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Abstract
The Nicholas-Bailey model was designed to study population dynamics of host-parasite sys-

tems. The model was first developed by Nicholson and Bailey (1935) and applied to parasites

(Encarsia Formosa) and hosts (Trialeurodes vaporariorum). These types of models are presented

by discrete-time equations for biological systems that involve two species, e.g. a parasite pop-

ulation and its hosts. In this dissertation, we develop and then investigate a revised version of

Nicholson-Bailey’s discrete host-parasite model. Additionally, we incorporate and analyze the

Allee effect dynamics in this newly constructed model.

In Chapter one of this dissertation, we outline some background and literature. Second, we

provide basic definitions of ordinary differential equations. We define several core concepts of dy-

namical systems including stability and instability analysis, manifold analysis, stable and unstable

manifold, invariant manifold, center manifold, bifurcation, and the Lambert W function. Then we

provide some known results and theorems that are useful in this research investigation.

Third, we study the dynamics behavior of the newly developed system of a host-parasite model

with four positive parameters in the first closed quadrant. A re-scaling procedure will be then

applied to reduce the model to a two-parameter model that reproduces the entire dynamics of the

original model. The model always possesses two boundary steady states and a third interior steady

state may exist for particular conditions imposed on the parameters. Moreover, by applying the

linearized stability function, we find thresholds for which the system is stable or unstable. We

then study locally the long-term stability of steady states and center manifold theory based on the

separating boundary curves for non-hyperbolic steady states, that is analyzing steady states when

crossing from stable to unstable regions. We then analyze the stability for one or two parameter bi-

furcation (co-dimension one or two) depending on a different range of parameters, by considering



the linearization of the model about each of the steady states. We show a period-doubling bifurca-

tion occurs once the eigenvalue crosses these thresholds, leading to chaos. Numerical simulations

support the results and conclusions.

Fourth, we introduce the density dependence of the Allee effect and population dynamics into

the model by adding a parameter to the modified system of the Nicholson-Bailey model. We then

study the local stability of its steady states. Multiple bifurcation analyses of the system, including

the period-doubling behavior and Neimark-Sacker bifurcation, will be analyzed. We then identify

regions where the Allee effect system ultimately leads to chaos. Finally, the modified systems

of the Nicholson-Bailey model and the Allee effect model are compared by analyzing different

short-term and long-term dynamical behaviors and results acquired from the two systems.
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the linearization of the model about each of the steady states. We show a period-doubling bifurca-

tion occurs once the eigenvalue crosses these thresholds, leading to chaos. Numerical simulations

support the results and conclusions.

Fourth, we introduce the density dependence of the Allee effect and population dynamics into

the model by adding a parameter to the modified system of the Nicholson-Bailey model. We then

study the local stability of its steady states. Multiple bifurcation analyses of the system, including

the period-doubling behavior and Neimark-Sacker bifurcation, will be analyzed. We then identify
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Chapter 1

Introduction

Mathematical modeling can be defined as developing a system of equations (differential, integral,

functional, etc.) called models to represent a phenomenon such as a biological event or a physio-

logical event that is either observable or not1. It examines how models can be used to investigate

real-world problems. In ecology, variables affecting herbivory, such as plant defense, natural herbi-

vore enemies, adaptive herbivory and the consequences on plant community dynamics are studied.

Conventional models of plant-herbivore interactions are based on the predator–prey system2;3. The

interaction between herbivores and plants is one of most fundamental processes in ecology, and

it has been the subject of scientific observation and thought since Aristotle4, although mathemat-

ical modeling of plant-herbivore interactions has only been used for the past few decades4. The

well-known predator-prey models of Lotka and Volterra were among the first mathematical mod-

els in ecology5;6. There are a wide range of characteristics of plant-herbivore interactions that

are included in the theory and modeling of plant-herbivore systems and extend beyond the Lotka-

Volterra model and continuous-time models joined by discrete-time difference equation models7.

In these studies, interactive herbivory refers to conditions in which the herbivore biomass is af-

fected by plant biomass, and proportionately, the plant biomass is disturbed by herbivore biomass;

in other words, there is a feedback loop. Because the plant has a positive effect on herbivore growth

rate and the herbivore has a negative effect on plant growth rate, this feedback unlike cooperative

systems is negative.
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It is worth mentioning that plant-herbivore dynamics were first divided into two categories by

Caughley: noninteractive and interactive8. For noninteractive models, consumers have no effect

on plant or vegetation growth. That is, herbivore-vegetation interactions are unique in which they

do not deplete the plants’ critical biomass7, because it has no effect on the vegetation’s growth rate

or size.

Biologists and agricultural ecologists are particularly interested in discrete models with differ-

ence equations for interacting populations, since their time units are discrete. Models in discrete

time are actually more plausible when populations do not overlap in their generations than models

based on continuous time, although they might require more sophisticated theories to analyze. A

population with a one-year life cycle, such as insects, certainly experiences this phenomenon.

Below are some of the recent studies in the field of dynamical systems. Several forms of

mathematical models are used in these studies, from continuous to partial to discrete, but they all

relate to interactive systems.

Gutierrez et al. provided a model that was a system of partial differential equations. They

considered the affect of herbivores on various plant sections which was based on the McKendrick

von Foerster equation9.

Leah Edelstein-Keshet described her model for a plant-herbivore system with plant quality

and herbivore density as variables10. The mathematical model for her study was presented by the

following system

dq

dt
= f(q, h),

dh

dt
= g(q, h)

where the functional responses f and g represent the rates of change in plant quality and herbivore

population, respectively. Depending on the forms of q and h, both functions were determined

or conjectured based on biological information corresponding to a particular plant and herbivore

system.

An interesting difference equation model was formulated and analyzed by Allen et al. for the

plant-herbivore system12. According to their model, two control strategies, cane removal and pes-

2



ticide application, were developed in their work. They found that there were two equilibria in the

system, one where the pest was present (disease state) and one where the pest was absent (disease-

free state). Different regions were found in parameter space for global stability of the equilibria. In

the absence of global stability, it was shown that there existed periodic or quasiperiodic solutions.

The analyzed system is given below:

Vn+1 =
Vnh (An)

α1 + α2Vnh (An)
,

An+1 = α3 (Vn + 1)An

where V0 and A0 are positive initial conditions, and the function h denotes either of the two func-

tions h1 or h2 as follows:

h1(A) =
1

1 + A2
,

h2(A) = exp(−A)

Powell et al. created a variety of mechanistic models, ranging from strategic population models

of beetle outbreaks to tactical behavior models detailing how beetles chose host trees13. They an-

alyzed the behavior of their system of equations heuristically and compared it with observations.

One example of a qualitative heuristic comparison is Powell et al.’s diagram of the behavior of

mountain pine beetles nesting population and Geiszler et al.’s observations (1980)14. While Geis-

zler et al. observed data on the cumulative number of successful Mountain Pine Beetles (MPB)

attacks on a single focus tree, Powell et al. supplied data about the number of MPB nesting in a

focus tree as a function of flight hours. The numbers in Powell et al.’s diagram and those in Geis-

zler et al.’s observations were very similar. Powell et al. integrated three mathematical approaches

to create a geographical framework for assessing the danger of MPB attacks on individual hosts15.

According to the preliminary results of the study, stand microclimate, which is the collection of cli-

matic factors measured at specific locations close to the earth’s surface, significantly impacts attack

risk more than host immunity or stand age. Powell et al. investigated the quantitative modeling and

3



analysis of direct temperature control as well as how these models revealed adaptive seasonality to

oviposition, or egg laying, dates for succeeding generations16. According to their study, a stable

fixed point on the developmental circle map correlates with univoltinism. This is the condition of

generating a single offspring throughout a season, especially one with eggs that could hibernate,

which is associated with reproductive success in many species living in temperate environments.

In broad temperature bands, univoltine fixed points were stable and robust, but suddenly lose sta-

bility at the edges of these bands due to maladaptive cycles. The temperature bands in their study

were used when studying the quantitative modeling and analysis of direct temperature control and

how these models highlighted adaptive seasonality.

Summers et al. studied effects of periodic forcing on four discrete-time ecosystem models17.

A periodic force is one that repeats itself periodically. This particular force effect can be applied

as a force feedback stimulus. Their results showed that it might cause chaotic behavior.

Li et al.,18 studied a mathematical model that took plant toxicity into account when calculating

the functional response of plant-herbivore interactions. The authors explored how differences in

dynamical behavior could be attributed to inter-specific variations in plant biology, growth and de-

fense strategies, as well as responses to toxins in herbivores. It was found that herbivores were able

to promote plant coexistence by lowering competitive effects and thus contributing to biodiversity

with realistic parameter values.

According to Sui et al., stoichiometry-based models highlighted the significance of plant nu-

trition for the dynamics of herbivore-plant interactions19. Stoichiometry refers to the correlation

between reactant and product quantities prior to, during, and after chemical processes. A contin-

uous stoichiometric plant-herbivore model was examined in their study. They then examined the

dynamics of the continuous and discrete models after introducing the discrete analog.

In Kang et al.’s study, a model in the form of host-parasite interaction observed quasi-periodicity,

period-doubling, and then chaos behavior. They showed that the interior equilibrium point was

globally stable in their continuous model20.

In Agiza et al.’s study, a discrete predator-prey model with Holling’s Type II response function

which led to chaotic dynamics23. They took into account predators’ natural mortality rate. The
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model was presented by

xn+1 = axn (1− xn)− bxnyn
1 + εxn

yn+1 =
dxnyn

1 + εxn
,

where the nonnegative parameters are a, b, c, and d. Prey and predator densities are represented by

x and y, respectively. a and ε stand for the intrinsic growth parameter of the prey and the restriction

on the growth rate of the predator population as the number of prey increases, respectively.

According to research by Liu et al., interactions between boreal hares that mostly consume

twigs in the winter might be impacted by the chemical defenses of woody plants24. The authors

placed a lot of emphasis on how the concentration of toxin frequently fluctuates with the age of

twig segments. Their model took into account the fact that the woody internodes of the youngest

segments of the deciduous angiosperm species of twigs that those hares chose to consume were

more protected by toxins than the woody internodes of the older segments that subtend and support

the younger segments. They found a linear stability of the equilibrium in which the hare population

was extinct and sufficient conditions for the global equilibrium to be stable. Analytical results

confirmed by numerical simulations showed that woody vegetation was a reasonable browse site

for hares in boreal ecosystems and that there were limited cycles in those ranges. They found new

results, showing that hare–plant population cycles could be caused by aging-dependent chemical

defenses within plants.

Kartal used differential and difference equations to study the behavior of a plant-herbivore

model25. The model was presented by

x(n+ 1) =
x(n)(r − αy(n))

(r − αy(n)− rkx(n))e−(r−αy(n) + rkx(n)
,

y(n+ 1) = y(n)eβx(n)−s

The parameters were all positive. To examine the model’s overall behavior, Kartal looked at the

system’s solution in a certain sub-interval, which gave a system of difference equations. His re-

search identified the plant-herbivore system’s boundedness traits, periodic nature, and both local
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and global stability conditions. According to his numerical studies, there was a Neimark-Sacker

bifurcation in certain system regions based on the parameters’ values. As a side note, this sys-

tem can be studied later to show the existence of Neimark-Sacker bifurcation might be proven

theoretically as well.

In a different plant-herbivore model, Din et al. investigated bifurcation analysis and chaos

control for a plant–herbivore model with weak predator functional response26. The classifica-

tion of equilibria was examined topologically. They demonstrated that the boundary equilibrium

experienced transcritical bifurcation, whereas the positive steady-state of the discrete-time plant-

herbivore model underwent Neimark–Sacker bifurcation. The model was presented by

xn+1 =
xn

α (1 + y2
n) + βxn

,

yn+1 = γyn (1 + xn)

Where xn represented the Grapevine (plant) population density and yn represented the Apple Twig

Borer (herbivore) population density. Moreover, the parameters α, β and γ were all positive.

After studying a few recent papers in the field of discrete dynamical systems and chaos, it is

worth providing the typical framework for discrete-generation host-parasite models which may

take the following form:

Pn+1 = λPnf (Pn, Hn)

Hn+1 = cλPn (1− f (Pn, Hn))

(1.1)

where P and H are the host (plant) and parasite (herbivore) population biomasses in consecutive

generations n and n+ 1, respectively. The parameter λ denotes the host’s inherent rate of rising in

the absence of parasites and may be presented by λ = er where r is the intrinsic rate of increase.

Also, c is the biomass conversion constant, and f is the function determining the fractional survival

of parasitized hosts. n acquires the non-negative integer values.

The basic version of this model is that of Nicholson31 and Nicholson and Bailey32, who inves-

tigated in depth a model in which the fraction of hosts escaping parasitism is given by the Poisson

6



distribution’s zero-term, namely

f (Pn, Hn) = e−aHn (1.2)

where a represents the average number of contacts per host. As a result, the probability of a host

being attacked is 1− e−aHn . Substituting Equation (1.2) into Equations (1.1) gives:

Pn+1 = λPne−aHn

Hn+1 = cλPn
(
1− e−aHn

)
The Nicholson–Bailey model has a positive equilibrium that is unstable when λ > 134. This may

provide unbounded solutions which are not ecological.

The Nicholson-Bailey host-parasite model was then modified by Beddington et al. as follows:

Pn+1 = λPner(1−Pn/Pmax)−aHn

Hn+1 = cλPn
(
1− e−aHn

) (1.3)

The form er(1−Pn/Pmax) is the host density dependence and growth29. According to this definition,

Pmax is the host’s environment imposed carrying capacity when the parasite is absent. In system

(1.3), the parasite density depends on the stage attacked by the parasites at a particular time in their

life cycle. During density-dependent growth regulation, the Hn herbivores search for Pn hosts.

It means that herbivores of the next generation depend on the initial host Pn population, before

parasitism.

Now, we can consider the following system for a more realistic representation model

Pn+1 = Pn exp

(
r

(
1− Pn

k

)
− bHn

)
Hn+1 = Pn (1− exp (−aHn))

(1.4)

Beddington et al studied the predator-prey model for the case where b equals a in the density-

dependent case29. Choosing the appropriate family chart of coordinate changes (dependent upon
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a set of parameters), assuming b = r, subsequently the three positive parameters a, r, and k

determine the behavior of the two populations. In this system, the Ricker difference equation11

Pn+1 = Pn exp r (1− Pn/k) is used to represent the dynamics for H = 0. Thus, the growth of the

prey is limited and does not become unbounded if the Ricker difference equation is used. Using

the same idea, we can develop models that are density dependent and may take the general form:

Pn+1 = Png (Pn) f (Hn)

Hn+1 = Pn (1− f (Hn))

where a prey species’ survival rate in each generation is given by f . We may be able to modify

systems like (1.5) to exhibit features like Neimark-Sacker bifurcation30

Pn+1 = rPn exp (−bHn)

Hn+1 = Pn (1− exp (−aHn))

(1.5)

and the period-doubling bifurcations associated with the Ricker map.

Roughly speaking, Neimark–Sacker bifurcation of the model defines that both host and para-

site populations oscillate around some mean values. The oscillations are stable and will continue

indefinitely under appropriate conditions.

In addition to having an attracting invariant curve that undergoes Neimark-Sacker bifurcation,

there is a nontrivial steady-state solution in system (1.5) where the parameter values are stable for a

certain range, which can be explicitly determined. The steady state may exhibit repelling behavior

in some parameter spaces or attracting dynamics in other parameter regions.

A general model for the interaction between plants and herbivores20 can also be presented by

Pn+1 = Pner(1−Pn/Pmax)−aHn

Hn+1 = Pner(1−Pn/Pmax)
(
1− e−aHn

)
considering the following assumptions:
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Assumption 1. Pn represents the plant population’s (nutritious) biomass after the attacks by the

herbivore population, but before its defoliation. At the end of the season n, Hn represents the

biomass of herbivores before they die.

Assumption 2. In the absence of herbivores, biomass growth is governed by Ricker’s model with

constant growth rates r and plant carrying capacities Pmax. Ricker dynamics determine how much

new foliage the herbivore can consume.

Assumption 3. It is assumed that herbivores search for food at random. A herbivore’s total con-

sumption of biomass is measured by a constant, a, that correlates with the leaf area consumed. It

takes the herbivore one unit of time (year) to complete its life cycle, and the larger the parameter

a, the faster the feeding rate.

Kang et al. studied the interactions between certain plants and herbivores20. They developed an

interesting host-parasite model. Leaves and herbivore biomass considered as state variables were

used in their two-dimensional discrete-time model. In their model, the parameter space consisted

of two parameters, one representing the growth rate of the host population, the other representing

the damage caused by herbivores. Bifurcation diagrams presented in the parameter space were

insightful. The bistability result and the crisis of a strange attractor suggested two alternative

strategies for controlling herbivore populations: decreasing the population below some threshold

or increasing the growth rate of the plant leaves. The model was given by:

xn+1 = xner(1−xn)−ayn

yn+1 = xner(1−xn)
(
1− e−ayn

)
Asheghi analyzed the dynamics behavior of a discrete-time model for a two-dimensional map

with four parameters30. He studied steady-state stability locally, period-doubling, and the Neimark

–Sacker bifurcations. He found that the standard form of period-doubling bifurcation and Neimarck
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Sacker bifurcation are sometimes stable or unstable. The plant–herbivore model was presented by:

f(x, y) = x exp
(
r
(

1− x

k

)
− by

)
g(x, y) = x(1− exp(−ay)),

in the case where x ≥ 0, y ≥ 0, and all the real parameters a, b, r, and k were positive, and a 6= b.

Initial thoughts for our model came from the forest pests defoliating millions of acres of forest

each year. This is one example of a larger group of plant-herbivore interactions27;28. This makes

them one of the most serious natural and agricultural stability challenges. Posing a great threat to

North America’s forests, the European Gypsy Moth (Lymantria dispar or EGM), a European moth

that came to Massachusetts in 1869, devoured more than 300 species of trees and shrubs in the

forests of the northeastern part of the US. Caterpillars have only one goal in mind: to kill trees. To

do this, they damage trees, defoliate them, and make them more susceptible to diseases, and other

pests27;28.

A gypsy moth develops from an egg into a larva (caterpillar), then a pupa, and eventually an

adult27;28. 500 to 1,000 eggs of female gypsy moths rest beneath the bark of trees. The eggs hatch

into caterpillars in the spring (April) and enter the pupal stage in the early summer (June to early

July). Adult Gypsy moths can be spotted from July to August after emerging from pupae in 10 to

14 days. The Gypsy Moth has one generation every year, and its population fluctuates in cycles

that continue to climb and drop27;28.

This knowledge gives us the idea of developing a new model shown below. We plan to analyze

the system’s behavior to understand how this is occurring each year.

In this dissertation, we plan to investigate a different system of Nicholson-Bailey’s discrete

host-parasite model presented by:

f(x, y) = x er(1−
x
k

) a

a+ by
,

g(x, y) = x
(

1− a

a+ by

)
,

where the parameters r, k, a and b are positive and a 6= b. We study local and global stability analy-
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ses of the model. We also analyze the stability of period-doubling bifurcation and Neimarck Sacker

bifurcation. Subsequently, we add the Allee effect dynamics to the newly developed Nicholson-

Bailey model. In biology, the Allee effect is a population dynamics phenomena that grows with

increasing density. Warder Clyde Allee, American ecologist, described it for the first time in the

1930s66. A strong Allee effect can be understood as an attractor generated by the extinction equi-

librium. The principal dynamics of the interaction between two species prone to the Allee effect

can be described by a ’phase space core’ of three or four equilibrium states.

Several studies have dealt with the Allee effect in different aspects. Liu et al. examined the

host-parasite interaction in a discrete-time model67. When the Allee effect was added, they found

that the parameter ranges in which population dynamics were chaotic were compressed. Further-

more, the sensitivity to initial conditions of the host-parasitoid system decreased once the Allee

effect was added. Thirdly, they have observed two seemingly complicated dynamics, intermit-

tent chaos, and supertransients, the transient phase’s length, which normally increases rapidly as

system size increases, supertransients, without the Allee effect. By including the Allee effect,

however, these two phenomena were replaced by another type of phenomenon-period alternation,

which eliminated chaos. Based on the three novel findings mentioned above, it can be concluded

that the Allee effect may also reduce dynamic complexity. Liu et al. introduced and described a

single-species model with Allee effect:

Ht+1 = Ht exp

(
r (1−Ht/K) (Ht − c)

Ht +m

)
(1.6)

where Ht represented the population size at time t, and r represented the intrinsic growth rate. The

environment’s carrying capacity was given by K. The term (Ht − c) / (Ht +m) was the Allee

effect added to the original system. The parameter c was the lower bound for the host, while m

was known as the Allen effect constant.

To assess the synergistic effects of Allee effects and parasitism, Kang et al. analyzed popu-

lation dynamics of discrete-time host-parasite systems with component Allee effects, which oc-

curred when a decline in population size results in a reduction in the value of any component of

individual fitness64, generated by predation satiation in hosts, which indicated that predators with
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a functional/numerical Holling type-II response may cause their prey to develop an Allee mech-

anism65. In fact, one of the most intriguing results suggested that, because of a substantial Allee

effect and parasitism, it would be conceivable for hosts and parasites to coexist in such large con-

centrations. Under various parameter ranges, they showed that component Allee effects might also

result in the loss of interior equilibrium. The model was presented by:

Nt+1 = F (Nt) = Nt × er(1−Nt)︸ ︷︷ ︸
growth term with intraspecific competition

× I (Nt)︸ ︷︷ ︸
component Allee effects

= Nte
r
(

1−Nt− m
1+bNt

)
.

(1.7)

In this model, r indicated the maximum birth rate of the species, m was the predation inten-

sity, b indicated handling time, the time it takes for a predator to handle food, starting with when

the predator finds its victim and ending when it is consumed, and r, b, and m were all positive

parameters.

Wu and Zhao investigated the qualitative behavior of a discrete host-parasite model with refuge,

which is a term used in ecology to describe a location where an organism might hide from predators

in order to avoid being discovered, and strong Allee effects on the host68. They discovered that the

refuge may lead to the extermination of parasitoids while the hosts were still going strong or that

the refuge may stabilize the hosts-parasitoids’ interaction. If both refuge and Allee effects were

present, they may have had a negative or positive effect on the coexistence of both populations.

In a host-parasitoid model with the refuge and Allee effects in the host, they showed that the

coexistence of two populations would depend on the starting population sizes:

 Nt+1 = (1− γ)Nte
r(1−Nt

K ) + γNte
r(1−Nt

K )e−aPt , t = 0, 1, 2, · · · ,

Pt+1 = γβNt

(
1− e−aPt

) (1.8)

This model incorporated a host population density dependency and subjected each generation of

hosts to a fixed percentage of refuges. γ, K, a, r, and β were all positive constants and 0 < γ < 1.

γ was the fixed proportion of hosts that the parasitoids had access to in each generation. a standed

for searching effectiveness, and Nt and Pt represented the host and parasite population densities
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at generation t, respectively. The carrying capacity, also known as the maximum population size

that could be sustained by the currently available and potentially restricted resources, was repre-

sented by K. The average number of offspring a parasite may produce from a parasitized host was

represented by β, while the host’s intrinsic growth rate was given by r.

Elaydi and Saker investigated the development of several population models using Allee ef-

fects70. They created a number of fitness functions that result in models with Allee effects that

correlate. Their work was focused on a new mathematical model that results from a reasonable

fitness function. Dynamics of 2-periodic systems with Allee effects were then studied. Results

indicated that there existed a 2-periodic carrying capacity that was asymptotically stable.

Luı́s et al. studied two species in a Ricker-type competition model69. In addition to complete

analysis of stability and bifurcation, the authors identified stable and unstable centers of manifolds.

Results of the autonomous Ricker competition showed bifurcation at subcritical points, bubbles,

which may engage in transient behavior that involves splitting into two nearly equal bodies, which

then experience symmetry break before recombining or splitting indefinitely, and period-doubling

bifurcations, but no Neimark-Sacker bifurcations.

By analyzing sources of competition, mutualism, and predator-prey models, Livadiotis and

Elaydi proposed a general framework for establishing the Allee effect71. Their study focused on the

Allee effect caused by interspecific interaction. Additionally, they demonstrated how semistable

equilibria resulted in a greater number of possible Allee effect cores. The model was presented by

xn+1 =
a1x

2
n

1 + x2
n + b1yn

yn+1 =
a2y

2
n

1 + y2
n + b2xn

(1.9)

where xn > 0, yn > 0, a1,2, b1,2 > 0. This model may have nine steady states.

For our Allee effect model, we analyze the local stability of its steady states and bifurcation

theory. The model after adding the Allee effect dynamics to the newly developed Nicholson-Bailey
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model takes the form:

f(x, y) = x1+α er(1−
x
k

) 1

1 + b
a
y
,

g(x, y) = x
(

1− 1

1 + b
a
y

)
,

(1.10)

The system then identifies regions where the Allee effect eventually leads to chaos. After that,

it analyzes multiple bifurcation analyses of the system, including period-doubling behavior and

Neimark-Sacker bifurcation.

This dissertation contains two scientific articles and the rest of the chapters are organized as

follows. Chapter (2) presents an overview of discrete systems, stability, center manifold, and bifur-

cation theory for maps. Chapter (3) is the first scientific paper that shows the analysis of stability

and bifurcations of a modified Nicholson-Bailey type model. In Chapter (4), using the modified

model described in Chapter 2, we investigate the stability and bifurcation of the Nicholson-Bailey

type model with an Allee effect, and the numerical computations have also confirmed our results.

The final chapter provides a summary and comparison of the two scientific articles.
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Chapter 2

Preliminaries

The first few questions this dissertation seeks to answer are: ”Is the steady state stable or unstable?

As the eigenvalue changes, how does it affect the stability or instability? Does it lead to chaos or

not?”. We answer these questions analytically and numerically in Chapters 3 and 4 for different

boundary and interior steady states. This chapter recalls the historical case of stability analysis and

bifurcation theory for maps. It provides some basic definitions and theorems which will be useful

in the sequel. In addition, it presents some results which are inspired by some known theorems

such as the Linearizesd Stability Theorem and Center Manifold Theory.

2.1 Stability of a Steady State

Consider the map F : Rm → Rm and the generation at time n: Xn ∈ Rm then we have the discrete

system

Xn+1 = F (Xn), n = 0, 1, . . . (2.1)

Let the initial population be given by X0, then the steady state can define as follow XN+1 =

F (XN) = XN for some N then Xn = XN for all n ≥ N . This is called steady state of F . For

simplicity, let X∗ be steady state, that is, X∗ = F (X∗). If XN0 is close to X∗ and Xn remains

close to, or within a neighborhood of, X∗ for all n ≥ N0, we then say X∗ is stable steady state.

The following definition can define the stability in formal way.
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Definition 2.1.1. The steady state X∗ is called (locally) stable if for every ε > 0 there exists

δ = δ(ε) > 0 such that ‖X0 −Xn‖ < δ exists, then the solution satisfies ‖X∗ −Xn‖ < ε in Rm.

The steady state X∗ is called asymptotically (locally) stable if it is (locally) stable and there exists

a constant c > 0 such that, if ‖X0 −Xn‖ < c then limn→∞ ‖X∗ −Xn‖ = 0. The steady state X∗

is called unstable if it is not stable.

Theorem 2.1.2. Stability of X∗ can often be determined from Jacobin J = DF (X∗) where D is

the derivative.

• If all eigenvalues of J satisfy |λ| < 1, then X∗ is stable.

• If some eigenvalues of J satisfy |λ| > 1 then X∗ is unstable.

Throughout this work, two different steady states will be shown, a hyperbolic steady state and

a non-hyperbolic steady state. Here is the definition,

2.2 Hyperbolic and Non-Hyperbolic Steady States

Let F (X∗) = X∗ be a steady state of Xn+1 = F (Xn), X ∈ Rm. Then X∗ is called a hyperbolic

steady state if all eigenvalues of Jacobian derivative DF (X∗) have modulus different from 1. The

non-hyperbolic steady state if at least one of the eigenvalues obtained from the Jacobian derivative

DF (X∗) has modulus 1.

In this work applying transformations from trace and determinant plane to the other planes are

one of the most important concepts in our analysis. Define the 2× 2 matrix J by

J =

 a b

c d

 .

determined from the Jacobin matrix J = DF (X∗) and define the trace of J by tr = tr(J) and the

determinant of J by det = det(J) and they are real numbers.

The following linearization theorem states the stability conditions for every initial condition
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X0 = (x0, y0) of (2.1) for the following two dimensional system:

xn+1 = f(xn, yn),

yn+1 = g(xn, yn),
(2.2)

Theorem 2.2.1. (Linearized Stability Theorem35)

(i) If both roots of the quadratic equation

λ2 − trλ+ det = 0 (2.3)

lie in the open unit disk |λ| < 1, then the steady state X∗ of the discrete system (2.1) is

locally asymptotically stable.

(ii) If at least one of the roots of equation (2.3) has absolute value greater than one, then the

steady state X∗ of the discrete system (2.1) is unstable.

(iii) A necessary and sufficient condition for both roots of discrete system (2.3) to lie in the open

unit disk |λ| < 1 is

|tr| < 1 + det < 2. (2.4)

In this case the locally asymptotically stable steady state point X∗ of the discrete system

(2.1) is called a sink.

(iv) A necessary and sufficient condition for both roots of equation (2.3) to have absolute value

greater than one is

|det| > 1 and |tr| < |1 + det| . (2.5)

In this case the steady state point X∗ of discrete system (2.1) is called a repeller.

(v) A necessary and sufficient condition for one root of equation (2.3) to have absolute value less

than one and the other root of equation (2.3) to have absolute value greater than one is

tr2 − 4 det > 0 and |tr| > |1 + det| . (2.6)
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Figure 2.1: Different stability regions (stable, repelling, and saddle) in the trace-determinant (tr-
det) plane.

In this case the unstable steady state X∗ of the discrete system (2.1) is called a saddle point.

(vi) A necessary and sufficient condition for one root of equation (2.3) to have absolute value equal

to one is

|tr| = |1 + det| .

Or

det = 1 and | tr | ≤ 2

In this case the steady state X∗ of equation (2.3) is called a non-hyperbolic point.

Figure (2.1) provided a summary of regions from the Linearized Stability Theorem in the

tr− det plane.

We use Theorem 2.2.1 to obtain the stability conditions. From the inequality (2.4), we have the
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stable condition as follows: 
det < 1

det > tr− 1

det > −tr− 1

(2.7)

because from the right hand side of the inequality (2.4) det > 0, we obtain det < 1. And from

the left hand side, | tr | < 1 + det gives −1− det < tr < 1 + det, meaning that det > tr−1 and

det > − tr−1.

From the inequality (2.5), we have the repelling condition by


det > 1

det > tr− 1

det > −tr− 1

or

 det < tr− 1

det < −tr− 1
(2.8)

Similarly, from the inequality (2.6), we have the saddle condition by


tr < 0

det > tr− 1

det < −tr− 1

or


tr > 0

det < tr− 1

det > −tr− 1

(2.9)

An invariant manifold is important to compute the center manifold, stable manifold, and unsta-

ble manifold for discrete systems or nonlinear maps.

2.3 Invariant Manifolds

Trajectories that are asymptotically departing or approaching an orbit called invariant manifolds.
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2.3.1 Stable and Unstable Manifolds

W s represents the set of trajectories that could take to reach the orbit’s stable eigenvector. It can

be written as

W s (X∗) = {X : F n(X)→ X∗, n→∞}

W u represents the set of trajectories that depart the orbit as time moves forward. It can be

written as

W u (X∗) =
{
X : F−n(X)→ X∗, n→∞

}
.

Es= span of eigenvectors coresponding to eigenvalues of modulus < 1

Eu= span of eigenvectors coresponding to eigenvalues of modulus > 1

Figure 2.2: The local stable and unstable manifolds pass through 0.

Theorem 2.3.1. (Invariant Manifold Theorem) Suppose that F ∈ C2 . Then there exist C2 stable
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W s and unstable W u manifolds tangent to Es and Eu, respectively, at X = 0 and C1 center

manifoldW c tangent toEc atX = 0. Moreover, the manifoldsW c,W s andW u are all invariant69.

Note that the definition of center manifold W c is given below.

2.3.2 Center Manifolds

In this section, we provide the necessary definitions and theorems to analytically calculate the

center manifold, as well as stable and unstable manifolds for any nonlinear. To present the center

manifold theory for map, we start giving the following definition.

Definition 2.3.2. (wiggins42) Center manifold is an invariant manifold tangent at the steady-state

in the direction of eigenvector with one of the eigenvalues of modulus 1.

By using a suitable change of variables, Suppose we have the map

X 7−→ AX + F (X, Y ),

Y 7−→ BY +G(X, Y ),
(2.10)

where X is the center variable, and Y is the stable variable yes it is stable variable and you can see

that (X, Y ) ∈ Rc×Rs, and (X, Y ) ∈ Rc×Rs. Moreover, F andG are Ct (t ≥ 2) nonlinear, second

order or higher, map in some neighborhood of the origin, A is a c × c matrix having eigenvalues

with modulus one, and B is an s× s matrix having eigenvalues with modulus less than one.

We can present the map as a system of difference equation such that

Xn+1 = AXn + F (Xn, Yn) ,

Yn+1 = BYn +G (Xn, Yn) ,
(2.11)

where the interesting dynamics can be studied for the stability of the origin (0, 0) where

F (0c, 0s) = 0c, DF (0, 0) = 0c×(c+s)

G(0c, 0s) = 0s, DG(0, 0) = 0s×(c+s)
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it presented locally as follow

W c(0) = {(X, Y ) ∈ Rc × Rs|Y = h(X), |X |< δ, h(0) = 0, Dh(0) = 0}

for δ sufficiently small and h can be found in the following.

Obviously (X, Y ) = (0, 0) is a steady state of (2.10), and the linear approximation is not

sufficient for determining its stability since at least one of the eigenvalues has modulus 1. We then

have the following theorem.

Theorem 2.3.3. (Wiggins42) There exists a Ct center manifold for solutions of map (2.10). The

dynamics of map (2.10) restricted to the center manifold is, for U sufficiently small, given by the

following map

U 7−→ AU + F (U, h(U)), U ∈ Rc (2.12)

Theorem 2.3.4. (Stability45)

i) Suppose the steady state of (2.12) is stable, asymptotically stable or unstable; then the steady

state of (2.10) is also stable, asymptotically stable, or unstable.

ii) Suppose the steady state of (2.12) is stable. Then if (Xn, Yn) is a staedy state of (2.10) with

(X0, Y0) sufficiently small, there is a solution Un of (2.10) such that as n → ∞, the (X, Y )

coordinates of any point in W c(0) must satisfy

Yn+1 = h(Xn+1). (2.13)

where the map h takes the following form to compute the center manifold

Y = hc(X) = αX2 + βX3 + O
(
X4
)
≡ 0.

Differentiating (2.13) with respect to time implies that the (X, Y ) coordinates of any point in
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W c(0) must satisfy

Yn+1 = Dh(X)Xn+1. (2.14)

As a results, any point in W c(0) must follow the dynamics generated by (2.11). Therefore, substi-

tuting

Xn+1 = AXn + F (Xn, h(Xn)),

Yn+1 = Bh(Xn) +G(Xn, h(Xn))

(2.15)

into (2.14) gives the map

Dh(X)[AX + f(X, h(X))] = Bh(X) + g(X, h(X))

We can now define N(h(X)) to find the center manifold as follows:

N(h(X)) ≡ Dh(X)[AX + F (X, h(X))]−Bh(X)−G(X, h(X)) = 0

Also, the center manifold for map can then find the stable manifold

W s = {(X, Y ) ∈ Rc × Rs : Y = h(X)} ,

In this work, we use the cobweb diagram which is employed to assess the stability of center

manifold’s graphs. The cobweb diagram is one of the best graphical iteration techniques for as-

sessing the stability of steady state. On the v−u plane, we plot a diagonal line u = v and the curve

u = h(v). We start at an initial point v0. Then we move vertically once we hit the graph of h at the

point (v0, h (v0)). We then move horizontally to meet the line u = v at the point (h (v0) , h (v0)).

This determines h (v0) on the v axis. To find the second iteration h(h(v0)) = h2 (v0), we move

again vertically until we strike the graph of h at the point (h (v0) , h2 (v0)), then we move horizon-

tally to meet the line v = u at the point (h2 (v0) , h2 (v0)). Continuing this process, we can evaluate
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Figure 2.3: The cobweb diagram can show if the center manifold is stable or unstable.

all of the points in the orbit of v0, namely, the set {v0, h (v0) , h2 (v0) , . . . , hn (v0) , . . .} .

2.4 Bifurcation

In this section, we present some of the main types of bifurcation theory. Bifurcation means topo-

logically different behavior as the parameter changed, in other words, the dynamic changes as a

particular parameter varies. The main objective of this section is that in the parameter space, we

need to know how to find the bifurcation of the steady-state of the map. Then how can we deter-

mine its stability? In the following, we present the conditions and definitions that we will need to

study our models in this work.

2.4.1 Properties of Bifurcation

Consider a discrete-time dynamical system depending on a parameter r

X 7→ F (X; r), X ∈ Rm, r ∈ R1 (2.16)
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Figure 2.4: The incidence of the three main types of bifurcation in the trace-determinant (tr-det)
plane. Neimark-Sacker bifurcation when det =1, Period-doubling bifurcation when det = − tr−1,
and Saddle-Node bifurcation when det = tr−1.

where the map F is smooth with respect to both X and r. Consider X = X0 to be a hyperbolic

steady state of the system for r = r0. Let us analyze this steady-state and its eigenvalues while

the parameter r varies. We can observe that there are only three ways in which the hyperbolicity

condition can be violated. Either a positive eigenvalues approaches the unit circle and we have

λ = 1, or a negative eigenvalues approaches the unit circle and we have λ = −1, or a pair of

complex eigenvalues reach the unit circle and we have λ1,2 = e±iθ0 , 0 < θ0 < π, for some value of

the parameter r. Figure (2.5) provided the three cases.

In the following, three main types of local bifurcations for maps will be presented. Local

bifurcations of the system Xn+1 = F (Xn) is smooth and occurs at parameter values for which

a steady-state or periodic orbit is non-hyperbolic. We also know that steady-states of a map are

nonhyperbolic if one or more eigenvalues obtained from the Jacobin lie on the unit circle.
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Figure 2.5: From left to right: a positive eigenvalue approaches the unit circle (λ = 1), a negative
eigenvalue approaches the unit circle (λ = −1), or a pair of simple complex eigenvalues reach the
unit circle (λ1,2 = e±iθ0 , 0 < θ0 < π).

2.4.2 Period-Doubling Bifurcation

Consider a nonhyperbolic steady state and one of the eigenvalues associated with the linearization

of the map about the steady state equals −1. This is associated with a bifurcation called period-

doubling. The formal definition is stated as follows.

Definition 2.4.1. The bifurcation associated with the appearance of λ1 = −1 is called a flip (or

period-doubling) bifurcation.

Consider a one-parameter family of Ct (t ≥ 2) one-dimensional maps

x 7→ f(x, r), x ∈ R1, r ∈ R1. (2.17)

To compute the period-doubling bifurcation, there are some conditions sufficient for (2.17) that we

should follow. These conditions are obtained from Wiggins42. It is sufficient for (2.17) to satisfy

f(0, 0) = 0 (2.18)

∂f

∂x
(0, 0) = −1 (2.19)

∂f 2

∂r
(0, 0) = 0 (2.20)

∂2f 2

∂x2
(0, 0) = 0 (2.21)

∂2f 2

∂x∂r
(0, 0) 6= 0 (2.22)
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∂3f 2

∂x3
(0, 0) 6= 0 (2.23)

(2.24)

The equation
(
−∂3f2(0,0)

∂x3 /∂
2f2(0,0)
∂x∂r

)
shows on which side the period doubling bifurcation lies.

In this case the bifurcation said to be stable if

(
∂3f 2

∂x3
(0, 0)/

∂2f 2

∂x∂r
(0, 0)

)
< 0

and it is unstable if (
∂3f 2

∂x3
(0, 0)/

∂2f 2

∂x∂r
(0, 0)

)
> 0

.

2.4.3 Saddle-Node Bifurcation

Definition 2.4.2. A bifurcation associated with the appearance of λ1 = 1 is called a fold, tangent

or saddle-node bifurcation. It has a similar conditions to period-doubling bifurcation.

2.4.4 Neimark-Sacker Bifurcation

Definition 2.4.3. A bifurcation corresponding to the presence of λ1,2 = e±iθ0 , 0 < θ0 < π, is called

a Neimark-Sacker (or torus) bifurcation. This bifurcation require a two or higher dimensional map.

Let r be a parameter and Fr : R2 → R2 with steady state (0, 0) where Fr smoothly depends

on r and −ε < r < ε. Suppose for r close to 0 that DFr(0, 0) has a complex pair of eigenvalues

λ(r), λ(r), λ(r) 6= λ(r) that means

(i) For −ε < r < 0, |λ(r)| = |λ(r)| < 1.

(ii) For r = 0, |λ(0)| = | ¯λ(0)| = 1.

(iii) For 0 < r < ε, |λ(r)| = |λ(r)| > 1.
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Then there are three cases:

(i’) r < 0: (0, 0) attractor.

(ii’) r = 0: the dynamics is not clear.

(iii’) r > 0: (0, 0) repeller.

Theorems and a lemma utilized to calculate the Naimark-Sacker Bifurcation are discussed in

the paragraphs that follow. Consider the system

X 7→ F (X, r), X = (X1, X2)T ∈ R2, r ∈ R1,

where F is a smooth function, which has at r = 0 the steady-state X = 0 with eigenvalues

λ1,2 = e±iθ0 , 0 < θ0 < π. By the implicit function theorem, the system has a unique steady-state

X0(r) in some neighborhood of the origin for all sufficiently small r, because the eigenvalue is not

on the unit disk |λ| 6= 1. Thus, the system may be expressed by

X 7→ J(r)X + F(X, r), (2.25)

where F is a smooth vector function whose components F1,2 have Taylor expansions in X starting

with at least quadratic terms, F(0, r) = 0 for any sufficiently small r. There are two eigenvalues

from the Jacobian matrix J

λ1,2(r) = µ(r)e±iθ,

where µ(0) = 1, θ(0) = θ0. Thus µ(r) = 1 + α(r), for some smooth function α(r), and α(0) = 0.

Suppose that α′(0) 6= 0 . Then, we can use α as a new parameter and express the eigenvalues in

terms of α so we have λ1(α) = λ(α), λ2(α) = λ(α), where

λ1,2(α) = (1 + α)e±iθ(α)

with a smooth function θ(α) such that θ(0) = θ0.
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Lemma 2.4.4. (Kuznetsov49) By complex variable analysis and defining a new parameter, system

(2.25) can be transformed, for all sufficiently small r, into the following form:

z 7→ λ(α)z + g(z, z̄, α),

where α ∈ R1, z ∈ C1, λ(α) = (1 + α)eiθ(α), and g is a complex-valued smooth function of z, z̄,

and α whose Taylor expansion with respect to (z, z̄) contains quadratic and higher-order terms:

g(z, z̄, α) =
∑
k+l≥2

1

k!l!
gkl(α)zkz̄l

with k, l = 0, 1, . . .

Lemma 2.4.5. The map

z 7→ λz +
g20

2
z2 + g11zz̄ +

g02

2
z̄2 +O

(
|z|3
)
,

where λ = λ(α) = (1 + α)eiθ(α), gij = gij(α), can be transformed by an invertible parameter-

dependent change of complex coordinate.

z = w +
h20

2
w2 + h11ww̄ +

h02

2
w̄2,

for all sufficiently small |α|, into a map without quadratic terms:

w 7→ λw +O
(
|w|3

)
provided that

eiθ0 6= 1 and e3iθ0 6= 1

Lemma 2.4.6. The map

z 7→ λz +
g30

6
z3 +

g21

2
z2z̄ +

g12

2
zz̄2 +

g03

6
z̄3 +O

(
|z|4
)
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where λ = λ(α) = (1 + α)eiθ(α), gij = gij(α), can be transformed by an invertible parameter-

dependent change of coordinates

z = w +
h30

6
w3 +

h21

2
w2w̄ +

h12

2
ww̄2 +

h03

6
w̄3

for all sufficiently small α, into a map with only one cubic term:

w 7→ λw + c1w
2w̄ +O

(
|w|4

)
provided that

e2iθ0 6= 1 and e4iθ0 6= 1

Lemma 2.4.7. (Normal form for the Neimark-Sacker bifurcation) The map

z 7→ λz +
g20

2
z2 + g11zz̄ +

g02

2
z̄2

+
g30

6
z3 +

g21

2
z2z̄ +

g12

2
zz̄2 +

g03

6
z̄3

+O
(
|z|4
)

where λ = λ(α) = (1 + α)eiθ(α), gij = gij(α), and θ0 = θ(0) is such that eikθ0 6= 1 for k =

1, 2, 3, 4, can be transformed by an invertible parameter dependent change of complex coordinate,

which is smoothly dependent on the parameter,

z = w +
h20

2
w2 + h11ww̄ +

h02

2
w̄2

+
h30

6
w3 +

h12

2
ww̄2 +

h03

6
w̄3,

for all sufficiently small |β|, into a map with only the resonant cubic term:

w 7→ µw + c1w
2w̄ +O

(
|w|4

)
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where c1 = c1(α).

The following theorem summarizes the collected results.

Theorem 2.4.8. Suppose a two-dimensional discrete-time system

X 7→ F (X, r), X ∈ R2, r ∈ R1

with smooth F has, for all sufficiently small |r|, the steady-state x = 0 with eigenvalues

λ1,2(r) = µ(r)e±iθ(r)

where µ(0) = 1, θ(0) = θ0

Let the following conditions be satisfied:

(i) r′(0) 6= 0

(ii) eikθ0 6= 1 for k = 1, 2, 3, 4

Then, there are smooth invertible coordinate and parameter changes transforming the system into

 y1

y2

 7−→ (
1 + α

) cos θ(α) − sin θ(α)

sin θ(α) cos θ(α)


 y1

y2


+

(
y2

1 + y2
2

) cos θ(α) − sin θ(α)

sin θ(α) cos θ(α)


 A(α) −B(α)

B(α) A(α)


 y1

y2

+O
(
‖y‖4

)

with θ(0) = θ0 and A(0) = Re
(
e−iθ0c1(0)

)
, where c1(0) is given by the formula

c1(0) =
g20(0)g11(0) (1− 2µ0)

2 (µ2
0 − µ0)

+
|g11(0)|2

1− µ̄0

+
|g02(0)|2

2 (µ2
0 − µ̄0)

+
g21(0)

2
.

where µ0 = eiθ0

We can now come up with the following general conclusion.
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Theorem 2.4.9. (Generic Neimark-Sacker bifurcation) For any generic two-dimensional one-

parameter system

X 7→ F (X, r),

having at r = 0 the steady state X0 = 0 with complex eigenvalues λ1,2 = e±iθ0 , there is a

neighborhood of X0 in which a unique closed invariant curve bifurcates from X0 as r passes

through zero.

For more details see49.

To determine the stability of Neimark-Sacker bifurcation, we need to determine the direction

(the sign) of a(0), where a(0) can be computed by the following

a(0) = Re

(
e−iθ0g21

2

)
− Re

((
1− 2eiθ0

)
e−2iθ0

2 (1− eiθ0)
g20g11

)
− 1

2
|g11|2 −

1

4
|g02|2 (2.26)

The result is summarized in the following lemma.

Lemma 2.4.10. The invariant circle is asymptotically stable for a(0) < 0 and unstable for a(0) >

042.

2.5 Persistence of Dynamical Systems

Definition 2.5.1 (Freedman43). A semiflow ϕ : Ω×X → X is called strongly ρ-persistent, if

lim
t→∞

inf ρ
(
ϕ(t, x)

)
> 0 ∀x ∈ X, ρ(x) > 0

Definition 2.5.2 (Freedman43). A semiflow ϕ : Ω × X → X is called strongly uniformly ρ-

persistent, if there exists some ε > 0 such that

lim
t→∞

inf ρ
(
ϕ(t, x)

)
> ε ∀x ∈ X, ρ(x) > 0
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Definition 2.5.3 (Massatt44). Let ϕ : Ω×X → X be a semiflow. Then, ϕ is called point-dissipative

(or ultimately bounded) if there exists a bounded subset B of X which attracts all points in X .

2.6 Lambert W Function

In this section, we present LambertW function and its properties. In this work, I will use the letter

W as short written for LambertW .

2.6.1 Properties of Lambert W Function

The multivalued inverse of the mapping W 7→ WeW is the LambertW function. The branches

define by using the equations Wk(k ∈ Z) as follows46

Wk(x) exp (Wk(x)) = x

Wk(x) ∼ lnk x as x→∞, ∀x ∈ R

where lnx is the principal branch of natural logarithm. The properties that will be used in this

work are

x = W (x) eW (x), (2.27)

W−1(x) = x ex, (2.28)

eW (x) =
x

W (x)
, (2.29)

e−W (x) =
W (x)

x
. (2.30)

2.6.2 Real Branches

For the real values, there are two branchesW0(x) (orW (0, x)) andW−1(x) (orW (−1, x)). They are

separately defined on the domains −1
e
≤ x <∞ and −1

e
≤ x < 0, respectively. In addition, W0(x)

maps the positive real axis onto itself with the lower bound at the origin, W0(x) = 0. W0(x) is a
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monotone increasing function with the range of [−1,∞) while W−1(x) is a monotone decreasing

function, with the range of (−∞,−1]. We can observe the behaviour these two monotone functions

in Figure (2.6).

Figure 2.6: Real branches of the Lambert W and inverse functions for W0(x) (dark purple curve)
and W−1(x) (purple curve).
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Chapter 3

Stability Analysis and Bifurcations of a

Modified Nicholson-Bailey Type Model

In this chapter, we investigate the dynamical behavior of a host-parasite model through the mod-

ification of a Nicholson-Bailey (MNB) model that contains four biological parameters in the first

closed quadrant. By a re-scaling procedure, the MNB model is then reduced to a two-parameter

system that almost entirely carries over the comprehensive dynamics of the original model. The

new model always possesses two boundary steady states and we show that a third and unique

interior steady state may exist under certain conditions imposed on one of the parameters.

We then analyze the local stability of each steady state for a different range of parameters by

the linearization process of the model about each steady state. For specific values of the parameters

in which a steady state is non-hyperbolic, the stability and dynamics of the steady state are studied

by the application of bifurcation identities developed from the center manifold theory. Moreover,

using the Jacobian matrix, we find thresholds for which the system is stable or unstable. We

eventually study the stability analysis of a period-doubling bifurcation which may occur once we

cross one of these thresholds, implying irregular dynamics which may lead to chaos. The results

are supported by some simulations.
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3.1 Introduction

The standard NB host- parasite model with three parameters was introduced in 193532. The pri-

mary model is given by the following 2-dimensional map:

f(x, y) = d x e−a y

g(x, y) = c x (1− e−a y)

where x represents the population of a host, y represents the population of a parasite, and parame-

ters d, a, and c are reproductive host rate, searching efficiency, and the number of eggs of parasite

which survive and feed over the hosts, respectively. In this model, the parameter d is assumed to

be independent of x32.

The MNB host-parasite model was then generalized more by different studies33. One of which

takes into consideration the density dependence of the hosts, the parameter d, as a function of x

and then the term d reduces the population of the hosts once it reaches a certain density level k

using the first term of the Poisson distribution20. This model is then modified into the following

map:

f(x, y) = x er
(

1−x
k

)
e−a y

g(x, y) = c x (1− e−a y)
(3.1)

In general, if we modify the model by f(x) = er
(

1−x
k

)
and g(y) = e−a y, then map (3.1) can

be presented by

F (x, y) = x f(x) g(y)

G(x, y) = c x
(
1− g(y)

)
.

(3.2)

In this article, we study a modified version of Nicholson-Bailey model (3.2) in the first closed

36



quadrant with the following functions f and g defined by

f(x) = er
(

1−x
k

)
, and g(y) =

a

a+ by

where the function g is related to the searching efficiency of a parasite population and reaches its

maximum when there is no or a very limited number of parasite and a minimum level when there is

an abundance of parasitoids. This is consistent with the definition g as the searching efficiency from

the original model. Given the new host searching function, model (3.2) then yields the following

form:

F (x, y) = x er
(

1−x
k

)
a

a+ b y

G(x, y) = x
(

1− a

a+ by

)
.

(3.3)

In the following, we will study the dynamics of the MNB model (3.3) and show that it always

has two boundary steady states and a third interior steady state may appear when b > 1. For dif-

ferent parameter values, these steady states may evolve into hyperbolic or non-hyperbolic steady

states. For the hyperbolic steady states, by the application of the Jury’s test, we will characterize

their (in)stability dynamics. However, for non-hyperbolic steady states, we determine the stability

of steady states by the application of center manifold. For these, we first need to do some prelimi-

nary linear transformations of two-dimensional map (3.3) into its normal form. We will also pro-

vide two-dimensional diagrams in (x, r)-plane and (x, k)-plane for two types of codimension-one

bifurcations of the discrete-time dynamical system and a codimension two bifurcation in (r, k)-

plane, each of which indicates the regions where the system induced by our model is stable or

unstable. Also, we will show where flip bifurcation and chaos may occur when traversing from a

region to another. The results are also followed by some simulations for certain parameter values.
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3.2 Steady States of the MNB Model

Consider the following two dimensional map in the first quadrant {(x, y) | x ≥ 0, y ≥ 0} with

non-negative parameters r, k, a and b such that a 6= b, since the case where a = b can be easily

reduced to the system shown in (3.7). Moreover, the case when the parameter a is 0 leads to a

model that is not biologically and mathematically relevant to study, but when the parameter b is 0,

it then becomes a Ricker model.

Map (3.3) can be rewritten by

F (x, y) = x er(1−
x
k

) 1

1 + b
a
y
,

G(x, y) = x
(

1− 1

1 + b
a
y

)
.

(3.4)

From the two-dimensional map defined by equation (3.4), we obtain the following system of

difference equation:

xn+1 = xn e
r(1−xn

k
) 1

1 + b
a
yn
,

yn+1 = xn

(
1− 1

1 + b
a
yn

)
.

(3.5)

Using the change of variables xn = b
a
xn, yn = b

a
yn, and k = bk

a
in MNB system (3.5), it then

follows that

xn+1 = xn e
r

(
1− xn

k

)
1

1 + yn
,

yn+1 = xn

(
1− 1

1 + yn

)
.

(3.6)

For simplicity, we replace xn, yn and k in (3.6) by xn, yn and k respectively. It then leads to a
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model that we will study in the sequel:

xn+1 = xn e
r(1−xn

k
) 1

1 + yn
,

yn+1 = xn

(
1− 1

1 + yn

)
,

(3.7)

where xn ≥ 0, yn ≥ 0, and the terms xn and yn represent the densities of a host population and

a parasitoid population following the original Nicholson-Bailey model definition at time point n,

respectively. The intrinsic growth rate of the host population is denoted by r, and k is the environ-

mental carrying capacity of the host population. It is also assumed that the biological process of

reproduction may occur after generation n and before generation n+ 156.

It can be easily seen that system (3.7) attains two steady states, one is the origin S0 = (0, 0)

and the other is a parasite free state S1 = (k, 0). In addition, for k > 1, an interior steady state

for system (3.7) may appear, denoted by the point S2 = (x∗, y∗), which is obtained from the

intersection of these two functions f1(y) = k − k
r

ln(y + 1) and f2(y) = y + 1 solved from the

model given by system (3.7). These two functions, f1 and f2, are illustrated in Figure 3.1 for

different values of the parameter k. Therefore, it follows that these two functions collide in the

positive quadrant when k > 1.

Proposition 3.2.1. For any k > 1, the functions f1(y) = k − k
r

ln(y + 1) and f2(y) = y + 1 have

a unique intersection in the first quadrant.

Proof. Let us first define h(y) = f1(y)− f2(y). For k > 1, we observe that h(0) = (f1− f2)(0) =

k−1 is positive and h(er−1) = (f1−f2)(er−1) = −er is negative. Moreover, h′(y) = −k
r(y+1)

−1 is

negative for y > −1 hence h is decreasing on (−1,∞). Therefore, h has a unique root y∗ ∈ (0,∞)

for k > 1.

From above, we also obtain that x∗ = y∗ + 1 = f1(y∗) ∈ (1,∞) for k > 1.
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Figure 3.1: Three dark purple curves show the graph of function f1 for different parameter values
k = 0.5, 1 and 2, respectively. The function f2, the light purple, is independent of k. The functions
f1 and f2 have a positive intersection when k > 1.

3.3 Analysis of Local Stability

In this section, we study the local stability analysis of the model defined by system (3.7). In

dynamical systems, local stability refers to the study of behavior of a dynamical system from small

neighborhoods around each steady state. The stability of a system is determined by the calculation

of its corresponding linearized system from a Jacobian matrix computed at each steady state.

The Jacobian matrix of the two dimensional model defined by system (3.7) is calculated by

J =

∂ f
∂ x

∂ f
∂ y

∂ g
∂ x

∂ g
∂ y

 =

 e
r (1−x

k )
1+y

− x r e
r(1−x

k )
k (1+y)

−x e
r(1−x

k )
(1+y)2

1− 1
1+y

x
(1+y)2

 . (3.8)

It then follows that Jacobian matrix (3.8) at the steady state S0 = (0, 0) is given by

J(S0) =

 er 0

0 0

 .
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It is obvious that the eigenvalues of J(0, 0) are λ1 = er > 1 and λ2 = 0 < 1 with the corresponding

eigenvectors (1, 0)T and (0, 1)T , respectively. Since λ1 > 1 and λ2 = 0, the origin is a saddle point.

For the second steady state, the Jacobean matrix at the parasite free steady state S1 = (k, 0) is

given by

J(S1) =

1− r −k

0 k

 ,

showing that the eigenvalues of J(S1) are λ1 = 1 − r and λ2 = k, which depend on parameters

r and k. To determine the stability of S1 = (k, 0), one needs to study different cases which are

stated by the following proposition:

Proposition 3.3.1. According to different ranges of parameter values for r and k, the (in)stability

analysis of the steady state S1 = (k, 0) of the MNB model defined by system (3.7) is given as

follows:

(i) If k < 1 and 0 < r < 2, then S1 = (k, 0) is a stable.

(ii) If k > 1 and r > 2, then S1 = (k, 0) is a repeller.

(iii) If k < 1 and r > 2, then S1 = (k, 0) is a saddle.

(iv) If k > 1 and 0 < r < 2, then S1 = (k, 0) is a saddle.

A steady state S of a discrete-time dynamical system is said to be hyperbolic if all eigenvalues

of the Jacobian matrix at p have a modulus different from 1. Moreover, the steady state S is non-

hyperbolic if at least one of the eigenvalues obtained from the Jacobian matrix at S has modulus 1.

The stability of a non-hyperbolic steady state can be determined by the application of bifurca-

tion formulae developed from center manifold theory. For system (3.7), stability of the steady state

S1 = (k, 0) for non-hyperbolic cases is discussed in the proposition below.

Proposition 3.3.2. Consider sytem (3.7). Then the following statements hold true:
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(i) If k = 1 and 0 < r < 2, then S1 = (k, 0) is half- stable non-hyperbolic steady state.

(ii) If r = 2 and k < 1, then the steady state S1 = (k, 0) is stable.

(iii) If r = 2 and k = 1, then the steady state S1 = (k, 0) is half-stable.

Proof. (i) Suppose k = 1 and 0 < r < 2. To study the dynamics of the steady state S1 = (k, 0) in

the first quadrantQ1 = {(x, y) | x ≥ 0, y ≥ 0}, it is required to explicitly compute the local center

manifold. For the sake of simplicity of calculation, we first translate the steady state S1 = (k, 0)

of system (3.7) to origin S0, which is done by the linear translation (x, y) 7→ (x + k, y). Then the

map associated with sytem (3.7) translates to the following system:

f1(x, y) =(x+ k) er (1−x+k
k ) 1

1 + y
− k,

g1(x, y) =(x+ k)

(
1− 1

1 + y

)
. (3.9)

The Taylor expansion of map (3.9) about the origin is given by

f1(x, y) =− (r − 1)x− k y +
r (r − 2)x2

2 k
+ (r − 1) y x+ k y2 − r2(r − 3)x3

6 k2

− r (r − 2) y x2

2 k
− (r − 1)x y2 − k y3 + O(4), (3.10)

g1(x, y) =k y3 − k y2 − x y2 + k y + x y + O(4).

we can now consider the following change of variables from the span of eigenvectors when k = 1:

 x

y

 =

 1 −1
r

0 1


 u

v

 =

 u− v
r

v

 (3.11)

from which and map (3.9), it then follows that

 u

v

 7→
 1− r 0

0 1


 u

v

+

 r (r−2)
2

u2 +
(
1 + 1

r

)
u v + r2−2r−2

2r2 v2 + O(3)

u v +
(
−1− 1

r

)
v2 + O(3)

 (3.12)
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Assume that the map h takes the following form

u = h(v) = a v2 + b v3 + O
(
v4
)
.

Now we can compute the constants a and b. The function h must satisfy the center manifold

equation

h (λ2v + g̃(v, h(v)))− λ1h(v)− f̃(v, h(v)) = 0

from which the constants a and b can be found as

a =
r2 − 2r − 2

2r3
,

b =
6 + (18 a− 2)r2 + (18 a+ 3)r

6 r3
.

Hence, the graph of h(v) gives the center manifold

h(v) =
(r2 − 2 r − 2)

2 r3
v2 + O(3).

We then have the dynamics on the center manifold by the following map:

v 7→ v +

(
−1− 1

r

)
v2 + O

(
v3
)

(3.13)

Thus, it follows that the steady state of (3.7) is unstable which can be seen in Figure (3.2). In the

original coordinates system, the center manifold at S1 = (1, 0) takes the form

x = 1− 1

r
y +

r2 − 2r − 2

2r3
y2 + O(y3), as y → 0.

The center manifold behaves as a line near (1, 0).

(ii) Similarly, suppose r = 2 and k < 1. To study the dynamics about the steady state (k, 0)

in the first quadrant Q1 = {(x, y) | x ≥ 0, y ≥ 0}, it is required to explicitly compute the local
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Figure 3.2: The center manifold is half-stable when k = 1 for u = h(v).

center manifold. Here, we also translate the steady state S1 = (k, 0) of system (3.7) to origin

S0, which is done by the linear translation (x, y) 7→ (x + k, y). The map associated with sytem

(3.7) translates to system (3.9), and the Taylor expansion of map (3.9) about the origin is given by

(3.10). We can now consider the following change of variables when r = 2:

 x

y

 =

 1 − k
1+k

0 1


 u

v

 =

 u− k
1+k

v

v

 (3.14)

from which and map (3.9), it then follows that

 u

v

 7→
 −1 0

0 k


 u

v

+

 (
1 + k

1+k

)
uv − k2

(1+k)2v
2 + O(3)

uv +
(
−k − k

1+k

)
v2 + O(3)

 . (3.15)

Assume that the map h takes the following form and by some computation, we can obtain the

center manifold by

v = hc(u) = αu2 + β u3 + O
(
u4
)
≡ 0.
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We then have the dynamics on the center manifold by the following map:

u 7→ −u+
2

3 k2
u3 + O

(
u4
)
, as u→ 0 (3.16)

This shows that the behavior of the center manifold is asymptotically stable as u goes to 0. See

Figure (3.3).

Figure 3.3: The center manifold is asymptotically stable when r = 2 for v = h(u).

(iii) Suppose k = 1 and r = 2. Then the Jacobian matrix of this Taylor expansion gives two

eigenvalues on the unit circle one and negative one. We can now consider the following change of

variables:  x

y

 =

 1 −1
2

0 1


 u

v

 =

 u− 1
2
v

v

 (3.17)
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from which and map (3.9), it then follows that

 u

v

 7→
 −1 0

0 1


 u

v

+

 3
2
v u− 1

4
v2 + O(3)

v u− 3
2
v2 + O(3)

 . (3.18)

Assume that the map h takes the following form and by some computation, we get the center

manifold as

u = h(v) = α v2 + β v3 + O
(
v4
)

= −1

8
v2 + O(3).

We then have the dynamics on the center manifold by the following map:

v 7→ v − 3

2
v2 + O

(
v3
)

(3.19)

It follows that the steady state is unstable and that is made obvious by plotting it. In the original

coordinates system, the center manifold at S1 = (1, 0) takes the form

x = 1− 1

2
y − 1

8
y2, as y → 0.

The center manifold behaves as a line near (1, 0).

If k > 1, r = 2 or k = 1, r > 2, then the steady state (k, 0) is non-hyperbolic and one of the

eigenvalues of J(k, 0) has a magnitude greater than 1, thus (k, 0) is unstable.

Remark 1. : For parameter values r = 2 and k = 1, system (3.7) with initial condition x0 > 0 and

y0 > 0 is bounded. To show this, we can see that system (3.7) is reduced to

xn+1 = xn e
2(1−xn) 1

1 + yn
,

yn+1 = xn

(
1− 1

1 + yn

)
,

(3.20)

which has no interior steady state.
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Figure 3.4: The center manifold is half-stable when k = 1 and r = 2 for u = h(v).

The steady state (0, 0) of system (3.20) is a hyperbolic saddle with eigenvalues λ1 = 0 < 1 and

λ2 = e2 > 1, and the steady state (k, 0) is non-hyperbolic with eigenvalues λ1,2 = ±1.

System (3.7) is bounded above on their domain by e
2

and 1 respectively. Therefore, after two

iterations the orbit lies in the square region R defined as R = [0, e
2
]× [0, e

2
].

3.4 Global Stability of the Boundary Steady State S1

In this section, we focus on the global stability and long-term behavior of solutions of the boundary

steady state S1 = (k, 0). This means that all the solutions initiating away from the origin will not

be trapped by S0 and converges to S1. In other words, its domain of attraction of system (3.7) is

the entire positive quadrant.

Prior to providing the proof of global stability, we study the boundedness and persistence of

(3.7) for the steady state S1(k, 0).
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3.4.1 Persistence of the Model

First we provide some basic terminologies from Hal Smith62 in the following. Also, throughout

this section, Ω = (0,∞) and X are a subset of Euclidean space.

What follows is indebted from the original idea of Kang et al.20 For the persistence of the

model at S1 = (k, 0), we define the following

Γ =
{

(x, y) | x ≥ 0, y ≥ 0
}

Γk,0 =
{

(x, y) ∈ Γ | x > 0
}

∂Γk,0 = Γ\Γk,0

Lemma 3.4.1. System (3.7) is uniformly persistent with respect to (Γk,0, ∂Γk,0).

Proof. For n large enough, we have

xn+1 < xne
r(1−xn

k ) <
ker−1

r
= M and, yn+1 < xn = M,

where (xn, yn) is any positive solution of system (3.7).

Therefore, both xn and yn are bounded which means the system is point dissipative.

Let M∂ = {(x0, y0) : (xn, yn) satisfy system (3.7) and (xn, yn) ∈ ∂Γk,0,∀n > 0},

then we can see that M∂ = {(0, y) : y ≥ 0} = ∂Γk,0 with the unique steady state (0, 0).

Let W S(0, 0) be the stable manifold of (0, 0).

Claim:

W S(0, 0) ∩ Γk,0 = ∅.

On the contrary, suppose that there exists a solution (xn, yn) of the system with xn > 0 such that

(xn, yn)→ (0, 0) as n→∞. Then for large n, by sytem (3.7) we have

xn+1 > xne
r
2 .
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Since r > 0, it follows that xn → ∞ as n → ∞, which is a contradiction. It is also clear that

every orbit in M∂ tends to (0, 0) as n→∞. Therefore, (0, 0) is an isolated invariant set in X and

is acyclic in M∂ . From Thieme60 and Hirsch et al.,61 this means ∂Γ(k, 0) repels the solutions of

system (3.7) uniformly with positive xn. Therefore, there exists a c > 0 such that xn > c for n

large enough.

Theorem 3.4.2. There exists a constant c > 0 such that for any x0 > 0 we have the inequalities

below

c < xn <
ker−1

r

Proof. Obvious by the above proposition.

Theorem 3.4.3. System (3.7) is globally stable if 0 < r < 2 and 0 < k < 1.

Proof. To show the global stability of the system, we start constructing the following conditions

of system (3.7) when 0 < r < 2 and 0 < k < 1. For any initial condition x0 > 0, y0 ≥ 0 we have

xn + yn =
xn−1e

r (1−xn−1
k )

1 + yn−1

+ xn−1

(
1− 1

1 + yn−1

)
6 2

k er−1

r
. (3.21)

By adding the equations of system (3.7) for n ≥ 1, we have

xn+1 + yn+1 =
xn

(
e
r (k−xn)

k + yn

)
1 + yn

yn+1

xn+1

=
yn

e
r (k−xn)

k

yn+1

yn
=

xn
1 + yn

(3.22)

ln
xn+1

xn
= ln

(
er(1−xn

k )

1 + yn

)
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= r
(

1− xn
k

)
+ ln

(
1

1 + yn

)
.

In addition,

ln

(
xn+m

xn

)
= ln

(
xn+1

xn
· xn+2

xn+1

· · · xn+m

xn+m−1

)
= ln

(
xn+1

xn

)
+ ln

(
xn+2

xn+1

)
+ · · ·+ ln

(
xn+m

xn+m−1

)
=

n+m−1∑
j=n

ln

(
xj+1

xj

)

=
n+m−1∑
j=n

(
r
(

1− xj
k

)
+ ln

(
1

1 + yj

))

=
n+m−1∑
j=n

r −
n+m−1∑
j=n

(
r
(xj
k

)
− ln

(
1

1 + yj

))
,

That is,

ln

(
xn+m

xn

)
= mr −

m+n−1∑
j=n

(
r
xj
k

+ ln (1 + yj)
)

or
m+n−1∑
j=n

(
r
xj
k

+ ln (1 + yj)
)

= mr − ln

(
xn+m

xn

)
(3.23)

equivalently,
m+n−1∑
j=n

(
1

m

xj
k

+
1

mr
ln (1 + yj)

)
= 1− 1

mr
ln

(
xn+m

xn

)
. (3.24)

We also have
yn+m

yn
≤

n+m−1∏
j=n

xj
1 + yj

.

Since k < 1, then from equation (3.24) we have

yn+m

yn
<

n+m−1∏
j=n

xj
k
·
n+m−1∏
j=n

1

1 + yj

<
n+m−1∏
j=n

[
xj
k

+
ln(yj + 1)

r

]
·
n+m−1∏
j=n

1

1 + yj
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≤

(
1

m

n+m−1∑
j=n

[
xj
k

+
ln(yj + 1)

r

])m

·
n+m−1∏
j=n

1

1 + yj

.

Using equation (3.24), we have

yn+m

yn
≤
(

1−
ln xn+m

xn

mr

)m
·

(
n+m−1∏
j=n

1

1 + yj

)
. (3.25)

Also, from Theorem 3.4.2, we have

c < xn < M and c < xn+m < M,

in addition,
1

M
<

1

xn
<

1

c
,

then
c

M
<
xn+m

xn
<
M

c
,

also,

ln
c

M
< ln

xn+m

xn
< ln

M

c
,

then

− ln
M

c
< − ln

xn+m

xn
< − ln

c

M
,

it follows that

1−
ln M

c

mr
< 1−

ln xn+m

xn

mr
< 1−

ln c
M

mr
.

As a result, we have

(
1−

ln xn+m

xn

mr

)m
< max

{∣∣∣∣(1−
1
C

mr

)m∣∣∣∣ , ∣∣∣∣(1− C

mr

)m∣∣∣∣} ,
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where ln c
M

= C. We also know that

lim
m→∞

(
1 +

x

m

)m
= ex,

thus

lim
m→∞

(
1− C

mr

)m
= e(−C

r
).

So we have (
1−

ln xn+m

xn

mr

)m
< max

{∣∣∣e( −1
r C

)
∣∣∣ , ∣∣∣e(−C

r
)
∣∣∣} := K.

We know that the sequence {yn} is bounded from above. Now we need to show that the

sequence {yn} approaches zero. To the contrary, suppose that lim supn→∞ yn 6= 0, hence {yn}n≥1

has a sub-sequence {ynk}k≥1 bounded away from zero. That is, there exists ε > 0 such that

∀k ∈ N, ynk > ε. It then follows that

n+m−1∏
j=1

1

1 + yj
=

n+m−1∏
j=1
yj<ε

1

1 + yj
·
n+m−1∏
j=1
yj≥ε

1

1 + yj

61 ·
n+m−1∏
j=1
yj>ε

1

1 + yj

=1 ·
∏

1≤nk≤n+m−1

1

1 + ynk
,

hence
n+m−1∏
j=1

1

1 + yj
≤

∏
1≤nk≤n+m−1

1

1 + ε
,

also,
yn+m

yn
< K

n+m−1∏
j=1

1

1 + yj
−→ yn+m < K

(
n+m−1∏
j=1

1

1 + yj

)
yn,

meaning that

yn+m ≤ K

( ∏
1≤nk≤n+m−1

1

1 + ε

)
yn.
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Thus

0 ≤ lim
m→∞

yn+m ≤ lim
m→∞

K

( ∏
1≤nk≤n+m−1

1

1 + ε

)
yn.

Therefore,

0 ≤ lim
n→∞

yn ≤ K
ek

2
lim
n→∞

βn.

Since β = 1
1+ε

< 1, then

lim
n→∞

yn = 0,

which is a contradiction. Hence, limn→∞ yn 6= 0 is false and

lim
n→∞

yn = 0.

3.5 Stability of the Interior Steady State S2

Now study the stability of the interior steady state by applying a transformation from (tr, det)-

plane to (x, r)-plane when k > 1. System (3.7) has an interior steady state S2 = (x∗, y∗) in the

first quadrant. Jacobian matrix (3.26) of system (3.7) at S2 = (x∗, y∗) can reduce to

J(S2) =

1− r x∗

k
−1

1− 1
x∗

1
x∗

 =

1− r + ln(x∗) −1

1− 1
x∗

1
x∗

 . (3.26)

The second matrix was obtained by replacing the identity k = x r
r−ln(x)

which can be calculated from

equation er (1−x
k

) = x. It then follows that

tr(J) = 1− r + ln(x∗) + 1
x∗

and det(J) = x∗−r+ln(x∗)
x∗

.

In the following theorems the stability will be determined using the conditions of stability in

(2.7), (2.9) and (2.8).
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Theorem 3.5.1. Suppose k > 1, r > 0 and let Ω = {(x, r) | r ≥ 0, x ≥ 1}. The stability region

for the interior steady states in (x, r)-plane of dynamical system (3.7) is given by the following:

(i) The region delimited between r > max{0, ln(x)} = ln(x) (yellow and orange curves in

Figure (3.5)), and r < f3(x) = ln(x)x+ln(x)+3x+1
1+x

(red curve in Figure (3.5)) is stable.

(ii) The region delimited between r < f1(x) = 0 and r > f2(x) = ln(x) − 1 (green curve in

Figure (3.5)) is repeller.

(iii) The region delimited below r = f2(x) = ln(x) − 1 or above r = f3(x) = ln(x)x+ln(x)+3x+1
1+x

is saddle.

Proof. The solution of the equation er (1−x
k

) = x for k is k = x r
r−ln(x)

, and k > 1. This means r >

f5(x) = ln(x) is the existence curve of the plane. The equations det = 1, det = tr − 1 and det =

−tr−1 are equivalent to r = f1(x) = 0, r = f2(x) = ln(x)−1 and r = f3(x) = ln(x)x+ln(x)+3x+1
1+x

,

respectively. For simplicity, we illustrated the curve associated with the equations det = 1, det =

tr− 1 and det = −tr− 1 by yellow, green and red curves in Figure (3.5), respectively.

Using (2.7), the stability regions for x ≥ 1 is the region corresponding to inequality det < 1,

or
x∗ − r + ln(x∗)

x∗
< 1⇐⇒ r > ln(x).

The region corresponding to inequality det > tr−1 is

x∗ − r + ln(x∗)

x∗
> 1− r + ln(x∗) +

1

x∗
− 1⇐⇒ r < ln(x)− 1,

and the region corresponding to inequality det > − tr−1 is

x∗ − r + ln(x∗)

x∗
> −(1− r + ln(x∗) +

1

x∗
)− 1⇐⇒ r >

(x+ 1) ln(x) + 3 x+ 1

x+ 1
.

Thus, the stable region corresponding to the solutions of the system from inequalities (2.7) is

the region between r > f5(x) = ln(x) (orange curve), and r < f3(x) = ln(x)x+ln(x)+3x+1
1+x

(red

curve). The repeller region corresponds to the solutions of the system based on inequalities in
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(2.9). The inequalities of (2.9) correspond to the region between r < f1(x) = 0 (yellow curve) and

r > f2(x) = ln(x)− 1 (green curve), which is in the negative region. The saddle region correlates

to the solutions of the system obtained from inequalities in (2.8), which correlates to the region

r > f3(x) = ln(x)x+ln(x)+3x+1
1+x

(red curve), or r < f2(x) = ln(x)− 1 (green curve).

Figure 3.5: Stability regions of system (3.7) for different parameter values of r. The stable region
is highlighted in orange, the green indicates the saddle region, and the red refers to the repeller
region. The intersection point of the yellow with saddle curve occurs at x = e.

The same argument applies to the (x, k)-plane. Different stability regions can be showed as

followed:

(a) The stable region occurs when k > max{f1, f2} = f1.

(b) The saddle region is delimited by f2 < k < f1, but the acceptable region is when (x < k <

f1).

(c) The repeller region is when f3 < r < f2, but it is in the negative region. Since below the

curve x = k, we can see that r = ln(x)k
k−x < 0.
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Figure 3.6: Stability regions of system (3.7) for (x, k)−plane. The curve k = f5(x) = x gives the
existence regions, and under this curve, they are not acceptable regions.

3.6 Bifurcation Analysis

In this section, the plan is to locally analyze bifurcations of the interior steady-state for system

(3.7). Listed in the following are the facts about Figure (3.5) bifurcation analysis.

Remark 2. From Theorem 3.5.1, the following statements are true for the Figure:

(a) The Neimark-Sacker bifurcation is given by the function f1 where 1 < x < e (but that region

is not acceptable because k is negative).

(b) The saddle node bifurcation is given by the function f2 where x > e (but that region is not

acceptable because k is negative).

(c) The period doubling bifurcation is given by the function f3 for any x > 1.

3.6.1 Period-Doubling Bifurcations (Flip Bifurcation)

The bifurcation associated with the appearance of λ = −1 is called a flip (or period-doubling)

bifurcation. For k > 1 period doubling bifurcation happens when J = Jr=f1(x)(x
∗, y∗), Jacobian

matrix (3.26) of sytem (3.7) at the interior steady state for r = f1(x) has an eigenvalue of λ = −1.

In other words, the flip bifurcation occurs as we cross the line det = −tr − 1. Consider the
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function r = f1(x) = (x+1) ln(x)+3x+1
1+x

on (1,∞). f1 is an increasing function starting from 2 for

x ∈ (1,∞). To determine the stability of the period doubling bifurcation, whether it is stable or

unstable, we first start by using the normal form for the steady state (x∗, y∗). That will show the

dynamic behavior of the system in the case r = r∗ with λ2 6= −1. First apply a transformation for

the system to make it simpler to calculate using the following change of variables

x = x∗ + x̄, y = y∗ + ȳ, r = r∗ + r̄.

By this change of variables, system (3.7) transforms to the following two dimensional map

f(x̄, ȳ) = (x∗ + x̄) e
(r∗+r̄)

(
1−x

∗+x̄
k

)
1

1 + y∗ + ȳ
− x∗,

g(x̄, ȳ) = (x∗ + x̄)

(
1− 1

1 + y∗ + ȳ

)
− y∗.

Then, the third order Taylor series of f and g are given by

f(x̄, ȳ) = −
2 (y∗ + 1) x̄

(
1
2
r̄ y∗ + k + r̄

)
k (y∗ + 2)

x̄− ȳ +
(r̄ y∗ + 2 k + 2 r̄)

k (y∗ + 2)
x̄ ȳ

+

(
y∗2 r̄ + 3 y∗k + 3 r̄ y∗ + 4 k + 2 r̄

) (
y∗2 r̄ + y∗ k + 3 r̄ y∗ + 2 r̄

)
2 k2(y∗ + 1)(y∗ + 2)2

x̄2 +
1

y∗ + 1
ȳ2

+

(
y∗2 r̄ + 3 y∗ k + 3 r̄y∗ + 4 k + 2r̄

)2 (−y∗2r̄ − 3 r̄ y∗ + 2 k − 2 r̄
)

6 (y∗ + 1)2 (y∗ + 2)3 k3
x̄3 − 1

(y∗ + 1)2
ȳ3

−
(
y∗2 r̄ + y∗ k + 3 r̄ y∗ + 4 k + 2 r̄

) (
y∗2 r̄ + y∗ k + 3 r̄ y∗ + 2 r̄

)
2 k2(y∗ + 2)2 (y∗ + 1)2

x̄2 ȳ

−
2
(

1
2
r̄ y∗ + k + r̄

)
k (y∗ + 2) (y∗ + 1)

x̄ ȳ2 + O(4), (3.27)

g(x̄, ȳ) =
y∗

y∗ + 1
x̄+

1

y∗ + 1
ȳ +

1

(y∗ + 1)2
x̄ ȳ +

(−y∗ − 1)

(y∗ + 1)3
ȳ2 − 1

(y∗ + 1)3
x̄ ȳ2

+
1

(y∗ + 1)3
ȳ3 + O(4).

When r̄ = 0, we then have λ1 = −1 which is an eigenvalue of the matrix J . The other eigenvalue

is given by

λ2 = − y∗2 − 2

y∗2 + 3 y∗ + 2
,
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which provides the matrix of eigenvectors as follows

P =

−y∗+2
y∗

−y∗+1
y∗+2

1 1

 .

We now use a diagonalizable matrix to analyze the steady state by the change of coordinates:

 x̄

ȳ

 =

−y∗+2
y∗

−y∗+1
y∗+2

1 1


 u

v

 .

Applying this change of coordinates to map (3.27), we obtain the following two dimensional map

 u

v

 7→
 −1 0

0 λ2


 u

v

+

 F(u, v, r̄)

G(u, v, r̄)

 ,

where the non-linear equations are provided by

F(u, v, r̄) = F200u
2 + F110ur̄ + F101uv + F011vr̄ + F020r̄

2 + F002v
2 + F300u

3 + · · · , (3.28)

G(u, v, r̄) = G200u
2 + G110ur̄ + G101uv + G011vr̄ + G020r̄

2 + G002v
2 + · · · .

Now we seek the center manifold on u and r̄, which is

v = hc(u, r̄) = a u2 + O
(
|u, r̄|3

)
.

By the substitution of v into equation (3.28), we get

F(u, v, r̄) = F002u
4a2 + F011u

2ar̄ + F101u
3a+ F300u

3 + F020r̄ + F110ur̄ + F200u
2 + · · · ,

G(u, v, r̄) = G200u
2 + G011u

2ar̄ + G101u
3a+ G020r̄

2 + G110ur̄ + G002u
4a2 + · · · .
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where some of these functions that will be needed below is given as follows

G200 =
(y∗ + 2)

(
y∗2 − 4 y∗ − 8

)
6 y∗3 + 14 y∗2 + 8 y∗

F200 =
−y∗2 + 2 y∗ + 4

6 y∗2 + 14 y∗ + 8

F110 = −(y∗ + 1)(y∗ + 2)2

3 y∗ k + 4 k

F101 =
−y∗3 + 3 y∗2 + 15 y∗ + 12

3 y∗3 + 13 y∗2 + 18 y∗ + 8

F300 =
3 y∗4 + 12 y∗3 + 72 y∗2 + 128 y∗ + 64

6 y∗2(3 y∗ + 4) (y∗ + 1)2
.

By computing the center manifold, we then have

v = hc(u, r̄) = −G200u
2

λ2 − 1
+ O

(
|u, r̄|3

)
.

We can now use the reduced map u 7→ ξ(u, r̄) defined by

ξ(u, r̄) =− u+ F200 u
2 + F110u r̄ +

(
F210 −

F011 G200

λ2 − 1

)
r̄ u2+

+
(
F300 −

F101G200

λ2 − 1

)
u3 + O

(
|(u, r̄)|4

)
.

By using the conditions of period doubling bifurcation (2.18), we have

ξ(ξ(u, r̄), r̄) =u− 2F110 u r̄ − 2
(
F300 −

F101 G200

λ2 − 1
+ F2

200

)
u3

− (F200 F110)u2r̄ + (F110)2 u r̄2 + O(4).

Hence, the period doubling bifurcation can be calculated based on the following function

K ≡ −2F110

(
−2F300 +

2F101 G200

λ2 − 1
− 2F2

200

)
6= 0.
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Then by an easy computation, we can find that

−2F300 +
2F101 G200

λ2 − 1
− 2F2

200 = −3y∗4 + 12y∗3 + 72y∗2 + 128y∗ + 64

3y∗2(y∗ + 1)2(3y∗ + 4)

+
2
(
−y∗3 + 3y∗2 + 15y∗ + 12

)
(y∗ + 2)

(
y∗2 − 4y∗ − 8

)
(3y∗3 + 13y∗2 + 18y∗ + 8) (6y∗3 + 14y∗2 + 8y∗)

(
−y∗2+2

y∗2+3y∗+2
− 1
)

−
2
(
−y∗2 + 2y∗ + 4

)2

(6y∗2 + 14y∗ + 8)
2 .

This can be seen using numerical simulations for different values of (r, k) in Figure (3.7)

pdstable.png The result in Table 3.1 shows that the period doubling bifurcation K is stable.

Figure 3.7: Stability of the period doubling bifurcation of system (3.7).

In summary, stability of steady state of this work is giving in the following. In this population

model dynamics, there are three steady states in Q1.

(i) The origin steady state S0 = (0, 0).

(ii) The boundary steady states on the x axis S1 = (k, 0).
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Table 3.1: Stability of the period doubling bifurcation for the given numerical values of (r∗, λ2,K).

k r∗ λ2 x F200 F300 F110 F101 K

1.0510 2.0149 0.9851 1.010000000 0.4938 2.6468 -0.9976 1.4851 6.63422
1.6127 2.5000 0.5502 1.397046267 0.3197 0.0013 -0.9588 1.0565 3.9651×10−3

2.5336 3.0000 0.1841 1.963702289 0.1847 0.0002 -0.9879 0.7068 7.5621×10−4

3.9538 3.5000 -0.1148 2.793343691 0.0834 0.0000 -1.0838 0.4304 2.8545×10−4

6.2102 4.0000 -0.3559 4.041780333 0.0078 0.0000 -1.2604 0.2140 1.4766×10−4

9.9035 4.5000 -0.5456 5.970944716 -0.0477 0.0000 -1.5491 -0.0481 9.2217×10−5

16.1068 5.0000 -0.6896 9.021196436 -0.0875 0.0000 -2.0042 -0.0752 6.5322×10−5

26.7300 5.5000 -0.7942 13.92893126 -0.1152 0.0000 -2.7144 -0.1634 5.0555×10−5

45.1477 6.0000 -0.8671 21.91717936 -0.1339 0.0000 -3.8195 -0.2241 4.1674×10−5

77.2791 6.5000 -0.9159 35.00689085 -0.1461 0.0000 -5.5395 -0.2644 3.5917×10−5

133.4489 7.0000 -0.9475 56.52961736 -0.1539 0.0000 -8.2185 -0.2904 3.1932 ×10−5

(iii) One interior steady state.

The origin steady state point S0 = (0, 0) is saddle and the stability of boundary steady-state S1 =

(k, 0) is based on Proposition 3.3.1 and Figure (3.5):

(i) If k < 1 and 0 < r < 2, then S1 = (k, 0) is an attracting node A. This means the

discrete flow begins at infinity, passes asymptotically near saddle point S, and converges to

the attractor point A. The bifurcation occurs when they approach λ1 = 1.

(ii) If k < 1 and r > 2, then S1 = (k, 0) is a saddle point S.

(iii) If k > 1 and 0 < r < 2, then S1 = (k, 0) is a saddle point S. Moreover, when k > 1

and 0 < r < 2, the attractor A interior steady state appears. This means the discrete flow

begins at infinity, passes asymptotically near the origin steady state point S0 = (0, 0), then

passes asymptotically near boundary saddle point S1 = (k, 0), and converges to the attractor

interior steady state point A.

(iv) If k > 1 and r > 2, then S1 = (k, 0) is a repelling node R. Moreover, when k > 1 and

r > 2, the saddle point S interior steady state appears.
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3.7 Concluding Remarks and Simulations

In this chapter, by a standard method we computed the period-doubling bifurcation without know-

ing the exact value of the positive steady state. The positive steady state falls in a different stability

region depending on the parameter values k and r of the model. We also analyzed the local and

global stability of the steady state point (k, 0).

Moreover, we studied Neimarck-Sacker bifurcation and we showed that it is located in the

negative region. On the other hand, the saddle node bifurcation with one of the eigenvalues equal

to 1 also occurs in the negative region.

Future research will concentrate on the study of the other types of bifurcations and its dynamics

for our model.

Below is an .mp4 movie that shows the transition of bifurcation diagram of sytem (3.7) when

0 < k < 5.
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Chapter 4

Dynamics of a Modified Nicholson-Bailey

Model with Allee effect

In this chapter, we investigate the dynamical behavior of our host-parasitoid Nicholson-Bailey

model by including an Allee effect term. The Allee effect is a population dynamics phenomenon

that grows with increasing density. The Allee effect model contains six biological parameters

in the first closed quadrant. By a re-scaling procedure, the model is then reduced to a three-

parameter system that carries over the comprehensive dynamics of the original model. The new

model always possesses three boundary steady states, and we show that the interior steady state

may exist under certain conditions imposed on the parameters. We then use linearization of the

model about each steady state to examine the local stability for a varied range of parameters. The

stability and dynamics of each steady state are then examined using bifurcation identities obtained

from the center manifold theory for non-hyperbolic values of the parameters. Furthermore, we can

determine whether the system is stable or unstable using the Jury’s test. Finally, we investigate the

stability of a period-doubling bifurcation that may arise after one of these thresholds is crossed,

exhibiting irregular dynamics that could lead to chaos. Simulations also support the results.
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4.1 Introduction

The Allee effect is one of the interests in analyzing a biological process. This phenomenon in

population dynamics attributed to the biologist W.C. Allee50;51. Allee52, an ecologist, was one of

the first to write extensively on the ecological relevance of animal aggregation; thus, the ”Allee Ef-

fect” refers to the positive link between population density and individual fitness. This process has

been modelled for various problems including mating selection that can trigger this impact, social

dysfunction, inbreeding depression, food exploitation (e.g., host resistance can only be overcome

by a large number of consumers), and predator avoidance or defense52.

There are two types of Allee effects within the component domain and demographic Allee

effects53. Component Allee effects occur at the level of individual fitness components, such as

juvenile survival or litter size. On the other hand, demographic Allee effects are at the level of

overall mean individual fitness and are almost generally viewed as the per capita population growth

rate through the demography of the entire population53. Component Allee effects can lead to

demographic Allee effects; hence the two are linked.

Allee proposed that low population densities result in a decline in the per capita birth rate. A

population with low density may face extinction in such a circumstance. Allee discovered that

the flour beetle population, Tribolium confusum, had the highest per capita growth rates at inter-

mediate densities. Furthermore, when fewer mates were available, the females produced fewer

eggs, which was an unexpected result. Allee did not give a clear and explicit definition of this

new concept. Stephens, Sutherland, and Freckleton54 describe the Allee effect as a positive corre-

lation between any component of individual fitness and the number or density of conspecifics, or

members of the same species. As density increases, fitness drops, so we have a negative density

dependence in classical dynamics70.

4.2 The Model

Throughout this work, Q1 =
{

(x, y) ∈ R2 | x ≥ 0, y ≥ 0
}

denotes the first closed quadrant.

Consider the model defined by the following 2D map
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f(x, y) = x (β x)α er
(

1−x
k

)
a

a+ b y
,

g(x, y) = x
(

1− a

a+ b y

)
,

(4.1)

where the parameters a, b, r, k, α and β are positive. Map (4.1) can be written by

f(x, y) = x (β x)α er
(

1−x
k

)
1

1 + b
a
y
,

g(x, y) = x
(

1− 1

1 + b
a
y

)
.

(4.2)

The system induced by model (4.2) can then be given by

xn+1 = xn (β xn)α er
(

1−xn
k

)
1

1 + b
a
yn
,

yn+1 = xn

(
1− 1

1 + b
a
yn

)
.

(4.3)

By the new change of variables X = b
a
x, Y = b

a
y, system (4.3) becomes

Xn+1 = e
α ln

(
β a
b

)
X1+α
n er

(
1−( a

bk
)Xn

)
1

1 + Yn
,

Yn+1 = Xn

(
1− 1

1 + Yn

)
.

(4.4)

Combine them by using the new variables R = r + α ln(β a
b

), and K = Rb
r a
k. Then system

(4.4) becomes

Xn+1 = X1+α
n eR

(
1−Xn

K

)
1

1 + Yn
,

Yn+1 = Xn

(
1− 1

1 + Yn

)
.

(4.5)

We note that R is not necessarily positive anymore but for the time being we assume α, a and

b are so that R > 0. For simplicity, we replace Xn, Yn, R and K in (4.5) by xn, yn, r and k,
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respectively.

xn+1 = x1+α
n er

(
1−xn

k

)
1

1 + yn
,

yn+1 = xn

(
1− 1

1 + yn

)
.

(4.6)

Then, the steady states of system (4.6) are solutions of the system of equations given by

 x1+αer
(

1−x
k

)
1

1+y
= x,

x
(

1− 1
1+y

)
= y,

(4.7)

which is equivalent to the solution of the following 3 steady states

O =

 x = 0

y = 0
, B =

 xαer
(

1−x
k

)
= 1

y = 0
, I =

 xαer
(

1−x
k

)
= 1 + y

x = 1 + y
. (4.8)

Therefore, for any parameter value, origin O is always a steady state for dynamical system (4.6).

The solutions of B in the second system of equations in (4.8) in Q1 gives the boundary steady

state(s), and the third system I of equations gives the interior steady state(s) of the dynamical

system (4.6).

The solution(s) of the second steady state B in (4.8), if exists, is equivalent to the solutions of

the equations

α ln(x) = −r
(
1− x

k

)
, y = 0. (4.9)

Also, the solution(s) of the third steady state I in (4.8), if exists, is equivalent to the solutions

of the equations

(α− 1) ln(x) = −r
(
1− x

k

)
, x = 1 + y. (4.10)

For different values of the parameters r, k, and α, the equations (4.9) and (4.10) may have no

or several solutions in Q1. We note that in equation (4.10) since x = y + 1 and y ≥ 0, then the

only valid solutions are in the region x ≥ 1.

Model (4.6) can attain a maximum of five steady states; three of them are boundary steady
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states and a maximum of two interior steady states may exist. The first boundary steady state is the

origin S0 = (0, 0), and the second boundary steady state is the Allee effect given below

S1 = (x∗1, 0) =

(
e
−W

(
− r e

− r
α

k α

)
− r
α , 0

)
=

−k αW
(
− re−

r
α

k α

)
r

, 0

 . (4.11)

The third boundary steady state is k, which is carrying capacity parasite free state

S2 = (x∗2, 0) =

(
e
−W

(
−1,− r e

− r
α

k α

)
− r
α , 0

)
=

−k αW
(
−1,− re−

r
α

k α

)
r

, 0

 .

The fourth steady state is the interior steady state that may appear when x ≥ 1

S3 = (z∗1 , z
∗
1 − 1) =

e (−α+1)W

− r e
− r
α−1

k (α−1)

−r

α−1 , e

(−α+1) W

− r e
− r
α−1

k (α−1)

−r

α−1 − 1



=

−k (α− 1)W

(
− re

− r
(α−1)

k (α−1)

)
r

,−
k (α− 1)W

(
− re

− r
(α−1)

k (α−1)

)
r

− 1

 .

The fifth steady state is the second interior steady state that may appear when x ≥ 1

S4 = (z∗2 , z
∗
2 − 1) =

e (−α+1) W

−1,− r e
− r
α−1

k (α−1)

−r

α−1 , e

(−α+1) W

−1,− r e
− r
α−1

k (α−1)

−r

α−1 − 1



=

−k (α− 1)W

(
−1,− re

− r
(α−1)

k (α−1)

)
r

,−
k (α− 1)W

(
−1,− re

− r
(α−1)

k (α−1)

)
r

− 1

 .

Figure (4.1) provides the four boundary and interior steady states and zero as the first steady

state given different range of parameter r. These are obtained numerically from the above Lambert

W functions.

The following statements describe the dynamics of the boundary and interior steady states.
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Figure 4.1: The two boundary steady states and the two interior steady states S1, S2, S3 and S4

with colors (green, dark green, purple, and dark purple) respectively. In the (r, x)-plane where the
parameter α = 1.8621 and k = 0.5.

Theorem 4.2.1. Assume r, k, and α are positive parameters and let (x∗, 0) be a solution of (4.9).

For k < 1 in Q1, system (4.6) has:

(i) No boundary steady state if k < r
α
e1− r

α .

(ii) One boundary steady state if k = r
α
e1− r

α . Moreover, x∗ = α k
r

.

(iii) Two boundary steady states if k > r
α
e1− r

α . Moreover, x∗1 < x∗2 < k if α k
r
< 1.

For k > 1, in Q1 system (4.6) always has two boundary steady states, (x∗1, 0) and (x∗2, 0) with

x∗1 < 1 < k < x∗2.

Proof. Let us use equation (4.9) to define g(x) = r(1− x
k
) +α ln(x) with g1(x) = −r(1− x

k
) and

g2(x) = α ln(x). Take g′(x) = 0, then x∗ = k α
r

is the only critical point of g on (0,∞). Moreover,
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limx→0+ g(x) = −∞ and limx→∞ g(x) = −∞, therefore x∗ = k α
r

is the absolute maximum of g

on (0,∞). We can now have the following cases:

(i) If k < r
α
e1− r

α , then g < 0 meaning g has no root on (0,∞). Therefore (4.9) has no solution.

(ii) If k = r
α
e1− r

α , then g has exactly one root at its absolute maximum.

(iii) If k > r
α
e1− r

α , then g has two positive roots x∗1 and x∗2.

Claim: For k < 1, then either the two roots x∗1 and x∗2 are less than k, or the two roots x∗1 and

x∗2 are larger than 1.

Proof by contradiction: Let us assume that g1 and g2 intersect at x∗1 < k and x∗2 > k. It is

then clear that the increasing function g1 has a root at k and the other increasing function g2

has a root at 1. Since g2 is an increasing function and concave down, it means that g2 must

cross over the x-axis at a point less than k; otherwise, g2 has to collide with g1 at another

point before k which is impossible by the assumption. This means that the root of g2, which

is 1, must occur before k or 1 < k, which is a contradiction.

Moreover, the maximum of g occurs at x∗ = k α
r

. We know that the two roots x∗1 and x∗2 are

less than k, and that happens only if k α
r
< k < 1. The statement k α

r
< k < 1 is true because

if x∗1 < x∗2 < k it means x∗ < k < 1. Furthermore, the two roots x∗1 and x∗2 are larger than 1,

and that happens only if k α
r
> k. This statement k α

r
> k is correct because if 1 < x∗1 < x∗2,

it means that x∗ > k.

Now assume k > 1. Similar to the previous case we can show that the function g has two

positive roots x∗1 and x∗2 where x∗1 < k and x∗2 > 1.

To show which boundary steady state is larger in Q1, consider B1 as the exponent of the first

boundary steady state x∗1 andB2 as the exponent of the second boundary steady state x∗2 as follows:

B1 = −W
(
−re

− r
α

k α

)
− r

α
, B2 = −W

(
−1,−re

− r
α

k α

)
− r

α
,
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from the definition and Figure of Lambert W function (2.6)

W0(x) > W−1(x),

multiplying both sides by a negative

0 < −W0(x) < −W−1(x).

Therefore,

e
−W

(
− re

− r
α

k α

)
− r
α < e

−W
(
−1,− re

− r
α

k α

)
− r
α .

Thus, the first boundary steady state x∗1 is less than the second boundary steady state x∗2. Below we

demonstrate where these two boundary steady states (x∗1, 0) and (x∗2, 0) may exist and we identify

their regions. Using the range of the largest boundary W−1(x) and solving it for k, it will give us

the existence region. We know that

W

(
−1,−re

− r
α

k α

)
< −1,

that is

−1

e
< −re

− r
α

k α
< 0,

or
1

e
>
re−

r
α

k α
.

Then the existence region is

k >
re1− r

α

α
.

This is also shown in Figure (4.3).

Below we discuss the existence of the interior steady states.

Theorem 4.2.2. Assume r, k, and α are positive parameters.
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For k < 1, the system has two cases in Q1: α < 1 and α > 1. For α < 1, system (4.6) has only

one root z∗1 with k < z∗1 < 1 which is not acceptable. For α > 1, system (4.6) has three cases:

(i) No interior steady state exists if either k (α−1)
r

< 1 or k < r
α−1

e1− r
α−1 .

(ii) One interior steady state exists if k (α−1)
r

> 1 and k = r
α−1

e1− r
α−1 . Moreover, x∗ = k (α−1)

r
.

(iii) Two interior steady states exist if k (α−1)
r

> 1 and k > r
α−1

e1− r
α−1 . Moreover, z∗1 < z∗2 < 1 <

k if (α−1) k
r

< 1 and k < 1 < z∗1 < z∗2 if (α−1) k
r

> 1.

For k > 1, in Q1 system (4.6) always has a unique interior steady state (z∗1 , z
∗
1 − 1) with

1 < k < z∗1 for α > 1. For α < 1, similarly, system (4.6) always has a unique interior steady state

(z∗2 , z
∗
2 − 1) with 1 < z∗2 < k.

Proof. Similar to the previous theorem and using equation (4.10), we can define h(x) = r (1 −
x
k
) + (α − 1) ln(x), h1(x) = −r (1 − x

k
) and h2(x) = (α − 1) ln(x). Take h′(x) = 0, then

x∗ = k (α−1)
r

is the only critical point of h on (0,∞). Moreover, if α > 1, limx→0+ h(x) =

−∞ and limx→∞ h(x) = −∞, therefore x∗ = k (α−1)
r

is the absolute maximum of h on (0,∞).

For k < 1, there are two cases:

When α < 1, the only intersection steady state point of h1 and h2 is given by 0 < z∗1 < ∞

∀r, k because z∗2 does not exist. However, the root is in the region k < z∗1 < 1 because h1 is

an increasing function that passes through k, and h2 is a decreasing function that passes at point

1. Since h1(k) < h2(k) and h2(1) < h1(1), then there exists a unique intersection z∗1 ∈ (k, 1)

s.t h1(z∗1) = h2(z∗1). But z∗1 < 1 corresponds to y∗ = z∗1 − 1 < 0 and it does not exist either.

Therefore, for k < 1 and α < 1 there is no interior root.

When α > 1, we have the following cases:

(i) If k < r
α−1

e1− r
α−1 then h has no root on (0,∞). Therefore (4.9) has no solution.

(ii) If k = r
α−1

e1− r
α−1 then h has exactly one root at its absolute maximum.
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(iii) If k > r
α−1

e1− r
α−1 then h has maximum two positive roots z∗1 and z∗2 . Similar to the previous

theorem, we can show that, for k < 1 and α > 1, then either the two roots z∗1 and z∗2 are less

than k, or the two roots z∗1 and z∗2 are larger than 1.

For k > 1, when α < 1 there is only one root z∗1 with 1 < z∗1 ≤ k. The intersection point

of h1 and h2 is given by the steady state 0 < z∗1 < ∞ ∀r, k. In addition, the root is in the region

1 < z∗1 < k because h1 is an increasing function that passes through point k, and h2 is a decreasing

function that passes through the point 1. Since h1(k) < h2(k) and h2(1) < h1(1), then there exists

z∗1 ∈ (k, 1) s.t h1(z∗1) = h2(z∗1).

For α > 1, it is not difficult to show that the function h has two positive roots z∗1 and z∗2 where

z∗1 < k and z∗2 > 1.

To illustrate which interior steady state is larger in Q1, consider I1 as the exponent of the first

interior steady state z∗1 and I2 as the exponent of the second interior steady state z∗2 as follows:

I1 = −W

(
− re−

r
α−1

k(α− 1)

)
− r

α− 1
, I2 = −W

(
−1,− re−

r
α−1

k(α− 1)

)
− r

α− 1
.

Therefore,

e
−W

(
− re

− r
α−1

k(α−1)

)
− r
α−1 < e

−W
(
−1,− re

− r
α−1

k(α−1)

)
− r
α−1 .

Thus, the second interior steady state z∗2 is larger than the first interior steady state z∗1 . Below we

look for the regions where those two interior steady states (z∗1 , z
∗
1−1) and (z∗2 , z

∗
2−1) exist. Using

the domain of the largest boundary W−1(x) and solving it for k will give the existence region

−1

e
< − re−

r
α−1

k(α− 1)
< 0,

if α > 1, then
1

e
>

re−
r

α−1

k(α− 1)
,
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or

k >
re1− r

α−1

α− 1
.

However, if α < 1, we only have W0 for all r and k since

0 < − re−
r

α−1

k(α− 1)
<∞.

Thus, solving them for k gives the existence region that is shown in Figure (4.2).

The results in theorems (4.2.1) and (4.2.2) can be summarized in the following:

Corollary 4.2.3. Assume r, k, and α are positive parameters. System (4.6) has four cases in Q1.

(i) Two boundary and one interior steady state for k > 1, ∀ α, r.

(ii) Two boundary and no interior steady state for r
α
e1− r

α < k < 1 with 0 < α < r or r
α
e1− r

α <

k < r
α−1

e1− r
α−1 with α > r, or

− r

W (−ke−1)
< α < − r

W (−ke−1)
+ 1

with α < r < α + 1.

(iii) No boundary and no interior steady state for k < r
α
e1− r

α .

(iv) Two boundary and two interior steady states for r
α−1

e1− r
α−1 < k < 1.

In the following we anlayze the stability of the boundary steady states and the interior steady

states.

4.3 Stability of the Boundary Steady States

In this section we plan to prove the stability of the steady states for different parameter values,

especially for k.
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Figure 4.2: From left to right: The curves k = r
α
er(1−

r
α

), k = 1, k = r
α

, k = r
α+2

e1− 2−r
α are green,

green, pink, and orange respectively. The curves k = r
α−1

er(1−
r

α−1
), k = 1, k = r

α−1
, x = 1 are

green, green, pink, and white respectively. Contribution of number of boundary and interior steady
states of system (4.6) in (α, k)-plane.

Theorem 4.3.1. Assume r, k, and α are positive parameters, then the following statements hold

for the stability of the boundary steady states of system (4.6) in Q1.

1. The steady state S0 = (0, 0) is stable.

2. The steady states S1 = (x∗1, 0) and S2 = (x∗2, 0) satisfy the following statements:

(a) If k < 1 and k < r
α

, then S1 = (x∗1, 0) is saddle and S2 = (x∗2, 0) is stable.

(b) If k < 1 and k > r
α

, then S1 = (x∗1, 0) is repeller and S2 = (x∗2, 0) is saddle, but it

changes to repeller once it crosses x∗2 >
(α+2) k

r
.

(c) If k > 1 then S1 = (x∗1, 0) is saddle and S2 = (x∗2, 0) is saddle, but it changes to

repeller once it crosses x∗2 >
(α+2) k

r
.

Proof. The Jacobian matrix of the map associated with system (4.6) is

J =

xα (1+α)
(1+y)

er (1−x
k ) − r x1+α

k (1+y)
er (1−x

k ) − x1+α

(1+y)2 er (1−x
k )

1− 1
1+y

x
(1+y)2

 . (4.12)
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1. Jacobian matrix (4.12) at the steady state S0 = (0, 0) is given by

J(S0) =

0 0

0 0

 .

The eigenvalues of J(S0) are both 0’s, thus both have a magnitude less than 1, therefore S0

is always stable.

2. Jacobian matrix (4.12) at the boundary steady state B is given by

J(B) =

1 + α− r
k
x∗ −x∗

0 x∗

 . (4.13)

The eigenvalues of J(B) are λ1 = 1 +α− r x∗

k
and λ2 = x∗. The stability of the steady state

S1 and S2 satisfy the following conditions:

(a) Since k < 1 and k < r
α

, then from Theorem 4.2.1 we know that x∗1 < x∗2 < k < 1.

Therefore λ2(x∗1) = x∗1 < 1 and λ2(x∗2) = x∗2 < 1. For λ1(x∗1) = 1 + α− r
k
x∗1, since

W

(
−re− r

α

kα

)
> −1 =⇒ α

(
1 +W

(
−re

− r
α

kα

))
> 0 =⇒ α + αW

(
−re

− r
α

kα

)
> 0,

using W (x) = e−W (x) gives

α− r

k
e−

r
α

W
(
− re−

r
α

kα

)
−re−

r
α

kα

> 0 =⇒ α− r

k
e−

r
α e
−W

(
−re−

r
α

kα

)
> 0

=⇒ 1 + α− r

k
e
−W

(
−re−

r
α

kα

)
− r
α > 1.

Thus, λ1(x∗1) = 1 + α− r
k
x∗1 > 1. Therefore, S1 = (x∗1, 0) is saddle.

Moreover, for λ1(x∗2) = 1 + α− r
k
x∗2, since
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W

(
−1,
−re− r

α

kα

)
< −1 =⇒ α

(
1 + W

(
−1,
−re− r

α

kα

))
< 0

=⇒ α + αW

(
−1,
−re− r

α

kα

)
< 0.

it means

α− r

k
e−

r
α

W
(
−1,− re−

r
α

kα

)
−re−

r
α

kα

< 0 =⇒ 1 + α− r

k
e
−W

(
−1,−re

− r
α

kα

)
− r
α < 1.

Thus, λ1(x∗2) = 1 + α− r
k
x∗2 < 1. Therefore, S2 = (x∗2, 0) is stable.

(b) If k < 1 and k > r
α

, then from Theorem 4.2.1 k < 1 < x∗1 < x∗2. This means

λ2(x∗1) = x∗1 > 1 and λ2(x∗2) = x∗2 > 1. For λ1 = 1+α− r
k
x∗ we know from part (a) that

λ1(x∗1) > 1 and λ1(x∗2) < 1 always. Therefore, S1 = (x∗1, 0) is repeller, and S2 = (x∗2, 0)

is saddle if −1 < λ1(x∗2) < 1. If, however, λ1(x∗2) < −1, it means S2 = (x∗2, 0) is a

repeller and λ1(x∗2) = 1 + α− r
k
x∗2 < −1 =⇒ 2 + α < r

k
x∗2 =⇒ x∗2 >

(α+2) k
r

.

(c) Since k > 1 from Theorem 4.2.1 we know that x∗1 < 1 < k < x∗2. That is, λ2(x∗1) =

x∗1 < 1 and λ2(x∗2) = x∗2 > 1. For λ1 = 1 + α − r
k
x∗, we know from part (a) that

λ1(x∗1) > 1 and λ1(x∗2) < 1. Therefore, S1 = (x∗1, 0) is saddle, and so is S2 = (x∗2, 0),

until it crosses -1, i.e., λ1(x∗2) = 1 +α− r
k
x∗2 < −1 =⇒ 2 +α < r

k
x∗2 =⇒ x∗2 >

(α+2) k
r

which means that now λ1(x∗2) > 1, that is, S2 = (x∗2, 0) changes to a repeller.

This stability can be seen in Figure (4.3).

Note: x∗ = r
2+α

e
2+α−r
α means the first eigenvalue of matrix (4.13) is equal to−1, then we solve

it for x as follows

1 + α− r

k
x∗ = −1,

we get

x∗ =
(2 + α)k

r
.
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Figure 4.3: Stability regions of the boundary steady-states (x∗1, 0) and (x∗2, 0) where r = 1.5. The

two green curves are k = 1 and k = re
α−r
α

α
. The pink curve is k = r

α
and the orange curve is

k = re
2+α−r
α

2+α
.

We know that x∗ is the Allee effect steady state S1 in (4.11), so we can substitute it by

e−
W

(
− r e

− r
α

k α

)
α+r

α =
(2 + α) k

r
,

rewrite it by

e
−W

(
− r e

− r
α

k α

)
− r
α =

(2 + α) k

r
,

then solve it for k we get

k =
r

2 + α
e

−r
α e
−W

(
− r e

− r
α

kα

)
.

78



By using the property (2.30) for the W function, we have

k =
r

2 + α
e

−r
α

W
(
− re−

r
α

kα

)
− re−

r
α

kα

= − kα

2 + α
W

(
−re

− r
α

kα

)
,

or

k

(
1 +

α

2 + α
W

(
−re

− r
α

kα

))
= 0,

simplifying it
α

2 + α
W

(
−re

− r
α

kα

)
= −1,

then

W

(
−re

− r
α

kα

)
= −2 + α

α
.

Applying the inverse of the W function to both sides gives

−re
− r
α

kα
= −2 + α

α
e−

2+α
α ,

solving it for k, then

k =
r e

2+α−r
α

2 + α
. (4.14)

The stability of the second boundary steady-state changed from saddle to repeller once it crossed

this curve k = r e
2+α−r
α

2+α
, as we can see in Figure (4.3). Similarly, let the first eigenvalue of matrix

(4.13) be equal to 1 and solve it for x∗.

1 + α− r

k
x∗ = 1,

which gives

x∗ =
αk

r
.
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Then substitute x∗ and solve for k as follows

e−
W

(
− re

− r
α

kα

)
α+r

α =
αk

r
,

or

k =
r

α
e

−r
α e
−W

(
− r e

− r
α

kα

)
=
r

α
e

−r
α

W
(
− re−

r
α

kα

)
− re−

r
α

kα

= −kα
α

W

(
−re

− r
α

kα

)
,

then

k

(
1 +W

(
−re

− r
α

kα

))
= 0.

It then follows that

W

(
−re

− r
α

kα

)
= −1,

equivalently,

−re
− r
α

kα
= −1

e
=⇒ −re−

r
α = −α k

e
=⇒ k =

re
α−r
α

α
.

Now, the stability of the non-hyperbolic steady state (x∗2, 0) can be presented by the center

manifold theory for system (4.6). The theorem below provides all the possibilities needed to apply

center manifold theory to determine the local stability.

Theorem 4.3.2. Assume r, k, and α, are positive parameters, then the following statements hold

for the stability of the boundary steady states of system (4.6) in Q1.

(i) If k = 1 and r 6= α, then S2 is unstable non-hyperbolic steady state.

(ii) If k = 1 and r = α, then S2 is unstable non-hyperbolic steady state.

(ii) If k 6= 1 and x∗ = αk
r

, then S1 = S2 is stable non-hyperbolic steady state.

Proof. (i) Suppose k = 1, r 6= α and λ1(x∗2) = 1 + α − r
k
x∗2 = 1. Then solve it for r, it gives

r = αk
x∗2

. Substitute the value of r in x∗2 = e−
W

(
− re

− r
α

kα

)
α+r

α , which gives x∗2 = − k
W (−k e−1)

,

and since k = 1 then that gives x∗2 = 1 because W (−1
e
) = −1. To study the dynamics

about the steady state S2 in Q1 =
{

(x, y) ∈ R2 | x ≥ 0, y ≥ 0
}

, it is required to explicitly
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compute the local center manifold. For the sake of simplicity of calculation, we first bring

the steady state S2 of system (4.6) to the origin S0, which is done by the linear translation

(x, y) 7→ (x + x∗, y). Then the map associated with system (4.6) translates to the following

system:

f1(x, y) =(x+ x∗)1+α e
r
(

1−x+x∗
k

)
1

1 + y
− x∗,

g1(x, y) =(x+ x∗)

(
1− 1

1 + y

)
. (4.15)

The Taylor series expansion of map (4.15) is given by

f1(x, y) =
(kα− rx∗ + k)

k
x− x∗y − (kα− rx∗ + k)

k
xy

+

(
(α2 + α) k2 − 2r(1 + α)x∗k + r2x∗2

)
2x∗k2

x2 + x∗y2

−
(
(α2 + α) k2 − 2r(1 + α)x∗k + r2x∗2

)
2x∗k2

x2y +
(kα− rx∗ + k)

k
xy2 (4.16)

+

(
(α3 − α) k3 − 3(1 + α)αrk2x∗ + 3r2x∗2(1 + α)k − r3x∗3

)
6x∗2k3

x3 − x∗y3 + O(4),

g1(x, y) =x∗ y3 − x∗ y2 − x y2 + x∗ y + x y + O(4).

The linear part of equation (4.16) is

J =

 α + 1− r x∗

k
−x∗

0 x∗

 . (4.17)

The eigenvalues λ1,2 and the eigenvectors P of those eigenvalues for matrix (4.17) are

λ1,2 =

 1 + α− r

1

 , P =

 1 1
α−r

0 1

 .
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Consider the change of coordinates

 x

y

 =

 1 1
α−r

0 1


 u

v

 =

 u+ 1
α−r v

v

 .

The computation shows that the equation D = P−1JP and the nonlinear part indeed hold.

 u

v

 7→
 1 + α− r 0

0 1


 u

v

+ P−1

 f̃(u, v)

g̃(u, v)

 ,

where

P−1 =

 1 − 1
α−r

0 1

 .

The nonlinear part is

f̃(u, v) =
(α2 + (−2r + 1)α + r2 − 2r)

2
u2 +

(r + 1)

r − α
u v

+
(α2 + (−2r + 1)α + r2 − 2r − 2)

2(r − α)2
v2 + O(3)

g̃(u, v) =u v − (r − α + 1)

−α + r
v2 + O(3).

Since the invariant manifold is tangent to the corresponding eigenspace, and the second

eigenvalue λ2 is the one we need to examine its local stability, we assume the form u = h(v).

u = h(v) = a v2 + b v3 + O
(
v4
)
, a, b ∈ R

Now to compute the constants a and b, the function h must satisfy the center manifold

equation

h(λ2 v + g̃(v, h(v)))− λ1 h(v)− f̃(v, h(v)) = 0. (4.18)

Calculating (4.18), we get
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a =
α2 + (−2r + 1)α + r2 − 2r − 2

2(−α + r)3
,

b =
1

6(−α + r)3

[
(−12a+ 2)α3 + ((42a− 6)r + 18a+ 3)α2 + (−5 + (−48a+ 6)r2

+ (−36a− 6)r)α + (18a− 2)r3 + (18a+ 3)r2 + 6r
]
. (4.19)

Hence,

h(v) =
α2 + (−2r + 1)α + r2 − 2r − 2

2(r − α)3
v2 + O(3).

We then have the dynamics on the center manifold by the map:

v 7→ v +
r − α + 1

α− r
v2 + O

(
v3
)

(4.20)

It then follows that the steady state is half-stable as demonstrated in Figure (4.4). In the

original coordinates system, the center manifold at S2 = (x∗2, 0) then takes the form

x = x∗ +
1

α− r
y +

α2 + (−2r + 1)α + r2 − 2r − 2

2(r − α)3
y2, as y → 0.

Figure 4.4: Center manifold is half-stable or semi-stable for r = 3.8621 and u = h(v).
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Similar results for the proof of the case k = 1 and r 6= α can be found because when we

cross the curve k = 1 in Figure (4.4) upward, the system shows changing dynamic behavior

from stable to saddle as well as crossing horizontally when k = 1 and α = r.

(ii) Suppose k = 1 and α = r, then both eigenvalues are one. In this case, use normal form by

letting α = r + α1 , and consider the change of coordinates that provide the following,

 x

y

 =

 1 1
α1

0 1


 u

v

 =

 u+ 1
α1
v

v

 .

It then follows that u

v

 7→
 1 + α1 0

0 1


 u

v

+ P−1

 f(u, v)

g(u, v)

 ,

where

f̃(u, v) =
(α2

1 + α1 − r)
2

u2 − (r + 1)

α1

uv +
(α2

1 + α1 − r − 2)

2α2
1

v2 + O(3)

g̃(u, v) =u v − (α1 − 1)

α1

v2 + O(3).

Assume the map h takes the following form, and by some computation we get the center

manifold by

u = h(v) = α v2 + β v3 + O
(
v4
)

= −(α2
1 + α1 − r − 2)

2α3
1

v2 + O(3).

Thus, the dynamics of the center manifold is given by the map:

v 7→ v − (α1 − 1)

α1

v2 + O
(
v3
)

It follows that the steady state is half-stable or semi-stable as demonstrated in Figure (4.5).
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In the original coordinates system, the center manifold at S2 = (x∗, 0) takes the form

x = x∗ +
1

α1

y +
(−α2

1 − α1 + r + 2)

2α3
1

y2, as y → 0.

Figure 4.5: The center manifold is half-stable or semi-stable. Here α = 0.43 for u = h(v).

(iii) If k 6= 1 and x∗ = αk
r

, consider the change of coordinates,

 x

y

 =

 1 − αk
αk−r

0 1


 u

v

 =

 u− αk
αk−r v

v

 .

It follows that u

v

 7→
 1 0

0 αk
r


 u

v

+

 − r
2k
u2 + r (α+1)

αk−r uv −
(2k+r)kα2

2(kα−r)2 v
2 + O(3)

u v − α2k2

(αk−r)rv
2 + O(3)

 .

Assume that the map h takes the following form and by some computation, the center man-

ifold is attained as follows

v = h(u) = αu2 + β u3 + O
(
u4
)
≡ 0.
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Then the dynamics of the center manifold is given by the following map:

u 7→ −u− r

2k
u2 + O

(
u3
)

Therefore, it follows that the steady state is stable and is provided by Figure (4.6).

Figure 4.6: Center manifold is stable when k = 2.3448 and r = 2 for v = h(u).

4.4 Stability Regions of the Interior Steady-States

In this section, we estimate the stability regions of the interior steady states S3 and S4 for co-

dimension one (x, r), (x, k) and (x, α) planes. For co-dimension two, (α, k), (r, k) and (r, α)

planes in Q1, the largest interior steady state S4 is used. Moreover, the region in this section being

considered is x ≥ 1, because x = y + 1 and y ≥ 0. We started first by getting Jacobian matrix

(4.12) of system (4.6) at the interior steady-state xα er(1−x
k ) = 1 + y and x = 1 + y, which is

reduced to

J∗ =

1 + α− x∗r
k
−1

1− 1
x∗

1
x∗

 . (4.21)
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4.4.1 One Parameter Bifurcation (Co-Dimension 1)

In order to study the stability of the interior steady states, we start by transforming the (tr, det)

plane to other one co-dimension using the linearization theorem and stability conditions (2.2.1).

The stability regions for the (x, r)-plane is presented as follows,

Theorem 4.4.1. Suppose k > 0, α > 0 and let Ω =
{

(x, r) | r ≥ 0, x ≥ 1
}

. The stability regions

of dynamical system (4.6) in (x, r)-plane is given by the following statements:

(i) The region delimited between r > f1(x) = α + ln(x)(1− α) and r < f3(x)

= −(α−1)(x+1) ln(x)+(α+3)x+α+1
x+1

is stable.

(ii) The region delimited between r > f2(x) = ln(x)(1 − α) + α − 1 and r < f1(x) = α +

ln(x)(1− α) is repelling.

(iii) The region below r < f2(x) = ln(x)(1− α) + α− 1 or above r > f3(x)

= −(α−1)(x+1) ln(x)+(α+3)x+α+1
x+1

is saddle.

Also the acceptable (positive) region is the region where r > ln(x)(1 − α) (shown by the orange

curve in Figure (4.7)).

Proof. Solving the equation xα er(1−
x
k

) = x for k gives k = r x
r−ln(x)+α ln(x)

> 0, that is r >

−α ln(x) + ln(x) (orange curve). Substituting k in Jacobin matrix (4.21) gives the determinant

and trace

tr = 1 + α− r + ln (x)− α ln (x) +
1

x
and det =

−α ln (x ) + ln (x) + α− r + x

x
.

For simplicity, we drop asterix from the steady state x∗. The region delimited between the three

curves from inequalities (2.4) det = 1, det = tr−1 and det = − tr−1 provides stable region

and is equivalent to r = f1(x) = α + ln(x)(1 − α), r = f2(x) = ln(x)(1 − α) + α − 1,

r = f3(x) = −(α−1)(x+1) ln(x)+(α+3)x+α+1
x+1

in (x, r)-plane, respectively. For simplicity, the color of

the curves corresponding to the equations det = 1, det = tr − 1 and det = −tr − 1 are shown

in yellow, green and red curves, respectively. We can see that lim
x→0+

fi(x) = sign(α − 1)∞, and
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lim
x→∞

fi(x) = −sign(α−1)∞ for i = 1, 2, 3. Moreover f1(x)−f2(x) = 1 > 0 and f3(x)−f2(x) =

3x+1
x+1

, therefore, f2 < f1 < f3 in Q1 as can be seen in Figure (2.5).

The region corresponding to the inequality det < 1 and det > 1 is, respectively, equivalent to

 r > α + ln(x)(1− α),

r < α + ln(x)(1− α).

Similarly, the region corresponding to the inequality det < tr− 1 and det > tr− 1 is, respectively,

equivalent to  r < ln(x)(1− α) + α− 1,

r > ln(x)(1− α) + α− 1.

Finally, the region corresponding to the inequality det < −tr−1 and det < −tr−1 is, respectively,

equivalent to  r > −(−1+α) (x+1) ln(x)+(α+3)x+α+1
x+1

,

r < −(−1+α) (x+1) ln(x)+(α+3)x+α+1
x+1

.

The stable region corresponding to the solutions of the system of inequalities (2.7) is the region

when r < f3(x) and r > f1(x). From which and using inequalities (2.8), it can be seen that the

repeller region corresponding to the solutions of the system is given by the region r < f3(x) and

r > f2(x). The second system of inequality has no solution in Ω. Also, inequalities given by

(2.9) gives the saddle region corresponding to the solutions of the system which corresponds to

the regions r > f3(x) > f2(x) curves, or r < f2(x) < f3(x). Thus, the saddle region is either

r > f3(x) or r < f2(x).

Note that, the only existence region is the region where r > −α ln(x) + ln(x) (orange curve).

It is shown in Figure (4.7).

Theorem 4.4.2. Suppose r > 0, k > 0 and let Ω = {(x, α) | α ≥ 0, x ≥ 1}. The stability regions

for the interior steady states in (x, α)-plane of dynamical system (4.6) is given by the following

statements:
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Figure 4.7: Stability regions of (x, r)− plane for different values of α where α = 0.20513, α = 1,
and α = 2.3590.

(i) The region delimited between α > f1(x) = ln(x)−r
ln(x)−1

and α < f3(x) = ln(x)x−x r+ln(x)−r+3x+1
ln(x)x+ln(x)−x−1

is stable.

(ii) The region delimited between α > f2(x) = ln(x)−r−1
ln(x)−1

and α < f1(x) = ln(x)−r
ln(x)−1

is repelling.

(iii) The region below α < f2(x) = ln(x)−r−1
ln(x)−1

or above α > f3(x) = ln(x)x−x r+ln(x)−r+3x+1
ln(x)x+ln(x)−x−1

is

saddle.

Also the acceptable (positive) region is the region where α > f4 = ln(x)−r
ln(x)

(orange curve).
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Proof. Solving the equation xα er(1−
x
k

) = x for k gives k = r x
r−ln(x)+α ln(x)

, meaning that α >

ln(x)−r
ln(x)

(orange curve). Similar to the previous theorem, the region corresponding to inequality

det < 1 is equivalent to  α < ln(x)−r
ln(x)−1

& x < e,

α > ln(x)−r
ln(x)−1

& x > e.

In addition, the region corresponding to the inequality det > 1 is specified by

 α > ln(x)−r
ln(x)−1

& x < e,

α < ln(x)−r
ln(x)−1

& x > e.

The region corresponding to inequality det < tr−1 is also equivalent to

 α > ln(x)−r−1
ln(x)−1

& x < e,

α < ln(x)−r−1
ln(x)−1

& x > e.

In addition, the region corresponding to the inequality det > tr−1 is specified by

 α < ln(x)−r−1
ln(x)−1

& x < e,

α > ln(x)−r−1
ln(x)−1

& x > e.

In addition, the region corresponding to inequality det < − tr−1 is equivalent to

 α < ln(x)x−x r+ln(x)−r+3x+1
ln(x)x+ln(x)−x−1

& x < e,

α > ln(x)x−x r+ln(x)−r+3x+1
ln(x)x+ln(x)−x−1

& x > e.

Finally, the region corresponding to the inequality det > − tr−1 is equivalent to

 α > ln(x)x−x r+ln(x)−r+3x+1
ln(x)x+ln(x)−x−1

& x < e,

α < ln(x)x−x r+ln(x)−r+3x+1
ln(x)x+ln(x)−x−1

& x > e.

The stable region that corresponds to the solutions of the system is the region when f1(x) < α <
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f3(x) for x > e or f3(x) < α < f1(x) for x < e. The repeller region that corresponds to the

solutions is given by the region under yellow curve and above the green curve for x > e, and it is

under the green curve and above the yellow curve for x < e. The saddle region corresponds to the

region above green and red curve, or below green and below red curve.

The results are shown in Figure (4.8).

Figure 4.8: The stability regions of the (x, α)−plane interior steady-states points (z∗1 , z
∗
1 − 1) and

(z∗2 , z
∗
2 − 1) where r = 0.82051, r = 1, and r = 1.3097.

Theorem 4.4.3. Suppose r > 0, α > 0 and let Ω = {(x, k) | k ≥ 0, x ≥ 1}. The stability
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regions for the interior steady states of the dynamical system (4.6) in Ω is given by the following

statements:

(i) The region delimited between k > f1(x) =
(−rx2+2 k x+k) ln(x)−r x(k−x)

ln(x)k x
and k < f3(x) =

r x (x+(x+1) log(x)−1)
r (x−1)+(4x+2) log(x)

is stable.

(ii) The region delimited between k > f2(x) = x− x ln (x) and k < f1(x)

=
(−rx2+2 k x+k) ln(x)−r x(k−x)

ln(x)k x
is repelling.

(iii) The region below k < f2(x) = x − x ln (x) or above k > f3(x) = r x (x+(x+1) log(x)−1)
r (x−1)+(4x+2) log(x)

is

saddle.

Also the acceptable (positive) region is the region where k > f4(x) = − rx
ln(x)−r (orange curve).

Proof. Solving the equation xα er(1−
x
k

) = x for α gives α = ln(x) k−r k+r x
ln(x) k

, as a result, k > f4(x) =

− rx
ln(x)−r . By substituting α where y = x − 1 in the Jacobin matrix (4.21) we attain the trace and

determinant as follows

tr =
(−rx2 + 2 k x+ k) ln (x)− r x (k − x)

ln (x) k x
and det =

((x+ 1) k − r x) ln (x)− r (k − x)

ln (x) k x
.

The region delimited between the three curves in (2.4) det = 1, det = tr−1 and det = −tr−1

is stable and they can be expressed by k = f1(x) = r x (ln(x)−1)
ln(x)−r , k = f2(x) = − (ln (x) − 1) x and

k = f3(x) = r x(ln(x)x+ln(x)−x−1)
4 ln(x)x−r x+2 ln(x)−r , respectively.

The region corresponding to inequality det < 1 is given by



k < r x (ln(x)−1)
ln(x)−r & x ≤ e & r < ln(x),

k > r x (ln(x)−1)
ln(x)−r & x ≤ e & r > ln(x),

k < r x (ln(x)−1)
ln(x)−r & x > e & r < ln(x),

k > r x (ln(x)−1)
ln(x)−r & x > e & r > ln(x).
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When r = 1, it then follows that

 k < x & x > e,

k > x & 1 < x < e.

In addition, the region corresponding to the inequality det > 1 is specified by



k > r x (ln(x)−1)
ln(x)−r & x < e & r < ln(x),

k < r x (ln(x)−1)
ln(x)−r & x < e & r > ln(x),

k > r x (ln(x)−1)
ln(x)−r & x ≥ e & r < ln(x),

k < r x (ln(x)−1)
ln(x)−r & x ≥ e & r > ln(x).

When r = 1, we have  k > x & x > e,

k < x & 1 < x < e.

The region corresponding to inequality det < tr−1 is equivalent to

k < x− x ln (x) & r > 0.

When r = 1, we have

k < x− x log(x) & x > 1.

In addition, the region corresponding to the inequality det > tr−1 is specified by

k > x− x ln (x) & r > 0.

When r = 1, we have

k > x− x log(x) & x > 1.
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Finally, the region corresponding to inequality det < − tr−1 is given by



k < r x (x+(x+1) log(x)−1)
r (x−1)+(4x+2) log(x)

& x < e & r < 2 (2x+1) log(x)
1+x

,

k > r x (x+(x+1) log(x)−1)
r (x−1)+(4x+2) log(x)

& x < e & r > 2 (2x+1) log(x)
1+x

,

k < r x (x+(x+1) log(x)−1)
r (x−1)+(4x+2) log(x)

& x ≥ e & r < 2 (2x+1) log(x)
1+x

,

k > r x (x+(x+1) log(x)−1)
r (x−1)+(4x+2) log(x)

& x ≥ e & r > 2 (2x+1) log(x)
1+x

.

When r = 1 and x = x0 ≈ 1.37266, we have

 k < (x·(x+1)(log(x)−1))
(−x+(4x+2) log(x)−1)

& x > x0,

k > (x·(x+1)(log(x)−1))
(−x+(4x+2) log(x)−1)

& 1 < x < x0.

In addition, the region corresponding to the inequality det > − tr−1 is specified by



k > r x (x+(x+1) log(x)−1)
r (x−1)+(4x+2) log(x)

& x < e & r < 2 (2x+1) log(x)
1+x

,

k < r x (x+(x+1) log(x)−1)
r (x−1)+(4x+2) log(x)

& x < e & r > 2 (2x+1) log(x)
1+x

,

k > r x (x+(x+1) log(x)−1)
r (x−1)+(4x+2) log(x)

& x ≥ e & r < 2 (2x+1) log(x)
1+x

,

k < r x (x+(x+1) log(x)−1)
r (x−1)+(4x+2) log(x)

& x ≥ e & r > 2 (2x+1) log(x)
1+x

.

When r = 1 and x = x0 ≈ 1.37266, we have

 k > (x·(x+1)(log(x)−1))
(−x+(4x+2) log(x)−1)

& x > x0,

k < (x·(x+1)(log(x)−1))
(−x+(4x+2) log(x)−1)

& 0 < x < x0.

Therefore, there are three different cases and regions to study and determine the stability for this

(x, k)−plane. The regions are r < ln(x) < 2 (2x+1) log(x)
1+x

, r > 2 (2x+1) log(x)
1+x

> ln(x), and ln(x) <

r < 2 (2x+1) log(x)
1+x

. For these cases, there are also three different values of r: r < 1, r = 1 and

r > 1.

Case 1: For r < 1, the stable regions correspond to the solutions of inequalities (2.7) give as

follows: the region where r < ln(x) < 2 (2x+1) log(x)
1+x

is given by f1(x) < k < f3(x); but the region
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where r > 2 (2x+1) log(x)
1+x

> ln(x) does not exists since k > f1(x) and k > f3(x). When ln(x) <

r < 2 (2x+1) log(x)
1+x

, we then have f3(x) < k < f1(x). In addition, the saddle regions correspond

to the solution’s inequalities (2.9) which is given by: k > f3(x) if r < ln(x) < 2 (2x+1) log(x)
1+x

.

However, when r > 2 (2x+1) log(x)
1+x

> ln(x), the saddle region does not exist because k > f2(x)

and k < f3(x). When ln(x) < r < 2 (2x+1) log(x)
1+x

, the region is k < f3(x). In addition, for the

saddle regions if r < ln(x) < 2 (2x+1) log(x)
1+x

, then k < f2(x), or if r > 2 (2x+1) log(x)
1+x

> ln(x), then

k < f2(x), however when ln(x) < r < 2 (2x+1) log(x)
1+x

, it does not exist since f1(x) < k < f2(x).

The repeller region corresponds to f2(x) < k < f1(x) if r < ln(x) < 2 (2x+1) log(x)
1+x

, or f2(x) <

k < f1(x) if r > 2 (2x+1) log(x)
1+x

> ln(x), or k > f2(x) if ln(x) < r < 2 (2x+1) log(x)
1+x

.

Case 2: For r > 1, the result is similar to r < 1 and that shows in Figure (4.9).

Case 3: For r = 1, there are three different regions x < x0 ≈ 1.37266, x0 < x < e and x > e.

The stable regions are given by: f1(x) < k < f3(x) when x < x0; however, when x0 < x < e it

does not exist because k > f3(x) > f2(x) > f1(x); and when x > e the stable region is delimited

between f2(x) < k < f1(x). The saddle regions is given by: k > f3(x) when x < x0; the saddle

region does not exist when x0 < x < e; or k < f3(x) when x > e. For the other condition, the

saddle regions are given by: k < f2(x) when x < x0; k < f2(x) when x0 < x < e; and when

x > e the saddle region does not exist because f3(x) < k < f2(x). The repeller region corresponds

to the regions f2(x) < k < f1(x) when x < x0, or f2(x) < k < f1(x) when x0 < x < e, and it

does not exist when x > e.

Figure (4.9) provides the three cases of r.

4.4.2 Two Parameter Bifurcation (Co-Dimension 2)

We demonstrate the stability region for positive steady state points in parameter space the first and

second interior steady states of (α, k), (r, k), and (α, r)-planes for certain values of parameters r, k

and α.

We start by computing the region where α > 1 for the interior steady state S4. For this purpose,
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Figure 4.9: Stability regions of (x, k)−plane for the interior steady-states points where r = .8,
r = 1, and r = 1.0345.

we use the range of W−1(x)

W

(
−1,− re−

r
α−1

k(α− 1)

)
< −1, (4.22)

and from the domain of W−1(x), we can rewrite (4.22) as

− 1

e
≤ − re−

r
α−1

k(α− 1)
< 0. (4.23)
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Solving (4.23) for k provides the existence curve for (α, k)-plane and (r, k)-plane

k ≥ r e1− r
α−1

(α− 1)
.

Also, solving (4.23) for r provides the existence curve of (α, r)-plane as

r ≤ (1− α)W

(
−k
e

)
.

This is shown in Figure (4.12).

Figure (4.10) shows the stability of W−1 and W0 for different α values and different k values

can be stable, repeller, or saddle.

Theorem 4.4.4. Suppose r > 0, α > 0, k > 0 and x ≥ 1 then the following statements are true

for system (4.6) for (α, k)-plane:

(i) The stable region is delimited between f1(α) < k < f3(α).

(ii) The repeller region is delimited between f2(α) < k < f1(α).

(iii) The saddle region is either delimited between f3(α) < k <∞ or 0 < k < f2(α).

The acceptable region is given by k > f4(α) =
α−r−1
α−1

r

α−1
(orange curve) for the existence

region based on the parameter k.

Proof. The proof depends on three steps based on the conditions established for stability (2.2.1).

First, we obtain the trace tr and determinant det of Jacobin matrix (4.21). After substituting the

largest interior steady state z∗2 = e

(−α+1) W

−1,− r e
− r
α−1

k (α−1)

−r

α−1 into matrix (4.21), it then follows that

tr(J∗) =
1

k

−r e

(−α+1)W

−1,− r e
− r
α−1

k (α−1)

−r

α−1 + k

(
α + e

(α−1)W

(
−1,− r e

− r
α−1

k (α−1)

)
+r

+ 1

) ,
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Figure 4.10: Top Left: No interior steady states exist when α < 1. Top right: when α > 1, the
steady state W0 is saddle (purple curve below the green curve), however, W−1 changes its stability
for different values of parameter r (dark purple curve is: repeller between the green and yellow
curves, stable between the yellow and red curves, and saddle above red). In the top row, we have
k = 0.5. Bottom Left: Only W0 exists in different regions (repeller, stable, and saddle, similar to
the top left case) when α < 1. However, we will only have W−1 for different (in)stability regions
(repeller, stable, and saddle) when α > 1. For the bottom panels, we assume k = 1.5.

and

det(J∗) =
1

k

α k e (α−1)W

−1,− r e
− r
α−1

k (α−1)

+r

α−1 + k − r

 .

The identities det = 1 and det = tr − 1 are equivalent to k = f1 = r

α e
−α−r
α−1

(yellow curve),

k = f2 = 1 or
α−r−1
α−1

r

α−1
(green curve), respectively. However, for det = −tr − 1, we can only find

an upper bound k = f3 ≤ β = − re
− r
α−1−−α−3

α−1

−α−3
(red curve), where β is the upper bound of the red

98



curve when α > 1. As a result, to find the dynamics of the steady state S4, we need to check the

following statements. The other cases are similarly obtained for saddle or repeller regions.

(i) First assume that α > 1. Also, we know that the stable region corresponds to the solutions

of the system of inequalities given by (2.7). This means that we should first have det < 1, it

then follows that

α e
W

(
−1,− r e

− r
α−1

k (α−1)

)
+ r
α−1 − r

k
< 0 =⇒ e

W

(
−1,− r e

− r
α−1

k(α−1)

)
<
r e−

r
α−1

α k
.

Now we use the appropriate properties of W function (2.29) below. For α > 1, we can then

multiply both sides by the decreasing function W that reverses the inequality

− r e
− r
α−1

k (α−1)

W
(
−1,− r e

− r
α−1

k (α−1)

) < r

k α
e−

r
α−1 =⇒ − α

(α− 1)
> W

(
−1,− re−

r
α−1

k(α− 1)

)
.

We know that the domain of W−1 is −1
e
< x < 0. We also know that the inverse of

decreasingW function is decreasing so that the inequality reverses and thatW−1(− α
(α−1)

) =

− α
(α−1)

e−
α

(α−1) . Take the inverse of W function from both sides then solve it for k, it then

follows that

max

{
−e−1,−α e

− α
α−1

α− 1

}
< − r e−

r
α−1

k(α− 1)
< 0.

Since

max

{
−e−1,−α e

− α
α−1

α− 1

}
= −α e

− α
α−1

α− 1
,

we then have

α e−
α
α−1 >

r e−
r

α−1

k
.

As a result, the stable region corresponding to inequality det < 1 is equivalent to k > r
α

e
α−r
α−1

for α > 1. This can be shown similarly for α < 1, we can then summarize it by

 k > r
α

e
α−r
α−1 & α > 1,

k < r
α

e
α−r
α−1 & α < 1.
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For det > tr−1, it then follows that

r

k
e

(−α+1)W

−1,− r e
− r
α−1

k (α−1)

−r

α−1 +
k (α− 1)

k
e

(α−1)W

−1,− r e
− r
α−1

k (α−1)

+r

α−1 +
(−α + 1) k

k
− r

k
> 0,

simplifying it, we obtain

r

k
e
−W

(
−1,− r e

− r
α−1

k (α−1)

)
− r
α−1 + (α− 1) e

W

(
−1,− r e

− r
α−1

k (α−1)

)
+ r
α−1 + (−α + 1)− r

k
> 0,

using the properties of W function (2.27) and (2.29) we have

r

k

W
(
−1,− r e

− r
α−1

k (α−1)

)
(
− r e

− r
α−1

k (α−1)

)
e

r
α−1

+
(α− 1)

(
− r e

− r
α−1

k (α−1)

)
W
(
−1,− r e

− r
α−1

k (α−1)

) e
r

α−1 + (−α + 1)− r

k
> 0,

simplifying them again gives us

1

α− 1

−W

(
−1,− r e−

r
α−1

k (α− 1)

)
(α− 1) +

(
− r
k

)
W
(
−1,− r e

− r
α−1

k (α−1)

) + (−α + 1)− r

k

 > 0,

more simplifications after dividing each term by (α− 1) gives

−W

(
−1,− r e−

r
α−1

k (α− 1)

)
+

(
− r
k (α−1)

)
W
(
−1,− r e

− r
α−1

k (α−1)

) − 1− r

k (α− 1)
> 0. (4.24)

Let us now consider u = W
(
−1,− r e

− r
α−1

k (α−1)

)
, we can rewrite (4.24) as follows

−u+

(
− r
k (α−1)

)
u

− 1− r

k (α− 1)
> 0.

It is clear that there are two solutions: u = −1 and u = − r
k(α−1)

. Since the above inequality

is quadratic, this means that u must be between the two roots to satisfy the inequality. As a

result, because W−1 is a monotone decreasing function with the range (−∞,−1], then those
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two roots must be written as − r
k(α−1)

< u < −1 (the other case −1 < u < − r
k(α−1)

is

not within the range of W−1). Let us first compute the right hand side, u < −1. Using the

properties of W−1 being a monotone decreasing function and the domain W−1, thus we can

write u < −1 as follows

−1

e
≤ − r e−

r
α−1

k (α− 1)
< 0.

Multiplying by k and then solving for k gives

−k
e
≤ −r e−

r
α−1

(α− 1)
=⇒ k

e
≥ r e−

r
α−1

(α− 1)
=⇒ k ≥ r e1− r

α−1

(α− 1)
.

Also, for the left hand side, we can show that

u >
−r

k(α− 1)
=⇒ W

(
− r e−

r
α−1

k (α− 1)

)
> − r

k(α− 1)
.

Applying the inverse of W function to both sides and using the property (2.28) gives

− re−
r

α−1

k(α− 1)
> − r

k(α− 1)
e−

r
k(α−1) >

−1

e
=⇒ re−

r
α−1

k(α− 1)
<
re−

r
k(α−1)

k(α− 1)
,

or

e−
r

α−1 < e−
r

k(α−1) =⇒ k > 1.

As a result, the region corresponding to the inequality det > tr−1 is given by

 k > r e
1− r

α−1

(α−1)
& α > 1, k > 1,

k < r e
1− r

α−1

(α−1)
& α < 1, k < 1.

For the inequality det > − tr−1, we have

−r e

(−α+1) W

−1,−
r e

− r
α−1

)
−r

k (α−1)


α−1 + k (1 + α) e

(α−1)W

−1,− r e
− r
α−1

k (α−1)

+r

α−1 + (α + 3) k > r.
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To solve this inequality we define r := t (α− 1)

−t(α− 1)e
(−α+1)W

(
− t e−t

k

)
−t(α−1)

α−1 + k(1 + α)e
(α−1)W

(
− t e−t

k

)
+t(α−1)

α−1 + (α + 3)k > t(α− 1).

Simplifying it using the properties of W function (2.29) and (2.30), that is, eW (x) = x
W (x)

e−W (x) = W (x)
x

, we obtain

k (α− 1)W
(
−1,− t e−t

k

)2

+ k (α + 3)W
(
−1,− t e−t

k

)
− (1 + α) t

W
(
−1,− t e−t

k

) > t (α− 1).

Multiply both sides by W
(
−1,− t e−t

k

)
, and for α > 1 we have

k (α− 1)W

(
−1,−t e−t

k

)2

+ k (α + 3)W

(
−1,−t e−t

k

)
− (1 + α) t−

(
t (α− 1)W

(
−1,−t e−t

k

))
< 0. (4.25)

Now in order to get the roots of this inequality, let’s consider for simplicity that u =

W
(
−1,− t e−t

k

)
where t = r

α−1
, so we have

k (α− 1)u2 + k (α + 3)u− (1 + α) t− t (α− 1)u < 0. (4.26)

Assume that α > 1 and then solving the equality we got two solutions: u1 and u2 that are

given by

u1 =
−αk + tα− 3k − t+

√
α2k2 + 2α2kt+ α2t2 + 6αk2 − 4αkt− 2αt2 + 9k2 + 2kt+ t2

2k(α− 1)
,

u2 = −αk − tα +
√
α2k2 + 2α2kt+ α2t2 + 6αk2 − 4αkt− 2αt2 + 9k2 + 2kt+ t2 + 3k + t

2k(α− 1)
.
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Since t = r
α−1

, then those two roots simplify to

u1 =
−α k − 3 k + r +

√
α2 k2 + 6α k2 + 2α k r + 9 k2 − 2 k r + r2

2 k (α− 1)
,

u2 = −α k +
√
α2 k2 + 6α k2 + 2α k r + 9 k2 − 2 k r + r2 + 3 k − r

2 k (α− 1)
.

We can see that since α > 1 and u < 0 then (4.26) is f < 0. If α < 1, then u > 0 which

gives (4.26) f > 0. Let us now simplify the second root to help to calculate the boundary of

the function f3 so that we can determine the stability. First consider r = 0 for u2

u2

∣∣∣
r=0

= −
αk +

√
(αk + 3k)2 + 3k

2k(α− 1)
= −2α + 6

2α− 2
=
−α− 3

α− 1
.

Assume that τ = −α−3
α−1

. Since α > 1 and f < 0, then the acceptable inequality is given by

τ < u < u1.

That means

τ < W

(
−1,−t e−t

k

)
< u1.

Multiplying them by the inverse of W function and using the property (2.28) gives

τ eτ < −t e−t

k
< u1 e

u1 ,

or

0 >
1

τ
e−τ >

k

−t e−t
>

1

u1

e−u1 .

Solve for k
−t e−t−τ

τ
< k <

−t e−t−u1

u1

.
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As a result, the region corresponding to inequality det > − tr−1 is equivalent to

 k < 1
α+3

e
α+3
α−1 re

−r
α−1 & α > 1,

k > 1
α+3

e
α+3
α−1 re

−r
α−1 & α < 1.

(4.27)

Thus, (4.27) means that:

k <
1

α + 3
e
α+3
α−1 re

−r
α−1 & α > 1 =⇒ k < f3(α, r) < f3(α, 0),

k >
1

α + 3
e
α+3
α−1 re

−r
α−1 & α < 1 =⇒ k > f3(α, r) > f3(α, 0).

where f3 is obtained by implicitly solving the following equation for k

− r

(α− 1)k
· e(−

r
α−1) =− αk +

√
α2k2 + 6αk2 + 2αkr + 9k2 − 2kr + r2 + 3k − r

2k(α− 1)
·

e−
αk+
√
α2k2+6αk2+2αkr+9k2−2kr+r2+3k−r

2k(α−1)

and we showed that it is bounded from above by β = 1
α+3

e
α+3
α−1 re

−r
α−1 where α > 1.

Therefore, for α > 1 the stable region takes the range between the yellow curve and red curve,

f1(α) < k < f3(α). The repeller region takes the range between the green curve and yellow

curve, f2(α) < k < f1(α). Also, the saddle region takes the range either above the red curve,

f3(α) < k <∞, or between zero and the yellow curve, 0 < k < f2(α). These are shown in Figure

(4.11) below.

Note that it can be similarly proven for (r, k)−plane. Now we want to prove the stability for

the two co-dimension of (α, r)−plane.

Theorem 4.4.5. Suppose r > 0, α > 0, k > 0 and x ≥ 1 then the following statements are true

for system (4.6) for (α, r)-plane :

(i) The stable region is delimited between f3(α) < r < f1(α).

(ii) The repeller region is delimited between f1(α) < r < f2(α).
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Figure 4.11: Stability regions of co-dimension two for the (α, k)−plane where the parameter r =
0.42625 (top left), r = 1 (top right) and r = 1.2588 (bottom).

(iii) The saddle region is either delimited between 0 < r < f3(α) or f2(α) < r <∞.

Proof. We can follow the same technique as in the proof of (α, k)-plane. The identities det = 1

and det = tr − 1 are equivalent to r = f1 = −(α − 1)W
(
−αk e

− α
α−1

α−1

)
(yellow curve), r = f2 =

1 or (−α+ 1)W
(
−k
e

)
(green curve), respectively. However, for det = −tr− 1, we can only find a

lower bound β ≤ r = f3 = −W
(
− e

− α+3
α2−2α+1 k (α+3)

α−1

)
(α− 1), where β is the lower bound of the

red curve when α > 1.

(i) Similar to the previous theorem, we have

α e
W

(
−1,− r e

− r
α−1

k (α−1)

)
+ r
α−1 − r

k
< 0 =⇒ e

W
(
−1,− r e

− r
α−1

k (α−1)

)
<
r e−

r
α−1

α k
,
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then

− r e
− r
α−1

k (α−1)

W
(
−1,− r e

− r
α−1

k (α−1)

) < r

k α
e−

r
α−1 =⇒ − α

(α− 1)
> W

(
−1,− r e−

r
α−1

k(α− 1)

)
,

take the inverse of W function for both sides and use W−1(x) = xex, it then follows that

−α e
− α
α−1

α− 1
< − r e−

r
α−1

k(α− 1)
,

then

−α k e−
α
α−1

α− 1
< W−1

(
−1,− r

α− 1

)
,

solve it for r, we have

r < (1− α)W

(
−1,−α k e−

α
α−1

α− 1

)
,

as a result the stable region corresponding to inequality det < 1 is given as

 r < (1− α)W
(
−1,−αk e

− α
α−1

α−1

)
& α > 1,

r > (1− α)W
(
−1,−αk e

− α
α−1

α−1

)
& α < 1.

For det < tr−1, we have

r

k
e

(−α+1)W

−1,− r e
− r
α−1

k (α−1)

−r

α−1 +
k (α− 1)

k
e

(α−1)W

−1,− r e
− r
α−1

k (α−1)

+r

α−1 +
(−α + 1) k

k
− r

k
> 0,

then

r

k

W
(
−1,− r e

− r
α−1

k (α−1)

)
(
− r e

− r
α−1

k (α−1)

)
e

r
α−1

+
(α− 1)

(
− r e

− r
α−1

k (α−1)

)
W
(
−1,− r e

− r
α−1

k (α−1)

) e
r

α−1 + (−α + 1)− r

k
> 0,
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simplifying them gives

1

α− 1

−W

(
−1,− r e−

r
α−1

k (α− 1)

)
(α− 1) +

(
− r
k

)
W
(
−1,− r e

− r
α−1

k (α−1)

) + (−α + 1)− r

k

 > 0,

or

−W

(
−1,− r e−

r
α−1

k (α− 1)

)
+

(
− r
k (α−1)

)
W
(
−1,− r e

− r
α−1

k (α−1)

) − 1− r

k (α− 1)
> 0. (4.28)

Assume u = W
(
−1,− r e

− r
α−1

k (α−1)

)
. From the definition ofW , we obtain k = − r

u (α−1)
e−

r
α−1
−u.

Substituting k and u in (4.28), it follows that

−u+

(
− r u (α−1)
−r (α−1)

e
r

α−1
+u
)

u
− 1− r u (α− 1)

−r (α− 1)
e

r
α−1

+u > 0.

It is clear that u = −1 and e
r

α−1
+u = 1 are two solutions of the left hand side of the above

inequality. We can start the computation when u = −1:

W

(
−1,− r e−

r
α−1

k (α− 1)

)
< −1

From the domain of W−1 function, we have

−1

e
≤ − r e−

r
α−1

k (α− 1)
< 0,

or

− k

e
≤ W−1

(
−1,− r

α− 1

)
. (4.29)

Applying the Lambert W function W to both sides gives

W

(
−1,−k

e

)
≥
(
− r

α− 1

)
=⇒ r ≥ (1− α)W

(
−1,−k

e

)
. (4.30)
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For the other solution when we have e
r

α−1
+u = 1, by some calculations we acquire

W

(
−1,− r e−

r
α−1

k (α− 1)

)
> − r

α− 1
, (4.31)

or

− re−
r

α−1

k(α− 1)
> − r

α− 1
e−

r
α−1 , (4.32)

simplifying them and solving it for r gives k > 1. As a result the region corresponding to

inequality det > tr−1 is given by

 r ≥ (1− α)W
(
−1,−k

e

)
& α > 1, k > 1

r ≤ (1− α)W
(
−1,−k

e

)
& α < 1, k < 1.

The region corresponding to inequality det > − tr−1 is equivalent to

 r < −(α− 1)W
(
−k(α+3)

α−1
e−

α+3
α−1

)
& α > 1,

r > −(α− 1)W
(
−k(α+3)

α−1
e−

α+3
α−1

)
& α < 1.

This result is coming from solving (4.27) for r as follow.

k <
1

α + 3
e
α+3
α−1 re

−r
α−1 =⇒ k(α + 3)e−

α+3
α−1 < re

−r
α−1 ,

for α > 1

=⇒ k
(α + 3)

α− 1
e−

α+3
α−1 <

r

α− 1
e

−r
α−1 =⇒ −k(α + 3)

α− 1
e−

α+3
α−1 > − r

α− 1
e

−r
α−1 ,

=⇒ −k(α + 3)

α− 1
e−

α+3
α−1 > W−1

(
−1,

−r
α− 1

)
.

It then follows that

W

(
−1,−k(α + 3)

α− 1
e−

α+3
α−1

)
< W

(
W−1

(
−1,

−r
α− 1

))
,
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W

(
−k(α + 3)

α− 1
e−

α+3
α−1

)
<
−r
α− 1

=⇒ −W
(
−k(α + 3)

α− 1
e−

α+3
α−1

)
>

r

α− 1
,

r < −(α− 1)W

(
−k(α + 3)

α− 1
e−

α+3
α−1

)
.

Therefore, for (α, r)- plane, the stable regions are in the range between f3(α) < r < f1(α). The

repeller region is the region delimited between f1(α) < r < f2(α) or empty space. The saddle

region is either above r > f2(α) or 0 < r < f3(α). Figure (4.12) summarizes the results of this

theorem.

Figure 4.12: Stability regions of the two co-dimension (α, r) plane where the parameter k = 1
(left) and k = 1.6668 (right).

4.5 Bifurcation Analysis

In this section, we investigate the dynamics of two types of bifurcation that the model experiences:

Neimark–Sacker bifurcation and Period-doubling bifurcation.
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4.5.1 Neimark–Sacker Bifurcation

In this section, we study the stability of Neimark-Sacker bifurcation for the interior steady states

of system (4.6). Neimark–Sacker bifurcations generate dynamically closed invariant cycles. As

a result, isolated periodic orbits can be observed along with trajectories that cover the invariant

cycle densely. We seek conditions for system (4.6) to have a non-hyperbolic steady state with a

pair of complex conjugate eigenvalues of modulus 1. This interesting result occurs at the positive

steady state. Jacobian matrix has two complex conjugate eigenvalues with modulus 1 in the case

of det(J∗) = 1 and | tr(J∗)| < 2. The bifurcation parameter r (the reproductive parameter for the

parasite population) is the curve

r = −α ln (x) + ln (x) + α,

and | tr(J∗)| < 2 is

|1 + α− r + ln(x∗)− α ln(x∗) +
1

x∗
| < 2.

Suppose for the positive parameters that

η =

{
(α, r, k)

∣∣∣ r = −α ln (x) + ln (x) + α,

∣∣∣∣1 + α− r + ln(x∗)− α ln(x∗) +
1

x∗

∣∣∣∣ < 2

}
.

Following the standard method, we transform the system to the origin in order to reduce the

linear part of the two-dimensional map (4.1) to a normal form using the change of variables for

r 6= 0:

x = x∗ + x̄, y = y∗ + ȳ, r = r∗ + r̄.

System (4.6) can then be rearranged by the following two dimensional map

f(x̄, ȳ) = (x∗ + x̄)1+αe
(r∗+r̄)

(
1−x

∗+x̄
k

)
1

1 + y∗ + ȳ
− x∗,

g(x̄, ȳ) = (x∗ + x̄)

(
1− 1

1 + y∗ + ȳ

)
− y∗.
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Applying the Taylor series of f and g gives

f(x̄, ȳ) =
(1 + α) k − (r∗ + r̄) (y∗ + 1)

k
x̄− ȳ − 1

y∗ + 1
ȳ2 − (1 + α) k − (r∗ + r̄) (y∗ + 1)

k (y∗ + 1)
x̄ ȳ

+

(
α2 + α

)
k2 − 2 (r∗ + r̄) (1 + α) (y∗ + 1) k + (r∗ + r̄)2 (y∗ + 1)2

2 k2(y∗ + 1)
x̄2

+

[(−(r∗ + r̄)3 (y∗ + 1)3 + 3 (1 + α) (y∗ + 1)2 (r∗ + r̄)2 k
)

6 (y∗ + 1)2 k3

+

(
−3 (r∗ + r̄) (y∗ + 1)α (1 + α) k2 +

(
α3 − α

)
k3
)
x b3

6 (y∗ + 1)2 k3

]
x̄3

−
(
α2 + α

)
k2 − 2 (r∗ + r̄) (1 + α) (y∗ + 1) k + (r∗ + r̄)2 (y∗ + 1)2

2 k2 (y∗ + 1)2
ȳ x̄2

+
(1 + α) k − (r∗ + r̄) (y∗ + 1)

k (y∗ + 1)2
x̄ ȳ2 − 1

(y∗ + 1)2
ȳ3 + O(4), (4.33)

g(x̄, ȳ) =
y∗

y∗ + 1
x̄+

1

y∗ + 1
ȳ +

1

(y∗ + 1)2
x̄ ȳ +

(−y∗ − 1)

(y∗ + 1)3
ȳ2 − 1

(y∗ + 1)3
x̄ ȳ2

+
1

(y∗ + 1)3
ȳ3 + O(4).

Therefore, the Jacobian matrix of (4.33) is given by

J =

−(r∗+r̄) y∗+(1+α) k−(r∗+r̄)
k

−1

y∗

y∗+1
1

y∗+1

 , (4.34)

from which we have

tr(J) =
−(r∗ + r̄) y∗ + (1 + α) k − (r∗ + r̄)

k
+

1

y∗ + 1
,

det(J) =
(y∗ + α + 1) k − (r∗ + r̄) (y∗ + 1)

k (y∗ + 1)
,

and the eigenvalues are complex numbers with λ1(r̄) = λ̄2(r̄), and |λ1| = |λ2| = 1. Then from the

characteristic equation of the Jacobian matrix we have

λ1,2 =
tr(J)±

√
tr(J)2 − 4 det(J)

2
:= γ ±

√
−1β,
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where γ is the real part of the eigenvalues, and β is the imaginary part of the eigenvalues.

To find the eigenvectors, first we can define Jacobin matrix (4.34) by J =

 a b

c d

. We now

easily obtain the span of eigenvectors matrix called P using the definition (J − λ I)x = 0, or

 a− λ b

c d− λ


 x1

x2

 =

 0

0

 .

Assume that x1 = b = −1 and x2 = λ− a where λ = γ + β i and a = −(r∗+r̄)y∗+(1+α)k−(r∗+r̄)
k

, we

will then have x1

x2

 =

 b

λ− a

 =

 −1

(γ + β i)− a

 =

 −1 + 0 i

(γ + β i)− a

 .

As a result, we can use the followig change of variables based on the eigenvector matrix for the

linear part:  x̄

ȳ

 =

 0 −1

β γ − αk−(r∗+r̄) y∗−(r∗+r̄)
k

− 1


 u

v

 ,

Now we can have the following two-dimensional map

 u

v

 7→
 γ −β

β γ


 u

v

+

 f̃(u, v, r̄)

g̃(u, v, r̄)

 . (4.35)

To find the linear matrix

 γ −β

β γ

 we can use the matrix P where

P =

 0 −1

β γ − ξ − 1

 ,
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for ξ = −ry∗+αk−r
k

. Then the inverse matrix P−1 is given by

p−1 =

 γ−1−ξ
β

1
β

−1 0

 .

We can now simplify the multiplication to obtain P−1 J P by

p−1JP =

 γ −β

β γ

 .

and the same process can be applied to obtain the non-linear part of (4.35) by

f̃(u, v, r̄) = −β((−γ + 1 + ξ)y∗ + ξ − γ + 2)

(y∗ + 1)2
u2 +

[
−(−γ + 1 + ξ)(ξ − γ)

(y∗ + 1)2β

−

(
γ2 + (−2ξ + α− 1)γ + ξ2 + (−α + 1)ξ + α2

2
− α

2

)
(−γ + 1 + ξ)

β(y∗ + 1)

]
v2

+

[
2ξ − 2γ + 1

(y∗ + 1)2
+

(γ − 1− ξ)(−1 + α + 2γ − 2ξ)

y∗ + 1

]
uv

+
β2((−γ + 1 + ξ)y∗ + ξ − γ + 2)

(y∗ + 1)3
u3 +

[
(γ − 1− ξ)2(γ − ξ)

(y∗ + 1)3β

+

(γ − 1− ξ)
(
−α(α2−1)

6(y∗+1)2 − (1+α)α(γ−1−ξ)
2(y∗+1)2 − (1+α)(γ−1−ξ)2

(y∗+1)2 − (γ−1−ξ)3

(y∗+1)2

)
β

]
v3

+

[
(γ − 1− ξ)(−1 + 3γ − 3ξ)

(y∗ + 1)3

− (γ − 1− ξ) (α2 + 4αγ − 4αξ + 6γ2 − 12γξ + 6ξ2 − 3α− 8γ + 8ξ + 2)

2(y∗ + 1)2

]
uv2

+

[
−(γ − 1− ξ)β(−2 + α + 3γ − 3ξ)

(y∗ + 1)2
+
β(−2 + 3γ − 3ξ)

(y∗ + 1)3

]
u2v

g̃(u, v, r̄) = − β2

y∗ + 1
u2 +

−α2 + (2 ξ − 2 γ + 1)α− 2 (−γ + 1 + ξ) (ξ − γ)

2 y∗ + 2
v2

+
β (2 ξ − α− 2 γ + 1)

y∗ + 1
uv +

β3

(y∗ + 1)2
u3 +

1

6 (y∗ + 1)2
[α3 + (−3 ξ + 3 γ − 3)α2

+
(
6 γ2 + (−12 ξ − 9) γ + 6 ξ2 + 9 ξ + 2

)
α− 6 (ξ − γ) (−γ + 1 + ξ)2] v3
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+
1

(y∗ + 1)2

[
3 β

(
α2

6
+

(
−1

2
− 2 ξ

3
+

2 γ

3

)
α +

(
ξ − γ +

1

3

)
(−γ + 1 + ξ)

)]
uv2

+
β2 (−2 + α + 3 γ − 3 ξ)

(y∗ + 1)2
u2v + O(4).

Our analysis for this bifurcation is typically based on the complex variables given as follows

w := u+ iv, w̄ := u− iv.

Using equation (4.35), it then follows for w that (see Lemma 2.4.4):

w 7→ (γ + iβ)w +
(
f̃1 + if̃2

)
= λ(r̄)w + G(w, w̄, µ).

Simplifying G gives

G(w, w̄, r̄) = f̃1

(
w + w̄

2
,
w − w̄

2i
, r̄

)
+ if̃2

(
w + w̄

2
,
w − w̄

2i
, r̄

)
=
∑
k+l≥2

1

k! l!
gk l(r̄)w

l w̄k +O
(
|w|4

)
,

where a few terms that will be needed in the sequel are given as follows

G20 =
1

8(y∗ + 1)2k2i2β

[(
−2(iβ − γ + ξ + 1)

(
γ2 + (2iβ + α− 2ξ − 1)γ + ξ2

+ (−2iβ − α + 1)ξ + i2β2 + i(α− 1)β +
α2

2
− α

2

)
y∗ + (2iβ + 2α− 6ξ − 6)γ2

+ 2γ3 +
(
6ξ2 + (−4iβ − 4α + 12)ξ − 2i2β2 − 8iβ + α2 − 3α + 4

)
γ − 2ξ3

+ (2iβ + 2α− 6)ξ2 +
(
2i2β2 − α2 + 8iβ + 3α− 4

)
ξ − 2i3β3 − 2i2(1 + α)β2

−i
(
α2 + α− 4

)
β − α2 + α

)
k2 + 2r(y∗ + 1)2(iβ − γ + ξ + 1)(iβ + α + γ − ξ)k

− r2(y∗ + 1)3(iβ − γ + ξ + 1)

]
,

G11 =
1

4(y∗ + 1)2k2i2β

[(
−2

(
−γ2 + (2ξ − α + 1)γ − ξ2 + (α− 1)ξ + i2β2 − α2

2
+
α

2

)
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(iβ − γ + ξ + 1)y∗ − 2γ3 + (2iβ − 2α + 6ξ + 6)γ2 +
(
−6ξ2 + (−4iβ + 4α− 12)ξ

+2i2β2 + 2i(α− 1)β − α2 + 3α− 4
)
γ + 2ξ3 + (2iβ − 2α + 6)ξ2

+
(
−2i2β2 − 2i(α− 1)β + α2 − 3α + 4

)
ξ − 2i3β3 − 4i2β2 + iα(α− 1)β + α2 − α

)
k2
)

+ 2r(y∗ + 1)2(ξ − α− γ)(iβ − γ + ξ + 1)k + r2(y∗ + 1)3(iβ − γ + ξ + 1)

]
,

G02 = − 1

4(y∗ + 1)2k2i2β

[
(iβ − γ − ξ + 1)

(((
i2β2 + 2

(
ξ − α

2
− γ 1

2

)
iβ + γ2

+ (−2ξ + α− 1)γ + ξ2 + (−α + 1)ξ +
α2

2
− α

2

)
y∗ + i2β2 + 2

(
ξ − α

2
− γ + 1

)
iβ

+ (−2 + α− 2ξ)γ + ξ2 + (2− α)ξ +
α2

2
− α

2

)
k2 + (y∗ + 1)2(iβ − α− γ + ξ)k

+
r2(y∗ + 1)3

2

)]

G20 =
1

16(y∗ + 1)3k3i3β

[(
6(iβ − γ + ξ + 1)(−γ3 + (iβ − α + 3ξ + 2)γ2

+ (−3ξ2 + 2iβ + 2α− 4)ξ − α2

2
+
(3

2
− 2iβ

3
α + i2β2 +

4iβ

3
− 1
)
γ + ξ3

+ (−iβ − α + 2)ξ2 +
(α2

2
+
(
− 3

2
+

2iβ

3

)
α− i2β2 − 4iβ

3
+ 1
)
ξ − α3

6

+
(
− iβ

6
+

1

2
α2 +

(1

3
i2β2 +

1

2
iβ − 1

3

)
α− iβ

3
+ i3β3 − 2i2β2

3
y∗ + 6γ

+ (36ξ2 + (−18α + 72)ξ + 3α2 + (−2iβ − 15)α− 12i2β2 − 8iβ + 30)γ2

+ (−24ξ3 + (18α− 72)ξ2 + (−6α2 + (4iβ + 30)α + 24i2β2 + 16iβ − 60)ξ

+ α3 + (−2iβ − 6)α2 + (−6i2β2 + 2iβ + 11)α + 24i2β2 + 12iβ − 12)γ + 6ξ4

+ (−6α + 24)ξ3 + (3α2 + (−2iβ − 15)α− 12i2β2 − 8iβ + 30)ξ2

+ (−α3 + (2iβ + 6)α2 + (6i2β2 − 2iβ−11)α− 24i2β2 − 12iβ + 12)ξ

+ (−iβ − 1)α3 + (−i2β2 + 2iβ + 3)α2 + (2i3β3 + 5i2β2 + iβ − 2)α + 6i4β4

+ 8i3β3 − 10i2β2 − 4iβ)k3 − 2r(−3γ2 + (−2iβ − 3α + 6ξ + 3)γ − 3ξ2

+ (2iβ + 3α− 3)ξ − 3α2

2
+
(
− iβ +

3

2

)
α + i2β2 + iβ)(iβ − γ + ξ + 1)
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(y∗ + 1)2k2 − r2(y∗ + 1)3(iβ − γ + ξ + 1)(iβ + 3α + 3γ − 3ξ)k

+ r3(y∗ + 1)4(iβ − γ + ξ + 1
)]
.

The final result to determine the stability of the Neimark-Sacker bifurcation can be computed via

(see equation (2.26)):

a(0) = Re

(
e−iθ0G21

2

)
− Re

((
1− 2eiθ0

)
e−2iθ0

2 (1− eiθ0)
G20G11

)
− 1

2
|G11|2 −

1

4
|G02|2 , (4.36)

where θ is the angle of the eigenvalues. As a result, the sign of the coefficient a(0) can be used

to determine its stability. The non-linear solution is a stable closed invariant set if a(0) < 0 or is

unstable if a(0) > 0. When a Neimark-Sacker bifurcation exists, the numerical simulation results

can be found as shown in Table 4.1. From which it can be seen that for what values of the three

parameters the Neimark-Sacker bifurcation can be negative (unstable) or positive (stable).

Table 4.1: The numerical values for the positive steady state and for the coefficient a(0) corre-
sponding to parameters (α, k).

α k x∗ y∗ r∗ θ0 a(0)

0.8000

1.0000 1.0000 0 0.8000 0 −∞
2.3465 1.9999 0.9999 0.9386 0.7227 0.0078
3.8239 2.9999 1.9999 1.0197 0.8410 -0.0652
5.3862 4.0000 3.0000 1.0772 0.8956 -3.1945
7.0117 5.0000 4.0000 1.1218 0.9272 -26.1241

0.9000

1.0000 1.0000 0 0.9000 0 −∞
2.1540 2.0000 1.0000 0.9693 0.7227 0.0083
3.3662 2.9999 1.9999 1.0098 0.8410 -0.0538
4.6161 3.9999 2.9999 1.0386 0.8956 -2.5385
5.8941 5.0000 4.0000 1.0609 0.9272 -18.7607

1.1000

1.0000 5.9863 5.9862 0.1837 1.0471 -3.0042×10−5

1.8739 5.9853 5.9852 0.3444 1.0471 -1.0478×10−3

2.7003 5.9844 5.9843 0.4963 1.0471 -8.2822×10−3

0.9613 5.9863 5.9862 0.1766 1.0471 -2.3748×10−5

4.2684 5.9827 5.9826 0.7848 1.0471 -1.1531×10−1

1.2000

1.0000 3.9738 3.9638 0.0030 1.0457 -1.0236×10−5

1.7689 3.9267 3.9167 0.0054 1.0457 -2.7322×10−4

2.4506 3.8844 3.8744 0.0075 1.0457 -1.7841×10−3

3.0758 3.8452 3.8352 0.0095 1.0456 -6.7077×10−3

3.6588 3.8083 3.7983 0.0115 1.0456 -1.8639×10−2

1.3000

1.0000 71.7309 70.7309 0.0181 1.0391 -4.0875×10−4

1.6800 68.5166 67.5166 0.0318 1.0387 -8.9800×10−3

2.2394 65.7408 64.7408 0.0442 1.0383 -5.0213×10−2

2.7203 63.2394 62.2394 0.0559 1.0380 -0.1651
3.1429 60.9363 59.9363 0.0670 1.0376 -0.4069

We can also see the results for different values of parameters k ∈ [0.1, 3] in Figure 4.13.
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Figure 4.13: Neimark-Sacker bifurcation for different k values. It is unstable when a(0) > 0 and
stable when a(0) < 0.

4.5.2 Period-Doubling Bifurcations

Below we plan to study the period doubling bifurcation of the positive steady-state S4 of sys-

tem (4.6). We can calculate the Jacobin matrix for the positive steady-state (x∗, y∗) where k =

x∗r
r−ln(x∗)+α ln(x∗)

as follows

J∗ =

1 + α− x∗r
k
−1

1− 1
x∗

1
x∗

 =

1 + α− r + ln(x∗)− α ln(x∗) −1

1− 1
x∗

1
x∗

 .

For the given parameter function rred = f3(x) := −(α−1)(x+1) ln(x)+(α+3)x+α+1
x+1

, it has one eigen-

value λ1 = −1 and the other one is inside the unit circle given by λ2 = (y∗)2−2
(y∗)2+3 y∗+2

where

x∗ = y∗ + 1.
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Similar to before, we plan to use the change of variable x = x∗+ x̄, y = y∗+ ȳ, r = r∗+ r̄ to

transform the steady-state to the origin. With this change of variable, system (4.6) can be written

by:

f(x̄, ȳ) = (x∗ + x̄)1+αe
(r∗+r̄)

(
1−x

∗+x̄
k

)
1

1 + y∗ + ȳ
− x∗,

g(x̄, ȳ) = (x∗ + x̄)

(
1− 1

1 + y∗ + ȳ

)
− y∗.

(4.37)

Applying the Taylor series to map (4.37) gives

f(x̄, ȳ) =
1

6 k3 (y∗ + 2)3 (y∗ + 1)2

[
− 12k2(y∗ + 1)3(y∗ + 2)2

(
1

2
y∗r̄ + k + r̄

)
x̄

− 6 (y∗ + 2)3 (y∗ + 1)2 ȳ + 12 k2(y∗ + 1)2(y∗ + 2)2

(
1

2
y∗r̄ + k + r̄

)
x̄ȳ

− 3 k (y∗ + 1) (y∗ + 2)
(
(−y∗)4r̄2 +

(
−4r̄ k − 6 r̄2

)
(y∗)3

+
(
(α− 3)k2 − 16r̄k − 13r̄2

)
(y∗)2 +

(
(4α− 4)k2 − 20r̄k − 12 r̄2

)
y∗

+4α k2 − 8 r̄ k − 4r̄2
)
x̄2 + 6 (y∗ + 1) (y∗ + 2)3 ȳ2

− 12k2(y∗ + 1)(y∗ + 2)2

(
1

2
y∗r̄ + k + r̄

)
x̄ȳ2

]
+ O(3), (4.38)

g(x̄, ȳ) =
y∗

(1 + y∗)
x̄+

1

(1 + y∗)
ȳ +

x̄ ȳ

(1 + y∗)2
− (−y∗ − 1) ȳ2

(1 + y∗)3
+ O(3).

The eigenvector matrix when r̄ = 0 is

P =

−y∗+2
y∗

−y∗+1
y∗+2

1 1

 .

From which it then follows that x

y

 =

−y∗+2
y∗

−y∗+1
y∗+2

1 1


 u

v

 .
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Then map (4.38) can be transformed to the following two dimensional map

 u

v

 7→
 −1 0

0 λ2


 u

v

+

 H(u, v, r̄)

P(u, v, r̄)

 ,

where

H(u, v, r̄) = H200u
2 + H110ur̄ + H101uv + H011vr̄ + H020r̄

2 + H002v
2 + H300u

3 + · · · ,

(4.39)

P(u, v, r̄) = P200u
2 + P110ur̄ + P101uv + P011vr̄ + P020r̄

2 + P002v
2 + · · · ,

are the nonlinear parts. To analyze the stability we need to use the center manifold theory defined

by the following function:

v = hc(u, r̄) = au2 + bu3 + O
(
|u, r̄|3

)
.

Substituting v into equation (4.39) gives

H(u, v, r̄) = H002u
4a2 + H011u

2ar̄ + H101u
3a+ H300u

3 + H020r̄ + H110ur̄ + H200u
2 + · · · ,

P(u, v, r̄) = P002u
4a2 + P011u

2ar̄ + P101u
3a+ P020r̄

2 + P110ur̄ + P002v
2 + · · · .

where a few terms of interest are given as follows:

P200 = −(y∗ + 2) ((α− 1)(y∗)2 + (4α + 4)y∗ + 4α + 8)

6(y∗)3 + 14(y∗)2 + 8y∗
,

H200 =
(α− 1)(y∗)3 + (6α + 2)(y∗)2 + (12α + 4)y∗ + 8α

6(y∗)3 + 14(y∗)2 + 8y∗
,

H110 = −(y∗ + 1)(y∗ + 2)2

3ky∗ + 4k
,

H101 =
(α− 1)(y∗)3 + (5α + 3)(y∗)2 + (8α + 15)y∗ + 4α + 12

3(y∗)3 + 13(y∗)2 + 18y∗ + 8
,
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H300 =
(5α + 3)(y∗)4 + (40α + 12)(y∗)3 + (120α + 72)(y∗)2 + (160α + 128)y∗ + 80α + 64

6(y∗)2(3y∗ + 4)(y∗ + 1)2
.

By some computation we acquire the center manifold in the following:

v = hc(u, r̄) = −P200u
2

λ2 − 1
+ O

(
|u, r̄|3

)
.

Now the reduced center manifold map takes the following form:

Ω(u, r̄) =− u+ H200u
2 + H110ur̄ +

(
H210 −

H011P200

λ2 − 1

)
r̄u2

+

(
H300 −

H101P200

λ2 − 1

)
u3 + O

(
|(u, r̄)|4

)
.

Using the conditions of period doubling bifurcation in (2.18), we have

Ω(Ω(u, r̄), r̄) =u− 2H110 u r̄ − 2

(
H300 −

H101 P200

λ2 − 1
+ H2

200

)
u3

− (H200H110)u2r̄ + (H110)2 ur̄2 + O(4).

Then, the period doubling bifurcation is analyzed by the following equation

X ≡ 4H110

(
H300 −

H101 P200

λ2 − 1
+ H2

200

)
6= 0,

where

− 2H300 +
2H101 P200

1− λ2

− 2H2
200 =

1

6(λ2 − 1)y∗2(3y∗2 + 7y∗ + 4)2
− 3(α− 1)2(λ2 + 1)y∗6 + ((−36λ2 − 18)α2 + (−6λ2 + 18)α

− 6λ2 + 48)y∗5 + ((−180λ2− 12)α2 + (−304λ2 + 46)α− 84λ2 + 150)y∗4 + ((−480λ2 + 144)α2

+(−1280λ2+368)α−576λ2+144)y∗3+((−720λ2+432)α2+(−2304λ2+1176)α−1392λ2+384)y∗2
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((−576λ2 + 480)α2 + (−1952λ2 + 1472)α− 1408λ2 + 832)y∗− 192(λ2− 1)
(
α+

4

3

)
(α+ 2)).

(4.40)

Therefore, the result in Table 4.2 shows that the period doubling bifurcation X is stable.

Table 4.2: The numerical exact values for (r∗, λ2,H) for the given values of the parameter r∗.

α k r∗ λ2 x P200 H300 H110 H101 X

0.8000

2.0884 3.2719 0.1666 2.0000 -1.9500 3.5892 -1.2312 1.0333 2.5533
3.1997 3.5197 -0.1666 3.0000 -0.8266 0.8222 -1.5001 0.7033 0.8509
4.3261 3.6772 -0.3500 4.0000 -0.4967 0.3706 -1.7780 0.5269 0.5080
5.4642 3.7885 -0.4666 5.0000 -0.3450 0.2200 -2.0588 0.4166 0.3747
6.6118 3.8726 -0.5476 6.0000 -0.2591 0.1509 -2.3403 0.3411 0.3061

0.9000

2.0428 3.3026 0.1666 2.0000 -2.0464 3.8303 -1.2587 1.0761 2.8731
3.0969 3.5098 -0.1666 3.0000 -0.8800 0.8814 -1.5499 0.7433 0.9603
4.1584 3.6386 -0.3500 4.0000 -0.5368 0.3984 -1.8498 0.5653 0.5746
5.2256 3.7276 -0.4666 5.0000 -0.3787 0.2368 -2.1528 0.4541 0.4247
6.2974 3.7934 -0.5476 6.0000 -0.2892 0.1626 -2.4571 0.3779 0.3476

1.0000

2.0000 3.3333 0.1666 2.0000 -2.1428 4.0714 -1.2857 1.1190 3.2142
3.0000 3.5000 -0.1666 3.0000 -0.9333 0.9407 -1.6000 0.7833 1.0785
4.0000 3.6000 -0.3500 4.0000 -0.5769 0.4262 -1.9230 0.6038 0.6471
4.9999 3.6666 -0.4666 5.0000 -0.4125 0.2537 -2.2500 0.4916 0.4795
5.9999 3.7142 -0.5476 6.0000 -0.3192 0.1743 -2.5789 0.4147 0.3934

1.1000

1.9596 3.3640 0.1666 2.0000 -2.2392 4.3125 -1.3122 1.1619 3.5772
2.9084 3.4901 -0.1666 3.0000 -0.9866 1.0000 -1.6503 0.8233 1.2056
3.8501 3.5613 -0.3500 4.0000 -0.6169 0.4541 -1.9979 0.6423 0.7259
4.7863 3.6057 -0.4666 5.0000 -0.4462 0.2706 -2.3504 0.5291 0.5394
5.7181 3.6351 -0.5476 6.0000 -0.3493 0.1860 -2.7060 0.4516 0.4437

1.2000

1.9215 3.3947 0.1666 2.0000 -2.3357 4.5535 -1.3382 1.2047 3.9623
2.8218 3.4802 -0.1666 3.0000 -1.0400 1.0595 -1.7010 0.8633 1.3421
3.7081 3.5227 -0.3500 4.0000 -0.6570 0.4819 -2.0744 0.6807 0.8112
4.5837 3.5447 -0.4666 5.0000 -0.4800 0.2875 -2.4543 0.5666 0.6048
5.4507 3.5559 -0.5476 6.0000 -0.3794 0.1977 -2.8388 0.4884 0.4990

1.3000

1.8855 3.4253 0.1666 2.0000 -2.4321 4.7946 -1.3637 1.2476 4.3700
2.7398 3.4704 -0.1666 3.0000 -1.0933 1.1185 -1.7519 0.9033 1.4883
3.5734 3.4841 -0.3500 4.0000 -0.6971 0.5097 -2.1526 0.7192 0.9035
4.3913 3.4838 -0.4666 5.0000 -0.5137 0.3043 -2..5618 0.6041 0.6761
5.1965 3.4767 -0.5476 6.0000 -0.4095 0.2094 -2.9776 0.5253 0.5597

We can also see the results in Figure 4.14.

Below we also provided an .mp4 file that shows the bifurcation of Allee effect when period

doubling bifurcations exist and they are stable for the parameter values α = 0.1 and k = 1.
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Figure 4.14: Results for period doubling bifurcation when α = 1.4 which is stable.

Figure (4.15) shows a summary of the stability regions and dynamics of the population model

according to multiple theorems including (4.3.1) and (4.4.4). We found that there are a maximum

of five steady states in Q1.

(i) Origin steady state (0, 0) is always an attractor.

(ii) Two boundary steady state points on the x−axis: (x∗1, 0) and (x∗2, 0).

(iii) Two interior steady state points: (z∗1 , z
∗
1 − 1) and (z∗2 , z

∗
2 − 1).
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Figure 4.15: Stability regions of the boundary steady-state points (x∗1, 0) and (x∗2, 0) where r = 1.3
with the regions of the interior steady states (z∗1 , z

∗
1 − 1) and (z∗2 , z

∗
2 − 1).
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[64] Luque, Gloria M and Vayssade, Chloé and Facon, Benoı̂t and Guillemaud, Thomas and Cour-

champ, Franck and Fauvergue, Xavier The genetic Allee effect: a unified framework for the

genetics and demography of small populations, Ecosphere, Wiley Online Library, 7(7), 2016,

1-13.

129



[65] Kang, Yun and Sasmal, Sourav Kumar and Bhowmick, Amiya Ranjan and Chattopadhyay

A host–parasitoid system with predation-driven component Allee effects in host population,

Journal of biological dynamics, 9, (2015), 213–232.

[66] Sullivan, Nicholas The Blue Revolution: Hunting, Harvesting, and Farming Seafood in the

Information Age, Island Press, (2022).

[67] Liu, Hua and Li, Zizhen and Gao, Meng and Dai, Huawei and Liu, Zhiguang Dynamics of a

host–parasitoid model with Allee effect for the host and parasitoid aggregation, Ecological

Complexity, 6(3), (2009), 337–345.

[68] Wu, Daiyong and Zhao, Hongyong Global qualitative analysis of a discrete host-parasitoid

model with refuge and strong Allee effects, Mathematical Methods in the Applied Sciences,

Wiley Online Library, 41(5), (2018), 2039–2062.

[69] Luis, Rafael and Elaydi, Saber and Oliveira, Henrique Stability of a Ricker-type competition

model and the competitive exclusion principle, Journal of Biological Dynamics, Taylor &

Francis, 5(6), (2011), 636–660.

[70] Elaydi, Saber N and Sacker, Robert J Population models with Allee effect: A new model,

Journal of Biological Dynamics, Taylor & Francis, 4(4), (2010), 397–408.

[71] Livadiotis, G and Elaydi, Saber General Allee effect in two-species population biology, Jour-

nal of Biological Dynamics, Taylor & Francis, 6(2), (2012), 959–973.

130


	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Dedication
	Introduction
	Preliminaries
	Stability of a Steady State
	Hyperbolic and Non-Hyperbolic Steady States
	Invariant Manifolds
	Stable and Unstable Manifolds
	Center Manifolds

	Bifurcation
	Properties of Bifurcation
	Period-Doubling Bifurcation
	Saddle-Node Bifurcation
	Neimark-Sacker Bifurcation

	Persistence of Dynamical Systems
	Lambert W Function
	Properties of Lambert W Function
	Real Branches


	 Stability Analysis and Bifurcations of a Modified Nicholson-Bailey Type Model
	Introduction
	Steady States of the MNB Model
	Analysis of Local Stability
	Global Stability of the Boundary Steady State S1
	Persistence of the Model

	Stability of the Interior Steady State S2
	Bifurcation Analysis
	Period-Doubling Bifurcations (Flip Bifurcation)

	Concluding Remarks and Simulations

	Dynamics of a Modified Nicholson-Bailey Model with Allee effect
	Introduction
	The Model
	 Stability of the Boundary Steady States
	Stability Regions of the Interior Steady-States
	One Parameter Bifurcation (Co-Dimension 1)
	Two Parameter Bifurcation (Co-Dimension 2)

	Bifurcation Analysis
	Neimark–Sacker Bifurcation
	Period-Doubling Bifurcations


	Bibliography

