fracture generation will  

be complete. 

*/                       

                       

//====================================================================

======= 

// Parameters used by all stochastic ellipse families  

// Mandatory Parameters if using statistically generated ellipses   

 

easpect: {1,1}  /* Aspect ratio. Used for lognormal and truncated  

                    power law distribution. */ 

 

enumPoints: {12, 12} /*Number of vertices used in creating each elliptical  

                           fracture family. Number of elements must match number  

                           of ellipse families (first number in nShape) */ 

 

eAngleOption: 0     /* All angles for ellipses:  

                       0 - degrees 

                       0 - Radians (Must use numerical value for PI) */ 

                         

etheta: {-45, 45} /*Ellipse fracture orientation. 
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                     The angle the normal vector makes with the z-axis */ 

 

ephi: {0,0}   /* Ellipse fracture orientation. 

                    The angle the projection of the normal onto the x-y plane 

                    makes with the x-axis */ 

 

ebeta: {0, 0}   /* rotation around the normal vector */ 

 

 

ekappa: {8,8}  /*Parameter for the fisher distribnShaprutions. The bigger, the more  

                        similar (less diverging) are the elliptical familiy's 

                        normal vectors */                 

 

//====================================================================

======= 

// Options Specific For Ellipse Lognormal Distribution (edistr=1):  

// Mandatory Parameters if using ellispes with lognormal distribution  

 

//          NOTE: Number of elements must match number of 

//                ellipse families (first number in nShape) 

 

eLogMean: {2}  //Mean value For Lognormal Distribution.        

                

eLogMax: {100} 

eLogMin: {1} 

 

esd: {.5} // Standard deviation for lognormal distributions of ellipses 

 

//====================================================================

======= 

//     Options Specific For Ellipse Exponential Distribution (edistr=3):  
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//     Mandatory Parameters if using ellispes with exponential distribution  

 

 

eExpMean: {2}  //Mean value for Exponential  Distribution      

eExpMax: {3}  //Mean value for Exponential  Distribution      

eExpMin: {1}  //Mean value for Exponential  Distribution      

 

//====================================================================

======= 

//    Options Specific For Constant Size of ellipses (edistr=4): 

 

econst: {10, 10, 10}  // Constant radius, defined per family      

                

//====================================================================

======= 

// Options Specific For Ellipse Truncated Power-Law Distribution (edistr=2) 

// Mandatory Parameters if using ellipses with truncated power-law dist.  

 

// NOTE: Number of elements must match number  

//       of ellipse families (first number in nShape) 

 

emin: {1} // Minimum radius for each ellipse family.  

             // For power law distributions.  

 

emax: {6}  // Maximum radius for each ellipse family. 

                  // For power law distributions.  

                     

ealpha: {2.4} // Alpha. Used in truncated power-law  

                        // distribution calculation 
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/*===================================================================

===============*/ 

/*===================================================================

===============*/ 

/*                             Rctangular Fractures Options                         */ 

/* NOTE: Number of elements must match number of rectangle families                 */ 

/*       (second number in nShape parameter)                                        */ 

/*===================================================================

===============*/ 

/*===================================================================

===============*/ 

 

//Number of rectangle families 

nFamRect: 0 

    //Having this option = 0 will ignore all rectangle family variables 

 

 

rLayer: {0,0} 

    /* Defines which domain the family belongs to. 

     Layer 0 is the entire domain. 

     Layers numbered > 0 corresponds to layers defined above 

     1 corresponds to the first layer listed, 2 is the next layer listed, etc */ 

 

rRegion: {} 

    /* Defines which domain the family belongs to. 

     Region 0 is the entire domain. 

     Regions numbered > 0 correspond to layers defined above 

     1 corresponds to the first region listed, 2 is the next region listed, etc */ 
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/*rdist is a mandatory parameter if using statistically generated rectangles */ 

rdistr: {2,3}   /*  Rectangle statistical distribution options: 

                        1 - lognormal distribution 

                        2 - truncated power law distribution  

                        3 - exponential distribution 

                        4 - constant */ 

 

rbetaDistribution: {1,1}   /* Beta is the rotation/twist about the z axis 

                    with the polygon centered on x-y plane at the origin  

                    before rotation into 3d space 

                     

                    0 - uniform distribution [0, 2PI]     

                    1 - constant angle (specified below by "rbeta") 

                     

                */                                                  

                 

r_p32Targets: {.1,.1}  

/* Rectangle families target fracture intensity per family. 

When using stopCondition = 1 (defined at the top of the input file), families will  

be inserted until the families desired fracture intensity has been reached.  

Once all families desired fracture intensity has been met, fracture generation will  

be complete. 

*/       

                  

//====================================================================

========  

// Parameters used by all stochastic rectangle families  

// Mandatory Parameters if using statistically generated rectangles    
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raspect: {1,1}  /* Aspect ratio */ 

  

rAngleOption: 0     /* All angles for rectangles:  

                       0 - degrees 

                       1 - radians (must be numerical value, cannot use "Pi") */ 

  

rtheta: {-45,45} /*Rectangle fracture orientation. 

                          The angle the normal vector makes with the z-axis */ 

 

rphi: {0,45} /* Rectangle fracture orientation. 

                The angle the projection of the normal onto the x-y 

                plane makes with the x-axis */ 

       

rbeta: {0,0}   /* rotation around the normal vector */ 

 

rkappa: {8,8}  /*Parameter for the fisher distributions. The bigger,  

                              the more similar (less diverging) are the rectangle  

                              familiy's normal vectors  */ 

 

//====================================================================

========= 

// Options Specific For Rectangle Lognormal Distribution (rdistr=1): 

// Mandatory Parameters if using rectangles with lognormal distribution  

 

rLogMean: {1.6}   /*For Lognormal Distribution.  

                    Mean radius (1/2 rectangle length) in  

                    lognormal distribution for rectangles. */ 

                    

 

rLogMax: {100} 
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rLogMin: {1} 

 

rsd: {.4}     /* Standard deviation for lognormal distributions of  

                      rectangles */ 

 

//====================================================================

========= 

// Options Specific For Rectangle Truncated Power-Law Distribution (rdistr=2):  

// Mandatory Parameters if using rectangles with power-law distribution  

 

 rmin: {1,1}         /* Minimum radius for each rectangle family.  

                                 For power law distributions. */ 

 

 rmax: {6,5}   /* Maximum radius for each rectangle family. 

                          For power law distributions. */ 

 

 ralpha: {2.5}   // Alpha. Used in truncated power-law  

                     // distribution calculation 

 

 

/*===================================================================

========*/ 

/* Options Specific For Rectangle Exponential Distribution (edistr=3):       */ 

/* Mandatory Parameters if using rectangules with exponential distribution   */ 

 

rExpMean: {2}  //Mean value for Exponential  Distribution 

rExpMax: {100} 

rExpMin: {1} 

 

/*===================================================================

========*/ 
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/* Options Specific For Constant Size of rectangles (edistr=4):              */ 

 

rconst: {4,4}  // Constant radius, defined per rectangular family        

                

/*===================================================================

========*/ 

/*===================================================================

========*/ 

/* User-Specified Ellipses                                                   */ 

/* Mandatory Parameters if using user-ellipses                               */ 

/* NOTE: Number of elements must match number of user-ellipse families       */ 

/*(third number in nShape parameter)                                         */ 

/*===================================================================

========*/ 

/* NOTE: Only one user-ellipse is placed into the domain per defined  

         user-ellipse, with possibility of being rejected  */ 

 

    

userEllipsesOnOff: 0    //0 - User Ellipses off 

                        //1 - User Ellipses on 

 

UserEll_Input_File_Path: ./TestCases/test/uEllInput.dat 

 

/*===================================================================

========*/ 

/*===================================================================

========*/ 

/*  User-Specified Ellipses                                                  */ 

/*  Mandatory Parameters if using user-ellipses                              */ 

/*  NOTE: Number of elements must match number of user-ellipse families.     */ 

/*  NOTE: Only one user-ellipse is placed into the domain per defined        */ 
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/*        user-ellipse, with possibility of being rejected                   */ 

/*===================================================================

========*/ 

/*===================================================================

========*/ 

 

userEllByCoord: 0 

/*  0 - User ellipses defined by coordinates off 

    1 - User ellipses defined by coordinates on 

*/ 

 

EllByCoord_Input_File_Path: 

/home/jharrod/GitProjects/DFNGen/DFNC++Version/inputFiles/userPolygons/ellCoords.dat 

 

 

 

/*===================================================================

========*/ 

/* User-Specified Rectangles                                                 */ 

/* Mandatory Parameters if using user-rectangles                             */ 

/* NOTE: Number of elements must match number of user-ellipse families       */ 

/* (fourth number in nShape parameter)                                       */ 

/*===================================================================

========*/ 

/* NOTE: Only one user-rectangle is placed into the domain per defined  

         user-rectangle, with possibility of being rejected  */ 

          

 

userRectanglesOnOff: 1    //0 - User Rectangles off 

                        //1 - User Rectangles on 
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UserRect_Input_File_Path: /Users/jhyman/src/dfnworks-

main/examples/octree/define_4_user_rects.dat  

 

/*===================================================================

========*/ 

/* If you would like to input user specified rectangles according to their 

  coordinates, you can use the parameter userDefCoordRec. In that case, all         

  of the user specified rectangles will have to be according to coordinates. 

*/ 

 

userRecByCoord: 0 

//  0 - user defined rectangles not used 

//  1 - user defined rectangles used and defined by input file: 

 

RectByCoord_Input_File_Path: ./inputFiles/userPolygons/rectCoords.dat 

 

 

/*WARNING: userDefCoordRec can cause LaGriT errors because the polygon  

vertices are not put in clockwise or counter-clockwise order. 

If errors (Usualy seg fualt during meshing if using LaGriT),  

try to reorder the points till u get it right. 

Also, coordinates must be co-planar */ 

 

/*===================================================================

========*/ 

// Aperture [m] 

/* Mandatory parameter, and can be specified in several ways: 

- 1)meanAperture and stdAperture for using LogNormal distribution. 

- 2)apertureFromTransmissivity, first transmissivity is defined, and then,  

  using a cubic law, the aperture is calculated; 

- 3)constantAperture, all fractures, regardless of their size, will have  
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  the same aperture value; 

- 4)lengthCorrelatedAperture, aperture is defined as a function of fracture size*/ 

 

//NOTE: Only one aperture type may be used at a time  

 

aperture: 3  //choise of aperture option described above 

 

//(**** 1)meanAperture and stdAperture for using LogNormal distribution.********) 

meanAperture:  -3 /*Mean value for aperture using   

                                   normal distribution */ 

stdAperture: 0.8  //Standard deviation      

 

/*(****** 2)apertureFromTransmissivity, first transmissivity is defined,  

  and then, using a cubic law, the aperture is calculated;***************/ 

apertureFromTransmissivity: {1.6e-9, 0.8} 

    /* Transmissivity is calculated as transmissivity = F*R^k, 

       where F is a first element in aperturefromTransmissivity, 

       k is a second element and R is a mean radius of a polygon.  

       Aperture is calculated according to cubic law as  

       b=(transmissivity*12)^1/3 */ 

        

/*(****** 3)constantAperture, all fractures, regardless of their size,  

   will have the same aperture value;    **********************************/ 

       

constantAperture: 0.00125  //Sets constant aperture for all fractures  

 

/*(******** 4)lengthCorrelatedAperture, aperture is defined as a function of  

       fracture size *******************/ 

        

lengthCorrelatedAperture: {5e-5, 0.5} 

    /*Length Correlated Aperture Option: 
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      Aperture is calculated by: b=F*R^k, 

      where F is a first element in lengthCorrelatedAperture,  

      k is a second element and R is a mean radius of a polygon.*/ 

 

 

//====================================================================

======== 

//Permeability  

/* Options: 

    0: Permeability of each fracture is a function of fracture aperture,  

     given by k=(b^2)/12, where b is an aperture and k is permeability 

    1: Constant permeabilty for all fractures */ 

 

permOption: 1  //See above for options 

 

constantPermeability: 1e-12  //Constant permeability for all fractures  

 

//====================================================================

========= 

 

 

// TODO: confirm with JDH  

outputAcceptedRadiiPerFamily:1 /* output radii files for each 

                              family containing the final radii chosen */ 

disableFram:0 /* 0 if FRAM (feature rejection algorithm for meshing) 

                 is disabled, 1 otherwise */ 

outputFinalRadiiPerFamily:1 /* output radii files 

                                 for each family containing the final radii chosen */ 

insertUserRectanglesFirst:1 /* 1 if user defined 

                               rectangles should be inserted first, 0 otherwise */ 

forceLargeFractures:0 /* Force large fractures (fractures that X)  to be included in the network */ 
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radiiListIncrease: 0.1 /* Increase the length of the radii list by this percentage */ 

removeFracturesLessThan: 0 /*Used to change the lower cutoff of fracture size*/ 

  

 

 

keepIsolatedFractures: 0  

/*  0 - Remove any isolated fracture (not clusters) 

    1 - Keep all fractures in the domain 

*/ 

 

 

/*===================================================================

========*/ 

/*===================================================================

========*/ 

/*                                                                           */ 

/*  User Polygon Defined By Coordinates                                   */ 

/*                                                                           */ 

/*===================================================================

========*/ 

/*===================================================================

========*/ 

 

userPolygonByCoord: 0 

/*  0 - User defined polygon by coordinates off 

    1 - User defined polygon by coordinates on 

*/ 

 

PolygonByCoord_Input_File_Path: ./ 

 

/*WARNING: userDefCoordRec can cause LaGriT errors because the polygon  
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vertices are not put in clockwise or counter-clockwise order. 

If errors (Usualy seg fualt during meshing if using LaGriT),  

try to reorder the points till u get it right. 

Also, coordinates must be co-planar */ 
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Appendix B -  Fluid flow simulation script 

 

# Sept 12, 2018 

# Matthew Sweeney, Satish Karra, Jeffrey Hyman (LANL) 

#================================================ 

 

SIMULATION 

  SIMULATION_TYPE SUBSURFACE 

  PROCESS_MODELS 

    SUBSURFACE_FLOW flow 

      MODE RICHARDS 

    / 

  / 

END 

SUBSURFACE 

 

 

NUMERICAL_METHODS FLOW 

  LINEAR_SOLVER 

    SOLVER DIRECT 

  / 

END 

 

 

#=========================== discretization 

=================================== 

GRID 

  TYPE unstructured_explicit full_mesh.uge  

  GRAVITY 0.d0 0.d0 0.d0 

END 
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#=========================== fluid properties 

================================= 

FLUID_PROPERTY 

  DIFFUSION_COEFFICIENT 1.d-12 

END 

 

DATASET Permeability 

  FILENAME mesh_permeability.h5 

END 

 

DATASET Porosity 

  FILENAME mesh_porosity.h5 

END 

 

#=========================== material properties 

============================== 

MATERIAL_PROPERTY matrix 

  ID 1  

  POROSITY DATASET Porosity 

  TORTUOSITY 0.5d0 

  CHARACTERISTIC_CURVES default 

  PERMEABILITY 

    DATASET Permeability 

  / 

END 

 

MATERIAL_PROPERTY fracture 

  ID 2  

  POROSITY DATASET Porosity 
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  TORTUOSITY 0.5d0 

  CHARACTERISTIC_CURVES default 

  PERMEABILITY 

    DATASET Permeability 

  / 

END 

 

#=========================== characteristic curves 

============================ 

CHARACTERISTIC_CURVES default 

  SATURATION_FUNCTION VAN_GENUCHTEN 

    M 0.5d0 

    ALPHA  1.d-4 

    LIQUID_RESIDUAL_SATURATION 0.1d0 

    MAX_CAPILLARY_PRESSURE 1.d8 

  / 

  PERMEABILITY_FUNCTION MUALEM_VG_LIQ 

    M 0.5d0 

    LIQUID_RESIDUAL_SATURATION 0.1d0 

  / 

END 

 

#=========================== output options 

=================================== 

OUTPUT 

#  PERIODIC TIME 0.00002d0 second 

#  FORMAT TECPLOT BLOCK 

  PRINT_PRIMAL_GRID 

  FORMAT VTK 

  MASS_FLOWRATE 

  MASS_BALANCE 
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  VARIABLES 

    LIQUID_PRESSURE 

    PERMEABILITY_X 

    PERMEABILITY_Y 

    PERMEABILITY_Z 

    POROSITY 

  / 

END 

 

#=========================== times 

============================================ 

TIME 

  INITIAL_TIMESTEP_SIZE  1.d-8 s 

  FINAL_TIME 100000.0d0 s 

  MAXIMUM_TIMESTEP_SIZE 100000.0d0 s 

  STEADY_STATE 

END 

 

#=========================== regions 

========================================== 

REGION All 

  COORDINATES 

    -5.d20 -5.d20 -5.d20 

    5.d20 5.d20 5.d20 

  / 

END 

 

REGION inflow 

  FILE pboundary_left_w.ex 

END 
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REGION outflow 

  FILE pboundary_right_e.ex 

END 

 

 

#=========================== flow conditions 

================================== 

FLOW_CONDITION initial 

  TYPE 

     PRESSURE dirichlet  

  / 

  PRESSURE 1.01325d6 

END 

 

 

FLOW_CONDITION outflow  

  TYPE  

     PRESSURE dirichlet 

  / 

  PRESSURE 1.d6 

END 

 

FLOW_CONDITION inflow 

  TYPE 

    PRESSURE dirichlet 

  / 

  PRESSURE 1.1d6 

END 

 

#=========================== condition couplers 

=============================== 
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# initial condition 

INITIAL_CONDITION 

  FLOW_CONDITION initial 

  REGION All 

END 

 

BOUNDARY_CONDITION INFLOW  

  FLOW_CONDITION inflow 

  REGION inflow 

END 

 

BOUNDARY_CONDITION OUTFLOW 

  FLOW_CONDITION outflow 

  REGION outflow 

END 

 

#=========================== stratigraphy couplers 

============================ 

STRATA 

  FILE materials.h5 

END 

 

END_SUBSURFACE 
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Appendix C -  Script for upscaling effective permeability  𝒌𝒆𝒇𝒇 

 

""" 

.. file:: run_fehm.py 

   :synopsis: run file for dfnWorks  

   :version: 1.0 

   :maintainer: Jeffrey Hyman, Carl Gable 

.. moduleauthor:: Jeffrey Hyman <jhyman@lanl.gov> 

 

""" 

import os  

from pydfnworks import *  

import networkx as nx 

import numpy as np 

from h5py import * 

 

def set_fracture_perm(mat_perm, frac_perm): 

 

   fracs = np.genfromtxt("tag_frac.dat").astype(int) 

   n = len(fracs) 

 

   perm = mat_perm*np.ones(n) 

   idx = np.where(fracs > 0) 

   perm[idx] = frac_perm 

 

   filename = 'materials.h5' 

   h5file = File(filename,mode='w') 

 

   # create integer array for cell ids 

   iarray = np.arange(n,dtype='i4') 
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   # convert to 1-based 

   iarray[:] += 1 

   dataset_name = 'Cell Ids' 

   h5dset = h5file.create_dataset(dataset_name, data=iarray) 

 

   dataset_name = 'Permeability' 

   h5dset = h5file.create_dataset(dataset_name, data=perm) 

 

   h5file.close() 

 

 

def check_percolation(): 

   G = DFN.create_graph("fracture","left","right") 

   with open("percolation.dat","w") as fp: 

      if (nx.has_path(G,'s','t')): 

         fp.write("1") 

         print("network connects boundaries") 

      else: 

         fp.write("0") 

         print("network does not connects boundaries") 

 

 

# Parameters to varry 

mat_perm = 1e-16 

mat_por = 0.1 

frac_perm = 1e-12 

l = 0.1 

orl = 3 

 

# these need to match your pflotran file 

inflow_pressure = 2e6 
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outflow_pressure = 1e6 

boundary_file = "pboundary_left_w.ex" 

direction = "x" 

 

## Create DFN 

DFN = create_dfn() 

DFN.make_working_directory() 

DFN.check_input() 

DFN.create_network() 

check_percolation() 

DFN.mesh_network(visual_mode=True) 

 

# Mesh netork 

DFN.set_flow_solver("PFLOTRAN") 

DFN.inp_file = "octree_dfn.inp" 

 

DFN.map_to_continuum(l,orl) 

DFN.upscale(mat_perm,mat_por) 

 

# Run flow. Uses a direct solve. 

DFN.ncpu = 1 

DFN.zone2ex(uge_file='full_mesh.uge',zone_file='all') 

DFN.pflotran() 

DFN.parse_pflotran_vtk_python() 

DFN.pflotran_cleanup() 

DFN.effective_perm(inflow_pressure, outflow_pressure, boundary_file, direction) 
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Appendix D - Script for automating simulation 

import numpy as np 

param1 = ['10','30','50','70','120','200']  # === nPoly to vary 

param2 = ['1e-13','1e-11']    # === permeability ratio to vary 

# param3 = list(np.arange(18)+1) 

 

# funtion to read the simulation input files 

def open_note(filename): 

    with open(filename) as f: 

        lines_0 = f.readlines() 

    f.close() 

    return(lines_0) 

 

# Define simulation input files to automate 

f1 = 'gen_4_user_rectangles.dat' 

f2 = 'run_eff_perm.py' 

f3 = 'octree_run_file.txt' 

 

#  Iterate through each parameter to vary and generate multiple runs 

num = 0 

for i in range(6): 

    lines_1 = [] 

    lines_1 = open_note(f1) 

    nPoly = lines_1[9] 

    nPoly_edited = nPoly.replace(nPoly[7:-1],param1[i]) 

    lines_1[9] = nPoly_edited 

    for j in range(2): 

        lines_2 = [] 

        lines_2 = open_note(f2) 

        kf = lines_2[54] 
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        kf_edited = kf.replace(kf[12:17],param2[j]) 

        lines_2[54] = kf_edited 

         

        lines_3 = [] 

        lines_3 = open_note(f3) 

         

    num = num+1 

    f_1 = 'gen_4_user_rectangles_' + str(num) + '.dat' 

    f_2 = 'run_eff_perm_' + str(num) + '.py' 

#         f_3 = 'octree_run_file_' + str(num) + '.txt' 

         

    textfile_1 = open(f_1,'w') 

    for element in lines_1: 

        textfile_1.write(element) 

    textfile_1.close() 

         

    textfile_2 = open(f_2,'w') 

    for element in lines_2: 

        textfile_2.write(element) 

    textfile_2.close() 

         

    textfile_3 = open(f_3,'w') 

    for element in lines_3: 

        textfile_3.write(element) 

    textfile_3.close() 

         

         

# Loop for automating octree run files 

num = 0 

for i in range(12): 

    num+=1 
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    lines_3 = [] 

    lines_3 = open_note(f3) 

    line_1 = lines_3[0] 

    line_1_edited = 'dfnGen 

/dfnWorks/work/sim_3/L_6/gen_4_user_rectangles_'+str(num)+'.dat\n' 

    lines_3[0] = line_1_edited 

     

    line_2 = lines_3[1] 

    line_2_edited = 'dfnFlow /dfnWorks/work/sim_3/L_6/UDFM_explicit.in\n' 

    lines_3[1] = line_2_edited 

     

    f_3 = 'octree_run_file_' + str(num) + '.txt' 

    textfile_3 = open(f_3,'w') 

    for element in lines_3: 

        textfile_3.write(element) 

    textfile_3.close() 

     

# Iterate notes file === command line for running simulation 

num = 0 

 

a = 'python run_eff_perm'  

b = '.py -name /dfnWorks/work/sim_3/L_6/run'  

c = ' -input octree_run_file_'  

d = '.txt -ncpu 10' 

 

for i in range(12):  

    num = num+1  

    notes = a+str(num) + b+str(num) + c+str(num) +d  

    print(notes) 
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Appendix E - Script for extracting fracture density (𝝆) 

import numpy as np 

import pandas as pd 

import h5py  

 

 

class FractureDensity: 

     

    """ This class created by Tolulope Agbaje on the 12th of December 2022 (A birthday gift for 

myself) 

    The FractureDensity class takes 2 positional arguments namely permeability_cell and 

full_mesh 

    which are the requisite data needed to extract volume-based fracture density 

     

     

    permeability_cell = Cell data containing information for upscaled km and kf. 

permeability_cell is in .hf file format with (n,1) shape 

    full_mesh = The full mesh data in .uge file format 

     

    METHODS: 

    1. The extract_mesh_permeability function extracts the permeability data  

    2. The frac_den function extracts the cell volume (last column) from the full_mesh.uge file & 

calculate the volume-based fracture density 

     

    """ 

     

    def __init__(self, permeability_cell, full_mesh): 

        self.permeability_cell = permeability_cell 

        self.full_mesh = full_mesh 
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    def extract_mesh_permeability(self): 

        hf = h5py.File(self.permeability_cell, 'r') 

        hf.keys() 

        perm = hf.get('Permeability') 

        perm_arr = np.array(perm) 

        self.perm_df = pd.DataFrame(perm_arr) #Included self to be able to call in ot 

        return self.perm_df 

 

    def frac_den(self): 

        import csv 

        rows = [] 

        with open(self.full_mesh, 'r') as uge_file: 

            reader = csv.reader(uge_file) 

            for row in reader: 

                row_val = row[0].split(' ') 

                rows.append(float(row_val[-1])) 

        self.fmesh = rows[1:] 

        stop = int(rows[0]) 

        self.fm = pd.DataFrame({'mesh':self.fmesh[:stop]}) 

        perm = pd.concat([self.fm, self.perm_df], axis = 1) 

        perm.rename(columns={0:'permeability'}, inplace = True) 

        frac = perm.loc[perm['permeability'] != 1e-15] 

        frac_den = np.sum(np.array(frac['mesh']))/np.sum(np.array(perm['mesh'])) 

 

        if len(self.fm) == len(self.perm_df): 

            print('Full mesh and permeability are of equal dimension') 

            return 'Fracture density:' + ' ' + str(frac_den), 'Full mesh size:' + ' ' + str(len(self.fm)), 

'Permeability cell size:' + str(len(self.perm_df)) 

        else: 

            print(f'Permeability size is {len(self.perm_df)} and full mesh size is {len(self.fm)}') 
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            print('Therefore,full mesh and permeability are not of equal dimension...please recheck 

your entry') 

 

 

# An example of how to call the class 

obj = FractureDensity('mesh_permeability.h5', 'full_mesh.uge'). # Instantiate an object of the 

class 

perm_df = obj.extract_mesh_permeability() # Call the mesh_permeability method and assign to 

perm_df() 

frac_density = obj.frac_den(). # Call the frac_den() method  

frac_density 


