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Abstract 

Historic breeding efforts in corn (Zea mays L.) have resulted in uniform, single-stalked 

phenotypes with limited environmental plasticity potential. Therefore, plant density is a critical 

yield component for corn, as it is unable to successfully compensate for a deficit of grain-bearing 

shoots. Enhancing corn yield stability across plant densities has potential benefits, particularly 

considering diverse yield environments and seasonal weather uncertainties due to climate 

change. Research and actionable information regarding branching (“tillering”) utility in corn 

production are largely unavailable. This is particularly relevant in environments where plant 

density is typically resource-limited or environments in which the target density is not properly 

achieved. Therefore, the objectives of this dissertation were to determine the following based on 

tillered corn phenotypes in a range of environment (E) × management (M) scenarios: 1) the 

impact of tiller development on corn yields; 2) the plastic extent and relative importance of yield 

components; 3) the drivers and predictability of corn tiller development; and 4) the effect of tiller 

expression on biomass accumulation, carbon economy, and subsequent reproductive efficiency. 

This extensive field study evaluated tiller presence (removed or intact) with two commercial 

hybrids (P0657AM and P0805AM, Corteva Agriscience, Johnston, IA) in a range of plant 

densities (25000, 42000, and 60000 pl ha-1) across the state of Kansas. In total, 17 site-years 

were evaluated – comprised of 9 unique field locations across 3 seasons (2019-2021).  

Yields were increased or unaffected by greater plant densities and tiller presence. 

Environments varied in yield responsiveness to tiller density, but plant density was key to 

maximizing yield. Favorable soil properties and higher photothermal quotient (PTQ) values were 

important correlates of tiller productivity (Chapter 2). Ear number and kernel number per area 

were less dependent on plant density with tillered phenotypes. Kernel number remained key to 



  

yield stability. Although ear number was less related to yield stability, ear source and type were 

significant yield predictors, with tiller axillary ears as stronger contributors than main stalk 

secondary ears in high-yielding environments (Chapter 3). Plant density interactions with 

cumulative growing degree days (GDD), PTQ, mean minimum and maximum daily 

temperatures, cumulative vapor pressure deficit (VPD), soil nitrate (NO3), and soil phosphorus 

(P) were important predictive factors of tiller density – many of these with stark non-limiting 

thresholds. Out-of-season prediction errors were seasonally variable, highlighting the importance 

of representative training datasets (Chapter 4). Tiller expression stabilized aboveground biomass 

across plant densities at the hectare scale. Greater tiller biomass was not correlated with any 

changes in reproductive efficiency. Additional stem tissue allowed tillered corn phenotypes to 

accumulate a greater reserve of water-soluble carbohydrates in low plant densities and support 

main stem remobilization demand (Chapter 5). 

Overall, tillering in corn presents itself as a potentially useful plasticity mechanism in 

non-uniform field situations with unexpectedly reduced or inadequate plant densities. While 

limits to tiller productivity are apparent, the branching ability of modern corn hybrids may lend 

itself to improving resilience of defensive strategies in water-limited environments. It should be 

noted that although this study explored a range of environments, severe drought scenarios were 

not explored. The utility of tillering as a plasticity mechanism in corn remains an area of active 

study. 
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Abstract 

Historic breeding efforts in corn (Zea mays L.) have resulted in uniform, single-stalked 

phenotypes with limited environmental plasticity potential. Therefore, plant density is a critical 

yield component for corn, as it is unable to successfully compensate for a deficit of grain-bearing 

shoots. Enhancing corn yield stability across plant densities has potential benefits, particularly 

considering diverse yield environments and seasonal weather uncertainties due to climate 

change. Research and actionable information regarding branching (“tillering”) utility in corn 

production are largely unavailable. This is particularly relevant in environments where plant 

density is typically resource-limited or environments in which the target density is not properly 

achieved. Therefore, the objectives of this dissertation were to determine the following based on 

tillered corn phenotypes in a range of environment (E) × management (M) scenarios: 1) the 

impact of tiller development on corn yields; 2) the plastic extent and relative importance of yield 

components; 3) the drivers and predictability of corn tiller development; and 4) the effect of tiller 

expression on biomass accumulation, carbon economy, and subsequent reproductive efficiency. 

This extensive field study evaluated tiller presence (removed or intact) with two commercial 

hybrids (P0657AM and P0805AM, Corteva Agriscience, Johnston, IA) in a range of plant 

densities (25000, 42000, and 60000 pl ha-1) across the state of Kansas. In total, 17 site-years 

were evaluated – comprised of 9 unique field locations across 3 seasons (2019-2021).  

Yields were increased or unaffected by greater plant densities and tiller presence. 

Environments varied in yield responsiveness to tiller density, but plant density was key to 

maximizing yield. Favorable soil properties and higher photothermal quotient (PTQ) values were 

important correlates of tiller productivity (Chapter 2). Ear number and kernel number per area 

were less dependent on plant density with tillered phenotypes. Kernel number remained key to 



  

yield stability. Although ear number was less related to yield stability, ear source and type were 

significant yield predictors, with tiller axillary ears as stronger contributors than main stalk 

secondary ears in high-yielding environments (Chapter 3). Plant density interactions with 

cumulative growing degree days (GDD), PTQ, mean minimum and maximum daily 

temperatures, cumulative vapor pressure deficit (VPD), soil nitrate (NO3), and soil phosphorus 

(P) were important predictive factors of tiller density – many of these with stark non-limiting 

thresholds. Out-of-season prediction errors were seasonally variable, highlighting the importance 

of representative training datasets (Chapter 4). Tiller expression stabilized aboveground biomass 

across plant densities at the hectare scale. Greater tiller biomass was not correlated with any 

changes in reproductive efficiency. Additional stem tissue allowed tillered corn phenotypes to 

accumulate a greater reserve of water-soluble carbohydrates in low plant densities and support 

main stem remobilization demand (Chapter 5). 

Overall, tillering in corn presents itself as a potentially useful plasticity mechanism in 

non-uniform field situations with unexpectedly reduced or inadequate plant densities. While 

limits to tiller productivity are apparent, the branching ability of modern corn hybrids may lend 

itself to improving resilience of defensive strategies in water-limited environments. It should be 

noted that although this study explored a range of environments, severe drought scenarios were 

not explored. The utility of tillering as a plasticity mechanism in corn remains an area of active 

study. 
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Chapter 1 - Introduction to Cereal Crop Plasticity 

1.1 What is crop plasticity? 

Phenotypic plasticity, an inherent characteristic of plants, is often intertwined with 

modern conversations of climate-smart agriculture. This plasticity is essentially variation caused 

by a change in management practices and/or environment and mediated by a change in the 

physiology and/or morphology of plants. Adaptation is the expression of alternative phenotypes 

or maintenance of a desirable phenotype providing an evolutionary advantage to the plant. 

Resilience is the ability to recover or maintain a phenotype of interest without external 

intervention following a disruption due to a change in the environment. Therefore, plastic plants 

may be well-adapted or not, resilient plants may be plastic or not, and well-adapted plants may 

be resilient or not. Ultimately, crop domestication resulted in plants more dependent on humans 

for successful seed production than their wild relatives. Consequently, adaptations may be 

regional, plasticity may be suppressed, and resilience may be impacted as well. 

Crop plasticity broadly refers to the responsiveness of a cultivated plant genotype to 

environmental stimuli via an expression of alternate phenotypes (Laitinen & Nikoloski, 2019). 

Because plasticity is expressed in different ways, to different extents, and with different 

productivity results across species, quantification of crop plasticity is not uniform throughout 

available literature. For example, plasticity may be measured as the modification of a specific 

trait (structural plasticity) or as functional differences in contrasting stress regimes (physiological 

plasticity) at various scales (Pierik et al., 2021). Prediction of specific plasticity mechanisms can 

prove difficult, and recent literature indicates mounting research interest in crop plasticity 

expression. Historic crop improvement efforts have defined frameworks to quantify plasticity 

and make selections based on traits of interest – yield response to evapotranspiration as a drought 
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sensitivity indicator, for example. Many traditional breeder frameworks target high-yielding 

(favorable environments) and stable (restrictive environments) genotypes (Eberhart & Russell, 

1966; Finlay & Wilkinson, 1963). Because crop plasticity is expressed and quantified uniquely 

across species, plasticity has historically been perceived and pursued differently for various crop 

species. 

 

1.2 Modern advancement in cereal crop plasticity 

Cereals (including rice [Oryza sativa L.], wheat [Triticum aestivum L.], corn [Zea mays 

L.], grain sorghum [Sorghum bicolor L.], and the millets [including Pennisetum glaucum L.R. 

Br., Panicum miliaceum L., Eleusine coracana]) are known to be very stable cropping species, 

with an enhanced ability to withstand stress early in the growing season, accumulate substantial 

amounts of carbon in vegetative organs for redistribution, produce high quantities of seed, and 

even persist as perennials. Ultimately, crop domestication processes identified traits that 

improved efficiency and intensity of human management in mediated environments and 

exploited them. Plasticity can be accomplished both from source (resource accrual or provision) 

and sink (resource allocation) perspectives, but identifying advantages of its expression (yield 

production and variation, biomass production and variation, etc.) to in-field crop production is 

crucial (Abdelrahman et al., 2020; Dingkuhn et al., 2020; Gambín & Borrás, 2007). Modern 

advancements in cereal crop plasticity mechanisms generally fall into one of three areas 

highlighted by Passioura’s framework – resource use, use efficiency, and harvest index, where 

key resources are light, water, and nutrients (Passioura, 1977, 2006). The implementation of such 

mechanisms in production through the marriage of breeding and agronomic decision-making is 

also a key area of advancement. Contextual examples are presented below. 
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1.2.1 Light capture 

Light capture can be altered and maximized through the modification of multiple plant 

traits – including leaves, branches, and molecular function. Leaf number, size, and shape impact 

canopy coverage and crop leaf area index (LAI). For example, flag leaf size of wheat is plastic 

under contrasting water regimes (Fatiukha et al., 2021), but leaf size and shape are less plastic 

than leaf number when adjusting LAI in rice (U. Kumar et al., 2017). Leaf angle has been 

extensively selected in high-density targeted crops rice and corn (Cao et al., 2022; Duvick, 2005; 

Duvick et al., 2004). However, opportunities may exist in the less-manipulated sorghum genome 

for greater environmental plasticity exploitation (Pfeiffer et al., 2019; Zhi et al., 2022). Shoot 

architecture plasticity can have pseudo-biodiversity impacts in agroecosystems and thus facilitate 

successful implementation of management practices like intercropping (Ajal et al., 2022; Zhu et 

al., 2015).  

Tillers, vegetative branches of Poacea species, impact leaf traits and shoot morphology 

and have been a focal point for crop domestication and improvement. In rice, wheat, and 

sorghum, tiller number plasticity has been linked to environmental factors impacting available 

plant C at time of initiation (Choi et al., 2013; Lafarge et al., 2010) and growth rate (Kamiji et 

al., 2011). As plant density increases, shading and stress are more likely, resulting in reduced 

tillering potential of all cereal crops (Adriani et al., 2016). While key to plant density adaptation, 

rice tiller expression has been shown less plastic than sink modifications in response to climate 

variations (U. Kumar et al., 2017). In the case of corn, genotypes with greater intensification 

potential have been historically preferred, resulting in the masking of tillering traits from modern 

hybrids (Duvick et al., 2004). In spite of this, tiller expression is a focus of efforts to sustain corn 
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production in vulnerable growing environments, where it has potential as a useful plasticity 

mechanism (Rotili et al., 2021b; Veenstra et al., 2021).  

Molecular adaptations are an excellent example of a plasticity mechanism. Wheat 

drought resilience has been identified in genotypes able to situationally express proteins altering 

stomatal regulation, mitigating reactive oxygen species, and redirecting C allocation (R. R. 

Kumar et al., 2017; X. Wang et al., 2014). However, photosynthetic response to light intensity 

does not implicate biomass changes in the case of rice, and genotype plays a key role in 

determining efficacy of all plasticity mechanisms, including photochemistry (Chen et al., 2021).  

1.2.2 Energy allocation 

Sink plasticity has been highlighted as a critical opportunity for adaptation to alternative 

climate conditions (Dingkuhn et al., 2020). Cereal crops differ in the remobilization process of 

pre-anthesis C reserves, most of which are stored in stems. In stressed conditions, remobilization 

becomes more important as photosynthetic capacity is reduced. In wheat, genotypes with greater 

plasticity in stem C allocation are more tolerant of drought stress (Liu et al., 2020).  

Although critical to water and nutrient uptake, root plasticity is less explored largely due 

to soil nutrient and moisture management in intensified systems (Schneider & Lynch, 2020). The 

persisting challenge of realistically measuring in-field root architecture and plasticity contributes 

to a lack of studies (Aguilar et al., 2021; Karlova et al., 2021). However, root plasticity allowing 

for exploration of soil profiles is particularly important in variable or marginal cropping 

conditions (Schneider & Lynch, 2020). In wild accessions of Aegilops tauschii and Triticum 

dicoccoides (wheat relatives), root C partitioning plasticity under contrasting moisture conditions 

improves drought adaption while maintaining shoot productivity – a trait with donor potential for 

modern wheat varieties (Suneja et al., 2019). Similarly, sorghum and millet root development 
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plasticity, particularly the inhibition of lateral roots and expression of deep, steep rooting 

structures is critical to remaining productive in water-limited conditions (Liang et al., 2017; 

Rostamza et al., 2013). In corn, root architecture of modern hybrids has adapted to increased 

plant populations – improving yields through an increased reliance on plant density and not 

improved root efficacy (Messina et al., 2021). 

Inflorescence development has been identified as key to successful environmental 

adaptation, particularly with climate-based stressors (Dingkuhn et al., 2020; Faye et al., 2019; 

Jacott & Boden, 2020). Increased harvestable inflorescence size was a key part of crop 

domestication processes (Y. Wang & Li, 2011), but genetic selection for stable phenotypes has 

negatively impacted plasticity in most crops. Less-intensified species like pearl millet can more 

easily manipulate grain size via the grain filling duration, thus providing a moisture stress 

advantage (Ghatak et al., 2021).  Grain size in cereals is typically dependent on both source 

availability and the sink capacity established in reproductive development phases. However, 

sorghum is capable of adjusting sink capacity throughout the grain-filling period to capitalize on 

available energy reserves if C exceeds the sink limits (Gambín & Borrás, 2007). Corn, however, 

has a more determinate sink size per grain (Gambín et al., 2008). 

1.2.3 Crop production utility 

While mentioned examples may be of situational interest, relevance to modern 

agroecosystems is contingent on practical applications. Conclusions of many presented examples 

are based on observations from a greenhouse or otherwise unrealistic production environment. In 

addition, although some studies included a wide variety of genotypes, relatively few 

environmental conditions were considered (e.g., one “water-limited” versus one “well-watered”). 

Each study discussed plasticity mechanisms from a relatively circumstantial, unique perspective, 
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highlighting the lack of standardization in this realm of crop ecology. In fact, the conclusions of 

many highlighted studies were the simple existence of plasticity mechanisms rather specific 

examples of their usefulness. Crop simulation models are an avenue to integrate such data into a 

usable platform. Examining plasticity mechanisms as individual components in not sufficient to 

inform breeding or agronomic management decisions – the whole system must be considered. 

While plasticity mechanism exploration is intriguing and progressive, discussion of its 

practical implementation in modern production systems is apparently lacking. Perhaps this is 

largely due to the fact that “crop plasticity” quantification remains vague and abstract. I find this 

stagnant nature puzzling, considering the call to explore plasticity in production agriculture has 

echoed for decades (Loomis & Connor, 1992; Nicotra & Davidson, 2010). How can we 

implement something not collectively understood, even if it has been defined for some time? To 

what extent must environmental variation exist for a genotype to be deemed plastic? How can 

usefulness be highlighted and targeted in field studies? What can be done to facilitate more 

meaningful, impactful conclusions? 

 

 1.3 Forward-facing perspectives 

Intentional utilization of plasticity in cropping systems and breeding programs is more 

difficult to achieve than to conceptualize. Several obstacles must be overcome to truly implement 

the strategies that have been discussed in crop breeding for decades (Brooker et al., 2022). 

Comprehensive, standardized crop ecology studies must be conducted to identify the practical 

implications and limitations of plasticity from the perspective of large-scale production systems. 

Perhaps the development of a targeted crop trait framework similar to the proposal of Nicotra et 

al. (2010) could be used to standardize these efforts. Crop simulation models provide an avenue 
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to address these challenges, and use of such tools should increase in the future. Combinations of 

these advancements must culminate in tangible targets for breeding programs.  

Plasticity expression, by definition, requires multiple genetic candidates and a variety of 

growing conditions, which is very resource-intensive. For this reason, singular efforts cannot 

adequately explore the complex interactions of practical application. Understanding plasticity 

mechanisms and potential in our crop species will require well-documented protocols and quality 

data from different studies covering a wide variety of genotype × environment interactions. 

Although resource-intensive, standardized reporting of singular studies can facilitate the broad-

scale efforts necessary to properly explore trait plasticity and utility in diverse global 

environments. However, as mentioned previously, plasticity utility in large-scale production 

agriculture remains untested and uncertain, and additional work must be done prior to breeding 

program incorporation. 

While breeding programs have considered resilience and plasticity in their selections over 

time, refining our knowledge of the mechanisms of such plasticity expression in our crop species 

and agricultural production systems is crucial. This process centers on recognizing crop tolerance 

as a useful but indefinite solution to climate change. From this standpoint, plasticity has potential 

in breeding programs as a tool rather than an obstacle. It is important to emphasize that long-

term impacts of climate change are ultimately unknown and plasticity is not proposed as a catch-

all solution. Increasing temperatures and altered weather patterns could bring additional 

pressures such as more severe or regionally displaced pest outbreaks, which will compound 

effects of altered temperature and moisture. Considering all of these factors, affirming potential 

displacement of invariable, predictable crop genotypes from current agroecosystems is pertinent. 

Crop plasticity requires further exploration. This understanding is necessary to equip ourselves 
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as possible for an uncertain future. Societal complacency presents a unique challenge to the 

incorporation of alternative climate adaptation strategies, as impacts appear gradual and 

tolerable. Perception shifts are needed, however, for proactive response to forecasted 

environmental thresholds, which we may not be able to accurately predict or even perceive 

(Hughes et al., 2013). Perhaps instead of perpetuating a sense of normality in established 

agroecosystems experiencing fundamental changes, we must consider ways to conform our 

cropping systems, including species selection and phenotypic preferences, to alternative climate 

states. 

 

1.4 Dissertation objectives 

Considering this background, authors sought to quantify, characterize, and appropriately 

describe utility of a generally unstudied plasticity mechanism in dent corn – tillering. Research 

and actionable information regarding tillering in corn production are largely unavailable. This 

area of study is particularly relevant in environments where plant density is typically resource-

limited or is not reliably optimized due to variable climate. Therefore, the objectives of this 

dissertation were to determine the following based on tillered corn phenotypes in a range of E × 

M scenarios: 1) the impact of tiller development on corn yields; 2) the plastic extent and relative 

importance of yield components; 3) the drivers and predictability of corn tiller development; and 

4) the effect of tiller expression on biomass accumulation, carbon economy, and subsequent 

reproductive efficiency. Following chapters address each of these general objectives. 
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Chapter 2 - Effect of tillers on corn yield: Exploring trait plasticity 

potential in unpredictable environments 

*Published in Crop Science. 
Veenstra, RL, Messina, CD, Berning, D, Haag, LA, Carter, P, Hefley, TJ, Prasad, PVV, 
Ciampitti, IA. Effect of tillers on corn yield: Exploring trait plasticity potential in unpredictable 
environments. Crop Science. 2021; 61: 3660– 3674. https://doi.org/10.1002/csc2.20576 
 

Abstract 

Long-term selection in corn (Zea mays L.) favored single-stalked phenotypes limiting 

vegetative growth. However, reduced plant densities create conducive environments to the 

expression of vegetative branches called tillers. Tiller expression has motivated discussions 

about its yield effect in variable environments, but tiller research is lacking for modern corn 

genotypes. The objectives of this study were to (a) quantify the relative importance of 

management, environment, and interactions on the yield effect of tiller expression for two 

modern genotypes; (b) understand effects of observed tiller density, plant density, and their 

interaction on yield; and (c) identify key environmental determinants of yield response to tiller 

density in modern genotypes. In 10 environmentally diverse site-years across Kansas, tiller 

presence and removal were evaluated in two commercial corn hybrids (P0657AM and 

P0805AM) across three target plant density levels (25,000, 42,000, and 60,000 plants ha−1). 

Yields were increased or unaffected by greater plant densities and tiller presence within site-

years. Environments varied in yield responsiveness to tiller density, but fine-tuning plant density 

was needed to maximize yields. Sites with yields most responsive to tiller density were 

characterized by good soil properties and photothermal quotient values (e.g., soils with high 

organic matter and climates with greater solar radiation and cooler temperatures). Favorable 

growing conditions can be exploited by plasticity traits such as tillering in unpredictable 

https://doi.org/10.1002/csc2.20576
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environments with annually variable optimum plant densities while limiting potential yield loss 

and producer risk due to disproportionate plant density. 

 

2.1 Introduction 

From 2008 to 2016, cropland expansion in the United States occurred at a rate of 

>550,000 ha yr−1, resulting in new cropland that has, on average, lower productivity than the 

national existing cropland average (Lark et al., 2020). Plant density is an agronomic practice 

often employed by farmers to match crop demands with anticipated resource availability (Assefa 

et al., 2016; Schwalbert et al., 2018; van Averbeke & Marais, 1992), typically low precipitation 

and reduced soil fertility (Khosla et al., 2008; Nielsen et al., 2010). However, sparse plant 

densities encourage development of secondary vegetative shoots (tillers) when paired with 

favorable thermal and moisture conditions (Jenkins, 1941; Lyon, 1905). While tillers are 

generally desirable in other poaceae species such as wheat (Triticum aestivum L.) and grain 

sorghum (Sorghum bicolor L. Moench), presence in corn (Zea mays L.) has historically raised 

concerns about resource allocation and yield effects, resulting in the common name “suckers” 

(Dungan, 1931; Earley et al., 1971). 

Long-term selection for yield and yield stability have resulted in a steady increase of 

optimum plant density over time, particularly in highly productive environments (Assefa et al., 

2018; Duvick et al., 2004; Hammer et al., 2009; Russell, 1991; Tokatlidis & Koutroubas, 2004). 

Optimum plant densities decrease with decreasing resource availability, and low plant 

populations are typical for corn grown in marginal environments (Berzsenyi & Tokatlidis, 2012; 

Blumenthal et al., 2003; Mylonas et al., 2020; Ren et al., 2016). Breeders have selected against 



11 

tiller expression, but genotypic variation in expression levels of modern germplasm has been 

identified (Duvick et al., 2004; Major, 1977; Moulia et al., 1999). 

Tillering is a form of phenotypic plasticity in corn. Thus, its expression depends on 

genotype (Hansey & de Leon, 2011; Sangoi, Schmitt, Vieira et al., 2012; Tokatlidis et al., 2005) 

and the availability of resources (Gardner, 1942). Lower daily average temperatures increase the 

number of tillers in corn, particularly when combined with higher light intensities (Markham & 

Stoltenberg, 2010; Stevenson & Goodman, 1972; Tetio-Kagho & Gardner, 1988). Soil fertility 

and moisture are critical to tiller development in corn (Downey, 1972; Dungan et al., 1959; 

Jenkins, 1941; Lyon, 1905; Tetio-Kagho & Gardner, 1988). Tiller density is often closely linked 

to plant density due to the effect of available resources per plant. However, tiller death is 

commonly observed as plants mature, connecting resource availability to tiller appearance and 

survival, rather than plant density alone (Major, 1977). 

Corn tillers have vascular and root systems that are semi-independent from the main stem 

(Lyon, 1905). While tillers add competition for plant resources, nutrients and photosynthates can 

be translocated from tillers to main stalk, depending on tiller sink size (Alofe & Schrader, 1975; 

Dungan, 1931; Russelle et al., 1984). In previous studies, corn tiller presence has resulted in 

neutral (Earley et al., 1971; Frank et al., 2013; Sangoi, Schmitt, Vieira et al., 2012), positive 

(Hansey & de Leon, 2011; Lyon, 1905; Sangoi et al., 2009; Williams, 1912), and negative 

(Frank et al., 2013; Hansey & de Leon, 2011) effects on yields. In addition, tiller contribution to 

corn yield has been linked to plant density (Akman, 2002; Hansey & de Leon, 2011), genotype 

(Akman, 2002; Sangoi et al., 2009), and growing environment (Markham & Stoltenberg, 2010; 

Williams, 1912). Previous studies were focused on relatively few sites, but without explicitly 

evaluating the complex interactions of environment and management (E × M). 
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Research that partials out the effect of corn tillers on yield while accounting for modern 

genotypes, management, and an array of environments for producers in marginal regions is 

scarce but needed. The objectives of this study are to (a) quantify the relative importance of 

management, environment, and interactions on the yield effect of tiller expression for two 

modern corn genotypes; (b) understand effects of observed tiller density, plant density, and their 

interaction on yield; and (c) identify key environmental determinants of yield response to tiller 

density in modern genotypes. 

 

2.2 Materials and Methods 

2.2.1 Field experiments 

2.2.1.1 Site characteristics and experimental design 

Field experiments were conducted at 10 sites across the state of Kansas during the 2019 

and 2020 growing seasons. Normal season precipitation and temperature characterization, in 

addition to annual deviations, are presented for each site-year in Figure 2.1. Field centroids, key 

dates, irrigation management, apparent seasonal crop water budget, previous crops, and early 

season soil characterizations are presented in Table 2.1. Apparent season water budget was 

calculated by subtracting apparent crop water demand—as determined by an estimation of crop 

evapotranspiration (ETc), calculated as shown in Allen et al. (1998) as the product of the grass 

reference evapotranspiration (ETr) and crop coefficient (Kc)—from observed water supply for 

the growing season (considering 1 month prior to planting to physiological maturity). Although 

large deficits are observed in the water budgets presented, it is key to note that plant-available 

soil water at planting—measured previously in the evaluated region by Lamm et al. (2017) with 

an average of 271 mm in a 2.4-m soil profile depth (2011–2012 period) for fields with similar 
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cropping history—and soil water-holding capacity were not included in this estimation. 

Accounting for this additional water source, a majority of apparent water budget deficits (mainly 

occurring from V14 onward) will realistically be negligible. Moreover, as shown in Figure 2.1, 

seasonal moisture was normal or above normal for all site-years. Weather data were retrieved 

from the Climate Engine web application (Huntington et al., 2017). Monthly climatic summaries 

are provided in Table A.1, and apparent crop water budget estimations by development stage are 

shown in Table A.2. 

Six site-years (Manhattan 2019, Keats 2020, Garden City 2020, Goodland 2020, Colby A 

2020, and Colby B 2020) were established with a replicated three-way factorial treatment 

structure in a randomized complete block design (RCBD) with a split-split-plot arrangement. 

Whole plot factor was target plant density with the three levels of 25,000, 42,000, and 60,000 

plants ha−1. These target densities were selected as representative of the range of plant densities 

commonly utilized by producers with limited or unavailable irrigation resources in the region of 

interest (Roozeboom et al., 2007). Subplot factor was corn genotype (hybrid) with the two levels 

of P0657AM and P0805AM. These Pioneer hybrids were selected due to their modern release 

date, suitability for the region of study, and propensity to express tillering (Corteva Agriscience, 

Johnston, IA, USA). Sub-subplot factor was tiller presence with the two levels of tillers intact 

(TI) and removed (TR). Garden City 2019 and Goodland 2019 site-years were also established in 

a RCBD with a split-split-plot, but with target plant density levels of 25,000 and 42,000 plants 

ha−1. Buhler 2020 and Greensburg 2020 sites were established with a replicated two-way 

factorial treatment structure in a RCBD with a split-plot arrangement. Whole-plot and subplot 

factors and levels were identical to the design mentioned above, but tiller removal was not 

implemented in the Buhler 2020 and Greensburg 2020 locations. Plant density was selected as 
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the whole-plot factor across sites to facilitate statistical detection of smaller yield differences in 

the measurement of genotype and tiller presence effects, when applicable. All sites had at least 

three replications of each treatment. Plots in all site-years consisted of at least four rows at 0.76-

m spacing with final minimum dimensions of 3-m wide by 5-m long. All target plant densities 

were seeded at double rates, thinned after emergence to ensure even distribution of plants within 

rows, and confirmed with stand counts. Pesticides were applied as necessary to prevent crop 

damage and fertilizer was applied to meet crop nutritional requirements. 

2.2.1.2 Treatments and measurements 

One-time tiller removal treatments were applied to designated plots when the main stalk 

had reached the V10 growth stage (tenth leaf as described by Ritchie et al., 1997). Tillers were 

removed from plants by hand to ensure clean, ground-level cuts with no injury to the main stalk. 

Cut tillers were spread evenly on the ground in respective plots to avoid removing biomass. 

Development stage V10 was selected to minimize regrowth of tillers as well as tiller effects on 

ear development and plant resource allocation. 

Except for phenological development and tiller appearance notes, all measurements were 

collected at physiological maturity (R6). To avoid border effects, only the two central-plot rows 

were measured for data collection and buffer zones were designated on plot row ends. Main 

stalks and tillers with at least one collared leaf were included in observed stand counts at harvest, 

and row lengths were measured accounting for the interplant spacing of the nearest removed 

neighbor on each standing row end. Ears remaining on plants at maturity were harvested and 

shelled by hand, with ears from tillers and main plants combined for this study. Harvested areas 

were similar across sites and approximately 4-m long by 1.5-m wide. Yields were calculated 

based on measured harvest area and adjusted to a 155 g kg−1 moisture basis. 
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2.2.2 Statistical Analyses 

A first analysis considered yield data from site-years containing all factor levels in their 

treatment structure (Manhattan 2019, Keats 2020, Garden City 2020, Goodland 2020, Colby A 

2020, and Colby B 2020). A linear mixed effects model was fit using the lme4 package (Bates et 

al., 2015) in R (R Core Team, 2022). Site-year, plant density, genotype, tiller presence, and all 

interactions were set as fixed effects in the model. Random effects included block, whole plot, 

subplot, and sub-subplot. A significance threshold for all analyses was set at p ≤ 0.05. Residuals 

were checked visually for normality, homoscedasticity, and homogeneity of variance. A full 

description of the statistical model used is given in Equation A.1. The fitted model was subjected 

to a Type III analysis of variance (ANOVA) for each treatment factor using the car package (Fox 

& Weisberg, 2019). Pairwise comparisons of least-squares means were calculated using the 

emmeans R package (Lenth, 2020) by applying the Tukey method. 

A second model was fit to determine the effect of observed tiller and plant densities on 

yield for all site-years. A linear mixed effects model was fit using the lme4 package. Site-year, 

observed tiller and plant densities, and all interactions were set as fixed effects. Random effects 

were again block, whole plot, subplot, and sub-subplot. A full description of the statistical model 

used is given in Equation A.2. Residuals were checked visually for normality, homoscedasticity, 

and homogeneity of variance. The fitted model was subjected to a Type III ANOVA for each 

treatment factor using the car package. Predictions were generated for each site-year using fixed 

effect coefficient estimates from the fitted model considering plant densities ranging from 20,000 

to 70,000 plants ha−1 and tiller densities of 0 to 80,000 tillers ha−1. These ranges were selected 

based on the observed data used to fit the model across sites. To provide realistic tiller density 
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bounds for results interpretation, a quantile linear regression of 95th percentile tiller density 

observations was fit for each site using the quantreg package (Koenker, 2020). 

A third analysis utilized site-years grouped by yield responsiveness to tiller density as 

defined by the model coefficient estimates (Equation A.2) for the effect of tiller density and the 

interaction of tiller density and plant density. Groups based on yield responsiveness to tiller 

density were assigned via the k-means clustering algorithm, and the appropriate number of 

clusters (three) was determined by the cumulative reduction in total within-cluster sum of 

squares by additional clusters. Weather variables were partitioned into three time periods and 

defined for thermal variables as (a) sowing to V4, (b) V4 to V7, and (c) V7 to V14 for each site-

year. Soil water supply considered both precipitation and irrigation, when applicable, and 

extended the early season period to one month pre-sowing to account for soil moisture at 

planting. As shown in Figure A.1, these stages were selected based on the mean first tiller 

appearance stage of V5 across site-years. Tillers continued to appear in each site-year following 

initial appearance, and reproductive components (if present) were fully differentiated by V14. 

The sowing to V4 time period represents the pre-tillering interval, V4 to V7 represents the tiller 

appearance interval, and V7 to V14 represents the tiller development interval. In addition to 

measured temperature variables, the photothermal quotient (PTQ) was considered. The PTQ is 

defined by Fischer (1985) as the mean daily solar radiation for a selected time period, divided by 

the difference between the mean temperature for that period and the crop base temperature (10 

°C for corn), with final units MJ m−2 °C−1 d−1. Lastly, a principal component analysis (PCA) was 

conducted considering available environmental parameters for selected season intervals with the 

FactoMineR package in R (Lê et al., 2008). Dimensions with eigenvalues > 1 were considered, 
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and variables with the greatest contribution to total variation captured by each dimension were 

identified. All plots were generated using the R software. 

 

2.3 Results 

2.3.1 Yield relation to treatment factors 

The factors target plant density (M), genotype (G), site-year (E), E × M, and tiller 

presence (P) × E were significant in explaining variability in yield (Table 2.2). On average, 

yields of 7.7, 9.3, and 10.5 Mg ha−1 resulted for plant densities of 25,000, 42,000, and 60,000 

plants ha−1, respectively (Figure 2.2a). Although the effect of genotype is statistically significant, 

the effect size is negligible (Figure 2.2b), with means of 9.2 Mg ha−1 for both P0657AM and 

P0805AM. Estimated mean yields by site-year could be clustered in four groups (Figure 2.2c). 

For the first group, site-years Goodland 2020 and Garden City 2020 produced the greatest yields 

with respective means of 12.0 and 11.6 Mg ha−1. In the second group, Keats 2020 was 

significantly lower yielding, with a mean value of 10.4 Mg ha−1. Third, Colby A 2020 was 

significantly less, with a mean yield of 9.5 Mg ha−1. Finally, Colby B 2020 and Manhattan 2019 

yielded the least, both producing an average of 5.8 Mg ha−1. 

Mean yields by interaction of factors site-year and plant density were either unaffected or 

positively influenced by increasing target plant density levels (Figure 2.2d). At site-year Colby A 

2020, mean yields of two greatest densities were significantly greater than the lowest density, 

with mean yields of 8.0, 9.7, and 10.6 Mg ha−1 for 25,000, 42,000, and 60,000 plants ha−1, 

respectively. Yield did not respond to plant density at Colby B 2020, with an average yield of 5.8 

Mg ha−1. Garden City 2020 mean yields for the two lower plant densities (average 10.8 Mg ha−1) 

were significantly less than the highest target density which yielded 13.2 Mg ha−1. Goodland 
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2020 produced significantly less (9.7 Mg ha−1) in the 25,000 plants ha−1 target density than in the 

two higher densities (averaging 12.5 and 13.9 Mg ha−1). Yields significantly differed for each of 

the target plant densities at Keats 2020, with yield gains of 3.0 Mg ha−1 and 4.9 Mg ha−1 for the 

highest densities relative to the lowest (7.8 Mg ha−1). Mean yields of the highest and lowest 

target plant densities in Manhattan 2019 were statistically different from each other, with values 

of 6.8 and 5.0 Mg ha−1, respectively. 

Mean yields by interaction of factors site-year and tiller presence were either unaffected 

or positively affected by the presence of tillers (Figure 2.2e). For site-years Colby A 2020, Colby 

B 2020, Keats 2020, and Manhattan 2019, tiller removal had no effect on yield. However, yields 

were reduced 11% (12.2 to 10.9 Mg ha−1) and 13% (12.9 to 11.2 Mg ha−1) at Garden City 2020 

and Goodland 2020, respectively, when tillers were removed.  

2.3.2 Yield relation to shoot number 

All tested factors (i.e., E, observed plant density [D] × E, observed tiller density [T] × E, 

and D × T × E) were deemed significant (Table 2.3). Model predictions related yield to the 

observed ranges of tiller and plant densities. Lateral color gradients depict yield response to plant 

density, vertical color gradients represent yield response to tiller density, and curvature in these 

contour lines indicates the strength of the interaction term (Figure 2.3).  

Site-years Manhattan 2019 (Figure 2.3a), Garden City 2019 (Figure 2.3c), and Colby B 

2020 (Figure 2.3f) had visually similar yield responses with minimal effect of tillers on yield at 

low plant densities. At Manhattan 2019 and Garden City 2019, greatest yields were achieved at 

high plant densities with minimal tillering, whereas Colby B 2020 yields were mostly 

independent of plant density and only slightly influenced by tillers in plant densities greater than 

30,000 plants ha−1. At Goodland 2019 (Figure 2.3b), Greensburg 2020 (Figure 2.3h), and Keats 
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2020 (Figure 2.3j), yield responses were similar, being predominantly horizontal and driven by 

increasing plant densities. Buhler 2020 (Figure 2.3d), Colby A 2020 (Figure 2.3e), Goodland 

2020 (Figure 2.3g), and Garden City 2020 (Figure 2.3i) produced similar yield responses to plant 

density, with strong yield contour curvature primarily centered at low plant densities, but with 

additional weak centers at high plant densities. At low plant densities, yield gradients were 

strongly vertical, indicating rapid yield increases with additional tillers. The curvature of yield 

contours began to flatten and invert across sites as plant density increased, indicating reduced 

tiller contribution. Considering probable tiller densities (95th percentile tiller density observations 

for all site-years), the greatest yield was observed in high plant densities with minimal tiller 

densities in 90% of cases (Figure 2.3). Site-years with yields unaffected by tillers at low plant 

densities averaged a maximum yield of 8.7 Mg ha−1, and those strongly influenced by tillers at 

low plant densities averaged 10.2 Mg ha−1. 

2.3.3 Environmental influence 

The site-year × environment clusters based on model coefficients were as follows: highly 

tiller responsive – Buhler 2020, Colby A 2020, Garden City 2020, and Goodland 2020; 

moderately tiller responsive – Garden City 2019, Goodland 2019, and Manhattan 2019; and 

neutrally tiller responsive – Colby B 2020, Greensburg 2020, and Keats 2020. 

Variable vector directions indicate significant positive correlations among soil attributes 

such as soil organic matter (OM), soil clay, soil cation exchange capacity (CEC), and soil silt. 

The PTQs for all time points (sowing–V4, V4–V7, V7–V14) were also positively correlated with 

each other, as are early season water supplies and mid to late vegetative mean minimum 

temperatures. Negatively correlated variables include soil attributes and soil sand in addition to 
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soil water supply, as well as PTQ for all season intervals and respective mean minimum 

temperatures (Figure 2.4a). 

 In the first dimension of the PCA, 36% of variation was captured, with 4.7% explained 

by soil clay; 4.3% by soil CEC, soil OM, and soil sand; and 4.0% by soil silt (Figure 4b). In the 

second dimension, 25% of the variation was captured, with 4.0% explained by both the PTQ of 

the V7–V14 interval and mean minimum temperature of the V7–V14 interval; 3.75% explained 

by both the sowing–V4 and V4–V7 interval PTQs; and 3.0% by the mean minimum temperature 

of the V4–V7 interval. The PTQ variables hold negative y-values and named temperature 

variables hold positive y-values (Figure 4a). The remaining three significant dimensions account 

for 16% (majorly soil pH and maximum temperatures), 9% (majorly V7–V14 water supply), and 

5% (majorly soil phosphorus and V4–V7 water supply) of environment variation (Figure 4b). In 

summary, the primary sources of environmental variation are soil clay, soil CEC, soil OM, soil 

sand, and soil silt. Secondary sources of variation are PTQ for all intervals in addition to V7–

V14 and V4–V7 interval mean minimum temperatures. 

 

2.4 Discussion 

This study quantified effects of genotype (G) × site-year (E) × target plant density (M) 

and interactions on corn yield effects due to tiller expression, one of few known studies to do so 

in the last three decades. With eight unique geographical locations in a diverse set of 10 site-

years, the dataset used encompasses a greater array of environments (and G × M factors) when 

considering available scientific literature, particularly regarding the inclusion of cropland areas 

where drought is a major determinant of yield. Low plant density is an agronomic management 

practice implemented to tailor resource supply to demand while managing risk associated with 
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unpredictable growing conditions (Rodriguez et al., 2016; Rotili et al., 2019). Under low plant 

populations, corn tillers may undermine the goal of matching resource supply to demand, and 

thus reduce yield (Dungan, 1931; Earley et al., 1971; Lyon, 1905). Dissecting the overall effect 

of corn tillers under varying G × E × M scenarios is an area of active research (Maddonni et al., 

2021; Rotili et al., 2021a). Tiller appearance and development mechanisms were not detailed in 

the current study, which limits current scope to yield consequences without exploring potential 

trait expression determinants. This study identified associations between repeatable 

environmental factors and tiller expression yield effects, providing information to both define 

adaptive agronomic management practices and guide future studies to understand the 

physiological determinants of yield. The variable contribution of tillers to yield conditioned to 

growth environment suggests investigations on within and between plant competition for 

resources and remobilization potentials and patterns. 

Geographical and environmental variation across sites within a moisture regime gradient 

facilitated collection of an informative dataset to understand management and environmental 

determinants of tiller expression yield effects. While the two modern corn hybrids studied 

performed similarly, studies incorporating larger genetic variation in tiller expression could 

reveal contrasting yield responses to tillers. Sangoi et al. (2009) reported significant differences 

in tiller-derived grain yield between corn genotypes. Notably in this study however, total yields 

were not different between these genotypes, as greater tiller yields accompanied reduced main 

stem yields and vice versa. Consistent with analyses of large datasets of yield response to plant 

density, increasing plant density was key for yield gain across environments with the exception 

of lower-yielding sites (Assefa et al., 2016; Prior & Russell, 1975). Similar to our findings in 

drought-prone environments, Downey (1972) reported no yield gain considering tiller presence 
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across a range of plant densities (42,000 to 76,300 plants ha−1). From an applied research 

standpoint, corn tillers had no adverse effects on yields, regardless of all factors evaluated. This 

agrees with data presented by Earley et al. (1971) and Sangoi, Schmitt, Vieira et al. (2012), who 

identified tillers as irrelevant to yield outcomes. Similarly, Sangoi et al. (2009) found tiller 

presence increased yields by 12% (1.1 Mg ha−1) across genotypes and plant densities (40,000 and 

70,000 plants ha−1). The interactions plant density × tiller presence and hybrid × tiller presence 

were not identified as significant in this study, but have been previously reported (Akman, 2002; 

Sangoi et al., 2009). 

Contrary to expectation, tiller density did not affect yields at low plant densities in all 

environments, even when yields could be increased by adding more plants per hectare. However, 

this finding supports the proposal that tillers may reduce efficiency in certain scenarios by 

requiring additional biomass to produce similar or lower amounts of grain (Rotili et al., 2021a; 

Thapa et al., 2018). This relationship could also be explained by secondary ear expression which 

has been previously included in corn plasticity and plant density discussions (Mylonas et al., 

2020; Tokatlidis et al., 2005). Yields in some environments benefited from tillers at low plant 

densities but increasing plant density was still most effective in maximizing yield. Hansey and de 

Leon (2011) reported positive correlations between yield and tillers plant−1 at 20,000 plants ha−1, 

with an inverted relationship at 70,000 plants ha−1. With expected tiller number per plant 

decreasing as plant number increases (Rotili et al., 2021b; Tetio-Kagho & Gardner, 1988), yield 

gain is simultaneously more connected to increased plant density. Regardless of environment, 

yields were maximized by fine-tuning plant density which surpassed tiller compensation 

capabilities. However, this identification of yield response to tillers in certain scenarios is 

important, particularly for producer replanting decisions in event of poor emergence or damaged 
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stands (e.g., early season hail damage). These decisions could be influenced by expected 

behavior of corn tillers and their ability to compensate a significant portion of yield lost with 

missing or damaged plants. This potential was previously identified by Sangoi, Schmitt, Silva et 

al. (2012) as a successful plant mitigation strategy to overcome defoliation in mid-to-late 

vegetative stages and by Carter (1995) as a compensation mechanism to recover a portion of 

yield lost due to late frost damage. 

Plant density is the significant driver of yield gain, but our results identify a strong 

influence of environment on tiller contribution to yield. Corn grown in sites with favorable soil 

properties, for example high organic matter and textures high in clay and silt, higher PTQ values, 

and lower minimum temperatures in the V7–V14 vegetative stages responded most positively to 

tillers. Soil properties are key to yield potential in the evaluated region (Lobell & Azzari, 2017), 

and plant nutrition is key to tiller appearance and survival as demonstrated by Sangoi et al. 

(2011). The PTQ relationship in corn tillers is novel, and consistent with reports on the link to 

tiller appearance, tiller number, and productivity in other grasses such as wheat and grain 

sorghum (Fischer, 1985; Kim et al., 2010; Kumar et al., 2016). A greater PTQ results in a larger 

potential photosynthate source for the plant at a given timepoint (Nix, 1976). Additional 

carbohydrates can determine tiller productivity, resulting in tillers able to support themselves and 

also potentially translocate surplus to the main stem (Alofe & Schrader, 1975; Rotili et al., 

2021b). Although water status was not identified as a key environmental classifier, inclusion of 

more severe water deficit conditions could alter this outcome. Via crop simulation modeling, 

Rotili et al. (2021a) identified a depressive effect of tiller presence on kernel number m−2 at 50% 

frequency in the driest planting conditions for two probable restrictive moisture environments 

(approximate yield of 3 to 3.5 Mg ha−1 considering a standard of 200 mg kernel−1), but positive 
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effects on kernel number m−2 at a 50% frequency even in dry planting conditions for four other 

less restrictive sites (approximate yield of 4 to 5 Mg ha−1 at 200 mg kernel−1). The most 

restrictive environment results were confirmed by a field experiment conducted by Rotili et al. 

(2021b) at yield levels of 3.3 to 4.3 Mg ha−1, with plant densities of 20,000 and 40,000 plants 

ha−1. These levels are below the current study's average yield of 9.2 Mg ha−1 (ranging from 5.8 to 

12.0 Mg ha−1), indicating a discrepancy in the restrictiveness of environments considered. In 

addition, while Rotili et al. (2021a) considered moisture at planting in presented simulations, the 

present study considered multiple time periods for sites with varied levels of apparent crop water 

budgets (including some sites with similar patterns across development stage periods), as 

indicated in Figure 2.4 and Table A.2. However, sites similar in water budgets performed very 

differently with regard to yield responsiveness to tiller presence, supporting the finding that 

water is not a key environmental factor influencing yield responses to tiller presence in less 

restrictive conditions (when water supply is not a limiting factor). Additional field studies 

considering more restrictive conditions and various moisture regimes within sites are necessary 

to fully understand moisture effects on tillering and yield relationships in corn. 

Perhaps the most unexpected result was the close association of environments in which 

yields were most and least influenced by tillers. While sites with yields unresponsive to tillers 

presented somewhat more favorable soil properties, a trending lower PTQ was also observed. 

With adequate nutrition, tillers were present, but plants likely produced less photosynthates per 

tiller and development stage than in sites with a greater PTQ. Assimilate content of the main 

stem in early vegetative periods has been linked to sorghum tiller grain production given 

adequate soil fertility and moisture (Lafarge & Hammer, 2002). As with grain sorghum, corn 

stalks act as storage organs for accumulated carbohydrates until grain filling begins, when 
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assimilates are translocated from stalk to kernels (Hume & Campbell, 1972; Setter & Meller, 

1984). If tillers are able to contribute to carbohydrate reserves in the main stem, these resources 

are preferentially allocated to grain formed by the main stalk rather than for tiller ears and grain 

(Alofe & Schrader, 1975). In addition to soil properties, evaluating resource translocation and 

water-soluble carbohydrate dynamics among corn tillers and main stem has potential to improve 

our understanding of yield responsiveness to tiller density across environments (Rotili et al., 

2021b). This nourishing relationship has been previously documented by Dungan (1931) and 

specifically identified for phosphorus (P) via relocation from nonreproductive tillers to main 

stalks by Russelle et al. (1984). 

Production risks are typically the most important factor influencing long-term operation 

success for farmers worldwide (Komarek et al., 2020). According to Mase et al. (2017), 64% of 

U.S. Midwestern corn producers implement in-field management strategies as their preferred 

method of adapting to climate-based risk. Most farmers attribute this response to personal 

perception and experiences with precipitation and temperature variability and trends (Mase et al., 

2017). Favorable growing conditions can be exploited by plasticity traits such as tillering in 

unpredictable environments where optimum plant densities can vary widely, limiting yield loss 

due to suboptimal densities in favorable seasons while concurrently reducing seed inputs. This 

can reduce risks associated with lost opportunities in the most productive seasons as a feature of 

implementing defensive management strategies (Rotili et al., 2021a). With climate change 

projections indicating more frequent erratic weather events and concerns mounting regarding 

irrigation resources (Mrad et al., 2020), in-field mitigation options to balance economic and 

environmental challenges of crop production are of great value (Steiner et al., 2018). 
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2.5 Conclusions 

Regardless of environment or plant density for tested genotypes, tillers had no significant 

deleterious effects on corn yields. However, environment did play a key role in determining the 

magnitude of yield response to tillers relative to an increase in plant density. Tillers 

demonstrated potential to mitigate yield lost due to plant density decreases, but this relationship 

was only observed in select scenarios. Yield responsiveness to tillers was most influenced by soil 

properties and favorable PTQ, confirming the importance of source–sink relationships for 

understanding tiller contribution to corn yields. In all site-years, a fine-tuning of plant density 

was necessary to maximize yields. 

With defensive management strategies becoming increasingly necessary for producers in 

vulnerable cropping areas affected by climate anomalies, risk-mitigating options are important. 

Tiller expression in corn may be less reliable than increasing plant density or secondary ear 

expression to realize yield potential in ideal conditions, but this study presents important 

evidence on its potential usefulness as a mitigating plasticity trait in unpredictable environments. 
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Table 2.1 Site-year field experiment coordinates, sowing date, 10th-leaf date (V10); irrigation 
management; apparent season water budgets; previous crop; and soil pH, organic matter (OM; 
loss on ignition, LOI), nitrate concentration (NO3–N), ammonium concentration (NH4–N), 
phosphorus (P; via Mehlich III), cation exchange capacity (CEC), and texture. Detailed water 
budget values are presented in Supplemental Table A.2. 

Site-year Latitude Longitude Sowing 
Date 

V10 
Date 

Irrigation Apparent 
Season 
Water 
Budget 

Previous 
Crop 

 °N °W    mm  
Manhattan 
2019 

39.14 96.64 14 May 1 Jul None 917-411 Corn 

Garden 
City 2019 

37.83 100.86 4 May 28 
Jun 

Subsurface 
limited 

363-549 Corn 

Goodland 
2019 

39.25 101.78 14 May 8 Jul Subsurface 
limited 

511-605 Soybean 

Keats 2020 39.23 96.72 2 May 24 
Jun 

None 516-466 Soybean 

Buhler 2020 38.14 97.73 29 Apr 20 
Jun 

Subsurface 
limited 

489-562 Soybean 

Greensburg 
2020 

37.58 99.37 5 May 24 
Jun 

Subsurface 
limited 

478-594 Corn 

Garden 
City 2020 

37.83 100.86 18 May 30 
Jun 

Subsurface 
limited 

501-637 Corn 

Goodland 
2020 

39.25 101.78 7 May 1 Jul Subsurface 
limited 

398-728 Soybean 

Colby A 
2020 

39.39 101.06 7 May 3 Jul None 289-669 Wheat 

Colby B 
2020 

39.38 101.06 15 May 3 Jul None 307-652 Grain 
sorghum 

Site-year pH OM NO3-N NH4-
N 

P CEC Texture 

  % LOI mg kg-1 mg 
kg-1 

mg kg-1 meq 100g-1  

Manhattan 
2019 

6.3 1.0 1.8 1.3 37.5 5.9 Sandy 
loam 

Garden 
City 2019 

6.6 1.0 2.0 na 42.0 15.8 Sandy 
loam 

Goodland 
2019 

6.5 2.7 26.8 2.1 52.1 18.2 Silt loam 
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Keats 2020 7.0 4.5 18.0 4.1 118.0 24.4 Silty clay 
loam 

Buhler 2020 6.4 2.9 17.9 4.8 24.0 23.1 Silty clay 
loam  

Greensburg 
2020 

5.4 2.6 37.1 13.6 84.9 18.9 Clay loam 

Garden 
City 2020 

5.2 1.6 18.4 10.7 55.0 10.6 Sandy 
loam 

Goodland 
2020 

5.8 3.8 36.9 17.9 106.0 24.0 Silt loam 

Colby A 
2020 

5.4 3.3 19.9 4.3 70.0 21.2 Silt loam 

Colby B 
2020 

6.5 3.2 43.5 36.4 31.0 24.0 Silt loam 

Apparent season water budget (ASWB) was calculated as follows: observed water supply (irrigation + precipitation 
from one month prior to planting through physiological maturity) − apparent crop water demand for the season (crop 
evapotranspiration, ETc; Allen et al., 1998). The ETc was calculated as the product of grass reference 
evapotranspiration ETr) and corn crop coefficient (Kc; weighted averages of development stage-specific coefficients 
provided by the University of Nebraska-Lincoln; (http://nawmn.unl.edu/GrowthStageData). When evaluating the 
apparent water budget, it is key to note that plant-available soil water at planting (measured in the evaluated region 
by Lamm et al., 2017, averaging 271 mm in a 2.4-m soil profile depth for the 2011–2012 period for fields with 
similar cropping history) and soil water-holding capacity are not included in this estimation. 

  

http://nawmn.unl.edu/GrowthStageData
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Table 2.2 Analysis of variance results for yield as dependent on experiment treatment factors 
target plant density, genotype, tiller presence, site-year, and interactions. Tested source of 
variation (Source), degrees of freedom, degrees of freedom of residuals, F value, and the 
associated p value are presented. Significance levels according to p values are denoted in the far-
right column, and all sources with p values ≤ 0.05 are shown in boldface font. Coefficient of 
determination values for model fit are presented below. 

Source df Residual df F value p value 

Target Density (M) 2 175.77 3.38 * 

Genotype (G) 1 164.61 5.42 * 

Tiller Presence (P) 1 163.17 0 ns 

Site-Year (E) 5 165.45 5.1 *** 

G × M 2 164.61 2.16 ns 

M × P 2 163.17 0.02 ns 

G × P 1 163.17 0.21 ns 

E × M 10 165.52 3.26 *** 

G × E 5 165.31 1.04 ns 

E × P 5 163.17 4.58 *** 

G × M × P 2 163.17 0.04 ns 

G × E × M 10 165.26 0.65 ns 

E × M × P 10 163.17 1.82 ns 

G × E × P 5 163.17 0.35 ns 

G × E × M × P 10 163.17 0.44 ns 
Marginal R2 = 0.88; Conditional R2 = 0.88; * Significant at the 0.05 probability level; *** Significant at the 0.001 
probability level; ns, not significant 
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Table 2.3 Analysis of variance results for yield and specified interactions of observed predictor 
variables site-year, observed plant density, and observed tiller density. Tested source of variation 
(Source), degrees of freedom, degrees of freedom of residuals, F value, and the associated p 
value are presented. Significance levels according to p values are denoted in the far-right 
column, and all sources with p values ≤ 0.05 are shown in boldface font. Coefficient of 
determination values for model fit are presented below. 

Source df Residual df F value p value 

Site-year (E) 10 227.95 25.79 *** 

Plant density (D) × E 10 207.4 35.46 *** 

Tiller density (T) × E 10 284.57 10.11 *** 

E × D × T 10 285.02 6.43 *** 
Marginal R2 = 0.87; Conditional R2 = 0.87; *** Significant at the 0.001 probability level 
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Figure 2.1 Annual season normal precipitation and temperature deviation for 1991–2020 in site-
years Manhattan 2019 (a), Goodland 2019 (b), Garden City 2019 (c), Buhler 2020 (d), Colby A 
2020 (e), Colby B 2020 (f), Goodland 2020 (g), Greensburg 2020 (h), Garden City 2020 (i), and 
Keats 2020 (j); and season normal precipitation and temperature characterization by site-year (k). 
Bold vertical lines indicate normal average temperature for site-year season date ranges, whereas 
bold horizontal lines indicate normal precipitation accumulation for site-year season date ranges. 
Year of study for each site-year (a–j) is indicated with a large, opaque point and enlarged text, 
and considers both precipitation and irrigation in the water supply value (y-axis). All other years 
in (a–j) are shown with transparent points and smaller text, and water supply (y-axis) includes 
only precipitation. Base period for all climate normal calculations was 1991—2020. 
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Figure 2.2 Mean yields and pairwise comparisons of each level within factors target plant 
density (a), genotype (b), site-year (c), target plant density × site-year (d), and tiller presence × 
site-year (e) as deemed significant by designed experiment analysis of variance results shown in 
Table 2.1. Means within a panel not sharing a common letter are significantly different at the .05 
probability level according to the Tukey method. Tiller presence levels in (e) are denoted by TI 
(tillers intact) and TR (tillers removed). 
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Figure 2.3 Contour plot of predicted grain yields produced by the model described in Equation 
A.2 for site-years Manhattan 2019 (a), Goodland 2019 (b), Garden City 2019 (c), Buhler 2020 
(d), Colby A 2020 (e), Colby B 2020 (f), Goodland 2020 (g), Greensburg 2020 (h), Garden City 
2020 (i), and Keats 2020 (j). Contours are shaded and labeled according to 1 Mg ha−1 yield 
intervals. White lines indicate a change in yield interval. Observed plant densities and tiller 
densities are indicated with black points, and regression lines considering the upper 95% of 
observed tiller densities are shown with the black dashed line; this line is intended as an indicator 
of site-year tillering potentials, and extrapolations beyond black points and the dashed black line 
are shown only for the purpose of comparing site-years on the same density scales. 
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Figure 2.4 Principal component analysis biplot (a) and corresponding variance description 
summary by dimension and for environmental variables within dimension (b). Biplot (a) points 
are colored by response cluster, with small circles representing individual sites within each 
cluster and large triangles indicating cluster centroids. Each black arrow corresponds to the 
labeled environmental variable, with pointed direction indicating positive correlation and greater 
length indicating parallelism to the shown two-dimensional plane. Variance values (b) are 
expressed as percentages, with dimension totals shown at the base (“TOTAL”) and individual 
variables within dimension depicted above. Text opacity indicates the percentage of variance 
described, with darker values representing greater variance percentages, both for dimension 
totals and for variables within each dimension. The x-axis variables “Dim 1″ and “Dim 2″ of (b) 
correspond to the x- and y-axes of (a), respectively. 
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Chapter 3 - Tillering enhances corn reproductive plasticity by 

stabilizing yield components across plant densities 

*Under review in Frontiers in Plant Science, Plant Abiotic Stress– The Adaptation Strategies of 
Plants To Alleviate Important Environmental Stresses, Plant Abiotic Stress Special Issue 
 

Abstract 

Crop plasticity is fundamental to sustainability discussions in production agriculture. 

Modern corn (Zea mays L.) genetics can compensate yield determinants to a small degree, but 

plasticity mechanisms have been masked by breeder selection and plant density management 

preferences. While tillers are a well-known source of plasticity in cereal crops, the functional 

trade-offs of tiller expression to the hierarchical yield formation process in corn are unknown. 

This investigation aimed to further dissect the consequences of tiller expression on corn yield 

component determination and plasticity in a range of environments from two plant fraction 

perspectives – i) main stalks only, considering potential functional trade-offs due to tiller 

expression; and ii) comprehensive (main stalk plus tillers). This multi-seasonal study considered 

a dataset of 17 site-years across Kansas, United States. Replicated field trials evaluated tiller 

presence (removed or intact) in two hybrids (P0657AM and P0805AM) at three target plant 

densities (25000, 42000, and 60000 plants ha-1). Record of ears and kernels per unit area and 

kernel weight were collected separately for both main stalks and tillers in each plot. Ear number 

and kernel number per area were less dependent on plant density, but kernel number remained 

key to yield stability. Although ear number was less related to yield stability, ear source and type 

were significant yield predictors, with tiller axillary ears as stronger contributors than main stalk 

secondary ears in high-yielding environments. Such escape from the deterministic hierarchy of 
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corn yield formation may reduce corn management dependence on a seasonally variable 

optimum plant density. 

 

3.1 Introduction 

Corn (Zea mays L.) is of significant global socioeconomic importance, experiencing 

recent production expansion into stress-prone areas (Lark et al., 2020). In these regions of 

reduced yield potential, such as the Central High Plains of the United States (US), effective 

resource use is a key factor considered by farmers as they adapt to variable climatic conditions 

(Lobell et al., 2011). Phenotypic plasticity (herein termed as crop plasticity) refers to the ability 

of a genotype to adapt (e.g., express a specific trait) in response to the environment (Laitinen & 

Nikoloski, 2019). In sub-optimal or otherwise unpredictable growing conditions, exploring crop 

plasticity mechanisms are a suggested adaptation to maintain yields (Nicotra et al., 2010). 

Capitalizing on crop plasticity potential could improve the stability of production in 

regions with high climatic risk (Berzsenyi & Tokatlidis, 2012; Mylonas et al., 2020). The central 

US corn belt, where climate is relatively stable year to year, is an important hub of modern corn 

improvement. In this environment, breeders selected for those plasticity mechanisms conducive 

to high-yielding environments. Furthermore, as growers have intensified plant density and 

breeders have enhanced genetic tolerance to increased plant density over time, the expression of 

corn plasticity may have been constrained (Assefa et al., 2018; Duvick et al., 2004; Russell, 

1991). 

When corn plants have access to ample resources, tillering is a mechanism of plasticity 

(Jenkins, 1941; Lyon, 1905). Tillers are secondary vegetative shoots common in Poacea species 

such as wheat (Triticum aestivum L.), rice (Oryza sativa L.), and grain sorghum (Sorghum 
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bicolor L. Moench). However, tillers are less common in corn due to historic breeding selection 

(Duvick et al., 2004; Major, 1977). In spite of this, tiller expression potential has been conserved 

in modern corn germplasm (Moulia et al., 1999), and breeding program adoption of less 

restrictive plant densities re-introduces tillering as a plasticity mechanism (Tsaftaris et al., 2008). 

Tiller expression is highly dependent on genetics (Dungan et al., 1959; Hansey & de Leon, 2011; 

Tokatlidis et al., 2005), but also strongly influenced by environmental factors such as water, soil 

fertility, and temperature (Downey, 1972; Gardner, 1942; Stevenson & Goodman, 1972; Tetio-

Kagho & Gardner, 1988). Expressed corn tillers may remain vegetative, may abort, or may reach 

reproductive stages (Alofe & Schrader, 1975; Russelle et al., 1984) – developing into harvestable 

axillary ears or abnormal, mixed-sex apical inflorescences called “tassel ears” (Bonnett, 1948; 

Schaffner, 1930). 

While previous field studies have considered corn yield as a response to tiller presence 

(Frank et al., 2013; Massigoge et al., 2022; Sangoi et al., 2009; Veenstra et al., 2021), efforts to 

understand the mechanisms and flexibility of observed compensatory relationships are lacking, at 

least in the US. Considering trends in corn genetic selection and agronomic management in the 

US, plant density is a historic focal point (Duvick et al., 2004) with highly determinate, 

hierarchical yield components. Yield component plasticity (namely ears and kernels per area and 

individual kernel weight) in the idealized, single-stalked corn phenotype is marginal relative to 

the yield gain of additional plants per area (Fernández et al., 2022). For example, kernel number 

can be adjusted through early grain-filling stages but is limited by the success of a short 

pollination window (R1, silking per Ritchie et al., 1997) and the number of ears on the main 

stalk, which is determined in vegetative stages and typically singular (Andrade et al., 1999; 

Bonnett, 1948). Plastic phenotypes can reduce dependency on precise plant density (Berzsenyi & 



38 

Tokatlidis, 2012; Tokatlidis & Koutroubas, 2004) – for instance, by producing more than one ear 

per plant (Prior & Russell, 1975; Thomison & Jordan, 1995). Tillers, a demonstrated source of 

plasticity, may facilitate an offset in development from the deterministic, single-stalked 

hierarchy. Functional trade-offs in resource allocation due to tiller expression are unknown. 

These relationships may improve or degrade yield stability. 

Exploring the impact of tiller expression on yield component plasticity is a novel avenue 

to understand corn environmental adaptation potential. Although trade-offs in corn yield 

components are well-known (Sadras & Slafer, 2012; Slafer, 2003) and the concept of tiller-

conferred plasticity has been established (Downey, 1972; Rotili et al., 2022; Rotili et al., 2021a; 

Yamaguchi, 1974), field-based research solidifying the connection between the two is 

inadequate. Understanding the degree to which tillers impact reproductive plasticity may provide 

insight for reducing plant density dependence and shed new light on environmental adaptation 

strategies, particularly as climatic risk intensifies. A range in favorable to negligible yield 

responses to tiller expression were reported for the first two seasons of this project (Veenstra et 

al., 2021). Authors hypothesized that tiller expression improved plasticity of yield components, 

thereby reducing plant density-based yield dependency. Key points to explore in the dissection of 

observed yield responses included which yield components were most stabilized by tiller 

expression, if plasticity relationships were adjusted among yield components, and if yield 

component source (i.e., coming from tillers or main stalk) impacted yield stability and 

determination. Therefore, the aim of this investigation was to explore the consequences of tiller 

expression on corn yield component determination and plasticity in a range of environments 

from two plant fraction perspectives – i) main stalks only, considering potential functional trade-
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offs due to tiller expression; and ii) comprehensive (main stalk plus tiller contributions as an 

overall view of plasticity potential). 

 

3.2 Materials and Methods 

3.2.1 Field Experiments 

In addition to the ten site-years described in previous work (Veenstra et al., 2021), seven 

new site-years were evaluated across Kansas, US, during the 2021 growing season. Added site-

characterizations are provided in Table B.1 and Figure B.1. 

Of the full dataset, ten site-years were implemented using a replicated three-way factorial 

treatment structure in a randomized complete block design (RCBD) with a split-split-plot 

arrangement. Plant density was the whole plot factor, with three levels selected as representative 

of common producer practices in Kansas (25000, 42000, and 60000 plants ha-1; Roozeboom et 

al., 2007). Corn genotype (hybrid) was the sub-plot factor, with the two levels P0657AM and 

P0805AM (Corteva Agriscience, Johnston, IA, US), which were selected as suitable for the 

region of study and conducive to tiller. Tiller presence was the sub-sub-plot factor, with the two 

levels intact or removed at development stage V10 (tenth leaf per Ritchie et al., 1997). Seven 

site-years were implemented with a similar RCBD design but missing either partial or total levels 

of the aforementioned treatment structure. Plots in all site-years were planted at least four rows 

wide at 0.76-m spacing, resulting in final minimum dimensions of 3 m by 5 m. Plant densities 

were seeded at double rates and thinned by hand prior to the V3 development stage to ensure 

accurate and even stands. Plant health was maintained as necessary with pesticides and crop 

nutritional needs were met with applied fertilizers. 
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Actual plant density, tiller density, and yield component data were collected at 

physiological maturity (development stage R6). Only the two central rows in each plot were 

included in data collection efforts. In addition, buffer zones were established on row ends to 

minimize edge effects. Tillers with at least one collared leaf were included in tiller density 

counts. Data rows were measured by carefully accounting for interplant spacing of the nearest 

buffer-appointed plant on row ends. Intact ears (machine-harvestable and providing > 100 

collective kernels plot-1) were counted, picked, and shelled by hand at dry maturity (< 200 g kg-1 

moisture). Data collected were summarized by plot but separated based on plant fraction – main 

stalk and tillers. Harvested areas across sites were similar in size and approximately 4 m by 1.5 

m. Measured yield components included ear number per area, kernel number per area, and 

weight per kernel. Kernel weights were measured with a representative sample of shelled grain 

for each plant fraction from each plot. Two sets of 100 kernels were counted and weighed, with 

values averaged, and final moisture content adjusted to a 155 g kg-1 basis. Kernels per area were 

calculated based on mean kernel weights. Plot averages for yield components were calculated 

with weighted means of main stalk and tiller data. 

3.2.2 Calculations 

Yield environment has been previously linked to corn plasticity potential and tiller 

productivity (Rotili et al., 2021b; Veenstra et al., 2021). Therefore, yield environment clusters 

were identified and characterized. Site-years were clustered by mean yield using the k-means 

algorithm. Per the within-cluster sums of squares, the ideal number of yield clusters was visually 

identified as three – low, moderate, and high. Soil texture and fertility were characterized via 

early season soil sampling at 15-cm and 60-cm depths. Plasticity was calculated with the 

methods used by Dingemanse et al. (2010) previously adapted for agronomic applications 
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(Sadras & Rebetzke, 2013). That is, plasticity of a given response (yield, tiller number, ear 

number, etc.) was calculated by dividing the variance of the response in a given site-year × 

hybrid interaction (34 combinations) by the variance of the response considering all observations 

in the study. 

3.2.3 Statistical Analysis 

3.2.3.1 Yield component response 

All analyses were conducted using program R (R Core Team, 2022). Separate analyses 

were conducted for each yield component (ears per area, kernels per area, and kernel weight) 

considering i) main stalks only and ii) comprehensive plants. Initial treatment factor analyses 

were performed first to discern if yield components responded to tiller presence. These initial 

analyses considered the ten site years with complete treatment structures. Ears per area, kernels 

per area, and kernel weight were each considered as a response to treatment factors plant density, 

genotype, and tiller presence for main stalks (ears and kernels harvested from main stalks only) 

and comprehensive plants (all ears and kernels harvested). Linear mixed effects models 

(Equation B.1) were fit to each yield component using the lme4 package (Bates et al., 2015). All 

treatment factors and interactions were set as fixed effects. Random effects considered site-year, 

block, whole plot, and sub-plot. As only 10 of the 17 site years were implemented with a full 

split-split-plot structure and useful for initial analyses, study-wide yield environment cluster was 

not included in these models. The fitted models were subjected to a type III analysis of variance 

(ANOVA) for each treatment factor and resulting interactions with the car package (Fox & 

Weisberg, 2019). 

Following analyses considered ears per area, kernels per area, and kernel weight as the 

response to observed plant density and observed tiller density for main stalks and comprehensive 
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plants by yield environment, as all 17 sites were included. Linear mixed effects models were fit 

(Equation B.2). Fixed effects included observed plant density, observed tiller density, yield 

environment cluster, and all two- and three-way interactions. Random effects considered site-

year, block, whole plot, and sub-plot. The fitted models were subjected to a type III ANOVA for 

each factor and resulting interactions. Ears per area, kernels per area, and kernel weight 

predictions were generated using the significant fixed effect coefficient estimates from each of 

the fitted models. Predictive limits were identified based on observed ranges (20000 to 65000 

plants ha-1 and 0 to 80000 tillers ha-1) and standardized across all environments. To maintain 

realistic perspective of tiller expression limits within each environment (i.e., not all environments 

produced similar tiller density trends), a third order polynomial regression was conducted with 

the 95th percentile of tiller densities for each target plant density in each yield environment. This 

provides plausible maximum observed tiller densities for prediction interpretation purposes. 

Error was quantified with the root mean squared error (RMSE). 

3.2.3.2 Yield component – yield plasticity relationships 

To test correlation of yield plasticity with trait/yield component plasticity, simple linear 

models (y = mx + b) were fit using the lm function of the base stats package. Tiller number, ear 

number, and kernel number traits were evaluated by yield environment, as informed by 

previously mentioned analyses. Only plots without tiller disturbance were considered for this 

portion of the analysis. Appropriate models were selected separately for each yield environment 

with a slope parameter threshold of p ≤ 0.05. 

3.2.3.3 Yield response to ear type 

To evaluate the relative importance of ear type (as a subset of yield component ear 

number) to maximizing yields, a linear mixed effects model was fit with grain yield (Mg ha-1) as 
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the response variable. Fixed effects included observed main stalk primary ears ha-1, observed 

main stalk secondary ears ha-1, observed tiller axillary ears ha-1, and observed tiller apical ears 

(“tassel ears”) ha-1 by yield environment. Random effects considered site-year, block, whole plot, 

and sub-plot. The fitted model was subjected to a type II ANOVA for each ear type × 

environment combination. Error was quantified via the RMSE. Resulting yield predictions were 

generated using the significant fixed effect coefficient estimates. Predictive limits were identified 

based on observed ranges of ear types for each yield environment (primary, 16000 to 65000 ears 

ha-1; secondary, 0 to 43000 ears ha-1; tiller axillary, 0 to 43000 ears ha-1; and tiller apical, 0 to 

31000 ears ha-1). The 95% confidence intervals were generated for each coefficient to check for 

similarities and overlaps. 

 

3.3 Results 

3.3.1 Yield environments 

The three yield environment clusters for all evaluated site-years were as follows: a) 

Lowest-yielding environments (LYEs) – Manhattan 2019, Colby B 2020, Colby A 2021 (mean 

5.6 Mg ha-1); b) Moderate-yielding environments (MYEs) – Garden City 2019 and 2021, Buhler 

2020 and 2021, Colby A 2020, Greensburg 2021 (mean 9.2 Mg ha-1); and c) Highest-yielding 

environments (HYEs) – Goodland 2019 through 2021, Garden City 2020, Greensburg 2020, 

Keats 2020 and 2021, Selkirk 2021 (mean 11.4 Mg ha-1). Grain yields across environments by 

treatment factors are shown in Figure 3.1a. 

3.3.2 Ears per area 

The ANOVA results for models considering ears per area (ears ha-1) as a response are 

shown in Figure 3.1b and Table B.1. Both ears ha-1 responses (main stalks and comprehensive 
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plants) were influenced by treatment factors plant density, tiller presence, and their interaction 

(all significant at p ≤ 0.001). Additionally, both ears ha-1 responses were impacted by 

quantitative factors observed plant density and yield environment (p ≤ 0.001), observed tiller 

density (p ≤ 0.001, main; p ≤ 0.01, comprehensive), and the interaction between yield 

environment and observed plant density (p ≤ 0.01). 

Observation-based predictions for ears ha-1 are shown in Figure 3.2. Increased tiller 

densities reduced main stalk ears ha-1 in all yield environments, although less sharply at higher 

plant densities (Fig. 3.1a). Plant density accounted for 50% of the predicted range in main stalk 

ears ha-1. Comprehensive ears ha-1 were more stable than main stalk alone regardless of tiller or 

plant densities (Fig. 3.1b). Higher tiller densities reduced the plant density-based deficit in 

comprehensive ears ha-1. Greatest comprehensive ears ha-1 was predicted at both i) high observed 

plant densities with low observed tiller densities (all environments) and ii) low observed plant 

densities with high observed tiller densities (MYEs and HYEs). 

3.3.3 Kernels per area 

The ANOVA results for models considering kernels per area (kernels m-2) as a response 

are shown in Figure 3.1c and Table B.2. Main stalk kernels m-2 were influenced by treatment 

factors plant density and tiller presence (p ≤ 0.001), and their interaction (p ≤ 0.05). 

Comprehensive kernels m-2 were only impacted by plant density (p ≤ 0.001). Main stalk kernels 

m-2 were influenced by quantitative variables tiller density, yield environment, and the 

interaction between yield environment and observed plant density (all significant at p ≤ 0.001). 

Comprehensive kernels m-2 were impacted by yield environment and the interaction between 

yield environment and observed plant density (p ≤ 0.001), in addition to the interaction between 

yield environment and observed tiller density (p ≤ 0.05). 
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Considering observation-based predictions, increased tiller densities consistently reduced 

main stalk kernels m-2, regardless of plant density (Fig. 3.3a). Plant density accounted for up to 

75% of the range in predicted main stalk kernels m-2 when tillers were not present (Fig. 3.3a). 

Comprehensive kernels m-2 were either not impacted by observed plant or tiller densities (LYEs) 

or independently influenced by both observed plant and tiller densities (MYEs and HYEs; Fig. 

3.3b). Greatest kernels per area were predicted at high observed plant densities with high 

observed tiller densities. 

3.3.4 Kernel weights 

The ANOVA results for models considering kernel weight (mg kernel-1) as a response are 

shown in Figure 3.1d and Table B.3. Main stalk kernel weight was influenced by treatment 

factors plant density (p ≤ 0.001), in addition to genotype and the interaction between plant 

density and tiller presence (p ≤ 0.05). Comprehensive kernel weights were impacted by treatment 

factors plant density (p ≤ 0.001) and genotype (p ≤ 0.05). All kernel weight responses were 

influenced by quantitative factors observed plant density (p ≤ 0.05) and yield environment (p ≤ 

0.001); predicted trends were similar between the two. Increased plant densities reduced both 

main stalk and comprehensive kernel weights in all environments, with a 25 to 50 mg kernel-1 

discrepancy across observed plant densities. Trends were not impacted by tiller density and 

predictions are therefore not shown. 

3.3.5 Trait-yield plasticity relationships 

Tillered phenotype trait plasticity correlations with yield plasticity varied by yield 

environment (Figure 3.4). Tiller number plasticity (i.e., the situational nature of tiller expression 

in a given environment) reduced yield plasticity in LYEs and MYEs, ultimately acting to 

stabilize yields (Fig. 3.4a). Greater plasticity of tiller number was associated with greater 
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plasticity of yield in HYEs, however. Ear number plasticity reduced yield plasticity in HYEs, 

increased yield plasticity in MYEs, and had no impact on yield plasticity in LYEs (Fig. 3.4b). 

Kernel number plasticity exhibited the strongest relationship to yield plasticity across 

environments, with greater plasticity of kernel number increasing yield plasticity (Fig. 3.4c). 

That is, stable kernel numbers were the yield component most correlated with stable yield values 

in a given environment. 

3.3.6 Ear type relationship to attainable yields 

The ANOVA results for yield response to varying ear sources by yield environment are 

presented in Table B.4. The only ear source not significantly contributing (p > 0.05) to yield 

determination was tiller apical ears. This coefficient estimate was therefore not included in 

subsequent predictions. 

Yield predictions based on various combinations of ear types by yield environment are 

shown in Figure 3.5. In these ternary plots, each axis depicts the % of attainable ears ha-1. The 

95% confidence intervals for coefficient estimates are presented as insets. In LYEs (Fig. 3.5a), 

predicted yields were greatest with 17 to 67% of attainable primary ears (11050 to 43550 ears ha-

1), 0 to 50% of attainable secondary ears (0 to 20500 ears ha-1), and 0 to 50% of attainable tiller 

axillary ears (0 to 21500 ears ha-1). Confidence intervals overlapped for all ear types in LYEs, 

indicating one ear type was not more effective in producing yields than others. 

 In MYEs (Fig. 3.5b), predicted yields were greatest with 37 to 77% of attainable primary 

ears (24050 to 50050 ears ha-1), 0 to 30% of attainable secondary ears (0 to 12300 ears ha-1), and 

0 to 40% of attainable tiller axillary ears (0 to 17200 ears ha-1). The lowest predicted yields in 

MYEs were most associated with greater than 40% of attainable secondary ears. Confidence 
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intervals indicated that primary ears exceeded other ear types in producing yield, but secondary 

and tiller axillary ears remained similar to each other.  

In HYEs (Fig. 3.5c), predicted yields were greatest with 37 to 77% of attainable primary 

ears (24050 to 50050 ears ha-1), 0 to 30% of attainable secondary ears (0 to 12300 ears ha-1), and 

0 to 40% of attainable tiller axillary ears (0 to 17200 ears ha-1). The lowest predicted yields in 

HYEs were most associated with > 40% of attainable secondary ears, > 50% of attainable tiller 

axillary ears, and > 80% of attainable primary ears ha-1. Considering 95% confidence intervals, a 

more distinct hierarchy was evident compared to other environments (primary ears > tiller 

axillary ears > secondary ears) in yield formation. 

 

3.4 Discussion 

This study advances corn plasticity discussions by considering the unexplored extent of 

tiller compensatory relationships across contrasting environments and management practices 

(particularly plant density). Authors present novel data on yield component determination in 

tillered corn phenotypes from both main stalk and comprehensive plant perspectives in field-

scale trials, the first such study to the extent of our knowledge. Findings from this study apply to 

a considerable range of environment × management conditions, as the dataset included 17 unique 

site-years covering typical plant density ranges in the semi-arid US High Plains. Results for 

tillering-yield relations for 10 of the 17 site-year combinations (Veenstra et al., 2021) motivated 

extending the study to evaluate yield components, their own plasticities, and how these relate to 

each other. The tillering element of corn physiology is actively being studied at a global scale, 

with authors utilizing both simulation and in-field approaches to understand key mechanisms and 

utility (Rotili et al., 2021b; Veenstra et al., 2021).  In agreement with published literature, 
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evaluated field trials demonstrate that tiller expression facilitates crop plasticity in response to 

resource availability with favorable genetics (Jenkins, 1941). Tiller appearance and development 

mechanisms were not explored in the current study, which limits discussion scope to 

reproductive outcomes (evaluated yield components). 

Flexible tiller densities were associated with more stable yield component predictions 

across all environments. This physiological response is of particular interest when seasonal 

resources are more abundant early in the growing season (Veenstra et al., 2021) to reduce 

dependence on plant density (Berzsenyi & Tokatlidis, 2012). Considering the density-dependent 

nature of yield progress in breeding and management of modern corn hybrids, this result is not 

surprising in tillered phenotypes (Duvick et al., 2004). An optimized plant density remained 

critical to maximize ear number, which supports the yield observations in previous tiller response 

work (Veenstra et al., 2021). However, kernel number was maximized with greater tiller 

development across plant densities in the present study. The modeled corn tiller expression 

scenarios of Rotili et al. (2021a) indicated changes in kernels per area due to tillering were 

determined by yield environment, with marginal environments experiencing reductions in kernel 

number. In our study, however, tiller density was only neutral or additive to total kernels per 

area. This difference is perhaps tied to the more marginal environments evaluated by Rotili et al. 

(2021a), but it should be noted that both studies predicted/observed similar ranges of kernel set 

(1000 to 3000 kernels m-2).  

Although main stalk ears and subsequent kernels per area were reduced in lower plant 

densities with tiller expression, kernel weights remained relatively stable regardless of tiller 

expression. While these results may suggest main stalk yield reductions, work by Veenstra and 

Ciampitti (Veenstra & Ciampitti, 2021) indicated that tiller presence did not significantly reduce 



49 

main stalk grain yields in the same environments considered in the present study. The lack of 

tiller expression impact on main stalk kernel weights also supports the hypothesis of an 

independent (i.e., grain-bearing tillers in lower plant densities) or nourishing (i.e., non-

reproductive tillers in higher plant densities) energy and nutrient remobilization relationship for 

tillers and main stalk in late-season yield determination (Alofe & Schrader, 1975; Russelle et al., 

1984). This point of source-sink relationships in tillered phenotypes requires further 

investigation. 

Kernel number was the most significant component related to yield plasticity across all 

environments. This result is not surprising, as kernel number is known to be key to corn yield 

determination (Andrade et al., 1999). In general, situational tiller expression could be associated 

with non-uniform field features, which is a yield-negating factor for intensively managed corn 

(Hörbe et al., 2016). Tillering increased corn kernel numbers for shoots with high growth rates in 

field studies conducted by Rotili et al. (2022). Corn growth rates required to set kernels on 

primary ears appear to be lower than for tillers, and low growth rates are associated with stressed 

conditions (Andrade et al., 1999). In this regard, authors note that evaluated conditions in the 

present study may not have been harsh enough to observe such a response. 

Ear number was less significantly related to yield stability than kernel number and varied 

by environment, which may be due to the potentially abnormal nature of tiller reproductive 

development (Ortez et al., 2022). A key determinant of tiller contributions to kernel number is 

successful reproductive development of tillers (i.e., pollination and grain fill of axillary ears). 

Although tiller apical ears were not found to be significant to corn yields in this study, tiller 

axillary ears were quite relevant, even when secondary ears were present on the main stalk. 

While main stalk prolificacy is commonly presented as a source of corn plasticity in 
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environments where low plant densities are employed, secondary ears were found to be a slightly 

weaker source of yield than tiller axillary ears in the best-yielding environments. Similar 

relationships between tiller axillary kernel number and secondary ears kernel number were 

observed in some cases by Rotili et al. (2022). Such findings indicate value in diversifying yield 

determination hierarchy with tiller ears in some cases. Additionally, main stalk prolificacy has 

obvious limits (Mylonas et al., 2020; Tokatlidis et al., 2005), and the presented results identify 

tiller utility when these limits are realized. Key to note, however, are the low predicted yields 

when too many tiller axillary ears were present, reaffirming the importance of optimized plant 

densities in HYEs (Veenstra et al., 2021). Previous studies have suggested that tillering reduces 

yield efficiency (Kapanigowda et al., 2010; Thapa et al., 2018), but this blanket hypothesis was 

recently rejected Rotili et al. (2022). Additional exploration of tiller reproductive development 

(i.e., vegetative, axillary ear, or apical ear) and potential impacts on efficiency metrics is needed. 

While continued study is necessary, corn tillers may provide breeders and growers with 

plasticity trait options to achieve desirable plant density independence in certain environments 

(Mylonas et al., 2020). By offering additional crop reproductive plasticity when plant-available 

resources surpass thresholds of selected plant densities, tillers can mitigate management deficits 

which cannot be remediated mid-season (Massigoge et al., 2022; Rotili et al., 2021b; Veenstra et 

al., 2021). Future work should evaluate tiller development prediction, specifically driving factors 

of contrasting levels of expression plasticity, in addition to parameters influencing tiller ear 

development and resulting reproductive efficiency. 
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3.5 Conclusions 

This study presents new insight on the compensatory extent of tillers as a source of 

reproductive plasticity in corn (beyond limited main stalk prolificacy). While main stalk yield 

components determined early in the season were adversely impacted by tiller presence in the 

lowest plant densities, effects were mitigated and even surpassed by tiller contributions from a 

comprehensive perspective. Tiller expression, particularly in HYEs, improved stability of ear and 

kernel yield components while maintaining kernel weights. Mitigation of yield component 

gradients caused by plant density reductions provides evidence of tiller utility in softening the 

yield formation hierarchy of conducive corn genotypes. This was evidenced particularly strongly 

by the superior performance of tiller axillary ears compared to main stalk secondary ears. These 

conclusions enhance discussion of avenues to reduce dependence on optimized plant density in 

environments likely to experience volatile seasonal impacts of climate change.  
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Table 3.1 Site-year field experiment coordinates, sow date, tenth-leaf (V10) date, treatment 
structure (D, Density; G, Genotype; P, Tiller Presence), irrigation, previous crop, and soil 
characterization [texture, pH, organic matter (OM – loss on ignition), nitrate concentration 
(NO3-N), ammonium concentration (NH4-N), phosphorus (P – Mehlich), and cation exchange 
capacity (CEC)]. Only the 7 additional site-years to the 10 already described in Table 2.1 are 
shown here. 

Site-Year Latitude Longitude Sow 
Date 

V10 
Date 

Treatment 
Structure 

Irrigation Previous 
Crop 

Soil 
Texture 

 (°N) (°W)       

Keats 2021 39.23 96.72 Apr-
30 

Jun-
22 

D × G × P None Corn Silt 
Loam 

Buhler 2021 38.14 97.73 May-
04 

Jun-
25 

D × G Subsurface 
limited 

Corn Silt 
Loam 

Greensburg 
2021 

37.58 99.37 May-
07 

Jun-
25 

D × G Subsurface 
limited 

Corn Loam 

Selkirk 2021 38.70 101.54 May-
06 

Jun-
30 

D × G Subsurface 
limited 

Field 
Bean 

Loam 

Garden City 
2021 

37.83 100.86 May-
13 

Jun-
28 

D × G × P Subsurface 
limited 

Corn Sandy 
Loam 

Goodland 
2021 

39.25 101.78 May-
05 

Jun-
30 

D × G × P Subsurface 
limited 

Soybean Loam 

Colby A 
2021 

39.39 101.06 Jun-
04 

Jul-15 D × G × P None Wheat Clay 
Loam 

Site-Year pH OM NO3-
N 

NH4-
N 

P CEC   

 (H20) % (LOI) (mg 
kg-1) 

(mg 
kg-1) 

Mehlich 
(mg kg-1) 

(meq  
100 g-1) 

  

Keats 2021 6.6 6.2 23.3 12.7 106.4 25.6   

Buhler 2021 6.3 2.6 11.7 7.8 13.3 22.3   

Greensburg 
2021 

5.6 2.3 33.4 7.4 68.8 20.0   

Selkirk 2021 7.9 2.7 14.0 5.8 90.9 23.2   

Garden City 
2021 

5.5 1.6 14.2 5.2 52.1 9.7   

Goodland 
2021 

6.5 2.9 36.9 11.1 65.4 23.2   

Colby A 
2021 

7.1 2.9 23.8 7.1 93.0 22.2   
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Figure 3.1 Summary of comprehensive yield components based on treatment factors deemed 
significant by analysis of variance (Tables B.1, B.2, B.3). Colors indicate plant density (blue – 
25000 plants ha-1, green – 42000 plants ha-1, purple – 60000 plants ha-1) and transparency 
indicates tiller presence (removed, TR – opaque; intact, TI – transparent). Data distribution is 
shown as a violin plot and least-squares means from fitted models are indicated with points. 
Different letters indicate mean differences within each panel at the 0.05 probability level. Pie 
charts above TI plots indicate the percent contribution of main shoots to the comprehensive 
components (e.g., 75% of yield was produced by main shoots in TI plants at the 25000 plants ha-

1 density, panel A).  
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Figure 3.2 Main stalk ears per area (A) and comprehensive ears per area (B) predictions from 
models of observed plant density, tiller density, and yield environment as determined by analysis 
shown in Table B.2. Site-years are grouped by realized yield environment. Contours are shaded 
and labeled according to 5000 ears ha−1 density intervals. White lines indicate a change in ear 
density interval. Observed plant densities and tiller densities are indicated with black points. 
Black dashed lines are intended as an informal visual indicator of tiller expression potential for 
each yield environment. Extrapolations beyond black points and dashed black lines are shown 
for the purpose of comparing environments on the same density scales. 
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Figure 3.3 Main stalk kernels per area (A) and comprehensive kernels per area (B) predictions 
from models of observed plant density, tiller density, and yield environment as determined by 
analysis shown in Supplementary Table 3. Site-years are grouped by realized yield environment. 
Contours are shaded and labeled according to 500 kernels m−2 density intervals. White lines 
indicate a change in kernel density interval. Observed plant densities and tiller densities are 
indicated with black points. Black dashed lines are intended as an informal visual indicator of 
tiller expression potential for each yield environment. Extrapolations beyond black points and 
dashed black lines are shown for the purpose of comparing environments on the same density 
scales. 
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Figure 3.4 Relationships between trait plasticity (A, tiller number; B, ear number; C, kernel 
number) and yield plasticity (y-axis) of tillered phenotypes. Points are colored by yield 
environment (blue – low, green – moderate, purple – high); and shaped by hybrid (circle – 
P0657AM, triangle – P0805AM). Fitted lines and model metrics, when applicable, are colored 
by yield environment. Dashed lines indicate intercept-only models when other candidates were 
not significant. Significance symbols are the following: * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. 
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Figure 3.5 Ear type plasticity relationship to predicted yields by yield environment (A, low; B, 
moderate; C, high). Right axes indicate % of attainable primary ears observed (65000 ears ha-1). 
Left axes indicate % of attainable secondary ears observed (41000 ear ha-1). Bottom axes 
indicate % of attainable tiller axillary ears observed (43000 ears ha-1). Contour shades indicate 
predicted yield level (purple < 7.5 Mg ha-1; lime > 15 Mg ha-1). Black star is shown for reference 
on each plot, indicating 20%, 60%, and 20% of attainable primary ears, secondary ears, and tiller 
axillary ears, respectively. Insets show relative 95% confidence intervals for each coefficient 
estimate (P, primary ears; S, secondary ears; TL, tiller axillary ears).  
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Chapter 4 - Corn tiller density prediction: Identifying key E × M 

factors via extensive field studies 

 

Abstract 

While globally appreciated for reliable, intensification-friendly phenotypes, modern corn 

(Zea mays L.) genotypes retain crop plasticity potential. For example, weather and 

heterogeneous field conditions can overcome phenotype uniformity and facilitate tiller 

expression. No substantial effort has been made to predict tiller presence in field scenarios, 

which could provide insight on corn plasticity capabilities and drivers. Therefore, the objectives 

of this investigation are as follows: 1) identify environment, management, or combinations of 

these factors key to accurately predict tiller density dynamics in corn; and 2) test out-of-season 

prediction accuracy for identified factors. Replicated field trials were conducted in 17 diverse 

site-years in Kansas (United States) during the 2019, 2020, and 2021 seasons. Two modern corn 

genotypes were evaluated with target plant densities of 25000, 42000, and 60000 plants ha-1. 

Environmental, phenological, and morphological data were recorded. After testing a variety of 

generalized additive model candidates, plant density interactions with cumulative growing 

degree days (GDD), photothermal quotient (PTQ), mean minimum and maximum daily 

temperatures, cumulative vapor pressure deficit (VPD), soil nitrate (NO3), and soil phosphorus 

(P) were identified as important predictive factors of tiller density. Many of these factors had 

stark non-limiting thresholds. Out-of-season prediction errors were seasonally variable, 

highlighting model limitations due to training datasets. Future studies should expand on tiller 

density prediction by exploring tiller reproductive development and improving our ability to 
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more accurately predict the relationship between tiller and main stem resource economy (mainly 

C).   

 

4.1 Introduction 

Corn (Zea mays L.) is a key crop in the global food economy, partially due to predictable 

phenotypes that enable intensive management. For this reason, high plant densities, optimal 

planting date, and efficient fertility programs are among the key drivers of high-yielding corn 

(Duvick et al., 2004; Long et al., 2017; Schwalbert et al., 2018). Concurrently, plant uniformity 

is targeted to an increasing degree by planter technologies improving singulation and seeding 

depth for timely emergence (Badua et al., 2021). Even when every effort is made to obtain field 

uniformity, this goal is arguably idealistic. In reality, plant uniformity may be disrupted by 

plasticity mechanisms which are often masked, but preserved nonetheless, in the corn genome 

(Moulia et al., 1999). 

Crop plasticity is the ability of a crop genotype to express contrasting phenotypes in an 

array of environmental conditions (Laitinen and Nikoloski, 2019). Broadly, crop plasticity 

mechanisms include source (carbon capture) and sink (carbon storage and utilization) 

manipulations (Dingkuhn et al., 2020). Branching is a common plasticity response, for example, 

increasing both the source (leaf area) and sink (seed set) potential for a crop plant. Although this 

phenotypic flexibility is beneficial to individual plants, many modern agronomic crop 

management practices favor intensification and target uniformity (Matesanz and Milla, 2018). 

These intensively managed, stabilized environments aim to minimize plasticity expression, 

which may result in both positive and negative outcomes (von Wettberg et al., 2020). Global 

interest is mounting in crop plasticity mechanisms as breeders anticipate potential impacts of 
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climate change (Arnold et al., 2019; Schneider and Lynch, 2020). Adaptation to rapidly changing 

weather patterns and sporadic stress events may be facilitated by plasticity mechanisms 

conserved in modern crop genetics (Nicotra et al., 2010). The true utility of plasticity is uncertain 

in modern agronomic settings, as the concept remains mostly theoretical and untested under 

broad-scale field conditions (Brooker et al., 2022). 

Tillers are basal branches of grass crop species, appearing early in plant development for 

annual crops (Kim et al., 2010b), and continue growing and developing in perennial species. As 

with any plasticity trait, genotype is a strong regulator of tiller expression (Doust, 2007; Laitinen 

and Nikoloski, 2019). With conducive genotypes, tiller development is encouraged by an 

abundance of resources and therefore may vary significantly on an individual plant basis based 

on light, nutrient, or water availability – commonly associated with plant density (Lafarge and 

Hammer, 2002; Markham and Stoltenberg, 2010). Nutrients identified as key to tiller 

development are phosphorus (P) and nitrogen (N), although deficiency may prevent expression 

(Longnecker et al., 1993; Rodriguez et al., 1999; Thorne and Wood, 1987). When soil factors are 

not limiting, early-season weather conditions are key to tiller development. Specifically, the 

relationship between temperature and radiation is commonly quantified via the photothermal 

quotient (PTQ), which has been correlated to vegetative and reproductive crop mechanisms 

(Angus et al., 1981; Fischer, 1985; Kim et al., 2010b; Kumar et al., 2016). Within species, 

genotypes vary in tiller fecundity, even for apparently unrestrictive conditions (Kim et al., 

2010a). Tillers can be fertile and develop identically to primary shoots, although delayed in 

development, usually by a set phyllochron interval (Nemoto et al., 1995). This cumulative age 

discrepancy sets limitations for the number of tillers able to successfully set seed, as abortion 

typically occurs in reverse appearance order when resources become limiting over the course of 
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the growing season (Thorne and Wood, 1987). For tillers emerging at opportune times and 

surviving through the season, yield contributions can be significant in well-managed grains 

(Lafarge and Hammer, 2002; Pasuquin et al., 2008). 

Modern preferences of farmers and breeders alike commonly mask tiller capacity in corn 

fields, although this plasticity mechanism is conserved and situationally expressed (Duvick et al., 

2004; Moulia et al., 1999). Common factors promoting tiller expression in corn are linked to 

plant density and are seasonal in nature (Downey, 1972; Markham and Stoltenberg, 2010). 

Interplant competition is minimized when plant density is reduced. Intentional plant density 

reductions are employed by farmers to match crop needs with limited resource availability, a 

pervasive component of dryland crop production (Roozeboom et al., 2007; Rotili et al., 2019). 

Unintentional plant density reductions include poor plant establishment or early season plant 

losses. In these situations, corn tillers may be expressed in row gaps or as a response to the 

released apical dominance of a damaged primary shoot (Carter, 1995; Thapa et al., 2018). 

Tillering in corn has historically lent itself to the theory that expression (“suckering”) reduced 

yields (Dungan, 1931; Earley et al., 1971). More recent studies have challenged this blanket 

opinion (Rotili et al., 2022; Veenstra et al., 2021). 

While past work has quantified the impact of tillers on corn yield (Sangoi et al., 2009; 

Veenstra et al., 2021), plastic capacity (Rotili et al., 2022, 2021b), and resource use (Rotili et al., 

2022; Thapa et al., 2018), no substantial effort has been made to quantify the predictability of 

tiller presence in field scenarios. Corn yields responded to varying levels of tiller density (i.e., 

tillers ha-1) in previous work from this database (Veenstra et al., 2021) and others (Massigoge et 

al., 2022). Therefore, accurately predicting this plasticity behavior is relevant in the evaluation of 

corn tillering utility. Plasticity quantification remains a broad research gap, particularly in light 
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of agronomic applications (Sadras et al., 2013). Because environmental drivers were strongly 

correlated with yield responsiveness to tiller formation in Veenstra et al. (2021) and Massigoge 

et al. (2022) and similar variables have been proposed in a mechanistic framework for 

understanding this trait in corn (Rotili et al., 2021b), it follows that such data should be useful in 

describing tiller densities at the field scale. Authors hypothesized that corn tiller densities in 

tiller-prone genotypes could be reliably predicted within 25% of the target plant density using 

variables related to crop management and environment. Therefore, the objectives of this study 

were as follows: 1) identify key environment, management, or combinations of these variables 

useful for predicting tiller density dynamics in corn; and 2) test out-of-season prediction 

accuracy for identified variables. 

 

4.2 Materials and Methods 

4.2.1 Field Experiments 

This study utilized unanalyzed data from 17 site-years of field experiments across the 

state of Kansas in the 2019 to 2021 seasons, as previously described in Veenstra et al. (2021) and 

Table B.1. At each site, treatments were applied in a split-split-plot arrangement with a 

randomized complete block design (RCBD) and replicated three or four times depending on the 

site-year, as field space allowed. Whole plot was assigned as plant density, with target levels 

25000, 42000, and 60000 plants ha-1. Sub-plot was assigned as genotype, with levels P0805AM 

and P0657AM (Corteva Agriscience, Johnston, IA, USA). These genotypes were selected for 

their modern release date, suitability for the region and limited moisture production systems 

targeted, and high propensity to tiller. Sub-sub-plot was assigned as tiller presence, with levels 
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intact or removed. For the current study, only plots with undisturbed tillers were evaluated. 

Additional information on plot care and size can be found in the aforementioned article. 

Plant counts per area, tiller counts per area, and average crop phenology were recorded in 

unique sections (at least 1.2 m2) of buffered central plot rows at various times throughout the 

season in each study. Data were collected at target development stages V5 (fifth leaf; Ritchie et 

al., 1997), V10 (tenth leaf), and R6 (physiological maturity) in all years, and additionally at V16 

(sixteenth leaf) and R3 (kernel milk stage) in 2019 and 2021. Counts were scaled to plants ha-1 

and tillers ha-1. 

4.2.2 Environmental Data and Calculations 

Soil type and fertility were characterized for each site-year via early-season soil sampling 

at 60-cm (NO3 and NH4) and 15-cm depths (all others). Weather data were obtained from the 

Climate Engine web application for all desired geographic locations and date ranges (Huntington 

et al., 2017). Soil bulk density data were downloaded from the Web Soil Survey application (Soil 

Survey Staff et al., 2022) and used to calculate nutrient values in kg ha-1. In total, 16 

environmental variables were available for study, which were grouped into 15 categories based 

on previous knowledge of importance to tiller response (Veenstra et al., 2021), ease of producer 

manipulation (i.e., management factors – including plant density, amendable soil variables, and 

water as irrigation), and field observations. All calculations, data transformation, and analyses 

were conducted using program R (R Core Team, 2022). 

All climate data considered the time period from planting to date of observation, 

regardless of plant development stage. While previous work has indicated critical periods for 

tiller appearance (Moulia et al., 1999; Rotili et al., 2021b), authors wished to capture seasonal 

trends that could impact tiller density through abortion as well. Mechanistic relationships are not 
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well-defined in this regard (e.g., tiller abortion has been related to phenological progression, but 

this could be more influenced by seasonal stress or soil water depletion than plant development 

alone). Cumulative values (additive from planting to field observation date) included growing 

degree days (GDD), vapor pressure deficit (VPD), and soil water supply. Daily GDD was 

calculated as the difference between mean daily temperature and the crop base temperature of 10 

°C, with a forced daily maximum of 30 °C. The VPD was provided in kilopascals (kPa) and 

added over the specified date range. Soil water supply included both precipitation and irrigation, 

when applicable, with the season extended one month pre-sowing to estimate soil moisture at 

planting. Daily minimum temperature, daily maximum temperature, daily thermal amplitude, and 

photothermal quotient (PTQ) were averaged over the assigned period (planting to field 

observation). The PTQ is defined by Fischer (1985) as the mean daily solar radiation for a 

selected time period, divided by the difference between the mean temperature for that period and 

the crop base temperature (10 °C), with final units megajoules (MJ) m-2 °C-1 day-1. 

 

4.2.3 Statistical Analysis 

4.2.3.1 Model specification, fit, and selection 

In preparation for model fitting and evaluation, the complete dataset (multiple sites, 

seasons, and development stages) was divided into training and testing sets – 80% and 20% 

(4:1), respectively. This split was selected as a compromise between maximizing the training 

dataset and maintaining the integrity of both training and testing sets (Gholamy et al., 2018). 

These initial sets had similar representation of all site-years, potential predictor variables, and 

observed tiller densities (Figure 4.1). The training set (80%) was utilized for model fitting (e.g., 

estimation of regression coefficients). The testing set (20%) was sacrificed for model testing only 
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and reserved to evaluate the predictive accuracy and adequacy of the model fit to the training set. 

This 4:1 model is henceforth referred to as the “cross-season” fit. 

The 15 different variable combinations selected as potential predictors of tiller density are 

presented in Table 4.1. To facilitate useful interpretation of interactions among non-categorical 

variables, observed plant density was categorized into three clusters based on target plant 

densities of 25000, 42000, and 60000 plants ha-1, of which realized densities were representative 

(Figure C.1). These factor levels were utilized when plant density was involved in interactions 

with at least one other continuous variable. As generalized additive models (GAMs) require a 

distribution representative of the response variable, we selected a Binomial distribution for 

realization of tillers ha-1. Essentially, this assumption allowed us to determine the probability 

(ranging from 0 to 1) of attaining a maximum potential tiller density ha-1 as the response 

variable. The assumed maximum achievable tiller expression at a field scale was based on 

findings of others (3 tillers plant-1; Major, 1977; Rotili et al., 2021a), and a realistic maximized 

plant density of 100000 plants ha-1, as utilized in previous plant density studies in the US (Assefa 

et al., 2016). The potential tiller density in our model was therefore 0 ≤ y ≤ 300000 tillers ha-1, 

where y is the predicted tiller density expressed as m × 300000 tillers ha-1, with m being the 

modeled probability of attaining a maximized tiller density per area. Such a tiller density has 

never been reported in the literature and is arguably not achievable. The highest observed tiller 

density in this study was 152842 tillers ha-1 (mean of 0.8 tillers plant-1, with 2% of individual 

observations > 3 tillers plant-1). The mean plant density in the current study was 41295 plants ha-

1, ranging from 17514 to 73807 (Figure C.1). A maximum tiller density at the field level 

determined independently of present observations minimizes assumptions of tiller responses to 

plant density, for example. Such responses have been reported at the tillers plant-1 scale 
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(Downey, 1972; Hansey and de Leon, 2011; Sangoi et al., 2009; Tetio-Kagho and Gardner, 

1988), but authors believe tiller density drivers at the field scale (tillers ha-1) are too uncertain 

(Downey, 1972) to necessitate constraints based on specific variables. All GAMs were fit to the 

training set using the mgcv package with all continuous variables set as flexible smoothed effects 

via thin-plate regression splines (Wood, 2017). Limiting thresholds for each of the selected 

variables were defined based on a 0.50 probability. 

Predictive accuracy was evaluated by the mean absolute error (MAE) and mean bias error 

(MBE) of out-of-sample predictions in the test set. Smaller values of MAE indicate increased 

predictive accuracy. The flexible smooth effects (i.e., probability of achieving maximum tiller 

densities) for predictor variables in the most accurate model were independently plotted across 

the range of corresponding observations. 

 

4.2.3.2 Out-of-season evaluation 

After the most accurate predictive model was identified for the cross-season dataset, the 

same model structure was evaluated for out-of-season predictive accuracy. The goal of such tests 

was to determine strengths and weaknesses of the predictive model for in-field agronomic 

applications. To test the predictive accuracy of the model for one year (2019, for example), the 

training dataset included only observations from the other two years (in this case, 2020 and 

2021). The splits for these sets (percent train / percent test) were 80/20, 62/38, and 58/42 for 

2019, 2020, and 2021, respectively. These fits are henceforth referred to as “out-of-season” 

models. 

To evaluate out-of-season model performance, predictive accuracy for each site-year was 

determined as the difference between the true tiller density and the corresponding point 
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prediction at the mean target plant density of 42000 plants ha-1 (representative of the true 

observed mean, 41295 plants ha-1). To explore predictive error causation in each site-year, out-

of-season coefficient estimates were independently set to zero. Resulting prediction MAE was 

calculated for each exclusion. The excluded coefficient that most drastically reduced MAE for a 

given site-year was identified as the variable too heavily weighted for the observed conditions in 

a given out-of-season fit. 

  

4.3 Results 

4.3.1 Model Training and Selection 

Observation distributions in model training/testing splits for cross-season and out-of-

season datasets are shown in Figure 4.1. Observations were relatively similar for all sets with 

regard to cumulative GDD (Fig. 4.1a), seasonal PTQ (Fig. 4.1b), mean minimum and maximum 

temperatures (Fig. 4.1 c-d), cumulative VPD (Fig. 4.1e), and tiller density (Fig. 4.1h). Although 

NO3 (Fig. 1f) and P (Fig. 1g) observations were similar between the cross-season sets, as 

expected, seasonal variation was evident in the out-of-season sets. 

The mean observed tiller density in the full dataset was 28781 tillers ha-1 and the mean 

observed plant density was 41295 plants ha-1. Therefore, an acceptable error range across the 

dataset (< 25% of the plant density) was < 10324 tillers ha-1. Considering the 15 variable 

combinations, out-of-sample prediction MAE is presented for each model fit in Table 4.2. 

Models including weather-based factors were consistently below the targeted error threshold. 

The three most accurate models were the simplified E × M (MAE = 7776 tillers ha-1; MBE = -38 

tillers ha-1), the simplified G + E + M (MAE = 9050 tillers ha-1), and the full model (MAE = 

9051 tillers ha-1 MAE). The simplified E × M model was selected as the most appropriate 
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(Equation C.1). Plant density was the key management factor identified, and the most relevant 

environmental factors were temperature- (GDD, PTQ, VPD, mean minimum and maximum daily 

temperatures) and soil fertility-related (NO3 and P). 

4.3.2 Independent Predictor Effects 

Smoothed effects of predictor variables on maximum tiller density probability are 

presented independently in Figure 4.2. It is key to note that the greatest tiller density observed in 

the present study was 152842 tillers ha-1. That is, even when a variable was apparently non-

limiting, other limiting variables prevented the observed density from reaching the set theoretical 

maximum of 300000 tillers ha-1. Cumulative GDD had a consistent impact on tiller probabilities 

across plant densities, with a clear threshold of > 200 °C day identified as non-limiting (Fig. 

4.2a). The effect of seasonal PTQ was clear as well across plant densities, with a non-limiting 

threshold of > 1 MJ m-2 C-1 day-1 (Fig. 4.2b). Non-limiting mean minimum temperature 

thresholds were > 8 °C for the 25000 plants ha-1 target, < 9 °C for 42000 plants ha-1, and < 17.5 

but > 11 °C for 60000 plants ha-1 (Fig. 4.2c). Mean maximum temperature was consistently non-

limiting > 22 °C for 25000 and 42000 pl ha-1 and > 26 °C for 60000 pl ha-1 (Fig. 4.2d). 

Cumulative VPD was limiting below 20-30 kPa for all plant densities, but was also limiting to 

some degree at higher values for the 42000 (200 kPa) and 60000 (150 kPa) plants ha-1 targets 

(Fig. 4.2e). Soil fertility impacts were less consistent overall (Fig. 4.2f-g). At 25000 pl ha-1, 

increasing kg NO3 ha-1 appeared to have detrimental impacts on tiller expression beyond 200 kg 

ha-1, whereas P had a clear minimum threshold of 100 kg ha-1. Tiller response was fairly stable 

across nutrient gradients for both NO3 and P at 42000 pl ha-1. Highest values of NO3 and P were 

the most limiting at 60000 pl ha-1, with the apparent NO3 threshold at 230 kg ha-1 and the P 

threshold at 150 kg ha-1. 
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In summary, highest tiller densities in a 25000 plants ha-1 density would be observed with 

cumulative GDD > 200 °C day, PTQ > 1 MJ m-2 C-1 day-1, mean minimum temperature > 8 °C, 

mean maximum temperature > 22 °C, cumulative VPD > 30 kPa, soil NO3 < 200 kg ha-1, and 

soil P > 100 kg ha-1. Highest tiller densities in a 42000 plants ha-1 density would be observed 

with cumulative GDD > 200 °C day, PTQ > 1 MJ m-2 C-1 day-1, mean minimum temperature < 9 

°C, mean maximum temperature > 22 °C, and a cumulative VPD > 30 kPa but < 200 kPa, with 

minimal direct impact of soil nutrients. Highest tiller densities in a 60000 plants ha-1 density 

would be observed with cumulative GDD > 200 °C day, PTQ > 1 MJ m-2 C-1 day-1, mean 

minimum temperature > 11 but < 17.5 °C, mean maximum temperature > 26 °C, cumulative 

VPD > 30 kPa but < 150 kPa, soil NO3 < 230 kg ha-1, and soil P < 150 kg ha-1. These 

independently presented variables are correlated with each other (Figure C.2). For example, the 

most correlated associations (with r > 0.7) were cumulative VPD with cumulative GDD, mean 

maximum with mean minimum temperature, mean maximum temperature with cumulative VPD, 

and mean temperatures with cumulative GDD. 

4.3.3 Out-of-season Predictive Accuracy 

Out-of-season predictions and resulting accuracy are presented in Figure 4.3. Overall, 

predictions for the -2021 and -2019 trained models were most accurate. When calculated via the 

-2019 coefficient estimates, 2019 tiller density predictions ranged in absolute error from 7211 to 

23795 tillers ha-1, and averaged -16003 tillers ha-1 (Fig. 4.3a). When calculated via the -2020 

coefficient estimates, 2020 tiller density predictions ranged in absolute error from 19574 to 

280461 tillers ha-1, and averaged +125553 tillers ha-1 (Fig. 4.3b). When calculated via the -2021 

coefficient estimates, 2021 tiller density predictions ranged in absolute error from 2564 to 40372 

tillers ha-1, and averaged -1544 tillers ha-1 (Fig. 4.3b). 
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4.3.4 Out-of-season Error Evaluation 

Prediction accuracy impacts of independent out-of-season coefficient estimate removal 

are presented in Table 4.3. When select out-of-season coefficient estimates were excluded, 59% 

of site-years dropped below the reasonable error threshold of 10500 tillers ha-1 (25% of 42000 

plants ha-1 target). The 2020 predictions were responsible for 71% of the unacceptable error. 

Coefficients most improperly weighted for 2019 sites were soil NO3 and mean maximum 

temperatures. Coefficients most improperly weighted for 2020 sites were GDD, soil P, soil NO3, 

and PTQ. The site-years most over-predicted by the full model in 2020 had the highest and 

lowest observed NO3 and P kg ha-1 in the collected dataset. Predictions for two 2020 sites were 

most accurate with all coefficient estimates. Coefficients most improperly weighted for 2021 

sites were temporal and temperature-related (VPD, GDD, minimum temperature, and maximum 

temperature). 

 

4.4 Discussion 

From a diverse dataset of field experiments, this study presents novel conclusions on the 

predictability of tiller densities in selected modern corn genotypes. While recently published 

literature has explored the general yield and reproductive outcomes of corn tiller presence in 

modern farm management systems (Rotili et al., 2022, 2021a; Veenstra et al., 2021), no 

substantial effort has been made to explore appearance and survival factors for corn tiller 

densities. In an effort to fill this knowledge gap, G, E, and M variables were evaluated in 

replicated, multi-season, state-wide field trials in Kansas, US. These 17 site-years comprise an 

expansive tiller-focused database which has offered numerous yield and reproductive plasticity 

insights for corn management in the US Central High Plains region (Veenstra et al., 2021). The 
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expanse of this dataset facilitates unique modelling approaches (e.g., GAMs) not typically 

possible in traditional field experiments evaluated via ANOVA and mixed models. The current 

study provides perspective of tiller density drivers and out-of-season tiller density predictability 

for selected corn genotypes in a range of environments, management practices, and crop stages. 

Corn tiller expression was heavily facilitated by environmental factors, as evidenced by 

model testing parameters in Table 4.2. Identified by previous work for corn and other crop 

species, season timing, the PTQ, and thermal variables were crucial predictive components for 

tiller densities. Corn tiller initiation was found to follow the typical grass species delay of one 

phyllochron from main shoot development by Moulia et al. (1999) and to follow thermal time by 

Rotili et al. (2021b). Rotili et al. presented data from Maddonni et al. (2002), which began 

measurements at 500 °C days. Tillers plant-1 were as high as 0.5 for some initial values, 

indicating the limiting value was < 500 °C days. The red to far-red light ratio was also key to 

tiller development in this study by Maddonni et al. (2002).  Kim et al. (2010) indicated that grain 

sorghum tiller appearance started between 150 and 250 °C days and PTQ was a useful indicator 

of tillering potential. These observations correspond with the threshold of 200 °C days identified 

here for corn, as well as the importance of PTQ as a potentially limiting factor in tiller 

expression. Related to the PTQ, C assimilates are commonly associated with tiller appearance, 

and reduced tiller densities in grain sorghum were not necessarily an indicator of C depletion 

(Lafarge and Hammer, 2002). These reductions may actually be more related to red:far-red light 

quality linked to changes in plant density (Markham and Stoltenberg, 2010). Plant density was 

the key management factor significantly altering the outcome of tiller densities in the current 

study, as previously reported for corn at the plant scale (Hansey and de Leon, 2011; Major, 1977; 

Rotili et al., 2021b; Tetio-Kagho and Gardner, 1988) and field scale (Downey, 1972). Thorne 
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and Wood (1987) observed reduced tiller number with high temperatures in pre-kernel set 

periods of wheat (a C3 species). In addition, greater radiation encouraged tiller development, 

although onset of heat treatments canceled out this effect at harvest (Thorne and Wood, 1987). 

The current study identified a base threshold for high temperature rather than an upper threshold 

(potentially attributed to the C4 nature of corn) and a base threshold for low temperatures, but 

correlation between temperatures and other factors reducing corn tiller density probability is 

apparent (Figure C.1). Cumulative VPD was associated with tiller expression as a base threshold, 

likely due to the temporal nature of how this variable was calculated. Considered as a stress 

index for this study, however, high cumulative VPD captured tiller abortion responses not 

attributed to GDD alone at 42000 and 60000 plants ha-1 densities. The VPD is associated with 

heterogeneity in corn phenology and yield, which could facilitate plasticity in certain 

environments (Lobell and Azzari, 2017). Higher VPD is related to lower growth, necessitating a 

lower maximum for higher plant populations to maintain growth per plant. Soil fertility, 

specifically NO3 and P, were significant to predictive accuracy, as expected based on precedent 

in wheat (Rodriguez et al., 1999; Thorne and Wood, 1987), rice (Alam et al., 2009), and grain 

sorghum (van Oosterom et al., 2010). Adequate P levels are crucial to hormonal branching 

responses in plants, mitigating the apical dominance conferred by strigalactones and promoting 

production of cytokinins (Yan et al., 2020). Relationships and thresholds for soil fertility 

variables in tiller expression probability were less apparent than for weather factors, but these 

parameters are certainly important. Continued corn tiller field studies should include fertility as a 

dosed treatment factor to evaluate this response more formally with a factorial design approach. 

A key component for selected predictor variables is the Sprengel-Liebig Law of the 

Minimum (van der Ploeg et al., 1999). This foundation discloses that none of the insignificant 
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parameters were obviously limiting in any of the evaluated trials. If this assumption is not met, 

model predictive accuracy may be degraded. Moisture supply was not a significant factor, likely 

because no evaluated environments were critically water-restricted. Previous simulation work 

has indicated tiller productivity response to water supply (Rotili et al., 2021a). Diverse, field-

based data sets for model training are imperative, as evidenced by the out-of-season predictions 

and resulting error margins in the current study. Maximum temperature, temporal, and fertility 

coefficients were most commonly overweighted in the out-of-season training data sets, 

solidifying the observation that these factors are better classified as benchmark indicators (e.g., 

minimum or maximum for expression) than as tiller density drivers. Studies by Rodriguez et al. 

(1999) indicated that P deficiency altered the wheat phyllochron and subsequently reduced tiller 

emergence rate. In addition, a greater diversity of genotypes could uncover alternate tiller 

expression responses, as supported by previous work (Hansey and de Leon, 2011). 

Although weather factors appear to be reliable tiller density predictors, the utility of 

models dependent on future observations is an important caveat. However, out-of-season data 

forecasting (i.e., weather) is the common scapegoat for prediction challenges. This study clearly 

demonstrates the power of predictive distribution uncertainty, as out-of-season prediction 

intervals for some site-years were quite wide. Even if “reliable” data is available (i.e., observed 

in-season weather and soil data), uncertainty remains high in our attempt to replicate reality in 

biological systems. A diverse dataset is required to properly train such prediction models. This is 

demonstrated by the error of an appropriately trained model (Fig. 4.3c) and the error reduction 

following removal of certain coefficients (Table 4.3). 

From a farm decision standpoint, the key challenge moving forward in such studies is 

making useful recommendations with the model-limited clarity (Gneiting and Katzfuss, 2014; 
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Raftery, 2016). Introducing risk-reward perspectives of economics, environment, etc. may aid in 

generating such actionable decisions, but such ideals are difficult to quantify and vary by 

individual (Komarek et al., 2020; Mase et al., 2017; Williams and Hooten, 2016). For example, 

model predictions are likely not useful to assist farmers with plant density selection based on 

tiller expression expectations for an upcoming season. However, in potential replant situations, 

increased certainty may generate a more actionable prediction of tiller compensation potential. 

Outcomes of this study are useful for in-season diagnostics addressing farmer questions and 

concerns of year-to-year variation in tiller densities. 

Knowledge of factors contributing to tiller productivity remains limited. Kernels from 

ears on tillers are key to yield compensation of tillered corn phenotypes (Massigoge et al., 2022; 

Rotili et al., 2022), but tiller reproductive development is not well understood. Not all tillers may 

equally contribute to plant productivity (Alofe and Schrader, 1975; Bonnett, 1948; Russelle et 

al., 1984; Schaffner, 1930). Future work should identify drivers of successful tiller reproductive 

development (i.e., tiller axillary ear) and expand on the overall plant C economy conclusions of 

Alofe and Schrader (1975). 

 

4.5 Conclusions 

The hypothesis put forth for this study “that tiller densities can be reasonably predicted 

(i.e., within 25% of the target plant density) via environmental factors” appears to be supported 

by our results. Plant density, thermal parameters, and soil fertility were critical components to 

achieving the lowest error in tiller density prediction. The cross-season predictive accuracy of 

identified models fell within the reasonable benchmark of < 25% observed plants ha-1, although 

not all out-of-season fits performed equally. Critical non-limiting thresholds for select 
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environmental parameters were apparent in coefficient estimates. Wide prediction intervals 

highlighted the volatile nature of tiller expression and model assumptions, but point predictions 

were relatively good with sufficiently diverse training data. While useful for early season 

diagnostic purposes, these models are limited in forecast utility and should be coupled with 

appropriate decision theory and risk assessments. Future studies should expand on tiller density 

prediction by exploring how those tillers develop through the season. 
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Table 4.1 Predictive factors included in tiller density model candidates. G, genotype; E, 
environment; M, management; GDD, cumulative growing degree days; PTQ, growing period 
photothermal quotient; Tmin, mean daily minimum growing period temperature; Tmax, mean daily 
maximum growing period temperature; Tamp, mean daily growing period thermal amplitude; CM, 
cumulative seasonal moisture (precipitation + irrigation, when applicable); VPD, cumulative 
vapor pressure deficit; PD, observed plant density; pH, soil test pH; OM, soil test organic matter 
(percent loss on ignition); NO3, soil nitrate; NH4, soil ammonium; P, soil phosphorus; CEC, soil 
test cation exchange capacity; Sand, percent soil sand; Silt, percent soil silt; Clay, percent soil 
clay. 

Model Candidate GDD PTQ Tmin Tmax Tamp CM VPD PD G 
 °C day MJ m-2 °C-1 d-1 °C °C °C mm kPa pl ha-1  

Full ● ● ● ● ● ● ● ● ● 

Temporal ● ●        

Weather ● ● ● ● ● ● ●   

Soil          

E ●  ● ● ● ● ●   

M ●     ●  ● ● 

Stress   ● ●  ● ●   

G + E ● ● ● ●   ●  ● 

G × E ● ● ● ●   ●  ● 

E + M ● ● ● ●   ● ●  

E × M ● ● ● ●   ● ●*  

G + M        ● ● 

G × M        ● ● 

G + E + M ● ● ● ●   ● ● ● 

G × E × M ● ● ● ●   ● ●* ● 

Model Candidate pH OM NO3 NH4 P CEC Sand Silt Clay 
  % LOI kg ha-1 kg ha-1 kg ha-1 meq 100g-1 % % % 

Full ● ● ● ● ● ● ● ● ● 

Temporal          

Weather          

Soil ● ● ● ● ● ● ● ● ● 

E ● ● ● ● ● ● ● ● ● 

M ●  ● ● ●     

Stress   ●  ●     

G + E   ●  ●     
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G × E   ●  ●     

E + M   ●  ●     

E × M   ●  ●     

G + M          

G × M          

G + E + M   ●  ●     

G × E × M   ●  ●     

* PD classified into three factor levels (A, 25000 plants ha-1; B, 42000; C, 60000) 

 

Table 4.2 Prediction accuracy metrics for tiller density model candidates. Lowest values for each 
distribution are shown in boldface type. MAE, mean absolute error of cross-season, out-of-
sample predictions for test data set (80% train, 20% test); E, environment; M, management; G, 
genotype. 

Model Candidate MAE (tillers ha-1) 

Full 9051 

Temporal 13908 

Weather 9362 

Soil 19560 

E 9362 

M 11377 

Stress 10605 

G + E * 9116 

G × E * 9736 

E + M * 9066 

E × M * 7776 

G + M * 22764 

G × M * 23131 

G + E + M * 9050 

G × E × M * 10371 
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Table 4.3 Out-of-season error evaluation resulting from independent coefficient eliminations by 
site-year. VPD, cumulative vapor pressure deficit; GDD, cumulative growing degree days; PTQ, 
growing period photothermal quotient; Tmax, mean daily maximum growing period temperature; 
Tmin, mean daily minimum growing period temperature; NO3, soil nitrate; P, soil phosphorus. 

Model Location Full Error Lowest Error Zeroed Coefficient 

-2019 Train, 
2019 Test 

Manhattan 7211 4099 VPD 

Goodland 15003 5963 NO3 

Garden City 23795 13366 Tmin 

-2020 Train, 
2020 Test 

Keats 280461 10283 P 

Greensburg 236793 56352 NO3 

Goodland 39840 39840  

Garden City 19574 19574  

Colby B 272656 27344 PTQ 

Colby A 42732 27631 P 

Buhler 191106 1653 P 

-2021 Train, 
2021 Test 

Selkirk 40372 9770 VPD 

Keats 9477 7280 GDD 

Greensburg 25012 11851 Tmin 

Goodland 12594 6547 GDD 

Garden City 12847 1058 Tmax 

Colby A 19507 8579 GDD 

Buhler 2564 912 VPD 
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Figure 4.1 Observation frequency for key factors in dataset model splits. Y-axes indicate the 
observation frequency for each factor within a given dataset split. Factors shown are based on the 
selected model structure (Equation C.1) and include cumulative growing degree days (GDD; 
panel a), seasonal photothermal quotient (PTQ; panel b), mean minimum and maximum 
temperatures (panels c-d), cumulative vapor pressure deficit (VPD; panel e), soil nitrate (panel f), 
soil phosphorus (panel g), and response variable tiller density (panel h). The left side of each 
panel demonstrates the cross-season 80% train (rust), 20% test (gold) dataset split. The right side 
of each panel demonstrates the seasonal variation of the out-of-season (-2019, dark blue; -2020, 
pale blue; -2021, green) dataset splits. 
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Figure 4.2 Independent smooth functions fitted to key environmental factors by target plant 
density. Y-axes indicate the model-generated probability of a maximum tiller density observation 
(300000 tillers ha-1) across a range of potential factor levels. Probabilities for each variable level 
are shown with solid points, and moving averages are indicated with solid black lines. Factors 
shown include cumulative growing degree days (GDD; panel a), seasonal photothermal quotient 
(PTQ; panel b), mean minimum and maximum temperatures (panels c-d), cumulative vapor 
pressure deficit (VPD; panel e), soil nitrate (panel f), and soil phosphorus (panel g). 
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Figure 4.3 Predictions and predictive accuracy of out-of-season model fits (-2019, panel a; -
2020, panel b; -2021, panel c) by site-year. Large green points indicate true tiller density 
observations for a plant density of 42000 plants ha-1 at development stage R6 (physiological 
maturity). Small dark blue points indicate model-generated predictions for tiller density (also 
42000 plants ha-1 at stage R6). Pale blue bars indicate the 0.95 quantile prediction interval. In-
row text indicates the error of the point prediction compared to the observed value for a given 
site-year. 
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Chapter 5 - Tiller biomass in low plant-density corn enhances 

transient C sink without direct harvest index detriment 

*Under review in Field Crops Research 
 

Abstract 

Tillering allows grass crops to adapt to their environment by increasing leaf area (source) 

and grain set (sink). Efficient translocation of water-soluble carbohydrates (WSCs) from tiller 

biomass is key to match the carbon (C) demand of ears. This ability is still commonly disputed, 

particularly in corn (Zea mays L.) when tillers are barren. Clarifying these points is imperative to 

determine tillering usefulness to corn growers, particularly when low plant densities are 

employed to manage restrictive environmental conditions with lower yield potential. Therefore, 

the objectives of the current study are to determine the following: 1) the impact of plant density 

and tiller presence on corn biomass accumulation, 2) the reproductive efficiency of tillered corn 

phenotypes considering the harvest index (grain to aboveground biomass ratio), and 3) the 

changes in stem C storage capacity and remobilization capabilities across tested E × M scenarios. 

The database used to accomplish these objectives included six site-years across Kansas, United 

States, three plant densities (25000, 42000, and 60000 plants ha-1), two genotypes (P0657AM 

and P0805AM), and two tiller scenarios (intact or removed at stage V10). At these site-years, 

aboveground plant biomass and stem samples for WSC were collected at five unique timepoints 

throughout the season. Tiller presence stabilized aboveground biomass across plant densities and 

increased the WSC storage capacity in the lowest plant density. Comprehensive harvest index, 

for all treatments, was maintained at approximately 0.49 regardless of tiller biomass. Results 

indicate the tillers enhance WSC storage and augment main stem WSC remobilization during 
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grain fill. Findings support conclusions of previous yield-related publications from this database, 

but additional work is needed to specify the carbon economy in tillered corn plants. 

   

5.1 Introduction 

Branching, a plasticity mechanism employed by many crop species, facilitates crop 

adaption to the immediate environment (Laitinen and Nikoloski, 2019). Branching expression is 

therefore related to the quantity and quality of available resources and the need for such 

resources to produce plant biomass as additional leaf area and grain set. Intra-plant source-sink 

relationships are also critical, as the plant allocates photosynthates from leaves (source) to 

developing tissues, storage organs, and ultimately, grain (sink; Smith et al., 2018). Basal 

vegetative branches in grass crops such as grain sorghum (Sorghum bicolor L. Moench), wheat 

(Triticum aestivum L.), and corn (Zea mays L.) are known as tillers and appear from the crown 

region of the stem (Kim et al., 2010). Little is known about how tillers contribute to yield 

determination in corn, which is particularly relevant in the western US corn belt. In such 

environments, tillering is more commonly observed by corn growers. 

A key function of tillers is increasing leaf area and aboveground biomass, thus enhancing 

the source of energy through photosynthates and grain set potential (Lafarge and Hammer, 

2002). Essentially, tillers may 1) contribute to yield directly, 2) increase the rate of light 

interception and growth, and/or 3) store remobilizable carbon and nitrogen. Conversion 

efficiency is key to tiller effectiveness – both in converting environmental resources to biomass 

and biomass to grain. In environments with resource limitations requiring plant density 

reductions, efficient input use is crucial to maintain yield potential (Mylonas et al., 2020; Rotili 

et al., 2019). Tiller biomass not accounted for in the selection of a plant density may upset the 
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intended balance of environmental resources, which may be fragile in restrictive conditions. For 

example, alternative planting geometries (skip-row, clump, etc.) in environments with limited 

water supply aim to reduce tillering as a key prerogative (Haag, 2013; Kapanigowda et al., 2010; 

Thapa et al., 2020, 2018). Metrics such as radiation use efficiency (RUE; aboveground biomass 

increase per unit intercepted radiation), nitrogen (N) use efficiency (NUE; grain yield increase 

per unit N uptake), and water use efficiency (WUE; grain yield per unit water uptake) are 

generally unexplored for corn phenotypes expressing tillers. Rotili et al. (2021b) hypothesized 

WUE would be enhanced or maintained in tillered corn phenotypes, dependent on seasonality of 

precipitation. Similarly, if tillers develop and are barren, NUE is hypothesized to decrease (Rotili 

et al., 2021b), but more extensive N studies are needed to confirm these claims. Ear number 

plasticity (impacted directly by tiller expression) has been correlated with RUE and WUE 

plasticity in wheat (Sadras and Rebetzke, 2013). Tiller leaf area is strongly linked to water use in 

various grain crops (Jones and Kirby, 1977; Xue et al., 2013), but grain yield and reproductive 

efficiency are ultimately an indicator of WUE in such cases that moisture becomes limiting 

(George-Jaeggli et al., 2017). This is particularly true when moisture is supplied and utilized at 

key grain development stages. In summary, tiller barrenness can have repercussions for 

efficiency metrics across various grass crops. Reproductive efficiency is commonly quantified 

via the harvest index (HI), which is the ratio of grain to aboveground plant biomass. HI has 

remained relatively stable in modern corn genotypes at optimal plant densities, with yield 

potential largely reliant on increased biomass production (Hay, 1995). If tillers are barren, as 

commonly observed in corn, a reduced HI may be likely. Thapa et al. (2018) presented a 

negative correlation between tiller presence and crop HI using alternative planting geometries in 

restrictive growing environments, with all of the observed tillers barren. Rotili et al. (2021b) 
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presented an unusually high total HI for a tiller-prone corn genotype (HI 0.57) relative to a non-

tillered counterpart (HI 0.49) in well-watered conditions. To the extent of authors’ knowledge, 

targeted measurement of fertile corn tiller HI has not been documented. 

Over cycles of selection, source and sinks were optimized iteratively to increase corn 

yields. The utility of corn tillers may be more subtle than direct grain set (Veenstra et al., 2021). 

Enhanced by tiller formation, the allocation of water-soluble carbohydrates (WSCs) in grass 

stem tissues (Bihmidine et al., 2013) can provide a larger reservoir of non-structural C for 

tillered relative to non-tillered counterparts. The usefulness of this ability hinges on tiller 

capability to accomplish one of the following: 1) directly set and fill grain using the WSC stored 

in their own stems, or 2) efficiently translocate the WSC stored in their stems to ears set on the 

main stalk. These two points were key in foundational work executed by Alofe and Schrader 

(1975), in which WSC movement from tillers to main stalks was documented and characterized 

by relative shoot sink strengths. In addition to WSC, mobile nutrients like phosphorus (P) have 

been shown to relocate from tiller to main stalk tissues in reproductive stages, particularly when 

tillers are small and barren (Russelle et al., 1984). Such a relationship has been proposed for 

nitrogen (N), but remains untested to current knowledge (Rotili et al., 2021b). 

Past work revealed yields were not deleteriously impacted by tiller presence and greater 

tiller densities could compensate for plant density deficits in favorable environments (Veenstra et 

al., 2021). Considering that plant density remained a key management practice to maximize yield 

regardless of tiller development in Veenstra et al. (2021) and main stalk yields were not reduced 

by tiller presence in the same experiments (Veenstra and Ciampitti, 2021), tiller source-sink 

economies appear to be supportive or mostly independent of main stalk counterparts. A deeper 

exploration of the reproductive efficiency and source-sink dynamics of tillered corn phenotypes 
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is warranted. Authors hypothesize that tiller presence increased plant biomass and improved 

plant C capture and reproductive efficiency – but this is dependent on tiller barrenness. 

Therefore, the objectives of the current study are to determine 1) the impact of plant density and 

tiller presence on corn biomass accumulation, 2) the reproductive efficiency of tillered corn 

phenotypes considering the harvest index, and 3) the changes in stem C storage capacity and 

remobilization capabilities across tested E × M scenarios. 

 

5.2 Materials and Methods 

5.2.1 Field Experiments 

This study explored a large field database collected across Kansas, USA, in the 2019-

2021 growing seasons. These field trials considered three plant densities (lowest, 25000; 

moderate, 42000; and highest, 60000 plants ha-1), two genotypes (P0657AM and P0805AM; 

Corteva Agriscience, Johnston, IA), and two tiller scenarios (intact or removed at development 

stage V10; tenth leaf, Ritchie et al., 1997). Detailed experimental site descriptions are available 

in Tables 2.1 and 3.1 (Veenstra et al., 2021). Data for the present study included six of the site-

years described in these past studies – Manhattan 2019, Garden City 2019 and 2021, Goodland 

2019 and 2021, and Keats 2021. These site-years were the only six trials where intensive 

biomass samplings were conducted, due to the effort required to accomplish such samplings. In 

light of this, the selected site-years were located in far corners of the state, capturing the highest 

degree of environmental variation possible. 

5.2.2 Data Collection and Calculations 

Aboveground fresh biomass was collected in buffered 1-row, 1.5-m sampling zones at 

five pre-determined time points throughout the season in each site-year. Data were collected at 
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target development stages V5 (fifth leaf), V10 (tenth leaf), V16 (sixteenth leaf), R3 (kernel milk 

stage), and R6 (physiological maturity). After the initial fresh weight was recorded for the 

appointed sampling zone (two to seven plants, dependent on plant density), two representative 

plants were selected from each sample. Representative plants were partitioned into stems (stems 

+ leaf sheaths), leaves (green + senescent blades), reproductive (husks + silks + cobs + tassels, if 

present), and grain (kernels, if present). This was done separately for main shoots and tiller 

shoots, if present. Fresh weights of each partition were used to calculate the percentage of total 

fresh weight attributed to each organ class, which was then multiplied by the total sampling zone 

biomass. Partitions were dried in an air-forced oven at 60 °C until constant weight to achieve 

moisture content for each organ class. Resulting dry matter calculations were scaled to a kg ha-1 

basis. 

Stem partitions were ground using a 0.25-mm sieve and analyzed for water-soluble 

carbohydrate (WSC) concentration. All 2019-collected samples were analyzed by sequential 

extractions in water followed by colorimetric reaction via the anthrone reagent method (Galicia 

et al., 2009). WSC concentrations of 2021 samples were estimated through near-infrared (NIR) 

spectroscopy (DA 7250, Perten Instruments, Sweden), using the 2019 samples for instrument 

calibration. WSC concentrations were multiplied by stem dry biomass to obtain WSC content, 

which was scaled to a g m-2 basis. WSC content was used in all data analyses. 

The central two plot rows were reserved for grain harvest (harvested area of 

approximately 6 m2). Ears remaining on plants at dry maturity were picked and shelled by hand. 

Yields were calculated based on actual harvested area and a 155 g kg-1 grain moisture. Grains 

from tillers and main shoots were handled separately. Harvest index (HI) was calculated as dry 
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grain weight ha-1 divided by total aboveground dry biomass ha-1 for the main and tiller shoot 

fractions individually, as well as the total (all shoots). 

Seasonal growing degree days (GDD) were calculated using weather data downloaded 

from the Climate Engine web application (Huntington et al., 2017). GDD was calculated as the 

cumulative sum of the difference between mean daily temperature and the crop base temperature 

of 10 °C, with a forced daily maximum of 30 °C. 

5.2.3 Statistical Analyses 

5.2.3.1 Seasonal dynamics 

Initial analyses considered additive organ biomass (leaves only, leaves + stem, leaves + 

stem + reproductive + grain; where reproductive considered husks, silks, cobs, and tassels, if 

present) and carbohydrate content as responses to treatment factors and time of sampling. All 

data analyses were performed in program R (R Core Team, 2022). Linear mixed effects models 

were fit using the lme4 package (Bates et al., 2015). Fixed effects included plant density, 

genotype, tiller presence, and target sampling stage, with site-year, block, whole-plot, and sub-

plot set as random intercept effects. The fitted models were subjected to a Type III analysis of 

variance (ANOVA) for each fixed effect using the car package (Fox and Weisberg, 2019). Least 

squares means were calculated using the emmeans package (Lenth, 2020). These initial ANOVA 

results are available in Table D.1 (aboveground biomass by organ) and Table D.2 (WSC 

content).  

Seasonal dynamics of biomass and WSC accumulation (for both plant-1 and ha-1 scales) 

and relative shoot contributions to each (for both main stalks and tillers) were visualized as 

flexible smoothed effects of cumulative GDD. These models were applied via smoothing cubic 

splines with the smooth.spline() function in the base stats package, with cumulative GDD as the 
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predictor variable for each plant density × tiller presence interaction. Seasonal dynamics of full 

crop biomass (leaves + stem + reproductive + grain) are known to produce a logistic curve, and 

were thus fitted to the following equation for each plant density × tiller presence interaction: 

𝑏𝑏 = α/1 + e(𝑝𝑝 − 𝑔𝑔)/𝑠𝑠,  Eq (5.1) 

where b is the total aboveground biomass, α is the asymptote, p is the curve inflection point, g is 

the cumulative GDD, and s is the scale parameter. Logistic models were fit using the getInitial() 

and SSlogis() functions in the base stats package to generate starting values and estimate model 

parameters. 

5.2.3.2 Plant fraction relationships 

Simple linear models (y = mx + b) were fit using the lm() function of the base stats R 

package to explore plant fraction (i.e., tiller and main stalk) relationships for HI and WSC. 

Models were selected as more appropriate than the mean (y = b) based on the threshold p ≤ 0.05. 

The coefficient of determination (R2) was calculated for each. 

  

5.3 Results 

5.3.1 Environmental Characterization 

Environmental characterizations are available for the six evaluated site-years in Figure 

D.1. Normal seasonal precipitation for these site-years ranged from 355 to 547 mm, with half of 

the evaluated site-years wetter than normal. Normal seasonal mean temperature ranged from 19.2 

to 22.4 °C, with 67% of site-years cooler than normal. Yields ranged from 5.8 to 12.6 Mg ha-1. 

5.3.2 Biomass Dynamics 

Least squares means and seasonal progression curves for aboveground biomass by organ 

are shown in Figure 5.1. Maximum mean leaf biomass ha-1 was observed at R3. Leaf biomass ha-
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1 was greater with tillers present in the lowest plant density after stage V10 (Fig. 5.1a) and from 

flowering to R3 in the moderate plant density (Fig. 5.1b). Maximum leaf and stem biomass ha-1 

was also observed at R3. Stem and leaf biomass ha-1 was greater with tillers present in the lowest 

plant density after stage V10 (Fig. 5.1a) and in the moderate plant density in early grain-filling 

stages (Fig. 5.1b). Stem biomass contributed the most to increased biomass with tillers present in 

the lowest plant density (up to 1939 kg ha-1). Maximum total (leaf + stem + reproductive + grain) 

biomass ha-1 was observed at R6. Total biomass was only greater with tillers present in the 

lowest plant density at maturity (Fig. 5.1a), where total biomass with tillers intact was not 

significantly different from the higher plant densities (Fig. 5.1b-c). 

Leaf biomass pl-1 was only significantly different due to tiller presence in the lowest plant 

density after V10 (Fig. 5.1d) and at R3 in the moderate plant density (Fig. 5.1e). Maximum leaf 

and stem biomass pl-1 was significantly different between tiller treatments in the lowest plant 

density after stage V10 (Fig. 5.1d) and in the moderate plant density in early grain-filling stages 

(Fig. 5.1e). Stem biomass contributed the most to increased biomass with tiller presence in the 

lowest plant density (up to 0.08 kg pl-1). Total biomass pl-1 was only different due to tiller 

presence in the lowest plant density after flowering (Fig. 5.1d). 

Main shoots were responsible for a majority of aboveground biomass production (Fig. 

5.1g). Tiller contributions to biomass were inversely related to plant density, with the 25000, 

42000, and 60000 pl ha-1 densities maximized at 33%, 15%, and 4% tiller biomass, respectively. 

All plant densities declined in tiller biomass proportion in late grain-filling stages (Fig. 5.1g). 

5.3.3 Harvest Index 

Main shoot HI values ranged from 0.15 to 0.67 (mean 0.51). Tiller shoot harvest index 

values ranged from 0 (no grain produced) to 0.66 (mean 0.22). For both tiller and main shoot 



91 

fractions, greater biomass was positively correlated with greater HI (Figure 5.2). Tiller fractions 

exhibited a steeper slope, but total (main + tiller shoots) HI values (mean 0.49) were not 

correlated with tiller shoot biomass. 

5.3.4 Water-soluble Carbohydrate Dynamics 

Least squares means and seasonal progression curves for stem WSC content are shown in 

Figure 5.3. Maximum mean WSC content m-2 was observed at R3. Stem WSC content m-2 was 

only significantly higher with tillers present in the lowest plant density after flowering (Fig. 

5.3a). Mean stem WSC content m-2 at maturity was greatest (99 g) in the lowest plant density 

with tillers intact (Fig. 5.3a), and the least (49 g) in the same plant density but with tillers 

removed (Fig. 5.3a). 

Maximum mean WSC content pl-1 was also observed at R3, greatest (50 g) in the lowest 

plant density (Fig. 5.3d), and least (25 g) in the highest plant density (Fig. 5.3f), both with tillers 

intact. Stem WSC content pl-1 was only significantly greater with tillers present than tillers 

removed in the lowest plant density after flowering (Fig. 5.3a). Mean stem WSC content pl-1 at 

maturity was greatest (41 g) in the lowest plant density with tillers intact (Fig. 5.3d), and the least 

(11.4 g) in the highest plant density with tillers removed (Fig. 5.3f). 

Main shoots were responsible for a majority of WSC content (Fig. 5.3g), averaging 91% 

across all plant densities and sampling stages. Tiller contributions to WSC content were 

inversely related to plant density, with the 25000, 42000, and 60000 pl ha-1 densities maximized 

at 44%, 17%, and 6% tiller WSC content, respectively. All plant densities declined in tiller WSC 

content proportion in late grain-filling stages (Fig. 5.3g). 

5.3.5 Water-soluble Carbohydrates and Grain Fill 



92 

Main stem WSC (g m-2) relationships to sink strength during grain fill are shown in 

Figure 5.4. Comparing tillered to non-tillered phenotypes at stage R3, main stalks with barren 

tillers behaved most similarly to plants without tillers (Fig. 5.4a, b). That is, greater main stem 

WSC was strongly associated with greater grain production (R2 of 0.39 and 0.42 for non-tillered 

and tillered plants with barren tillers, respectively). Non-tillered phenotypes maintained the 

relationship with main stem WSC observed at R3 through stage R6, with greater main stem WSC 

associated with higher grain production (Fig. 5.4b, d). However, mature grain production of 

tillered phenotypes was not associated with main stem WSC (Fig. 5.4c). Tillered phenotypes 

with barren tillers produced 1.5 Mg ha-1 more dry grain on average than phenotypes with grain-

bearing tillers. Comparing tillered and non-tillered phenotypes, minimum and achievable yields 

were similar (approximately 2.5 to 15 Mg ha-1; Fig. 5.4c, d). 

 

5.4 Discussion 

As a complement to explorations of tiller impact on corn yield (Veenstra et al., 2021; 

Veenstra and Ciampitti, 2021), this study presents new insights on seasonal dynamics of 

aboveground biomass, reproductive efficiency, and source-sink relationships of tillered corn 

phenotypes. Tiller impact on biomass and energy relationships in corn is less explored relative to 

other crops, but this knowledge is foundational to understanding yield and development 

observations reported previously (Massigoge et al., 2022; Rotili et al., 2021b, 2021a). While 

labeled WSC work in tillered corn phenotypes was done nearly 50 years ago (Alofe and 

Schrader, 1975), this study fills a modern research gap by quantifying season-long dynamics of 

aboveground biomass and WSC movement in both main shoots and tiller shoots in field 

environments. 
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As expected, tiller development increased plant biomass, but this was plant density-based 

as in previous studies (Rotili et al., 2021b; Tetio-Kagho and Gardner, 1988). In effect, tillered 

phenotypes were able to produce similar aboveground biomass with less than half of the plant 

density. Main shoots remained the main contributor of biomass, likely due to reproductive 

preference and apical dominance (Doebley et al., 1997). In agreement with the plant density-

based observations of (Duvick et al. (2004), increased shoot biomass was accompanied with a 

greater HI regardless of shoot type (i.e., main or tiller). Because HI is relatively stable, gains in 

modern corn grain yields are driven by shoot biomass (Lorenz et al., 2010). Conversely, Thapa et 

al. (2020) demonstrated a reduced HI was possible when plants were unable to sustain grain 

production with additional shoot biomass in water-limited environments, but these outcomes 

were identified in alternative planting geometries (i.e., skip-row, clump, etc.). The efficiency of 

tillers in converting biomass to grain was more dynamic across biomass accumulations than the 

efficiency of main plants. Both main and tiller had similar maximum HI values. In this light, 

greater tiller biomass was not correlated with comprehensive (main + tiller shoots) HI, which 

was potentially more related to yield environment and post-flowering stresses (Rotili et al., 

2022). Specifically, tiller reproductive efficiency compared to main stalk counterparts appears 

dependent on plant growth rate, an indicator of plant health and stress. Tiller-influenced HI 

ranges in the present study were representative of the high values (0.57) reported in well-watered 

conditions of other studies (Rotili et al., 2021b) and even lower values (0.33) reported in more 

restrictive conditions (Thapa et al., 2020). Ultimately however, as the achievable tiller HI in the 

present study was represented by well-watered scenarios in the literature (Rotili et al., 2021b), 

and tiller HI was strongly tied to biomass production, this study perhaps failed to capture 
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scenarios where moisture was truly limiting to tiller development. More restrictive scenarios 

could therefore reduce tiller efficacy as previously hypothesized (Stewart, 2009). 

Tillered phenotypes appeared quite effective at converting their own shoot biomass to 

grain or supporting grain fill elsewhere on the plant. In previous studies, tillers were able to 

overcome the strongly limited WSC storage capacity per plant across plant densities (Cazetta and 

Revoredo, 2018) by providing additional transient sinks. In the current study, such a relationship 

was only observed at the lowest plant density (10000 pl ha-1), presumably due to reduced tiller 

number per plant and tiller biomass as plant density increased (Hansey and de Leon, 2011; Rotili 

et al., 2021b; Tetio-Kagho and Gardner, 1988).  

Strong evidence for tiller nourishment of main stalks has been demonstrated in this study 

by tillered phenotypes, regardless of sink capacity, as previously reported (Alofe and Schrader, 

1975; Dungan, 1931; Russelle et al., 1984). Alofe and Schrader (1975) used targeted 14CO2 

labeling of tillered corn phenotypes at grain fill to determine that fixed C remained in the labeled 

plant fraction (tiller or main stalk) unless barren tillers were labeled, in which case a majority of 

the 14C was recovered in main stalk grains. In the current study, the relationship between main 

stem WSC and grain production was interrupted at maturity by tillered phenotypes. The utility of 

transient sink alternatives (i.e., main stem versus tiller stems) is important when considering 

restrictive growing environments. While tiller sink strength (barren or grain-bearing) did not 

change the general relationship between main stem WSC and grain production, plants with 

barren tillers yielded significantly more on average. This suggests that tillered corn phenotypes 

may be more productive overall when grain is not set directly on the tillers and tillers are instead 

used as buffered WSC reserves. This WSC buffering is agronomically significant for several 

reasons, including standability and stabilized kernel weights (Campbell, 1964; Esechie, 1985; 
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Slewinski, 2012). Two caveats for this generalization, however, are 1) the correlation between 

tiller productivity and plant density (i.e., tillers in high plant densities are less likely to set grain 

due to increased competition), and 2) the nature of the grain-bearing inflorescences observed on 

tillers. Tillers may produce no ear (barren), a grain-bearing axillary ear, or a grain-bearing apical 

ear (Bonnett, 1948; Schaffner, 1930). Both ear types are considered sinks, but only axillary ears 

are reliably harvestable. That is, the generalization of tiller productivity may be altered if the 

target plant density is not achieved or if only productive sinks (axillary ears) are considered. 

More intensive samplings of tillered corn phenotypes (and a non-tillered check) through grain fill 

with contrasting tiller ear development would be useful to explore this point of WSC (and overall 

plant C) economy. 

Potential bottlenecks in this study are linked to the lack of quantification of other 

resource use efficiencies (NUE, WUE, RUE). Tillered corn phenotypes have been suggested as 

both detrimental (additional leaf area) and beneficial (additional grain set) to these metrics. 

Because WUE was impacted by unusual planting geometry (which subsequently reduced tiller 

number) in Thapa et al. (2020, 2018) and Kapanigowda et al. (2010), WUE conclusions of 

tillered versus non-tillered phenotypes are unclear from these studies. The lack of correlation 

between tiller productivity and tiller density to water factors suggests this study did not include 

levels of water deficit severe enough to impact tiller development (Veenstra et al., 2021; Figure 

D.1). Massigoge et al. (2022) presented tillered phenotypes as a potential source of yield and 

efficiency enhancement, with environments similar in productivity (approximately 3 to 12 Mg 

ha-1) to the sites of Thapa et al. (2020) and Kapanigowda et al. (2010). Beyond efficiency 

metrics, an economic analysis of tillering as a plasticity mechanism in low-density corn should 
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also be explored. Doing so is imperative to advance climate-smart management decisions in light 

of crop plasticity utility (Brooker et al., 2022). 

 

5.5 Conclusions 

The proposed hypothesis “that tiller presence increased plant biomass and improved 

plant C capture and reproductive efficiency dependent on tiller barrenness” is partially 

supported by our results. Tiller presence did indeed enhance plant biomass production, but only 

meaningfully in the 10000 pl ha-1 density. Because a majority of additional biomass from tillers 

was stem tissue, additional carbon storage was provided. This reserve allowed plants to escape 

the per-plant cap on WSC accumulation at low plant densities, which is typically managed by 

increasing plant density. Within the range of productivity environments in this study, tillers alone 

did not impact reproductive efficiency, regardless of sink size or biomass allocation. In addition, 

authors propose that tiller-accumulated WSC acts to augment main stem WSC reserves. These 

additional transient sinks are proposed as a contributor to the yield stability observed across 

environments. 
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Figure 5.1 Seasonal aboveground biomass accumulation from both hectare and individual 
perspectives by plant fraction. Panels a-f depict total aboveground biomass accumulation of each 
organ (leaf, green; leaf + stem, orange; leaf + stem + reproductive, yellow) by plant density 
(25000, 42000, and 60000 pl ha-1) for both kg ha-1 and kg pl-1 perspectives. Biomass of plants 
with tillers removed is shown as an area plot (pale colors), while biomass of plants with tillers 
intact is indicated with lines (vibrant colors). Whisker bars indicate the 95% confidence interval 
of the least squares means for each of five sampling observations (V5, V10, V16, R3, and R6). 
Panel g depicts the relative proportion of tillered phenotype biomass attributed to main shoots 
(light area) and tiller shoots (dark area) for each plant density throughout the season. 
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Figure 5.2 Mature aboveground biomass (x-axis) and harvest index (y-axis) by plant fraction. 
Dark circles and dark, dashed lines indicate tiller shoot biomass and tiller shoot harvest indices 
(HI); pale circles and pale, solid lines indicate main shoot biomass and main shoot harvest 
indices. Inset – relationship between tiller mature biomass (x-axis) and full shoot harvest index 
(y-axis). 
  



99 

 
Figure 5.3 Seasonal stem water soluble carbohydrate (WSC) accumulation from both hectare 
and individual perspectives by plant fraction. Panels a-f depict total stem WSC accumulation by 
plant density (25000, 42000, and 60000 pl ha-1) for both g m-2 and g pl-1 perspectives. WSC 
content of plants with tillers removed (TR) is shown in pale blue areas, while biomass of plants 
with tillers intact (TI) is indicated with dark blue dashed lines. Whisker bars indicate the 95% 
confidence interval of the least squares means for each of five sampling observations (V5, V10, 
V16, R3, and R6). Panel g depicts the relative proportion of tillered phenotype WSC found in 
main stems (light area) and tiller stems (dark area) for each plant density throughout the season. 
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Figure 5.4 Main stem water-soluble carbohydrate (WSC) sink (grain) relationships by 
development stage (R3 – black, R6 – rust). Tillered phenotypes (panels a, c) are grouped by sink 
strength – barren tillers indicated by empty circles and short-dashed lines, grain-bearing tillers 
indicated by filled circles and solid lines. Non-tillered phenotypes (panels b, d) are indicated by 
triangles and solid lines. Linear relationships between x and y variables are paired with either 
coefficient of determination (R2) and p-value (where *** indicates p ≤ 0.001) or “NA” if only 
the intercept was significant. 
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Chapter 6 - Conclusions 

 

This dissertation sought to quantify, characterize, and adequately describe the usefulness 

of a generally unstudied plasticity mechanism in dent corn – tillering, to plants and corn growers. 

Research and actionable information regarding tillering in corn production are largely 

unavailable. This area of study is particularly relevant in environments where crops are resource-

limited or environments in which the target plant density is not properly achieved. This study 

utilized two tillered corn phenotypes in a range of environment (E) × management (M) scenarios 

across the state of Kansas, United States (US), to progress the objectives listed below. 

 

 6.1 Determine impact of tiller development on corn yields (Chapter 2) 

With the hypothesis that tiller expression would alter corn yields, intermediate objectives 

to evaluate this hypothesis were as follows: 1) quantify the relative importance of E, M, and their 

interactions on the yield effect of tiller expression for two modern corn genotypes; 2) understand 

effects of observed tiller density, plant density, and their interaction on yield; and 3) identify key 

environmental determinants of yield response to tiller density in modern corn genotypes. 

Results in Chapter 2 demonstrated that tillers did not reduce corn yields in any of the 

evaluated environments with the tested genotypes. Favorable environments (most notably, high 

PTQ and desirable soil properties) facilitated increased yields when tillers were present. This 

response, however, was coupled with a sub-optimal plant density, and was cancelled out when 

plant density was ameliorated. While tiller production reliability was not explored, this chapter 

presented critical evidence of the potential usefulness of tiller expression as a corn plasticity trait. 

Subsequent chapters built upon this groundwork. 
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 6.2 Determine the plastic extent and relative importance of yield components 

(Chapter 3) 

With the hypothesis that “that tiller expression improved plasticity of yield components, 

thereby reducing plant density-based yield dependency”, intermediate objectives to evaluate this 

hypothesis were to explore the consequences of tiller expression on corn yield component 

determination and plasticity in a range of environments from two plant fraction perspectives – 1) 

main stalks only, considering potential functional trade-offs due to tiller expression; and 2) 

comprehensive (main stalk plus tiller contributions as an overall view of plasticity potential). 

Results in Chapter 3 demonstrated that tiller contributions to reproductive plasticity 

facilitated mitigation for reduced plant densities. This tiller capability surpassed secondary ear 

grain contributions in the best environments, in fact. The softened hierarchy of yield formation in 

such a deterministic crop can perhaps enhance plasticity usefulness in climate-smart 

management and phenotypic progression as breeders work to adapt to volatile seasonal impacts 

of climate change. 

 

 6.3 Determine the drivers and predictability of corn tiller development (Chapter 4) 

With the hypothesis that “corn tiller densities in tiller-prone genotypes could be reliably 

predicted within 25% of the target plant density using variables related to crop management and 

environment”, intermediate objectives to evaluate this hypothesis were as follows: 1) identify 

key environment, management, or combinations of these variables useful for predicting tiller 

density dynamics in corn; and 2) test out-of-season prediction accuracy for identified variables. 
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Results in Chapter 4 demonstrated that tiller expression was predictable within realistic 

and useful error ranges. Based on conclusions from previous chapters, tiller density (tillers ha-1) 

can play an important role in yield formation (yield components) and realization (harvested 

grain). If plasticity expression (in this case, tillering in corn) can be predicted, it follows that 

producer incorporation into decision-making strategies is feasible. Understanding the seasonal 

behavior of this particular corn trait could benefit producers facing challenges related to field 

uniformity, climate, or other unforeseen mid-season circumstances. 

 

 6.4 Determine the effect of tiller expression on biomass accumulation, carbon 

economy, and subsequent reproductive efficiency (Chapter 5) 

With the hypothesis that “tiller presence increased plant biomass and improved plant C 

capture and reproductive efficiency – but this is dependent on tiller barrenness”, intermediate 

objectives to evaluate this idea were to determine the following: 1) the impact of plant density 

and tiller presence on corn biomass accumulation, 2) the reproductive efficiency of tillered corn 

phenotypes considering the harvest index, and 3) the changes in stem C storage capacity and 

remobilization capabilities across tested E × M scenarios.  

Results in Chapter 5 demonstrated that tillered phenotypes were able to escape the plant 

density-regulated biomass and carbohydrate accumulation patterns. The additional biomass 

produced when tillers were expressed was not associated with plant harvest index. This indicates 

tillers may not be directly responsible for efficiency reductions generally assumed in expressing 

phenotypes. Certainly, more restrictive environments (with fewer resources) could alter this 

outcome. Harvest index neutrality was accompanied by altered dynamics of C reserves during 

grain filling, with tillers augmenting main stem remobilization during this period. This final 
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chapter solidified the findings of previous chapters, indicating that internal plant dynamics 

support yield-based theories. 

 

 6.6 Future work and outstanding questions 

A great deal of interest and conversation about plasticity in a historically non-plastic crop 

(corn) has stemmed from the writing and dissemination of the work presented here. While study 

components presented useful and opportune conclusions regarding drivers, development, and 

impact of corn tillers on yield stability across the state of Kansas, much work remains to be done. 

Such wonderings and future directions are outlined below. 

6.6.1 Reproductive development of corn tillers 

A common theme presented throughout the chapters of this dissertation is the dependency 

of tiller productivity on development – both appearance and ultimate ear type (or barrenness). 

Although reproductive development does not appear to have a significant deleterious impact on 

yield, successful development of tiller axillary ears seems to increase yield potential in 

environments without an optimized plant density (Chapter 3). Chapter 5 presented the case of 

source-sink relationships, which are certainly impacted by reproductive development of tiller 

shoots. While Chapter 4 provided insight on tiller numbers, tiller reproductive development has 

yet to be explored. The dataset collected for this dissertation includes information needed to 

expand on this point and should be evaluated to understand these relationships. 

6.6.2 Risk-reward of plasticity mechanisms in defensive production systems 

Although the chapters presented here provide useful insight of tiller potential in corn 

production systems, a key question commonly raised by producers is the economic value of such 

information. Certainly, as discussed in the introduction, implementation at the farm level of 
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results from plasticity studies is far from achieved. The utility of such traits and related 

mechanisms (corn tillers, for example) is highly subjective and changes seasonally. 

Incorporating this information into decision tools is a daunting task. 

Risk-reward analysis is a key part of producer decision-making processes. Production 

systems in harsher growing environments (such as those more commonly impacted by volatile 

weather patterns) are forced to implement defensive strategies to remain viable and profitable. 

With climate change projections and other challenges related to water availability (e.g., Ogallala 

aquifer depletion in southwest Kansas), supply chain disruptions, etc., balancing the strategic use 

of available resources and maintaining profit may become more difficult. Development of tools 

related to environmental adaptation must include economic and social perspectives as a 

foundational component of their structure to be useful or successful in this regard. 

 

6.7 Data Availability Statement 

The data used to generate the results and support the conclusions of this dissertation will 

be made publicly available following publication of these chapters. In addition, Ciampitti Lab 

will gladly provide this data upon request. 
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Appendix A - Chapter 2 Supplementary Material 

Table A.1 Site-year monthly climatic summaries of mean solar radiation, mean maximum 
temperature, mean minimum temperature, and water supply considering precipitation and 
irrigation sources. 

Site-Year Mean Daily Solar Radiation 
(MJ m-2 day-1 ) 

Water Supply  
(Precipitation + Irrigation) (mm) 

 Apr May Jun Jul Aug Apr May Jun Jul Aug 

Manhattan 2019 19.7 20.9 26.1 25.0 20.9 42.5 353.1 162.3 102.1 252.9 

Garden City 2019 21.5 23.1 26.5 27.5 23.5 13.4 260.6 167.4 110.8 105.4 

Goodland 2019 21.1 21.7 26.6 26.5 23.7 20.4 255.0 127.2 90.0 365.4 

Keats 2020 19.4 19.9 27.1 23.6 22.7 52.0 146.6 96.6 175.1 46.0 

Buhler 2020 20.0 21.5 26.9 24.5 23.9 27.2 144.1 91.5 177.6 42.1 

Greensburg 2020 20.9 24.7 27.1 26.1 23.4 29.0 79.1 144.9 194.6 30.1 

Garden City 2020 21.7 25.6 27.4 26.8 24.1 5.1 93.6 106.9 174.0 59.4 

Goodland 2020 20.8 24.7 26.8 26.0 24.4 2.9 66.8 128.1 97.1 61.5 

Colby (A & B) 2020 21.1 23.5 27.1 25.9 24.3 2.7 55.3 46.0 126.4 41.1 

Site-Year Mean Maximum Temperature 
(°C) 

Mean Minimum Temperature 
(°C) 

 Apr May Jun Jul Aug Apr May Jun Jul Aug 

Manhattan 2019 20.8 22.0 29.5 31.9 29.6 7.8 11.7 17.0 20.0 19.2 

Garden City 2019 21.4 21.8 29.7 33.2 33.3 4.1 8.8 14.3 17.9 17.9 

Goodland 2019 19.4 18.7 28.1 33.2 30.4 2.3 6.0 12.2 16.2 15.8 

Keats 2020 17.9 21.0 30.9 30.6 29.9 4.3 11.3 19.3 20.4 17.9 

Buhler 2020 20.2 23.0 33.1 32.2 31.6 4.3 11.1 19.7 20.8 17.9 

Greensburg 2020 19.9 23.5 32.9 32.3 32.1 2.3 9.8 17.1 18.7 17.0 

Garden City 2020 19.7 25.1 34.2 32.3 31.4 1.8 9.6 17.1 18.6 16.5 

Goodland 2020 18.0 23.1 32.7 32.0 31.8 -0.7 7.4 15.0 16.6 15.1 

Colby (A & B) 2020 17.9 22.8 32.5 31.5 31.2 -0.6 7.4 15.4 17.0 15.2 
 

  



123 

Table A.2 Site-year water supply (WS) summary and apparent crop water budget (AWB) 
estimation [calculated as the observed water supply (irrigation + precipitation) less the apparent 
crop water demand (crop evapotranspiration, ETc)] by crop development stage period – Pre-V4 
(one month prior to planting through fourth-leaf stage), V4-V7 (fourth leaf to seventh leaf), V7-
V14 (seventh leaf to fourteenth leaf), and V14-R6 (pre-tasselling to physiological maturity). 

Site-Year Pre-
V4  
WS 
(mm) 

Pre-
V4  
AWB 
(mm) 

V4-V7  
WS 
(mm) 

V4-V7  
AWB 
(mm) 

V7-
V14  
WS 
(mm) 

V7-
V14  
AWB 
(mm) 

V14-
R6  
WS 
(mm) 

V14-
R6 
AWB 
(mm) 

Manhattan 2019 394.5 362.7 140.4 
+362.7 

471.4 105.8 
+471.4 

513.4 276.3 
+513.4 

506.5 

Garden City 2019 158.6 117.4 51.7 + 
117.4 

139.7 66.8 + 
139.7 

109.4 85.4  
+109.4 

-186.3 

Goodland 2019 163.2 123.2 33.2 + 
123.2 

120.4 24.5 + 
120.4 

29.3 289.6 
+ 29.3 

-94.5 

Keats 2020 198.6 167.7 28.6 + 
167.7 

162.7 68.0 + 
162.7 

148.0 221.1 
+148.0 

50.4 

Buhler 2020 172.9 138.1 10.5 + 
138.1 

112.3 86.4 + 
112.3 

83.8 218.7 
+ 83.8 

-73.2 

Greensburg 2020 108.1 66.8 9.8 + 
66.8 

34.0 135.1 
+ 34.0 

58.6 224.7 
+ 58.6 

-116.3 

Garden City 2020 81.3 73.8 44.8 + 
73.8 

73.2 79.1 + 
73.2 

38.6 257.4 
+ 38.6 

-136.7 

Goodland 2020 69.7 25.2 49.3 + 
25.2 

34.1 111.8 
+ 34.1 

17.0 166.7 
+ 17.0 

-330.8 

Colby A 2020 59.0 10.8 23.2 + 
10.8 

-12.6 34.5 – 
12.6 

-81.4 172.3  
- 81.4 

-380.0 

Colby B 2020 70.9 25.2 27.2 + 
25.3 

3.0 36.8 + 
3.0 

-54.8 172.3  
- 54.8 

-345.2 
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Figure A.1 Observed phenological stage progression (based on main stem collared leaf number) 
for all site-years. Lines are colored by site-year and connect observations without regression. 
Black points indicate the date of first tiller appearance for a given site-year. Black dashed lines 
indicate separation of vegetative period intervals Sowing-V4, V4-V7, and V7-V14. Shaded 
portion of plot above the fourteenth leaf indicates stages not considered in vegetative period 
partitioning, and data is shown only to provide full phenological progression dates and final leaf 
number.  
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Equation A.1  

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  =  𝜇𝜇 +  𝛼𝛼𝑖𝑖  +  𝛽𝛽𝑗𝑗  +  𝜃𝜃𝑘𝑘  +  𝛿𝛿𝑙𝑙  +  𝛼𝛼𝑖𝑖𝛽𝛽𝑗𝑗  +  𝛼𝛼𝑖𝑖𝜃𝜃𝑘𝑘  +  𝛼𝛼𝑖𝑖𝛿𝛿𝑙𝑙  +  𝛽𝛽𝑗𝑗𝜃𝜃𝑘𝑘  +  𝛽𝛽𝑗𝑗𝛿𝛿𝑙𝑙  +  𝜃𝜃𝑘𝑘𝛿𝛿𝑙𝑙  

+  𝛼𝛼𝑖𝑖𝛽𝛽𝑗𝑗𝜃𝜃𝑘𝑘  +  𝛼𝛼𝑖𝑖𝛽𝛽𝑗𝑗𝛿𝛿𝑙𝑙  +  𝛽𝛽𝑗𝑗𝜃𝜃𝑘𝑘𝛿𝛿𝑙𝑙  +  𝛼𝛼𝑖𝑖𝛽𝛽𝑗𝑗𝜃𝜃𝑘𝑘𝛿𝛿𝑙𝑙  +  𝑏𝑏𝑚𝑚  +  𝑑𝑑𝑛𝑛(𝑚𝑚) +  ℎ𝑝𝑝�𝑛𝑛(𝑚𝑚)�

+ 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,  

𝑏𝑏𝑚𝑚  ∼  𝑁𝑁(0,𝜎𝜎𝑏𝑏2), 

𝑑𝑑𝑛𝑛(𝑚𝑚)  ∼  𝑁𝑁(0,𝜎𝜎𝑑𝑑2), 

ℎ𝑝𝑝�𝑛𝑛(𝑚𝑚)�  ∼  𝑁𝑁(0,𝜎𝜎ℎ2), 𝑎𝑎𝑎𝑎𝑎𝑎  

𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  ∼  𝑁𝑁(0,𝜎𝜎𝜀𝜀2). 

In this case, yijklmnp is the observed yield of a plot with tiller presence level k of genotype j of 

target plant density i of site-year l, observed in sub-plot p of whole plot n of block m; μ is the 

overall mean (intercept); αi is the fixed effect of the ith level of target density; βj is the fixed 

effect of the jth level of genotype; θk is the fixed effect of the kth level of tiller presence; δl is the 

fixed effect of the lth site-year; all combinations of the factors αi, βj, θk, and δl indicate double, 

triple, and quadruple interactions between them at double, triple, and quadruple levels; bm is the 

random intercept effect of block m; dn(m) is the random intercept effect of the whole plot within 

block m; hp(n(m)) is the random intercept effect of the sub-plot within whole plot n within block m; 

and εijklmnp is the residual term. 
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Equation A.2 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  =  𝜇𝜇𝑖𝑖  +  𝛼𝛼𝑖𝑖𝑚𝑚𝑗𝑗(𝑖𝑖)  + 𝛽𝛽𝑖𝑖𝑡𝑡𝑗𝑗(𝑖𝑖)  + 𝛾𝛾𝑖𝑖𝑚𝑚𝑗𝑗(𝑖𝑖)𝑡𝑡𝑗𝑗(𝑖𝑖)  +  𝑏𝑏𝑘𝑘  +  𝑑𝑑𝑙𝑙(𝑘𝑘)  + ℎ𝑛𝑛(𝑙𝑙(𝑘𝑘))  + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 

𝑏𝑏𝑘𝑘  ∼  𝑁𝑁(0,𝜎𝜎𝑏𝑏2), 

𝑑𝑑𝑙𝑙(𝑘𝑘)  ∼  𝑁𝑁(0,𝜎𝜎𝑑𝑑2), 

ℎ𝑛𝑛(𝑙𝑙(𝑘𝑘))  ∼  𝑁𝑁(0,𝜎𝜎ℎ2),𝑎𝑎𝑎𝑎𝑎𝑎  

𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  ∼  𝑁𝑁(0,𝜎𝜎𝜀𝜀2). 

In this case, yijklm  is the yield of jth observation of the ith site-year, which was collected in sub-

plot n of whole plot l in block k; mj(i) is the true main plant density of the jth observation in site-

year i; tj(i) is the true tiller density of the jth observation in site-year i; μi is the overall mean 

(intercept) for site-year i; αi is the fixed effect associated with observed main plant density in 

site-year i; βi is the fixed effect associated with observed tiller population in site-year i; γi is the 

fixed effect of the interaction between observed main plant density and tiller density in site-year 

i; bk is the random intercept effect of block k; dl(k) is the random intercept effect of whole plot l 

within block k; hn(l(k)) is the random intercept effect of sub-plot n within whole plot l within block 

k; and εijkln is the residual term. 
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Appendix B - Chapter 3 Supplementary Material 

Table B.1 ANOVA results for ear density given treatment factors target plant density (D), 
genotype (G), tiller presence (P), and interactions; and observed variables main plant density 
(M), observed tiller density (T), yield environment (E), and interactions. Tested source of 
variation (Source), degrees of freedom (df), degrees of freedom of residuals (Residual df), F 
value, and the associated p value significance are presented. All sources with p values ≤ 0.05 are 
shown in boldface font. Coefficient of determination (R2) and root mean square error (RMSE) 
values for model fit are presented below each section. 

Response Variable Source df Residual df F value p value 

Main stalk  
ears ha-1 
(treatment factors, 
10 site-years) 

Plant Density (D) 3 49.59 263.29 *** 

Genotype (G) 1 264.00 0.02 Ns 

Tiller Presence (P) 1 198.00 55.68 *** 

D × G 2 264.00 0.92 Ns 

D × P 2 198.00 16.22 *** 

G × P 1 198.00 0.12 Ns 

D × G × P 2 198.00 0.26 Ns 

Marginal R2 = 0.23, Conditional R2 = 0.55, RMSE = 5360 ears ha-1 

Comprehensive 
ears ha-1 
(treatment factors, 
10 site-years) 

Plant Density (D) 3 47.38 321.70 *** 

Genotype (G) 1 251.34 0.00 Ns 

Tiller Presence (P) 1 198.00 39.63 *** 

D × G 2 251.34 1.64 Ns 

D × P 2 198.00 10.83 *** 

G × P 1 198.00 0.96 Ns 

D × G × P 2 198.00 0.32 Ns 

Marginal R2 = 0.52, Conditional R2 = 0.77, RMSE = 6933 ears ha-1 

Main stalk  
ears ha-1  
(observed 
variables, 17 site-
years) 

Observed Plant Density (M) 1 183.32 35.11 *** 

Observed Tiller Density (T) 1 307.84 28.51 *** 

Yield Environment (E) 3 82.72 146.17 *** 

M × T 1 334.69 9.94 ** 

M × E 2 195.43 2.58 Ns 

T × E 2 341.09 0.09 Ns 

M × T × E 2 375.77 0.53 Ns 

Marginal R2 = 0.62, Conditional R2 = 0.79, RMSE = 4892 ears ha-1 
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Comprehensive 
ears ha-1  
(observed 
variables, 17 site-
years) 

Observed Plant Density (M) 1 186.46 25.42 *** 

Observed Tiller Density (T) 1 326.98 10.24 ** 

Yield Environment (E) 3 92.78 127.19 *** 

M × T 1 360.31 9.42 ** 

M × E 2 200.27 2.18 Ns 

T × E 2 354.39 1.21 Ns 

M × T × E 2 390.76 0.27 Ns 

Marginal R2 = 0.32, Conditional R2 = 0.55, RMSE = 6386 ears ha-1 
*** significant at p ≤ 0.001; ** significant at p ≤ 0.01; Ns, not significant 
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Table B.2 Analysis of variance results for kernel density given treatment factors target plant 
density (D), genotype (G), tiller presence (P), and interactions; and observed variables main plant 
density (M), observed tiller density (T), yield environment (E), and interactions. Tested source of 
variation (Source), degrees of freedom (df), degrees of freedom of residuals (Residual df), F 
value, and the associated p value significance are presented. All sources with p values ≤ 0.05 are 
shown in boldface font. Coefficient of determination (R2) and root mean square error (RMSE) 
values for model fit are presented below each section. 

Response Variable Source df Residual df F value p value 

Main stalk  
kernels m-2 
(treatment factors, 
10 site-years) 

Plant Density (D) 3 40.78 97.78 *** 

Genotype (G) 1 227.15 2.91 Ns 

Tiller Presence (P) 1 198.00 24.43 *** 

D × G 2 227.15 1.21 Ns 

D × P 2 198.00 4.60 * 

G × P 1 198.00 0.08 Ns 

D × G × P 2 198.00 0.03 Ns 

Marginal R2 = 0.31, Conditional R2 = 0.84, RMSE = 243 kernels m-2 

Comprehensive 
kernels m-2 
(treatment factors, 
10 site-years) 

Plant Density (D) 3 42.25 79.28 *** 

Genotype (G) 1 253.36 2.51 Ns 

Tiller Presence (P) 1 198.00 2.75 Ns 

D × G 2 253.36 1.08 Ns 

D × P 2 198.00 1.85 Ns 

G × P 1 198.00 1.70 Ns 

D × G × P 2 198.00 0.64 Ns 

Marginal R2 = 0.15, Conditional R2 = 0.77, RMSE = 307 kernels m-2 

Main stalk  
kernels m-2  
(observed 
variables, 17 site-
years) 

Observed Plant Density (M) 1 186.50 1.75 Ns 

Observed Tiller Density (T) 1 287.00 11.17 *** 

Yield Environment (E) 3 108.57 74.14 *** 

M × T 1 306.28 3.77 Ns 

M × E 2 191.68 20.68 *** 

T × E 2 323.51 0.00 Ns 

M × T × E 2 354.50 0.01 Ns 

Marginal R2 = 0.66, Conditional R2 = 0.84, RMSE = 235 kernels m-2 

Observed Plant Density (M) 1 183.72 2.95 Ns 
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Comprehensive 
ears ha-1  
(observed 
variables, 17 site-
years) 

Observed Tiller Density (T) 1 315.22 0.09 Ns 

Yield Environment (E) 3 70.96 61.60 *** 

M × T 1 343.49 0.13 Ns 

M × E 2 196.35 20.57 *** 

T × E 2 345.99 4.33 * 

M × T × E 2 380.61 2.53 Ns 

Marginal R2 = 0.57, Conditional R2 = 0.76, RMSE = 293 kernels m-2 
*** significant at p ≤ 0.001; * significant at p ≤ 0.05; Ns, not significant 
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Table B.3 Analysis of variance results for kernel weight given treatment factors target plant 
density (D), genotype (G), tiller presence (P), and interactions; and observed variables main plant 
density (M), observed tiller density (T), yield environment (E), and interactions. Tested source of 
variation (Source), degrees of freedom (df), degrees of freedom of residuals (Residual df), F 
value, and the associated p value significance are presented. All sources with p values ≤ 0.05 are 
shown in boldface font. Coefficient of determination (R2) and root mean square error (RMSE) 
values for model fit are presented below each section. 

Response Variable Source df Residual df F value p value 

Main stalk  
kernel weight 
(treatment factors, 
10 site-years) 

Plant Density (D) 3 45.50 189.75 *** 

Genotype (G) 1 249.84 5.06 * 

Tiller Presence (P) 1 198.00 3.36 Ns 

D × G 2 249.84 1.42 Ns 

D × P 2 198.00 3.16 * 

G × P 1 198.00 0.01 Ns 

D × G × P 2 198.00 0.06 Ns 

Marginal R2 = 0.08, Conditional R2 = 0.60, RMSE = 42.5 mg kernel-1 

Comprehensive  
kernel weight 
(treatment factors, 
10 site-years) 

Plant Density (D) 3 45.31 187.62 *** 

Genotype (G) 1 248.72 5.34 * 

Tiller Presence (P) 1 198.00 2.05 Ns 

D × G 2 248.72 1.50 Ns 

D × P 2 198.00 2.89 Ns 

G × P 1 198.00 0.66 Ns 

D × G × P 2 198.00 0.36 Ns 

Marginal R2 = 0.32, Conditional R2 = 0.54, RMSE = 41.9 mg kernel -1 

Main stalk  
kernel weight 
(observed 
variables, 17 site-
years) 

Observed Plant Density (M) 1 187.83 6.05 * 

Observed Tiller Density (T) 1 332.13 1.49 Ns 

Yield Environment (E) 3 89.95 388.45 *** 

M × T 1 367.25 2.87 Ns 

M × E 2 201.68 0.81 Ns 

T × E 2 357.11 0.24 Ns 

M × T × E 2 393.53 0.72 Ns 

Marginal R2 = 0.32, Conditional R2 = 0.54, RMSE = 46.1 mg kernel -1 

Observed Plant Density (M) 1 188.11 6.35 * 
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Comprehensive  
kernel weight 
(observed 
variables, 17 site-
years) 

Observed Tiller Density (T) 1 332.89 0.42 Ns 

Yield Environment (E) 3 88.59 420.86 *** 

M × T 1 368.32 1.69 Ns 

M × E 2 201.95 0.91 Ns 

T × E 2 357.34 0.09 Ns 

M × T × E 2 393.71 0.91 Ns 

Marginal R2 = 0.32, Conditional R2 = 0.54, RMSE = 44.6 mg kernel -1 
*** significant at p ≤ 0.001; * significant at p ≤ 0.05; Ns, not significant 

 
Table B.4 Analysis of variance results for yield response given observed variables primary ears 
ha-1, secondary ears ha-1, tiller axillary ears ha-1, and tiller apical ears ha-1 by yield environment 
(E). Tested source of variation (Source), degrees of freedom (df), degrees of freedom of residuals 
(Residual df), F value, and the associated p value significance are presented. All sources with p 
values ≤ 0.05 are shown in boldface font. Coefficient of determination (R2) and root mean square 
error (RMSE) values for model fit are presented below each section. 

Source df Residual df F value p value 

Primary Ears × Yield Environment (E) 3 119.67 568.12 *** 

Secondary Ears × E 3 527.00 38.69 *** 

Tiller Axillary Ears × E 3 524.34 81.03 *** 

Tiller Apical Ears × E 3 522.37 2.30 Ns 

Marginal R2 = 0.84, Conditional R2 = 0.84, RMSE = 1.16 Mg ha -1 
*** significant at p ≤ 0.001; * significant at p ≤ 0.05; Ns, not significant 
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Figure B.1 Environmental characterization of site-years added to those described previously in 
Figure 2.1. Annual season normal precipitation and temperature deviation for 1991-2020 are 
presented for site-years (a) Buhler 2021, (b) Colby A 2021, (c) Goodland 2021, (d) Greensburg 
2021, (e) Garden City 2021, (f) Keats 2021, and (g) Selkirk 2021. Season normal precipitation 
and temperature characterization by site-year are shown in panel h, referring to the panel letter of 
described site-years. Bold vertical lines in panels a - g indicate normal average temperature for 
site-year season date ranges, while bold horizontal lines indicate normal precipitation 
accumulation for site-year season date ranges. Year of study for each site-year (panels a - g) is 
indicated with a large, opaque point and enlarged text, and considers both precipitation and 
irrigation in the water supply value (y-axis). All other years in panels a - g are shown with 
transparent points and smaller text, and water supply (y-axis) includes only precipitation. Base 
period for all climate normal calculations was 1991-2020. 
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Equation B.1 
𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  =  𝜇𝜇 +  𝛼𝛼𝑖𝑖  +  𝛽𝛽𝑗𝑗  +  𝜃𝜃𝑘𝑘  +  𝛿𝛿𝑙𝑙  +  𝛼𝛼𝑖𝑖𝛽𝛽𝑗𝑗  +  𝛼𝛼𝑖𝑖𝜃𝜃𝑘𝑘  +  𝛼𝛼𝑖𝑖𝛿𝛿𝑙𝑙  +  𝛽𝛽𝑗𝑗𝜃𝜃𝑘𝑘  +  𝛽𝛽𝑗𝑗𝛿𝛿𝑙𝑙  +  𝜃𝜃𝑘𝑘𝛿𝛿𝑙𝑙  

+  𝛼𝛼𝑖𝑖𝛽𝛽𝑗𝑗𝜃𝜃𝑘𝑘  +  𝛼𝛼𝑖𝑖𝛽𝛽𝑗𝑗𝛿𝛿𝑙𝑙  +  𝛽𝛽𝑗𝑗𝜃𝜃𝑘𝑘𝛿𝛿𝑙𝑙  +  𝛼𝛼𝑖𝑖𝛽𝛽𝑗𝑗𝜃𝜃𝑘𝑘𝛿𝛿𝑙𝑙  +  𝑏𝑏𝑚𝑚  +  𝑑𝑑𝑛𝑛(𝑚𝑚)  +  ℎ𝑞𝑞(𝑛𝑛(𝑚𝑚))  
+ 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 

𝑏𝑏𝑚𝑚  ∼  𝑁𝑁(0,𝜎𝜎𝑏𝑏2), 
𝑑𝑑𝑛𝑛(𝑚𝑚)  ∼  𝑁𝑁(0,𝜎𝜎𝑑𝑑2), 

ℎ𝑞𝑞(𝑛𝑛(𝑚𝑚))  ∼  𝑁𝑁(0,𝜎𝜎ℎ2),𝑎𝑎𝑎𝑎𝑎𝑎  
𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  ∼  𝑁𝑁(0,𝜎𝜎𝜀𝜀2). 

 

In this case, yijklmnp is one of the observed yield component responses for site-years with a 

complete three-way factorial treatment structure, namely 

    • main stalk ear density (ears ha-1), 

    • total ear density (ears ha-1), 

    • main stalk kernel density (kern m-2), 

    • total kernel density (kern m-2), 

    • main stalk kernel weight (mg kern-1), or 

    • total kernel weight (mg kern-1), 

of a plot with tiller presence level k of genotype j of target plant density i of site-year l, observed 

in sub-plot q of whole plot n of block m; μ is the overall mean (intercept); αi is the fixed effect of 

the ith level of target density; βj is the fixed effect of the jth level of genotype; θk is the fixed effect 

of the kth level of tiller presence; δl is the fixed effect of the lth site-year; all combinations of the 

factors αi, βj, θk, and δl indicate double, triple, and quadruple interactions between them at 

double, triple, and quadruple levels; bm is the random intercept effect of block m; dn(m) is the 

random intercept effect of the whole plot within block m; hp(n(m)) is the random intercept effect of 

the sub-plot within whole plot n within block m; and εijklmnp is the residual term. 
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Equation B.2 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  =  𝜇𝜇 +  𝛼𝛼𝑗𝑗  +  𝛽𝛽𝑚𝑚𝑖𝑖  +  𝛾𝛾𝑡𝑡𝑖𝑖  +  𝜃𝜃𝑚𝑚𝑖𝑖𝑡𝑡𝑖𝑖  +  𝛿𝛿𝑗𝑗𝑚𝑚𝑖𝑖  +  𝜏𝜏𝑗𝑗𝑡𝑡𝑖𝑖  +  𝜁𝜁𝑗𝑗𝑚𝑚𝑖𝑖𝑡𝑡𝑖𝑖  +  𝑠𝑠𝑘𝑘  +  𝑏𝑏𝑙𝑙(𝑘𝑘)  

+ 𝑑𝑑𝑚𝑚(𝑙𝑙(𝑘𝑘)) +  ℎ𝑛𝑛(𝑚𝑚(𝑙𝑙(𝑘𝑘)))  + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 

𝑠𝑠𝑘𝑘  ∼  𝑁𝑁(0,𝜎𝜎𝑠𝑠2), 

𝑏𝑏𝑙𝑙(𝑘𝑘)  ∼  𝑁𝑁(0,𝜎𝜎𝑏𝑏2), 

𝑑𝑑𝑚𝑚(𝑙𝑙(𝑘𝑘))   ∼  𝑁𝑁(0,𝜎𝜎𝑑𝑑2), 

ℎ𝑛𝑛(𝑚𝑚(𝑙𝑙(𝑘𝑘)))  ∼  𝑁𝑁(0,𝜎𝜎ℎ2),𝑎𝑎𝑎𝑎𝑎𝑎  

𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  ∼  𝑁𝑁(0,𝜎𝜎𝜀𝜀2). 

In this case, yijklmn is one of the observed yield component responses, namely 

    • main stalk ear density (ears ha-1), 

    • total ear density (ears ha-1), 

    • main stalk kernel density (kern m-2), 

    • total kernel density (kern m-2), 

    • main stalk kernel weight (mg kern-1), or 

    • total kernel weight (mg kern-1), 

of the ith plot, found in sub-plot n of whole plot m of block l in site-year k of environmental 

cluster j; mi is the observed main plant density of plot i; ti is the observed tiller density of plot i;  

μ is the overall mean (intercept); αj is the fixed effect of the jth level of environmental cluster; β is 

the fixed effect associated with observed main plant density; γ is the fixed effect associated with 

observed tiller density; θ is the fixed effect associated with the interaction of observed main plant 

density and observed tiller density; δj is the fixed effect associated with observed main plant 

density in environment cluster j; τj is the fixed effect associated with observed tiller density in 

environment cluster j; ζj is the fixed effect associated with interaction of observed main plant 

density and observed tiller density within environment cluster j; sk is the random intercept effect 

of site-year k; bl(k) is the random intercept effect of block l within site-year k; dm(l(k)) is the random 

intercept effect of the whole plot within block l within site-year k; hn(m(l(k))) is the random 

intercept effect of the sub-plot within whole plot m within block l within site-year k; and εijklmn is 

the residual term. 
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Appendix C - Chapter 4 Supplementary Material 

 
Figure C.1 Observation density of true plant density for each of the three defined plant density 
groups. Groups were based on target plant density levels of 25000 pl ha-1 (rust), 42000 pl ha-1 
(gold), and 60000 pl ha-1 (green). 
 

 
Figure C.2 Correlations among environmental variables shown independently in Figure 4.2. 
Point size indicates the magnitude of correlation, while color indicates the sign (-, gold; +, blue). 
GDD, cumulative growing degree days; PTQ, growing period photothermal quotient; Tmin, mean 
daily minimum growing period temperature; Tmax, mean daily maximum growing period 
temperature; VPD, cumulative vapor pressure deficit; NO3, soil test nitrate; P, soil test 
phosphorus. 
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Equation C.1 Selected model for prediction of tiller densities in corn fields of various target 

plant densities and nutrient management strategies, considering non-limiting moisture 

availability and sufficiency of other potential limiting factors not listed. 

• Data model: zi = yi or zi ∝ yi. 

• Process model: [yi|αi] ≡ Binomial(αi), where  

αi = inverse logit [β0 + f1d(gid) + f2d(qid) + f3d(lid) + f4d(xid) + f5d(vid) + f6d(nid) + f7d(pid)]. 

• Parameter model: β0 ∝ 1. 

That is,  

• zi is the observed tiller density ha-1, assumed to be the same as yi, the true density; 

• αi is the bulk of the process model as described above; 

• β0 is the y-intercept of fitted model; 

• d is a plant density cluster with factor levels A (25000 plants ha-1), B (42000 plants ha-1), 

or C (60000 plants ha-1);  

• f1d is the smooth effect of cumulative growing degree days (GDD) for plant density 

cluster d; 

• gid is the cumulative GDD of observation i in plant density cluster d; 

• f2d is the smooth effect of photothermal quotient (PTQ) for plant density cluster d; 

• qid is the PTQ of observation i in plant density cluster d; 

• f3d is the smooth effect of mean minimum temperature for plant density cluster d; 

• lid is the mean seasonal minimum temperature of observation i in plant density cluster d; 

• f4d is the smooth effect of mean maximum temperature for plant density cluster d; 

• xid is the mean seasonal maximum temperature of observation i in plant density cluster d; 

• f5d is the smooth effect of the cumulative vapor pressure deficit (VPD) for plant density 

cluster d; 

• vid is the cumulative VPD of observation i in plant density cluster d; 

• f6d is the smooth effect of soil test nitrate (NO₃) for plant density cluster d; 

• nid is the soil test NO₃ (ppm) of observation i in plant density cluster d; 

• f7d is the smooth effect of soil test phosphorus (P) for plant density cluster d; and 

• pid is the soil test P (ppm) of observation i in plant density cluster d.  
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Appendix D - Chapter 5 Supplementary Material 

Table D.1 Biomass ANOVA p-values. AB, aboveground dry biomass; R, reproductive dry 
biomass; S, stem dry biomass; L, leaf dry biomass; (ha), kilograms per hectare; (pl), kilograms 
per plant; D, plant density; G, genotype; P, tiller presence; T, sampling. 

Source AB (ha) AB (pl) R (ha) R (pl) S (ha) S (pl) L (ha) L (pl) 

Plant Density (D) *** *** *** *** *** *** *** *** 

Genotype (G)         

Tiller Presence (P) *** ***   *** *** *** *** 

Sampling (T) *** *** *** *** *** *** *** *** 

D × G         

D × P * ***   *** *** *** *** 

D × T *** ***  *** ***  *** * 

G × P        ** 

G × T      *   

P × T *** ***   *** *** *** *** 

D × G × P         

D × G × T         

D × P × T * ***   *** *** ** *** 

G × P × T         

D × G × P × T         

*, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001 
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Table D.2 Water-soluble carbohydrate ANOVA p-value results. WSC, water-soluble stem 
carbohydrates; (m2), grams per square meter; (pl), grams per plant; D, plant density; G, 
genotype; P, tiller presence; T, sampling. 

Source WSC (m2) WSC (pl) 

Plant Density (D) *** *** 

Genotype (G)   

Tiller Presence (P) *** *** 

Sampling (T) *** *** 

D × G   

D × P *** *** 

D × T ***  

G × P   

G × T   

P × T *** *** 

D × G × P   

D × G × T   

D × P × T *** *** 

G × P × T  * 

D × G × P × T   

*, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001 
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Figure D.1 Environmental characterization of evaluated site-years. Annual season normal 
precipitation and temperature deviation for 1991-2020 are presented for site-years (a) Manhattan 
2019, (b) Goodland 2019, (c) Garden City 2019, (d) Goodland 2021, (e) Garden City 2021, and 
(f) Keats 2021. Season normal precipitation and temperature characterization by site-year are 
shown in panel g, and average grain yields by site-year are shown in panel h – both refer to the 
panel letter of described site-years. Bold vertical lines in panels a - f indicate normal average 
temperature for site-year season date ranges, while bold horizontal lines indicate normal 
precipitation accumulation for site-year season date ranges. Year of study for each site-year 
(panels a - f) is indicated with a large, opaque point and enlarged text, and considers both 
precipitation and irrigation in the water supply value (y-axis). All other years in panels a - f are 
shown with transparent points and smaller text, and water supply (y-axis) includes only 
precipitation. Base period for all climate normal calculations was 1991-2020. 
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