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Abstract 

Patterns of vegetative greenness and timing of greenness events have been a strong 

predictor of habitat availability and space use for several species of wildlife and may be a 

particularly useful tool for imperiled grassland species such as the lesser prairie-chicken 

(Tympanuchus pallidicinctus). I evaluated the utility of Normalized Difference Vegetation Index 

(NDVI) and NDVI-based vegetation phenology metrics in estimating lesser prairie-chicken 

habitat availability, habitat quality, and space use during the reproductive season.  

I captured, marked with GPS and VHF transmitters, and monitored lesser prairie-chicken 

nest and brood locations during the reproductive season in Kansas during 2013-2015. I acquired 

Landsat 8 and vegetation phenology metric data from eMODIS Remote Sensing Phenology 

(RSP) satellite imagery during 2013-2015. Using NDVI and vegetation phenology data at nest 

and brood locations, I first examined the use of these remotely sensed tools to model habitat 

selection and predicted habitat availability. I then tested relationships among phenology metrics 

and reproductive success (e.g., nest and brood success) and assessed timing of nest initiation and 

hatch relative to patterns of greenness. Last, I investigated correlations between phenology 

metrics and in-situ vegetation measurements and stocking density.   

 Nest site-selection was best predicted by Time Integrated NDVI (TIN), with probability 

of use increasing as values of TIN increased (β = 2.897, SE = 1.049). The TIN metric is a proxy 

for the density of overhead vegetation cover. Brood site-selection was best predicted by an 

Amplitude (AMP) * Year model (βAMPscale1 = 7.76, SE = 4.81, β2014 = 0.99, SE = 2.065, β2015 = -

1.78, SE = 2.17, βAMPscale1:2014 = -1.79, SE = 5.12, βAMPscale1:2015 = 6.32, SE = 5.47), with 

probability of use varying among years but increasing as values of AMP increased. The AMP 



  

metric describes the total increase in productivity from the start of the growing season to the 

peak of the growing season. Areas experiencing greater increases in productivity were more 

likely to be used by brood-rearing females.  

To predict nesting and brood-rearing habitat abundance in Kansas, I used a random forest 

approach. Ultimately, I was unable to predict nesting habitat availability using phenology metrics 

due to high out-of-bag error (30.48%) and high class error rates, with non-habitat predicted as 

habitat ~63% of the time. Fortunately, I was able to predict brood-rearing habitat abundance. 

Informative brood habitat variables selected by the random forest model included the End of  

Growing Season Time (EOST) at the 1-km scale, TIN at the 1-km scale, AMP at the 370-m 

scale, percent grassland within 5-km, End of Season NDVI (EOSN) at the 1-km scale, density of 

county roads within 2-km, density of oil wells within 2-km, Time of Maximum NDVI (MAXT) 

at the 1-km scale, Start of Growing Season Time (SOST) at the 250-m scale, and the density of 

transmission lines within 2-km. Using the selected variables, I identified priority habitat using 

the Kappa threshold and high priority habitat using the Sensitivity Specificity Sum Maximizer 

threshold. Habitat availability was variable between years, with a 71% and 51% decrease in 

priority and high priority habitat, respectively, from 2014 to 2015. I identified 2,154,137.5 ha of 

priority habitat and 8,225 ha of high priority habitat for 2014. I identified 636,493.75 ha of 

priority habitat and 3,993.75 ha of high priority habitat for 2015.  

Nest survival was best predicted by MAXT at the 500-m scale, with nest survival 

maximized when MAXT was Day-of-Year (DOY) 160 (June 9) and decreasing linearly as 

MAXT increased (β = -0.009, SE = 0.004). Similarly, I identified phenological differences at 

successful and unsuccessful nest and brood sites. At successful nest sites, TIN was greater than 

at unsuccessful nests (p = 0.05), and MAXT occurred earlier than at unsuccessful nests (p = 



  

0.04). At successful brood sites, MAXT occurred later and EOSN was greater than at 

unsuccessful brood sites (p = 0.003). The EOSN metric was also significantly different, with 

EOSN greater at successful brood sites than at unsuccessful brood sites (p = 0.01). 

Timing of nest initiation and hatch relative to patterns of greenness indicated that first 

nests were initiated within ~20 days of SOST. All hatch dates occurred before the peak of the 

growing season date (MAXT). Ultimately, lesser prairie-chickens time nest initiation and hatch 

between the start of the growing season and peak of the growing season.  

I also tested correlations among vegetation phenology metrics to in-situ vegetation 

measurements and stocking densities. Correlations with phenology metrics and in-situ vegetation 

measurements varied among years, but TIN and AMP were often positively correlated with 

measures of visual obstruction at multiple scales and cover of forbs and grasses (r = 0.02 – 0.51). 

The TIN, AMP, and Maximum NDVI (MAXN) metrics were often negatively correlated (r = -

0.02 – -0.15) with cover of bare ground, litter depth, litter cover, and shrub cover. Last, I 

evaluated linkages between vegetation phenology metrics and cattle stocking density. 

Correlations varied among years (2014 and 2015). The TIN and AMP metrics were positively 

correlated with stocking density in 2014 (r = 0.13, r = 0.07, respectively); yet TIN was 

negatively correlated with stocking density in 2015 (r = -0.17) and AMP was not correlated with 

stocking density in 2015.  

Ultimately, I provide evidence that NDVI-based vegetation phenology metrics can be 

used to model habitat use and predict habitat availability for lesser prairie-chickens in Kansas. 

My predictions from phenology-based metrics indicated that the availability of high priority 

habitat may be limited. I also provided evidence that phenology metrics correlate to in-situ 



  

vegetation measurements and stocking densities, making phenology metrics a promising tool for 

monitoring lesser prairie-chicken habitat remotely.  
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MODIS-based Vegetation Phenology Metrics  Influence 

Resource Selection and Prediction of Habitat Availability 

 Introduction 

The Normalized Difference Vegetation Index (NDVI) is a remotely sensed index that 

calculates the difference between the amount of red and near infrared light reflected off living 

vegetation, which effectively estimates the “greenness” of vegetation (Rouse et al. 1974, Tucker 

1979). Simply put, NDVI can provide insight into the health, vigor, and density of living 

vegetation and is used to evaluate phenological conditions over time. Results are bounded 

between 1 and -1 with negative values representing snow, water, or barren landscapes and 

positive values representing light, moderate, or densely vegetated areas such as forests or 

agricultural plots (USGS 2021a). Grasslands and shrublands, for example, trend towards 

moderate NDVI values between 0.2-0.5 (USGS 2021a); although this can vary depending on the 

structure and density of vegetation (Paruelo and Lauenroth 1995). Although NDVI is well-

known to be useful for modeling phenological patterns and vegetation characteristics, its utility 

in evaluating wildlife habitat needs further exploration, particularly for grassland wildlife.  

Use of NDVI grew rapidly following its development in the early 1970s, with research 

focusing on assessing vegetation productivity and vigor. In the Great Plains, the first reported use 

of NDVI was by Rouse et al. (1974), where NDVI was calculated using Landsat 1 Multispectral 

Scanner (MSS) images to investigate the health of grasslands across the Great Plains. Some of 

the first wildlife-related studies linked NDVI to habitat use by large herbivores (Pettorelli et al. 

2011). More recently, use of NDVI and remote sensing in avian studies has become 

commonplace (e.g., Gottschalk et al. 2005, Pettorelli et al. 2011). Several avian studies used 
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remotely sensed NDVI-based metrics to investigate species richness (Hurlbert and Haskell 2003, 

Bino et al. 2008, St-Louis et al. 2009, Vogeler et al. 2014), migration (Saino et al. 2004a, Saino 

et al. 2004b, Robson and Barriocanal 2010), and reproduction (Ross et al. 2017, Poessel et al. 

2020, Stoner et al. 2020). Given that grassland bird species have declined >70% in the last 50 

years (Rosenberg et al. 2019), it is important to explore the utility of NDVI to inform 

conservation of at-risk grassland birds. One such species that may benefit from a NDVI-based 

study is the lesser prairie-chicken (Tympanuchus pallidicinctus).  

The lesser prairie-chicken is a grassland obligate species whose range spans 5 states and 

4 ecoregions as described by Van Pelt et al. (2013) and McDonald et al. (2014). The occupied 

range of lesser prairie-chickens is estimated to have declined by 85% over the last 100 years with 

abundance remaining low in large portions of their range (McDonald et al. 2014, Boal and 

Haukos 2016, Garton et al. 2016). Declines are due, in part, to the degradation of remaining 

grasslands through the alteration of ecological drivers such as fire, grazing, and precipitation 

(Askins et al. 2007) and historic and ongoing conversion of native grasslands to cropland (Taylor 

and Guthery 1980, Askins et al. 2007, Rodgers 2016, Dahlgren et al. 2016). Of the ecological 

drivers (drought, grazing, fire), drought is predicted to increase in intensity and frequency as 

climate change progresses, potentially exacerbating the decline of grassland bird populations 

(Peterson 2003, Strzepek et al. 2010, Cook et al. 2015, Grisham et al. 2016, USFWS 2021). Such 

climate issues, among others, have compounded and resulted in a 2019 lawsuit demanding the 

U.S. Fish and Wildlife Service (USFWS) to decide on the 2016 petition to list the lesser prairie-

chickens under the 1973 Endangered Species Act (ESA). After ~2 years of investigation, the 

USFWS determined that the remaining lesser prairie-chickens would be split into 2 Distinct 
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Population Segments (DSP) and listed under the ESA. The Southern DSP is currently classified 

as endangered while the Northern DSP is classified as threatened (USFWS 2022).  

Population declines, degradation of remaining habitat, and a recent listing under the ESA 

make monitoring lesser prairie-chickens critical for species recovery. Field-based research has 

provided wildlife managers with invaluable information regarding habitat requirements and 

limiting factors influencing population growth (Pitman et al. 2006, Hagen et al. 2009, Grisham 

2012, Van Pelt et al. 2013, Haukos and Zavaleta 2016). For example, an understanding of field-

based habitat requirements at nest and brood sites are well documented, such as greater vertical 

structure between 2.0 and 3.5 dm at 75% visual obstruction at nest sites, less bare ground, and 

greater percentages of litter compared to what is available at random sites (Giesen 1994, Pitman 

et al. 2005, Patten and Kelly 2010, Lyons et al. 2011, Hagen et al. 2013, Fritts et al. 2016, 

Grisham et al. 2016, Lautenbach et al. 2019). However, broad-scale monitoring of lesser prairie-

chicken habitat using field-based measurements is time consuming, costly, and difficult. It is 

challenging to evaluate habitat through on-the-ground measurements due to the importance of 

subtle structural characteristics in grasslands that are needed over broad scales to provide quality 

habitat (Gehrt et al. 2020). Given the importance of grassland-dominated landscapes for lesser 

prairie-chicken reproduction and persistence, there is a need to identify the availability of 

reproductive habitat across their current distribution, as well as conserve what remains (Hagen et 

al. 2004). This is not a feasible undertaking with field-based measurements alone. Approaches 

that use remote sensing technology and satellite imagery are a promising option in need of 

further evaluation. 

The objective of my study was to evaluate the influence of NDVI and NDVI-based 

vegetation phenology metrics on nest site-selection, brood site-selection, and reproductive 
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habitat abundance in the Mixed-Grass Prairie and Short-Grass Prairie/Conservation Reserve 

Program (CRP) Mosaic ecoregions of western Kansas. I predicted that probability of use would 

be greater at nest sites with higher NDVI at the time that laying occurs (snapshot NDVI). Lesser 

prairie-chicken nests are typically comprised of both living and residual cover (Lautenbach et al. 

2019); thus, I expected the presence of more living cover to result in higher NDVI at the time of 

laying compared to what is available. Additionally, I expected nest-site selection to be predicted 

by a quadratic relationship with the NDVI-based phenology metric Amplitude. As previously 

mentioned, lesser prairie-chicken nests are typically constructed under living and residual cover 

(Lautenbach et al. 2019). Given that NDVI only measures the reflectance from living vegetation, 

I expected a quadratic relationship with Amplitude in the 0.3-0.4 range to represent that 

combination of living and residual cover. In terms of brood-site selection, I predicted a positive 

linear relationship with the phenology metric Maximum NDVI. Maximum NDVI is the value of 

NDVI at the peak of the growing season and has been related to brood use and optimal food 

availability (arthropods and vegetation) for other grouse species (i.e., Lagopus leucura and 

Centrocercus urophasianus; Wann et al. 2019, Stoner et al. 2020). Given the associations 

between maximum NDVI and food availability, I expected females with broods to choose sites 

with greater maximum NDVI values. Lastly, I predicted that the combination of gradient 

landscape variables and phenology metrics would result in an accurate prediction of reproductive 

habitat availability in Kansas through the use of a random forest model. Currently and without 

the use of vegetation phenology variables, we can predict habitat based on the distribution of 

large grassland dominated areas with limited anthropogenic structures (Sullins et al. 2019). 

However, we cannot yet predict habitat within those large grassland dominated areas. I expected 
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that a random forest classification model using NDVI phenology metrics and gradient landscape 

variables as predictors would predict habitat availability within grasslands.  

 

 Methods 

 I evaluated the influence of snapshot NDVI images and 9 vegetation phenology metrics 

on nest- and brood-site selection by lesser prairie-chickens. I also evaluated the importance of 

these metrics at multiple scales relative to nest and brood locations. Lastly, I incorporated 

vegetation phenology metrics and landscape scale variables into a random forest model to predict 

the availability of lesser prairie-chicken reproductive habitat in western Kansas. 

 

 Study Area 

My study area was the result of pooled data previously collected in portions of western 

Kansas. The study area covers 2 of the 4 ecoregions occupied by the lesser prairie-chicken: the 

Mixed-Grass Prairie and the Short-Grass Prairie/CRP Mosaic (Figure 1.1; McDonald et al. 2014, 

Boal and Haukos 2016). Fire, grazing, and precipitation/drought events are the most common 

ecological disturbances and drivers across this range, though all of these regimes have shifted in 

frequency and intensity over the last 100 years (Askins 2007). Drought specifically is a common 

disturbance that is predicted to increase in frequency and intensity as climate change progresses 

(Strzepek et al. 2010, Grisham et al. 2016). Across the lesser prairie-chicken range, there is also 

a distinct longitudinal precipitation gradient of declining mean annual average precipitation from 

east to west. In the easternmost portion of the lesser prairie-chicken range, mean annual 

precipitation ranges between 63.9 and 76.3 cm (Grisham et al. 2016). In the westernmost 

portions of the LEPC range, mean annual precipitation ranges between 27.8 and 40.5 cm 
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(Grisham et al. 2016). Weather is also highly variable with year-to-year variation in annual 

precipitation and thus variability in aboveground net primary productivity (Sala et al. 1988). 

Within the Mixed-Grass Prairie Ecoregion, there were 2 study sites: Clark (located in 

Clark County) and Red Hills (located in Kiowa and Comanche counties). The Red Hills study 

site was located in the easternmost portion of the LEPC range, receives greater annual 

precipitation compared to other sites, and included rotational and patch-burn grazing as 

management practices. Soil composition in the Red Hills was mostly sandy loam, clay loam, and 

clay; soil composition in the Clark County study site was primarily fine sandy loams, fine sands, 

and loamy fine sands (Sullins et al. 2018a).  Dominant vegetation in both study sites included 

grasses such as little bluestem (Schizachyrium scoparium), sand dropseed (Sporobolus 

cryptandrus), alkali sacaton (Sporobolus airoides), blue grama (Bouteloua gracilis), big 

bluestem (Andropogon gerardii), switchgrass (Panicum virgatum), and sideoats grama 

(Bouteloua curtipendula). Abundant forbs included western ragweed (Ambrosia psilostachya), 

kochia (Kochia scoparium), Russian thistle (Salsola sp.), broomweed (Amphiachyris 

dracunculoides), broom snakeweed (Gutierrezia sarothrae), and Louisiana sagewort (Artemisia 

ludiviciana). Lastly, common shrubs included sand sagebrush (Artemisia filifolia), sand plum 

(Prunus angustifolia), eastern redcedar (Juniperus virginiana), and fragrant sumac (Rhus 

aromatia; Sullins et al. 2018a, Gulick 2019, Lautenbach et al. 2019). 

Within the Short-Grass Prairie/Conservation Reserve Program (CRP) Mosaic Ecoregion, 

there was one study site labeled as the Northwest study site, which encompassed Logan and 

Gove counties. Although this was classified as the short-grass prairie, inclusion of CRP lands 

provided both mixed and short grasses in this region. Dominant land uses across this portion of 

the study area included grazing, CRP grasslands, and row-crop agriculture. Dominant grasses 
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included blue and hairy grama (Bouteloua hirsuta), little bluestem, buffalograss (Bouteloua 

dactyloides), big bluestem, sideoats grama, and western wheatgrass (Pascopyrum smithii). 

Common forbs included Russian thistle, western ragweed, broom snakeweed, annual buckwheat, 

prairie sunflower (Helianthus petiolaris), and nine-anther dalea (Dalea enneandra). Dominant 

shrubs included sand sagebrush and yucca (Yucca sp.; Sullins et al. 2018a, Lautenbach et al. 

2019). 

 

 Remotely sensed data acquisition and processing 

I examined the utility of Landsat 8 images from one moment in time (e.g., snapshot) and 

time series AQUA eMODIS Remote Sensing Phenology (RSP) imagery to predict lesser prairie-

chicken habitat.  

 

Landsat 8:  

  To assess NDVI at the nest site in real time, I acquired remote data from the Landsat 8 

Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS). This is an open-source satellite 

operated jointly by the U.S. Geological Survey (USGS) and the National Aeronautics and Space 

Administration (NASA). For this research, I accessed Landsat 8 data using the EarthExplorer 

(https://earthexplorer.usgs.gov/) interface. Landsat 8 provides users with 9 spectral bands, a 

moderate pixel resolution of 30 m, a repeat cycle of 16 days, and a scene size of 185 km x 180 

km (NASA 2021, USGS 2021b). Scene size refers to the area scanned in each image; a scene 

size of 185 km x 180 km covers multiple study sites at once. Landsat 8 data comes in 2 levels: 

level 1 and level 2. I used Level 2 data in this research, which are referred to as Surface 

Reflectance products. Surface Reflectance scenes are atmospherically corrected by the U.S. 
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Geological Survey Earth Resources Observation and Science (EROS) Center and any potentially 

detrimental effects such as atmospheric scattering from aerosols will not affect the images used 

and derived estimates of NDVI (USGS 2021c).  

 

AQUA MODIS:  

 To evaluate the effect of phenology metrics on reproduction, I used imagery from the 

Aqua Moderate Resolution Imaging Spectroradiometer (hereafter MODIS) satellite, where Aqua 

is the satellite and MODIS is the imaging sensor. Specifically, I used the C6 Aqua Western 250 

m eMODIS RSP (remote sensing phenology) data, downloaded from the USGS Phenology 

Viewer (Jenkerson et al. 2010, Brown et al. 2015; https://doi.org//10.5066/F7PC30G1), where 

250 m refers to the pixel size. USGS recommends using the Aqua satellite instead of the second 

Terra satellite for analyses after 2007 due to sensor degradation of Terra (USGS 2021d). Images 

from the fully functioning Aqua Satellite have been processed into time-series phenology metrics 

known as C6 Aqua eMODIS Remote Sensing Phenology (RSP) data. Nine phenology metrics 

were developed based on spatially explicit variation of weekly NDVI composites and are 

maintained and processed by EROS and calculated for the contiguous United States. The 9-

phenology metrics included amplitude (AMP), Duration (DUR), End of Season NDVI (EOSN), 

End of Season Time (EOST), Maximum NDVI (MAXN), Time of Maximum (MAXT), Start of 

Season NDVI (SOSN), Start of Season Time (SOST), and Time Integrated NDVI (TIN; 

https://doi.org//10.5066/F7PC30G1; Table 1.1). In this study, I extracted phenology metrics from 

the western United States extent as all study sites were within this extent.  

 Although AQUA MODIS images are typically ready-to-use, I performed additional pre-

processing actions prior to completing any analyses. Within each MODIS image, there are cells 

https://doi.org/10.5066/F7PC30G1
https://doi.org/10.5066/F7PC30G1
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where data were unable to be calculated during EROS analyses, and cells that represent water. 

Cells where data were unable to be extracted are given a value of either 0 or -1000 and cells that 

represent water are given values of either 255 or 1000. I set cells with values of 0, 255, -1000, 

and 1000 to “No Data” using the “Set Null” function in ArcMap 10.8 so that values from these 

cells would not be included in any analyses.  After cells were converted to “No Data”, I used 

focal statistics to calculate the mean of the 9 vegetation phenology metrics (Table 1) at 4 scales 

for each phenology image. The 4 scales that I used were 370 m, 500 m, 1 km, and 3 km. These 

scales represent the average daily displacement of females during the reproductive season, as 

well as general space use at broader scales. The resulting rasters were used to extract mean 

values of phenology metrics around nest, brood, and random points.   

 

 Nesting and brood data acquisition:  

Nesting data were pooled from prior studies in Kansas in 2013, 2014, and 2015. At the 

beginning of each breeding season, I captured female lesser prairie-chickens using drop nets and 

walk-in funnel traps from mid-March to mid-May (Haukos et al. 1990, Silvy et al. 1990). I 

marked captured females with either a 15-g very-high-frequency (VHF) transmitter (Advanced 

Telemetry Systems, Isanti, MN, USA) or a 22-g solar powered GPS satellite transmitter (PTT-

100, Microwave Telemetry, Inc., Columbia, MD). The GPS transmitters recorded female 

locations every 2 hours between 0500-2300, whereas females marked with VHF transmitters 

were tracked manually and triangulated 3-4 times per week.  

To determine when a nest was initiated, I evaluated the spatial patterns of lesser prairie-

chickens during the breeding season. Nesting behavior of a GPS-marked female was indicated by 

multiple transmitted locations at the same point and minimal movement around that point. For 
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VHF-marked females, a nest was deemed initiated if the female was located in the same spot >3 

times in a row. In this research, “nest initiation” refers to the initiation of laying. Following 

confirmation of laying, females were flushed from the nest to count, weigh, measure, and float 

eggs to ascertain an estimated hatch date. I recorded the Universal Transverse Mercator 

coordinate system locations of each nest using the WGS 1984 Zone 14N datum. As the nesting 

season progressed, nests were visited a second time once the female left the area to determine the 

outcome of the nest (successful or failed). If a nest was successful, I monitored and flushed the 

adult female and brood weekly starting at either 7- or 14-days post-hatch and continued flushing 

broods at the 21st, 28th, and 35th day post-hatch (Parker 2021). Occasionally, brood flushes could 

not be completed on those exact days due to inclement weather or lack of GPS points for that 

morning (Parker 2021). I recorded the location of each weekly brood flush in Universal 

Transverse Mercator coordinate system using WGS 1984 Zone 14N.  

 

Gradient Landscape Variables 

To inform spatial predictions of habitat availability, I acquired gradient landscape spatial 

layers from Sullins et al. (2019) that were known to predict lesser prairie-chicken distributions. 

First, I acquired estimates of percent grassland within a 5 km radius derived from National Land 

Cover Database (NLCD) 2011 layers by Sullins et al. (2019), as well as layers depicting 

anthropogenic feature densities within 2 km. Anthropogenic feature variables included densities 

of oil wells, county roads, major roads, transmission lines, and cell phone towers.  

 

Nest site-selection: 

Snapshot NDVI: 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwisy8iP6tT9AhVQlYkEHWjVA7EQFnoECBAQAQ&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FUniversal_Transverse_Mercator_coordinate_system&usg=AOvVaw38OJ8CqHfbvB5Aq6NLZywn
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwisy8iP6tT9AhVQlYkEHWjVA7EQFnoECBAQAQ&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FUniversal_Transverse_Mercator_coordinate_system&usg=AOvVaw38OJ8CqHfbvB5Aq6NLZywn
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I evaluated the influence of snapshot NDVI (NDVI at the start of laying) on nest-site 

selection using a logistic regression framework in Program R and an information theoretic 

approach as a method of model selection (Akaike’s Information Criterion adjusted for small 

sample size; AICc; Burnham and Anderson 2002, R Core Development Team 2022). I compiled 

a list of nest laying dates from 120 nests (including first, second, and third nest attempts) from 

2013-2015 at the Clark, Northwest, and Red Hills study sites. Next, I searched for Landsat 8 

OLI/TIRS scenes with acquisition dates that corresponded to the laying date of each nest, or 

within one week of the laying date. Landsat 8 images have a revisit period of 16 days, which 

presented a challenge: many images were not available on the exact laying date for each nest. 

Additionally, one major limitation of satellite imagery is the negative effects of cloud cover, 

which interrupts the reception of reflected light read by the satellite sensor and negatively 

impacts calculations of NDVI. Therefore, I searched for images that fell within one week of the 

laying date. If no image within one week of the laying date was available, the nest was excluded 

from analyses. Similarly, any nests that fell under cloud cover were also excluded from analysis, 

unless another image was available within one week of the laying date.  

In each Landsat 8 scene, I calculated NDVI using the raster calculator in ArcGIS 10.8 

(ESRI, Inc., Redlands, CA, USA) with the following equation: 

NDVI = Float (Band 5 – Band 4) / Float (Band 5 + Band 4) 

Band 5 is the Near Infrared band (wavelength 0.85-0.88 micrometers) and Band 4 is the 

Red band (wavelength 0.64-0.67 micrometers). The NDVI calculation measures the difference 

between the amount of red and near infrared light being reflected off living vegetation. The 

resulting NDVI calculation is unitless and measured on a scale from 1 to -1. Positive values 

approaching 1 indicate dense vegetation cover, such as a forest or agricultural plot. Values 
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approaching -1 indicate water, and values around 0 indicate barren landscapes (Neigh et al. 2008, 

Huang et al. 2020). Grasslands and shrublands typically result in NDVI values between 0.2 and 

0.5 (USGS 2021a); though this can vary depending on vegetation structure and composition 

(Paruelo and Lauenroth 1995).  

I converted Excel worksheets containing each nest location into shapefiles, and loaded 

these into their respective Landsat 8 images. Next, I generated a 3.2 km buffer around each nest 

location, as this is the average distance that most females will nest from an active lek (Boal and 

Haukos 2016). Within these buffers, I generated 2 random points per used point. Random points 

were generated exclusively within grasslands and shrublands, as these are the primary cover 

types used by lesser prairie-chickens during the reproductive season. Lastly, I used the “Extract 

Multi-value to Point” tool in the Spatial Analyst toolbox to extract snapshot NDVI values at used 

and random points.  

Following data extraction, I constructed a candidate model set containing 7 a priori 

models. Variables tested in these models included snapshot NDVI, quadratic snapshot NDVI, 

additive and interactive models using snapshot NDVI, site, year, and a null model (Table 1.2).  

 

MODIS Vegetation Phenology Metrics: 

To test the influence of NDVI-based vegetation phenology metrics on nest-site selection, 

I used C6 Aqua Western 250 m eMODIS RSP images and extracted phenology metrics at 

multiple scales around nest and random points using the “Extract Multi Values to Point” tool in 

ArcGIS 10.8 (ESRI, Inc., Redlands, CA, USA). I extracted values at the 250-m pixel scale and at 

4 additional scales (370 m, 500 m, 1 km, and 3 km) around nest and random sites. Following 

data extraction, I constructed one candidate model set containing 43 a priori models that 
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incorporated the 9 phenology variables at multiple scales. Variables tested in the model set 

included single-variable phenology metrics at all scales, quadratic models, and additive and 

interactive combinations of these variables (Table 1.3). Snapshot NDVI was not included as a 

variable due to the differences in sample size. Given that I matched Landsat 8 scenes to nest 

laying dates and eliminated nests that fell within cloud cover, there were fewer nests used to fit 

the snapshot NDVI models. Conversely, all available nests were included in the phenology 

model set, so long as they had recorded GPS coordinates.  

 

 Brood-site selection: 

 I used a logistic regression framework using generalized linear models to evaluate the 

influence of 9 vegetation phenology metrics at 5 scales on the brood-site selection by female 

lesser prairie-chickens. Using ArcGIS version 10.8 (ESRI, Inc., Redlands, CA, USA), I imported 

coordinates of 408 brood locations during 2013-2015 from 3 study sites (Clark, Northwest, and 

Red Hills). I generated 2 paired random points per used point for a total of 816 random points. 

Paired random points were located exclusively within grasslands and shrublands, as this is the 

primary land cover used during brood-rearing. I then extracted the values of each phenology 

metric at multiple scales around brood and random points using the “Extract Multi Values to 

Point” tool. I also extracted values at 4 additional scales (370 m, 500 m, 1 km, and 3 km) around 

brood and random points.  

Once data were extracted, I constructed 34 a priori logistic regression models to test the 

influence of vegetation phenology metrics on brood-site selection. Models included single 

variables, multi-variables, quadratic relationships, and site and year interactions (Table 1.4).  
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Evaluation of generalized linear models and covariates: 

 Models of nest- and brood-site selection were evaluated using Akaike’s Information 

Criterion adjusted for small sample size (AICc; Burnham and Anderson 2002).  Models within 2 

∆AICc of the top-ranked model were considered competitive. Additionally, I evaluated beta 

coefficients to further assess the relative importance of predictor variables, and generated 

probability of use curves to visualize results. Beta coefficients with overlapping 95% confidence 

intervals were considered uninformative.  

 

 Predicting reproductive habitat abundance: 

To predict lesser prairie-chicken reproductive habitat availability in Kansas based on 

vegetation phenology and gradient landscape variables, I used a random forest approach 

(Breiman 2001) using package “randomForest” in Program R (R Core Development Team 2022, 

Liaw and Wiener 2002). I combined 2014 and 2015 nesting data and brood-rearing data to 

determine the most informative set of variables among years.  

Random forest is a type of classification and regression tree algorithm that evaluates the 

importance of input variables and finds the most parsimonious and accurate predictions based on 

bootstrapping several trees that are then validated using out-of-bag error. Out-of-bag error rates 

are typically estimated based on bootstrapping a training data set and leaving 1/3 of the sample 

aside to validate the model. Random forests modeling can provide more accurate predictions 

compared to other regression-based classifiers such as logistic regression when interactions 

between variables and nonlinear relationships with response variables are prevalent (Cutler et al. 

2007). Given its utility and my expectation of having numerous quadratic/nonlinear relationships 



15 

with predictors, I expected random forests to be a useful tool in predicting reproductive habitat 

availability in Kansas.  

As input variables, I included 9 vegetation phenology metric rasters (Table 1.1) at 5 

scales (250 m pixel scale, 370 m, 500 m, 1 km, and 3 km) around nest and brood points, and 5 

gradient landscape variables (percent grassland within 5 km, density of oil wells within 2 km, 

density of county roads within 2 km, density of transmission lines within 2 km, and density of 

vertical structures not including powerlines within 2 km). Importantly, random forest approaches 

require input rasters to be of the same scale and extent. To address this, I resampled the 

landscape variable rasters from a 30-m pixel resolution to 250-m resolution to be consistent with 

the scale of the phenology based metric rasters.   

Once all values were extracted from rasters at all used and available locations, I fit 

random forests models and performed variable selection. I removed variables correlated at α = 

0.05 from inclusion in the same models. Random forests remain powerful even when variables of 

low importance are included in the model, and cross-validated accuracy is not significantly 

improved when unimportant variables are removed (Fox et al. 2017). Thus, all uncorrelated 

variables were included in the random forest model to predict nesting and brood-rearing habitat 

availability and provide inference on the relative importance of each predictor.  

Lastly, I estimated occurrence thresholds using the Kappa statistic and sensitivity-

specificity sum maximizer following Jimenez-Valverde and Lobo (2007). The Kappa statistic is 

typically considered a weaker performing estimator compared to the sensitivity-specificity sum 

maximizer, in that it often overestimates (and in some cases underestimates) species distribution. 

While recognizing this, I decided to use the Kappa statistic as a broader representation of 

potential priority habitat, and used the sensitivity-specificity sum maximizer as a more accurate 
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representation of high priority grasslands for lesser prairie-chicken reproductive habitat 

availability.      

Using the thresholds derived from the Kappa and sensitivity-specificity sum maximizer 

statistics, I generated 2 binary rasters per year to identify priority reproductive habitat and high 

priority reproductive habitat, respectively. Next, I used the Extract by Mask tool in ArcGIS 

version 10.8 (ESRI, Inc., Redlands, CA, USA) to extract the number of pixels within the binary 

rasters that occurred within grasslands to calculate the area of habitat in hectares.  

 

 Results 

 Nest site-selection:  

Using a logistic regression framework, I evaluated the influence of snapshot NDVI on 

nest-site selection based on a sample of 120 nests and 240 random points. Snapshot NDVI, based 

on the laying date of nests, was not a reliable predictor of nest site-selection. Although the single 

variable snapshot NDVI (β = -0.52, SE = 0.985) model was within 2 ∆AICc of the null model 

and carried 22% of AICc weight, beta coefficients overlapped 0 at the 95% confidence interval 

(Table 1.2).  

In contrast, NDVI-based phenology metrics were informative predictors of nest-site 

selection. I used values from 237 nests and 474 available random points to fit logistic 

regressions. The single variable Time Integrated NDVI (TIN) model at the 250-m pixel scale 

was a reliable predictor of nest site-selection and carried 12% of model weight (β = 2.897, SE = 

1.049; Table 1.3), with probability of use increasing with greater TIN values (Figure 1.2). There 

were 6 models within 2 ∆AICc of the top-ranked model. The second-ranked model, which 

carried 7% of model weight, was TIN + AMP (βTIN = 2.372, SE = 1.18, βAMP = 1.398, SE = 
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1.414). Although the TIN variable in this model was informative at the 95% confidence interval, 

the AMP variable was not. Thus, I determined that the inclusion of the AMP variable was 

spurious and did not improve predictive power over the top-ranked model. The 5 other 

competitive models were also not informative at the 95% confidence interval, though it is 

important to note that 3 of the 5 models included TIN as an informative variable, which further 

emphasized TIN’s ability to predict nest-site selection (Table 1.3).  

 

 Brood site selection: 

 I used phenology metrics from 408 brood sites and 816 available points. Results indicated 

that the interactive Amplitude at the 370-m scale*Year model was a reliable predictor of brood-

site selection (βAMPscale1 = 7.76, SE = 4.81, β2014 = 0.99, SE = 2.065, β2015 = -1.78, SE = 2.17, 

βAMPscale1:2014 = -1.79, SE = 5.12, βAMPscale1:2015 = 6.32, SE = 5.47; Figure) and carried 74% of 

AICc weight, with probability of use increasing as AMP increased (Table 1.4, Figure 1.3). The 

AMP 370-m variable in this model was informative at the 85% confidence interval, though year 

interactions were not informative at the 85% confidence interval. Notably, however, the slope 

associated with probability of use in 2015 was steeper than slopes associated with probability of 

use in 2014 and 2015 (Figure 1.3). The single variable AMP 370-m model (β = 6.86, SE = 1.24) 

carried 3% of model AICc weight and remains informative at the 95% confidence interval and 

further confirms the importance of Amplitude at the 370-m scale as a variable (Figure 1.4). 

Overall, females with broods selected sites with greater AMP values 370 m around brood sites 

compared to what was available.  
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Predicting reproductive habitat availability: 

 

Nest Habitat  

When predicting nest habitat abundance, 10 uncorrelated variables were selected for the 

final model (Figure 1.13). The 3 most important variables in this random forest model were 

phenology metrics. Amplitude at the 1 km scale (scaled variable importance of 0.024), Time 

Integrated NDVI (TIN; scaled variable importance of 0.018) at the 1 km scale, and End of 

Season Time (EOST; scaled variable importance of 0.017) at the 1 km scale were the 3 most 

important variables. In order of importance, the remaining selected variables were: Start of 

Season Time at the 1 km scale (SOST; scaled variable importance of 0.016), End of Season 

NDVI at the 1 km scale (EOSN; scaled variable importance of 0.015), density of county roads 

within 2 km (0.015), percent grassland within 5 km (scaled variable importance of 0.015), Time 

of Maximum NDVI at the 1 km scale (MAXT; scaled variable importance of 0.010), density of 

oil wells within 2 km (scaled variable importance of 0.006), and density of transmission lines 

with 2 km (scaled variable importance of 0.000003). Notably, scaled variable importance values 

were much lower for all variables included in the nest random forest model compared to those 

included in the brood random forest model, indicating weak predictive power and low relative 

contribution to the final model. Out-of-bag (OOB) error rates were also greater by 19.95% in the 

nest model, with an OOB rate of 30.48%, further emphasizing the inaccuracy of this model. 

Similarly, class errors were much higher in this model, with non-habitat being predicted as 

habitat ~63% of the time. 

Given the low predictive power of the nest habitat model and the high error rates, I 

decided to not plot the partial probability plots describing predicted use. I also did not plot the 



19 

predictive surfaces for nest habitat abundance. However, measures of model accuracy were quite 

high. The overall accuracy (PCC) of the random forest nest model was 99.82%, the sensitivity 

was 100%, and the specificity was 99.73%, which may be pointing to overfitting due to a small 

sample size.  

 

 

Brood Habitat 

 For my brood random forest model, 3 phenology metrics carried the majority of variable 

importance (Figures 1.5, 1.6) and outcompeted gradient landscape variables. After evaluating 

multicollinearity based on α = 0.05, 39 phenology metrics at multiple scales were removed from 

consideration. End of Season Time (EOST) at the 1 km scale was the most important variable as 

indicated by scaled variable importance (0.09; Figure 1.5), with greater probability of use 

occurring at locations with early-mid October end of season dates. This was followed closely in 

importance by Time Integrated NDVI (TIN) at the 1-km scale (scaled variable importance = 

0.079) and Amplitude (AMP) at the 370-m scale (scaled variable importance = 0.078; Figure 

1.5). Probability of use was greatest when TIN was > 0.35, and lowest at TIN values < 0.35 

(Figure 1.6). Probability of use was lowest when AMP was between 0.2-0.3 but increased rapidly 

as AMP increased past 0.3 (Figure 1.6).  

 Following the 3 phenology-based metrics, percent grassland within 5 km was ranked 

fourth in variable importance. Percent grassland ranked higher than other landscape variables 

and carried a scaled variable importance of 0.07. Probability of use peaked at ~77% grassland 

within 5 km but was similarly high in the presence of ~50% grassland within 5km (Figure 1.6). 

Between these 2 percentages, however, probability of use decreased.     
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 The fifth variable of importance was End of Season NDVI (EOSN) at the 1-km scale 

with a scaled variable importance of 0.066. Here, probability of use was greatest at EOSN values 

between 0.25-0.33, and rapidly declined at EOSN values > 0.35. After EOSN, density of county 

roads within 2 km was selected (scaled variable importance of 0.066), with probability of use 

peaking around 40. Density of oil wells within 2-km was similarly important (scaled variable 

importance of 0.054). Here, however, probability of use was greatest when the density of oil 

wells within 2 km was between 0-2, and rapidly declined as the number of oil wells increased 

(Figure 1.6).  

 The third to last ranked variable in this model was Time of Maximum NDVI (MAXT) at 

the 1-km scale (scaled variable importance of 0.044). Probability of use first peaked at MAXT 

160, which is in early June. Probability of use decreases past this date, but increased again after 

MAXT reaches 200, which is in mid-July. The greatest probability of use occurred when MAXT 

was from 235-250, which includes mid-August through early September. The second to last 

variable in this random forest model was the Start of Growing Season Time (SOST) at the pixel 

scale (250 m) with a scaled variable importance of 0.034. Probability of use was near 0 from day 

-150 up until day 100. Past day 100, probability of use sharply increased (Figure 1.6).  

The final and subsequently least important variable in this random forest model was 

density of transmission lines (scaled variable importance = 0.0006). Here, a similar relationship 

to density of oil was observed, where probability of use was greatest when there were 0 

transmission lines and rapidly declined as the number of transmission lines increased (Figure 

1.6).   

The resulting predictive surface of brood-rearing habitat availability in Kansas ranged 

from low probabilities of use (0.16) to high probabilities of use (0.73) in 2014 (Figure 1.7). In 
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2015, the resulting predictive surface of brood-rearing habitat abundance in Kansas ranged in 

probabilities of use from 0.12 – 0.76 (Figure 1.10). Based on the 2 predictive surfaces that 

incorporated phenology metrics and landscape variables, I derived 2 estimates of brood-rearing 

habitat: priority habitat and high priority habitat. The selected Kappa threshold for 2014 and 

2015 was 0.32. Based on this statistic, the area of priority brood-rearing habitat in 2014 was 

2,154,137.5 ha (Figure 1.8) and in 2015 was 636,493.75 ha (Figure 1.11), all within the Kansas 

portion of the lesser prairie-chicken range. The selected sensitivity-specificity sum maximizer 

threshold for 2014 and 2015 was 0.52. Based on this threshold, the area of high priority brood-

rearing habitat in 2014 was 8,225 ha (Figure 1.9) and in 2015 was 3,993.75 ha (Figure 1.12). 

Based on estimates from the Kappa statistic, priority habitat area decreased by 70.45% from 

2014 to 2015. Based on estimates from the sensitivity-specificity sum maximizer statistic, high 

priority habitat area decreased by 51.44% from 2014 to 2015.  

Accuracy in the brood random forest model was determined by the percent correctly 

classified (PCC), the sensitivity (defined as the percent of presences correctly classified; Cutler 

et al. 2007), and the specificity (defined as the percentage of absences correctly classified; Cutler 

et al. 2007). The PCC of the brood random forest model was 97.73%, the sensitivity was 96.9%, 

and the specificity was 98.14%, all indicating good model fit.  

 

 Discussion 

Through the use of NDVI and 9 NDVI-based vegetation phenology metrics, I 

demonstrated that yearly averaged vegetation phenology metrics at multiple spatial scales can be 

used to predict nest- and brood-site selection. However, NDVI phenology metrics may be more 

useful for predicting brood rearing habitat. Five of the 9 vegetation phenology metrics can be 
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useful in the prediction of brood-rearing habitat abundance within the Kansas portion of the 

lesser prairie-chicken range, particularly when used in a model with gradient landscape variables.  

 

 Nest-site Selection 

Originally, I predicted a quadratic relationship between snapshot NDVI and nest site-

selection, with probability of use optimized in the 0.3-0.4 range, but was unable to confirm this 

prediction. One characteristic of a lesser prairie-chicken nest site is the presence of both living 

and residual cover (Lautenbach et al. 2019). Given that NDVI only detects living vegetation and 

that nesting tends to begin before all vegetation is out of dormancy, I expected NDVI values in 

the 0.3-0.4 range to capture optimal conditions at a nest site, particularly regarding the presence 

of living and residual cover. Snapshot NDVI does not appear to be related to nest-site selection 

at a 30 m pixel resolution, suggesting that females do not select sites based on greenness at the 

time of laying, but select sites based on the structure and density of residual vegetation.  

 It is possible that finer scale imagery could improve nest-site selection predictions. 

Privately owned satellites and other airborne sensors offer satellite imagery at <1 m pixel 

resolution and capture greater detail within a pixel. These finer scales images may capture more 

information regarding greenness conditions and how they relate to vegetation structure at the 

nest site and may yield different results. For example, aerial imagery collected at a 5- and 10-cm 

pixel resolution revealed that specific lesser prairie-chicken nest-site characteristics (100% VOR, 

50% VOR, 25% VOR, point center tallest vegetation, among others) in western Kansas were 

significantly different compared to random sites, making it possible to remotely model nesting 

habitat at that scale (Price et al. 2015).   
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Alternatively, the limited utility of Snapshot Landsat 8 imagery in my study may be due 

to the simple fact that my calculated measures of NDVI are a snapshot at one point in time. In all 

likelihood, individuals are selecting nest sites based on numerous physical characteristics which 

may be better represented by season-long productivity measures. Vegetation phenology metrics, 

however, tell a different story. 

Where snapshot NDVI measures NDVI at one point in time, NDVI-based vegetation 

phenology metrics quantify patterns in greenness throughout the growing season, including the 

times at which phenological events occur. Originally, I predicted that nest-site selection would 

be best informed by a quadratic relationship with AMP, with probability of use optimized in the 

0.3-0.4 range. The basis for my prediction was based on the presence of living and residual cover 

at nest sites. I was unable to confirm this prediction, and instead I documented greater 

probability of nest site-selection in grasslands with greater TIN. Time Integrated NDVI is the 

cumulative measure of productivity from the beginning of the growing season to the end of the 

growing season and is typically used as a proxy for density of green cover (i.e., net primary 

productivity; Tucker and Sellers 1986, Eklundh and Olsson 2003, Potter 2020, Potter and 

Alexander 2020). Within a 4-m area, female lesser prairie-chickens typically select nest sites 

with vegetation having less bare ground, greater visual obstruction (typically between 2.0 and 3.5 

dm at 75% visual obstruction), and greater litter cover compared to what is available at random 

sites (Riley et al. 1992, Giesen 1994, Pitman et al. 2005, Patten and Kelly 2010, Lyons et al. 

2011, Hagen et al. 2013, Fritts et al. 2016, Grisham et al. 2016, Lautenbach et al. 2019). 

Additionally, individuals within the Short-Grass Prairie/CRP Mosaic and Mixed-Grass Prairie 

ecoregions typically select nest sites with greater percentages of grass cover compared to shrub 

cover (Hagen et al. 2013, Grisham et al. 2014, Lautenbach et al. 2019). Visual obstruction, grass 
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cover, and taller vegetation all contribute to the density of vegetation around the nest site and, by 

extension, the degree of concealment that benefit female reproductive efforts (Hagen et al. 2009, 

Hagen et al. 2013, Larsson et al. 2013, Dahlgren et al. 2016). Additionally, that the 250-m pixel 

scale is informative indicates that the density of vegetation 250 m around the nest is also 

important and does align with the mean daily displacements of females during the nesting season 

(173.9 m at the Clark study site, 204 m at the Red Hills study site, and 300 m at the Northwest 

study site; Verheijen et al. 2021). Overall, females typically select nest sites containing denser 

vegetation compared to what is available at random sites, as TIN can be correlated with 

herbaceous cover and visual obstruction (Chapter 3). The relationship between TIN and nest sites 

is also evident in phenological comparisons between successful and unsuccessful nest sites, with 

successful nest sites having greater TIN compared to unsuccessful nest sites (Chapter 2). 

Ultimately, the 250-m eMODIS phenology metrics, specifically TIN, have utility in predicting 

nest-site selection, as they appear to reinforce the importance of greater vegetation cover at sites 

used for nesting by lesser prairie-chickens. 

 

 Brood site-selection 

 Brood-site selection was influenced by Amplitude (AMP) at the 370-m scale and varied 

across years. Amplitude measures productivity across the growing season as the difference 

between NDVI at the start of the growing season (SOSN) and NDVI at the peak of the growing 

season (MAXN; USGS 2021e). Greater AMP values at 370 m around brood sites indicated 

accelerated rates of productivity at brood sites compared to what was available. Notably, the 

informative 370 m scale aligns with daily displacement distances of brooding lesser prairie-

chickens that ranged from 99.4-372 m (Verheijen et al. 2020). Lesser prairie-chickens are 
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vulnerable in the weeks following hatch and cannot fly or walk the same distances that an adult 

can. Thus, movement tends to be more restricted during this time and resources need to be 

available in a smaller area for the brood and female to access them (Sullins et al. 2018a, 

Verheijen et al. 2020). Such resources include arthropods and forbs, two critically important food 

sources for chicks (Savory 1989, Sullins et al. 2018a). Abundances and biomass of these 

resources have been linked to grassland productivity (Siemann 1995, Perner et al. 2005, 

Fernández-Tizón et al. 2020, Lu et al. 2020, Traba et al. 2022). The importance of AMP at the 

370-m scale confirms the importance of resource needs that are likely supplied by greater 

grassland productivity at this scale. 

Additionally, probability of brood use in relation to AMP differed across years, though 

differences between years were not statistically significant. Notably, the relationship between 

AMP and probability of use was much stronger in 2015. Observed differences in yearly 

probability of use may be due to the high variability of grassland phenology due to precipitation, 

diverse grazing regimes, temperature, etc. (Reed et al. 1994). For example, within the study 

areas, growing season precipitation was greater in 2015 compared to 2013 and 2014. Conditions 

in 2013 were particularly dry in western Kansas, with precipitation returning to relatively normal 

amounts in 2014 and 2015 (Sullins et al. 2018b, Plumb et al. 2019, Lautenbach et al. 2019). 

Additionally, grazing pressure was significantly lower in 2015 compared to 2013 and 2014 (D. 

S. Sullins, Kansas State University, personal communication). Given the interannual differences 

in grazing and precipitation, yearly differences in AMP and probability of use were likely normal 

responses and reflective of within-year variations of extrinsic factors within study sites. Overall, 

AMP at the 370-m scale remains informative across years, though interannual variability may 

limit the availability of these important productivity conditions.  
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Predicting reproductive habitat abundance 

Brood Habitat 

The presence of phenology metrics in my random forest model provided a finer-scale 

estimation of within grassland brood-rearing habitat in Kansas compared to prior species 

distribution models that only used grassland composition and anthropogenic features as 

predictors. My models revealed that the availability of reproductive habitat within grasslands is 

limited and variable between years. Sullins et al. (2019) used a random forest model to predict 

lesser prairie-chicken occurrence within the Kansas and Colorado portion of their occupied 

range. Predictors in Sullins et al. (2019) were related to anthropogenic features and gradient 

landscape variables, such as percent grassland at multiple scales. Results from this model 

identified large tracts of grasslands with minimal anthropogenic features that may be available to 

lesser prairie-chickens, but it was unclear how much of those grasslands were potential lesser 

prairie-chicken habitat. My study builds on this previous research, and hierarchically identifies 

areas within those grasslands where probability of use is high, moderate, or low, based on 

phenology metrics and landscape variables.  

The top 3 variables of importance in the 2014 and 2015 brood random forest model were 

EOST at the 1-km scale, AMP at the 370-m scale, and TIN at the 1-km scale. The most 

important variable, EOST, describes the date at which the end of the growing season occurred. 

This indicates that females with broods were using sites that remain greener and more productive 

for a longer period compared to what was available. Brood-rearing females have been observed 

moving their broods to more productive areas as the growing season progresses, such as into 

wetter areas (D. S. Sullins and D. A. Haukos, Kansas State University, personal communication). 
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Chicks have high caloric needs during the brood-rearing period, and the brood-rearing female 

needs to meet her own energy needs as well. Areas that remain productive for longer periods of 

time are likely able to provide females and their broods with resources later into the brood-

rearing season, meeting their needs for a longer period of time. This also relates to NDVI at the 

end of the growing season (EOSN), though EOSN carries less importance compared to EOST. 

Other grouse are known to select for wetter locations during brood-rearing. Brood-rearing 

greater sage-grouse (Centrocercus urophasianus) will use riparian areas more frequently as 

broods age, allowing them to take advantage of late-growing season food sources (Danvir 2002, 

Crawford et al. 2004, Dzialak et al. 2011, Dinkins et al. 2014). Females with younger broods are 

less likely to use riparian areas, and in fact tend to nest farther away from riparian areas (Dinkins 

et al. 2014). Use of riparian areas by late-stage sage-grouse broods is similar to what has 

anecdotally been observed for lesser prairie-chickens.  

Although EOST was the most influential variable in this model, AMP at the 370 m scale 

and TIN at the 1 km scale had similar influence, both of which measure productivity across the 

growing season rather than index the end of the growing season as EOST does. Specifically, 

AMP measures the difference between NDVI at the start of the growing season and NDVI at the 

peak of the growing season (otherwise known as MAXN; USGS 2021e). Greater values of AMP 

indicate greater increases in productivity and greenness, whereas low values of AMP indicate a 

lack of growing vegetation. For example, an AMP value of 0.1 would represent minimal growth 

or green-up of vegetation, potentially due to a pixel containing a greater proportion of bare 

ground or residual vegetation that is not measured by NDVI. In my random forest model, 

probability of use increased with greater AMP values, which would point to increased overall 

greenness and productivity at brood sites within grasslands compared to what was available. 
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Additionally, and as discussed earlier, I expect greater values of AMP to reflect greater food 

abundance at brood sites, particularly arthropods. Arthropods are a crucially important 

component of brood diet, and plant productivity, structure, and greater values of NDVI have 

been shown to influence arthropod abundance and biomass (Dennis et al. 1998, Harrison et al. 

2018, Fernández-Tizón et al. 2020). The TIN metric, also a season-long metric, measures 

cumulative integrated photosynthetic activity across the growing season and is often used as a 

proxy for the density of vegetation cover (Potter 2020, Potter and Alexander 2020) and biomass 

production (Goward et al. 1985, Tieszen et al. 1997, Wang et al. 2008, Rigge et al. 2013). Here, 

and similar to my nest-site selection analyses (this chapter), probability of use increased with 

increasing TIN measures. Low TIN values would relate to low cumulative photosynthetic 

activity across the growing season, and therefore, relatively less cover or biomass. Larger values 

of TIN likely reflected greater cover at brood sites, which is important for brood concealment. 

Although the most important variables in my model were related to phenology metrics, 

landscape variables still carried importance in this model.  

My results are consistent with other published work related to resource selection of 

grassland-dominated landscapes and avoidance of anthropogenic features (Behney et al. 2012, 

Pitman et al. 2010, Sullins et al. 2019, Plumb et al. 2019). The fourth ranked variable of 

importance in my random forest model was percent grassland within 5 km. Probability of use 

peaked around 77%-80%, which is consistent with Sullins et al. (2019) and further stresses the 

importance of available grassland dominated landscapes for lesser prairie-chicken persistence. 

Additionally, though these variables carried low importance, density of oil wells and density of 

transmission lines within 2 km exhibited similar patterns of use, where low densities of oil wells 

and transmission lines resulted in greater probabilities of use. Lesser prairie-chickens tend to 
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avoid tall vertical structures due to perceived predation risks. My results further indicated that 

the number of anthropogenic features on the landscape needs to remain low at broader scales to 

facilitate use by lesser prairie-chickens.  

Last, I observed an unexpected non-linear relationship with density of county roads. 

Probability of use increased as the number of county roads increased, peaked at approximately 

40 county roads within 2 km, and decreased before leveling out past 60/km. This appears to 

indicate that moderate numbers of county roads may not negatively affect predicted use by lesser 

prairie-chickens, which has similarly been observed by Tanner et al. (2020) and, to a lesser 

degree, Sullins et al. (2019). Additionally, although I have no data regarding traffic on unpaved 

county roads at any of our study sites, I expect traffic to be light on these roads, which may 

contribute to this unexpected relationship. It is important to remember that these results may 

have been different if random locations had been distributed among all cover types found within 

the study areas. All random locations used in my research were located exclusively within 

grasslands used by lesser prairie-chickens, which might limit the utility of these predictors that 

are likely still important at broader scales as Sullins et al. (2019) would suggest.  

Although phenology metrics and gradient landscape variables were important in 

predicting brood-rearing habitat availability, my random forest model revealed that the 

abundance of brood-rearing habitat within grasslands is limited in Kansas and variable between 

years. I observed a decline in overall potential habitat from 2014 to 2015 in Kansas. Reasons for 

this decrease remain unclear, but again may be due to differences in precipitation or land use. 

The ~50% decrease in high priority brooding habitat between years stresses the importance of 

sustainably managing grasslands as well as focusing targeted management and monitoring within 

priority grasslands. It is abundantly clear that when productivity measures are taken into 
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consideration, large tracts of intact priority grasslands for brood rearing are nearly non-existent, 

making conservation efforts on what remains critically important (Gehrt et al. 2020).  

Notably, there were no high priority grasslands identified within the Northwest study site 

in both 2014 and 2015, nor within the northwestern extent of the lesser prairie-chicken range in 

Kansas, despite the presence of CRP grasslands in this ecoregion (Short-grass Prairie/CRP 

Mosaic Ecoregion). By definition, grasses in this ecoregion are shorter and tend to lack adequate 

structure for lesser prairie-chicken use (Hagen et al. 2004, van Pelt et al. 2013, Haukos and 

Zavaleta 2016, Dahlgren et al. 2016), though implementation of CRP mitigates some of these 

issues (Fields 2004, Dahlgren et al. 2016). Although the presence of CRP grasslands is overall 

beneficial in this ecoregion, particularly during the nesting season, CRP can be too dense for 

lesser prairie-chicken chicks to navigate, which can result in decreased use during the brood-

rearing season (Dahlgren et al. 2016). Similarly, although somewhat rarely, females in this 

ecoregion have been observed to take their broods into crop fields for forage, particularly later in 

the growing season (Fields 2004, Fields et al. 2006), which is a cover type that we did not 

evaluate in this study. As such, the role that crop fields play in estimating potential habitat will 

need to be evaluated further. 

Based on estimates from using the Kappa Statistic as a threshold, I identified priority 

brood habitat in the southwest corner of Gove County and the southeast corner of Logan County, 

which were identified as grassland-dominated landscapes with minimal anthropogenic features in 

Sullins et al. (2019) and important habitat for lesser prairie-chickens. That my estimates are 

similar despite the addition of phenology variables in my model further supports targeted 

conservation in these areas. Of the overall predicted potential habitat in Kansas based on 

landscape variables alone in Sullins et al. (2019), only 1.64% was predicted as brood-rearing 
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habitat in 2014, all of which was predicted in the mixed-grass prairie within and adjacent to the 

Clark study site. In 2015, only 0.8% of the total estimated habitat abundance was predicted as 

brood-rearing habitat, as area of high priority habitat declined 51.4% from 2014 to 2015, 

providing strong evidence that the availability of brood-rearing habitat may be limited within 

Kansas, especially when compared to total estimated habitat availability by Sullins et al. (2019).  

The importance of understanding reproductive habitat availability for lesser prairie-

chickens cannot be understated. Lesser prairie-chicken populations continue to decline, and 

whether or not this species will persist over the next 25 years is questionable throughout much of 

the current occupied range (USFWS 2021). Reproductive parameters such as nest, brood, and 

juvenile survival have been identified as limiting factors for lesser prairie-chickens (Pitman et al. 

2006, Hagen et al. 2009, Ross et al. 2018), which further enforces the idea that priority 

reproductive habitat needs to be protected or managed in a way that maintains productivity 

requirements and keeps anthropogenic densities low in the hopes that nests and broods are 

successful and survive to the juvenile stage (Hagen et al. 2005, Pitman et al. 2006, Ross et al. 

2018, Plumb et al. 2019). Albeit productivity and low anthropogenic feature densities alone are 

not going to ensure the development of broods to juveniles, the fact remains that current 

management practices need to advance if lesser prairie-chicken populations are to persist. The 

identification and protection of priority habitat is a step in the right direction.  

 

Nest Habitat 

Efforts to use phenology metrics and gradient landscape variables to predict potential 

nesting habitat in Kansas were ultimately unsuccessful. One notable pattern was that TIN at the 

1-km scale was the most important variable in my random forest model, which is somewhat 
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consistent with the relationship that was observed in my nest-site selection analyses, with TIN at 

the 250-m scale predicting use. This further supports the idea that TIN may be capturing density 

of cover around nest sites, but the weak relationship may indicate that other characteristics are 

more important than the productivity of grass around nest sites as represented by phenology 

metrics.  

 

 Conclusions 

I have provided evidence that vegetation phenology metrics and gradient landscape 

variables are useful in the prediction of nest- and brood-site selection and the combination of 

phenology metrics and landscape variables can be used to predict brood habitat abundance in 

Kansas. Although I was unable to link 30-m Snapshot NDVI measures to nest-site selection, it 

remains clear that specific phenology metrics are capturing structure and canopy cover of 

vegetation at the 250-m scale, as well as at additional scales around used sites. Ultimately, I 

demonstrated that habitat selection not only manifests at fine microhabitat scales, but at broader 

spatial scales as well.  

Further, an alarming lack of priority grasslands were predicted in the Kansas portion of 

the lesser prairie-chicken range. Given the uncertainty surrounding the viability of this species 

over the next 25 years, measures need to be taken to preserve and sustainably manage identified 

priority areas, which may be most effective through the use of partnerships and financial 

incentives, such as conservation easements (Augustine et al. 2019). Additionally, given that the 

Short-Grass Prairie/CRP Mosaic Ecoregion supports the largest abundance of lesser prairie-

chickens, conservation efforts should be focused in areas where the greatest amount of potential 

habitat was identified by the Kappa statistic, as no high priority habitat was predicted here. 
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Overall, Kansas is a critically important stronghold for lesser prairie-chickens as it encompasses 

large portions of the mixed-grass, short-grass, and sand sagebrush prairies, which together 

support 92% of the range-wide lesser prairie-chicken population (Nasman et al. 2022). To 

prevent further population declines, conservation of grassland dominated landscapes that meet 

specific productivity requirements and have minimal anthropogenic features is needed.  
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Figure 1.1.  Map of the study area (Red Hills, Northwest, and Clark) covering Logan, 

Gove, Clark, Kiowa, and Comanche counties. Study areas are located within the Mixed-

Grass and Short-Grass/Conservation Reserve Program (CRP) Mosaic of the lesser prairie-

chicken range in western Kansas.  
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Figure 1.2.  Probability of use (nest site-selection) as a function of the remotely sensed 

phenology metric Time Integrated NDVI (TIN) at the 250-m pixel scale. Values of TIN 

were extracted from C6 AQUA MODIS Remote Sensing Phenology (RSP) images, 

downloaded from https://phenology.cr.usgs.gov/viewer/. TIN represents the cumulative 

integrated photosynthetic activity across the growing season. Nest data was collected from 

2013-2015 in Clark, Kiowa, Comanche, Logan, and Gove counties in western Kansas. The 

shaded grey area depicts 95% confidence intervals.  
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Figure 1.3.  Probability of female brood-rearing lesser prairie-chicken use as a function of 

Amplitude at the 370-m scale and Year. Amplitude values were extracted from C6 AQUA 

MODIS Remote Sensing Phenology (RSP) images. Brood locations are from Clark, Kiowa, 

Comanche, Gove, and Logan counties in Western Kansas in 2013, 2014, and 2015. The 

shaded grey areas represent 95% confidence intervals. 
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Figure 1.4.  Probability of female brood-rearing lesser prairie-chicken use as a function of 

Amplitude at the 250-m pixel scale. Amplitude values were extracted from C6 AQUA 

MODIS Remote Sensing Phenology (RSP) images. Brood locations are from Clark, Kiowa, 

Comanche, Gove, and Logan counties in Western Kansas in 2013, 2014, and 2015. The 

shaded grey areas represent 95% confidence intervals. 
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Figure 1.5.  The scaled variable importance values of the 10 variables (a combination of 

gradient landscape variables and NDVI-based vegetation phenology metrics) used in the 

2014 and 2015 random forest models predicting brood habitat abundance in western 

Kansas. Variables in this plot are listed, from top to bottom, in order of most important to 

least important. 
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Figure 1.6.  Partial dependency plots for all 10 variables (consisting of gradient landscape 

variables and NDVI-based vegetation phenology metrics) used to predict brood-rearing 

habitat abundance in western Kansas based on brood location data from 2014-2015. The 

partial dependency plots depict relative probability of use.   Raw estimates of probability of 

use are shown by the blue line, and the shaded grey area is 95% confidence intervals. The 

dashed grey line depicts a loess polynomial regression and smooths the raw probability of 

use estimates.   
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Figure 1.7.  Predicted habitat surface from 2014 based on probability of use. Areas with 

low probability of use are depicted in deep reds, areas with moderate probabilities of use 

are depicted in deep greens, and areas of high probability of use are depicted in deep blues. 

Habitat abundance was estimated using a random forest approach exclusively within 

grasslands. All white space is non-grassland. The locations of the 3 study sites (Clark, Red 

Hills, and Northwest) are outlined in black and span 5 counties in western Kansas (Clark, 

Kiowa, Comanche, Logan, and Gove) where lesser prairie-chicken broods were monitored 

from 2013-2015. Logan and Gove counties make up the Northwest study site, Clark county 

makes up the Clark study site, and Kiowa and Comanche counties make up the Red Hills 

study site. 
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Figure 1.8.  Predicted priority habitat in 2014. Areas in green represent estimated priority 

brood habitat abundance in 2014 in grasslands with minimal anthropogenic feature 

densities. Priority habitat abundance was estimated using a random forest approach and 

the Kappa threshold. Estimated abundance is based on probabilities of use > 0.32. The 

amount of estimated grasslands depicted in this figure is 2,154,137.5 ha. Locations of the 

three study sites are outlined in black (Clark, Red Hills, and Northwest) and spanned five 

counties in western Kansas (Clark, Kiowa, Comanche, Logan, and Gove) where lesser 

prairie-chicken broods were monitored from 2013-2015. Logan and Gove counties make up 

the Northwest study site, Clark county makes up the Clark study site, and Kiowa and 

Comanche counties make up the Red Hills study site.   
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Figure 1.9.  Predicted high priority habitat in 2014. High priority habitat abundance was 

estimated using a random forest approach and the sensitivity-specificity sum maximizer 

threshold. Estimated abundance is based on probabilities of use > 0.52. Areas in pink 

represent estimated high priority brood habitat abundance in 2014 in grasslands with 

minimal anthropogenic feature densities. The amount of estimated priority grasslands 

depicted in this figure is 8,225 ha. The locations of two of the three study sites (Clark and 

Red Hills) are outlined in black and span three counties in western Kansas (Clark, Kiowa, 

and Comanche) where lesser prairie-chicken broods were monitored from 2013-2015. 

Clark county makes up the Clark study site, and Kiowa and Comanche counties make up 

the Red Hills study site. The third study site, Northwest, is not depicted here due to a 

complete absence of priority grasslands predicted within this study area.   

 

 

 

 

 

 



53 

 
Figure 1.10.  Predicted habitat surface from 2015 based on probability of use. Areas with 

low probability of use are depicted in deep reds, areas with moderate probabilities of use 

are depicted in deep greens, and areas of high probability of use are depicted in deep blues. 

Habitat abundance was estimated using a random forest approach exclusively within 

grasslands. All white space is non-grassland. Locations of the 3 study sites (Clark, Red 

Hills, and Northwest) are outlined in black and span 5 counties in Kansas (Clark, Kiowa, 

Comanche, Logan, and Gove) where lesser prairie-chicken broods were monitored from 

2013-2015. Logan and Gove counties make up the Northwest study site, Clark county 

makes up the Clark study site, and Kiowa and Comanche counties make up the Red Hills 

study site.  
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Figure 1.11.  Predicted priority habitat in 2015. green represent estimated priority brood 

habitat abundance in 2014 in grasslands with minimal anthropogenic feature densities. 

Priority habitat abundance was estimated using a random forest approach and the Kappa 

threshold. Estimated abundance is based on probabilities of use > 0.32. Depicted in green, 

the amount of estimated priority grasslands depicted in this figure is 636,493.75 ha. The 

locations of the three study sites, outlined in black (Clark, Red Hills, and Northwest), 

spanned five counties in western Kansas (Clark, Kiowa, Comanche, Logan, and Gove) 

where lesser prairie-chicken broods were monitored from 2013-2015. Logan and Gove 

counties make up the Northwest study site, Clark county makes up the Clark study site, 

and Kiowa and Comanche counties make up the Red Hills study site. 
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Figure 1.12.  Predicted high priority habitat in 2015. High priority habitat abundance was 

estimated using a random forest approach and the sensitivity-specificity sum maximizer 

threshold. Estimated abundance is based on probabilities of use > 0.52. Areas in pink 

represent estimated high priority brood habitat abundance in 2015 in grasslands with 

minimal anthropogenic feature densities. The amount of estimated priority grasslands 

depicted in this figure is 3,993.75 ha. The locations of two of the three study sites (Clark 

and Red Hills), outlined in black, spanned three counties in western Kansas (Clark, Kiowa, 

and Comanche) where lesser prairie-chicken broods were monitored from 2013-2015. 

Clark county makes up the Clark study site, and Kiowa and Comanche counties make up 

the Red Hills study site. The third study site, Northwest, is not depicted here due to a 

complete absence of priority grasslands predicted within this study area.   
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Figure 1.13.  The scaled variable importance values of the 10 variables (a combination of 

gradient landscape variables and NDVI-based vegetation phenology metrics) used in the 

2014 and 2015 random forest models predicting nest habitat abundance in western Kansas. 

Variables in this plot are listed, from top to bottom, in order of most important to least 

important.  
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Table 1.1.  The 9 NDVI-based vegetation phenology metrics used in my analyses and their 

descriptions. All metrics are calculated and maintained by the U.S. Geological Survey (USGS) 

Earth Resources Observation and Science (EROS) Center. Each phenology metrics is calculated 

from weekly NDVI composites over a one-year period. Data is freely available from the USGS 

Phenology Viewer ( https://phenology.cr.usgs.gov/viewer/). 

Phenology Parameters Description 

SOST → Start of the growing season, time  Day of year at which a measurable 

photosynthetic increase takes place after 

senescence.  

SOSN → Start of the growing season, NDVI  NDVI value of the first measurable 

photosynthetic increase after senescence. 

EOST → End of the growing season, time  Day of year at which there is a measurable 

decline in photosynthetic activity. 

EOSN → End of the growing season, NDVI NDVI value on the day that there is a 

measurable downward trend in 

photosynthesis. 

MAXN → Maximum NDVI Highest level of photosynthetic activity 

detected in the growing season. 

MAXT → Maximum NDVI, time Day of year associated with the MAXN. 

AMP → Amplitude Difference between the SOSN and MAXN 

values. 

DUR → Duration 

 

Length of the growing season (i.e. the 

difference between the SOST and EOST). 

TIN → Time Integrated NDVI Cumulative integrated photosynthetic activity 

across the growing season.  
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Table 1.2.  A priori candidate model set (n = 7) models used to model nest site-selection for 

lesser prairie-chickens at the Clark, Red Hills, and Northwest study sites from 2013-2015. 

Models tested include a null, a single variable snapshot NDVI (representing NDVI values at 

the time of nest initiation), snapshot NDVI with additive and interactive site and year 

variables, and a quadratic snapshot NDVI model.  

 

Model Ka ∆AICcb AICcc wi
d Deviancee 

Null 1 0.00 460.30 0.52 -229.15 

Snapshot NDVI 2 1.74 462.04 0.22 -229.00 

Quadratic snapshot 

NDVI 

3 3.05 463.35 0.11 -228.64 

NDVI + Year 3 3.63 463.93 0.08 -228.93 

NDVI*Year 4 5.33 465.63 0.04 -228.76 

NDVI + Site 4 5.61 465.91 0.03 -228.90 

NDVI*Site 6 9.64 469.94 0.00 -228.85 

a Number of parameters 
b The difference in Akaike’s Information Criterion adjusted for small samples size 
c Akaike’s Information Criterion adjusted for small sample size 
d Akaike weights  
e Deviance (-2*loglikelihood)  
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Table 1.3.  21 out of 48 a priori candidate models used to model nest site-selection for lesser 

prairie-chickens at the Clark, Red Hills, and Northwest study sites from 2013-2015. Models 

tested include single variable NDVI-based phenology metrics, single variable NDVI-based 

phenology metrics at multiple scales, multi-variable NDVI-based phenology metrics, 

additive and interactive site and year models, and a null model.  

 

Model Ka ∆AICcb AICcc wi
d Deviancee 

TIN 2 0.00 901.29 0.12 -448.64 

TIN + AMP 3 1.04 902.33 0.07 -448.15 

TINscale1 2 1.45 902.74 0.06 -449.36 

TIN + Year 3 1.49 902.79 0.06 -448.38 

TINscale2 2 1.71 903.00 0.05 -449.49 

TIN*Year 4 1.76 903.05 0.05 -447.50 

AMPscale2 2 1.79 903.08 0.05 -449.53 

AMPscale3 2 1.82 903.11 0.05 -449.55 

Quadratic TIN 3 2.02 903.31 0.04 -448.64 

AMPscale3 + TINscale3 3 2.05 903.34 0.04 -448.65 

TINscale3 2 2.37 903.66 0.04 -449.82 

TINscale3 + SOSTscale3 3 2.77 904.06 0.03 -449.02 

AMPscale1 2 2.95 904.24 0.03 -450.11 

TIN*AMP 4 3.06 904.35 0.03 -448.15 

AMP 2 3.09 904.38 0.03 -450.18 

AMPscale3*TINscale3 4 3.10 904.39 0.03 -448.17 

Quadratic AMP 3 3.23 904.52 0.02 -449.24 

Quadratic TINscale1 3 3.45 904.74 0.02 -449.35 

TINscale3 + AMPscale3 + SOSTscale3 4 3.56 904.85 0.02 -448.40 

Quadratic AMPscale2 3 3.66 904.95 0.02 -449.46 

Null 1 5.84 907.13 0.01 -452.56 
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Table 1.4.  21 out of 38 a priori candidate models used to model brood site-selection for 

lesser prairie-chickens at the Clark, Red Hills, and Northwest study sites from 2013-2015. 

Models tested include single variable NDVI-based phenology metrics, single variable 

NDVI-based phenology metrics at multiple scales, multi-variable NDVI-based phenology 

metrics, additive and interactive site and year models, and a null model. 

 

Model Ka ∆AICcb AICcc wi
d Deviancee 

AMPscale1*Year 6 0.00 1523.48 0.74 -755.70 

AMPscale1 + Year 4 2.80 1526.27 0.18 -759.12 

AMPscale1 2 6.53 1530.01 0.03 -763.00 

AMPscale1*EOSTscale3*TINscale3 8 7.39 1530.86 0.02 -757.37 

Quadratic AMPscale1 3 8.51 1531.99 0.01 -762.98 

AMPscale1 + EOSTscale3 3 8.52 1532.00 0.01 -762.99 

AMPscale1+EOSTscale3+TINscale3 4 10.28 1533.76 0.00 -762.86 

AMPscale1*EOSTscale3 4 10.51 1533.99 0.00 -762.98 

AMP 2 11.60 1535.07 0.00 -765.53 

Quadratic AMP 3 12.56 1536.04 0.00 -765.01 

AMPscale2 2 12.98 1536.46 0.00 -766.22 

MAXN + Site 4 12.99 1536.47 0.00 -764.22 

MAXN*Site 6 15.18 1538.66 0.00 -763.29 

MAXNscale1 2 15.52 1538.99 0.00 -767.49 

TINscale1 2 16.92 1540.39 0.00 -768.19 

MAXN+MAXT 3 17.84 1541.32 0.00 -767.65 

DUR + MAXN 3 18.32 1541.80 0.00 -767.89 

MAXN*MAXT 4 18.40 1541.87 0.00 -766.92 

MAXN 2 19.96 1543.43 0.00 -769.71 

Quadratic MAXN 3 20.47 1543.95 0.00 -768.96 

Null 1 36.71 1560.19 0.00 -779.09 

a Number of parameters 
b The difference in Akaike’s Information Criterion adjusted for small samples size 
c Akaike’s Information Criterion adjusted for small sample size 
d Akaike weights  
e Deviance (-2*loglikelihood)  
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MODIS-based Vegetation Phenology Metrics Predict 

Lesser Prairie-Chicken Habitat Use, Quality, and Reproduction 

Relative to Patterns of Greenness 

 Introduction 

The dramatic and continuous loss of biodiversity around the world affects nearly every 

taxa and biome (Wilson 1989, Western 1992, Dirzo et al. 2014, Pimm et al. 2014). Recent 

attention has been brought to declines in the avian guild, with particular emphasis on grassland 

species. Unfortunately, over 700 million grassland birds have been lost since the 1970s with 74% 

of grassland species declining (Rosenberg et al. 2019). Declines in grassland birds have been 

attributed to habitat loss, habitat degradation, and climate change (Peterjohn and Sauer 1999, 

Crick 2004, Szabo et al. 2012, Loss et al. 2015, Stanton et al. 2018, Northrup et al. 2019). 

Substantial habitat loss puts added pressure on the configuration and abundance of high-quality 

habitat to foster survival and persistence (Andren 1994). Importantly, evaluating true habitat 

quality requires estimation of both habitat use and resulting demographic performance (e.g., vital 

rates) in an area (Van Horne et al. 1983). This may be especially true for the grassland obligate 

lesser prairie-chicken, which has experienced an estimated loss of 85% of its occupied range 

over the last 150 years (Van Pelt et al. 2013, USFWS 2014).  While habitat selection and vital 

rates of lesser prairie-chickens have been well-documented using field-based measurements, 

efforts to predict habitat quality at relevant broad spatial scales have been limited.  Remotely 

sensed vegetation phenology metrics may be useful in predicting quality of reproductive over 

broad spatial scales. Additionally, given the importance of the reproduction in the persistence of 

lesser prairie-chicken populations (Hagen et al. 2009), use of remotely sensed vegetation 
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phenology products may elucidate the importance of the timing of nest initiation and hatch 

relative to patterns of vegetation growth.   

 The lesser prairie-chicken has suffered population declines since the 1980s (Hagen and 

Elmore 2016, Hagen et al. 2017, Garton et al. 2016). Population declines are primarily due to 

historic and ongoing conversion of native grasslands to cropland (Taylor and Guthery 1980, 

Askins et al. 2007, Rodgers 2016, Dahlgren et al. 2016), anthropogenic development (Hagen et 

al. 2004, Haukos and Zavaleta 2016, Van Pelt 2016, Plumb et al. 2018), and a loss of habitat 

quality (Haukos and Zavaleta 2016). Nest survival, brood survival, and juvenile recruitment can 

greatly influence lesser prairie-chicken population growth rates relative to adult survival, 

underscoring the importance of identifying quality reproductive habitat (Hagen et al. 2009, 

Sullins 2017, Ross et al. 2018). Linking these critical reproductive parameters (e.g., nest survival 

and brood survival) to habitat characteristics have been limited to date and hamper any ability to 

model habitat quality. Research, thus far, has provided extensive knowledge on reproductive 

habitat selection for the lesser prairie-chicken, but limited information on nest survival relative to 

vegetation characteristics (Hagen et al. 2009, Lautenbach et al. 2019). Given that the 

identification of quality reproductive habitat can be considered a hierarchical process, in that 

nests must survive before broods and juveniles are successful, it is important to determine 

whether spatial data can predict quality nesting habitat.  

Nest-site selection is primarily linked to less bare ground, increased visual obstruction 

(typically between 2.0 and 3.5 dm at 75% visual obstruction), and greater percentage of litter 

compared to what is available at random sites (Giesen 1994, Pitman et al. 2005a, Patten and 

Kelly 2010, Lyons et al. 2011, Hagen et al. 2013, Fritts et al. 2016, Grisham et al. 2016, 

Lautenbach et al. 2019). Most research into nest survival indicates temperature, nest age, timing 
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of nest initiation, and, to an extent, distance from anthropogenic features can impact nest 

survival, not measures of vegetation (Fields et al. 2006, Pitman et al. 2006, Grisham et al. 2016, 

Lautenbach et al. 2019). In fact, one of the only established links between nest survival and 

vegetation is with measures of visual obstruction (VO). Recent work has demonstrated that nest 

survival is optimized when 75% VO is between 2.0 dm and 4.0 dm (Lautenbach et al. 2019), 

which is supported by similar results from other research findings (Davis 2009, Grisham et al. 

2014, Parker et al. 2022). However, it is important to note that the selection and survival studies 

discussed above are typically based on measurements of vegetation in potential “microhabitats” 

(e.g. 50 m2) that are randomly or systematically placed throughout a study area. Despite the 

utility of vegetation data at several locations, it is thought that habitat quality for lesser prairie-

chickens manifests at a broader scale, not necessarily at point locations (Haukos and Zavaleta 

2016, Gehrt et al. 2020). Therefore, measuring selection and evaluating survival at additional 

scales associated with used and available locations may yield additional insights into habitat 

selection (Chapter 1) and quality. Additionally, evaluating differences between successful and 

unsuccessful reproductive sites may also yield insight into habitat use at relevant broad spatial 

scales. To do this, one promising method is through the use of remotely sensed vegetation 

indices. 

The Normalized Difference Vegetation Index (NDVI) is a remotely sensed index that 

measures the difference between the amount of red light and infrared light being reflected off 

living vegetation and is calculated from satellite or aerial imagery (Rouse et al. 1974). The 

difference in reflectance describes the greenness and density of vegetation, making NDVI a 

proxy for aboveground biomass and productivity (Rouse et al. 1974, Tucker 1979). Importantly, 

we can derive additional measures from NDVI, such as vegetation phenology metrics that 
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describe the growing season phenology of vegetation (Table 2.1). Depending on the imagery 

used, phenology metrics can be calculated at extremely large spatial extents, making them useful 

in broad-scale monitoring of species reliant on variable vegetation characteristics across all life 

stages, such as the lesser prairie-chicken.  

Vegetation indices, including NDVI, have been used in ecological research for decades, 

and have been successfully linked to survival for a number of species. For example, annual 

survival of the migratory white stork (Ciconia ciconia) increases when primary productivity, as 

measured by NDVI, is high in winter stopover areas, and lower when primary productivity is low 

(Schaub et al. 2005). Here, NDVI was used as a proxy for primary productivity and, by 

extension, food availability. It is believed that low values of NDVI reflect lower food 

availability, which negatively affected survival of white stork (Schaub et al. 2005). Barn swallow 

(Hirundo rustica) survival in Europe is also positively related to NDVI, which allowed for the 

prediction of wintering and migration areas in South Africa (Szép et al. 2006). Other species for 

which survival has been linked to NDVI include Egyptian vultures (Neophron percnopterus; 

Grande et al. 2009), mule deer (Odocoileus hemionus; Hurley et al. 2014), big horn sheep (Ovis 

canadensis), Alpine ibex kids (Capra ibex; Pettorelli et al. 2007), and, although weakly 

predictive, greater sage-grouse chicks (Centrocercus urophasianus; Guttery et al. 2013). Given 

the apparent utility of linking NDVI-based phenology metrics to measures of survival for 

multiple species combined with the reliance of lesser prairie-chickens on varying vegetation 

composition and structure across life stages, I expect that NDVI-based phenology metrics may 

be successful in measuring habitat quality at relevant broad spatial scales.  

Lastly, aside from its potential utility in measuring habitat quality, NDVI-based 

phenology metrics may also elucidate the importance of the timing of nest initiation and hatch 



66 

relative to patterns of vegetation growth. Studies show that nests initiated earlier in the 

reproductive season experience greater success compared to nests initiated later in the 

reproductive season (Fields et al. 2006, Pitman et al. 2006, Lautenbach et al. 2019). Reasons for 

this pattern are unclear, but may have something to do with resource availability as represented 

by increases in vegetation productivity. Many avian species time reproductive events to peak 

resource abundance but are now experiencing phenological mismatches due to climate change, 

which can have negative fitness consequences (Walther et al. 2002, Visser and Both 2005). 

Whether the lesser prairie-chicken times reproductive events to peak food availability is 

unknown. Evaluating timing of hatch relative to specific phenology metrics (the start of the 

growing season and the peak of the growing season) may reveal patterns heretofore 

uninvestigated and consequently reveal new information about the reproductive ecology of this 

iconic Great Plains species.   

Ultimately, there is still more to learn regarding the reproductive ecology of lesser 

prairie-chickens. Because management recommendations typically point to improved habitat 

quality as a primary conservation goal for lesser prairie-chickens, innovative methods using 

remote sensing to predict high priority reproductive habitat and monitor vegetation response to 

management strategies within Kansas are needed (Chapter 1). I hypothesized that nest initiation 

and hatch are timed to the period between the start of the growing season and the peak of the 

growing season, allowing females with broods to access resources as they develop. Specifically, 

I predicted that nests would be initiated close to the start of the growing season (SOST; Table 

2.1) and hatch would occur prior to the peak of the growing season (MAXT). I also hypothesized 

that phenology metrics would be indicative of underlying vegetation structure and composition 

(e.g., warm season vs. cool season grasses) that would vary among successful and unsuccessful 
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nests. Specifically, I predicted that successful nest sites would have earlier SOST values 

compared to unsuccessful nests, and values of maximum NDVI (MAXN) would be greater at 

successful nest sites.  

Peak primary productivity is a direct proxy of MAXN, which I expect to be important at 

successful brood sites due to relationships with increased arthropod food abundance (Sweet et al. 

2015, Fernández-Tizón et al. 2020, Traba et al. 2022). Lastly, I hypothesized that phenology 

metrics at broad spatial scales would predict nest survival for the lesser prairie-chicken. I 

predicted that MAXN or time integrated NDVI (TIN) would best predict nest survival. Peak 

resource abundance, as represented by MAXN, is important for nesting females as well as brood-

rearing females due to the high energetic requirements associated with nesting (Martin 1987). 

Similarly, TIN is a direct proxy for the density of vegetation across the growing season. Percent 

cover of grasses and, to a lesser extent, forbs, are important for nesting females (Hagen et al. 

2013, Grisham et al. 2014, Lautenbach et al. 2019), which I expected to be reflected in TIN.  

 

 Methods 

 Study area  

 My study area occured within 2 of the 4 ecoregions occupied by lesser prairie-chickens: 

the Short-grass Prairie/CRP Mosaic and Mixed-grass Prairie. The study sites were Clark, 

Northwest, and Red Hills, all located in western Kansas (Figure 2.1). Data from these study sites 

were pooled from previous research during 2013, 2014, and 2015. One notable quality of the 

lesser prairie-chicken range is the pronounced precipitation gradient, where the amount of 

precipitation increases from west to east. Because of this, there is annual variability in the 

amount of precipitation received at each study site. In the westernmost portion of the lesser 



68 

prairie-chicken range, average annual precipitation ranges from 27.8 to 40.5 cm (Grisham et al. 

2016). In the easternmost portion of the lesser prairie-chicken range, average annual precipitation 

is larger and ranges from 63.9 and 76.3 cm (Grisham et al. 2016).  

The Northwest study site was located in northwestern Kansas in the Short-grass 

Prairie/CRP Mosaic Ecoregion and encompassed Logan and Gove counties. Research was 

primarily conducted on private lands, as well as on Smoky Valley Ranch owned by The Nature 

Conservancy. Dominant land uses across the Northwest study site included grazing, CRP 

grasslands, and row-crop agriculture. Soil type was primarily silt loam. Dominant grasses 

differed between the short-grass working grasslands and planted CRP grasslands. In the CRP 

grasslands of this ecoregion, dominant grasses include sideoats grama (Bouteloua curtipendula), 

little bluestem (Schizachyrium scoparium), big bluestem (Andropogon gerardii), switchgrass 

(Panicum virgatum), and Indiangrass (Sorghastrum nutans). Dominant forbs in the CRP 

grasslands include yellow sweet clover (Melilotus officinalis), white sweet clover (Melilotus 

alba), prairie coneflower (Ratibida columnifera), purple prairie clover (Dalea purpurea), and 

Illinois bundleflower (Desmanthus illinoensis; Lautenbach et al. 2019). In the short-grass prairie 

working lands, dominant grasses included blue grama (Bouteloua gracilis), buffalograss 

(Bouteloua dactyloides), hairy grama (Bouteloua hirsuta), little bluestem, big bluestem, western 

wheatgrass (Pascopyrum smithii), and sideoats grama. Dominant forbs in the short-grass prairie 

working lands included western ragweed (Ambrosia psilostachya), Russian thistle (Salsola sp.), 

Illinois bundleflower, annual buckwheat (Eriogonum annum), prairie sunflower (Helianthus 

petiolaris), sand milkweed (Asclepias arenaria), nine-anther dalea (Dalea enneandra), and 

broom snakeweed (Gutierrezia sarothrae). Lastly, dominant shrubs across the Northwest study 
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site include yucca (Yucca glauca) and sand sagebrush (Artemisia filifolia; Sullins et al. 2018, 

Lautenbach et al. 2019).  

The Clark and Red Hills study sites were both located on private lands in the Mixed-grass 

Prairie, with the Clark study site bordering the sand sagebrush prairie. Soil composition at the 

Clark study site was primarily fine sandy loams, loamy fine sands, and fine sands (Sullins et al. 

2018). At the Red Hills study site, soil composition was primarily clay, clay loam, and sandy 

loam (Sullins et al. 2018). Dominant land uses at these study sites were cattle grazing and row-

crop agriculture. At both study sites, dominant grasses included little bluestem, big bluestem, 

blue grama, hairy grama, sand dropseed (Sporobolus cryptandrus), alkali sacaton (Sporobolus 

airoides), switchgrass, sideoats grama, and buffalograss. Dominant forbs at both study sites 

included western ragweed, kochia (Kochia scoparium), Russian thistle, Louisiana sagewort 

(Artemisia ludiviciana), annual sunflower (Helianthus annuus), broomweed (Amphiachyris 

dracunculoides), and broom snakeweed. The most abundant shrubs included sand sagebrush, 

eastern red cedar (Juniperus virginiana), sand plum (Prunus angustifolia), and fragrant sumac 

(Rhus aromatia; Sullins et al. 2018, Lautenbach et al. 2019).  

 

 Capture and monitoring:  

From mid-March through mid-May of 2013, 2014, and 2015, I captured lesser prairie-

chickens at 3 study sites in western Kansas using drop nets and walk-in funnel traps (Haukos et 

al. 1990, Silvy et al. 1990). Captured females were marked with either a 22-g solar powered GPS 

satellite transmitter (PTT-100, Microwave Telemetry, Inc., Columbia, MD) or a 15-g very-high-

frequency (VHF) transmitter. For GPS-marked females, locations were recorded every 2 hours 
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between 0500-2300. For VHF-marked females, birds were tracked manually and locations were 

triangulated 3-4 times per week.  

I monitored and evaluated spatial patterns of GPS- and VHF-marked females during the 

nesting season to determine when a nest was initiated following Lautenbach et al (2019). Nesting 

behavior of a GPS-marked hen was indicated by multiple transmitted locations at the same point 

and minimal movement around that point. For VHF-marked hens, a nest was deemed initiated if 

the female was located in the same spot >3 times in a row. Following confirmation of initiation, I 

searched for and flushed females from the nest to count, weigh, measure, and float eggs to 

ascertain an estimated hatch date. I recorded the Universal Transverse Mercator coordinate 

system locations of nests using the WGS 1984 Zone 14N datum and vacated the nest site as 

quickly as possible. As the nesting season progressed, I visited nests a second time once the 

female left the area to determine the outcome of the nest (successful or failed).  

 

 Remotely sensed data collection:  

 To evaluate the influence of vegetation phenology metrics on demography and successful 

versus unsuccessful reproductive sites, I downloaded freely available phenology imagery from 

the Aqua Moderate Resolution Imaging Spectroradiometer (hereafter MODIS) satellite. More 

specifically, I used the C6 Aqua Western 250 m eMODIS RSP (remote sensing phenology) data, 

downloaded from the USGS Phenology Viewer (Jenkerson et al. 2010, Brown et al. 2015; Table 

2.1; https://doi.org//10.5066/F7PC30G1). Images from this collection are delivered at a 250-m 

pixel resolution, and are maintained and processed by the USGS Earth Resources Observation 

and Science Center (EROS). The eMODIS images are based on weekly composites of eMODIS 

NDVI data (USGS 2021) and are temporally smoothed to eliminate irregular spikes of NDVI 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwisy8iP6tT9AhVQlYkEHWjVA7EQFnoECBAQAQ&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FUniversal_Transverse_Mercator_coordinate_system&usg=AOvVaw38OJ8CqHfbvB5Aq6NLZywn
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwisy8iP6tT9AhVQlYkEHWjVA7EQFnoECBAQAQ&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FUniversal_Transverse_Mercator_coordinate_system&usg=AOvVaw38OJ8CqHfbvB5Aq6NLZywn
https://doi.org/10.5066/F7PC30G1
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estimates that are considered spurious. From the weekly NDVI composites and subsequent year 

long time series, 9 vegetation phenology metrics are calculated (Table 2.1).  

 One notable quality about the eMODIS imagery is that there are pixels within which 

phenology metrics were unable to be calculated. The value assigned to no data cells was either 0 

or -1000. Similarly, cells identified as water were also given specific values, either 255 or 1000. 

If values of -1000, 255, or 1000 were included in my analyses, results could have been 

negatively impacted. To address this, I converted any cell containing 0, 1000, -1000, or 255 to be 

“No Data” using the “Set Null” function in ArcGIS 10.8. All locations with “No Data” were 

excluded from analyses.  

 

 Nest survival: 

I organized nest data into a CSV file containing first found, last present, last checked, and 

outcome of all nests. To evaluate relationships between vegetation phenology metrics and daily 

nest survival, I constructed a candidate model set with 46 a priori models using package 

“RMark” in program R (Laake 2013, R Core Development Team 2022). I used a 38-day 

exposure period to estimate survival across the nesting season and used the delta method 

assuming independence to estimate error around the estimate (Powell 2007). Variables in the a 

priori model set were single variable vegetation phenology metrics at multiple scales around nest 

sites (250-m pixel scale, 370 m, 500 m, 1 km, and 3 km; Table 2.2). I ranked models using 

Akaike’s Information Criterion adjusted for small sample size (AICc; Burnham and Anderson 

2002). Models within 2 ∆AICc from the top ranked model were considered competitive. I 

evaluated beta coefficients of all top-ranked models. Beta coefficients with overlapping 95% 

confidence intervals were considered uninformative.  
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 Comparison of phenology at successful versus unsuccessful nest and brood sites: 

 Using the “Extract Multi Values to Point” tool in ArcGIS 10.8, I extracted values of 9 

phenology metrics at nest and brood sites from 2013, 2014, and 2015. In the CSV file that I used 

to organize data, I included a column that stated whether the nest was successful and whether the 

brood site was the location of a successful or unsuccessful brood. I was interested in whether 

there were differences in the means of phenology metrics at successful versus unsuccessful 

reproductive sites. First, I used a Hotelling’s T2 test to determine whether there was a 

multivariate difference of phenology at successful and unsuccessful nest and brood sites. Once a 

multivariate difference was confirmed (P < 0.05), I implemented a Welch’s two-sample t-test 

assuming unequal variances to compare 9 phenology metrics (Table 2.4) at successful and 

unsuccessful reproductive sites.  

 

 Timing of nest initiation and hatch relative to patterns of greenness:  

 I exclusively used first nest attempts to elucidate the importance of the timing of nest 

initiation and hatch relative to patterns of vegetation growth. I compiled a list of first nests from 

2013, 2014, and 2015 at the Clark, Red Hills, and Northwest study sites. I extracted SOST and 

MAXT values at each nest. To determine the difference between nest initiation dates and SOST, 

I subtracted SOST values from Day of Year (DOY) laying values. Similarly, to determine how 

many days nests hatched prior to MAXT, I subtracted DOY hatch dates from MAXT.  
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 Results  

 Nest survival: 

The single variable Time of Maximum NDVI (MAXT) at the 500-m scale (β = -0.009, 

SE = 0.004) best predicted lesser prairie-chicken nest survival across study sites and years and 

carried 18% of model weight (Table 2.2). Nest survival was maximized when MAXT was 160, 

which corresponds to locations having peak greenness values on June 9th and decreased linearly 

as MAXT increased (Figure 2.2). There were 3 additional models that fell within 2 ∆AICc of the 

top ranked model including TIN at the 3-km scale (β = 3.15, SE = 1.34), MAXT at the 250-m 

scale (β = -0.006, SE = 0.003), and MAXT at the 370-m scale (β = -0.007, SE = 0.003), all of 

which outranked the null model (Table 2.2). The beta coefficients of each single variable 

competitive model did not overlap zero at the 95% confidence interval and were therefore 

significant.  

 

 Comparison of phenology at successful versus unsuccessful nest and brood sites: 

Among years, I compared phenology metrics at a total of 224 nest sites. Of the 224 nests, 

150 nests were unsuccessful and 74 were successful. Of the 9-phenology metric means that were 

compared, 2 were significantly different between successful and unsuccessful nests: TIN and 

MAXT. At successful nests, TIN was greater by 0.02 (P = 0.05) and MAXT was earlier by 8 

days (P = 0.04). Means of the remaining 7 phenology metrics (AMP, DUR, SOST, SOSN, 

MAXN, EOST, and EOSN) did not differ among successful and unsuccessful nests (Table 2.3).  

At 266 sites of successful brood-rearing females and 55 sites of failed broods, MAXT 

and EOSN differed between successful and unsuccessful brood sites. MAXT was 12 days later at 

successful brood sites (P = 0.003) and EOSN was greater by 0.01 (P = 0.01). The remaining 7 
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phenology metrics did not significantly differ between successful and unsuccessful brood sites 

(Table 2.4).   

 

 Timing of nest initiation and hatch relative to patterns of greenness: 

I monitored 43 nests in 2013 (39 first nest attempts), 115 in 2014 (80 first nest attempts), 

and 66 nests in 2015 (57 first nest attempts). Site-specific means of laying dates and hatch dates 

from 2013-2015 are found in Table 2.5. In general, first nests were initiated ~within 20 days of 

SOST (Figure 2.3). In 2013, the mean laying date of nests across study sites was 125 ± 10 (May 

5th). The mean SOST at nest sites among study sites was 121 ± 25 (May 1st). Thus, first nests 

were, on average, initiated 4 days after SOST. In 2014, the mean laying date of nests across 

study sites was 118 ± 14 (April 28th), and mean SOST at nests across study sites averaged 20 

days later (138 ± 16; May 18th). Lastly, in 2015 the mean laying date of nests across study sites 

was 115 ± 9 (April 25th); the mean SOST at nests across study sites was one day earlier (114 ± 

6). Overall, nest initiation occurs within a window close to the start of the growing season.   

When hatch dates were evaluated in relation to the date of maximum greenness (MAXT), 

it was clear that hatch of all first nest attempts occurred prior to the peak of the growing season 

(MAXT; Figure 2.3). In 2013, the mean hatch date across study sites was 160 ± 12 (June 9th), 

with the mean MAXT at nest sites a mean of 62 days later (222 ± 40; August 10th). In 2014, the 

mean hatch date across study sites was DOY 165 ± 17 (June 14th), with the mean MAXT at nest 

sites 60 days later (205 ± 16; July 25th). Last, in 2015 the average hatch date across study sites 

was DOY 157 ± 12 (June 6th) with MAXT following 30 days later (187 ± 33; July 6th). Site-

specific means of SOST and MAXT at nest sites from 2013-2015 are in Table 2.6. 
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 Discussion 

Use of NDVI and NDVI-based phenology metrics in the evaluation of habitat quality for 

lesser prairie-chickens in the short- and mixed-grass prairies has not been reported, though 

attempts to link remotely sensed vegetation phenology to nest site-selection, nest survival, and 

home range sizes were attempted in the sand shinnery oak prairie, albeit largely unsuccessfully 

(de la Piedra 2017). Therefore, I provide some of the first evidence successfully linking habitat 

quality to broad-scale remotely sensed vegetation phenology metrics. Specifically, I found that 

lesser prairie-chicken nest survival was informed by MAXT at the 500-m spatial scale. 

Additionally, I also used phenology metrics to elucidate the timing of critical reproductive events 

(i.e., laying date and hatch date) relative to patterns of greenness and documented that lesser 

prairie-chickens time laying and hatch between the start of the growing season and the peak of 

the growing season.  

 

 Nest Survival:  

Historically, it has been difficult to link nest survival to vegetation characteristics, despite 

the wealth of informative vegetation-based predictors for nest site-selection. It appears that 

eMODIS 250-m remote sensing phenology images can predict nest survival and may be essential 

to advancing our ability to predict nest survival in grasslands. Specifically, I was able to link 

500-m resolution spatial data to nest survival, with MAXT informing nest survival. Nest survival 

was greatest at earlier dates of MAXT with peak survival occurring at DOY 160 and decreasing 

as MAXT progressed. Interestingly, nest survival was greatest at DOY 160, but the mean MAXT 

at nest sites was 38 days later, on DOY 198.  



76 

There may be several reasons for the observed differences between MAXT optimized for 

modeled nest survival and MAXT at successful nests are different. First, it is possible that 

differences in grass and forb composition around nest sites are reflected in the results. For 

example, research has shown that warm-season grasses and cool-season grasses exhibit distinct 

NDVI curves, with cool-season grasses reaching peak NDVI earlier than warm-season grasses 

(Wang et al. 2010). Although residual warm-season grasses are predominantly used by lesser 

prairie-chickens for nesting, there may be better cover or greater resources in areas with some 

cool-season grasses and forbs earlier in the nesting season. Additionally, the differences between 

values of MAXT in nest survival and at successful versus unsuccessful nests may also indicate 

that heterogeneity of vegetation remains important from not only a structural perspective, but 

also from a phenological perspective. Ultimately, and most importantly, the overarching pattern 

associated with nest survival and means at successful nest sites is that MAXT occurs earlier in 

the growing season.  

Although eMODIS RSP phenology metrics are useful from a broad-scale monitoring 

perspective, with the use of my methodologies as a stepping stone into additional remotely 

sensed monitoring efforts of lesser prairie-chicken habitat, it may be beneficial to use finer 

resolution imagery such as Landsat (30-m resolution) or Sentinel 2 (10-m resolution) in similar 

analyses, which would require time-series analyses to produce phenology estimates because 

vegetation phenology metrics are generated based on repeated measures of NDVI (see one of the 

first reported methods of time-series by Holben 1986 and a review of time-series methodologies 

in Li et al. 2021). There are many uses for broad-scale results such as mine, but instances in 

which finer scale imagery may be useful include monitoring areas with the highest densities of 

lesser prairie-chickens or within areas of identified priority grasslands. Monitoring phenology at 
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finer resolutions within priority and high priority grasslands may give wildlife managers better 

insights of vegetation structure, composition, heterogeneity, and phenology as well as any 

changes related to habitat area and habitat quality that may occur within priority and high 

priority areas.  

 

 Comparison of phenology at successful versus unsuccessful nest and brood sites:  

 Relatedly, there were significant phenological differences at successful and unsuccessful 

nest and brood sites. In my study, MAXT occurred earlier at successful nests(DOY 198) 

compared to 8 days later at unsuccessful nests (DOY 206). Although this relationship was 

statistically significant, the 8-day difference may be minimal. Regardless, while the 8-day 

difference appears short, it may be just enough time to affect resources, such as arthropod growth 

(Juliano 1986) and plant growth (Risser and Johnson 1973) around the nest site. Differences in 

MAXT at successful and unsuccessful brood sites, however, may tell a different story.   

 At successful brood sites, MAXT occurred on DOY 200, which is within 2 days of 

MAXT for successful nest sites. Each of these dates would provide broods access to increases in 

resource availability for approximately 45 days following mean hatch date, which, on average 

among years, occurs on DOY 155 (June 4th). The fact that MAXT at successful nest and brood 

sites are similar may indicate that locations with primary productivity increasing to mid-July 

may provide optimal conditions and resource availability for broods and brood-rearing females. 

Additionally, this 45-day window may have other implications. For example, it has been reported 

that chicks reach asymptotic body mass around day 50 and juveniles with greater body mass 50-

60 days post-hatch experienced greater survival (Pitman et al. 2005b, 2006). Thus, it stands to 

reason that areas with resources increasing over a longer time period would be more beneficial 

for chicks and females.  
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At unsuccessful brood sites, MAXT occurred on DOY 188 (July 7th), which is 12 days 

prior to successful brood locations. Considering that the mean hatch date across years is DOY 

155 (June 4th), this would only provide a 33-day window of increasing resource availability. 

Although I did not investigate this, it is possible that this shorter window is a barrier to resource 

acquisition and, ultimately, survival.  

Aside from MAXT, which differed between successful and unsuccessful nest and brood 

sites, there were other significant differences in phenology as well. At successful nest sites, TIN 

was greater than at unsuccessful nest sites. The TIN metric directly translates to greater density 

of vegetation, and by extension, the amount of vegetative cover. The importance of cover at 

lesser prairie-chicken nest sites is well established in the literature, as nest sites are typically 

comprised of greater percentages of forb and grass cover compared to what is available at 

random sites (Hagen et al. 2013, Grisham et al. 2014, Lautenbach et al. 2019). That TIN is 

significantly greater at the 250-m scale indicates that the density of vegetation 250 m 

surrounding successful nest sites is greater than at unsuccessful nests, which likely also benefits 

nesting females when they make movements outside of the nest.  

Lastly, EOSN is greater by 0.01 at successful brood sites than unsuccessful brood sites. 

Brood-rearing females have been observed to move older broods into more productive wet areas 

where resources may remain later into the growing season (D. S. Sullins and D. A. Haukos, 

Kansas State University, personal communication). It is possible that movements into wetter 

areas are being reflected here, though the small difference between EOSN at successful versus 

unsuccessful brood sites makes this equally unlikely, as this difference is fairly negligible despite 

its statistical significance. Brood movements into wetter areas is an area of lesser prairie-chicken 

research that is lacking, though these types of movements and space use have been documented 



79 

in brood-rearing greater sage-grouse (Danvir 2002, Crawford et al. 2004, Dzialak et al. 2011, 

Dinkins et al. 2014). A better understanding of the role that EOSN plays in lesser prairie-chicken 

space use would be useful given the lack of literature to support this finding. A promising start 

may lie within evaluating the role of areas more likely to hold soil moisture (e.g., Compound 

Topographic Index; Gessler et al. 1995) in brood use and any associated phenological patterns.  

 

 Timing of nest initiation and hatch: 

 Annual life stages (such as reproduction) and movement of wildlife are often timed to 

match pulses in vegetation growth associated with periods of abundant palatable food and cover 

(Drent et al. 1978, Martin 1987, van der Graff et al. 2006, Si et al. 2015, Duursma et al. 2019, 

Stoner et al. 2020). This phenomenon is most often observed in migratory species, allowing 

individuals to temporally elongate benefits from peak vegetative growth (greenness) spread over 

altitudinal and latitudinal gradients (Bischof et al. 2012, Fryxell and Avgar 2012, Blake et al. 

2013, Shariatinajafabadi et al. 2014, Aikens et al. 2017), but is studied in resident species across 

other taxa as well (Middleton et al. 2018). The idea of species following this “green wave” was 

first hypothesized by Drent et al. (1978) to describe the migration patterns of brent geese (Branta 

bernicla) and barnacle geese (Branta leucopsis) as a function of food availability. Both species 

moved northward with the progression of vegetation green up, which provided them with more 

palatable food and a better energy balance in time for the breeding season. A similar hypothesis 

referred to as the “forage maturation hypothesis”, which states that forage rate is optimized at 

intermediate biomass (i.e. before senescence) and is thought to explain patterns of ungulate 

migration (Fryxell 1991, Hebblewhite et al. 2008). Regardless of the hypothesis, by tracking 

changes in vegetation phenology, individuals, herds, and flocks are able to take advantage of 
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resources as they first develop when they are high in nutrient content and most palatable. 

Although an abundance of research focuses on vegetation green up relative to migratory species, 

non-migratory species can also maximize the benefits of peak growing season by timing critical 

life stages to match periods of abundant resources (Bischof et al. 2012, Middleton et al. 2018, 

Wann et al. 2019, Stoner et al. 2020). A number of avian species are hypothesized to time hatch 

to periods of greater food availability for chicks, given the high caloric needs and protein 

demands of both broods and brood-rearing females (Perrins 1970, Van Noordwijk et al. 1995. 

Dunn 2004, Wann et al. 2019, Stoner et al. 2020). Mismatches of the synchrony between 

reproductive events and food availability can have negative fitness consequences on both adults 

and chicks (Thomas et al. 2001, te Marvelde et al. 2011, McKinnon et al. 2012, Wann et al. 

2019, Simmonds et al. 2020). My research indicates that non-migratory lesser prairie-chickens 

time reproductive events (nesting and hatch) to the period between the start of the growing 

season and peak of the growing season (Figure 2.3), which I hypothesize may be to optimize 

food availability and abundance for chicks.  

 The date of the start of the growing season (SOST) simply refers to the period of time at 

which there is a measurable increase of NDVI above a baseline. As the growing season 

progresses, NDVI inevitably reaches a peak (MAXT and MAXN) where greenness and canopy 

density are at maximum levels, and various resources are increasing daily. Interestingly, 

measures of NDVI have been correlated with a number of resources including arthropods (Sweet 

et al. 2015, Fernández-Tizón et al. 2020), which are an important food source for many avian 

species, including the lesser prairie-chicken (Savory 1989, Sullins et al. 2018). For example, in 

European shrublands and mixed-grass shrublands, arthropod biomass was positively associated 

with numerous vegetation indices (enhanced NDVI, green NDVI, green soil adjusted vegetation 
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index, among others) calculated at 4-cm and 10-m spatial resolutions (Traba et al. 2022). In 

temperate European grasslands, spring arthropod biomass increased with increasing NDVI, 

which researchers suggest is an effective proxy for spring food availability (Fernández-Tizón et 

al. 2020). Whether or not these relationships occur in the semi-arid Great Plains remains 

untested, but the importance of arthropod availability in lesser prairie-chicken brood diets is 

inarguable and may be related to measures of NDVI (Sullins et al. 2018).    

After hatching, lesser prairie-chicken chicks grow rapidly and have high caloric demands 

(Sullins et al. 2018). Ideally, critical resources should be available within a relatively small area 

given the limited mobility of chicks (Van Pelt et al. 2013, Sullins et al. 2018, Verheijen et al. 

2020). If the hatch date of lesser prairie-chicken nests occur before the peak of the growing 

season, chicks and brood-rearing females will presumably have maximum access to arthropods 

(and forbs, another important food source) as they emerge and increase in abundance. 

Additionally, hatching prior to MAXT would likely provide chicks with arthropods that are 

smaller, which would be easier for a small chick to consume. If arthropod biomass increases with 

increasing NDVI in the semi-arid grasslands of western Kansas, it is likely that arthropods are 

reaching peak biomass at a similar time to when MAXT is occurring.  

 In 2013, 2014, and 2015, nests were laid 4 days after SOST, 20 days before SOST, and 1 

day after SOST, respectively. Patterns of nest initiation occurring near the start of the growing 

season and hatching prior to the peak of the growing season has been observed in greater sage-

grouse (Centrocerus urophasianus) in Utah where sage-grouse initiated nests 22 days after the 

start of the growing season and hatch occurred 2-3 weeks prior to the peak of the growing season 

(Stoner et al. 2020). This is thought to provide greater sage-grouse chicks with food for a longer 

period of time. Consequences of hatching later in relation to food availability can be seen in 
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greater snow goose (Chen caerulescens atlantica) goslings. Goslings that hatched later had 

access to fewer nutrient rich foods compared to those that hatched earlier, indicating that 

hatching earlier than peak food availability may be more beneficial to chicks than hatching at or 

following the peak of food availability (Lepage et al. 1998). Similarly, sites of unsuccessful 

lesser prairie-chicken broods reached MAXT later than sites of successful broods.  

 Understanding potential relationships between the timing of reproductive events and 

phenological dates is particularly important in the context of climate change. Species that have 

evolved to match critical life stages to patterns of vegetation phenology have been, or are 

predicted to be, negatively affected by climate change (Visser et al. 2004, 2006, 2021; Both et al. 

2005, 2006; Post and Forchhammer 2007, Wann et al. 2019). As climate change has progressed 

over the last few decades, multiple avian species have experienced phenological mismatches 

across numerous climate zones, with mismatches often most apparent in higher latitudes but 

observed nonetheless in mid-latitudes. Great tits (Parus major) have synchronized the food 

requirements of chicks with caterpillar abundance, which is reflected in the timing of nest 

initiation (Visser et al. 2006). Over time, temperatures have increased and as a result the time of 

peak food abundance has shifted to earlier dates, but the laying dates (and, by extension, hatch 

dates) of great tits have not shifted to match the altered timing of peak food availability. The 

phenological mismatch between peak food abundance chick hatch dates have resulted in fewer 

fledglings and lower mass of fledglings (Visser et al. 2006). Similarly, food abundance 

(arthropod and vegetation) for white-tailed ptarmigan chicks and brood-rearing females is best 

predicted by NDVI, and negative consequences occur due to seasonal mismatch. Seasonal 

mismatch was derived by calculating the area under the curve from a generalized additive model 

(GAM) that incorporated estimates of NDVI. High values of seasonal mismatch indicated that 
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broods were being reared during a time that did not correspond to peak resource abundance. 

Survival is lower for chicks hatching at greater values of seasonal mismatch and younger chicks 

are more likely to be negatively affected by mismatches than older chicks (Wann et al. 2019).  

 

 Conclusions: 

I have provided evidence that remotely sensed phenology data can be linked to nest 

survival at relevant spatial scales by using 250-m eMODIS phenology images, and timing of 

maximum NDVI is informative of nest survival. Additionally, I was able to link phenology 

metrics to brood survival by evaluating successful versus unsuccessful brood locations, though 

the sample was not large enough for substantial modeling efforts. Specifically, I have provided 

evidence that at the 250-m scale, successful and unsuccessful brood sites significantly differ 

from one another from a phenological perspective. Phenological differences were also observed 

at successful versus unsuccessful nest sites, the results of which further reinforced the 

importance of TIN, and therefore the density of vegetation, at nest sites. Phenological differences 

between successful and unsuccessful reproductive sites reinforces the idea that patterns of 

selection are evident at broader scales as well as the finer scales at which it is typically measured.  

Last, with this research, I have also provided evidence that lesser prairie-chickens appear 

to time nest initiation and hatch to the period between the start of the growing season and the 

peak of the growing season. Though this has been documented in other grouse, it has not been 

formally evaluated for the lesser prairie-chicken. I expect that the timing of nest laying and hatch 

are related to peak food availability for chicks and brood-rearing females. However, whether 

food availability is a factor in reproductive timing will need additional investigation, ideally by 

incorporating an arthropod study into this work. Additionally, given the effects that climate 

change has had and will continue to have across the Great Plains, it may be useful to determine 
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whether phenological metrics have been altered over the decades as a result of climate change, 

and whether the laying and hatch dates of lesser prairie-chickens have changed in response to 

any potential phenological changes using long-term data sets.  
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Figure 2.1.  Map of the study area (Red Hills, Northwest, and Clark) covering Logan, 

Gove, Clark, Kiowa, and Comanche counties. Study areas are located within the Mixed-

Grass and Short-Grass/Conservation Reserve Program (CRP) Mosaic of the lesser prairie-

chicken range in western Kansas. 
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Figure 2.2. nest survival and 95% confidence intervals based on a 38-day exposure for 

lesser prairie-chickens at 3 study sites (Clark, Northwest, and Red Hills) as a function of 

Time of Maximum NDVI at the 500-m scale (MAXT).    
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Figure 2.3. Mean DOY laying dates of first nest attempts are depicted in brown, the mean 

start of the growing season date (SOST) is depicted in light green, and the mean time of 

maximum NDVI is depicted in dark green. The error bars represent standard deviation 

among sites each year (2013, 2014, and 2015). The dashed line represents the mean DOY 

hatch date among years. 
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Table 2.1: The 9 NDVI-based vegetation phenology metrics used in my analyses and their 

descriptions. All metrics are calculated and maintained by the U.S. Geological Survey 

(USGS) Earth Resources Observation and Science (EROS) Center. Each phenology metrics 

is calculated from weekly NDVI composites over a one-year period. Data is freely available 

from the USGS Phenology Viewer ( https://phenology.cr.usgs.gov/viewer/).  

  

Phenology Parameters Description 

SOST → Start of the growing season, time  Day of year at which a measurable 

photosynthetic increase takes place after 

senescence.  

SOSN → Start of the growing season, NDVI  NDVI value of the first measurable 

photosynthetic increase after senescence. 

EOST → End of the growing season, time  Day of year at which there is a measurable 

decline in photosynthetic activity. 

EOSN → End of the growing season, NDVI NDVI value on the day that there is a 

measurable downward trend in 

photosynthesis. 

MAXN → Maximum NDVI Highest level of photosynthetic activity 

detected in the growing season. 

MAXT → Maximum NDVI, time Day of year associated with the MAXN. 

AMP → Amplitude Difference between the SOSN and MAXN 

values. 

DUR → Duration 

 

Length of the growing season (i.e. the 

difference between the SOST and EOST). 

TIN → Time Integrated NDVI Cumulative integrated photosynthetic activity 

across the growing season.  
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Table 2.2: 11 out of 46 a priori candidate models used to model nest survival for lesser 

prairie-chickens at the Clark, Red Hills, and Northwest study sites from 2013-2015. Models 

tested include single variable NDVI-based phenology metrics, single variable NDVI-based 

phenology metrics at multiple scales, multi-variable NDVI-based phenology metrics, 

additive and interactive site and year models, and a null model.  

 

 

Model Ka ∆AICcb AICcc wi
d Deviancee 

MAXTscale2 2 0.00 1408.18 0.18 1404.18 

TINscale4 2 1.23 1409.41 0.10 1405.41 

MAXT 2 1.71 1409.89 0.08 1405.89 

MAXTscale1 2 1.95 1410.13 0.07 1406.13 

TINscale3 2 2.45 1410.63 0.05 1406.63 

TINscale2 2 2.51 1410.69 0.05 1406.69 

TINscale1 2 2.87 1411.05 0.04 1407.05 

TIN 2 3.12 1411.30 0.04 1407.29 

MAXTscale4 2 3.24 1411.42 0.04 1407.42 

MAXTscale3 2 3.31 1411.49 0.03 1407.49 

Null 1 4.65 1412.83 0.02 1410.83 

a Number of parameters 
b The difference in Akaike’s Information Criterion adjusted for small samples size 
c Akaike’s Information Criterion adjusted for small sample size 
d Akaike weights  
e Deviance (-2*loglikelihood)  
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Table 2.3: means and standard deviations of 9 vegetation phenology metrics extracted at 

successful (n = 74) and unsuccessful nests (n = 150) of female lesser prairie-chickens 

marked with VHF and GPS transmitters from 2013-2015 at 3 study sites (Clark, Red Hills, 

and Northwest) in western Kansas.   

 

Phenology 

Metric 

Successful nests 

(�̅�, SD) 

Unsuccessful nests 

(�̅�, SD) 
t DF P 

AMP 0.37 ± 0.07 0.38 ± 0.06 -0.39 

 

129 

 

0.70 

 

DUR 184 ± 21 182 ± 24 0.39 

 

168 

 

0.70 

 

SOST 126 ± 18 127 ± 28 -0.56 

 

210 0.57 

SOSN 0.30 ± 0.04 0.29 ± 0.04 1.20 

 

158 0.23 

MAXT* 198 ± 29 206 ± 30 -2.06 

 

150 0.04 

MAXN 0.68 ± 0.07 0.67 ± 0.07 0.36 

 

144 0.72 

EOST 309 ± 8 310 ± 15 -0.48 

 

219 0.63 

EOSN 0.32 ± 0.04 0.33 ± 0.04 -1.05 

 

160 0.30 

TIN* 0.35 ± 0.08 0.33 ± 0.07 2.00 139 0.05 

*Indicates significant differences at α =0.05.  
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Table 2.4: means and standard deviations of 9 vegetation phenology metrics extracted at 

used sites of successful brood locations (n = 266) and unsuccessful brood locations (n = 55) 

of female lesser prairie-chickens marked with VHF and GPS transmitters from 2013-2015 

at 3 study sites (Clark, Red Hills, and Northwest) in western Kansas. 

 

Phenology 

Metric 

Successful brood 

sites 

(�̅�, SD) 

Unsuccessful 

brood sites 

(�̅�, SD) 

t DF P 

AMP 0.38 ± 0.06 0.37 ± 0.04 1.21 

 

124 

 

0.23 

 

DUR 190 ± 14 190 ± 14 -0.25 

 

78 

 

0.80 

 

SOST 119 ± 10 118 ± 11 0.82 

 

74 0.41 

SOSN 0.31 ± 0.03 0.30 ± 0.02 1.05 

 

102 0.30 

MAXT* 200 ± 33 188 ± 25 3.0 

 

96 0.003 

MAXN 0.70 ± 0.07 0.69 ± 0.04 1.38 

 

118 0.17 

EOST 309 ± 8 308 ± 8 0.69 

 

82 0.49 

EOSN* 0.34 ± 0.03 0.33 ± 0.03 2.52 

 

73 0.01 

TIN 0.38 ± 0.07 0.40 ± 0.07  

 

-1.78 84 0.08 

* Indicates significant differences at α =0.05. 
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Table 2.5: The mean laying dates and hatch dates (shown in both DD/MM/YYYY format and Day of Year format) of female 

lesser prairie-chickens marked with GPS and VHF transmitters at the Clark, Northwest, and Red Hills study sites located in 

western Kansas from 2013, 2014, and 2015.  

 

 

 

 

 

 

 

 

 Clark Northwest Red Hills 

 2013 2014 2015 2013 2014 2015 2013 2014 2015 

Mean laying date N/A 4/22/2014 4/25/2015 5/7/2013 4/28/2014 4/25/2015 4/30/2013 4/29/2014 4/24/2015 

Mean hatch date N/A 5/26/2014 5/31/2015 6/9/2013 6/5/2014 6/3/2015 6/3/2013 6/19/2014 6/3/2015 

Mean laying date 

(Day of Year) 

N/A 112 115 127 118 115 120 119 114 

Mean hatch date 

(Day of Year) 

N/A 146 151 160 156 154 154 170 154 
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Table 2.6: The means and standard deviations of Start of Season Time (SOST) and Time of Maximum NDVI (MAXT) 

averaged at nest sites at 3 study sites in western Kansas (Clark, Northwest, and Red Hills) from 2013, 2014, and 2015. The 

Clark study site encompasses Clark county, the Northwest study site covers Logan and Gove counties, and the Red Hills study 

site covers Kiowa and Comanche counties. Means and standard deviations were extracted from eMODIS Remote Sensing 

Phenology (RSP) images and extracted values were exclusively within grasslands. Descriptions of the SOST and MAXT 

phenology metrics can be found in Table 2.2.  

 

 

 

 

 Clark Northwest Red Hills 

 2013 2014 2015 2013 2014 2015 2013 2014 2015 

Phenology 

Metric 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

SOST N/A 

 

N/A 124 14 110 4 125 31 143 13 121 5 115 3 142 15 112 3 

MAXT N/A N/A 209 15 189 34 246 21 202 13 196 32 181 34 206 19 177 34 
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MODIS-based Vegetation Phenology Metrics Correlate 

to In-Situ Vegetation Measurements and Cattle Stocking Density 

 Introduction 

Grasslands are a unique but vulnerable biome that have been significantly altered since 

the onset of European settlement (Samson et al. 2004, Augustine et al. 2019). Historically, 

grassland dynamics and functions were maintained by fire, drought, and grazing, with 

differences in the frequency and intensity of these drivers occurring among ecoregions 

(Anderson 2006, Askins et al. 2007). Fire, drought, and grazing all served to control the 

establishment of woody species, increase grassland productivity, promote species diversity and 

heterogeneity, and contribute to soil quality, among other benefits in the evolution of grasslands 

(Askins et al. 2007). However, these ecological drivers have been significantly altered over time. 

There is a lack of an effective way to monitor the influence of these ecological drivers over large 

grassland expanses.  

 Fire, drought, and grazing and their interactive effects historically limited woody cover in 

grasslands and promoted structural and compositional heterogeneity, allowing grasslands to 

persist as a biome. Though all three ecological drivers are essential to grassland persistence, 

grazing plays a particularly unique role in the ecosystem function of grasslands. For example, 

grasslands grazed heterogeneously and at moderate intensities can improve plant and wildlife 

species diversity (Briske et al. 2008, Hovik et al. 2015, Kraft et al. 2021) and promote better soil 

quality compared to grasslands grazed at high intensities (Fuhlendorf et al. 2002, Waters et al. 

2017, Abdalla et al. 2018). Prior to European settlement, bison (Bison bison) freely roamed the 

Great Plains by the millions, only to be driven to the brink of extinction by the late 1800s (Flores 
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1991, Knapp et al. 1999, Anderson 2006, Askins et al. 2007). Cattle became the dominant grazer 

on the landscape post-European settlement, and are the dominant contemporary grazer in 

grasslands. Vegetation responses to cattle are similar to those from bison (Towne et al. 2005, but 

see Ratajczak et al. 2022). Bison roamed freely throughout the Great Plains whereas cattle 

movement is restricted to pastures separated by fences, which have been considered a barrier to 

grassland conservation (Samson et al. 2004). Many grazing systems seek to uniformly graze 

multiple fenced pastures (Fuhlendorf et al. 2002, Briske et al. 2008). Variable grazing pressure 

within grassland or pastures with low, moderate, to high grazing intensities can create a mosaic 

of herbaceous plant structure and species composition. Grazing regimes such as prolonged high 

intensity grazing can result in increased bare ground cover, decreased proportions of forbs, and 

greater proportions of exotic species (Souther et al. 2019). Additionally, drought can further 

exacerbate negative effects of grazing (such as through the reduction of aboveground net primary 

productivity [Li et al. 2018]), further stressing the importance of monitoring grazing impacts 

across grassland-dominated landscapes.  

 Two such grasslands that have been altered by changes in land use and climate, resulting 

in a need for broad scale monitoring of ecological drivers, are the short and mixed-grass prairies 

of the Great Plains. These two grasslands (as well as many others) are differentiated, in part, by 

species composition and structure. Dominant grasses in the shortgrass prairie include blue grama 

(Bouteloua gracilis), buffalograss (B. dactyloides), sideoats grama (B. curtipendula), and hairy 

grama (B. hirsuta) that range in height from ~0.3-0.5 m (Anderson 2006). The mixed-grass 

prairie is comprised of both short and tall grasses such as blue grama, sideoats grama, little 

bluestem (Schizachyrium scoparium), big bluestem (Andropogon gerardii), western wheatgrass 

(Pascopyrum smithii), and switchgrass (Panicum virgatum), among others (Anderson 2006). 
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 Aside from compositional differences, short and mixed-grass prairies can also be differentiated 

by their distinct Normalized Difference Vegetation Index (NDVI) profiles. The NDVI is a 

remotely sensed index that measures the difference between the amount of red and near infrared 

light being reflected from living vegetation, which provides insight into the health, vigor, and 

density of living vegetation (Rouse et al. 1974, Tucker 1979). This greenness index can be used 

to evaluate the phenological trends of vegetation, which allows researchers to differentiate 

among cover types using satellite data. For example, the short and mixed-grass prairies exhibit 

lower NDVI profiles compared to tallgrass prairies, with short grasses having the lowest seasonal 

NDVI trends (Paruelo and Lauenroth 1995).  Additionally, NDVI can also be used to 

differentiate between cool-season and warm-season vegetation, with cool-season grasses 

reaching peak NDVI earlier than warm-season grasses (Wang et al. 2010). Aside from 

differentiating among land cover types, NDVI and NDVI-based remote sensing tools have 

widespread utility for ecological studies across many taxa.  

 With advancements over the last 60 years, remote sensing and remotely sensed products 

have become a ubiquitous tool in the arsenal of wildlife managers and researchers. Whether 

applied to research specific to insects (see recent advancements in Rhodes et al. 2022), fish (see 

an overview in Klemas 2013), ungulates, or birds (see a brief review for both birds and ungulates 

in Pettorelli et al. 2011), remote sensing can be successfully applied to some of the smallest and 

largest organisms on earth. Aside from wildlife, remote sensing is also used to evaluate 

ecosystem responses to disturbance, such as the response of ecosystems to fire, drought, woody 

encroachment, or even climate change (see a brief review in Pettorelli et al. 2005) at multiple 

spatial and temporal scales. For example, a collaborative remotely sensed product that is popular 

among researchers today is the Rangeland Analysis Platform (RAP), which incorporates NDVI 
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data to provides estimates of percent cover of functional groups such as perennial and annual 

forbs and grasses, shrub, bare ground, and trees at a 30 x 30-m pixel resolution (Jones et al. 

2018). Another useful remotely sensed product is the Phenology Viewer. The Phenology Viewer 

provides users with yearly NDVI-based products that describe the growing season phenology of 

vegetation (Table 3.1). Phenology metrics are calculated using MODIS imagery and are 

delivered at a 250-m pixel resolution. This tool allows researchers to measure changes in 

vegetation phenology across broad spatial and temporal scales, as well as how phenology 

changes in response to disturbance.  

The lesser prairie-chicken (Tympanuchus pallidicinctus) is one of the most recently 

federally listed species under the Endangered Species Act, with the decision to list the northern 

Distinct Population Segment (DPS) as threatened and the southern DPS as endangered effective 

in 2023. This is a grassland-obligate species, which tend to be more sensitive to anthropogenic, 

climatic, and ecosystem alterations within grasslands compared to more facultative species that 

do not rely as heavily on grasslands among life stages (Vickery et al. 1999, Andersen and Steidl 

2019, Correll et al. 2019, Londe et al. 2019). Decades-long population declines are primarily 

attributed to conversion of grassland to row-crop agriculture, energy and anthropogenic 

development, and habitat degradation (Van Pelt et al. 2013, Haukos and Zavaleta 2016). Given 

the uncertainty surrounding the viability of lesser prairie-chickens over the next 25 years, 

monitoring efforts at relevant spatial scales is more important than ever (USFWS 2021). Nearly 

all monitoring efforts for this species are field-based and predominantly include lek surveys 

(aerial and roadside) and vegetation surveys at used versus available locations. While these 

efforts provide managers with valuable information, they are costly, time consuming, and 

typically occur at small spatial scales. Given these constraints, novel methods of habitat 
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monitoring need to be evaluated. Thus, I sought to evaluate whether field-based vegetation 

measurements taken within the short and mixed-grass prairies could be linked to remotely sensed 

vegetation phenology metrics taken from the Phenology Viewer. I also investigated whether 

grazing intensity within the mixed-grass prairie could be linked to remotely sensed vegetation 

phenology metrics. Remotely sensed products have become fairly ubiquitous in ecological 

research, but the use and interpretation of remotely sensed products relating to vegetation can be 

considered questionable without the use of ground-truthing of some sort (Turner et al. 2003, 

Fisher and Mustard 2007, Fontana et al. 2008).  

When linking field-based vegetation data to remotely sensed phenology metrics, I 

predicted that phenology metrics representing season-long productivity and peak productivity 

would correlate most strongly to field data, given that vegetation data were collected in winter, 

spring, summer, and fall. I expected particularly strong correlations between measures of mean 

percent cover, Time Integrated NDVI (TIN; Table 3.1), and Amplitude (AMP). Time Integrated 

NDVI (TIN) measures the density of vegetation across the growing season and AMP measures 

the total increase in photosynthetic activity from the start to the peak of the growing season. I 

expected that greater proportions of grass cover would correlate to greater measures of TIN. I 

expected AMP to reflect a similar relationship because if there are greater proportions of grass 

cover at a site, there should be a greater increase in photosynthetic activity to reflect greater 

amount of cover. Additionally, I expected negative correlations between mean litter cover and 

depth measurements and AMP, TIN, and Maximum NDVI (MAXN). Litter cover is not 

measured by NDVI, so I expected negative correlations that would depict the lack of living 

cover.  
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 Few studies have linked grazing to changes in remotely sensed vegetation phenology, 

but there are those that have identified phenological differences due to grazing (Giralt-Rueda and 

Santamaria 2021, Balata et al. 2022, Snyder et al. 2023). Given the dynamic ways in which 

grazing can affect grassland ecosystems and the species that depend on them, understanding 

whether remotely sensed differences can be measured within pastures is useful. Because Clark 

County, Kansas, is predominantly used for cattle production and supports populations of lesser 

prairie-chickens, I was interested in how phenology metrics might vary with stocking densities. 

When linking vegetation phenology metrics to different stocking density, I predicted that 

pastures with greater cattle stocking density would vary in maximum NDVI and TIN. Bradley 

and O’Sullivan (2011) found that NDVI was lower within a 500-m radius of grazing sheep, but 

this effect did vary based on land use, elevation, and stocking rate. Grazing reduces plant 

biomass and vertical cover, resulting in less cover and therefore less total photosynthetic 

materials. Therefore, I expected that remotely sensed vegetation phenology metrics that measure 

vegetation density, peak productivity, and season-long productivity would correlate negatively 

with increased stocking density. 

 

 Methods 

 Study area  

My study area was the result of pooled data previously collected in portions of western 

Kansas. The study area covers two of the four ecoregions occupied by the lesser prairie-chicken: 

the Mixed-Grass Prairie and the Short-Grass Prairie/CRP Mosaic (Figure 3.1; McDonald et al. 

2014, Boal and Haukos 2016). Fire, grazing, and precipitation/drought events are historical 

ecological drivers across this range, though all of these regimes have shifted in frequency and 
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intensity over the last 100 years (Askins et al. 2007). Drought specifically is a common 

disturbance that is predicted to increase in frequency and intensity as climate change progresses 

(Strzepek et al. 2010, Grisham et al. 2016). Throughout the lesser prairie-chicken distribution, 

there is also a distinct longitudinal mean annual precipitation gradient from east to west as well 

as variability in annual precipitation and aboveground net primary productivity (Sala et al. 1988). 

In the easternmost portion of the LEPC range, average annual precipitation ranges between 63.9 

and 76.3 cm (Grisham et al. 2016). In the westernmost portions of the LEPC range, average 

annual precipitation ranges between 27.8 and 40.5 cm (Grisham et al. 2016). 

Within the Mixed-Grass Prairie Ecoregion, there were 2 study sites: Clark (located in 

Clark County) and Red Hills (located in Kiowa and Comanche counties). The Red Hills study 

site was located in the easternmost portion of the LEPC range, receives greater annual 

precipitation compared to other sites, and is managed using rotational and patch-burn grazing, 

whereas properties on the Clark Site were typically managed with low intensity rotational 

grazing. Soil composition in the Red Hills was mostly sandy loam, clay loam, and clay; soil 

composition in the Clark County study site was primarily fine sandy loams, fine sands, and 

loamy fine sands (Sullins et al. 2018).  Dominant vegetation across both study sites included 

grasses such as little bluestem, sand dropseed (Sporobolus cryptandrus), alkali sacaton 

(Sporobolus airoides), blue grama, big bluestem, switchgrass, and sideoats grama. Abundant 

forbs included western ragweed (Ambrosia psilostachya), kochia (Kochia scoparium), Russian 

thistle (Salsola sp.), broomweed (Amphiachyris dracunculoides), broom snakeweed (Gutierrezia 

sarothrae), and Louisiana sagewort (Artemisia ludiviciana). Common shrubs included sand 

sagebrush (Artemisia filifolia), sand plum (Prunus angustifolia), eastern redcedar (Juniperus 
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virginiana), and fragrant sumac (Rhus aromatia; Sullins et al. 2018, Gulick 2019, Lautenbach et 

al. 2019). 

Within the Short-Grass Prairie/Conservation Reserve Program (CRP) Mosaic Ecoregion, 

there was one study site labeled the Northwest study site, which encompassed Logan and Gove 

counties. Although this site was predominantly short-grass prairie, the inclusion of CRP 

grasslands, which are typically not grazed, provided both mixed and short grasses in this region 

which are typically not grazed. Dominant land uses in the Northwest study area includes grazing, 

CRP grasslands, and row-crop agriculture. Dominant grasses included blue and hairy grama, 

little bluestem, buffalograss, big bluestem, sideoats grama, and western wheatgrass. Common 

forbs included Russian thistle, western ragweed, broom snakeweed, annual buckwheat, prairie 

sunflower (Helianthus petiolaris), and nine-anther dalea (Dalea enneandra). Dominant shrubs 

included sand sagebrush and yucca (Sullins et al. 2018, Lautenbach et al. 2019).  

 

 Vegetation measurements: nest, brood, and patch vegetation  

From 2013-2015, I collected vegetation data from January through December at nest sites 

and paired random points, brood sites and paired random points, used points (visited by marked 

lesser prairie-chickens), and random points across study areas. To generate non-paired random 

points, I used the “Create Random Point” tool in ArcGIS. With this tool, I specified that 10 

random points would be generated in each patch at all study areas. When collecting vegetation 

data at used sites, I randomly selected 2 points per week for each bird. Nest vegetation surveys 

were conducted at the nest site within a week of nest fate determination, and brood vegetation 

surveys were conducted at locations used by brooding females. Paired random points were 

located within 300-m of used sites.  
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The same protocol was followed for vegetation data collection at all points. At the center 

of each point, a Robel pole (Robel et al. 1970) and a 60 x 60-cm Daubenmire frame were placed 

on the ground. At point center, the following data were collected including height of tallest 

vegetation (cm) within a modified 60 cm x 60 cm Daubenmire frame. I then identified species, 

height, and distance to point center for nearest grass, forb, and shrub. I estimated percent canopy 

cover of shrub, forbs, bare ground, grass, and litter; and measured litter depth at the northwest 

corner of the modified Daubenmire frame. I repeated these same measurements 4 m from the 

point center in each cardinal direction. In addition to these measurements, 0%, 25%, 50%, 75%, 

and 100% visual obstruction readings in dm were taken in each cardinal direction (Robel et al. 

1970).  

 

 Remotely sensed data collection 

 To determine whether remotely sensed phenology metrics can be linked to ground-based 

vegetation data, I used imagery from the Aqua Moderate Resolution Imaging Spectroradiometer 

(hereafter MODIS) satellite. Specifically, I used a product derived from MODIS images termed 

the C6 Aqua Western 250 m eMODIS RSP (remote sensing phenology) imagery, with 250 m 

representing the pixel resolution (Jenkerson et al. 2010, Brown et al. 2015). Phenology metric 

data were maintained and processed yearly by the USGS Earth Resources Observation and 

Science (EROS) Center. Input data used by EROS to develop these phenology products are 

weekly eMODIS maximum NDVI composites that are temporally smoothed (Jenkerson et al. 

2010). In total, EROS develops 9 vegetation phenology metrics that cover the contiguous United 

States (Table 3.1). For this study, I used phenology data from the western United States extent, 

as all study areas were within this extent.  
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 Typically, eMODIS images are ready for immediate use following download. However, 

it was necessary to conduct additional pre-processing before conducting any analyses. This was 

due to the presence of cells comprised of water and “No Data” cells where the phenology metric 

was unable to be calculated. Cells containing water are assigned a value of 255 or 1000. 

Similarly, cells where phenology metrics were unable to be calculated were assigned a value of 

either 0 or -1000. These values, if included in analyses, would have potentially led to inaccurate 

results. To account for this, I converted any cells with values of 255, 0, 1000, or -1000 to true 

“No Data” cells using the “Set Null” function in ArcGIS 10.8.     

 

 Linking vegetation measurements and stocking density to phenology metrics: 

 To evaluate linkages among phenology measurements and on-the-ground vegetation 

measurements taken at nest, brood, and random points, I performed multiple correlation analyses 

in Program R (Table 3.1). First, I separated vegetation data by year (2013, 2014, 2015). Given 

that I was using vegetation data that spanned the entire year, I decided that phenology metrics 

representing season-long growth as well as cumulative and peak biomass would be the most 

appropriate to evaluate potential correlations. Of the 9-phenology metrics that I have access to, 3 

describe season-long growth pattern or peak and cumulative biomass: Amplitude (AMP), 

Maximum NDVI (MAXN), and Time Integrated NDVI (TIN). In ArcGIS 10.8, I imported the 3 

phenology rasters (AMP, MAXN, and TIN) and imported the point vegetation data as a 

shapefile. I used the “Extract Multi Value to Point” tool to extract phenology values at all point 

locations. Following this, I used the “cor” function in Program R to evaluate Pearson correlation 

coefficients between AMP, MAXN, and TIN with average grass, forb, shrub, bare ground, and 

litter cover, average litter depth, and average visual obstruction readings at 100%, 75%, 50%, 
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25%, and 0% visual obstruction (Rodgers and Nicewander 1988). I then evaluated associated p-

values (α = 0.05) to determine which phenology metrics were significantly correlated with 

vegetation measures.  

 To examine correlations between phenology metrics and cattle stocking density, I 

obtained data on pasture area and animal units (e.g., mature cattle or cow plus calf <6 months of 

age) on the Gardiner ranch in Clark County, Kansas. Stocking density was derived by animal 

units by pasture area (AU/ha). I then imported pasture data into ArcGIS 10.8 as polygons. I used 

9 phenology metrics for grazing correlation analyses. I imported all phenology rasters into 

ArcGIS 10.8 and clipped them to the Gardiner ranch pastures. To extract phenology metrics 

based on cattle stocking density, I converted the pasture polygons into rasters using the “Polygon 

to Raster” tool. Finally, I converted the pasture rasters into points using the “Raster to Point” tool 

and carried over the stocking density field. I used the “Extract Multi-Values to Point” tool to 

extract phenology metrics based on stocking density. In Program R, I evaluated correlations 

using the Pearson’s correlation coefficient between each of the 9 phenology metrics and stocking 

densities and evaluated p-values to determine which correlations were significant (α = 0.05; 

Rodgers and Nicewander 1988).  

 Results 

Linking ground-based vegetation measurements to remotely sensed vegetation 

phenology metrics 
 

I had access to vegetation data collected in 2013 (n = 2,606), 2014 (n = 6,915), and 2015 

(n = 5,593). I included vegetation data from January to December each year to match the 

yearlong measures of phenology metrics. In 2013, vegetation phenology metrics were correlated 

with several field-based vegetation measures. Notably, AMP, MAXN, and TIN were each 
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positively correlated to all average VO measures (r = 0.13 – 0.31; Figure 3.2). Aside from VO, 

AMP was positively correlated with grass (r = 0.06), forb cover (r = 0.16), and litter depth (r = 

0.07). As expected, AMP was negatively correlated with bare ground cover (r = -0.15). However, 

some of these correlations, despite significance at P < 0.05, were weak. For example, the 

correlation between AMP and average grass cover was weak (r = 0.06, P = 0.004), as was the 

positive correlation between AMP and litter depth (r = 0.07, P = 0.0003). The negative 

correlation between AMP and average shrub cover was also weak (r = -0.04, P = 0.03). MAXN 

was also positively correlated with forb cover. MAXN was negatively correlated with grass (r = -

0.06, P = 0.001) and shrub cover (r = -0.04, P = 0.05). Last, TIN was positively correlated with 

forb cover (r = 0.51). Negative correlations with TIN included bare ground cover (r = -0.11), 

grass cover (r = -0.17), and litter depth (r = -0.09).  

In 2014, AMP was positively correlated, albeit weakly, with average VO at 75%, 50%, 

and 25% obstruction (r= 0.02 – 0.03, Figure 3.3). AMP was also positively correlated with grass 

cover (r = 0.13) and litter depth (r = 0.03). Significant negative correlations occurred between 

AMP and VO at 0% obstruction (r = -0.10), bare ground cover (r = -0.07), forb cover (r = -0.05), 

and litter cover (r = -0.04). Positive correlations were found between MAXN and average VO at 

50% and 25% obstruction (r = 0.04 – 0.06), and grass cover (r = 0.16). Significant negative 

correlations were seen between MAXN and average VO at 0% obstruction (r = -0.15), litter 

depth (r = -0.08), bare cover (r = -0.06), forb cover (r = -0.03), litter cover (r = -0.15), and shrub 

cover (r = -0.02). Last, TIN was positively correlated with average VO at 100%, 75%, 50%, and 

25% obstruction (r = 0.03 – 0.07), as well as grass cover (r = 0.13). TIN was negatively 

correlated with VO at 0% obstruction (r = -0.09), bare ground cover (r = -0.05), forb cover (r = -

0.05), and litter cover (r = -0.10).  
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 In 2015, AMP was positively correlated with average VO at 100% and 75% obstruction 

(r = 0.03 – 0.05), as well as grass cover (r = 0.07; Figure 3.4). Conversely, AMP was negatively 

correlated with bare cover (r = -0.11) and shrub cover (r = -0.05). Positive correlations occurred 

between MAXN and all average VO measures (r = 0.06 – 0.11), as well as forb cover (r = 0.22). 

Negative correlations occurred between MAXN and litter depth (r = -0.11), and bare ground (r = 

-0.09), litter (r = -0.14), and shrub cover (r = -0.08). Last, significant positive correlations 

occurred between TIN and forb cover (r = 0.22) as well as all measures of VO (r = 0.10 – 0.14). 

Significant negative correlations occurred between TIN and litter depth (r = -0.09), bare ground 

(r = -0.08), and litter cover (r = -0.22).   

 

 Linking stocking density to vegetation phenology metrics: 

 In 2014, 4 of the 9 vegetation phenology metrics were correlated with stocking density in 

62 pastures in Clark County, Kansas (Figures 3.5, 3.6). Positive correlations occurred between 

stocking density, AMP (r = 0.07), and TIN (r = 0.13). Significant negative correlations occurred 

between stocking density and SOSN (r = -0.12) and EOSN (r = -0.05).  

In 2015, 4 of the 9 vegetation phenology metrics were correlated with stocking density 

(Figure 3.7). The only positive correlation to occur was between stocking density and SOSN (r = 

0.12), which increased with stocking density. The remaining significant correlations were 

negative and occurred between stocking density, TIN (r = -0.17), EOST (r = -0.05), and DUR (r 

= -0.05). As stocking density decreased, values of TIN and EOST increased (Figure 3.8).  
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 Discussion 

Minimal, if any, efforts have been made to link in-situ vegetation measurements or 

stocking density to broad-scale remotely sensed vegetation products. The results of such analyses 

would inform vegetation monitoring efforts important for lesser prairie-chickens and other 

grassland wildlife. My research provides evidence that remotely sensed vegetation phenology at 

the 250-m scale metrics do correlate, both strongly and weakly, to in-situ vegetation 

measurements, with measures of percent cover and visual obstruction more consistently 

correlated with phenology metrics. Similarly, I also provided evidence that remotely sensed 

vegetation phenology metrics correlated with year-long stocking densities on a private ranch in 

Clark County, Kansas. While specific correlations with phenology metrics, in-situ vegetation 

measurements, and stocking densities were significant each year, most correlations varied among 

years, in that correlations that were statistically significant one year were not necessarily 

significant the following year. Many factors could be contributing to interannual variability of 

phenological correlations including amount and timing of precipitation, temperature, land use, 

and lag effects; all of which were not evaluated in my research. Importantly, TIN is one metric 

that was significantly correlated with in-situ vegetation measurements and stocking density each 

year. The TIN metric was important in predicting nest site-selection and brood-rearing habitat 

abundance (Chapter 1). It appears that TIN is most consistently related NDVI-derived metric of 

habitat use for lesser prairie-chickens. There is also utility in using it for remote monitoring of 

lesser prairie-chicken habitat, as indicated by its correlations with stocking density and in-situ 

vegetation measurements.   
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 Linking ground-based vegetation measurements to remotely sensed vegetation 

phenology metrics:    
 

Overall, I was able to confirm some of my predictions regarding correlations between 

phenology metrics and in-situ vegetation measurements. The metrics that were most strongly 

correlated to in-situ vegetation measurements were TIN and MAXN, whereas correlations 

between vegetation measurements and AMP tended to be weaker. The strongest correlations 

between vegetation measurements and phenology consistently occurred with measures of mean 

percent cover of grass and forb cover. Grass and forb cover are, naturally, the dominant cover 

types in grasslands and I observed greater proportions of these functional groups compared to 

others (Kraft et al. 2021). Additionally, eMODIS satellite imagery is taken at nadir, meaning that 

images are taken directly below the instrument. As a result, images are capturing the overhead 

density of horizontal cover. In my analyses, percent cover was indicated by the 250-m eMODIS 

images, which is logical given the angle of image capture.  

In terms of specific correlations, TIN was the phenology metric that most consistently 

correlated with vegetation measurements, with the strongest correlations seen with forb cover 

and 50% visual obstruction in 2013. AMP and MAXN typically had similar correlations as TIN, 

for which phenology metrics increased with measurements of herbaceous vegetation and visual 

obstruction and decreased with bare ground and litter measurements. In addition to TIN, MAXN 

was a fairly strong predictor of forb cover in 2013 and 2015 and all predictions of visual 

obstruction in 2013. All other significant correlations had r values < 0.2, suggesting that using 

higher resolution remotely sensed phenology metrics that better align with the scale of in-situ 

measurements or combining multiple phenology metrics could be beneficial.  Most weak 
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correlations occurred between litter depth, shrub cover, and, in 2014 and 2015, specific average 

VOR measures.  

Weak negative correlations between shrub cover and phenology may be reflective of low 

prevalence of shrubs at evaluated locations or a result of the deciduous nature of sand sagebrush 

and other shrubs in our study area (e.g., sand plum and fragrant sumac). Phenology metrics can 

be used to predict shrublands that tend to exhibit lower NDVI values compared to grasslands 

(Paruelo and Lauenroth 1995). In mixed-grass and short-grass prairies, percent shrub cover at 

nest sites is quite low compared to other cover types, with 1.31% in the mixed-grass prairie and 

1.96% in the short-grass prairie (Hagen et al. 2013). Relatedly, there may simply be a lower 

proportion of shrubs in the 250-m around used sites in general within the ecoregions evaluated 

(e.g., mixed-grass prairie, and short-grass prairie). In the sand sagebrush and sand shinnery oak 

prairies, proportion of shrub cover is much higher across the landscape, which may lead to better 

correlation with phenology metrics.  This would make shrub cover extremely unlikely to be 

reflected in the coarse phenology images, which may be explaining this weak relationship since 

grasslands are the dominant cover type used by lesser prairie-chickens in the short and mixed-

grass prairies. It appears phenology metrics cannot be reliably linked to shrub cover at this time 

or at the 250-m scale in short and mixed-grass prairies.    

Forb cover exhibited particularly strong correlations with TIN, MAXN, and AMP in 

2013 and 2015, but not in 2014. Interestingly, in years with correlations between phenology and 

forb cover, correlations with mean grass cover were considerably weaker, which warrants 

additional analyses. For example, in 2014, grass cover was correlated with phenology while forb 

cover was either weakly correlated or not significantly correlated at all. In general, TIN, MAXN, 

and AMP reflected increased proportions of grass and forb cover. The inverse relationship 
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between grass and forb cover, however, is interesting and in 2014 this may be a product of an 

eruption of forbs following the intense drought in 2012 and 2013 (Hoerling et al. 2014). In future 

analyses, it may be more useful to combine mean cover of grass and forbs into one category and 

to include some measure of drought severity. The Rangeland Analysis Platform combines forbs 

and grasses instead of measuring them separately, and Laliberte et al. (2010) were unable to 

distinguish forbs from grasses using Unmanned Aerial Vehicle (UAV) imagery, leading them to 

also combine those two groups into one. Given the coarse 250-m resolution of the eMODIS RSP 

images used in my analysis and the finer scale at which vegetation measures are being taken, it 

may be understandably difficult to differentiate between the two cover types. If I were to 

combine forb and grass cover, I would expect a consistently strong significant correlation to 

occur.  

Additionally, TIN and MAXN were negatively correlated with measures of litter cover 

and depth in 2014 and 2015. Phenology metrics are based on NDVI, which measures the 

difference between the amount of red and near infrared light being reflected from living 

vegetation. Litter is, by definition, dead and residual cover and therefore not measured by NDVI-

based metrics. This is why I expected a negative correlation between NDVI-based phenology 

metrics and litter cover. Additionally, negative correlations between litter cover, MAXN, and 

TIN were largest in 2015. In 2015, low grazing intensity matched with favorable precipitation 

two years post-drought allowed for buildup of litter cover (D. S. Sullins, Kansas State 

University, personal communication).    

Last, correlations between vegetation measurements and phenology metrics occurred 

between VO at multiple percentages of cover (e.g., 0%, 25%, 50%, 75%, 100% obstruction). 

Correlations between AMP and MAXN and VO occurred at specific percent obstructions; TIN 
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was the only variable to be correlated with every measure of VO each year. Unlike percent 

cover, visual obstruction measures the vertical density of vegetation. As aforementioned, 

eMODIS satellite images are getting a more direct measure of horizontal cover rather than 

vertical structure. However, if vegetation is dense from the standpoint of VO, it is likely dense 

from a horizontal cover perspective as well, which might explain consistent correlations with 

TIN among years.  

 

 Linking stocking density to remotely sensed vegetation phenology metrics: 

 In the grassland landscape occupied by lesser prairie-chickens in the short and mixed-

grass prairies, cattle grazing is one of most dominant land uses. Effects of grazing vary 

temporally and spatially and interact with other drivers such as drought and fire, making effects 

of grazing interannually variable. While grazing strategies such as patch burn are effective for 

maintaining the structural heterogeneity that benefit lesser prairie-chickens across life stages 

(Gulick 2019, Lautenbach et al. 2021, Kraft et al. 2021), these systems are infrequently 

implemented within the study areas due to a number of socio-economic and cultural reasons that 

still prevail in current times (Adhikari et al. 2023). In the Great Plains (including the study 

areas), variable grazing regimes range from low, moderate, to high stocking densities exist, with  

temporal variation in the duration of grazing within a pasture. This variability in grazing 

intensity and duration, particularly during drought years, can have significant effects on 

vegetation, which may or may not be to the detriment of lesser prairie-chicken habitat (Kraft et 

al. 2021). Now that the lesser prairie-chicken is officially listed under the Endangered Species 

Act, the ability to understand how one of the most dominant land uses across the Great Plains is 
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affecting lesser prairie-chicken habitat at broad spatial scales is extremely important for future 

management.  

Overall, correlations between stocking density and phenology metrics were from metrics 

that measure cumulative productivity (AMP, DUR) and total aboveground biomass (TIN), as 

well as start and end of growing season metrics (SOSN, EOSN, EOST). Interestingly, TIN was 

correlated to stocking density in 2014 and 2015, but the direction of correlation switched. In 

2014, TIN was positively correlated with stocking density. Whereas in 2015, TIN was negatively 

correlated with stocking density. This correlation was driven by very high stocking densities in a 

few small pastures. In 2014, the largest stocking density was 0.56 and occurred in a pasture that 

was 57 ha (141 acres), which is quite small compared to other pastures on the ranch that typically 

exceed 607 ha (1,500 acres). Cattle grazed this pasture from 8/8/2014 until 10/10/2014. 

Therefore, the vegetation in this pasture experienced no cattle grazing during most of the 

growing season, allowing vegetation to grow with minimal biomass removal. Additionally, with 

drought conditions occurring in 2013, vegetation may have been responding positively to much-

needed precipitation in 2014, which also would have stimulated growth (NOAA 2023).  

In 2015, however, two pastures appear to be driving the negative relationship between 

TIN and stocking density (Figure 3.7). The largest stocking density occurred in a pasture that 

was only 27 ha (67 acres). Similarly, the second largest stocking density (0.68) occurred in a 

pasture that was 29 ha (73 acres). Although high intensity grazing only occurred from May until 

July in the smallest pasture, it is highly likely that this pasture simply lacked the density of 

vegetation needed to support such a high stocking rate of cattle. Vegetation that is subjected to 

high intensity grazing can experience large reductions in biomass and tend to be more 

homogeneous (Fuhlendorf and Engle 2001). The reduction in biomass associated with high 
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grazing intensities was evident in the negative relationship between TIN and stocking density. Of 

all the phenology metrics, TIN is the metric that is used as a proxy for the density of vegetation 

cover (Potter 2020, Potter and Alexander 2020). Thus, my research indicates that high-intensity 

grazing results in less vegetation cover, which is a relationship that can be monitored remotely.  

Aside from season-long measures of productivity, correlations also occurred with specific 

phenological occurrences. Specifically, EOSN and EOST were lower and earlier in pastures with 

greater stocking density, indicating plants do not have the same capacity for regrowth as they did 

earlier in the season at greater grazing intensities (Trlica 2013), which can result in lower than 

normal vigor prior to the onset of senescence (Trlica 2013). The fact that NDVI and the date of 

the end of the growing season were negatively correlated with increased stocking rates suggests 

high intensity cattle grazing influences vegetation across the growing season leading into 

dormancy, and that high stocking densities can result earlier end of the growing season dates and 

values of NDVI. Alternatively, research in Nevada meadows has shown that high intensity 

grazing does not affect the growing season (Richardson et al. 2021). As mentioned, correlations 

between stocking density and EOSN and EOST are weak. While it is possible that increased 

grazing pressure is affecting end of the growing season phenology, there is also a chance that 

these results are negligible.  

My results provide basic inference into the effects of cattle stocking density on remotely 

sensed vegetation phenology. Correlations were based on pixels within 62 pastures in Clark 

County, Kansas; therefore representing a very small percentage of the lesser prairie-chicken 

range and the Great Plains in general. Where possible, it would be beneficial to conduct these 

same correlation analyses on additional pastures to determine if phenology is reflecting the 

effects of grazing in more than one ecoregion. Additionally, it is worth noting that precipitation, 
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soil type, temperature, etc. also affect vegetation phenology and productivity in tandem with 

grazing, especially at broad spatial scales. Thus, it is possible that inferences from these 

correlations may be relatively limited. Ultimately, however, the fact that vegetation phenology 

metrics are correlated to stocking density indicates that there is utility in using remotely sensed 

vegetation phenology metrics to monitor the effects of grazing on vegetation  

 

 Conclusions 

The importance of monitoring changes in habitat availability for threatened and 

endangered species at relevant spatial scales cannot be understated. Habitat loss and degradation 

are the primary reasons for lesser prairie-chicken population declines, yet managers have no 

effective way to monitor lesser prairie-chicken habitat and any changes that may occur at 

relevant broad spatial scales. Currently, the primary method of evaluating habitat is through the 

collection of field-based vegetation measurements at used and random locations. Vegetation 

surveys are often conducted at fine spatial scales (4 m) and over short temporal scales. Field-

based monitoring alone is not feasible given the time, personnel, and financial components of 

such an undertaking, combined with the uncertain viability of this species over the next 25 years 

(USFWS 2021). Fortunately, remotely sensed phenology products appear to hold promise for 

accomplishing broad-scale habitat monitoring for threatened species such as the lesser prairie-

chicken. My research is the first attempt to link stocking density and field-based measurements 

to vegetation phenology for the purpose of lesser prairie-chicken habitat conservation; results 

seem promising. The 250-m spatial scale at which the phenology metrics are delivered may be 

coarse, but they are effective at relating to certain ground measurements and the effects of 

stocking density.  
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Figure 3.1: Map of the study area (Red Hills, Northwest, and Clark) covering Logan, Gove, 

Clark, Kiowa, and Comanche counties. Study areas are located within the Mixed-Grass 

and Short-Grass/Conservation Reserve Program (CRP) Mosaic of the lesser prairie-

chicken range in western Kansas. 
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Figure 3.2: Correlation matrix of vegetation measurements (n = 2,606) and 3 vegetation 

phenology metrics calculated in 2013 by the USGS Earth Resources Observation and 

Science Center (EROS). Vegetation measures were taken in 2013 at nest, brood, and 

random locations in Clark, Kiowa, Comanche, Logan, and Gove counties in Kansas, USA. 

Vegetation measures were collected in 4 m radius plots and included visual obstruction 

(VOR) at 100%, 75%, 50%, 25%, and 0%, average percent cover of grass, forbs, bare 

ground, shrub, and litter, and the mean of 32 litter depth measurements. Phenology 

metrics included in the correlation analysis were Time Integrated NDVI (TIN), Maximum 

NDVI (MAXN), and Amplitude (AMP). Values displayed in the matrix squares represent r 

values derived from the Pearson correlation coefficient. Correlation matrix squares with 

x’s through them represent non-significant (P > 0.05) correlations. 
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Figure 3.3: Correlation matrix of vegetation measurements (n = 6,915) and 3 

vegetation phenology metrics calculated in 2014 by the USGS Earth Resources Observation 

and Science Center (EROS). Vegetation measures were taken in 2014 at nest, brood, and 

random locations in Clark, Kiowa, Comanche, Logan, and Gove counties in Kansas, USA. 

Vegetation measures were collected in 4 m radius plots and included visual obstruction 

(VOR) at 100%, 75%, 50%, 25%, and 0%, percent cover of grass, forbs, bare ground, 

shrub, and litter, and the mean of 32 litter depth measurements. Phenology metrics 

included in the correlation analysis are Time Integrated NDVI (TIN), Maximum NDVI 

(MAXN), and Amplitude (AMP). Values displayed in the matrix squares represent r values 

derived from the Pearson correlation coefficient. Correlation matrix squares with x’s 

through them represent non-significant (P > 0.05) correlations. 
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Figure 3.4: Correlation matrix of vegetation measurements (n = 5,593) and 3 vegetation 

phenology metrics calculated in 2015 by the USGS Earth Resources Observation and 

Science Center (EROS). Vegetation measures were taken in 2015 at nest, brood, and 

random locations in Clark, Kiowa, Comanche, Logan, and Gove counties in Kansas, USA. 

Vegetation measures included mean visual obstruction (VOR) at 100%, 75%, 50%, 25%, 

and 0%, percent cover of grass, forbs, bare ground, shrub, and litter, and the mean of 32 

litter depth measurements. Phenology metrics included in the correlation analysis were 

Time Integrated NDVI (TIN), Maximum NDVI (MAXN), and Amplitude (AMP). Values 

displayed in the matrix squares represent r values derived from the Pearson correlation 

coefficient. Correlation matrix squares with x’s through them represent non-significant (P 

> 0.05) correlations. 
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Figure 3.5: Correlation matrix between stocking density and vegetation phenology metrics 

in 2014 in Clark County, Kansas, USA. Grazing data was acquired from 62 pastures, with 

stocking density estimated as year-long cattle head per pasture acreage. Vegetation 

phenology metrics were calculated in 2014 by the USGS Earth Resources Observation and 

Science Center (EROS). Phenology metrics included in the correlation analysis were 

Amplitude (AMP), Duration (DUR), NDVI at the start of the growing season (SOSN), date 

of the start of the growing season (SOST), NDVI at the end of the growing season (EOSN),  

date of the end of the growing season (EOST), maximum NDVI (MAXN), date at which 

maximum NDVI occurs (MAXT), and time integrated NDVI (TIN). Correlation matrix 

squares with x’s through them represent non-significant (P > 0.05) correlations. 
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Figure 3.6: A scatterplot of TIN, AMP, SOSN, and EOSN values as a function of stocking 

density in Clark County, KS, USA in 2014. The black fitted line visualizes the significant 

negative and positive correlations between TIN, AMP, SOSN, and EOSN and stocking 

density. Blue circles are values of each phenology metric extracted from pixels within each 

of the 62 pastures included in the analyses. 
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Figure 3.7: Correlation matrix and associated r values between stocking density and 

vegetation phenology metrics in 2015 in Clark County, Kansas, USA. Grazing data was 

acquired from 62 pastures, with stocking density estimated as year-long head of cattle per 

pasture acreage. Vegetation phenology metrics were calculated in 2015 by the USGS Earth 

Resources Observation and Science Center (EROS). Phenology metrics included in the 

correlation analysis included Amplitude (AMP), Duration (DUR), NDVI at the start of the 

growing season (SOSN), date of the start of the growing season (SOST), NDVI at the end of 

the growing season (EOSN), date of the end of the growing season (EOST), maximum 

NDVI (MAXN), date at which maximum NDVI occurred (MAXT), and time integrated 

NDVI (TIN).  Correlation matrix squares with x’s through them represent non-significant 

(P > 0.05) correlations. 
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Figure 3.8: A scatterplot of TIN, DUR, SOSN, and EOST values as a function of stocking 

density in Clark County, KS, USA in 2015. The black fitted line visualizes the significant 

negative and positive correlations between TIN, DUR, SOSN, and EOST and stocking 

density. Blue circles are values of each phenology metric extracted from pixels within each 

of the 62 pastures included in the analyses. 
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Table 3.1: The 9 NDVI-based vegetation phenology metrics used in my correlation analyses 

and their descriptions. All metrics are calculated and maintained by the U.S. Geological 

Survey (USGS) Earth Resources Observation and Science (EROS) Center. Each phenology 

metric is calculated from weekly NDVI composites over a one-year period. Data is freely 

available from the USGS Phenology Viewer (https://phenology.cr.usgs.gov/viewer/). 

 

Phenology Parameters Description 

SOST → Start of the growing season, time  Day of year at which a measurable 

photosynthetic increase takes place after 

senescence.  

SOSN → Start of the growing season, NDVI  NDVI value of the first measurable 

photosynthetic increase after senescence. 

EOST → End of the growing season, time  Day of year at which there is a measurable 

decline in photosynthetic activity. 

EOSN → End of the growing season, NDVI NDVI value on the day that there is a 

measurable downward trend in 

photosynthesis. 

MAXN → Maximum NDVI Highest level of photosynthetic activity 

detected in the growing season. 

MAXT → Maximum NDVI, time Day of year associated with the MAXN. 

AMP → Amplitude Difference between the SOSN and MAXN 

values. 

DUR → Duration 

 

Length of the growing season (i.e. the 

difference between the SOST and EOST). 

TIN → Time Integrated NDVI Cumulative integrated photosynthetic activity 

across the growing season.  
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