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Abstract

In causal inference, an experiment exhibits treatment interference when the treatment

status of one unit affects the response of other units. While traditional causal inference

methods often assume no interference between units, there has been a recent abundance of

work on the design and analysis of experiments under treatment interference—for example,

those conducted on social networks. Failure to account for interference may lead to biased

estimates of treatment effects and wrong conclusions.

In this dissertation, we propose the K-nearest neighbors interference model (KNNIM)—a

model of treatment interference where the response of a unit depends only on its treatment

status and the statuses of units within its K-neighborhood. Current methods for detecting

interference include carefully designed randomized experiments and conditional randomiza-

tion tests on a set of focal units. We give guidance on how to choose focal units under

KNNIM. We then conduct a simulation study to evaluate the efficacy of existing methods

for detecting arbitrary network interference under KNNIM with this choice of focal units.

We show that this choice of focal units leads to powerful tests of treatment interference which

outperform experimental methods.

Then, we extend the potential outcomes approach and the K-neighborhood interference

framework to define causal estimands for direct and K-nearest neighbors indirect effects

where interference is allowed within K-neighborhoods of individuals. Under completely ran-

domized and Bernoulli-randomized designs, we provide a closed-form solution to compute the

marginal and joint probabilities of units being exposed to treatment exposures of interest.

We then propose Horvitz-Thompson unbiased estimators for the defined estimands under

K-neighborhood interference assumption. We derive properties of the proposed estimators

and provide conservative variance estimators. We then demonstrate how an assumption of

no interaction between direct and indirect effects can improve estimates. To demonstrate the



proposed causal methods, we perform a simulation study and apply our proposed methods

on an anti-conflict study from a randomized experiment among middle schools students in

New Jersey.

Finally, we develop additional estimators of the defined estimands under an assumption

of no interaction between the indirect effects. This may enhance the estimation standard

errors by increasing the number of units under this assumption. Properties of the developed

estimators are derived as well as conservative variance estimators of the defined estimands.
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Chapter 1

Introduction

1.1 Introduction

Randomized experiments have long been viewed as the most reliable method in causal in-

ference for evaluating the causality of an intervention. There is a rising number of studies

on social networks in which the social influence takes place. Technology companies such as

Google, Amazon, Facebook, LinkedIn, Netflix, Twitter, and others run online randomized

controlled experiments to evaluate the effect of a new feature or product on user engagement.

In epidemiology, researchers may want to study the effect of vaccines on a target population

to protect individuals who are at risk for an infectious disease.

However, these settings involve interaction between units under study; for example, a user

assigned a new feature may interact with a user who is not assigned the feature, thereby

impacting the response of the latter user. This interaction complicates the estimation and

inference of treatment effects under classical causal inference methodologies.

In particular, a fundamental assumption in the traditional causal inference framework

is that there is only a single version of each treatment status and the response of a unit

is unaffected by the treatment status of any other unit. This is known as the stable unit

treatment value assumption (SUTVA) (Rubin, 1980). SUTVA is violated under settings

in which there is treatment interference—when a treatment assigned to a unit affects the
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response of other units. Effects on response due to treatment interference are also known as

spillover, indirect effects, peer influence, social interaction, or network effects.

The dependence of a unit’s outcome on other units’ exposures or treatments poses sta-

tistical challenges because the potential outcome of a unit—the hypothetical outcome of a

unit given a realized treatment assignment—is not only affected by its own treatment status

(a direct effect of treatment) but also by the treatment conditions received by other units

(an indirect effect). In traditional causal inference, interference has been considered as a

nuisance and researchers may design experiments that control interference and reduce the

bias of estimating the primary effect. Although these designs may minimize the effect of

interference, such designs are not always possible.

In other settings, there has been a growing interest in estimating the causal effect in

the presence of interference. Examples of this include studies on the efficacy of vaccines

in which vaccinated and non-vaccinated members of a population interact with one another

and researchers are interested in overall infection rates (Ross, 1916; Halloran and Struchiner,

1995; Moulton et al., 2001; King Jr et al., 2006; Hudgens and Halloran, 2008). In behavioral

sciences, applications include experiments conducted to study the change of the community

social norms and behaviors by interventions applied to a group of the community (Paluck

and Shepherd, 2012; Schaefer et al., 2012; Paluck et al., 2016; Basse and Feller, 2018).

Even though causal inference under interference is still an open area of research, con-

siderable work has been devoted to the development of reasonable models of interference

to ensure identification of both the direct effect of treatment and the effect of treatment

spillover on the response (Toulis and Kao, 2013; Aronow and Samii, 2017; Basse and Feller,

2018; Forastiere et al., 2020; Sussman and Airoldi, 2017).

In this thesis, we extend the potential outcomes approach and introduce a new framework

of causal inference under interference called the K-Nearest Neighbors Interference Model

(KNNIM). Under KNNIM, the response of a unit is affected only by the treatment given

to that unit and the treatment statuses of its K-nearest neighbors (KNN). Such models

of interference may be reasonable, for example, under social network settings, where only

a few of the observable potential interactions (e.g. accounts that a Twitter user follows)
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may be influential on a unit’s response. Under this setting, the strength of an interaction

between two users may be quantified, for example, by assessing the amount of engagement

(e.g. likes, comments, retweets) between the two users. We evaluate the performance of

existing methods for detecting treatment interference under data generated under a KNNIM

model as well as a new developed randomization-based test. We define causal estimands

under K-neighborhood interference assumption and propose estimators for these estimands

deriving properties and conservative variance estimators of the defined estimands. We also

consider improvement of the estimation precision and propose different estimators under

different assumptions.

1.2 Causal Inference under Neyman-Rubin Framework

Association does not imply causation. Associational inference focuses on the relationship

between two or more variables and how they change together. Causal inference aims to infer

the causal effect of an intervention on units and how the intervention affects the response

variable.

Literature contains some approaches to causality with different perspectives. The Neyman-

Rubin Causal Model (NRCM) framework, or simply the Rubin Causal Model as called in

Holland (1986), where the potential outcome is a primary concept in this approach, is a pop-

ular model for causal inference in many fields. The concept of potential outcomes defining

causal effects was first introduced formally by Neyman (1923) and only in the context of

an urn model for assigning varieties to plots where this model is stochastically identical to

the completely randomized experiment. Fisher (1925) took this framework a step further,

and proposed the physical randomization of units and developed the analysis of random-

ized experiments. Rubin (1974) extended Neyman’s work to a more general framework for

causation that applies to both experimental and observational studies. Rubin (1975, 1978)

also discussed the importance of randomization and formulated the assignment mechanism

in terms of potential outcomes.

Suppose we have a finite population of N units indexed i = 1, 2,. . . ,N and each unit
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i is assigned to a treatment condition Wi where Wi ∈ {0, 1} is a binary random variable

such that Wi = 1 if the ith unit is assigned to the treatment condition and Wi = 0 if the ith

unit is assigned to the control condition. Let W = (W1, W2, . . . , WN) denote the treatment

assignment vector of all N units such that W ∈ W where W ∈ {0, 1}N is the set of all

possible treatments assignments.

The distribution of the treatment assignment vector W = (W1, W2, . . . , WN) is crucial

for the causal inference. In randomized experiments, the assignment mechanism does not

depend on the characteristics of the units in the study and the distribution of W is known

and the researcher has control over the assignments. In contrast, in observational studies,

the assignment mechanism depends on the observed and unobserved characteristics of the

units and the distribution of W is unknown.

Let yi(1) denote the potential outcome for unit i if unit i receives treatment, and let yi(0)

denote the potential outcome for unit i if unit i is exposed to control.

The Neyman-Rubin Causal Model of the observed outcome of the ith unit is

Yi = Wiyi(1) + (1−Wi)yi(0). (1.1)

where Yi = yi(1) if Wi = 1 and Yi = yi(0) if Wi = 0 because for each unit i, only one potential

outcome is observed, namely the potential outcome that corresponds to the realized level of

the treatment, and the other potential outcome is unobserved.

The unit-level causal effect of treatment is defined as the difference between the two

potential outcomes on unit i by δi = yi(1) - yi(0).

However, the difficulty of inferring causality arises from the fact that we can only observe

one of the two potential outcomes. This is called the fundamental problem in causal inference

by (Holland, 1986) such that causal inference is considered a missing data problem. Even

though the advantage of potential outcomes framework is to define causal estimands in terms

of individual-level potential outcomes, only typical causal estimands defined in terms of the

average of potential outcomes are estimable. Imbens and Rubin (2015) stated: “Although the

definition of causal effects does not require more than one unit, learning about causal effects
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typically requires multiple units. Because with a single unit we can at most observe a single

potential outcome, we must observe multiple units, some exposed to the active treatment,

some exposed to the alternative (control) treatment.” Hence, instead of estimating the causal

effect for an individual unit, we estimate the average treatment effect (ATE).

In a finite population of N units, the potential outcomes, yi(1) and yi(0), are fixed

quantities, nonrandom (there is no super-population beyond the N observed units), and

independent of the treatment assignment W . In contrast, the observed outcomes depend

on the treatment assignment W and hence are random variables where the only source of

randomness in the observed outcomes is induced by the random selection of the realization

of the treatment assignment W . In this setting, the average treatment effect becomes

δ =
1

N

N∑
i=1

[yi(1)− yi(0)]. (1.2)

A fundamental assumption of NRCM is the stable-unit treatment value assumption

(SUTVA) (Rubin, 1980). This assumption has two components. First, the no-interference

component in which every unit’s outcome is affected only by its own treatment and not by

any treatment of other units (Cox, 1958; Rubin, 1980). And second, where there is only

a single version of each treatment level that defines a unique outcome on each unit. For

example, if we consider a teaching strategy to be a treatment and if each teacher applies the

strategy in a significantly different way than other teachers, then we must consider this as a

different treatment depending on the teacher. In some settings, the first part of the SUTVA

assumption is not possible. The following section provides an overview on some of the work

that has been developed in settings where interference is present.

5



1.3 An Overview of Causal Inference under Interfer-

ence

During the past decade, there exists a considerable body of literature on causal inference

under interference. A series of contributions have been made ranging between the no-

interference assumption for those who consider interference as a nuisance (i.e., no exposure

to other units’ treatments), and structured interference assumptions.

Starting from the no-interference assumption and considering interference as a nuisance

parameter, some work in the literature focuses on reducing bias in standard estimates of

causal effects in the presence of interference using designs that isolate units that might have

some connections. Ugander et al. (2013) developed exposure models and proposed a graph

cluster randomization scheme for computing exposure probabilities and unbiased estimator

of average treatment effects. Gui et al. (2015) extended this work by studying the problem

of network A/B testing in real networks proposing a network sampling algorithm and a

new estimation method. Eckles et al. (2016) considered methods for bias reduction in the

estimates of the average treatment effect through experimental designs and analysis.

Sävje et al. (2021) investigated the behavior of standard estimators under a weak form

of interference. Karrer et al. (2020) introduced a framework accounting for interference

through cluster-randomized experiments where they ran side-by-side unit-randomized trials

and cluster-randomized trials and they introduced a cluster-based regression adjustment

estimator to improve the precision of estimating treatment effects.

Rather than considering interference as a nuisance, some researchers tend to relax SUTVA

and allow for interference in different ways considering interference effect as of primary in-

terest. In this regard, one line of research focuses on a setting where the population of

individuals can be partitioned into mutually exclusive groups such as households, schools,

villages, hospitals, etc., where interference is allowed within groups but not across groups.

This is referred to as partial interference assumption (Sobel, 2006), (i.e., SUTVA is as-

sumed between groups). This can be justified if the groups are divided based on time or
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location (Hudgens and Halloran, 2008; Tchetgen and VanderWeele, 2012; Rosenbaum, 2007;

Sobel, 2006; Basse and Feller, 2018; Offer-Westort and Dimmery, 2021).

Under a partial interference assumption, Sobel (2006) proposed causal estimands to assess

house voucher effects by averaging over all possible treatment assignments. Rosenbaum

(2007) developed nonparametric tests and confidence intervals to assess treatment effect

under partial interference. Hudgens and Halloran (2008) considered a population of groups

of individuals where interference is allowed within groups. Following the approach in Sobel

(2006) approach, Hudgens and Halloran (2008) proposed estimands for direct, indirect, total

and overall causal treatment effects under this setting of interference. They defined the

direct causal effect of a treatment on a unit in a group as the difference between potential

outcomes when only changing the unit’s treatment and holding other units’ treatment fixed.

In contrast to direct effect, they defined the indirect effect on a unit as the effect of changing

the treatments of other units in the same group on that unit holding its own treatment fixed.

The total effect combines both direct and indirect effects by changing the treatments of both

the particular unit and other units in the same group. Finally, the overall effect on a unit in

a group is defined as the difference between potential outcomes changing the treatment for

the group of that unit.

Assume we have n groups of units and ni denotes the number of units in group i for

i = 1, . . . , n. Let ψ and φ be two treatment assignment strategies. Hudgens and Halloran

(2008) defined the individual indirect causal effect estimand as the difference between the

potential outcomes with treatment program Wi compared with W′
i on the individual j in

group i by

CEI
ij(Wi(j),W

′
i(j)) ≡ yi(Wi(j),Wij = 0))− yi(W

′
i(j),W

′
ij = 0) (1.3)

where Wi(j) is the subvector of possible values of treatments Wi for group i with the jth

entry deleted and Wij is a possible value of treatment of the individual j in group i. The

group and the population average indirect causal effect estimands respectively are defined
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as

CEi
I
(ψ, φ) ≡ ȳi(0, ψ)− ȳi(0, φ) (1.4)

and

CE
I
(ψ, φ) ≡ ȳ(0, ψ)− ȳ(0, φ) (1.5)

On the design side, Hudgens and Halloran (2008) considered a hierarchical design, also

known as two-stage randomization design, in which two randomization procedures are con-

sidered: either groups are randomly assigned to treatment assignment strategies (i.e. dif-

ferent proportions of treated units) and then units within groups are randomly assigned to

treatments conditional upon the group’s strategy; or groups can be randomly assigned to

treatment and control and then within each treated group, units are randomly assigned to

treatment and control. In the former design, interference effects can be assessed by com-

paring units across groups with different proportions assigned to treatment (Hudgens and

Halloran, 2008); the later design allows assessing interference effects by comparing units as-

signed to control in treated groups versus units assigned to control in control groups (Basse

and Feller, 2018).

Under the two-stage randomization design, Hudgens and Halloran (2008) presented esti-

mators of their proposed estimands that were shown to be unbiased. The unbiased estimator

for the population average indirect causal effect is given by

ĈE
I
(ψ, φ) ≡ Ȳ (0, ψ)− Ȳ (0, φ) (1.6)

where Ȳ (0, ψ) and Ȳ (0, φ) is the population average of the observed potential outcomes

under strategies ψ and φ respectively.

Basse and Feller (2018) extended this work and considered the complexity that arises

when groups sizes vary. They proposed individual-weighted and household-weighted esti-

mands of the indirect and the total effects providing unbiased estimators for the two-stage

weighted estimands.

8



Moreover, Tchetgen and VanderWeele (2012) expanded upon Hudgens and Halloran

(2008) work and developed a finite sample framework for causal inference under interfer-

ence. Assuming a binary outcome, they constructed a finite sample confidence interval for

the four-population average causal effects of interest. They also provided extensions to in-

verse probability weighting approach to causal inference under interference in observational

studies.

Offer-Westort and Dimmery (2021) added to the discussion of estimation and experimen-

tal design under partial interference where the main target is to estimate effects of multiple

treatment conditions.

In some settings, the partial interference assumption may not be valid (Aronow and

Samii, 2017; Toulis and Kao, 2013; Sussman and Airoldi, 2017). Aronow and Samii (2017)

extended this work to go beyond partial interference to settings with arbitrary forms of inter-

ference generalizing estimation and inference theory. Their estimation framework consisted

of experimental design, an exposure mapping and a set of causal estimands. They limited

interference extent to a finite set S of exposures (W1, W2, . . ., WS) in which case each unit

i has a vector of probabilities of exposures (π(W1), π(W2), . . ., π(WS))′ = πi which is the

probability of the unit i being subject to each of the S possible exposures.

They defined the average of the units’ potential outcomes under exposure Ws as µ(Ws) =

(1/N)yT(Ws) where yT (Ws) is the total number of potential outcomes under Ws. Hence,

they defined the average unit-level causal effect τ(Ws,Wl) = µ(Ws)− µ(Wl) as the differ-

ence between the average of units’ potential outcomes under exposure Ws versus the average

under another exposure Wl. In addition, they provided an inverse probability weighted un-

biased estimator by Horvitz and Thompson (1952) for the total number of the potential

outcomes under Ws as

ŷTHT (Ws) =
N∑
i=1

I(W′ = Ws)
Yi

π(Ws)
, (1.7)

where W′ is the exposure that unit i receives and therefore, µ̂HT (Ws) = (1/N)ŷT
HT(Ws).
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An unbiased estimator of the average unit-level causal effect τ(Ws,Wl) is

τ̂HT (Ws,Wl) = µ̂HT(Ws)− µ̂HT(Wl). (1.8)

Toulis and Kao (2013) extended the potential outcomes framework to allow for interfer-

ence in social networks by defining a k-level estimand of the interference effect. Sussman and

Airoldi (2017) developed elements of estimation theory for causal effects assuming that the

potential outcomes of an individual depend only on individual’s treatment and neighbors’

treatment such that changing the treatment of other units in the network does not impact

the outcome of unit i.

Aronow et al. (2021) reviewed methods of interference for both general network settings

and partial interference within hierarchical structure in the context of randomized experi-

ments.

Moreover, Basse and Airoldi (2018) considered the problem of designing a randomized

experiment to minimize estimation error for correlated outcomes where the correlation among

outcomes is informed by an available pre-intervention network.

Another research direction focuses on testing for interference and has been developed

through a randomization-based approach (Aronow, 2012; Athey et al., 2018) or through

an experimental design approach (Saveski et al., 2017; Pouget-Abadie et al., 2019). Aronow

(2012) employed the randomization inference approach for testing non-sharp null hypotheses

under interference between units where he provided a conditional randomization test of the

analyst’s choice that allows for the calculation of the exact significance level of the causal

dependence of outcomes on the treatment status of other units. Athey et al. (2018) expanded

upon this work and developed tests for a large class of hypotheses under interference. Basse

et al. (2019) built on this work and considered the validity of the test by conditioning on

observed treatment assignment of the subset of units who received an exposure of interest.

Saveski et al. (2017) and Pouget-Abadie et al. (2019) presented an experimental design for

testing whether SUTVA holds and provided theoretical bounds on the type I error rate.

10



1.4 K Nearest Neighbors Interference Model

We view units under study as a mathematical graph. Let G = (V,E) be a directed graph

of ‖V ‖ = N vertices; each vertex i ∈ V corresponds to a unit under study. An edge ij ∈ E

denotes potential interaction between units i and j. These interactions between units can

be defined by any type of relationships—membership to the same group, friendship in social

media, geographic proximity, etc. (Forastiere et al., 2020). Throughout the thesis, the terms

vertex, unit, and individual will be used interchangeably.

Let A denote the N × N adjacency matrix of G. That is, Aij = 1 if ij ∈ E where there

is an edge from unit j to i and Aij = 0 otherwise. Because G has no self-loops, the diagonal

elements of the adjacency matrix, Aii = 0.

Let d(i, j) denote an interaction or dissimilarity measure between units i and j. In

the context of treatment interference, smaller values of d(i, j) indicate stronger interactions

between units i and j. We assume, for now, that d(i, j) is only computed for units i, j with

Aij = 1. Let d(i, (j)) denote the jth smallest value of {d(i, j), j 6= i}; that is, d(i, (1)) <

d(i, (2)) < · · · . For ease of exposition, we assume that all values of d(i, j) are unique (in

practice, ties may be broken arbitrarily). The K-neighborhood of unit i, denoted NiK , is the

set of the K “closest” units to unit i:

NiK = {j : d(i, (j)) ≤ d(i, (K)), j = 1, 2, . . . , K}. (1.9)

Define N−iK = V \ (i ∪NiK) as all units in V that are outside of i’s K-neighborhood. Note

that the sets {i,Nik,N−ik} form a partition of V .

Recall that Wi is a treatment indicator for unit i, and let W = (W1,W2, . . . ,WN) =

{Wi,WNik
,WN−ik

} denote treatment assignment vector for all units N . Also recall that Yi

is the outcome measured on the unit i. Each unit’s potential outcome yi(W ) is defined as a

function of the entire assignment vector of units to the two treatment conditionsW ∈ {0, 1}N .

Recall that, under SUTVA, the outcome of unit i depends only on the treatment assigned

to unit i. That is, for two randomizations W,W ′, SUTVA implies that yi(W ) = yi(W
′) if
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Wi = W ′
i . However, when treatment effects interfere across units, units’ responses are not

only affected by their own treatments but also by the treatments assigned to other units in

the network.

Treatment interference models range between assuming no exposure to other units’

treatments—which is the case for traditional randomized experiments with Neyman-Rubin

causal model under SUTVA—and structured interference models. In completely arbitrary

interference exposure, each unit will have a unique type of exposure depending on the treat-

ment assignment for all N individuals. This results in distinct 2N potential outcomes for each

unit and N2N potential outcomes for the experimental population where we only observe N

of these potential outcomes. Under the latter exposure, there would be no meaningful way

to analyze the experiment so that researchers focus on structured or limited interference.

To make progress on treatment interference problems, researchers make assumptions

between those of SUTVA and arbitrary interference models that restrict the extent of in-

terference allowed (Toulis and Kao, 2013; Aronow and Samii, 2017; Ugander et al., 2013;

Sussman and Airoldi, 2017).

Remark 1.1. Aronow and Samii (2017) define exposure mapping as a function that maps

an assignment vector and unit i specific traits to an exposure value where there is a finite

set of exposure values. Toulis and Kao (2013) introduce k-level interference where unit i is

exposed to interference effect if at least one neighbor is treated or unit i is k-exposed if exactly

k neighbors are treated for i ∈ Vk where Vk is the set of units that have at least k neighbors.

Remark 1.2. Sussman and Airoldi (2017) consider neighborhood interference assumption

(NIA) where the potential outcome of an individual depends only on an individual’s treatment

and neighbors’ treatment such that unit j is a neighbor of unit i if Aij = 1. The neighborhood

of unit i is the set of all vertices with edges directed toward unit i denoted as Ni where Ni

= {j : Aij = 1}. NIA along with other assumptions lead to various models for the potential

outcomes where someone can define estimands for the direct and indirect treatment effects

in terms of the model parameters. Similarly, Forastiere et al. (2020) consider neighborhood

interference assumption excluding the dependence of the potential outcome of unit i from
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treatments assigned outside the neighborhood Ni. Forastiere et al. (2020) assumption differs

from Sussman and Airoldi (2017) assumption in that they assume that the dependence of

the potential outcomes is defined through a specific function gi(.). Applying this function

to the neighborhood treatment vector results in a variable denoted by Ui = gi(WNi
), that

can explain the type of the dependence, for example, the number of treated neighbors, (i.e.,

Ui =
∑

j∈Ni
Wj). Ugander et al. (2013) develop different exposure models of interference.

One exposure model is the full neighborhood exposure to a treatment where unit i and all its

neighbors receive that treatment condition. An absolute k-neighborhood exposure to treatment

is that for vertex i with degree d ≥ K, vertex i and ≥ K neighbors of i receive that treatment

condition. In addition, fractional q-neighborhood exposure to a treatment that is a vertex i

and ≥ qd neighbors of i receive that treatment condition. They also introduce stricter versions

of the above exposures using core exposures.

However, most models in previous work only specify that the units’ outcomes are affected

by the number or fraction of treated neighbors, but they do not specify which neighbors affect

unit outcome and how they affect the outcome. We extend the literature on causal inference

under interference and propose an interference model that differs from the above exposure

models in that we restrict the interference of treatment on a unit i to its the K nearest

neighbors. This allows different neighbors to contribute different effects depending on the

proximity of the relationship—neighbors who are close to unit i are more likely to have their

treatment statuses affect the response of unit i. In other words, we relax SUTVA to allow

treatment effects to interfere between units, but we limit the extent of interference only to

their K-nearest neighbors. Thus, we restrict the number of possible treatment assignment

vectors and hence, the number of potential outcomes to be 2K+1 for each unit. Now we

define the K-nearest neighbors interference model under the following assumption:

Assumption 1.1. (K-Neighborhood Interference Assumption (K-NIA)). For each unit i

in a network G and for all treatment assignments WN−iK
, W ′

N−iK
, the potential outcomes
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satisfy K-Neighborhood Interference Assumption if

yi(Wi,WNiK
,WN−iK

) = yi(Wi,WNiK
,W ′
N−iK

) (1.10)

Assumption 1.1 states that the potential outcome of unit i is only affected by its treatment

and by the treatments assigned to its K-nearest neighbors. Changing treatments for other

units outside the K-neighborhood will not affect the potential outcome of unit i. This

is a special case of the NIA described in Sussman and Airoldi (2017). In its most general

form, the K-nearest neighbors interference model (KNNIM) assumes only that the treatment

interference structure satisfies assumption 1.1.

In this thesis, we use the nearest neighbor effect, indirect effect and interference terms

interchangeably and we refer to the unit’s response to treatment as a direct effect and the

unit’s response to interference as an indirect effect as in (Hudgens and Halloran, 2008).

1.5 Organization of the Dissertation

In Chapter 2, we evaluate the performance of existing methods for detecting arbitrary inter-

ference under the K-nearest neighbors interference model. In Chapter 3, we define estimands

for the direct, indirect, total ,and `th nearest neighbor effects under the K-neighborhood in-

terference assumption and provide estimators of the defined effects. In Chapter 4, we propose

estimators under the no-interaction between indirect effects. We conclude in Chapter 5.
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Chapter 2

Detecting Interference under

K-Nearest Neighbors Interference

Model

2.1 Introduction

Randomized experiments have long been viewed as the gold standard for causal inference.

In epidemiology, researchers may want to study the effect of vaccines on a target population

to protect individuals who are at risk of an infectious disease. Technology companies such as

Google, Amazon, Facebook, LinkedIn, Netflix, Twitter, and others run online randomized

controlled experiments to evaluate the effect of a new feature or product on user engagement.

However, in such settings, units under study may interact with one another; for example, a

user assigned a new feature may interact with one not assigned the feature, thereby impacting

the response of the latter user. This interaction poses challenges in estimating and inferring

treatment effects under traditional causal inference methodologies.

In particular, a fundamental assumption in the traditional causal inference framework

is that there is only a single version of each treatment status and the response of a unit

is unaffected by the treatment status of any other unit (see Imbens and Rubin (2015) for
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a review). This is known as the stable unit treatment value assumption (SUTVA) (Rubin,

1980). SUTVA is violated under settings in which there is treatment interference—that is,

when a treatment assigned to a unit affects the response of other units. Effects on response

due to treatment interference are also known as spillover, peer influence, social interaction,

or network effects.

The dependence of a unit’s outcome on other units’ exposures or treatments poses sta-

tistical challenges because the potential outcome of a unit—the hypothetical outcome of a

unit given a realized treatment assignment—is not only affected by its own treatment status

but also by the treatment conditions received by other units. In some settings, interference

can be considered as a nuisance and researchers may control for it to reduce the bias by

designing experiments in such a way that treatment effects do not interfere. Although these

designs may minimize the effect of interference, such designs are not always possible. On the

other hand, in other settings, estimating the causal effect in the presence of interference is

of interest itself. Examples of this include studies on the efficacy of vaccines in which vacci-

nated and non-vaccinated members of a population interact with each other and researchers

are interested in overall infection rates. Under these latter settings, considerable work has

been devoted to the development of reasonable models of interference in order to ensure

identification of both the direct effect of treatment and the effect of treatment spillover on

the response (Aronow and Samii, 2017; Forastiere et al., 2020; Manski, 2013; Sussman and

Airoldi, 2017; Toulis and Kao, 2013).

In this chapter, we introduce a model of treatment interference called the K-nearest

neighbors interference model (KNNIM). Under KNNIM, the response of a unit is affected

only by the treatment given to that unit and the treatment statuses of its K nearest neighbors

(KNN). Such models of interference may be reasonable, for example, under social network

settings, where only a few of the observable potential interactions (e.g. accounts that a

Twitter user follows) may be influential on a unit’s response, and the strength of interaction

may be measured by the amount of engagement between users.

We then perform a simulation study to determine how existing methods, and one newly

developed method, for detecting treatment interference perform under data generated under
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a KNNIM model. While these methods were originally developed to detect arbitrary inter-

ference (Aronow, 2012; Athey et al., 2018; Pouget-Abadie et al., 2019; Saveski et al., 2017),

it is reasonable to assume that the efficacy of these methods may vary depending on the

structure of interference. However, little work has been done to assess how these methods

perform under various interference models. We repeatedly simulate data under a KNNIM

model and apply these methods to the simulated data. We then assess the power of these

methods to successfully detect treatment interference when it is present and their likelihood

of concluding insignificant interference when it is omitted. Results suggest that methods

which incorporate structured selection of focal units (Aronow, 2012; Athey et al., 2018) tend

to perform reasonably well on this type of data.

The rest of this chapter is organized as follows. An overview on causal inference under

interference is presented in Section 2.2. The K–nearest neighbors interference model is

introduced in Section 2.3. We discuss the application of conditional randomization inference

on non-sharp hypothesis in Section 2.4. An algorithm on the selection of the focal units

is provided in Section 2.5. Section 2.6 gives a summary of current methods of detecting

interference. Our proposed test statistic is given in Section 2.7. Section 2.8 evaluates current

methods as well as our test under KNNIM model through a simulation. Results are discussed

in Section 2.9. We conclude in Section 2.10.

2.1.1 Motivating Example

We motivate our approach using data from a randomized field experiment aimed to reduce

conflict among middle school students in 56 schools in New Jersey(Paluck et al., 2016).

This study assesses the impact of an anti-conflict program on individual students and deter-

mines whether benefits of the program are transmitted through social interactions between

students.

The anti-conflict program was implemented via a two-stage experimental design. In the

first stage, of the 56 schools in the study, 28 schools were randomly assigned to participate in

the anti-conflict program. Then, within each school, between 40 and 64 students were deter-
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mined to be eligible to be “seed” students—students that actively participate and advocate

for the anti-conflict program. In the second stage of the randomization, of all the eligible

seed students, half were assigned to be seeds. Seed students were encouraged to publicly

reflect their opposition to conflict in their school—for example, identifying a common conflict

in their school and creating a hashtag about it—and were also asked to distribute orange

wristbands with the intervention logo to students that demonstrate anti-conflict attitudes.

Analysis was performed only on students that were eligible to be seeds (N = 2,451).

Of particular note, to assess potential pathways for treatment interference, students were

asked to identify, in order, the 10 other students that they spent the most time with during

the previous few weeks. This yields a unique dataset in which the strength of the interaction

between two individuals under study is explicitly recorded. Hence, statistical analyses may

benefit from an interference model, such as KNNIM, that allows for direct incorporation of

the relative strengths of the interactions. For this dataset, KNNIM models with K up to 10

may be applicable.

2.2 Background and Related Work

The Neyman-Rubin Causal Model (NRCM) is a popular model of response in causal infer-

ence (Holland, 1986; Imbens and Rubin, 2015; Rubin, 1980; Splawa-Neyman et al., 1990).

Consider a simple experiment on N units, numbered 1, . . . , N , where all units are given

either a treatment or a control condition. The NRCM assumes that the response of unit i,

denoted Yi follows the model

Yi = yi(1)Wi + yi(0)(1−Wi).

Here, yi(Wi) is the potential outcome under treatment status Wi ∈ {0, 1}—the hypothetical

response of unit i had that unit received treatment status Wi—and Wi is a treatment indi-

cator: Wi = 1 if unit i receives treatment and Wi = 0 if unit i receives control. Inherent in

this model is the no interference assumption or SUTVA. This assumption states that there
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is only a single version of each treatment status and that a unit’s outcome is only affected by

its own treatment status and is not affected by the treatment status of any other unit (Cox,

1958; Rubin, 1980).

In many settings, SUTVA is not plausible, and considerable work has been performed

on analyzing causal effects when SUTVA is violated. Sobel (2006) showed that violating

SUTVA can lead to wrong conclusions about the effectiveness of the treatment of interest.

Forastiere et al. (2020) derive bias formulas for the treatment effect when SUTVA is wrongly

assumed and show that the bias that is due to the presence of interference is proportional to

the level of interference and the relationship between the individual and the neighborhood

treatments.

When interference is present, the effect of a treatment on a unit may occur through direct

application of the treatment to that unit, indirectly through application of treatment to units

that interact with the original unit, or both (Hudgens and Halloran, 2008). We can extend the

potential outcomes framework to account for both direct and indirect treatment components.

Let yi(W) = yi(Wi,W−i) denote the potential outcome of unit i under treatment allocation

W ∈ {0, 1}N , where unit i is given treatment Wi, and the remaining treatment statuses are

allocated according to W−i. Responses Yi satisfy

Yi =
∑

W∈{0,1}N
yi(W)1(W∗ = W),

where 1(W∗ = W) is an indicator variable that is equal to 1 if and only if the observed

treatment status W∗ = W. The average direct effect τdir is the average difference in a unit’s

potential outcomes when changing that unit’s treatment status and holding all other units’

treatment status fixed. It may be defined as

τdir =
1

N

N∑
i=1

(yi(1,1)− yi(0,1)),

where 1 denotes a vector of all 1’s. In contrast to direct effect, the average indirect effect

τind is defined as the average difference in a unit’s potential outcome when changing all other
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treatment statuses from control to treated, holding its own treatment fixed. It can be defined

as

τind =
1

N

N∑
i=1

(yi(0,1)− yi(0,0)),

where 0 denotes a vector of all 0’s. The average total effect τtot measures the average

difference in potential outcomes between all units receiving treatment and all units receiving

control:

τtot =
1

N

N∑
i=1

(yi(1,1)− yi(0,0)).

Note that these quantities are defined to satisfy τtot = τdir + τind. Addionally, when SUTVA

holds, τtot = τdir and τind = 0.

There are a variety of strategies for designing and analyzing experiments under treatment

interference. One approach is to view interference as a nuisance parameter and to reduce

the effect of treatment interference on causal estimates through effective experimental de-

sign. This line of work aims to use available information on potential interaction of units

to design an experiment that mitigates the effect of this interaction. Often, this is done

through forming clusters with high within-cluster interaction and randomizing treatment

across clusters rather than individual units (Eckles et al., 2016; Gui et al., 2015; Ugander

et al., 2013). However, knowledge of the interaction network may not necessary to make

progress on this problem—Sävje et al. (2021) investigate methods for consistent estimation

of treatment effects when the structure of interference is unknown. This approach may not

be ideal when indirect effects are of interest to the researcher.

Rather than considering interference as a nuisance, some researchers tend to relax SUTVA

and allow for different models of interference, considering interference effect as of primary

interest. One significant example of this involves experiments in the efficacy of vaccines

where the likelihood of a person contracting an infectious disease depends on others in the

same population who are vaccinated (Halloran and Struchiner, 1995; Hudgens and Halloran,

2008; Ross, 1916). Under this setting, interference is allowed within groups but not across

groups—this is referred to as a partial interference assumption (Sobel, 2006), i.e., SUTVA is
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assumed between groups (Basse and Feller, 2018; Hudgens and Halloran, 2008; Offer-Westort

and Dimmery, 2021; Rosenbaum, 2007; Sobel, 2006; Tchetgen and VanderWeele, 2012).

A similar approach to partial interference assumes that treatment interference on a unit

can only occur within a small closed neighborhood of that unit (Sussman and Airoldi, 2017)—

the K-nearest-neighbors interference model (KNNIM) introduced in this thesis is a variant

of this setting. Another common approach is to assume that the treatment condition can

only “spill over” and affect the response of a control unit if a certain number or fraction of

potential interactors of that unit receive treatment (Gui et al., 2015; Toulis and Kao, 2013).

Finally, in its least restrictive form, Aronow and Samii (2017) consider the use of Horvitz-

Thompson estimators for estimating treatment effects under arbitrary forms of interference.

Another research direction focuses on the development of hypothesis tests to detect the

presence of treatment interference in an experiment. Aronow (2012) introduces a framework

for conditional randomization tests for detecting treatment interference. Athey et al. (2018)

extend this approach to develop tests for more general forms of treatment interference.

Basse et al. (2019) build on this work and consider the validity of the test by conditioning on

observed treatment assignment of the subset of units who received an exposure of interest.

Saveski et al. (2017) and Pouget-Abadie et al. (2019) develop an experimental framework to

simultaneously estimate treatment effects and test whether treatment interference is present

within an experiment.

2.3 K-Nearest Neighbors Interference Model

Treatment interference models range between assuming no exposure to other units’ treatments—

which is the case for traditional randomized experiments with the NRCM under SUTVA—

and structured interference models. For models allowing arbitrary interference, each unit will

have a unique type of exposure depending on the treatment assignment for all N individuals.

This results in distinct 2N potential outcomes for each unit and N2N potential outcomes for

the experimental population where we only observe N of these potential outcomes. Under

the latter exposure, there would be no meaningful way to analyze the experiment so that
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researchers focus on structured or limited interference.

To make progress on treatment interference problems, researchers make assumptions

between those of SUTVA and arbitrary interference models that restrict the extent of inter-

ference allowed (Aronow and Samii, 2017; Sussman and Airoldi, 2017; Toulis and Kao, 2013;

Ugander et al., 2013). However, most models in previous work only specify that the units’

outcomes are affected by the number or fraction of treated neighbors, but do not specify

which neighbors impact unit response and how they affect the response.

We now propose an interference model where we restrict the interference of treatment on

a unit i to its K–nearest neighbors. This allows different neighbors to contribute different

effects depending on the proximity of the relationship—neighbors that are close to unit i are

more likely to have their treatment status affect the response of unit i. This model restrict

the number of potential outcomes to be 2K+1 for each unit.

We view units under study as a mathematical graph. Let G = (V,E) be a directed graph

of ‖V‖ = N vertices; each vertex i ∈ V corresponds to a unit under study. An edge ij ∈ E

denotes potential interaction between units i and j. These interactions between units can be

defined by any type of relationship, for example, membership to the same group, friendship

in social media, geographic proximity, etc. (Forastiere et al., 2020). For ease of exposition,

we assume that the degree of each vertex i is at least K.

Let A denote the N × N adjacency matrix of G. That is, Aij = 1 if ij ∈ E where there

is an edge from unit j to i and Aij = 0 otherwise. Since G has no self-loops, the diagonal

elements of the adjacency matrix, Aii = 0.

Let d(i, j) denote an interaction or dissimilarity measure between units i and j. In

the context of treatment interference, smaller values of d(i, j) indicate stronger interactions

between units i and j. We assume, for now, that d(i, j) is only computed for units i, j with

Aij = 1. Let d(i, (j)) denote the jth smallest value of {d(i, j), j 6= i}; that is, d(i, (1)) <

d(i, (2)) < · · · . For ease of exposition, we assume that all values of d(i, j) are unique (in

practice, ties may be broken arbitrarily). The K-neighborhood of unit i, denoted NiK , is the
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set of the K “closest” units to unit i:

NiK = {j : d(i, (j)) ≤ d(i, (K)), j = 1, 2, . . . , K}.

Define N−iK = V \ (i∪NiK) as all units in V that are outside of i’s K-neighborhood. Note

that the sets {i,NiK ,N−iK} form a partition of V.

Recall that Wi is a treatment indicator for unit i, and let W = (W1,W2, . . . ,WN) =

{Wi,WNiK
,WN−iK

} denote treatment assignment vector for all units N . Also recall that

Yi is the outcome measured on the unit i. Each unit’s potential outcome yi(W) is defined

as a function of the entire assignment vector of units to the two treatment conditions W ∈

{0, 1}N .

Now we give the following assumption that defines the K-nearest neighbors interference

model:

Assumption 2.1. (K-Neighborhood Interference Assumption (K-NIA)). For each unit i in

a network G and for all treatment assignments WN−iK
, W′

N−iK
, the potential outcomes

satisfy K-Neighborhood Interference Assumption if

yi(Wi,WNiK
,WN−iK

) = yi(Wi,WNiK
,W′

N−iK
).

Assumption 2.1 states that the potential outcome of unit i is only affected by its treatment

and by the treatments assigned to its K-nearest neighbors. Changing treatments for other

units outside the K-neighborhood will not affect the potential outcome of unit i. This

is a special case of the neighborhood interference assumption (NIA) described in Sussman

and Airoldi (2017). In its most general form, the K-nearest neighbors interference model

(KNNIM) assumes only that the treatment interference structure satisfies Assumption 2.1.

For convenience, we will suppress the treatment statuses in WN−iK
when referring to the

potential outcomes yi.
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2.3.1 Choosing the neighborhood size K

In applications, the experimenter can choose the number of the K-nearest neighbors based

on the field and the purpose of the study. The experimenter also can decide on the size of

K using prior knowledge from previous studies that serves the objective of the study. This

should be done in early phases of the study, and hence, the network is fixed and known in

advance.

However, another factor that should be addressed when choosing the size of K is the

sample size in order to be able to quantify, estimate and draw inference on the K-nearest

neighbors indirect effects. As mentioned above, number of exposure to treatments is re-

stricted to 2K+1 exposures. Hence, to ensure sufficient power, many methods that incor-

porate KNNIM will require a sufficient number of units exposed to each of these exposure

levels. From our experience, a good heuristic is to require roughly 30 observations for each

considered treatment exposure.

In the school conflict motivating example described in Section 2.1.1, the experimenters

measured K = 10 nearest neighbors for each student. However, suppose that analysis is

isolated to eligible students in treated schools who have at least K = 2 seed-eligible nearest

neighbors. This sample contains N = 348 units, and there are eight treatment exposures

possible for each student. In Table 2.1, we see that each possible exposure has at least 34

students assigned to that exposure.

However, suppose we restrict our analysis further to only eligible students in treated

schools who have at least K = 3 seed-eligible nearest neighbors (N = 100). In Table 2.2,

we see there is only one unit given the exposure where the individual and all its three seed-

eligible nearest neighbors are all treated. Increasing the size of K when sample sizes are

small may lead to hypothetical exposures with few (if any) units assigned to that exposure,

which may complicate analyses and reduce power substantially.
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Table 2.1: Number of units in each exposure of Anti-Conflict Program Experiment with K
=2 and N = 348

Indirect
Direct (0, 0) (0, 1) (1, 0) (1, 1)
Treated 38 42 39 34
Control 40 59 46 50

Table 2.2: Number of units in each exposure of Anti-Conflict Program Experiment with K
=3 and N = 100

Indirect
Direct (000) (001) (010) (100) (011) (101) (110) (111)
Treated 5 6 3 6 8 7 11 1
Control 6 8 3 4 11 4 10 7

2.4 Randomization Inference for Detecting Interfer-

ence

We now describe the framework for randomization inference for testing the presence of

treatment interference under KNNIM. Recall that W is the treatment assignment vector

and yi(W) is the potential outcome of unit i under treatment W. Let T = T (W, y(W))

denote a test statistic— a random variable where the source of randomness follows from the

dependence on the random treatment assignment W. Let Wobs and Yobs = Y(Wobs) denote

the observed treatment assignment vector and the observed outcome vector, respectively. Let

T obs = T (Wobs,Yobs) denote the observed value of the test statistic. We aim to test the null

hypothesis of no treatment interference for each unit

H0 : yi(Wi,WNiK
) = yi(Wi,W

′
NiK

). (2.1)

Typically, randomization tests under the potential outcome framework assume a sharp

null hypothesis of no unit-level treatment effects, and potential outcomes are able to be

inferred under this sharp null across randomizations (Fisher, 1925). However, since the
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hypothesis (2.1) does not make assumptions about direct effect of treatment on each unit,

the potential outcome yi(Wi,WNiK
) may not be imputable for randomizations under which

Wi 6= W obs
i . Progress can be made by conditioning on a set of randomizations Ω and

choosing a test statistic T such that T is imputable under randomizations in Ω (Basse et al.,

2019). Afterward, a conditional p-value is obtained by computing, for example, the fraction

of randomizations W′ ∈ Ω such that

|T (W′, y(W′))| ≥ |T (Wobs,Yobs)|.

Following Aronow (2012) and Athey et al. (2018), this conditional randomization infer-

ence can be performed by first selecting a subset of units under study called focal units and

to only consider randomizations of treatment W that do not affect the treatment status of

the focal units. Only variant units—those that are not focal units—can have differing treat-

ment statuses across randomizations. In other words, we simulate draws from the random

treatment assignment vectors conditional on the fixed treatment of the focal units. Thus, the

null hypothesis of no interference is sharp on the focal units since only treatment statuses of

variant units—only those units that can impose indirect effects—are randomized. The test

statistic T is only computed on the outcomes of the focal units and hence, the test statistic

is imputable under alternative treatment assignment vectors.

2.5 Selection of the Focal Units

Although the choice of the focal units does not affect the validity of the test, it plays a key

role for the power of the test (Athey et al., 2018). Aronow (2012) provides a restriction

on the size of the focal set when the selection on the focal units is random with a binary

treatment conditions. Athey et al. (2018) provide different methods of choosing the focal

units and found that systematic ways perform better than random selection of the focal

units. Basse et al. (2019) build on this work and provide a conditioning framework that

consider the validity of the test by conditioning on observed treatment assignment of the
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focal units who received an exposure that contributes more to the hypothesis of interest.

Under KNNIM, we suggest choosing focal units in a way such that the K-neighborhoods

of the focal units do not overlap. This will enable us to remove dependencies between

outcomes of focal units induced by indirect effects. Additionally, a substantial fraction

of focal units may still be selected under this condition, increasing the power of the the

randomization inference.

Such a selection can be performed as follows. Define the K-nearest neighbors adjacency

graph GKNN = (V,EKNN) to be the undirected graph with an edge ij ∈ EKNN if and only

if j ∈ NiK or i ∈ NjK , and second power of GKNN , denoted G2
KNN = (V,E2

KNN), as the

graph that contains an edge ik ∈ E2
KNN if and only if there is a path of two edges or fewer in

EKNN joining i and k. Focal units can then be selected by choosing a maximal independent

set of units F within G2
KNN ; that is, all units in F are independent of each other in G2

KNN ,

and the addition of any other unit i ∈ V \ F into F will add dependencies (Higgins et al.,

2016).

Selection of a maximal independent set of focal units in G2
KNN may be performed as

follows.

Algorithm. Given a K-nearest neighbors adjacency graph GKNN = (V,EKNN), the follow-

ing algorithm will select a maximal independent set of focal units within G2
KNN .

1. Step 1: (Initialize) Let U = V. Initialize the set of focal units F = ∅. Initialize the

set of variant units I = ∅.

2. Step 2: (Select focal unit) While |U| > 0, choose one vertex i ∈ U at random. Set i

as a focal unit: i ∈ F.

3. Step 3: (Find nearest neighbors) Set I equal to all units j such that ij ∈ EKNN .

4. Step 4: (Find neighbors of neighbors) Find all units k ∈ V \ I such that, for some

unit j ∈ I, jk ∈ G2
KNN . Set these units k ∈ I.

5. Step 5: (Remove units) Remove all vertices in F and I from U.
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6. Step 6: (Repeat or terminate) If |U| = 0, stop. The set of focal units F is a maximally

independent set of units within G2
KNN . Otherwise, set I = ∅ and return to Step 2.

2.6 Current Methods for Detecting Interference

Current methods for detecting interference include conditional randomization tests (Aronow,

2012; Athey et al., 2018) (as outlined in Section 2.4) and carefully designed experiments

performed with the intention to detect interference (Pouget-Abadie et al., 2019; Saveski

et al., 2017). We now provide a summary of these methods for testing for interference. For

randomization tests, we focus on the choice of test statistic used. For experimental design

methods, we describe both experimental setup and the test statistic.

2.6.1 Test Statistics for Randomization Tests

Aronow (2012) introduced the randomization inference approach for testing for interference

between units, where units are affected by their own treatment and by the treatment assigned

to their immediate neighbors. In this test, the treatment status for a subset of focal units

remains fixed; the rest of the units are the variant subset. The randomization inference is

conditional on the observed treatment status of the fixed subset. That is, this test is on

indirect effects resulting from the variation of the treatment status for the variant subset

of units. A variety of test statistics may be used under this framework. Differences in the

statistic across randomizations must be resulting from the variation of the treatment status

of the variant units.

The Pearson correlation coefficient ρ between the outcomes of the fixed units (YF) and

the “distance” to the nearest unit of a particular treatment status in the variant subset

(Dnearest) may be used as the test statistic:

ρ = cor(YF,Dnearest). (2.2)

A common choice of distance is the Euclidean distance between pretreatment covariates.
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This distance can be incorporated into the KNNIM framework through the dissimilarity

measure d. Aronow (2012) advocates for computing Pearson correlation coefficient on the

ranks of these quantities; however, preliminary simulations suggest that the statistic ρ tends

to be more powerful for the models considered in Section 2.8.

Athey et al. (2018) extend this work and develop tests for more general realizations of

interference (e.g. no higher-order interference). As part of this work, they suggest additional

test statistics for detecting interference. The edge-level contrast statistic Telc—a modification

of a test statistic proposed by Bond et al. (2012)—is the difference between the average

outcomes of the focal units with treated neighbors and the focal units with control neighbors.

Here, Telc averages over edges ij where i is a focal unit and j is not a focal unit:

Telc =

∑
i,j 6=i FiAij(1− Fj)WjY

obs
i∑

i,j 6=i FiAij(1− Fj)Wj

−
∑

i,j 6=i FiAij(1− Fj)(1−Wj)Y
obs
i∑

i,j 6=i FiAij(1− Fj)(1−Wj)
,

where Fi is an indicator variable satisfying Fi = 1 if and only if i ∈ F.

A second test statistic is the score test statistic Tscore (Athey et al., 2018). This statistic is

motivated by a model of treatment interference in which the indirect effect is proportional to

the fraction of treated neighbors (Manski, 1993, 2013). The score test begins by computing

ri = Y obs
i − Ȳ obs

F,0 − (Ȳ obs
F,1 − Ȳ obs

F,0 )Wi,

for each focal unit i ∈ F, where Ȳ obs
F,1 and Ȳ obs

F,0 are the average outcome for the treated and

control focal units respectively. Then, Tscore is the covariance between these ri terms and∑N
j=1AijWj—the fraction of treated neighbors for unit i. This statistic is computed across

only focal units that have at least one treated neighbor:

Tscore = cov

(
ri,

N∑
j=1

AijWj

∣∣∣∣∣Fi = 1,
N∑
j=1

Aij > 0

)
.

Finally, Athey et al. (2018) consider the has-treated-neighbor test statistic Thtn, a modi-

fication of Pearson correlation coefficient (2.2). Instead of using the distance to the nearest
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treated neighbor, this statistic uses a indicator variable Ei for whether any of a unit’s neigh-

bors in the variant subset are treated: that is, Ei = 1 if and only if
∑

j AijWj(1− Fj) > 0.

Then Thtn is the correlation between this indicator and the outcomes for the focal units F.

Thtn =
1

SY obs
F
.SE

1

|F|
∑
i∈F

(
Y obs
i − Ȳ obs

F

)
Ei,

where Ȳ obs
F and SY obs

F
are the sample mean and standard deviation of the outcomes for focal

units respectively and SE is the sample standard deviation of the Ei variables.

2.6.2 Experimental Design Approach

Saveski et al. (2017) and Pouget-Abadie et al. (2019) present a two-stage experimental design

to test for the presence of interference. In this design, the units under study are divided into

two groups and two experiments are performed simultaneously: for one group, treatment is

assigned completely at random, and for another group, units are clustered and treatment

is assigned across clusters rather than units. Then, estimates of the average direct effect

are computed under the assumption of no interference for both the completely randomized

and cluster randomized designs. Finally, a standardized difference Texp is computed between

these estimates:

Texp =
|τ̂cr − τ̂cbr|

σ̂p
, (2.3)

where τ̂cr and τ̂cbr are the estimates of the direct effect under the completely randomized and

cluster randomized designs respectively and σ̂p is a pooled standard deviation of responses

from both the completely randomized and cluster randomized designs (Saveski et al., 2017).

Large values of Texp imply the presence of indirect effects.

A conservative test of the null hypothesis of no treatment interference can be performed

at the α significance level by rejecting the null hypothesis if and only if Texp ≥ α−1/2. Addi-

tionally, as the number of units n→∞, it can be shown that Texp converges to a standard

normal distribution (provided that cluster sizes remain fixed). Thus, an approximate size
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α test can be conducted by rejecting the null hypothesis of no interference if Texp ≥ z1−α/2,

where z1−α/2 is the 1− α/2 quantile of the standard normal distribution.

2.7 K-Nearest Neighbors Indirect Effect Test Statistic

We now propose an additional test statistic designed to detect K-nearest neighbors indirect

effects. Let Y
obs

(Wi,W`=Wj
) denote the average response of observed units that are assigned

to treatment status Wi and have their `th nearest neighbor assigned to treatment status

Wj. The K-nearest neighbors indirect effect test statistic Tknn is obtained by computing

differences in potential outcomes between focal units that receive the same treatment status

but differ on the status of their `th nearest neighbor, and summing these differences across

each of the K nearest neighbors.

That is, for Wi ∈ {0, 1} and ` ∈ {1, . . . , K}, define

Tknn,`(Wi) = Ȳ obs(Wi,W`=1)− Ȳ obs(Wi,W`=0),

and define Tknn,` as a weighted average of these terms:

Tknn,` =
NFt

|F|
Tknn,`(1) +

NFc

|F|
Tknn,`(0),

where NFt and NFc are the number of treated focal units and control focal units respectively.

We then can define Tknn as a sum of these Tknn,` statistics:

Tknn =
K∑
`=1

Tknn,`.

Note that, under the null hypothesis of no treatment interference, each of the Tknn,`(Wi)

terms should be close to 0. Thus, since Tknn is a linear combination of these terms, values

of Tknn that are relatively large in magnitude provide evidence against this null hypothesis,

and so, |Tknn| may be effective as a test statistic. Additionally, note that the statistic Tknn,`
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may be used directly for a test of interference stemming from treatments assigned to the

`th-nearest neighbor.

2.8 Simulation

In this Section, we conduct a comparison and evaluate the performance of the methods

covered in Section 2.6 and 2.7 for testing the null hypothesis of no interference under the

K-nearest neighbors interference model.

2.8.1 Data Generation Procedure

We generate the responses under the following model which satisfies KNNIM:

Yi = X1 +X2 +X3 + β1Wi1 + β2Wi2 + β3Wi3 + βdWi.

In this model, we assume that the closest three neighbors affect the response Yi (i.e. K = 3);

we use Wi` to denote the treatment status of the `th nearest neighbor of unit i. The covariates

Xj, j = 1, 2, 3, are independent and identically distributed Normal(0, 1) random variables.

We use the Euclidean distance between the covariates Xi and Xj as the dissimilarity measure

d(i, j)—units with more similar values of covariates are more likely to interact with each

other. In the initial generation of data, treatment is completely randomized across all N

units, with half of the units receiving treatment and the other half receiving control. Different

models are generated through varying the β = (β1, β2, β3, βd) coefficients and the sample size

N . We consider sample sizes of N = 256 and N = 1024.

For each choice of sample size, we consider thirteen different models of interference. We

describe these models in Table 2.3 in terms of the coefficients vector β. The first 3 elements

of β represent the indirect effect contributed by first, second, and third-nearest-neighbor

respectively. The last element βd is the unit’s direct effect. In all models considered, the

closer the relationship to unit i, the greater the indirect effect: |β1| ≥ |β2 ≥ |β3|. The

indirect effects in every set of three models represent the degree of interference starting
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from no interference in the first 3 models, followed by weak interference in the second three

models, moderate interference in the next three models, and finally strong interference in

the last four models.

For datasets with N = 256 observations, 1,000 realizations of potential outcomes follow-

ing each model are generated. Tests of indirect effects are then applied to each of the 1,000

realizations. Results are given in Section 2.9. Due to computational limitations, only 100

realizations are generated for models containing N = 1024 units.

2.8.2 Simulation for Randomization Tests

We compare the performance of both conditional randomization tests and experimental de-

sign approaches for detecting interference. For the conditional randomization tests, for each

set of generated potential outcomes, treatment is initially assigned completely at random

to units, with half of the units receiving treatment and the other half receiving control.

Then,focal units are selected according to Algorithm 2.5. We then proceed with random-

ization tests as described in Sections 2.4 and 2.6.1. We evaluate the performance of the fol-

lowing test statistics: the Pearson correlation coefficient (Pearson) (Aronow, 2012), the edge

level contrast statistic (ELC), the score statistic (Score), the has-treated-neighbor statistic

(HTN) (Athey et al., 2018), and the K-nearest neighbors indirect effect test statistic (KNN).

Test statistics are computed across 1,000 randomizations for each realization of the po-

tential outcomes; for each randomization, treatment statuses are fixed for focal units and are

completely randomized across variant units. For each generated dataset and each choice of

test statistic, we obtain a p-value for the null hypothesis of no treatment interference. Thus,

for N = 256, we obtain a distribution of 1,000 p-values for each test statistic under each

model. The power of the tests can also be estimated by computing the fraction of p-values

that fall beneath a pre-specified significance level α.
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2.8.3 Simulation for Experimental Design Approach

In addition, we follow the experimental design in Saveski et al. (2017) (described in Sec-

tion 2.6.2) to determine its efficacy for testing whether SUTVA holds under KNNIM. For

each set of generated potential outcomes, we divide the units into clusters of four units

using a heuristic algorithm for the clique partitioning problem with minimum clique size

requirement from Ji (2004) (Algorithm 4). This clustering is performed once per dataset.

We then randomly select half of the clusters to be cluster randomized; for this group,

treatment is assigned at the cluster level, with half of the clusters receiving treatment and

the other half receiving control. For units belonging to the remaining clusters, each unit’s

cluster assignment is ignored, and treatment is completely randomized across all remaining

units. Again, half of these units receive treatment and the other half receive control. For

each dataset, the random selection of clusters and the treatment randomization is performed

1,000 times.

For each randomization, the statistic Texp in (2.3) is computed. We then perform a test

of the null hypothesis of no treatment interaction at the α = 0.05 significance level. A

conservative test rejects this null hypothesis if Texp ≥ α−1/2 and an asymptotic test rejects

the null if Texp ≥ z1−α/2. Thus, for N = 256, we perform a total of 1,000,000 tests: that is,

1,000 tests for each of the 1,000 generated potential outcomes. By computing the fraction of

rejected null hypotheses, we are able to assess the Type I Error (Models 1–3) and the power

(Models 4–13) of the experimental design approach.

2.9 Discussion

Figure 2.1 provides a visual comparison of the distribution of p-values for randomization

tests to detect interference under KNNIM. Table 2.4 provides the estimated Type I Error

and power of these tests (conducted at significance level α = 0.05) across the 13 considered

models. As is expected by design (Higgins, 2004), the p-values of all randomization tests

under models without treatment interference (Models 1–3) are approximately distributed
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uniformly between 0 and 1. Under weak interference (Models 4–6), the ELC, Score, and

KNN tests seem to outperform the Pearson and the HTN tests; the p-values are smaller

overall for these three tests. Similar trends hold under moderate interference (Models 7–

9) and strong interference (Models 10–13). In particular, under strong interference, Score,

KNN, and ELC tests have near 100% power to detect treatment interference.

However, the ELC, Pearson, and HTN tests seem to have some difficulty with detecting

indirect effects when direct effects become large. For example, the p-values for these three

tests under Models 6 and 9—models that have comparatively larger direct effects—are sub-

stantially larger than under Models 4 and 5 and Models 7 and 8 respectively. The Score

and KNN tests do not suffer from this loss of power as direct effects increase. For example,

for Model 6, the Score and KNN tests have an estimated power of 0.916 and 0.849 respec-

tively where the ELC, Pearson and HTN tests have an estimated power of 0.693, 0.407, and

0.367 respectively. Thus, for the considered tests, the Score and KNN tests (in that order)

seem to have the best combination of power in detecting treatment effects and isolating indi-

rect effects in the presence of direct effects. Similar comparisons between the methods hold

for datasets with N = 1024 and/or when focal units are selected from only one treatment

condition (Table 2.5, Figure 2.3, Figure 2.4, Figure 2.5 and Figure 2.8).

Figure 2.2 gives box plots of the estimated rejection rate across all 1,000 generated poten-

tial outcomes for both the conservative and asymptotic tests using the experimental design

method (Pouget-Abadie et al., 2019; Saveski et al., 2017) with N = 256 and significance level

α = 0.05. This plot also shows the estimated power of the considered randomization tests

under these 13 models. Table 2.4 includes the median values of the rejection rates across the

1,000 generated potential outcomes for these tests. The conservative experimental approach

appears to lead to a very conservative test; the true Type I Error is much smaller than

α = 0.05, and the test appears to have weak power under weak and moderate interference.

Even under Models 10–13, which exhibit strong interference, the conservative test only has

a median power of approximately 0.696.

The asymptotic test yields much more desirable results for our simulated data. Overall,

the Type I Error seems quite close to the nominal α = 0.05. The asymptotic test outperforms
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the Pearson and HTN randomization tests for almost all models of interference, and has a

power close to 1 of detecting interference under Models 10–13. However, the power of the

asymptotic test still is behind that of the Score, KNN, ELC tests across all models.

When we increase the sample size to N = 1024, the conservative approach seems to be

powerful for moderate and strong interference while the asymptotic approach is powerful for

all interference models. However, both approaches remain comparatively less powerful than

the Score, KNN, and ELC randomization tests (Table 2.5 and Figure 2.8).

2.10 Conclusion

Traditional causal inference methodologies may fail to make reliable causal statements on

treatment effects in the presence of interference. A substantial amount of recent work has

been devoted to causal inference under interference, including methods for detecting treat-

ment interference (Aronow, 2012; Aronow and Samii, 2017; Athey et al., 2018; Basse et al.,

2019; Forastiere et al., 2020; Manski, 2013; Pouget-Abadie et al., 2019; Saveski et al., 2017;

Sussman and Airoldi, 2017; Toulis and Kao, 2013).

We consider a new model of treatment interference—the K-nearest-neighbors interference

model (KNNIM)—in which the treatment status of a unit i affects the response of a unit

j only if i is one of j’s K closest neighbors. We give advice for selecting focal units for

conditional randomization tests for detecting interference under KNNIM, and suggest a

new test-statistic—the K-nearest neighbors indirect effect test statistic (KNN)—for these

randomization tests. We then perform a simulation study to compare the efficacy of both

the randomization tests and experimental design approach for detecting interference under

KNNIM.

Results suggest that randomization tests that incorporate our proposed selection of focal

units tend to perform reasonably well on data satisfying KNNIM. Additionally, randomiza-

tion tests using the score and KNN test statistics tended to be most powerful for detecting

interference, especially when direct effects are permitted to grow large relative to the indirect

effects.
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Table 2.3: Interference Models

Models (β1, β2, β3, βd)

Model 1 (0,0,0,0)
Model 2 (0,0,0,1)
Model 3 (0,0,0,4)
Model 4 (2,1,0.5,0)
Model 5 (2,1,0.5,1)
Model 6 (2,1,0.5,4)
Model 7 (3,2,1,0)
Model 8 (3,2,1,1)
Model 9 (3,2,1,4)
Model 10 (30,20,10,0)
Model 11 (30,20,10,10)
Model 12 (30,20,10,40)
Model 13 (30,30,30,30)
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Figure 2.1: Boxplots of p-values for the Pearson test (Pearson), edge level contrast test
(ELC), score test (Score), has treated neighbor test (HTN) and K-nearest neighbors indirect
effect test (KNN) under various KNNIM models. We use N = 256 units and K = 3 nearest
neighbors. The p-values are estimated using 1,000 randomizations for each of the 1,000
generated potential outcome realizations.
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Figure 2.2: Boxplots of the estimated rejection rates under the experimental design ap-
proach for both the conservative and asymptotic tests of the null hypothesis of no treatment
interference under various KNNIM models. Plots also contain the estimated Type I Error
(Models 1–3) and power (Models 4–13) for the Pearson test (Pearson), edge level contrast test
(ELC), score test (Score), has treated neighbor test (HTN) and K-nearest neighbors indirect
effect tests (KNN). We use N = 256 units and K = 3 nearest neighbors. The rejection rates
are estimated using 1,000 treatment assignments for each of the 1,000 generated potential
outcomes. Tests are performed at significance level α = 0.05.
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Table 2.4: Estimated Type I Errors and power for tests of treatment interference for sample
size N = 256

Models Score KNN ELC HTN Pearson Cons Asymp
Model 1 0.043 0.045 0.040 0.046 0.045 0.000 0.056
Model 2 0.043 0.045 0.038 0.044 0.049 0.000 0.056
Model 3 0.043 0.045 0.047 0.052 0.057 0.000 0.056
Model 4 0.916 0.849 0.929 0.572 0.485 0.012 0.559
Model 5 0.916 0.849 0.920 0.545 0.487 0.012 0.559
Model 6 0.916 0.849 0.693 0.367 0.407 0.012 0.559
Model 7 0.999 0.999 0.999 0.802 0.706 0.092 0.881
Model 8 0.999 0.999 0.999 0.795 0.711 0.092 0.881
Model 9 0.999 0.999 0.974 0.639 0.630 0.092 0.881
Model 10 1.000 1.000 1.000 0.959 0.926 0.696 0.998
Model 11 1.000 1.000 1.000 0.942 0.928 0.696 0.998
Model 12 1.000 1.000 0.998 0.766 0.830 0.696 0.998
Model 13 1.000 1.000 1.000 0.926 0.846 0.695 0.998

Estimated Type I Errors (Models 1–3) and estimated power (Models 4–13) for simulated data
under KNNIM. Results are provided for the score test (Score), K-nearest neighbors indirect
effect test (KNN), edge level contrast test (ELC), has treated neighbor test (HTN) and the
Pearson test (Pearson). Estimates of the median rejection rates under the experimental
design approach for both the conservative (Cons) and asymptotic (Asymp) tests are also
provided. We use N = 256 units and K = 3 nearest neighbors. These values are estimated
using 1,000 generated potential outcomes with 1,000 treatment assignments performed on
each set of potential outcomes. Tests are performed at significance level α = 0.05.
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Figure 2.3: Boxplots of p-values for the Pearson test (Pearson), edge level contrast test
(ELC), has treated neighbor test (HTN) and K-nearest neighbors indirect effect test (KNN)
under various KNNIM models using only control focal units. We use N = 256 units and
K = 3 nearest neighbors. The p-values are estimated using 1,000 randomizations for each of
the 1,000 generated potential outcome realizations.
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Figure 2.4: Boxplots of p-values for the Pearson test (Pearson), edge level contrast test
(ELC), has treated neighbor test (HTN) and K-nearest neighbors indirect effect test (KNN)
under various KNNIM models using only control focal units. We use N = 1024 units and
K = 3 nearest neighbors. The p-values are estimated using 1,000 randomizations for each of
the 100 generated potential outcome realizations. .
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Figure 2.5: Boxplots of p-values for the Pearson test (Pearson), edge level contrast test
(ELC), score test (Score), has treated neighbor test (HTN) and K-nearest neighbors indirect
effect test (KNN) under various KNNIM models. We use N = 1024 units and K = 3
nearest neighbors. The p-values are estimated using 1,000 randomizations for each of the
100 generated potential outcome realizations.
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Figure 2.6: Boxplots of the estimated rejection rates under the experimental design ap-
proach for both the conservative and asymptotic tests of the null hypothesis of no treatment
interference under various KNNIM models. We use N = 256 units and K = 3 nearest
neighbors. The rejection rates are estimated using 1,000 treatment assignments for each of
the 1,000 generated potential outcomes. Tests are performed at significance level α = 0.05.
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Figure 2.7: Boxplots of the estimated rejection rates under the experimental design ap-
proach for both the conservative and asymptotic tests of the null hypothesis of no treatment
interference under various KNNIM models. We use N = 1024 units and K = 3 nearest
neighbors. The rejection rates are estimated using 1,000 treatment assignments for each of
the 100 generated potential outcomes. Tests are performed at significance level α = 0.05.
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Figure 2.8: Boxplots of the estimated rejection rates under the experimental design ap-
proach for both the conservative and asymptotic tests of the null hypothesis of no treatment
interference under various KNNIM models. Plots also contain the estimated Type I Error
(Models 1–3) and power (Models 4–13) for the Pearson test (Pearson), edge level contrast
test (ELC), score test (Score), has treated neighbor test (HTN) and K-nearest neighbors
indirect effect tests (KNN). We use N = 1024 units and K = 3 nearest neighbors. The re-
jection rates are estimated using 1,000 treatment assignments for each of the 100 generated
potential outcomes. Tests are performed at significance level α = 0.05.
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Table 2.5: Estimated Type I Errors and power for tests of treatment interference for sample
size N = 1024

Models Score KNN ELC HTN Pearson Cons Asymp
Model 1 0.05 0.07 0.05 0.02 0.04 0.00 0.051
Model 2 0.05 0.07 0.04 0.03 0.04 0.00 0.051
Model 3 0.05 0.07 0.03 0.03 0.02 0.00 0.051
Model 4 1.00 1.00 1.00 0.98 0.85 0.33 0.98
Model 5 1.00 1.00 1.00 0.99 0.80 0.33 0.98
Model 6 1.00 1.00 1.00 0.89 0.73 0.33 0.98
Model 7 1.00 1.00 1.00 1.00 0.96 0.94 1.00
Model 8 1.00 1.00 1.00 1.00 0.95 0.94 1.00
Model 9 1.00 1.00 1.00 1.00 0.90 0.94 1.00
Model 10 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Model 11 1.00 1.00 1.00 1.00 0.99 1.00 1.00
Model 12 1.00 1.00 1.00 1.00 0.97 1.00 1.00
Model 13 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Estimated Type I Errors (Models 1–3) and estimated power (Models 4–13) for simulated data
under KNNIM. Results are provided for the score test (Score), K-nearest neighbors indirect
effect test (KNN), edge level contrast test (ELC), has treated neighbor test (HTN) and the
Pearson test (Pearson). Estimates of the median rejection rates under the experimental
design approach for both the conservative (Cons) and asymptotic (Asymp) tests are also
provided. We use N = 1024 units and K = 3 nearest neighbors. These values are estimated
using 100 generated potential outcomes with 1,000 treatment assignments performed on each
set of potential outcomes. Tests are performed at significance level α = 0.05.
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Chapter 3

Estimation of Causal Effects under

K-Nearest Neighbors Interference

3.1 Introduction

In randomized experiments, assessing causal effects requires special care when the treatment

condition assigned to one unit is allowed to affect the response of other units. Under this

setting, a unit’s outcome is not only influenced by its own treatment status—a direct effect of

treatment—but may also be influenced by other units’ treatments—an indirect effect (Sobel,

2006; Rosenbaum, 2007; Hudgens and Halloran, 2008).

In causal inference terminology, these experiments exhibit treatment interference, treat-

ment spillover, network effects, or peer effects. This interference is especially common in

settings with a social factor where units are allowed to interact with each other, for example,

in studies on social media networks.

Experiments exhibiting treatment interference violate the stable unit treatment value

assumption (SUTVA)—a foundational assumption of traditional causal inference methods.

In particular, SUTVA requires that the treatment assigned to one unit affects only the

outcome of that unit and does not affect the outcomes of other units (Rubin, 1980). The

presence of interference may complicate statistical analysis and lead to inaccurate inference
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if not carefully taken into account (Sobel, 2006).

Traditionally, the effect of social influence and interaction between units has been viewed

as a nuisance prohibiting accurate estimation of the direct effect of treatment. Considerable

work has focused on designing experiments to mitigate the effect of treatment interference, for

example, through clustering units that are likely to interact with each other and assigning

treatment to these clusters instead of individual units (Ugander et al., 2013; Gui et al.,

2015; Eckles et al., 2016). However, recent applications—for example, studies conducted

on social media platforms and those evaluating the efficacy of vaccination strategies—have

giving rise to studies in which quantifying and estimating interference effects is of primary

interest (Hudgens and Halloran, 2008; Aronow and Samii, 2017; Forastiere et al., 2020;

Sussman and Airoldi, 2017; Toulis and Kao, 2013; Alzubaidi and Higgins, 2022).

Methods for estimating indirect effects often begin by classifying the interaction through

defining an exposure mapping on the units under study—a network where nodes represent

units under study and edges between vertex indicate that the corresponding units may inter-

act with each other. There may additionally be an interaction measure computed between

each pair of units in the exposure mapping indicating the strength of that interaction. One

example of the exposure mapping is to allow for treatment interference within groups of

units but not across groups (Sobel, 2006; Rosenbaum, 2007; Hudgens and Halloran, 2008;

Tchetgen and VanderWeele, 2012; Basse and Feller, 2018). Another approach assumes that

treatment interference is restricted to a small neighborhood (Sussman and Airoldi, 2017).

Aronow and Samii (2017) develop general estimation methods of treatment effects under ar-

bitrary but known forms of interference. Indirect effects are then estimable through making

assumptions on this exposure mapping and interaction measure, for example, by allowing

interaction if the interaction measure is sufficiently large,... etc.

We build on this literature by analyzing the estimation of direct and indirect treatment

effects under the K-nearest neighbor interaction model (KNNIM) (Alzubaidi and Higgins,

2022). In this model, the treatment given to one unit may interfere with the response of an-

other unit if the first unit is one of the K individuals “closest” to the second unit with respect

to the interaction measure. Quantifying K-nearest neighbors effects may help researchers
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tease out peer effects induced by, for example, interactions between best friends, spouses,

siblings,or close colleagues. Additionally, this model has several appealing properties. First,

this model allows for users with stronger interactions to produce larger indirect effects than

users with weaker interactions, and will ignore potential indirect effects due to dilapidated,

but technically present, connections (e.g. Facebook friends that no longer interact with each

other). Second, the marginal and joint probabilities for possible treatment exposures have

closed-form expressions under common experimental settings, allowing for unbiased estima-

tion of treatment effects and precise estimation of standard errors. Finally, KNNIM may be

effective in estimating indirect effects in the presence of non-transitive mogul effects—effects

induced by users that have influence over a large number of individuals, but may themselves

only directly interact with a handful of individuals.

In this chapter, using a potential outcomes approach, we define causal estimands for di-

rect and K-nearest-neighbor indirect effects. We then derive Horvitz-Thompson estimators

(Horvitz and Thompson, 1952) for these estimands that are unbiased given exact marginal

and joint probabilities for possible treatment exposures. We provide a closed-form solu-

tion to compute these marginal and joint probabilities under completely-randomized and

Bernoulli-randomized experimental designs. We derive conservative standard errors for these

estimators. We then demonstrate how these estimators may have significantly stronger pre-

cision when an assumption of no interaction between direct and indirect effects. We conclude

by showcasing the effectiveness of these methods via simulation and application to a field

experiment conducted to study an anti-conflict behaviors among middile school students in

New Jersey .

The chapter is organized as follows. Section 3.2 sets up the notation and preliminaries.

The K-nearest neighbors interference model is provided in Section 3.3. Section 3.4 de-

fines causal effects under KNNIM. Proposed unbiased estimators under the K-neighborhood

assumption with the derived properties are given in Section 3.5. Estimators under the no-

interaction between direct and indirect effects assumption with the derived properties are

provided in Section 3.6. Section 3.7 presents variance estimation. Simulation studies, dis-

cussion, and real data analysis are provided in Sections 3.8, 3.9, and 3.10. We conclude in
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Section 3.11.

3.2 Notation and Preliminaries

Consider an experiment on N units where each unit is assigned either a treatment status or

a control status. The Neyman-Rubin Causal Model (NRCM) (Splawa-Neyman et al., 1990;

Rubin, 1974; Holland, 1986) is a commonly-assumed model of response for making causal

inferences. Under this model, the observed response of a unit is determined by the treatment

status given to that unit and the potential outcomes for that unit—the hypothetical responses

of that unit under the possible treatment statuses. A fundamental assumption of this model

is the stable-unit treatment value assumption (SUTVA), which requires that there is only

a single version of each treatment status and the response of a unit is unaffected by the

treatment status of any other unit (Rubin, 1978, 1980; Imbens and Rubin, 2015). Of note,

experiments in which the outcome of a unit is affected by others treatments—a phenomenon

known as interference (Cox, 1958; Rubin, 1980)—violate SUTVA. Failing to account for

violations of SUTVA can lead to inaccurate treatment effect estimates (Sobel, 2006).

Under interference, the effect of a treatment on a unit may occur through direct appli-

cation of the treatment to that unit, indirectly through application of treatment to units

that affect the response of the original unit, or both (Hudgens and Halloran, 2008). When

interference is allowed to take completely arbitrary forms, treatment effect estimates are

often estimated with very low power, or may be unidentifiable (Aronow and Samii, 2017).

Thus, to make progress on this problem, researchers often make assumptions that restrict

which units are allowed to interfere with each other (Toulis and Kao, 2013; Aronow and Samii,

2017; Ugander et al., 2013; Sussman and Airoldi, 2017).

We can extend the potential outcomes framework to account for both direct and indirect

treatment components. Let yi(W) = yi(Wi,W−i) denote the potential outcome of unit i

under treatment allocation W = (W1,W2, . . . ,WN) ∈ {0, 1}N , where unit i is given treat-

ment Wi, and the remaining treatment statuses are allocated according to W−i. Responses
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Yi satisfy

Yi =
∑

W∈{0,1}N
yi(W)1(W′ = W),

where 1(W′ = W) is an indicator variable that is equal to 1 if and only if the observed

treatment status W′ = W. That is, the response of unit i only depends on the potential

outcomes of unit i and the treatment assignment given to that unit.

Without making assumptions on the amount of interference allowed in a study, it may

be impossible to estimate common causal quantities of interest in any practical way—for

example, each unit may have up to 2N potential outcomes when interference is unconstrained.

Thus, to make progress on treatment interference problems, researchers often place strong

restrictions on the extent of interference allowed (Toulis and Kao, 2013; Aronow and Samii,

2017; Ugander et al., 2013; Sussman and Airoldi, 2017). This often begins by constructing

an exposure mapping G = (V,E)—a directed graph where each vertex i ∈ V represents a

unit under study and each edge ~ij ∈ E denotes that the treatment status of unit i may

potentially interfere with the response of unit j. Each edge ~ij ∈ E may also have a weight

d(i, j) denoting the strength of the the potential interference which may be observed through

studying interactions between i and j—stronger interactions between i and j correspond

to smaller values of d(i, j). Under an assumed exposure mapping G, for two treatment

allocations W, W′, we have that yi(W) = yi(W
′) if Wj = W ′

j for all j ∈ V such that

~ji ∈ E. If ~ki /∈ E, then treatment statuses Wk, W
′
k may differ without affecting equality of

the potential outcomes.

Once the exposure mapping is specified, models can then further restrict the nature of

interference allowable. For example, a common assumption is that interference can only

occur if a certain number or fraction of neighbors within the exposure mapping are given

the treatment condition. However, few existing models specify exactly which neighbors in

the exposure mapping are allowed to interfere with a unit’s response, or allow for indirect

effects to differ across neighbors. As an alternative, we propose a model where interference

of treatment on a unit i is restricted to its K–nearest neighbors (Alzubaidi and Higgins,

2022). This model allows neighbors with stronger interactions to contribute larger indirect

52



effects, and limits the ability of weakly-interacting units to affect response.

3.3 K-Nearest Neighbors Interference Model

The K-nearest neighbors interference model (KNNIM) is a recently-proposed model in

which a unit j is only allowed to interfere with the response of unit i if j is within i’s

K-neighborhood (Alzubaidi and Higgins, 2022). The K-neighborhood of unit i, denoted

NiK , is the set of the K “closest” units to unit i:

NiK = {j : d(i, (j)) ≥ d(i, (K)), j = 1, 2, . . . , K}. (3.1)

Define N−iK = V \ (i ∪NiK) as all units in V that are outside of i’s K-neighborhood. Note

that the sets {i,Nik,N−ik} form a partition of V .

Let W = (Wi,WNiK
,WN−iK

) denote treatment assignment vector for all units N , par-

titioned into the treatment given to unit i, the treatments given to i’s K-nearest neighbors,

and the treatments given to all other units. Treatment statuses in WNiK
and WN−iK

are

given in descending order with respect to d(i, j) (e.g. the first entry of WNiK
is the treatment

assignment given to the nearest neighbors of unit i). The defining assumption of KNNIM is

as follows:

Assumption 3.1. (K-Neighborhood Interference Assumption (K-NIA)). The potential out-

comes yi(W) for all units i satisfy

yi(Wi,WNiK
,WN−iK

) = yi(Wi,WNiK
,W′

N−iK
). (3.2)

In words, K-NIA ensures that the potential outcome of unit i is only affected by its

treatment and by the treatments assigned to its K-nearest neighbors. Changing treatments

for other units outside the K-neighborhood will not affect the potential outcome of unit

i. Note that this model restricts the number of potential outcomes to be 2K+1 for each

unit. The choice of K is ultimately left to the researcher, though large values of K may
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not be sufficiently restrictive to allow for reliable estimates and inferences. For brevity, we

will suppress the treatment assignment outside of the K-nearest neighbors when denoting

potential outcomes under KNNIM: yi(Wi,WNiK
) = yi(Wi,WNiK

,WN−iK
).

3.4 Causal Estimands under KNNIM

Using the potential outcomes framework and following Hudgens and Halloran (2008), we

now define causal estimands under KNNIM. We start with general definitions of direct and

indirect effects and conclude with KNNIM-specific nearest neighbors effects.

3.4.1 Direct, Indirect, and Total Effects

The average direct effect (ADE) δdir is the average difference in a unit’s potential outcomes

when changing that unit’s treatment status and holding all other units’ treatment status

fixed. It may be defined as

δdir =
1

N

N∑
i=1

(yi(1,1)− yi(0,1)), (3.3)

where 1 denotes a vector of 1’s of length K. In contrast to direct effect, the average indirect

effect (AIE) δind is defined as the average difference in a unit’s potential outcome when

changing all other treatment statuses from control to treated, holding its own treatment

fixed. It may be defined as

δind =
1

N

N∑
i=1

(yi(0,1)− yi(0,0)), (3.4)

where 0 denotes a vector of 0’s of length K. The average total effect (ATOT) δtot measures

the average difference in potential outcomes between all units receiving treatment and all

units receiving control:

δtot =
1

N

N∑
i=1

(yi(1,1)− yi(0,0)). (3.5)
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Note that these quantities are defined to satisfy δtot = δdir + δind. Addionally, when SUTVA

holds, δtot = δdir and δind = 0.

3.4.2 The `th–Nearest Neighbor Indirect Effect

Let W∗
` = (W ∗

`,1,W
∗
`,2, . . . ,W

∗
`,K) ∈ {0, 1}K denote the treatment vector assignment of length

K where the first ` nearest neighbors are given treatment and the rest are control:

W ∗
`,j =

 1, j ≤ `,

0, otherwise.
(3.6)

Note that W∗
K = 1, and define W∗

0 = 0. The average `th–nearest neighbor indirect effect

(A`NNIE) is defined as

δ` =
1

N

N∑
i=1

(yi(0,W
∗
` )− yi(0,W∗

`−1)). (3.7)

Note that W∗
` and W∗

`−1 are identical except that W ∗
`,` = 1 and W ∗

`−1,` = 0. Hence, δ`

may be interpreted as the average difference in response due to the treatment status of the

`th–nearest-neighbor. Additionally, under KNNIM, the AIE is the sum of the A`NNIEs.

Lemma 3.1.

δind =
K∑
`=1

δ`, (3.8)

δtot = δdir + δind (3.9)

Proofs are provided in Appendix B
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3.5 Horvitz–Thompson Estimators

We now derive Horvitz–Thompson (HT) estimators for the estimands described in Sec-

tion 3.4. Our approach closely follows that in Aronow and Samii (2017). Of particular note,

these HT estimators require computing the marginal and joint probabilities of observing var-

ious treatment allocations. Thankfully, for many common designs, these probabilities can

be computed exactly under KNNIM; we give closed-form solutions for these probabilities

under completely-randomized and Bernoulli-randomized designs. When these probabilities

cannot be computed exactly, they may still be estimated, for example, using the approach

in Aronow and Samii (2017).

Let Y obs
i = Y obs

i (Wi,WNik
) denote the observed potential outcome of unit i. Let πi(W,WNK

)

denote the marginal probability that unit i is given exposure (W,WNK
)—that is, the overall

treatment allocation assigns treatment W to unit i and assigns treatment conditions WK to

i’s K-neighborhood. Define πij(W,WNK
) as the joint probability that units i and j are both

given exposure (W,WNK
) and define πij((W,WNK

), (W ′,W′
NK

)) as the joint probability

that unit i receives exposure (W,WNK
) and unit j receives exposure (W ′,W′

NK
). Addition-

ally, define indicator variables Ii(W,WNK
) that are equal to 1 if unit i is given exposure

(W,WNK
), and is 0 otherwise.

Define

ȳ(W,WNK
) =

1

N

N∑
i=1

yi(W,WNK
) (3.10)

as the average response across all N units under treatment allocation (W,WNK
). The

Horvitz-Thompson (HT) estimator (Horvitz and Thompson, 1952) for ȳ(W,WNK
) is

Ȳ obs
HT (W,WNK

) =
1

N

N∑
i=1

Ii(W,WNK
)
Y obs
i (W,WNK

)

πi(W,WNK
)
. (3.11)

This estimator is unbiased for ȳ(W,WNK
),

E(Ȳ obs
HT (W,WNK

)) = ȳ(W,WNK
), (3.12)

56



and has variance

Var(Ȳ obs
HT (W,WNK

)) =
1

N2

N∑
i=1

πi(W,WNK
)[1− πi(W,WNK

)]

[
yi(W,WNK

)

πi(W,WNK
)

]2
+

1

N2

N∑
i=1

∑
j 6=i

[πij(W,WNK
)− πi(W,WNK

)πj(W,WNK
)]
yi(W,WNK

)

πi(W,WNK
)

yj(W,WNK
)

πj(W,WNK
)
. (3.13)

The covariance of the HT estimators under any two exposures (W,WNK
) and (W ′,W′

NK
) is

Cov(Ȳ obs
HT (W,WNK

), Ȳ obs
HT (W ′,W′

NK
)) =

1

N2

(
N∑
i=1

∑
j 6=i

[
πij((W,WNK

), (W ′,W′
NK

))− πi(W,WNK
)πj(W

′,W′
NK

)
]

× yi(W,WNK
)

πi(W,WNK
)

yj(W
′,W′

NK
)

πj(W ′,W′
NK

)

)
− 1

N2

N∑
i=1

yi(W,WNK
)yi(W

′,W′
NK

). (3.14)

From (3.12), (3.13), and (3.14), the expectation and variance for the difference in HT

estimators for the average response under any two unique exposures (W,WNK
), (W ′,W′

NK
)

can be computed as follows:

Theorem 3.1.

E(Ȳ obs
HT (W,WNK

)− Ȳ obs
HT (W ′,W′

NK
)) = ȳ(W,WNK

)− ȳ(W ′,W′
NK

) (3.15)

Var(Ȳ obs
HT (W,WNK

)− Ȳ obs
HT (W ′,W′

NK
)) =

Var(Ȳ obs
HT (W,WNK

)) + Var(Ȳ obs
HT (W ′,W′

NK
))− 2Cov(Ȳ obs

HT (W,WNK
), Ȳ obs

HT (W ′,W′
NK

)).

(3.16)

We can then obtain unbiased estimators for the ADE, AIE, ATOT, and the A`NNIE as
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follows:

δ̂HT,dir = Ȳ obs
HT (1,1)− Ȳ obs

HT (0,1), (3.17)

δ̂HT,ind = Ȳ obs
HT (0,1)− Ȳ obs

HT (0,0), (3.18)

δ̂HT,tot = Ȳ obs
HT (1,1)− Ȳ obs

HT (0,0), (3.19)

δ̂HT,` = Ȳ obs
HT (0,W∗

` )− Ȳ obs
HT (0,W∗

`−1). (3.20)

Variances for these estimators are derived as in (3.16). As with the estimands, we have the

following relationships between these estimators.

Lemma 3.2.

δ̂HT,tot = δ̂HT,dir + δ̂HT,ind, (3.21)

δ̂HT,ind =
K∑
`=1

δ̂HT,`. (3.22)

3.5.1 Marginal and Joint Exposure Probabilities

One significant benefit of KNNIM is that this model allows for closed-form expressions of the

marginal and joint exposure probabilities for many common experimental designs. We now

provide these exposure probabilities under completely-randomized and Bernoulli-randomized

designs.

3.5.1.1 Exposure Probabilities Under Complete Randomization

In a completely-randomized design, the number of treated units Nt in the study is selected

prior to randomization. Each possible treatment has the same
(
N
Nt

)−1
probability of occur-

ring (Kuehl, 2000).

Consider i ∪ NiK , the closed K-neighborhood for unit i. Suppose that the exposure

(W,WNK
) has a total of NitK treatment conditions and NicK control conditions—the specific

units given these conditions do not factor into the probability computations. The marginal
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probability that i ∪NiK receives exposure (W,WNK
) is

πi(W,WNK
) =

(
N−K−1
Nt−NitK

)(
N
Nt

) . (3.23)

Two treatment exposures (W,WNK
), (W ′,W′

NK
) for units i and j respectively are called

compatible if they can co-occur within a given treatment assignment. For example, if j is

unit i’s nearest neighbor, the exposures (1,1) for unit i and (0,0) for unit j are incompatible

since unit j is given treatment in the first exposure and control in the second exposure. The

joint probability of observing two incompatible treatment assignments is 0.

For two closed K-neighborhoods i ∪ NiK , j ∪ NjK , let bij denote the number of units

in the overlap of the two neighborhoods: bij = |(i ∪ NiK) ∩ (j ∪ NjK)|. For two exposures

(W,WNK
), (W ′,W′

NK
) for units i and j respectively, let NjitK and NjicK denote the number

of treated and control units respectively in (W ′,W′
NK

) not already belonging to i’s closed

K-neighborhood:

Njitk =
∑

j′∈{j ∪NjK}
j′ /∈{i∪NiK}

Wj′ , Njick =
∑

j′∈{j ∪NjK}
j′ /∈{i∪NiK}

1−Wj′ . (3.24)

Then, the joint probability of units i and j being exposed to (W,WNK
) and (W ′,W′

NK
)

respectively is

πij((W,WNK
), (W ′,W′

NK
))

=


( N−K−1
Nt−NitK

)
(N
Nt

)

( N−2K−2+bij
Nt−NitK−NjitK

)

( N−K−1
Nt−NitK

)
, (W,WNK

), (W ′,W′
NK

) are compatible for i and j,

0, otherwise.

, (3.25)

3.5.1.2 Exposure Probabilities Under Bernoulli Randomization

In a Bernoulli-randomized design, each unit has a pre-specified probability p of being as-

signed treatment, and treatments are assigned independently across units (e.g. treatment
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assignment is determined for each unit by flipping a coin that has probability p of land-

ing heads). Under Bernoulli-randomization, the marginal probability that i ∪ NiK receives

exposure (W,WNK
) is

πi(W,WNK
) = pNitK (1− p)NicK , (3.26)

and joint probability of units i and j being exposed to (W,WNK
) and (W ′,W′

NK
) respectively

is

πij((W,WNK
), (W ′,W′

NK
))

=


pNitK (1− p)NicKpNjitK (1− p)NjicK , (W,WNK

), (W ′,W′
NK

) are compatible for i and j,

0, otherwise.

,

(3.27)

3.6 Estimation Under No Interaction Between Direct

and Indirect Effects

Next, we strengthen Assumption 3.1 in order to improve the power of our HT estimates.

Assumption 3.2. (No Interaction Between Direct and Indirect Effects) For each unit i in

a network G , there is no interaction between direct and indirect effects if [yi(1,WNik
) −

yi(1,W
′
Nik

)]− [yi(0,WNik
)− yi(0,W ′

Nik
)] = 0.

Under Assumption 3.2, if we assume that there is no interaction between the direct and

indirect effects, the unbiased Horvitz–Thompson estimator of ATOT is provided as follows.

δ̂∗HT,tot = δ̂∗HT,dir + δ̂∗HT,ind. (3.28)

Lemma 3.3. For C1 = C2 = 1
2
,

δ̂∗HT,tot = δ̂HT,tot. (3.29)
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Theorem 3.2. Under the no-interaction between direct and indirect effects assumption, and

for C1 = C2 = 1
2
,

E(δ̂∗HT,tot) = δtot. (3.30)

Var(δ̂∗HT,tot) = Var(Ȳ obs
HT (1,1)) + Var(Ȳ obs

HT (0,0))− 2Cov(Ȳ obs
HT (1,1), Ȳ obs

HT (0,0). (3.31)

Under Assumption 3.2, the unbiased Horvitz–Thompson estimator of ADE is as follows.

δ̂∗HT,dir =
1

2
[Ȳ obs
HT (1,1)− Ȳ obs

HT (0,1)] +
1

2
[Ȳ obs
HT (1,0)− Ȳ obs

HT (0,0)]. (3.32)

Theorem 3.3. Under the no-interaction between direct and indirect effects assumption,

E(δ̂∗HT,dir) = δdir. (3.33)

Var(δ̂∗HT,dir) =
1

4
Var(Ȳ obs

HT (1,1)) +
1

4
Var(Ȳ obs

HT (0,1))

+
1

4
Var(Ȳ obs

HT (1,0)) +
1

4
Var(Ȳ obs

HT (0,0))

− 2(
1

4
)Cov(Ȳ obs

HT (1,1), Ȳ obs
HT (0,1)) + 2(

1

4
)Cov(Ȳ obs

HT (1,1), Ȳ obs
HT (1,0))

− 2(
1

4
)Cov(Ȳ obs

HT (1,1), Ȳ obs
HT (0,0))− 2(

1

4
)Cov(Ȳ obs

HT (0,1), Ȳ obs
HT (1,0))

+ 2(
1

4
)Cov(Ȳ obs

HT (0,1), Ȳ obs
HT (0,0))− 2(

1

4
)Cov(Ȳ obs

HT (1,0), Ȳ obs
HT (0,0)). (3.34)

Under Assumption 3.2, the unbiased Horvitz–Thompson estimator of AIE is as follows.

δ̂∗HT,ind =
1

2
[Ȳ obs
HT (1,1)− Ȳ obs

HT (1,0)] +
1

2
[Ȳ obs
HT (0,1)− Ȳ obs

HT (0,0)]. (3.35)
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Theorem 3.4. Under the no-interaction between direct and indirect effects assumption,

E(δ̂∗HT,ind) = δind. (3.36)

Var(δ̂∗HT,ind) =
1

4
Var(Ȳ obs

HT (1,1)) +
1

4
Var(Ȳ obs

HT (1,0))

+
1

4
Var(Ȳ obs

HT (0,1)) +
1

4
Var(Ȳ obs

HT (0,0))

− 2(
1

4
)Cov(Ȳ obs

HT (1,1), Ȳ obs
HT (1,0)) + 2(

1

4
)Cov(Ȳ obs

HT (1,1), Ȳ obs
HT (0,1))

− 2(
1

4
)Cov(Ȳ obs

HT (1,1), Ȳ obs
HT (0,0))− 2(

1

4
)Cov(Ȳ obs

HT (1,0), Ȳ obs
HT (0,1))

+ 2(
1

4
)Cov(Ȳ obs

HT (1,0), Ȳ obs
HT (0,0))− 2(

1

4
)Cov(Ȳ obs

HT (0,1), Ȳ obs
HT (0,0)). (3.37)

Under Assumption 3.2, if we assume that there is no interaction between the direct and

indirect effects, the unbiased Horvitz–Thompson estimator of A`NNIE is as follows,

δ̂∗HT,` =
1

2
[Ȳ obs
HT (1,W∗

` )− Ȳ obs
HT (1,W∗

`−1)] +
1

2
[Ȳ obs
HT (0,W∗

` )− Ȳ obs
HT (0,W∗

`−1)]. (3.38)

Lemma 3.4.

δ̂∗HT,ind =
K∑
`=1

δ̂∗HT,`. (3.39)

Unbiasedness, and theoretical variance of HT-A`NNIE estimator under Assumption 3.2

are provided in the following theorem.

Theorem 3.5. Under the no-interaction between direct and indirect effects assumption,

E(δ̂∗HT,`) = δ`. (3.40)
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Var(δ̂∗HT,`) =
1

4
Var(Ȳ obs

HT (1,W∗
` )) +

1

4
Var(Ȳ obs

HT (1,W∗
`−1))

+
1

4
Var(Ȳ obs

HT (0,W∗
` )) +

1

4
Var(Ȳ obs

HT (0,W∗
`−1))

− 2(
1

4
)Cov(Ȳ obs

HT (1,W∗
` ), Ȳ

obs
HT (1,W∗

`−1)) + 2(
1

4
)Cov(Ȳ obs

HT (1,W∗
` ), Ȳ

obs
HT (0,W∗

` ))

− 2(
1

4
)Cov(Ȳ obs

HT (1,W∗
` ), Ȳ

obs
HT (0,W∗

`−1))− 2(
1

4
)Cov(Ȳ obs

HT (1,W∗
`−1), Ȳ

obs
HT (0,W∗

` ))

+ 2(
1

4
)Cov(Ȳ obs

HT (1,W∗
`−1), Ȳ

obs
HT (0,W∗

`−1))− 2(
1

4
)Cov(Ȳ obs

HT (0,W∗
` ), Ȳ

obs
HT (0,W∗

`−1)). (3.41)

Proofs of the lemmas and theorems are given in Appendix B.

Note that in δ̂∗HT,` under Assumption 3.2, we chose the weights of treated and control

units to be C`1 = C`2 = 1
2
. However, let S2

11 = Var(Ȳ obs
HT (1,W∗

` )), S
2
12 = Var(Ȳ obs

HT (1,W∗
`−1)),

S2
21 = Var(Ȳ obs

HT (0,W∗
` )) and S2

22 = Var(Ȳ obs
HT (0,W∗

`−1)) and assuming that the covari-

ance components in 3.41 are equal to zero. If the experimenter has prior knowledge from

previous studies on S2
11, S

2
12, S

2
21 and S2

22, then C`1 and C`2 can be chosen such that

C`1 =
S2
21+S

2
22

S2
11+S

2
12+S

2
21+S

2
22

and C`2 =
S2
11+S

2
12

S2
11+S

2
12+S

2
21+S

2
22

which give the minimum variance of HT-

A`NNIEE under Assumption 3.2. This applies likewise to other estimators under Assumption

3.2. The proof is given in Appendix B.

Restricting the neighborhood interference assumption (NIA) in (Sussman and Airoldi,

2017) to K nearest neighbors, Assumption 3.1 states that the potential outcome of unit i

is only affected by its treatment and by the treatments assigned to its K nearest neighbors

such that changing treatments for other units outside the K-neighborhood will not affect the

potential outcome of unit i (i.e., for each unit i and for all j ∈ N−ik, δj = 0 on unit i where

δj is the jth nearest neighbor indirect effect on unit i ). On the other hand, Assumption 3.2

states that the indirect effect will be the same across all units’ treatment groups. Similarly,

the direct effect will be the same across all K-nearest neighbors treatment groups.
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3.7 Variance Estimators

We extend the work provided in (Aronow and Samii, 2013, 2017) and (Lohr, 2019) to the

K-nearest neighbors interference and provide an estimator for the variance of all estimators

in the previous section. In order to estimate the variance of the provided estimators, we

estimate all variance and covariance components such that the Horvitz–Thompson estimated

variance of the population average potential outcomes under exposure (W,WNK
) as follows.

V̂arHT (Ȳ obs
HT (W,WNK

)) =
1

N2

∑
i∈U

Ii(W,WNK
)[1− πi(W,WNK

)]

[
Y obs
i (W,WNK

)

πi(W,WNK
)

]2
+

1

N2

∑
i∈U

∑
j∈U,j 6=i

Ii(W,WNK
)Ij(W,WNK

)
[πij(W,WNK

)− πi(W,WNK
)πj(W,WNK

)]

πij(W,WNK
)

× Y obs
i (W,WNK

)

πi(W,WNK
)

Y obs
j (W,WNK

)

πj(W,WNK
)
. (3.42)

If the joint probabilities πij(W,WNK
) > 0 for all i and j, then this estimated variance is

unbiased. However, if πij(W,WNK
) = 0 for some i and j, then this estimate of variance will

be biased such that E(V̂arHT (Ȳ obs
HT (W,WNK

))) = VarHT (Ȳ obs
HT (W,WNK

)) + A where A =∑
i∈U
∑

j∈U,j 6=i:πij(W,WNK
)=0 yi(W,WNK

)yj(W,WNK
). Using Young’s inequality as derived in

Aronow and Samii (2013, 2017), we have the following variance bias correction,

V̂arA(Ȳ obs
HT (W,WNK

)) = V̂arHT (Ȳ obs
HT (W,WNK

)) + Â∗(W,WNK
), (3.43)

where

Â∗(W,WNK
) =

1

N2

∑
i∈U

∑
j∈U,j 6=i:πij(W,WNK

)=0

[
Ii(W,WNK

)Y 2obs

i (W,WNK
)

2πi(W,WNK
)

+
Ij(W,WNK

)Y 2obs

j (W,WNK
)

2πj(W,WNK
)

]
. (3.44)

Then, V̂arA(Ȳ obs
HT (W,WNK

)) is a conservative estimator for the variance of the Horvitz–Thompson
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estimator of the average potential outcomes under exposure (W,WNK
)(the proof in Aronow

and Samii (2013, 2017) is reproduced in Appendix A).

Moreover, last term in equation 3.14 is unidentified because each unit receives only one

exposure and can only be observed under this exposure. Hence, there is no unbiased es-

timator for the variance of the proposed estimators. However, if the joint probabilities

πij((W,WNK
), (W ′,W′

NK
)) > 0 for two different exposures (W,WNK

) and (W ′,W′
NK

) for

all i and j, an estimator for the covariance in 3.14 can be as follows.

Ĉov(Ȳ obs
HT (W,WNK

), Ȳ obs
HT (W ′,W′

NK
)) =

1

N2

∑
i∈U

∑
j∈U,j 6=i

[
Ii(W,WNK

)Ij(W
′,W′

NK
)

πij((W,WNK
), (W ′,W′

NK
))

Yi(W,WNK
)

πi(W,WNK
)

Yj(W
′,W′

NK
)

πj(W ′,W′
NK

)

×[πij((W,WNK
), (W ′,W′

NK
))− πi(W,WNK

)πj(W
′,W′

NK
)]
]

− 1

N2

∑
i∈U

[
Ii(W,WNK

)Y 2obs

i (W,WNK
)

2πi(W,WNK
)

+
Ii(W

′,W′
NK

)Y 2obs

i (W ′,W′
NK

)

2πi(W ′,W′
NK

)

]
, (3.45)

where the expected value of the estimated covariance is less than or equal to the true

covariance (Aronow and Samii, 2013, 2017).

For the case where the joint probabilities πij((W,WNK
), (W ′,W′

NK
)) = 0 for some i and

j, the covariance in 3.14 can be refined as follows:

Cov(Ȳ obs
HT (W,WNK

), Ȳ obs
HT (W ′,W′

NK
)) =

1

N2

∑
i∈U

∑
j∈U,j 6=i:πij((W,WNK

),(W ′,W′
NK

))>0

[
πij((W,WNK

), (W ′,W′
NK

))− πi(W,WNK
)πj(W

′,W′
NK

)
]

× yi(W,WNK
)

πi(W,WNK
)

yj(W
′,W′

NK
)

πj(W ′,W′
NK

)

− 1

N2

∑
i∈U

∑
j∈U :πij((W,WNK

),(W ′,W′
NK

))=0

yi(W,WNK
)yj(W

′,W′
NK

). (3.46)
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Consequently, the more general covariance estimator is

ĈovA(Ȳ obs
HT (W,WNK

), Ȳ obs
HT (W ′,W′

NK
)) =

1

N2

∑
i∈U

∑
j∈U,j 6=i:πij((W,WNK

),(W ′,W′
NK

))>0

[
Ii(W,WNK

)Ij(W
′,W′

NK
)

πij((W,WNK
), (W ′,W′

NK
))

Y obs
i (W,WNK

)

πi(W,WNK
)

Y obs
j (W ′,W′

NK
)

πj(W ′,W′
NK

)

×[πij((W,WNK
), (W ′,W′

NK
))− πi(W,WNK

)πj(W
′,W′

NK
)]
]

− 1

N2

∑
i∈U

∑
j∈U :πij((W,WNK

),(W ′,W′
NK

))=0

[
Ii(W,WNK

)Y 2
i

2πi(W,WNK
)

+
Ij(W

′,W′
NK

)Y 2
j

2πj(W ′,W′
NK

)

]
. (3.47)

Proposition 3.1.

E(ĈovA(Ȳ obs
HT (W,WNK

), Ȳ obs
HT (W ′,W′

NK
)) ≤ Cov(Ȳ obs

HT (W,WNK
), Ȳ obs

HT (W ′,W′
NK

)). (3.48)

Since V̂arA(Ȳ obs
HT (W,WNK

) is a conservative variance estimator, the covariance estima-

tor in A.19, provides a conservative variance estimator of any estimator of the the form

δ̂ = X − Y such that Var(X − Y ) = Var(X) + Var(Y ) -2Cov(X, Y ) which apply to all

estimators under Assumption 3.1. However, under Assumption 3.2, we have estimators of

the form δ̂ = (X−Y )+(W −Z) such that Var((X−Y )+(W −Z)) = Var(X) + Var(Y ) +

Var(W ) + Var(Z) -2Cov(X, Y ) + 2Cov(X,W ) -2Cov(X,Z) -2Cov(Y,W ) +2Cov(Y, Z)

-2Cov(W,Z). To get conservative variance estimator of any estimator of the second form,

ĈovA(X, Y ) can be used as a lower bound estimator of the covariance (i.e., for covariance

components between two averages with negative and positive coefficients) while for posi-

tive covariance components (i.e., the covariance between two averages both with positive

coefficients or negative coefficients), we need an upper bound covariance estimator that is

guaranteed to have expectation greater than or equal to the covariance in 3.14.

We provide the following covariance estimator for the second case,
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ĈovB(Ȳ obs
HT (W,WNK

), Ȳ obs
HT (W ′,W′

NK
)) =

1

N2

∑
i∈U

∑
j∈U,j 6=i:πij((W,WNK

),(W ′,W′
NK

))>0

[
Ii(W,WNK

)Ij(W
′,W′

NK
)

πij((W,WNK
), (W ′,W′

NK
))

Y obs
i (W,WNK

)

πi(W,WNK
)

Y obs
j (W ′,W′

NK
)

πj(W ′,W′
NK

)

×[πij((W,WNK
), (W ′,W′

NK
))− πi(W,WNK

)πj(W
′,W′

NK
)]
]

+
1

N2

∑
i∈U

∑
j∈U :πij((W,WNK

),(W ′,W′
NK

))=0

[
Ii(W,WNK

)Y 2
i

2πi(W,WNK
)

+
Ij(W

′,W′
NK

)Y 2
j

2πj(W ′,W′
NK

)

]
. (3.49)

Proposition 3.2.

E(ĈovB(Ȳ obs
HT (W,WNK

), Ȳ obs
HT (W ′,W′

NK
)) ≥ Cov(Ȳ obs

HT (W,WNK
), Ȳ obs

HT (W ′,W′
NK

)). (3.50)

The proof follows by Young’s inequality in equations A.22 and A.23.

Thereby, the conservative variance estimators of all estimators in the previous section

under Assumptions 3.1 and 3.2 respectively are as follows,

V̂ar(δ̂HT,tot) = V̂arA(Ȳ obs
HT (1,1)) + V̂arA(Ȳ obs

HT (0,0))

− 2ĈovA(Ȳ obs
HT (1,1), Ȳ obs

HT (0,0)). (3.51)

V̂ar(δ̂HT,dir) = V̂arA(Ȳ obs
HT (1,1)) + V̂arA(Ȳ obs

HT (0,1))

− 2ĈovA(Ȳ obs
HT (1,1), Ȳ obs

HT (0,1)). (3.52)
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V̂ar(δ̂HT,ind) = V̂arA(Ȳ obs
HT (0,1)) + V̂arA(Ȳ obs

HT (0,0))

− 2ĈovA(Ȳ obs
HT (0,1), Ȳ obs

HT (0,0)). (3.53)

V̂ar(δ̂HT,`) = V̂arA(Ȳ obs
HT (0,W∗

` )) + V̂arA(Ȳ obs
HT (0,W∗

`−1))

− 2ĈovA(Ȳ obs
HT (0,W∗

` ), Ȳ
obs
HT (0,W∗

`−1). (3.54)

V̂ar(δ̂∗HT,tot) = V̂arA(Ȳ obs
HT (1,1))+V̂arA(Ȳ obs

HT (0,0))−2ĈovA(Ȳ obs
HT (1,1), Ȳ obs

HT (0,0)). (3.55)

V̂ar(δ̂∗HT,dir) =
1

4
V̂arA(Ȳ obs

HT (1,1)) +
1

4
V̂arA(Ȳ obs

HT (0,1))

+
1

4
V̂arA(Ȳ obs

HT (1,0)) +
1

4
V̂arA(Ȳ obs

HT (0,0))

− 2(
1

4
)ĈovA(Ȳ obs

HT (1,1), Ȳ obs
HT (0,1)) + 2(

1

4
)ĈovB(Ȳ obs

HT (1,1), Ȳ obs
HT (1,0))

− 2(
1

4
)ĈovA(Ȳ obs

HT (1,1), Ȳ obs
HT (0,0))− 2(

1

4
)ĈovA(Ȳ obs

HT (0,1), Ȳ obs
HT (1,0))

+ 2(
1

4
)ĈovB(Ȳ obs

HT (0,1), Ȳ obs
HT (0,0))− 2(

1

4
)ĈovA(Ȳ obs

HT (1,0), Ȳ obs
HT (0,0)). (3.56)
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V̂ar(δ̂∗HT,ind) =
1

4
V̂arA(Ȳ obs

HT (1,1)) +
1

4
V̂arA(Ȳ obs

HT (1,0))

+
1

4
V̂arA(Ȳ obs

HT (0,1)) +
1

4
V̂arA(Ȳ obs

HT (0,0))

− 2(
1

4
)ĈovA(Ȳ obs

HT (1,1), Ȳ obs
HT (1,0)) + 2(

1

4
)ĈovB(Ȳ obs

HT (1,1), Ȳ obs
HT (0,1))

− 2(
1

4
)ĈovA(Ȳ obs

HT (1,1), Ȳ obs
HT (0,0))− 2(

1

4
)ĈovA(Ȳ obs

HT (1,0), Ȳ obs
HT (0,1))

+ 2(
1

4
)ĈovB(Ȳ obs

HT (1,0), Ȳ obs
HT (0,0))− 2(

1

4
)ĈovA(Ȳ obs

HT (0,1), Ȳ obs
HT (0,0)). (3.57)

V̂ar(δ̂∗HT,`) =
1

4
V̂arA(Ȳ obs

HT (1,W∗
` )) +

1

4
V̂arA(Ȳ obs

HT (1,W∗
`−1))

+
1

4
V̂arA(Ȳ obs

HT (0,W∗
` )) +

1

4
V̂arA(Ȳ obs

HT (0,W∗
`−1))

− 2(
1

4
)ĈovA(Ȳ obs

HT (1,W∗
` ), Ȳ

obs
HT (1,W∗

`−1)) + 2(
1

4
)ĈovB(Ȳ obs

HT (1,W∗
` ), Ȳ

obs
HT (0,W∗

` ))

− 2(
1

4
)ĈovA(Ȳ obs

HT (1,W∗
` ), Ȳ

obs
HT (0,W∗

`−1))− 2(
1

4
)ĈovA(Ȳ obs

HT (1,W∗
`−1), Ȳ

obs
HT (0,W∗

` ))

+ 2(
1

4
)ĈovB(Ȳ obs

HT (1,W∗
`−1), Ȳ

obs
HT (0,W∗

`−1))− 2(
1

4
)ĈovA(Ȳ obs

HT (0,W∗
` ), Ȳ

obs
HT (0,W∗

`−1)).

(3.58)

By linearity of expectation, Propositions A.1 and A.2 and Equation A.15 in Appendix

A, the covariance estimators provided here are conservative. The conservative estimator of

Var(Ȳ obs
HT (Wi,WNik

)) and proofs are provided in Appendix A.

3.8 Simulation

In this section, we assess the performance of our proposed estimators through a simulation

study. We consider three different scenarios of the indirect effects where the indirect effects

in each scenario represent the degree of interference starting from no interference in the first

three models scenario, followed by weak interference in the second three models scenario and
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moderate interference in the last three models scenario. In each scenario, the direct effect

takes also three different scenarios such that δi takes the values in (0,1,4).

We generate responses under the following KNNIM model:

Yi = X1 +X2 +X3 + δ1W1 + δ2W2 + δ3W3 + δdirWi (3.59)

where the covariates Xj ∼ N(0, 1), j = 1, 2, 3, and we consider the case where we only

have K = 3 nearest neighbors. We assess our estimators under two randomization designs:

completely randomized design (CRD) where half of the N units are assigned to treatment,

completely at random and Bernoulli randomization design (BR) with probability p = 0.5.

The Nine interference models are shown in the second column of Table 3.1. The first

three elements of the vector (δ1, δ2, δ3, δdir) in Table 3.1 represent the first, second, and third

nearest neighbor’s indirect effect where the last element is the unit’s direct effect.

In all models considered, the closer the distance to unit i, the greater the indirect effect:

|δ1| ≥ |δ2 ≥ |δ3|.

In each model, we evaluate the performance of the total, direct, indirect and `th nearest

neighbor estimators with the estimated variance under Assumption 3.1 and Assumption

3.2. The experiment is replicated repeatedly 1000 times with sample size N = 256. The

marginal and joint probabilities are computed as in equations 3.23, 3.25, 3.26 and 3.27. The

empirical expected value of the estimates (Emp.Estimates), empirical variance (Emp.Var)

and standard deviation (Emp.S.D.), and the of the estimated variance (Var Estimate) are

computed. The results are illustrated for CRD in table 3.2 for model 1 to table 3.10 for

model 9 and for BR in table 3.11 for model 1 to table 3.19 for model 9. The comparison of

CRD and BR results under Assumptions 3.1 and 3.2 are illustrated in Figures 3.1 to 3.9.

70



Table 3.1: Interference Models

Models (δ1st , δ2nd , δ3rd , δdir)
Model 1 (0,0,0,0)
Model 2 (0,0,0,1)
Model 3 (0,0,0,4)
Model 4 (2,1,0.5,0)
Model 5 (2,1,0.5,1)
Model 6 (2,1,0.5,4)
Model 7 (3,2,1,0)
Model 8 (3,2,1,1)
Model 9 (3,2,1,4)

Table 3.2: Estimates Under Completely Randomized Design Model 1

Estimator Effects Emp.Estimates Emp.Var Emp.S.D. Var Estimate

δ̂HT,tot 0 0.0779 1.1668 1.0802 1.1759

δ̂∗HT,tot 0 0.0779 1.1668 1.0802 1.1759

δ̂HT,dir 0 0.0337 0.6078 0.7796 0.6683

δ̂∗HT,dir 0 0.0303 0.2894 0.5380 0.5036

δ̂HT,ind 0 0.0442 0.9404 0.9697 0.9393

δ̂∗HT,ind 0 0.0476 0.5615 0.7493 0.6619

δ̂HT,1st 0 0.0346 0.6273 0.7920 0.6821

δ̂∗HT,1st 0 0.0191 0.2647 0.5145 0.3950

δ̂HT,2nd 0 -0.0111 0.4642 0.6813 0.6023

δ̂∗HT,2nd 0 -0.0021 0.2694 0.5190 0.4625

δ̂HT,3rd 0 0.0207 0.4541 0.6738 0.6076

δ̂∗HT,3rd 0 0.0306 0.3014 0.5490 0.4514

71



Table 3.3: Estimates Under Completely Randomized Design Model 2

Estimator Effects Emp.Estimates Emp.Var Emp.S.D. Var Estimate

δ̂HT,tot 1 1.0707 1.306 1.1430 1.3314

δ̂∗HT,tot 1 1.0707 1.306 1.1430 1.3314

δ̂HT,dir 1 1.0265 0.7273 0.8528 0.8050

δ̂∗HT,dir 1 1.0300 0.3377 0.5812 0.6214

δ̂HT,ind 0 0.0442 0.9404 0.9697 0.9393

δ̂∗HT,ind 0 0.0406 0.6081 0.7798 0.7381

δ̂HT,1st 0 0.0346 0.6273 0.7920 0.6821

δ̂∗HT,1st 0 0.01758 0.3009 0.5486 0.4749

δ̂HT,2nd 0 -0.0111 0.4642 0.6813 0.6023

δ̂∗HT,2nd 0 -0.0052 0.3328 0.5769 0.5601

δ̂HT,3rd 0 0.0207 0.4541 0.6738 0.6076

δ̂∗HT,3rd 0 0.0282 0.3525 0.5937 0.5359

Table 3.4: Estimates Under Completely Randomized Design Model 3

Estimator Effects Emp.Estimates Emp.Var Emp.S.D. Var Estimate

δ̂HT,tot 4 4.0489 2.9225 1.7095 3.3552

δ̂∗HT,tot 4 4.0489 2.9225 1.7095 3.3552

δ̂HT,dir 4 4.0047 2.2827 1.5108 2.5258

δ̂∗HT,dir 4 4.0292 0.9267 0.9626 2.1155

δ̂HT,ind 4 0.0442 0.9404 0.9697 0.9393

δ̂∗HT,ind 0 0.01978 1.1883 1.0901 1.7146

δ̂HT,1st 0 0.0346 0.6273 0.7920 0.6821

δ̂∗HT,1st 0 0.01286 0.8246 0.9081 1.4569

δ̂HT,2nd 0 -0.0111 0.4642 0.6813 0.6023

δ̂∗HT,2nd 0 -0.01445 1.0133 1.0066 1.7389

δ̂HT,3rd 0 0.0207 0.4541 0.6738 0.6076

δ̂∗HT,3rd 0 0.0213 1.0711 1.0349 1.6299

72



Table 3.5: Estimates Under Completely Randomized Design Model 4

Estimator Effects Emp.Estimates Emp.Var Emp.S.D. Var Estimate

δ̂HT,tot 3.5 3.5526 2.5285 1.5901 2.8557

δ̂∗HT,tot 3.5 3.5526 2.5285 1.5901 2.8557

δ̂HT,dir 0 -0.0123 2.9637 1.7215 3.2323

δ̂∗HT,dir 0 0.0073 0.8913 0.9441 1.5485

δ̂HT,ind 3.5 3.5649 1.5750 1.2550 2.3108

δ̂∗HT,ind 3.5 3.5453 0.9523 0.9758 1.6828

δ̂HT,1st 2 2.0414 0.8733 0.9345 1.1102

δ̂∗HT,1st 2 2.0261 0.3901 0.6245 0.7582

δ̂HT,2nd 1 1.0003 1.4039 1.1848 1.9204

δ̂∗HT,2nd 1 0.9961 0.7423 0.8615 1.4553

δ̂HT,3rd 0.5 0.5230 1.8611 1.3642 2.5928

δ̂∗HT,3rd 0.5 0.5230 1.1157 1.0563 1.8726

Table 3.6: Estimates Under Completely Randomized Design Model 5

Estimator Effects Emp.Estimates Emp.Var Emp.S.D. Var Estimate

δ̂HT,tot 4.5 4.5453 3.3664 1.8347 3.9196

δ̂∗HT,tot 4.5 4.5453 3.3664 1.8347 3.9196

δ̂HT,dir 1 0.9804 3.9013 1.9751 4.1313

δ̂∗HT,dir 1 1.0070 1.1503 1.0725 1.9781

δ̂HT,ind 3.5 3.5649 1.5750 1.2550 2.3108

δ̂∗HT,ind 3.5 3.5383 1.1485 1.0717 1.9574

δ̂HT,1st 2 2.0414 0.8733 0.9345 1.1102

δ̂∗HT,1st 2 2.0245 0.4873 0.6981 0.9667

δ̂HT,2nd 1 1.0003 1.4039 1.1848 1.9204

δ̂∗HT,2nd 1 0.9930 0.9747 0.9873 1.8982

δ̂HT,3rd 0.5 0.5230 1.8611 1.3642 2.5928

δ̂∗HT,3rd 0.5 0.5207 1.4523 1.2051 2.3927
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Table 3.7: Estimates Under Completely Randomized Design Model 6

Estimator Effects Emp.Estimates Emp.Var Emp.S.D. Var Estimate

δ̂HT,tot 7.5 7.5236 7.0767 2.6602 8.6687

δ̂∗HT,tot 7.5 7.5236 7.0767 2.6602 8.6687

δ̂HT,dir 4 3.9586 7.9109 2.8126 8.1389

δ̂∗HT,dir 4 4.0061 2.3713 1.5399 4.4075

δ̂HT,ind 3.5 3.5649 1.5750 1.2550 2.3108

δ̂∗HT,ind 3.5 3.5174 2.1777 1.4757 3.5289

δ̂HT,1st 2 2.0414 0.8733 0.9345 1.1102

δ̂∗HT,1st 2 2.0198 1.1942 1.0928 2.3348

δ̂HT,2nd 1 1.0003 1.4039 1.1848 1.9204

δ̂∗HT,2nd 1 0.9838 2.1622 1.4704 4.1131

δ̂HT,3rd 0.5 0.5230 1.8611 1.3642 2.5928

δ̂∗HT,3rd 0.5 0.5138 3.0275 1.7399 4.7936

Table 3.8: Estimates Under Completely Randomized Design Model 7

Estimator Effects Emp.Estimates Emp.Var Emp.S.D. Var Estimate

δ̂HT,tot 6 6.0344 4.9972 2.2354 6.0021

δ̂∗HT,tot 6 6.0344 4.9972 2.2354 6.0021

δ̂HT,dir 0 -0.0452 7.4190 2.7237 7.9636

δ̂∗HT,dir 0 -0.0091 2.0143 1.4192 3.4718

δ̂HT,ind 6 6.0797 2.7909 1.6705 4.850

δ̂∗HT,ind 6 6.0436 1.6675 1.2913 3.5938

δ̂HT,1st 3 3.0449 1.1582 1.0762 1.6049

δ̂∗HT,1st 3 3.0295 0.5412 0.7357 1.1811

δ̂HT,2nd 2 2.0092 2.8500 1.6882 3.9616

δ̂∗HT,2nd 2 1.9961 1.4097 1.1873 2.9671

δ̂HT,3rd 1 1.0256 4.5078 2.1231 6.1172

δ̂∗HT,3rd 1 1.0179 2.6139 1.6167 4.4043
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Table 3.9: Estimates Under Completely Randomized Design Model 8

Estimator Effects Emp.Estimates Emp.Var Emp.S.D. Var Estimate

δ̂HT,tot 7 7.0272 6.3337 2.5166 7.7149

δ̂∗HT,tot 7 7.0272 6.3337 2.5166 7.7149

δ̂HT,dir 1 0.9474 8.9409 2.9901 9.4071

δ̂∗HT,dir 1 0.9905 2.4239 1.5568 4.1241

δ̂HT,ind 6 6.0797 2.7909 1.6705 4.8503

δ̂∗HT,ind 6 6.0366 1.9707 1.4038 4.0101

δ̂HT,1st 3 3.0449 1.1582 1.0762 1.6049

δ̂∗HT,1st 3 3.0280 0.6690 0.8179 1.4541

δ̂HT,2nd 2 2.0092 2.8500 1.6882 3.9616

δ̂∗HT,2nd 2 1.9930 1.7408 1.3194 3.6167

δ̂HT,3rd 1 1.0256 4.5078 2.1231 6.1172

δ̂∗HT,3rd 1 1.0156 3.1489 1.7745 5.2252

Table 3.10: Estimates Under Completely Randomized Design Model 9

Estimator Effects Emp.Estimates Emp.Var Emp.S.D. Var Estimate

δ̂HT,tot 10 10.0055 11.54004 3.3970 14.4106

δ̂∗HT,tot 10 10.0055 11.54004 3.3970 14.4106

δ̂HT,dir 4 3.9257 14.7035 3.8345 15.0482

δ̂∗HT,dir 4 3.9896 4.0963 2.0239 7.2216

δ̂HT,ind 6 6.0797 2.7909 1.6705 4.8503

δ̂∗HT,ind 6 6.0158 3.3206 1.8222 6.0066

δ̂HT,1st 3 3.0449 1.1582 1.0762 1.6049

δ̂∗HT,1st 3 3.0232 1.4675 1.2114 3.0152

δ̂HT,2nd 2 2.0092 2.8500 1.6882 3.9616

δ̂∗HT,2nd 2 1.9838 3.2241 1.7955 6.4517

δ̂HT,3rd 1 1.0256 4.5078 2.1231 6.1172

δ̂∗HT,3rd 1 1.0086 5.3193 2.3063 8.5285
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Table 3.11: Estimates Under Bernoulli Randomization Model 1

Estimator Effects Emp.Estimates Emp.Var Emp.S.D. Var Estimate

δ̂HT,tot 0 0.0059 1.2480 1.1171 1.2037

δ̂∗HT,tot 0 0.0059 1.2480 1.1171 1.2037

δ̂HT,dir 0 -0.01509 0.6850 0.8277 0.7016

δ̂∗HT,dir 0 0.0103 0.3116 0.5582 0.5153

δ̂HT,ind 0 0.0210 0.8232 0.9073 0.9258

δ̂∗HT,ind 0 -0.0044 0.5622 0.7498 0.6696

δ̂HT,1st 0 0.0502 0.6502 0.8063 0.6804

δ̂∗HT,1st 0 0.01735 0.2460 0.4960 0.3922

δ̂HT,2nd 0 -0.0181 0.4430 0.6656 0.5985

δ̂∗HT,2nd 0 -0.0085 0.2702 0.5198 0.4599

δ̂HT,3rd 0 -0.0110 0.4489 0.6700 0.6048

δ̂∗HT,3rd 0 -0.0132 0.3134 0.5599 0.4629

Table 3.12: Estimates Under Bernoulli Randomization Model 2

Estimator Effects Emp.Estimates Emp.Var Emp.S.D. Var Estimate

δ̂HT,tot 1 1.0326 1.4420 1.2008 1.4406

δ̂∗HT,tot 1 1.0326 1.4420 1.2008 1.4406

δ̂HT,dir 1 1.0116 0.8786 0.9373 0.8960

δ̂∗HT,dir 1 1.0277 0.3573 0.5978 0.6357

δ̂HT,ind 0 0.0210 0.8232 0.9073 0.9258

δ̂∗HT,ind 0 0.0049 0.6462 0.8038 0.7994

δ̂HT,1st 0 0.0502 0.6502 0.8063 0.6804

δ̂∗HT,1st 0 0.0142 0.2858 0.5346 0.4783

δ̂HT,2nd 0 -0.0181 0.4430 0.6656 0.5985

δ̂∗HT,2nd 0 -0.0177 0.3250 0.5700 0.5625

δ̂HT,3rd 0 -0.0110 0.4489 0.6700 0.6048

δ̂∗HT,3rd 0 0.0084 0.3846 0.6202 0.5497
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Table 3.13: Estimates Under Bernoulli Randomization Model 3

Estimator Effects Emp.Estimates Emp.Var Emp.S.D. Var Estimate

δ̂HT,tot 4 4.1129 4.0302 2.0075 4.5346

δ̂∗HT,tot 4 4.1129 4.0302 2.0075 4.5346

δ̂HT,dir 4 4.0919 3.4654 1.8615 3.6069

δ̂∗HT,dir 4 4.0797 0.9582 0.9789 2.2095

δ̂HT,ind 0 0.0210 0.8232 0.9073 0.9258

δ̂∗HT,ind 0 0.0331 1.8081 1.3446 2.3816

δ̂HT,1st 0 0.0502 0.6502 0.8063 0.6804

δ̂∗HT,1st 0 0.0051 0.8466 0.9201 1.5260

δ̂HT,2nd 0 -0.0181 0.4430 0.6656 0.5985

δ̂∗HT,2nd 0 -0.0456 1.0226 1.0112 1.7932

δ̂HT,3rd 0 -0.0110 0.4489 0.6700 0.6048

δ̂∗HT,3rd 0 0.0737 1.2557 1.1205 1.7099

Table 3.14: Estimates Under Bernoulli Randomization Model 4

Estimator Effects Emp.Estimates Emp.Var Emp.S.D. Var Estimate

δ̂HT,tot 3.5 3.5995 3.3899 1.8411 3.7707

δ̂∗HT,tot 3.5 3.5995 3.3899 1.8411 3.7707

δ̂HT,dir 0 0.0745 3.1656 1.7792 3.4406

δ̂∗HT,dir 0 0.0552 0.9018 0.9496 1.6046

δ̂HT,ind 3.5 3.5249 1.8276 1.3519 2.5207

δ̂∗HT,ind 3.5 3.5443 1.5038 1.2262 2.1947

δ̂HT,1st 2 2.0532 0.9882 0.9940 1.1739

δ̂∗HT,1st 2 2.0206 0.3871 0.6222 0.7689

δ̂HT,2nd 1 0.9878 1.4253 1.1938 2.0036

δ̂∗HT,2nd 1 0.9675 0.8350 0.9137 1.5577

δ̂HT,3rd 0.5 0.4838 2.2543 1.5014 2.8237

δ̂∗HT,3rd 0.5 0.5561 1.5671 1.2518 2.1355
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Table 3.15: Estimates Under Bernoulli Randomization Model 5

Estimator Effects Emp.Estimates Emp.Var Emp.S.D. Var Estimate

δ̂HT,tot 4.5 4.6263 4.7542 2.1804 5.3978

δ̂∗HT,tot 4.5 4.6263 4.7542 2.1804 5.3978

δ̂HT,dir 1 1.1013 4.3757 2.0918 4.6502

δ̂∗HT,dir 1 1.0725 1.1720 1.0826 2.0765

δ̂HT,ind 3.5 3.5249 1.8276 1.3519 2.5207

δ̂∗HT,ind 3.5 3.5537 2.0192 1.4210 2.7832

δ̂HT,1st 2 2.0532 0.9882 0.9940 1.1739

δ̂∗HT,1st 2 2.0176 0.4648 0.6818 0.9666

δ̂HT,2nd 1 0.9878 1.4253 1.1938 2.0036

δ̂∗HT,2nd 1 0.9582 1.1082 1.0527 2.0400

δ̂HT,3rd 0.5 0.4838 2.2543 1.5014 2.8237

δ̂∗HT,3rd 0.5 0.5778 2.0343 1.4263 2.7262

Table 3.16: Estimates Under Bernoulli Randomization Model 6

Estimator Effects Emp.Estimates Emp.Var Emp.S.D. Var Estimate

δ̂HT,tot 7.5 7.7065 10.8531 3.2944 12.6623

δ̂∗HT,tot 7.5 7.7065 10.8531 3.2944 12.6623

δ̂HT,dir 4 4.1815 10.0122 3.1642 10.4070

δ̂∗HT,dir 4 4.1245 2.4463 1.5640 4.7047

δ̂HT,ind 3.5 3.5249 1.8276 1.3519 2.5207

δ̂∗HT,ind 3.5 3.5819 4.4755 2.1155 5.7415

δ̂HT,1st 2 2.0532 0.9882 0.9940 1.1739

δ̂∗HT,1st 2 2.0084 1.1391 1.0672 2.3490

δ̂HT,2nd 1 0.9878 1.4253 1.1938 2.0036

δ̂∗HT,2nd 1 0.9304 2.4611 1.5687 4.4098

δ̂HT,3rd 0.5 0.4838 2.2543 1.5014 2.8237

δ̂∗HT,3rd 0.5 0.6431 4.0935 2.0232 5.3983
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Table 3.17: Estimates Under Bernoulli Randomization Model 7

Estimator Effects Emp.Estimates Emp.Var Emp.S.D. Var Estimate

δ̂HT,tot 6 6.1664 7.4275 2.7253 8.5832

δ̂∗HT,tot 6 6.1664 7.4275 2.7253 8.5832

δ̂HT,dir 0 0.1386 7.8388 2.7997 8.5881

δ̂∗HT,dir 0 0.0872 2.0487 1.4313 3.6387

δ̂HT,ind 6 6.0277 3.5973 1.8966 5.4461

δ̂∗HT,ind 6 6.0791 3.2309 1.7974 5.0241

δ̂HT,1st 3 3.0547 1.3709 1.1708 1.7503

δ̂∗HT,1st 3 3.0223 0.5510 0.7423 1.2101

δ̂HT,2nd 2 1.9923 2.9090 1.7056 4.1353

δ̂∗HT,2nd 2 1.9521 1.6716 1.2929 3.2181

δ̂HT,3rd 1 0.9806 5.3764 2.3187 6.7556

δ̂∗HT,3rd 1 1.1047 3.8051 1.9506 5.1576

Table 3.18: Estimates Under Bernoulli Randomization Model 8

Estimator Effects Emp.Estimates Emp.Var Emp.S.D. Var Estimate

δ̂HT,tot 7 7.1931 9.6277 3.1028 11.2033

δ̂∗HT,tot 7 7.1931 9.6277 3.1028 11.2033

δ̂HT,dir 1 1.1654 9.7750 3.1265 10.5230

δ̂∗HT,dir 1 1.1045 2.4792 1.5745 4.3616

δ̂HT,ind 6 6.0277 3.5973 1.8966 5.4461

δ̂∗HT,ind 6 6.0885 4.0546 2.0136 5.9402

δ̂HT,1st 3 3.0547 1.3709 1.1708 1.7503

δ̂∗HT,1st 3 3.0192 0.6476 0.8047 1.4636

δ̂HT,2nd 2 1.9923 2.9090 1.7056 4.1353

δ̂∗HT,2nd 2 1.9428 2.0746 1.4403 3.9275

δ̂HT,3rd 1 0.9806 5.3764 2.3187 6.7556

δ̂∗HT,3rd 1 1.1264 4.5503 2.1331 6.0993
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Figure 3.1: Variance estimates for model 1 of all estimators under the K-nearest neighbors
interference assumption and no-interaction between direct and indirect effects assumption.
We use N = 256 units and K = 3 nearest neighbors. The effects are estimated using 1,000
randomizations.
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Figure 3.2: Variance estimates for model 2 of all estimators under the K-nearest neighbors
interference assumption and no-interaction between direct and indirect effects assumption.
We use N = 256 units and K = 3 nearest neighbors. The effects are estimated using 1,000
randomizations.
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Figure 3.3: Variance estimates for model 3 of all estimators under the K-nearest neighbors
interference assumption and no-interaction between direct and indirect effects assumption.
We use N = 256 units and K = 3 nearest neighbors. The effects are estimated using 1,000
randomizations.
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Figure 3.4: Variance estimates for model 4 of all estimators under the K-nearest neighbors
interference assumption and no-interaction between direct and indirect effects assumption.
We use N = 256 units and K = 3 nearest neighbors. The effects are estimated using 1,000
randomizations.
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Figure 3.5: Variance estimates for model 5 of all estimators under the K-nearest neighbors
interference assumption and no-interaction between direct and indirect effects assumption.
We use N = 256 units and K = 3 nearest neighbors. The effects are estimated using 1,000
randomizations.
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Figure 3.6: Variance estimates for model 6 of all estimators under the K-nearest neighbors
interference assumption and no-interaction between direct and indirect effects assumption.
We use N = 256 units and K = 3 nearest neighbors. The effects are estimated using 1,000
randomizations.
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Figure 3.7: Variance estimates for model 7 of all estimators under the K-nearest neighbors
interference assumption and no-interaction between direct and indirect effects assumption.
We use N = 256 units and K = 3 nearest neighbors. The effects are estimated using 1,000
randomizations.
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Figure 3.8: Variance estimates for model 8 of all estimators under the K-nearest neighbors
interference assumption and no-interaction between direct and indirect effects assumption.
We use N = 256 units and K = 3 nearest neighbors. The effects are estimated using 1,000
randomizations.
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Figure 3.9: Variance estimates for model 9 of all estimators under the K-nearest neighbors
interference assumption and no-interaction between direct and indirect effects assumption.
We use N = 256 units and K = 3 nearest neighbors. The effects are estimated using 1,000
randomizations.
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Table 3.19: Estimates Under Bernoulli Randomization Model 9

Estimator Effects Emp.Estimates Emp.Var Emp.S.D. Var Estimate

δ̂HT,tot 10 10.2734 18.2343 4.2701 21.4468

δ̂∗HT,tot 10 10.2734 18.2343 4.2701 21.4468

δ̂HT,dir 4 4.2456 17.5899 4.1940 18.4553

δ̂∗HT,dir 4 4.1566 4.2346 2.0578 7.7429

δ̂HT,ind 6 6.0277 3.5973 1.8966 5.4461

δ̂∗HT,ind 6 6.1168 7.4354 2.7267 9.8815

δ̂HT,1st 3 3.0547 1.3709 1.1708 1.7503

δ̂∗HT,1st 3 3.0100 1.3786 1.1741 3.0134

δ̂HT,2nd 2 1.9923 2.9090 1.7056 4.1353

δ̂∗HT,2nd 2 1.9150 3.8171 1.9537 6.9785

δ̂HT,3rd 1 0.9806 5.3764 2.3187 6.7556

δ̂∗HT,3rd 1 1.1917 7.4434 2.7282 9.8241

3.9 Anti-Conflict Program: An Analysis of Social Net-

work Experiment

In this section, we analyze a field experiment conducted on 56 schools for changing climates

of conflict among middle schools students in New Jersey (Paluck et al., 2016). In this mul-

tilevel experiment, 28 out of 56 schools were randomly assigned to receive an anti-conflict

program that aims to reduce conflicts among adolescents and to understand how the effects

on participants transmit to their social peers. In each treated school, 20-32 students were

nonrandomly selected as eligible students in which 50% of those eligible students were ran-

domly assigned to participate in the anti-conflict intervention blocked by gender and grade.

Following three weeks of the start of school, students in each school were asked to nominate

up to 10 students with whom they chose to spent time with in the last few weeks either

in school, out of school or online where number 1 is the first person a student spent most

time with, number 2 is the second person a student spent most time with and so on. These

nominations are used to measure the social connections between students providing the adja-

cency graph. Every two weeks over the course of the year, trained research assistants in each
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Table 3.20: Number of units in each exposure of Anti-Conflict Program Experiment with
K =2 and N= 348

Indirect
Direct (0, 0) (0, 1) (1, 0) (1, 1)
Treated 38 42 39 34
Control 40 59 46 50

Table 3.21: Estimates of Anti-Conflict Program with K = 2 for only Treated School N =
348

Estimator Estimates S.E.

δ̂HT,Total 0.1899 0.0985

δ̂∗HT,Total 0.1899 0.0985

δ̂HT,direct -0.0254 0.1332

δ̂∗HT,direct 0.0559 0.0863

δ̂HT,indirect 0.2154 0.0927

δ̂∗HT,indirect 0.1340 0.0781

δ̂HT,1st 0.1788 0.0822

δ̂∗HT,1st 0.1019 0.0683

δ̂HT,2nd 0.0365 0.1148

δ̂∗HT,2nd 0.0320 0.0934

treated school had held meetings with participants to identify conflict types in their school

and discuss strategies that encourage participants to reduce conflict behaviour among other

students. At the end of the school year, a survey was conducted to measure conflict norms

that measures multiple outcomes. In this analysis, we focus on one particular response in

which students self reported if they had worn an orange wristband issued and distributed to

students reflecting their attitudes of anti-conflict norms. We restrict our analysis to eligible

students in treated school who nominated at least two eligible friends (N = 348 with K = 2)

and we assume that the carried randomization design was completely at random with 153

treated students. There are 2K+1 = 8 exposures and number of students for each of the eight

exposures in this dataset are illustrated in table 3.20. The marginal and the joint inclusion

probabilities are computed using equations 3.23and 3.25. Results are presented in table 3.21.
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3.10 Discussion

Under completely randomized design, results of the first and second models in the first

scenario where there is no indirect effects show that all estimators under Assumption 3.1 and

Assumption 3.2 are unbiased. All variance estimates are greater than the empirical variance

for all estimators under both Assumption 3.1 and Assumption 3.2. The variance estimates

are smaller for all estimators under Assumption 3.2 than under Assumption 3.1 (Tables 3.2,

3.3). However, when we increase the direct effect, the variance estimates for the indirect

effects estimators under Assumption 1 are about 50% smaller than under Assumption 3.2

(Table 3.4).

Similarly, under weak and moderate interference scenarios, all estimators are unbiased

and all variance estimates are greater than the empirical variance for all estimators under

Assumption 3.1 and Assumption 3.2. In addition, the variance estimates are smaller for

all estimators under Assumption 3.2 than under Assumption 3.1 except model 3, model 6

and model 9 when the direct effect is relatively large and close to the overall indirect effects

(Tables 3.5, 3.6, 3.7, 3.8, 3.9 and 3.10).

Moreover, Assumption 3.2 has improved the variance estimates of the direct effect esti-

mator for all indirect effect scenarios specially when the direct effect increases, the variance

estimates get smaller.

All previous results of completely randomized apply to Bernoulli randomization except

that Assumption 3.2 didn’t improve standard errors of the indirect effects in models 5 and

model 8. However, under Bernoulli randomization, all variance estimates for all estimators

in all scenarios seem to be larger than those of the completely randomized design (Tables

3.11 to table 3.19 and Figures 3.1 to 3.9). Hence, completely randomized design is preferable

over Bernoulli randomization for this type of data.

For anti-conflict study, results of Assumption 3.1 suggest that the estimate of indirect

effect is about 21% increase in the probability of wearing a wrist band. The estimate of the

total effect (direct + indirect) of the anti-conflict program on eligible students with at least
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two eligible nearest neighbors is 18% increase in the probability of wearing a wrist band while

the direct effect has smaller estimate on the probability of wearing a wrist band. On the

other hand, under Assumption 3.2, the estimate of the direct effect is about 5% increase in

the probability of wearing a wrist band while the indirect effect has an estimate about 13%

increase in the probability of wearing a wrist band. The difference between the estimates

of the indirect effects under Assumptions 3.1 and 3.2 indicates that Assumption 3.2 might

be violated in this data. The first nominated eligible friend with whom a student chose to

spend most time with has an effect estimated about 10 to 18% increase in the probability

of wearing a wrist band where it is 3% for the second nominated eligible friend under both

Assumptions 3.1 and Assumption 3.2. All estimates of standard errors of all estimators are

reduced under Assumption 3.2.

3.11 Conclusion

Causal inference in the presence of interference has been a trend in the past decade. We

extended the potential outcomes approach and the K-nearest neighbors interference frame-

work and we defined causal effects under the K-neighborhood assumption. We provided

unbiased estimators of the defined estimands and derived properties of the proposed estima-

tors under both K-neighborhood and the no-interaction between direct and indirect effects

assumptions. We uncover indirect effects of the K-nearest neighbors which has not been

studied in previous work. Assumption 3.2 achieved better results with respect to estimation

precision than Assumption 3.1 specifically, for smaller direct effects. An extension to this

work could be an improvement of the estimation standard errors, specially for large direct

effects. Another future work is to obtain an optimal design for the K-nearest neighbors

interference.

92



Chapter 4

Improving Estimation of Causal

Effects under K-Nearest Neighbors

Interference

4.1 Introduction

Classical causal inference approaches assume that treatment assigned to one unit only affects

the outcome of this unit (direct effect) and doesn’t affect other units outcomes (indirect

effect) (Cox, 1958; Rubin, 1980). The common term used in causal inference approaches to

describe this setting is interference. Failure to account for interference when it is present may

result in wrong conclusions about the treatment effectiveness; Sobel (2006) demonstrated this

risk.

Interference is common in settings where a social factor is present. For example, in

infectious disease studies, the risk of catching an infectious disease depends on the vaccination

status of others (Halloran and Struchiner, 1995). In educational studies, the behavior and

attitude of all students in schools can be affected by the behavior of a few students; the

effects of communication and educational interventions may extend to other students through

social connections (Paluck et al., 2016). Moreover, in voting behavior studies, an individual’s
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decision on whether to vote might be impacted by the attitudes of others in the same network

(Bond et al., 2012).

Traditionally, treatment interference is considered a nuisance and mitigated through de-

signs that combine highly connected individuals into the same group and the analysis is

performed on the group level (Ugander et al., 2013; Gui et al., 2015; Eckles et al., 2016).

However, estimating the indirect effects of treatment interference has become the focus

of many researchers in the past decade. Typically, the estimation of the indirect effects is

done through assumptions that restrict the extent of interference to a limited form. One

example is partial interference (Sobel, 2006), where interference is allowed within disjointed

groups but not across groups. However, the partial interference assumption does not always

hold. Another interference structure assumes that interference is allowed within a limited

number of individuals in a neighborhood.

Previously, we presented the K-nearest neighbors interference framework to extend causal

inference methodologies and limit interference between units to their K-neighborhood. In

this model, we account for the strength of the relationship within the neighborhood in which

each individual is affected by its direct treatment and by treatments assigned to its K nearest

neighbors.

In Chapter 3, we define direct, indirect and total effects under this framework and we pro-

vide estimators of the defined estimands. This chapter extends the estimation of treatment

effects under the K-nearest neighbors interference to improve estimation standard errors

under the assumption of no interaction between indirect effects. This allows for the inclu-

sion of more units, which increases the amount of information and may improve estimation

precision. We propose estimators under this assumption and derive properties of the esti-

mators. We also provide conservative variance estimates of the proposed estimators. The

provided methods are demonstrated through a simulation study to evaluate and compare

their performance to the methods referenced in the previous chapter.

The rest of this chapter is organized as follows. Section 4.2 provides estimators with the

derived properties of causal effects defined in the previous chapter. Conservative variance

estimators are given in Section 4.3. Simulation and discussion on the performance of the
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proposed methods are given in Sections 4.4 and 4.5. We conclude in Section 4.6.

4.2 Estimation of Causal Effects

In this section, we extend Assumption 3.1 and 3.2 and provide new estimators under the

following assumption:

Assumption 4.1. (No Interaction between Indirect Effects Assumption). For each unit i

in a network G and for j ∈ Nik ∪ i, the potential outcome of unit i is a linear combination

of the unit’s treatment and the neighborhood treatments,

yi(Wi,WNik
) = yi(0,0) +

∑
j∈Nik∪i

βijWj. (4.1)

Note that Assumption 4.1 inherently assumes that the contribution of the treatment

effect of the `th nearest neighbor towards the potential outcome for unit i only depends

on the treatment status of this neighbor and is unaffected by neither the treatment status

of unit i nor any other neighbor of unit i. This is a strictly stronger assumption than

Assumption 3.2. The baseline yi(0,0) is the potential outcome of unit i when unit i and its

K nearest neighbors receive the control treatment condition, which includes the covariates

and the noise.

Each unit i under the KNNIM, has 2K+1 possible exposures to treatment, hence 2K+1

potential outcomes. Following Aronow and Samii (2017), the unbiased Horvitz–Thompson

estimator of the average potential outcomes of units under any exposure (W,WNK
) is

Ȳ obs
HT (W,WNK

) =
1

N

N∑
i=1

Ii(W,WNK
)
Y obs
i (W,WNK

)

πi(W,WNK
)
, (4.2)

The πi(W,WNK
) and πij((W,WNK

), (W ′,W′
NK

)) terms as defined in 3.5.1 are the marginal

and joint probabilities of units i and j under exposure (W,WNK
) and (W ′,W′

NK
) for com-

pletely randomized design (CRD).
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Under Assumption 4.1, for
∑2K

e=1Ce =
∑2K

e=1
1
2K

= 1, the unbiased Horvitz–Thompson

estimator of ADE is as follows.

δ̂∗∗HT,dir =
2K∑
e=1

Ce[Ȳ
obs
HT (1,WNike

)− Ȳ obs
HT (0,WNike

)] (4.3)

Theorem 4.1. Under the no-interaction between the indirect effects assumption,

E(δ̂∗∗HT,dir) = δdir. (4.4)

Var(δ̂∗∗HT,dir) =
∑

e,e′,Wi=1

CeCe′Cov(Ȳ obs
HT (1,WNike

), Ȳ obs
HT (1,WNike′

))

+
∑

e,e′,Wi=0

CeCe′Cov(Ȳ obs
HT (0,WNike

), Ȳ obs
HT (0,WNike′

))

− 2
∑

e,e′,Wi=1,Wi=0

CeCe′Cov(Ȳ obs
HT (1,WNike

), Ȳ obs
HT (0,WNike′

)). (4.5)

Let Y obs
i = Y obs

i (Wi,W` = 1,We,K−1) be the observed outcome of unit i that receives

treatment Wi with its `th nearest neighbor being treated (i.e., W` = 1) and the rest of its

KNN’s receive treatment We,K−1. Similarly, let Y obs
ei (Wi,W` = 0,We,K−1) be the observed

outcome of unit i that receives treatment Wi with its `th nearest neighbor being control (i.e.,

W` = 0) and the rest of its KNN’s receive treatment We,K−1.

Under Assumption 4.1, an unbiased Horvitz–Thompson estimator of A`NNIE estimand

becomes as follows.

δ̂∗∗HT,` =
2K∑
e=1

1

2K
[Ȳ obs
HT (Wi,W` = 1,We,K−1)− Ȳ obs

HT (Wi,W` = 0,We,K−1)]. (4.6)

Note that We,K−1 is fixed in the two averages in [Ȳ obs
e,HT (Wi,W` = 1,We,K−1)−Ȳ obs

e,HT (Wi,W` =

0,We,K−1)] where we have 2K−1 different exposures for the K-1 nearest neighbors of unit i

and 2K different exposures if we account for the direct treatment on unit i. Under Assump-
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tion 4.1, we weighted each difference of the averages with the corresponding We,K−1 by 1
2K

such that
∑2K

e=1C`e =
∑2K

e=1
1
2K

= 1. For example, if we have only two nearest neighbors i.e.,

K = 2, then we will have two differences for Wi = 0 and two differences for Wi = 1 such

that

δ̂∗∗HT,` =
1

4
[Ȳ obs
HT (0,W` = 1,We,K−1 = 1)− Ȳ obs

HT (0,W` = 0,We,K−1 = 1)]

+
1

4
[Ȳ obs
HT (0,W` = 1,We,K−1 = 0)− Ȳ obs

HT (0,W` = 0,We,K−1 = 0)]

+
1

4
[Ȳ obs
HT (1,W` = 1,We,K−1 = 1)− Ȳ obs

HT (1,W` = 0,We,K−1 = 1)]

+
1

4
[Ȳ obs
HT (1,W` = 1,We,K−1 = 0)− Ȳ obs

HT (1,W` = 0,We,K−1 = 0)]. (4.7)

Unbiasedness, and the theoretical variance of HT-A`NNIEE estimator in Equation 4.6, are

then provided in the following theorem.

Theorem 4.2. Under the no-interaction between the indirect effects assumption,

E(δ̂∗∗HT,`) = δ`. (4.8)

Var(δ̂∗∗HT,`) =
∑

e,e′,W`=1

C`eC`e′Cov(Ȳ obs
HT (Wi,W` = 1,We,K−1), Ȳ obs

HT (Wi,W` = 1,We′,K−1))

+
∑

e,e′,W`=0

C`eC`e′Cov(Ȳ obs
HT (Wi,W` = 0,We,K−1), Ȳ obs

HT (Wi,W` = 0,We′,K−1))

− 2
∑

e,e′,W`=1,W`=0

C`eC`e′Cov(Ȳ obs
HT (Wi,W` = 1,We,K−1), Ȳ obs

HT (Wi,W` = 0,We′,K−1)). (4.9)

For
∑2K

e=1C`e =
∑2K

e=1
1
2K

= 1, the unbiased Horvitz–Thompson estimator of AIE un-

der the no-interaction between the indirect effects assumption is provided in the following

definition.
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Definition 4.1.

δ̂∗∗HT,ind =
K∑
`=1

δ̂∗∗HT,` =
K∑
`=1

2K∑
e=1

C`e[Ȳ
obs
HT (Wi,W` = 1,We,K−1)− Ȳ obs

HT (Wi,W` = 0,We,K−1)]

(4.10)

Theorem 4.3. Under the no-interaction between the indirect effects assumption,

E(δ̂∗∗HT,ind) = δind. (4.11)

Var(δ̂∗∗HT,ind) =
∑

e,e′,W`=W`′=1

K∑
`,`′=1

C`eC`e′Cov(Ȳ obs
HT (Wi,W` = 1,We,K−1), Ȳ obs

HT (Wi,W`′ = 1,We′,K−1))

+
∑

e,e′,W`=W`′=0

K∑
`,`′=1

C`eC`e′Cov(Ȳ obs
HT (Wi,W` = 0,We,K−1), Ȳ obs

HT (Wi,W`′ = 0,We′,K−1))

−2
∑

e,e′,W`=1,W`′=0

K∑
`,`′=1

C`eC`e′Cov(Ȳ obs
HT (Wi,W` = 1,We,K−1), Ȳ obs

HT (Wi,W`′ = 0,We′,K−1)).

(4.12)

Under Assumption 4.1, for
∑2K

e=1Ce =
∑2K

e=1C`e =
∑2K

e=1
1
2K

= 1, the unbiased Horvitz–Thompson

estimator of ATOT is provided in the following definition.

Definition 4.2.

δ̂∗∗HT,tot = δ̂∗∗HT,dir + δ̂∗∗HT,ind. (4.13)

Theorem 4.4. Under the no-interaction between the indirect effects assumption,

E(δ̂∗∗HT,tot) = δtot. (4.14)
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Var(δ̂∗∗HT,tot) =
∑
e,e′

CeCe′Cov(Ȳ obs
HT (1,WNike

), Ȳ obs
HT (1,WNike′

))

+
∑
e,e′

CeCe′Cov(Ȳ obs
HT (0,WNike

), Ȳ obs
HT (0,WNike′

))

− 2
∑

e,e′,Wi=1,Wi=0

CeCe′Cov(Ȳ obs
HT (1,WNike

), Ȳ obs
HT (0,WNike′

))

+
∑

e,e′,W`=W`′=1

K∑
`,`′=1

C`eC`e′Cov(Ȳ obs
HT (Wi,W` = 1,We,K−1), Ȳ obs

HT (Wi,W`′ = 1,We′,K−1))

+
∑

e,e′,W`=W`′=0

K∑
`,`′=1

C`eC`e′Cov(Ȳ obs
HT (Wi,W` = 0,We,K−1), Ȳ obs

HT (Wi,W`′ = 0,We′,K−1))

− 2
∑

e,e′,W`=1,W`′=0

K∑
`,`′=1

C`eC`e′Cov(Ȳ obs
HT (Wi,W` = 1,We,K−1), Ȳ obs

HT (Wi,W`′ = 0,We′,K−1))

+ 2I(CȲ obs
HT (W,WNK

), C ′Ȳ obs
HT (W ′,W′

NK
))
∑
e,e′

CC ′Cov(Ȳ obs
HT (W,WNK

), Ȳ obs
HT (W ′,W′

NK
))

−2I(−CȲ obs
HT (W,WNK

), C ′Ȳ obs
HT (W ′,W′

NK
))
∑
e,e′

CC ′Cov(Ȳ obs
HT (W,WNK

), Ȳ obs
HT (W ′,W′

NK
)).

(4.15)

Proofs of the theorems are given in Appendix C. Variance and covariance components

proofs are provided in Appendix A.

4.3 Variance Estimators

In this section, we follow Aronow and Samii (2013, 2017) and Lohr (2019) and provide

variance estimates of the presented estimators in the previous section.

Under the no-interaction between the indirect effects assumption, the estimated conser-

vative variance of the provided estimators in Section 4.2 is as follows.
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V̂ar(δ̂∗∗HT,dir) =
∑

e,e′,Wi=1

CeCe′ĈovB(Ȳ obs
HT (1,WNike

), Ȳ obs
HT (1,WNike′

))

+
∑

e,e′,Wi=0

CeCe′ĈovB(Ȳ obs
HT (0,WNike

), Ȳ obs
HT (0,WNike′

))

− 2
∑

e,e′,Wi=1,Wi=0

CeCe′ĈovA(Ȳ obs
HT (1,WNike

), Ȳ obs
HT (0,WNike′

)). (4.16)

V̂ar(δ̂∗∗HT,`) =
∑

e,e′,W`=1

C`eC`e′ĈovB(Ȳ obs
HT (Wi,W` = 1,We,K−1), Ȳ obs

HT (Wi,W` = 1,We′,K−1))

+
∑

e,e′,W`=0

C`eC`e′ĈovB(Ȳ obs
HT (Wi,W` = 0,We,K−1), Ȳ obs

HT (Wi,W` = 0,We′,K−1))

− 2
∑

e,e′,W`=1,W`=0

C`eC`e′ĈovA(Ȳ obs
HT (Wi,W` = 1,We,K−1), Ȳ obs

HT (Wi,W` = 0,We′,K−1)).

(4.17)

V̂ar(δ̂∗∗HT,ind) =
∑

e,e′,W`=W`′=1

K∑
`,`′=1

C`eC`e′ĈovB(Ȳ obs
HT (Wi,W` = 1,We,K−1), Ȳ obs

HT (Wi,W`′ = 1,We′,K−1))

+
∑

e,e′,W`=W`′=0

K∑
`,`′=1

C`eC`e′ĈovB(Ȳ obs
HT (Wi,W` = 0,We,K−1), Ȳ obs

HT (Wi,W`′ = 0,We′,K−1))

−2
∑

e,e′,W`=1,W`′=0

K∑
`,`′=1

C`eC`e′ĈovA(Ȳ obs
HT (Wi,W` = 1,We,K−1), Ȳ obs

HT (Wi,W`′ = 0,We′,K−1)).

(4.18)
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V̂ar(δ̂∗∗HT,tot) =
∑
e,e′

CeCe′ĈovB(Ȳ obs
HT (1,WNike

), Ȳ obs
HT (1,WNike′

))

+
∑
e,e′

CeCe′ĈovB(Ȳ obs
HT (0,WNike

), Ȳ obs
HT (0,WNike′

))

− 2
∑

e,e′,Wi=1,Wi=0

CeCe′ĈovA(Ȳ obs
HT (1,WNike

), Ȳ obs
HT (0,WNike′

))

+
∑

e,e′,W`=W`′=1

K∑
`,`′=1

C`eC`e′ĈovB(Ȳ obs
HT (Wi,W` = 1,We,K−1), Ȳ obs

HT (Wi,W`′ = 1,We′,K−1))

+
∑

e,e′,W`=W`′=0

K∑
`,`′=1

C`eC`e′ĈovB(Ȳ obs
HT (Wi,W` = 0,We,K−1), Ȳ obs

HT (Wi,W`′ = 0,We′,K−1))

− 2
∑

e,e′,W`=1,W`′=0

K∑
`,`′=1

C`eC`e′ĈovA(Ȳ obs
HT (Wi,W` = 1,We,K−1), Ȳ obs

HT (Wi,W`′ = 0,We′,K−1))

+ 2I(CȲ obs
HT (W,WNK

), C ′Ȳ obs
HT (W ′,W′

NK
))
∑
e,e′

CC ′ĈovB(Ȳ obs
HT (W,WNK

), Ȳ obs
HT (W ′,W′

NK
))

−2I(−CȲ obs
HT (W,WNK

), C ′Ȳ obs
HT (W ′,W′

NK
))
∑
e,e′

CC ′ĈovA(Ȳ obs
HT (W,WNK

), Ȳ obs
HT (W ′,W′

NK
)).

(4.19)

where V̂arA(Ȳ obs
HT (Wi,W` = 1,We,K−1)) = V̂arHT (Ȳ obs

HT (Wi,W` = 1,We,K−1))+Â∗(Wi,W` =

1,We,K−1).

By linearity of expectation, Propositions A.1 and A.1 and Equation A.15 in Appendix A,

the covariance of the estimators provided here is conservative. The conservative estimator

of Var(Ȳ obs
HT (Wi,WNik

)) and proofs are provided in Appendix A.

4.4 Simulation

Simulated experiments assess the performance of the proposed estimators in the previous

sections. We explore three sets of three scenarios of the indirect effects. In these scenarios,

the indirect effects represent the degree of interference and vary from no interference to weak
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interference to moderate interference. The direct effect takes also three scenarios varying δi

values in (0,1,4) for each of the three interference scenario.

We generate responses under the following KNNIM model:

Yi = X1 +X2 +X3 + δ1W1 + δ2W2 + δ3W3 + δ4Wi (4.20)

where the covariates Xj ∼ N(0, 1), j = 1, 2, 3. We consider the case where we only have

K = 3 nearest neighbors. Half of the N units are assigned to treatment, completely at

random.

The nine interference models are shown in the second column of Table 4.1 where δ1, δ2, δ3

represent the first, second, and third nearest neighbor’s indirect effect such that |δ1| ≥ |δ2 ≥

|δ3| and δi represents the unit’s direct effect.

In each model, we compare total, direct, indirect and `th nearest neighbors estimators

performance under the no-interaction between indirect effects assumption to estimators pre-

sented in the previous chapter under Assumptions 3.1 and 3.2. We simulate 100 experiments

with sample size N = 256. For each realization, the marginal and joint probabilities are

computed as in Equations 3.23 and 3.25. The empirical expected value of the estimates

(Emp.Estimates), empirical variance (Emp.Var), empirical standard deviation (Emp.S.D.),

the estimated variance (Var Estimate), and standard errors estimates of the estimators (SE)

are computed. The results are shown in Table 4.2 for Model 1 to Table 4.10 for Model 9 and

in Figures 4.1 to 4.9.

4.5 Discussion

For all scenarios, the variance estimates corroborate the theoretical results that the estimates

are unbiased and that the variance estimates are conservative.

Smaller values of empirical variance for all estimators in all scenarios indicate estimation

precision improvement under the no interaction between indirect effects assumption.

The standard errors for the direct, 1st, 2nd and 3rd estimators are smaller than those under
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Table 4.1: Interference Models

Models (δ1st , δ2nd , δ3rd , δi)

Model 1 (0,0,0,0)
Model 2 (0,0,0,1)
Model 3 (0,0,0,4)
Model 4 (2,1,0.5,0)
Model 5 (2,1,0.5,1)
Model 6 (2,1,0.5,4)
Model 7 (3,2,1,0)
Model 8 (3,2,1,1)
Model 9 (3,2,1,4)

Table 4.2: Estimates Under Completely Randomized Design Model 1

Estimator Effects Emp.Estimates Emp.Var Emp.S.D. Var Estimate. SE

δ̂HT,tot 0 0.2481 1.0170 1.0085 1.1028 1.0172

δ̂∗HT,tot 0 0.2481 1.0170 1.0085 1.1028 1.0172

δ̂∗∗HT,tot 0 0.1906 0.6703 0.8187 4.2099 2.0516

δ̂HT,dir 0 0.0275 0.5907 0.7685 0.6068 0.7550

δ̂∗HT,dir 0 0.0959 0.2634 0.5132 0.4764 0.6819

δ̂∗∗HT,dir 0 0.0327 0.0437 0.2091 0.3233 0.5685

δ̂HT,ind 0 0.2205 0.6247 0.7904 0.9036 0.9270

δ̂∗HT,ind 0 0.1521 0.4363 0.6605 0.6329 0.7864

δ̂∗∗HT,ind 0 0.1578 0.3973 0.6303 2.3052 1.5180

δ̂HT,1st 0 0.1189 0.5122 0.7157 0.6711 0.7902

δ̂∗HT,1st 0 0.0097 0.2501 0.5001 0.3912 0.6179

δ̂∗∗HT,1st 0 0.0507 0.0709 0.2664 0.2443 0.4939

δ̂HT,2nd 0 0.1360 0.4295 0.6554 0.6155 0.7732

δ̂∗HT,2nd 0 0.1386 0.2507 0.5007 0.4546 0.6706

δ̂∗∗HT,2nd 0 0.0647 0.0916 0.3027 0.2573 0.5069

δ̂HT,3rd 0 -0.0344 0.4234 0.6507 0.6388 0.7922

δ̂∗HT,3rd 0 0.0036 0.2224 0.4716 0.4431 0.6601

δ̂∗∗HT,3rd 0 0.0423 0.0807 0.2841 0.2667 0.5161
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Table 4.3: Estimates Under Completely Randomized Design Model 2

Estimator Effects Emp.Estimates Emp.Var Emp.S.D. Var Estimate. SE

δ̂HT,tot 1 1.2657 1.1412 1.0683 1.2883 1.0981

δ̂∗HT,tot 1 1.2657 1.1412 1.0683 1.2883 1.0981

δ̂∗∗HT,tot 1 1.1929 0.6979 0.8354 4.9994 2.2355

δ̂HT,dir 1 1.0452 0.7125 0.8441 0.7581 0.8407

δ̂∗HT,dir 1 1.1023 0.2984 0.5463 0.6013 0.7661

δ̂∗∗HT,dir 1 1.0328 0.0437 0.2090 0.3691 0.6074

δ̂HT,ind 0 0.2205 0.6247 0.7904 0.9036 0.9270

δ̂∗HT,ind 0 0.1634 0.4967 0.7048 0.7133 0.8347

δ̂∗∗HT,ind 0 0.1601 0.4256 0.6524 2.7357 1.6536

δ̂HT,1st 0 0.1189 0.5122 0.7157 0.6711 0.7902

δ̂∗HT,1st 0 0.0253 0.3057 0.5529 0.4637 0.6734

δ̂∗∗HT,1st 0 0.0476 0.0801 0.2831 0.2931 0.5411

δ̂HT,2nd 0 0.1360 0.4295 0.6554 0.6155 0.7732

δ̂∗HT,2nd 0 0.1155 0.3016 0.5492 0.5476 0.7356

δ̂∗∗HT,2nd 0 0.0616 0.1000 0.3162 0.3061 0.5529

δ̂HT,3rd 0 -0.0344 0.4234 0.6507 0.6388 0.7922

δ̂∗HT,3rd 0 0.0224 0.2859 0.5347 0.5322 0.7227

δ̂∗∗HT,3rd 0 0.0508 0.0813 0.2852 0.3126 0.5587
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Table 4.4: Estimates Under Completely Randomized Design Model 3

Estimator Effects Emp.Estimates Emp.Var Emp.S.D. Var Estimate. SE

δ̂HT,tot 4 4.3186 2.6425 1.6255 3.4606 1.8082

δ̂∗HT,tot 4 4.3186 2.6425 1.6255 3.4606 1.8082

δ̂∗∗HT,tot 4 4.1998 1.0353 1.0175 14.4232 3.7966

δ̂HT,dir 4 4.0981 2.2066 1.4854 2.5702 1.5534

δ̂∗HT,dir 4 4.1213 0.8541 0.9241 2.1387 1.4484

δ̂∗∗HT,dir 4 4.0329 0.0436 0.2088 0.9059 0.9516

δ̂HT,ind 0 0.2205 0.6247 0.7904 0.9036 0.9270

δ̂∗HT,ind 0 0.1973 1.0702 1.0345 1.7123 1.2972

δ̂∗∗HT,ind 0 0.1668 0.7619 0.8729 7.9620 2.8208

δ̂HT,1st 0 0.1189 0.5122 0.7157 0.6711 0.7902

δ̂∗HT,1st 0 0.0722 0.8950 0.9460 1.4281 1.1882

δ̂∗∗HT,1st 0 0.0384 0.2018 0.4492 0.8726 0.9336

δ̂HT,2nd 0 0.1360 0.4295 0.6554 0.6155 0.7732

δ̂∗HT,2nd 0 0.0462 0.9249 0.9617 1.7116 1.3008

δ̂∗∗HT,2nd 0 0.0522 0.1967 0.4435 0.8914 0.9435

δ̂HT,3rd 0 -0.0344 0.4234 0.6507 0.6388 0.7922

δ̂∗HT,3rd 0 0.0788 0.9261 0.9623 1.6405 1.2662

δ̂∗∗HT,3rd 0 0.0762 0.1582 0.3978 0.8899 0.9428
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Table 4.5: Estimates Under Completely Randomized Design Model 4

Estimator Effects Emp.Estimates Emp.Var Emp.S.D. Var Estimate. SE

δ̂HT,tot 3.5 3.8098 2.2747 1.5082 2.9302 1.6621

δ̂∗HT,tot 3.5 3.8098 2.2747 1.5082 2.9302 1.6621

δ̂∗∗HT,tot 3.5 3.6956 0.9502 0.9747 10.3000 3.2079

δ̂HT,dir 0 0.1176 2.6306 1.6219 3.2627 1.7721

δ̂∗HT,dir 0 0.1409 0.7409 0.8607 1.5610 1.2378

δ̂∗∗HT,dir 0 0.02400 0.07988 0.2826 0.7601 0.8716

δ̂HT,ind 3.5 3.6922 1.2860 1.1340 2.3522 1.5166

δ̂∗HT,ind 3.5 3.6688 0.9084 0.9531 1.7241 1.2986

δ̂∗∗HT,ind 3.5 3.6716 0.5757 0.7588 5.6947 2.3851

δ̂HT,1st 2 2.1052 0.8123 0.9013 1.0711 1.0142

δ̂∗HT,1st 2 2.0292 0.3511 0.5925 0.7336 0.8494

δ̂∗∗HT,1st 2 2.04894 0.1046 0.3235 0.6608 0.8122

δ̂HT,2nd 1 1.2768 1.2864 1.1342 1.9647 1.3878

δ̂∗HT,2nd 1 1.1529 0.6301 0.7938 1.4534 1.2001

δ̂∗∗HT,2nd 1 1.0891 0.1517 0.3895 0.6253 0.7901

δ̂HT,3rd 0.5 0.3100 1.8290 1.3524 2.7502 1.6484

δ̂∗HT,3rd 0.5 0.4867 1.2103 1.1001 1.9331 1.3823

δ̂∗∗HT,3rd 0.5 0.5335 0.1411 0.3756 0.6120 0.7817
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Table 4.6: Estimates Under Completely Randomized Design Model 5

Estimator Effects Emp.Estimates Emp.Var Emp.S.D. Var Estimate. SE

δ̂HT,tot 4.5 4.8275 3.0573 1.7485 4.0582 1.9600

δ̂∗HT,tot 4.5 4.8275 3.0573 1.7485 4.0582 1.9600

δ̂∗∗HT,tot 4.5 4.6979 1.1044 1.0509 13.2126 3.6332

δ̂HT,dir 1 1.1352 3.4722 1.8634 4.1986 2.0074

δ̂∗HT,dir 1 1.1473 0.9651 0.9824 2.0101 1.4032

δ̂∗∗HT,dir 1 1.0240 0.0800 0.2829 0.9155 0.9566

δ̂HT,ind 3.5 3.6922 1.2860 1.1340 2.3522 1.5166

δ̂∗HT,ind 3.5 3.6801 1.1104 1.0537 2.0145 1.4027

δ̂∗∗HT,ind 3.5 3.6738 0.6917 0.8317 7.1571 2.6738

δ̂HT,1st 2 2.1052 0.8123 0.9013 1.0711 1.0142

δ̂∗HT,1st 2 2.0448 0.4531 0.6731 0.9373 0.9596

δ̂∗∗HT,1st 2 2.0458 0.1373 0.3705 0.8158 0.9025

δ̂HT,2nd 1 1.2768 1.2864 1.1342 1.9647 1.3878

δ̂∗HT,2nd 1 1.1297 0.8375 0.9151 1.8875 1.3679

δ̂∗∗HT,2nd 1 1.0859 0.1799 0.4241 0.7917 0.8890

δ̂HT,3rd 0.5 0.3100 1.8290 1.3524 2.7502 1.6484

δ̂∗HT,3rd 0.5 0.5055 1.5409 1.2413 2.4631 1.5589

δ̂∗∗HT,3rd 0.5 0.5420 0.1668 0.4085 0.7780 0.8813
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Table 4.7: Estimates Under Completely Randomized Design Model 6

Estimator Effects Emp.Estimates Emp.Var Emp.S.D. Var Estimate. SE

δ̂HT,tot 7.5 7.8804 6.5336 2.5560 9.0579 2.9378

δ̂∗HT,tot 7.5 7.8804 6.5336 2.5560 9.0579 2.9378

δ̂∗∗HT,tot 7.5 7.7047 1.8217 1.3497 29.0056 5.3838

δ̂HT,dir 4 4.1881 7.1258 2.6694 8.3648 2.8264

δ̂∗HT,dir 4 4.1663 2.0884 1.4451 4.5201 2.1028

δ̂∗∗HT,dir 4 4.0241 0.0806 0.2840 1.7810 1.3343

δ̂HT,ind 3.5 3.6922 1.2860 1.1340 2.3522 1.5166

δ̂∗HT,ind 3.5 3.7140 2.1083 1.4520 3.6433 1.8871

δ̂∗∗HT,ind 3.5 3.6806 1.2912 1.1363 15.4792 3.9327

δ̂HT,1st 2 2.1052 0.8123 0.9013 1.0711 1.0142

δ̂∗HT,1st 2 2.0916 1.1817 1.0870 2.2955 1.5040

δ̂∗∗HT,1st 2 2.0365 0.3292 0.5738 1.7140 1.3084

δ̂HT,2nd 1 1.2768 1.2864 1.1342 1.9647 1.3878

δ̂∗HT,2nd 1 1.0604 1.9307 1.3895 4.0752 2.0097

δ̂∗∗HT,2nd 1 1.0766 0.3360 0.5797 1.7297 1.3142

δ̂HT,3rd 0.5 0.3100 1.8290 1.3524 2.7502 1.6484

δ̂∗HT,3rd 0.5 0.5619 2.9822 1.7269 4.8939 2.1931

δ̂∗∗HT,3rd 0.5 0.5674 0.3191 0.5649 1.7159 1.3090
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Table 4.8: Estimates Under Completely Randomized Design Model 7

Estimator Effects Emp.Estimates Emp.Var Emp.S.D. Var Estimate. SE

δ̂HT,tot 6 6.3539 4.5838 2.1409 6.2551 2.4383

δ̂∗HT,tot 6 6.3539 4.5838 2.1409 6.2551 2.4383

δ̂∗∗HT,tot 6 6.2060 1.4393 1.1997 20.6590 4.5433

δ̂HT,dir 0 0.1819 6.5108 2.5516 8.0926 2.8013

δ̂∗HT,dir 0 0.1731 1.6877 1.2991 3.5277 1.8626

δ̂∗∗HT,dir 0 0.0181 0.1299 0.3604 1.5061 1.2268

δ̂HT,ind 6 6.1720 2.5073 1.5834 4.9432 2.2036

δ̂∗HT,ind 6 6.1808 1.7198 1.3114 3.7121 1.9091

δ̂∗∗HT,ind 6 6.1879 0.9250 0.9618 11.4523 3.3824

δ̂HT,1st 3 3.0984 1.1387 1.0671 1.5504 1.2264

δ̂∗HT,1st 3 3.0389 0.4756 0.6896 1.1477 1.0637

δ̂∗∗HT,1st 3 3.0472 0.1872 0.4327 1.3216 1.1487

δ̂HT,2nd 2 2.3685 2.5428 1.5946 4.0576 1.9985

δ̂∗HT,2nd 2 2.1656 1.2107 1.1003 2.9755 1.7181

δ̂∗∗HT,2nd 2 2.1053 0.2470 0.4970 1.2755 1.1284

δ̂HT,3rd 1 0.7050 4.3580 2.08758 6.3803 2.5144

δ̂∗HT,3rd 1 0.9762 2.8469 1.6873 4.5391 2.1205

δ̂∗∗HT,3rd 1 1.0353 0.2571 0.5070 1.2202 1.1038
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Table 4.9: Estimates Under Completely Randomized Design Model 8

Estimator Effects Emp.Estimates Emp.Var Emp.S.D. Var Estimate. SE

δ̂HT,tot 7 7.3716 5.8366 2.4159 8.0563 2.7697

δ̂∗HT,tot 7 7.3716 5.8366 2.4159 8.0563 2.7697

δ̂∗∗HT,tot 7 7.2083 1.6796 1.2960 25.0822 5.0061

δ̂HT,dir 1 1.1995 7.8666 2.8047 9.5890 3.0456

δ̂∗HT,dir 1 1.1794 2.0471 1.4307 4.2084 2.0326

δ̂∗∗HT,dir 1 1.0181 0.1302 0.3609 1.7396 1.3185

δ̂HT,ind 6 6.1720 2.5073 1.5834 4.9432 2.2036

δ̂∗HT,ind 6 6.1921 2.0228 1.4222 4.1524 2.0177

δ̂∗∗HT,ind 6 6.1902 1.1002 1.0489 13.6475 3.6924

δ̂HT,1st 3 3.0984 1.1387 1.0671 1.5504 1.2264

δ̂∗HT,1st 3 3.0545 0.6008 0.7751 1.4171 1.1810

δ̂∗∗HT,1st 3 3.0441 0.2382 0.4880 1.5531 1.2453

δ̂HT,2nd 2 2.3685 2.5428 1.5946 4.0576 1.9985

δ̂∗HT,2nd 2 2.1425 1.5115 1.2294 3.6130 1.8933

δ̂∗∗HT,2nd 2 2.1022 0.2885 0.5371 1.5247 1.2338

δ̂HT,3rd 1 0.7050 4.3580 2.08758 6.3803 2.5144

δ̂∗HT,3rd 1 0.9950 3.3635 1.8339 5.3739 2.3057

δ̂∗∗HT,3rd 1 1.04383 0.2992 0.5470 1.4713 1.2120
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Table 4.10: Estimates Under Completely Randomized Design Model 9

Estimator Effects Emp.Estimates Emp.Var Emp.S.D. Var Estimate. S.E

δ̂HT,tot 10 10.4245 10.7237 3.2747 15.0755 3.7942

δ̂∗HT,tot 10 10.4245 10.7237 3.2747 15.0755 3.7942

δ̂∗∗HT,tot 10 10.2152 2.6553 1.6295 45.4071 6.7362

δ̂HT,dir 4 4.2525 13.0627 3.6142 15.4366 3.8532

δ̂∗HT,dir 4 4.1985 3.5759 1.8910 7.4130 2.6941

δ̂∗∗HT,dir 4 4.0182 0.1313 0.3624 2.8394 1.6848

δ̂HT,ind 6 6.1720 2.5073 1.5834 4.9432 2.2036

δ̂∗HT,ind 6 6.2260 3.3239 1.8231 6.2311 2.4692

δ̂∗∗HT,ind 6 6.1969 1.8774 1.3701 24.1681 4.9141

δ̂HT,1st 3 3.0984 1.1387 1.0671 1.5504 1.2264

δ̂∗HT,1st 3 3.1014 1.3991 1.1828 2.9722 1.7108

δ̂∗∗HT,1st 3 3.0348 0.4849 0.6963 2.6805 1.6363

δ̂HT,2nd 2 2.3685 2.5428 1.5946 4.0576 1.9985

δ̂∗HT,2nd 2 2.0731 2.8845 1.6984 6.4103 2.5215

δ̂∗∗HT,2nd 2 2.0928 0.4845 0.6961 2.7112 1.6454

δ̂HT,3rd 1 0.7050 4.3580 2.0875 6.3803 2.5144

δ̂∗HT,3rd 1 1.0514 5.3629 2.3158 8.7193 2.9314

δ̂∗∗HT,3rd 1 1.0692 0.5004 0.7074 2.6641 1.6311
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Figure 4.1: Standard errors estimates of model 1 of all estimators under the K-nearest
neighbors interference assumption, no-interaction between direct and indirect effects assump-
tion and no-interaction between indirect effects assumption. We use N = 256 units and
K = 3 nearest neighbors. The effects are estimated using 100 randomizations.
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Figure 4.2: Standard errors estimates of model 2 of all estimators under the K-nearest
neighbors interference assumption, no-interaction between direct and indirect effects assump-
tion and no-interaction between indirect effects assumption. We use N = 256 units and
K = 3 nearest neighbors. The effects are estimated using 100 randomizations.
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Figure 4.3: Standard errors estimates of model 3 of all estimators under the K-nearest
neighbors interference assumption, no-interaction between direct and indirect effects assump-
tion and no-interaction between indirect effects assumption. We use N = 256 units and
K = 3 nearest neighbors. The effects are estimated using 100 randomizations.
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Figure 4.4: Standard errors estimates of model 4 of all estimators under the K-nearest
neighbors interference assumption, no-interaction between direct and indirect effects assump-
tion and no-interaction between indirect effects assumption. We use N = 256 units and
K = 3 nearest neighbors. The effects are estimated using 100 randomizations.
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Figure 4.5: Standard errors estimates of model 5 of all estimators under the K-nearest
neighbors interference assumption, no-interaction between direct and indirect effects assump-
tion and no-interaction between indirect effects assumption. We use N = 256 units and
K = 3 nearest neighbors. The effects are estimated using 100 randomizations.
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Figure 4.6: Standard errors estimates of model 6 of all estimators under the K-nearest
neighbors interference assumption, no-interaction between direct and indirect effects assump-
tion and no-interaction between indirect effects assumption. We use N = 256 units and
K = 3 nearest neighbors. The effects are estimated using 100 randomizations.
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Figure 4.7: Standard errors estimates of model 7 of all estimators under the K-nearest
neighbors interference assumption, no-interaction between direct and indirect effects assump-
tion and no-interaction between indirect effects assumption. We use N = 256 units and
K = 3 nearest neighbors. The effects are estimated using 100 randomizations.
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Figure 4.8: Standard errors estimates of model 8 of all estimators under the K-nearest
neighbors interference assumption, no-interaction between direct and indirect effects assump-
tion and no-interaction between indirect effects assumption. We use N = 256 units and
K = 3 nearest neighbors. The effects are estimated using 100 randomizations.
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Figure 4.9: Standard errors estimates of model 9 of all estimators under the K-nearest
neighbors interference assumption, no-interaction between direct and indirect effects assump-
tion and no-interaction between indirect effects assumption. We use N = 256 units and
K = 3 nearest neighbors. The effects are estimated using 100 randomizations.
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Assumptions 3.1 and 3.2 for interference structure with smaller direct effects (see Models 1,

2, 4, 5, 7, and 8). However, for interference with slightly large direct effect (see Models 3, 6

and 9), those estimators increase estimation precision only when compared to Assumption

3.2. On the other hand, the total and indirect effect estimators under Assumption 4.1 have

larger standard errors for all scenarios than those under Assumptions 3.1 and 3.2.

4.6 Conclusion

Traditional causal inference methodologies are inappropriate in the presence of interference.

The K-nearest neighbors interference framework can answer interesting questions in different

applications. The no-interaction between indirect effects assumption has improved estima-

tion precision, in particular, when the direct effect is relatively small. More work could be

done in order to estimate total and indirect effects when the direct effect is large.
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Chapter 5

Conclusion

5.1 Summary

Causal inference under settings with interference has gained the attention of researchers in

the past decade, and it remains an active research area. Many experimental studies seeking

the causal treatment effect encounter treatment interference between units under study. In

such settings, interference complicates the analysis rendering traditional causal inference

methodologies inadequate.

This dissertation focuses on developing a new framework of causal inference in the pres-

ence of interference as an extension of the Neyman-Rubin causal model and allowing for

interference within the K-neighborhood of units. In the K-nearest neighbors interference

model, a unit assigned to treatment is allowed to interfere with another unit’s outcome if

it is one of the K closest units to the second one. (i.e., if the first unit belongs to the

K-neighborhood of the second unit using an interaction measure). Typically, methodolo-

gies account for the number of treated neighbors regardless of which neighbors are included.

Under the K-neighborhood framework, we account for the proximity of the neighbors to

the unit. To the best of our knowledge, this interference structure previously has not been

considered.

Detecting treatment interference is one way to address the problem. Existing testing
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methods of arbitrary interference vary between conditional randomization testing and an

experimental design approach. We develop a randomization-based test and evaluate the per-

formance of this test as well as existing methods under KNNIM through extensive simulation

studies. Given an algorithm of choosing independent focal units, conditional randomization

tests achieved better results than experimental design approach.

Estimation of indirect effects has become a primary interest in many applications recently.

We define direct effects, indirect effects, total effects, and the `th nearest neighbor indirect

effect under the K-neighborhood assumption. We uncover and examine the indirect effects

of the K-nearest neighbors, which has not been studied. Using the Horvitz–Thompson

estimator, we propose estimators of each of the defined effects under the K-neighborhood

assumption, derive properties of the proposed estimators, and provide conservative variance

estimators. To achieve better estimation precision, we propose another set of estimators with

their properties under the no-interaction between direct and indirect effects. To demonstrate

the proposed methods, under completely randomized and Bernoulli randomization designs,

we evaluate the performance of estimators under both, the K-neighborhood as well as the

no-interaction between direct and indirect effects assumptions through simulation study and

a case study.

Finally, we develop new estimators of direct, indirect, total, and the `th nearest neighbor

effect under a new assumption of no-interaction between indirect effects. This assumption

allows for including more units to improve estimation precision. The proposed estimators,

specifically the direct and the `th nearest neighbors, achieve smaller standard errors for

almost all interference models.

5.2 Future Research

For detecting treatment interference—even though the newly developed test obtained bet-

ter results than other methods—further theoretical research is needed to investigate the

asymptotic behavior of the test. Comparing estimators under the K-neighborhood and

the no-interaction between direct and indirect effects assumptions for both completely ran-
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domized and Bernoulli randomization designs suggests that completely randomized designs

achieve better results. A research extension is to consider experimental designs—for exam-

ple, cluster-randomized or two-stage designs—that can best estimate treatment effects under

K-nearest neighbors interference.

The K-nearest neighbors interference framework accounts for the closeness between the

unit and its K-nearest neighbors with respect to an interaction measure. Next step is to

assume monotonic magnitude of the indirect effects where we expect closer neighbors to

provide larger indirect effects on the outcome of the unit. Hence, sequential tests could test

the significance of the indirect effects of the `th nearest neighbor, such that if the effect of

the closest neighbor is insignificant, then the rest of the nearest neighbors effects may be

insignificant accordingly. This assumption might be addressed in future research.
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Appendix A

Properties of Horvitz–Thompson

Estimator of the Average Potential

Outcomes under any Exposure

Here, we derive properties of the Horvitz–Thompson estimator of the average potential

outcomes under any exposure (W,WNK
)—that is, the overall treatment allocation assigns

treatment W to unit i and assigns treatment conditions WNK
to i’s K-neighborhood.

First, the Horvitz–Thompson estimator of the total potential outcomes of units under

any exposure (W,WNK
) is

ŷTHT (W,WNK
) =

N∑
i=1

Ii(W,WNK
)
Y obs
i (W,WNK

)

πi(W,WNK
)
. (A.1)

The unbiased Horvitz–Thompson estimator of the average potential outcomes of units

under any exposure (W,WNK
) is

Ȳ obs
HT (W,WNK

) =
1

N

N∑
i=1

Ii(W,WNK
)
Y obs
i (W,WNK

)

πi(W,WNK
)
. (A.2)

where Ii(W,WNK
) is the treatment allocation indicator of unit i which is the only stochas-
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tic component of the expression. Hence, Ii(W,WNK
) is a Bernoulli random variable with

E[Ii(W,WNK
)] = πi(W,WNK

), Var(Ii(W,WNK
)) = Cov(Ii(W,WNK

), Ii(W,WNK
)) = πi(W,WNK

)(1−

πi(W,WNK
)) and Cov(Ii(W,WNK

), Ij(W,WNK
)) = (πij(W,WNK

)−πi(W,WNK
)πj(W,WNK

))

where

E[Ii(W,WNK
)Ij(W,WNK

)] = πij(W,WNK
) is the inclusion probability of units i and j.

A.1 The Expected value of Horvitz–Thompson Esti-

mator

The expected value of Ȳ obs
HT (W,WNK

) is

E(Ȳ obs
HT (W,WNK

)) = E

[
1

N

N∑
i=1

Ii(W,WNK
)
Y obs
i (W,WNK

)

πi(W,WNK
)

]

=
1

N

N∑
i=1

E [Ii(W,WNK
)]
yi(W,WNK

)

πi(W,WNK
)

=
1

N

N∑
i=1

πi(W,WNK
)
yi(W,WNK

)

πi(W,WNK
)

=
1

N

N∑
i=1

yi(W,WNK
)

= ȳ(W,WNK
).

(A.3)

A.2 The Variance of Horvitz–Thompson Estimator

Recall the property that Var(X) = E(X2) - (E(X))2 and (
∑N

i=1 aiXi)
2 =

∑N
i=1 a

2
iX

2
i +∑N

i=1

∑
j 6=i aiajXiXj and note that E[I2i (W,WNK

)] = E[Ii(W,WNK
)] = πi(W,WNK

) and

πi((W,WNK
), (W ′,W′

NK
))) = 0 because unit i cannot be exposed to two exposures at the

same time.
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(
E(Ȳ obs

HT (W,WNK
)
)2

=

(
E

(
1

N

N∑
i=1

Ii(W,WNK
)
Y obs
i (W,WNK

)

πi(W,WNK
)

))2

=

(
1

N

N∑
i=1

E (Ii(W,WNK
))
yi(W,WNK

)

πi(W,WNK
)

)2

=
1

N2

(
N∑
i=1

yi(W,WNK
)

)2

=
1

N2

N∑
i=1

y2i (W,WNK
) +

1

N2

N∑
i=1

∑
j 6=i

yi(W,WNK
)yj(W,WNK

)

(A.4)
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E((Ȳ obs
HT (W,WNK

))2) = E

( 1

N

N∑
i=1

Ii(W,WNK
)
Y obs
i (W,WNK

)

πi(W,WNK
)

)2


= E

[(
1

N2

N∑
i=1

I2i (W,WNK
)
Y 2obs

i (W,WNK
)

π2
i (W,WNK

)

)

+

(
1

N2

N∑
i=1

∑
j 6=i

Ii(W,WNK
)Ij(W,WNK

)
Y obs
i (W,WNK

)Y obs
j (W,WNK

)

πi(W,WNK
)πj(W,WNK

)

)]

= E

[(
1

N2

N∑
i=1

I2i (W,WNK
)
Y 2obs

i (W,WNK
)

π2
i (W,WNK

)

)]

+ E

[(
1

N2

N∑
i=1

∑
j 6=i

Ii(W,WNK
)Ij(W,WNK

)
Y obs
i (W,WNK

)Y obs
j (W,WNK

)

πi(W,WNK
)πj(W,WNK

)

)]

=

(
1

N2

N∑
i=1

E[I2i (W,WNK
)]
y2i (W,WNK

)

π2
i (W,WNK

)

)

+

(
1

N2

N∑
i=1

∑
j 6=i

E[Ii(W,WNK
)Ij(W,WNK

)]
yi(W,WNK

)yj(W,WNK
)

πi(W,WNK
)πj(W,WNK

)

)

=
1

N2

N∑
i=1

πi(W,WNK
)
y2i (W,WNK

)

π2
i (W,WNK

)

+
1

N2

N∑
i=1

∑
j 6=i

πij(W,WNK
)
yi(W,WNK

)yj(W,WNK
)

πi(W,WNK
)πj(W,WNK

)

=
1

N2

N∑
i=1

y2i (W,WNK
)

πi(W,WNK
)

+
1

N2

N∑
i=1

∑
j 6=i

πij(W,WNK
)
yi(W,WNK

)yj(W,WNK
)

πi(W,WNK
)πj(W,WNK

)
(A.5)

Hence, the variance of Ȳ obs
HT (W,WNK

) is
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Var(Ȳ obs
HT (W,WNK

)) = E((Ȳ obs
HT (W,WNK

))2)−
(
E(Ȳ obs

HT (W,WNK
)
)2

=
1

N2

N∑
i=1

y2i (W,WNK
)

πi(W,WNK
)

+
1

N2

N∑
i=1

∑
j 6=i

πij(W,WNK
)
yi(W,WNK

)yj(W,WNK
)

πi(W,WNK
)πj(W,WNK

)

− 1

N2

N∑
i=1

y2i (W,WNK
)− 1

N2

N∑
i=1

∑
j 6=i

yi(W,WNK
)yj(W,WNK

)

=
1

N2

N∑
i=1

πi(W,WNK
)[1− πi(W,WNK

)]

[
yi(W,WNK

)

πi(W,WNK
)

]2
+

1

N2

N∑
i=1

∑
j 6=i

[πij(W,WNK
)− πi(W,WNK

)πj(W,WNK
)]
yi(W,WNK

)yj(W,WNK
)

πi(W,WNK
)πj(W,WNK

)
. (A.6)

A.3 The Covariance between two Horvitz–Thompson

Estimators of the Averages

The covariance between the averages of potential outcomes under any two exposures to

treatments (W,WNK
) and (W ′,W′

NK
)) using the property that Cov(X, Y ) = E(XY ) −

E(X)E(Y ) is as follows:

Note the following expectations:
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E(Ȳ obs
HT (W,WNK

)Ȳ obs
HT (W ′,W′

NK
))) =

E

[(
1

N

N∑
i=1

Ii(W,WNK
)
Y obs
i (W,WNK

)

πi(W,WNK
)

)(
1

N

N∑
i=1

Ii(W
′,W′

NK
))
Y obs
i (W ′,W′

NK
))

πi(W ′,W′
NK

))

)]

= E

[(
1

N2

N∑
i=1

Ii(W,WNK
)Ii(W

′,W′
NK

))
Y obs
i (W,WNK

)Y obs
i (W ′,W′

NK
))

πi(W,WNK
)πi(W ′,W′

NK
))

)

+

(
1

N2

N∑
i=1

∑
j 6=i

Ii(W,WNK
)Ij(W

′,W′
NK

))
Y obs
i (W,WNK

)Y obs
j (W ′,W′

NK
))

πi(W,WNK
)πj(W ′,W′

NK
))

)]

= E

[(
1

N2

N∑
i=1

Ii(W,WNK
)Ii(W

′,W′
NK

))
Y obs
i (W,WNK

)Y obs
i (W ′,W′

NK
))

πi(W,WNK
)πi(W ′,W′

NK
))

)]

+ E

[(
1

N2

N∑
i=1

∑
j 6=i

Ii(W,WNK
)Ij(W

′,W′
NK

))
Y obs
i (W,WNK

)Y obs
j (W ′,W′

NK
))

πi(W,WNK
)πj(W ′,W′

NK
))

)]

=

(
1

N2

N∑
i=1

E
[
Ii(W,WNK

)Ii(W
′,W′

NK
))
] yi(W,WNK

)yi(W
′,W′

NK
))

πi(W,WNK
)πi(W ′,W′

NK
))

)

+

(
1

N2

N∑
i=1

∑
j 6=i

E
[
Ii(W,WNK

)Ij(W
′,W′

NK
))
] yi(W,WNK

)yi(W
′,W′

NK
))

πi(W,WNK
)πj(W ′,W′

NK
))

)

=
1

N2

N∑
i=1

πi((W,WNK
), (W ′,W′

NK
)))

yi(W,WNK
)yi(W

′,W′
NK

))

πi(W,WNK
)πi(W ′,W′

NK
))

+
1

N2

N∑
i=1

∑
j 6=i

πij((W,WNK
), (W ′,W′

NK
)))

yi(W,WNK
)yj(W

′,W′
NK

))

πi(W,WNK
)πj(W ′,W′

NK
))

=
1

N2

N∑
i=1

∑
j 6=i

πij((W,WNK
), (W ′,W′

NK
)))

yi(W,WNK
)yj(W

′,W′
NK
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πi(W,WNK
)πj(W ′,W′

NK
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(A.7)
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E(Ȳ obs
HT (W,WNK

))E(Ȳ obs
HT (W ′,W′

NK
))) =

E

[
1

N

N∑
i=1

Ii(W,WNK
)
Y obs
i (W,WNK

)

πi(W,WNK
)

]
E

[
1

N

N∑
i=1

Ii(W
′,W′

NK
))
Y obs
i (W ′,W′

NK
))

πi(W ′,W′
NK

))

]

=

[
1

N

N∑
i=1

yi(W,WNK
)

][
1

N

N∑
i=1

yi(W
′,W′

NK
))

]

=
1

N2

N∑
i=1

yi(W,WNK
)yi(W

′,W′
NK

)) +
1

N2

N∑
i=1

∑
j 6=i

yi(W,WNK
)yj(W

′,W′
NK

)) (A.8)

Cov(Ȳ obs
HT (W,WNK

), Ȳ obs
HT (W ′,W′

NK
))) = E(Ȳ obs

HT (W,WNK
)Ȳ obs

HT (W ′,W′
NK

)))

− E(Ȳ obs
HT (W,WNK

))E(Ȳ obs
HT (W ′,W′

NK
)))

=
1

N2

N∑
i=1

∑
j 6=i

πij((W,WNK
), (W ′,W′

NK
)))

yi(W,WNK
)yj(W

′,W′
NK

))

πi(W,WNK
)πj(W ′,W′

NK
))

− 1

N2

N∑
i=1

yi(W,WNK
)yi(W

′,W′
NK

))− 1

N2

N∑
i=1

∑
j 6=i

yi(W,WNK
)yj(W

′,W′
NK

))

=
1

N2

N∑
i=1

∑
j 6=i

[
πij((W,WNK

), (W ′,W′
NK

)))− πi(W,WNK
)πj(W

′,W′
NK

))
] yi(W,WNK

)yj(W
′,W′

NK
))

πi(W,WNK
)πj(W ′,W′

NK
))

− 1

N2

N∑
i=1

yi(W,WNK
)yi(W

′,W′
NK

)). (A.9)

A.4 Estimation of the Variance

There are two conditions under a measurable design: πi(W,WNK
) > 0 and πij(W,WNK

) >

0. Non-measurable designs are the designs that do not meet one of these two conditions.

The Horvitz–Thompson variance estimator of Var(Ȳ obs
HT (W,WNK

)) is provided as follows:
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V̂arHT (Ȳ obs
HT (W,WNK

)) =
1

N2
V̂arHT (ŷTHT (W,WNK

))

=
1

N2

∑
i∈U

Ii(W,WNK
)[1− πi(W,WNK

)]

[
Y obs
i (W,WNK

)

πi(W,WNK
)

]2
+

1

N2

∑
i∈U

∑
j∈U,j 6=i

Ii(W,WNK
)Ij(W,WNK

)
[πij(W,WNK

)− πi(W,WNK
)πj(W,WNK

)]

πij(W,WNK
)

×
Y obs
i (W,WNK

)Y obs
j (W,WNK

)

πi(W,WNK
)πj(W,WNK

)
. (A.10)

Under measurable designs,i.e., the joint probabilities πij(W,WNK
) > 0 for all i and

j, and this estimated variance is unbiased. However, under non measurable designs when

πij(W,WNK
) = 0 for some i and j, then this estimated variance will be biased.

Let’s re-express the variance in equation A.6 as follows:

Var(Ȳ obs
HT (W,WNK

)) =
1

N2

N∑
i=1

πi(W,WNK
)[1− πi(W,WNK

)]

[
yi(W,WNK

)

πi(W,WNK
)

]2
+

1

N2

N∑
i=1

∑
j∈U,j 6=i:πij(W,WNK

)>0

[πij(W,WNK
)−πi(W,WNK

)πj(W,WNK
)]
yi(W,WNK

)yj(W,WNK
)

πi(W,WNK
)πj(W,WNK

)

−
∑
i∈U

∑
j∈U,j 6=i:πij(W,WNK

)=0

yi(W,WNK
)yj(W,WNK

). (A.11)

If πij(W,WNK
) = 0 for some i and j, then
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E(V̂arHT (Ȳ obs
HT (W,WNK

))) = E

(
1

N2

∑
i∈U

Ii(W,WNK
)[1− πi(W,WNK

)]

[
Y obs
i (W,WNK

)

πi(W,WNK
)

]2
+

1

N2

∑
i∈U

∑
j∈U,j 6=i:πij(W,WNK

)>0

Ii(W,WNK
)Ij(W,WNK

)
[πij(W,WNK

)− πi(W,WNK
)πj(W,WNK

)]

πij(W,WNK
)

×
Y obs
i (W,WNK

)Y obs
j (W,WNK

)

πi(W,WNK
)πj(W,WNK

)

)

= VarHT (Ȳ obs
HT (W,WNK

)) +
∑
i∈U

∑
j∈U,j 6=i:πij(W,WNK

)=0

yi(W,WNK
)yj(W,WNK

).

= VarHT (Ȳ obs
HT (W,WNK

)) + A, (A.12)

where A =
∑

i∈U
∑

j∈U,j 6=i:πij(W,WNK
)=0 yi(W,WNK

)yj(W,WNK
) and we can never ob-

serve yi(W,WNK
) and yj(W,WNK

) together because πij(W,WNK
) = 0.

As derived in Aronow and Samii (2013, 2017), we have the following variance bias cor-

rection,

V̂arA(Ȳ obs
HT (W,WNK

)) = V̂arHT (Ȳ obs
HT (W,WNK

)) + Â∗(W,WNK
)

=
1

N2

∑
i∈U

Ii(W,WNK
)[1− πi(W,WNK
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πi(W,WNK
)

]2
+
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N2

∑
i∈U
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j∈U,j 6=i:πij(W,WNK

)>0

Ii(W,WNK
)Ij(W,WNK

)
[πij(W,WNK

)− πi(W,WNK
)πj(W,WNK

)]

πij(W,WNK
)

×
Y obs
i (W,WNK

)Y obs
j (W,WNK

)

πi(W,WNK
)πj(W,WNK

)

+
1

N2

∑
i∈U

∑
j∈U,j 6=i:πij(W,WNK

)=0

[
Ii(W,WNK

)Y 2obs

i (W,WNK
)

2πi(W,WNK
)

+
Ij(W,WNK

)Y 2obs

j (W,WNK
)

2πj(W,WNK
)

]

(A.13)
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where

Â∗(W,WNK
) =

1

N2

∑
i∈U

∑
j∈U,j 6=i:πij(W,WNK

)=0

[
Ii(W,WNK

)Y 2obs

i (W,WNK
)

2πi(W,WNK
)

+
Ij(W,WNK

)Y 2obs

j (W,WNK
)

2πj(W,WNK
)

]
(A.14)

Then, V̂arA(Ȳ obs
HT (W,WNK

)) is a conservative estimator for the variance of Horvitz–Thompson

estimator of the average potential outcomes under exposure (W,WNK
).

E(V̂arA(Ȳ obs
HT (W,WNK

)) ≥ VarHT (Ȳ obs
HT (W,WNK

)) (A.15)

Proof. First, for simplicity, let Ii = Ii(W,WNK
), Ij = Ij(W,WNK

), πi = πi(W,WNK
),

πj = πj(W,WNK
), πij = πij(W,WNK

), Yi = Y obs
i (W,WNK

) and Yj = Y obs
j (W,WNK

) and

instead of the average, consider the variance bias correction of the total as follows,

V̂arC(ŷTHT (W,WNK
)) =

∑
i∈U

Ii[1− πi]
[
Yi
πi

]2
+
∑
i∈U

∑
j∈U,j 6=i:πij>0

IiIj
[πij − πiπj]

πij
× YiYj
πiπj

+
∑
i∈U

∑
j∈U,j 6=i:πij=0

[
Ii
|Yi|aij
aijπi

+Ij
|Yj|bij
bijπj

]

where aij and bij are positive real numbers such that 1
aij

+ 1
bij

= 1 for all pairs i and j

with πij = 0.

By Young’s inequality, if 1
aij

+ 1
bij

= 1,

|yi|aij
aij

+
|yj|bij
bij

≥ |yi||yj|.
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Define A∗ such that,

A∗ =
∑
i∈U

∑
j∈U,j 6=i:πij=0

|yi|aij
aij

+
|yj|bij
bij

≥
∑
i∈U

∑
j∈U,j 6=i:πij=0

|yi||yj| ≥
∑
i∈U

∑
j∈U,j 6=i:πij=0

yiyj = A

and

A∗ ≥
∑
i∈U

∑
j∈U,j 6=i:πij=0

|yi||yj| ≥
∑
i∈U

∑
j∈U,j 6=i:πij=0

−yiyj = −A.

Therefore,

VarHT (ŷTHT (W,WNK
)) + A∗ ≥ VarHT (ŷTHT (W,WNK

))− A

and the associated Horvitz–Thompson estimator of A∗ is

Â∗ =
∑
i∈U

∑
j∈U,j 6=i:πij=0

[
Ii
|Yi|aij
aijπi

+Ij
|Yj|bij
bijπj

]

where unbiasedness of Â∗ follows by E(Ii) = πi and E(Ij) = πj. By Equation A.12 and by

E(Â∗) = A∗,

E(V̂arHT (ŷTHT (W,WNK
)) + Â∗) = VarHT (ŷTHT (W,WNK

)) + A+ A∗.

Hence,

E(V̂arC(ŷTHT (W,WNK
))) ≥ VarHT (ŷTHT (W,WNK

)).

As a special case, assigning all aij = bij = 2 such that 1
2

+ 1
2

= 1 for all pairs i and j with

πij = 0 where
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A∗ =
∑
i∈U

∑
j∈U,j 6=i:πij=0

|yi|2

2
+
|yj|2

2

and

Â∗ =
∑
i∈U

∑
j∈U,j 6=i:πij=0

[
Ii
|Yi|2

2πi
+Ij
|Yj|2

2πj

]

and for Ȳ obs
HT (W,WNK

) =
1

N
ŷTHT (W,WNK

),we have

V̂arA(Ȳ obs
HT (W,WNK

)) =
1

N2

∑
i∈U

Ii(W,WNK
)[1− πi(W,WNK

)]

[
Y obs
i (W,WNK

)

πi(W,WNK
)

]2
+

1

N2

∑
i∈U

∑
j∈U,j 6=i:πij(W,WNK

)>0

Ii(W,WNK
)Ij(W,WNK

)
[πij(W,WNK

)− πi(W,WNK
)πj(W,WNK

)]

πij(W,WNK
)

×
Y obs
i (W,WNK

)Y obs
j (W,WNK

)

πi(W,WNK
)πj(W,WNK

)

+
1

N2

∑
i∈U

∑
j∈U,j 6=i:πij(W,WNK

)=0

[
Ii(W,WNK

)Y 2obs

i (W,WNK
)

2πi(W,WNK
)

+
Ij(W,WNK

)Y 2obs

j (W,WNK
)

2πj(W,WNK
)

]

Therefore, we have proved that,

E(V̂arA(Ȳ obs
HT (W,WNK

)) ≥ VarHT (Ȳ obs
HT (W,WNK

))

Hence, V̂arA(Ȳ obs
HT (W,WNK

) is a conservative estimator of VarHT (Ȳ obs
HT (W,WNK

)). �

Moreover, last term in equation A.9 is unidentified because each unit receives only one

exposure and can only be observed under this exposure. Hence, there is no unbiased es-

timator for the variance of the proposed estimators. However, if the joint probabilities

πij((W,WNK
), (W ′,W′

NK
))) > 0 for two different exposures (W,WNK

) and (W ′,W′
NK

)) for
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all i and j, an estimator for the covariance in A.9 can be as follows:

Ĉov(Ȳ obs
HT (W,WNK

), Ȳ obs
HT (W ′,W′

NK
))) =

1

N2

∑
i∈U

∑
j∈U,j 6=i

[
Ii(W,WNK

)Ij(W
′,W′

NK
))

πij((W,WNK
), (W ′,W′

NK
)))

Yi(W,WNK
)

πi(W,WNK
)

Yj(W
′,W′

NK
))

πj(W ′,W′
NK

))

×[πij((W,WNK
), (W ′,W′

NK
)))− πi(W,WNK

)πj(W
′,W′

NK
))]
]

− 1

N2

∑
i∈U

[
Ii(W,WNK

)Y 2obs

i (W,WNK
)

2πi(W,WNK
)

+
Ii(W

′,W′
NK

))Y 2obs

i (W ′,W′
NK

))

2πi(W ′,W′
NK

))

]
(A.16)

such that

E(Ĉov(Ȳ obs
HT (W,WNK

), Ȳ obs
HT (W ′,W′

NK
)))) ≤ Cov(Ȳ obs

HT (W,WNK
), Ȳ obs

HT (W ′,W′
NK

)))

(A.17)

By Young’s inequality, this can be proved by the fact that the expected value of last term

in equation A.16 is less than or equal to the last term in equation A.9.

For the case where the joint probabilities πij((W,WNK
), (W ′,W′

NK
))) = 0 for some i and

j, the covariance in A.9 can be refined as follows:

Cov(Ȳ obs
HT (W,WNK

), Ȳ obs
HT (W ′,W′

NK
))) =

1

N2

∑
i∈U

∑
j∈U,j 6=i:πij((W,WNK

),(W ′,W′
NK

)))>0

[
πij((W,WNK

), (W ′,W′
NK

)))− πi(W,WNK
)πj(W

′,W′
NK

))
]

×
yi(W,WNK

)yj(W
′,W′

NK
))

πi(W,WNK
)πj(W ′,W′

NK
))

− 1

N2

∑
i∈U

∑
j∈U :πij((W,WNK

),(W ′,W′
NK

)))=0

yi(W,WNK
)yj(W

′,W′
NK

)). (A.18)

Consequently, the more general covariance estimator is
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ĈovA(Ȳ obs
HT (W,WNK

), Ȳ obs
HT (W ′,W′

NK
)) =

1

N2

∑
i∈U

∑
j∈U,j 6=i:πij((W,WNK

),(W ′,W′
NK

)))>0

[
Ii(W,WNK

)Ij(W
′,W′

NK
))

πij((W,WNK
), (W ′,W′

NK
)))

Y obs
i (W,WNK

)

πi(W,WNK
)

Y obs
j (W ′,W′

NK
))

πj(W ′,W′
NK

))

×[πij((W,WNK
), (W ′,W′

NK
)))− πi(W,WNK

)πj(W
′,W′

NK
))]
]

− 1

N2

∑
i∈U

∑
j∈U :πij((W,WNK

),(W ′,W′
NK

)))=0

[
Ii(W,WNK

)Y 2
i

2πi(W,WNK
)

+
Ij(W

′,W′
NK

))Y 2
j

2πj(W ′,W′
NK

))

]
(A.19)

Proposition A.1.

E(ĈovA(Ȳ obs
HT (W,WNK

), Ȳ obs
HT (W ′,W′

NK
))) ≤ Cov(Ȳ obs

HT (W,WNK
), Ȳ obs

HT (W ′,W′
NK

))).

(A.20)

Proof. First, for simplicity, let Ii = Ii(W,WNK
), Ij = Ij(W

′,W′
NK

)), πi = πi(W,WNK
),

πj = πj(W
′,W′

NK
)), πij = πij((W,WNK

), (W ′,W′
NK

))), Yi = Y obs
i (W,WNK

) and Yj =

Y obs
j (W ′,W′

NK
)) and re-express the covariance in A.18 as follows,

Cov(Ȳ obs
HT (W,WNK

), Ȳ obs
HT (W ′,W′

NK
))) =

1

N2

∑
i∈U

∑
j∈U,j 6=i:πij>0

[πij − πiπj]
yiyj
πiπj
− 1

N2

∑
i∈U

∑
j∈U :πij=0

yiyj

=
1

N2

∑
i∈U

∑
j∈U,j 6=i:πij>0

[πij − πiπj]
yiyj
πiπj

− 1

N2

∑
i∈U

∑
j∈U :πij=0

A′. (A.21)

By Young’s inequality, if 1
aij

+ 1
bij

= 1,

|yi|aij
aij

+
|yj|bij
bij

≥ |yi||yj|. (A.22)
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Then,

A′∗ =
∑
i∈U

∑
j∈U,j 6=i:πij=0

|yi|aij
aij

+
|yj|bij
bij

≥
∑
i∈U

∑
j∈U,j 6=i:πij=0

|yi||yj| ≥
∑
i∈U

∑
j∈U,j 6=i:πij=0

yiyj = A′

(A.23)

and

A′∗ ≥
∑
i∈U

∑
j∈U,j 6=i:πij=0

|yi||yj| ≥
∑
i∈U

∑
j∈U,j 6=i:πij=0

−yiyj = −A′.

Therefore,

1

N2

∑
i∈U

∑
j∈U,j 6=i:πij>0

[πij − πiπj]
yiyj
πiπj

− 1

N2

∑
i∈U

∑
j∈U :πij=0

A′∗ ≤

1

N2

∑
i∈U

∑
j∈U,j 6=i:πij>0

[πij − πiπj]
yiyj
πiπj

− 1

N2

∑
i∈U

∑
j∈U :πij=0

A′.

and the associated Horvitz–Thompson estimator of A′∗ is

Â′∗ =
∑
i∈U

∑
j∈U,j 6=i:πij=0

[
Ii
|Yi|aij
aijπi

+Ij
|Yj|bij
bijπj

]

and consider the variance bias correction of the average as follows,

ĈovA(Ȳ obs
HT (W,WNK

), Ȳ obs
HT (W ′,W′

NK
)) =

1

N2

∑
i∈U

∑
j∈U,j 6=i:πij>0

[
IiIj
πij

Yi
πi

Yj
πj
× [πij − πiπj]

]

− 1

N2

∑
i∈U

∑
j∈U,j 6=i:πij=0

[
Ii
|Yi|aij
aijπi

+Ij
|Yj|bij
bijπj

]

=
1

N2

∑
i∈U

∑
j∈U,j 6=i:πij>0

[
IiIj
πij

Yi
πi

Yj
πj
× [πij − πiπj]

]
− 1

N2

∑
i∈U

∑
j∈U :πij=0

Â′∗

where aij and bij are positive real numbers such that 1
aij

+ 1
bij

= 1 for all pairs i and j

with πij = 0.
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As a special case, assigning all aij = bij = 2 such that 1
2

+ 1
2

= 1 for all pairs i and j with

πij = 0,where

A′∗ =
∑
i∈U

∑
j∈U,j 6=i:πij=0

|yi|2

2
+
|yj|2

2

and

Â′∗ =
∑
i∈U

∑
j∈U,j 6=i:πij=0

[
Ii
|Yi|2

2πi
+Ij
|Yj|2

2πj

]

we have

E(ĈovA(Ȳ obs
HT (W,WNK

), Ȳ obs
HT (W ′,W′

NK
))) ≤ Cov(Ȳ obs

HT (W,WNK
), Ȳ obs

HT (W ′,W′
NK

))).

�

Since V̂arA(Ȳ obs
HT (W,WNK

) is a conservative variance estimator, the covariance estimator

in A.19, provides a conservative variance estimator of any estimator of the form δ̂ = X − Y

such that Var(X−Y ) = Var(X) + Var(Y ) -2Cov(X, Y ) which apply to all estimators under

Assumption 3.1. However, under Assumption 3.2 and Assumption 4.1, we have estimators of

the form δ̂ = (X−Y )+(W −Z) such that Var((X−Y )+(W −Z)) = Var(X) + Var(Y ) +

Var(W ) + Var(Z) -2Cov(X, Y ) + 2Cov(X,W ) -2Cov(X,Z) -2Cov(Y,W ) +2Cov(Y, Z)

-2Cov(W,Z). To get conservative variance estimator of any estimator of the second form,

ĈovA(X, Y ) can be used to estimate covariance components with negative coefficient while

covariance components with positive coefficient need another covariance estimator that is

guaranteed to have expectation greater than or equal to the true covariance.

We provide the following covariance estimator,
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ĈovB(Ȳ obs
HT (W,WNK

), Ȳ obs
HT (W ′,W′

NK
)) =

1

N2

∑
i∈U

∑
j∈U,j 6=i:πij((W,WNK

),(W ′,W′
NK

)))>0

[
Ii(W,WNK

)Ij(W
′,W′

NK
))

πij((W,WNK
), (W ′,W′

NK
)))

Y obs
i (W,WNK

)

πi(W,WNK
)

Y obs
j (W ′,W′

NK
))

πj(W ′,W′
NK

))

×[πij((W,WNK
), (W ′,W′

NK
)))− πi(W,WNK

)πj(W
′,W′

NK
))]
]

+
1

N2

∑
i∈U

∑
j∈U :πij((W,WNK

),(W ′,W′
NK

)))=0

[
Ii(W,WNK

)Y 2
i

2πi(W,WNK
)

+
Ij(W

′,W′
NK

))Y 2
j

2πj(W ′,W′
NK

))

]
(A.24)

Proposition A.2.

E(ĈovB(Ȳ obs
HT (W,WNK

), Ȳ obs
HT (W ′,W′

NK
))) ≥ Cov(Ȳ obs

HT (W,WNK
), Ȳ obs

HT (W ′,W′
NK

))).

(A.25)

The proof follows by Young’s inequality in equations A.22 and A.23.
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Appendix B

Properties of Horvitz-Thompson

Estimators in Chapter 3

First, let W∗
` = (W ∗

`,1,W
∗
`,2, . . . ,W

∗
`,K) ∈ {0, 1}K denote the treatment vector assignment of

length K where the first ` nearest neighbors are given treatment and the rest are control:

W ∗
`,j =

 1, j ≤ `,

0, otherwise.
(B.1)

Note that W∗
K = 1, and define W∗

0 = 0. The average `th–nearest neighbor indirect effect

(A`NNIE) is defined as

δ` =
1

N

N∑
i=1

(yi(0,W
∗
` )− yi(0,W∗

`−1)). (B.2)

Note that W∗
` and W∗

`−1 are identical except that W ∗
`,` = 1 and W ∗

`−1,` = 0. Hence, δ`

may be interpreted as the average difference in response due to the treatment status of the

`th–nearest-neighbor. Additionally, under KNNIM, the AIE is the sum of the A`NNIEs.

Lemma B.1.

δind =
K∑
`=1

δ`. (B.3)
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Proof.

δ1st + δ2nd + δ3rd + · · ·+ δ` + · · ·+ δK =

ȳ(0,W∗
1)− ȳ(0,W∗

0)

+ ȳ(0,W∗
2)− ȳ(0,W∗

1)

+ ȳ(0,W∗
3)− ȳ(0,W∗

2)

+ . . .

+ ȳ(0,W∗
` )− ȳ(0,W∗

`−1)

+ . . .

+ ȳ(0,W∗
K)− ȳ(0,W∗

K−1)

= ȳ(0,W∗
K)− ȳ(0,W∗

0)

= ȳ(0,1)− ȳ(0,0)

= δind.

(B.4)

�

Lemma B.2.

δtot = δdir + δind (B.5)

Proof.

δdir + δind = ȳ(1,1) − ȳ(0,1) + ȳ(0,1) − ȳ(0,0) = ȳ(1,1) − ȳ(0,0) = δtot (B.6)

�
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B.1 Properties of HT-ATOTE under K-NIA

Now, we find the expected value and the variance of HT-ATOT estimator.

δ̂HT,tot = Ȳ obs
HT (1,1)− Ȳ obs

HT (0,0). (B.7)

B.1.1 The Expected Value of HT-ATOTE

E(δ̂HT,tot) = E(Ȳ obs
HT (1,1)− Ȳ obs

HT (0,0)) = E(Ȳ obs
HT (1,1))− E(Ȳ obs

HT (0,0))

= ȳ(1,1)− ȳ(0,0) = δtot. (B.8)

B.1.2 The Variance of HT-ATOTE

We derive the variance using the properties Var(X−Y ) = Var(X) + Var(Y ) -2Cov(X, Y )

and Cov(X, Y ) = E(XY )− E(X)E(Y ).

First, we derive Var(Ȳ obs
HT (1,1)) as follows:

(
E(Ȳ obs

HT (1,1)
)2

=

(
E

(
1

N

N∑
i=1

Ii(1,1)
Y obs
i (1,1)

πi(1,1)

))2

=

(
1

N

N∑
i=1

E (Ii(1,1))
yi(1,1)

πi(1,1)

)2

=
1

N2

(
N∑
i=1

yi(1,1)

)2

=
1

N2

N∑
i=1

y2i (1,1) +
1

N2

N∑
i=1

∑
j 6=i

yi(1,1)yj(1,1)

(B.9)
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E((Ȳ obs
HT (1,1))2) = E

( 1

N

N∑
i=1

Ii(1,1)
Y obs
i (1,1)

πi(1,1)

)2


= E

[(
1

N2

N∑
i=1

I2i (1,1)
Y 2obs

i (1,1)

π2
i (1,1)

)

+

(
1

N2

N∑
i=1

∑
j 6=i

Ii(1,1)Ij(1,1)
Y obs
i (1,1)Y obs

j (1,1)

πi(1,1)πj(1,1)

)]

= E

[(
1

N2

N∑
i=1

I2i (1,1)
Y 2obs

i (1,1)

π2
i (1,1)

)]

+ E

[(
1

N2

N∑
i=1

∑
j 6=i

Ii(1,1)Ij(1,1)
Y obs
i (1,1)Y obs

j (1,1)

πi(1,1)πj(1,1)

)]

=

(
1

N2

N∑
i=1

E[I2i (1,1)]
y2i (1,1)

π2
i (1,1)

)

+

(
1

N2

N∑
i=1

∑
j 6=i

E[Ii(1,1)Ij(1,1)]
yi(1,1)yj(1,1)

πi(1,1)πj(1,1)

)

=
1

N2

N∑
i=1

πi(1,1)
y2i (1,1)

π2
i (1,1)

+
1

N2

N∑
i=1

∑
j 6=i

πij(1,1)
yi(1,1)yj(1,1)

πi(1,1)πj(1,1)

=
1

N2

N∑
i=1

y2i (1,1)

πi(1,1)
+

1

N2

N∑
i=1

∑
j 6=i

πij(1,1)
yi(1,1)yj(1,1)

πi(1,1)πj(1,1)
(B.10)

Hence, the variance of Ȳ obs
HT (1,1) is
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Var(Ȳ obs
HT (1,1)) = E((Ȳ obs

HT (1,1))2)−
(
E(Ȳ obs

HT (1,1)
)2

=
1

N2

N∑
i=1

y2i (1,1)

πi(1,1)
+

1

N2

N∑
i=1

∑
j 6=i

πij(1,1)
yi(1,1)yj(1,1)

πi(1,1)πj(1,1)

− 1

N2

N∑
i=1

y2i (1,1)− 1

N2

N∑
i=1

∑
j 6=i

yi(1,1)yj(1,1)

=
1

N2

N∑
i=1

πi(1,1)[1− πi(1,1)]

[
yi(1,1)

πi(1,1)

]2
+

1

N2

N∑
i=1

∑
j 6=i

[πij(1,1)− πi(1,1)πj(1,1)]
yi(1,1)yj(1,1)

πi(1,1)πj(1,1)
. (B.11)

Similarly, the variance of Ȳ obs
HT (0,0) is

Var(Ȳ obs
HT (0,0)) = E((Ȳ obs

HT (0,0))2)−
(
E(Ȳ obs

HT (0,0)
)2

=
1

N2

N∑
i=1

y2i (0,0)

πi(0,0)
+

1

N2

N∑
i=1

∑
j 6=i

πij(0,0)
yi(0,0)yj(0,0)

πi(0,0)πj(0,0)

− 1

N2

N∑
i=1

y2i (0,0)− 1

N2

N∑
i=1

∑
j 6=i

yi(0,0)yj(0,0)

=
1

N2

N∑
i=1

πi(0,0)[1− πi(0,0)]

[
yi(0,0)

πi(0,0)

]2
+

1

N2

N∑
i=1

∑
j 6=i

[πij(0,0)− πi(0,0)πj(0,0)]
yi(0,0)yj(0,0)

πi(0,0)πj(0,0)
. (B.12)

Next, we find E(Ȳ obs
HT (1,1)Ȳ obs

HT (0,0)) and E(Ȳ obs
HT (1,1))E(Ȳ obs

HT (0,0)):
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E
[
Ȳ obs
HT (1,1)Ȳ obs

HT (0,0)
]

=

E

[(
1

N

N∑
i=1

Ii(1,1)
Y obs
i (1,1)

πi(1,1)

)(
1

N

N∑
i=1

Ii(0,0)
Y obs
i (0,0)

πi(0,0)

)]

= E

[(
1

N2

N∑
i=1

Ii(1,1)Ii(0,0)
Y obs
i (1,1)Y obs

i (0,0)

πi(1,1)πi(0,0)

)

+

(
1

N2

N∑
i=1

∑
j 6=i

Ii(1,1)Ij(0,0)
Y obs
i (1,1)Y obs

j (0,0)

πi(1,1)πj(0,0)

)]

= E

[(
1

N2

N∑
i=1

Ii(1,1)Ii(0,0)
Y obs
i (1,1)Y obs

i (0,0)

πi(1,1)πi(0,0)

)]

+ E

[(
1

N2

N∑
i=1

∑
j 6=i

Ii(1,1)Ij(0,0)
Y obs
i (1,1)Y obs

j (0,0)

πi(1,1)πj(0,0)

)]

=

(
1

N2

N∑
i=1

E [Ii(1,1)Ii(0,0)]
yi(1,1)yi(0,0)

πi(1,1)πi(0,0)

)

+

(
1

N2

N∑
i=1

∑
j 6=i

E [Ii(1,1)Ij(0,0)]
yi(1,1)yi(0,0)

πi(1,1)πj(0,0)

)

=
1

N2

N∑
i=1

πi((1,1), (0,0))
yi(1,1)yi(0,0)

πi(1,1)πi(0,0)

+
1

N2

N∑
i=1

∑
j 6=i

πij((1,1), (0,0))
yi(1,1)yj(0,0)

πi(1,1)πj(0,0)

=
1

N2

N∑
i=1

∑
j 6=i

πij((1,1), (0,0))
yi(1,1)yj(0,0)

πi(1,1)πj(0,0)
(B.13)
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E(Ȳ obs
HT (1,1))E(Ȳ obs

HT (0,0)) =

E

[
1

N

N∑
i=1

Ii(1,1)
Y obs
i (1,1)

πi(1,1)

]
E

[
1

N

N∑
i=1

Ii(0,0)
Y obs
i (0,0)

πi(0,0)

]

=

[
1

N

N∑
i=1

yi(1,1)

][
1

N

N∑
i=1

yi(0,0)

]

=
1

N2

N∑
i=1

yi(1,1)yi(0,0) +
1

N2

N∑
i=1

∑
j 6=i

yi(1,1)yj(0,0) (B.14)

Cov(Ȳ obs
HT (1,1), Ȳ obs

HT (0,0)) = E
[
Ȳ obs
HT (1,1)Ȳ obs

HT (0,0)
]
− E(Ȳ obs

HT (1,1))E(Ȳ obs
HT (0,0))

=
1

N2

N∑
i=1

∑
j 6=i

πij((1,1), (0,0))
yi(1,1)yj(0,0)

πi(1,1)πj(0,0)

− 1

N2

N∑
i=1

yi(1,1)yi(0,0) +
1

N2

N∑
i=1

∑
j 6=i

yi(1,1)yj(0,0)

=
1

N2

N∑
i=1

∑
j 6=i

[πij((1,1), (0,0))− πi(1,1)πj(0,0)]
yi(1,1)yj(0,0)

πi(1,1)πj(0,0)

− 1

N2

N∑
i=1

yi(1,1)yi(0,0). (B.15)
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Then, we have the following:

Var(δ̂HT,tot) = Var(Ȳ obs
HT (1,1)− Ȳ obs

HT (0,0)) = Var(Ȳ obs
HT (1,1)) + Var(Ȳ obs

HT (0,0))

− 2Cov(Ȳ obs
HT (1,1), Ȳ obs

HT (0,0))

=
1

N2

N∑
i=1

πi(1,1)[1− πi(1,1)]

[
yi(1,1)

πi(1,1)

]2
+

1

N2

N∑
i=1

∑
j 6=i

[πij(1,1)− πi(1,1)πj(1,1)]
yi(1,1)yj(1,1)

πi(1,1)πj(1,1)

+
1

N2

N∑
i=1

πi(0,0)[1− πi(0,0)]

[
yi(0,0)

πi(0,0)

]2
+

1

N2

N∑
i=1

∑
j 6=i

[πij(0,0)− πi(0,0)πj(0,0)]
yi(0,0)yj(0,0)

πi(0,0)πj(0,0)

− 2

(
1

N2

N∑
i=1

∑
j 6=i

[πij((1,1), (0,0))− πi(1,1)πj(0,0)]
yi(1,1)yj(0,0)

πi(1,1)πj(0,1)

− 1

N2

N∑
i=1

yi(1,1)yi(0,0)

)
. (B.16)

B.2 Properties of HT-ADEE under K-NIA

Now, we find the expected value and the variance of HT-ADE estimator.

δ̂HT,dir = Ȳ obs
HT (1,1)− Ȳ obs

HT (0,1). (B.17)

B.2.1 The Expected Value of HT-ADEE

E(δ̂HT,dir) = E(Ȳ obs
HT (1,1)− Ȳ obs

HT (0,1)) = E(Ȳ obs
HT (1,1))− E(Ȳ obs

HT (0,1))

= ȳ(1,1)− ȳ(0,1) = δdir. (B.18)
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B.2.2 The Variance of HT-ADEE

We derive the variance using the properties Var(X−Y ) = Var(X) + Var(Y ) -2Cov(X, Y )

and Cov(X, Y ) = E(XY )− E(X)E(Y ).

First, we derive Var(Ȳ obs
HT (1,1)) as follows:

(
E(Ȳ obs

HT (1,1)
)2

=

(
E

(
1

N

N∑
i=1

Ii(1,1)
Y obs
i (1,1)

πi(1,1)

))2

=

(
1

N

N∑
i=1

E (Ii(1,1))
yi(1,1)

πi(1,1)

)2

=
1

N2

(
N∑
i=1

yi(1,1)

)2

=
1

N2

N∑
i=1

y2i (1,1) +
1

N2

N∑
i=1

∑
j 6=i

yi(1,1)yj(1,1)

(B.19)
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E((Ȳ obs
HT (1,1))2) = E

( 1

N

N∑
i=1

Ii(1,1)
Y obs
i (1,1)

πi(1,1)

)2


= E

[(
1

N2

N∑
i=1

I2i (1,1)
Y 2obs

i (1,1)

π2
i (1,1)

)

+

(
1

N2

N∑
i=1

∑
j 6=i

Ii(1,1)Ij(1,1)
Y obs
i (1,1)Y obs

j (1,1)

πi(1,1)πj(1,1)

)]

= E

[(
1

N2

N∑
i=1

I2i (1,1)
Y 2obs

i (1,1)

π2
i (1,1)

)]

+ E

[(
1

N2

N∑
i=1

∑
j 6=i

Ii(1,1)Ij(1,1)
Y obs
i (1,1)Y obs

j (1,1)

πi(1,1)πj(1,1)

)]

=

(
1

N2

N∑
i=1

E[I2i (1,1)]
y2i (1,1)

π2
i (1,1)

)

+

(
1

N2

N∑
i=1

∑
j 6=i

E[Ii(1,1)Ij(1,1)]
yi(1,1)yj(1,1)

πi(1,1)πj(1,1)

)

=
1

N2

N∑
i=1

πi(1,1)
y2i (1,1)

π2
i (1,1)

+
1

N2

N∑
i=1

∑
j 6=i

πij(1,1)
yi(1,1)yj(1,1)

πi(1,1)πj(1,1)

=
1

N2

N∑
i=1

y2i (1,1)

πi(1,1)
+

1

N2

N∑
i=1

∑
j 6=i

πij(1,1)
yi(1,1)yj(1,1)

πi(1,1)πj(1,1)
(B.20)

Hence, the variance of Ȳ obs
HT (1,1) is
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Var(Ȳ obs
HT (1,1)) = E((Ȳ obs

HT (1,1))2)−
(
E(Ȳ obs

HT (1,1)
)2

=
1

N2

N∑
i=1

y2i (1,1)

πi(1,1)
+

1

N2

N∑
i=1

∑
j 6=i

πij(1,1)
yi(1,1)yj(1,1)

πi(1,1)πj(1,1)

− 1

N2

N∑
i=1

y2i (1,1)− 1

N2

N∑
i=1

∑
j 6=i

yi(1,1)yj(1,1)

=
1

N2

N∑
i=1

πi(1,1)[1− πi(1,1)]

[
yi(1,1)

πi(1,1)

]2
+

1

N2

N∑
i=1

∑
j 6=i

[πij(1,1)− πi(1,1)πj(1,1)]
yi(1,1)yj(1,1)

πi(1,1)πj(1,1)
. (B.21)

Similarly, the variance of Ȳ obs
HT (0,1) is

Var(Ȳ obs
HT (0,1)) = E((Ȳ obs

HT (0,1))2)−
(
E(Ȳ obs

HT (0,1)
)2

=
1

N2

N∑
i=1

y2i (0,1)

πi(0,1)
+

1

N2

N∑
i=1

∑
j 6=i

πij(0,1)
yi(0,1)yj(0,1)

πi(0,1)πj(0,1)

− 1

N2

N∑
i=1

y2i (0,1)− 1

N2

N∑
i=1

∑
j 6=i

yi(0,1)yj(0,1)

=
1

N2

N∑
i=1

πi(0,1)[1− πi(0,1)]

[
yi(0,1)

πi(0,1)

]2
+

1

N2

N∑
i=1

∑
j 6=i

[πij(0,1)− πi(0,1)πj(0,1)]
yi(0,1)yj(0,1)

πi(0,1)πj(0,1)
. (B.22)

Next, we find E(Ȳ obs
HT (1,1)Ȳ obs

HT (0,1)) and E(Ȳ obs
HT (1,1))E(Ȳ obs

HT (0,1)):
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E
[
Ȳ obs
HT (1,1)Ȳ obs

HT (0,1)
]

=

E

[(
1

N

N∑
i=1

Ii(1,1)
Y obs
i (1,1)

πi(1,1)

)(
1

N

N∑
i=1

Ii(0,1)
Y obs
i (0,1)

πi(0,1)

)]

= E

[(
1

N2

N∑
i=1

Ii(1,1)Ii(0,1)
Y obs
i (1,1)Y obs

i (0,1)

πi(1,1)πi(0,1)

)

+

(
1

N2

N∑
i=1

∑
j 6=i

Ii(1,1)Ij(0,1)
Y obs
i (1,1)Y obs

j (0,1)

πi(1,1)πj(0,1)

)]

= E

[(
1

N2

N∑
i=1

Ii(1,1)Ii(0,1)
Y obs
i (1,1)Y obs

i (0,1)

πi(1,1)πi(0,1)

)]

+ E

[(
1

N2

N∑
i=1

∑
j 6=i

Ii(1,1)Ij(0,1)
Y obs
i (1,1)Y obs

j (0,1)

πi(1,1)πj(0,1)

)]

=

(
1

N2

N∑
i=1

E [Ii(1,1)Ii(0,1)]
yi(1,1)yi(0,1)

πi(1,1)πi(0,1)

)

+

(
1

N2

N∑
i=1

∑
j 6=i

E [Ii(1,1)Ij(0,1)]
yi(1,1)yi(0,1)

πi(1,1)πj(0,1)

)

=
1

N2

N∑
i=1

πi((1,1), (0,1))
yi(1,1)yi(0,1)

πi(1,1)πi(0,1)

+
1

N2

N∑
i=1

∑
j 6=i

πij((1,1), (0,1))
yi(1,1)yj(0,1)

πi(1,1)πj(0,1)

=
1

N2

N∑
i=1

∑
j 6=i

πij((1,1), (0,1))
yi(1,1)yj(0,1)

πi(1,1)πj(0,1)
(B.23)

159



E(Ȳ obs
HT (1,1))E(Ȳ obs

HT (0,1)) =

E

[
1

N

N∑
i=1

Ii(1,1)
Y obs
i (1,1)

πi(1,1)

]
E

[
1

N

N∑
i=1

Ii(0,1)
Y obs
i (0,1)

πi(0,1)

]

=

[
1

N

N∑
i=1

yi(1,1)

][
1

N

N∑
i=1

yi(0,1)

]

=
1

N2

N∑
i=1

yi(1,1)yi(0,1) +
1

N2

N∑
i=1

∑
j 6=i

yi(1,1)yj(0,1) (B.24)

Cov(Ȳ obs
HT (1,1), Ȳ obs

HT (0,1)) = E
[
Ȳ obs
HT (1,1)Ȳ obs

HT (0,1)
]
− E(Ȳ obs

HT (1,1))E(Ȳ obs
HT (0,1))

=
1

N2

N∑
i=1

∑
j 6=i

πij((1,1), (0,1))
yi(1,1)yj(0,1)

πi(1,1)πj(0,1)

− 1

N2

N∑
i=1

yi(1,1)yi(0,1) +
1

N2

N∑
i=1

∑
j 6=i

yi(1,1)yj(0,1)

=
1

N2

N∑
i=1

∑
j 6=i

[πij((1,1), (0,1))− πi(1,1)πj(0,1)]
yi(1,1)yj(0,1)

πi(1,1)πj(0,1)

− 1

N2

N∑
i=1

yi(1,1)yi(0,1). (B.25)

Then, we have the following:
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Var(δ̂HT,dir) = Var(Ȳ obs
HT (1,1)− Ȳ obs

HT (0,1)) = Var(Ȳ obs
HT (1,1)) + Var(Ȳ obs

HT (0,1))

− 2Cov(Ȳ obs
HT (1,1), Ȳ obs

HT (0,1))

=
1

N2

N∑
i=1

πi(1,1)[1− πi(1,1)]

[
yi(1,1)

πi(1,1)

]2
+

1

N2

N∑
i=1

∑
j 6=i

[πij(1,1)− πi(1,1)πj(1,1)]
yi(1,1)yj(1,1)

πi(1,1)πj(1,1)

+
1

N2

N∑
i=1

πi(0,1)[1− πi(0,1)]

[
yi(0,1)

πi(0,1)

]2
+

1

N2

N∑
i=1

∑
j 6=i

[πij(0,1)− πi(0,1)πj(0,1)]
yi(0,1)yj(0,1)

πi(0,1)πj(0,1)

− 2

(
1

N2

N∑
i=1

∑
j 6=i

[πij((1,1), (0,1))− πi(1,1)πj(0,1)]
yi(1,1)yj(0,1)

πi(1,1)πj(0,1)

− 1

N2

N∑
i=1

yi(1,1)yi(0,1)

)
. (B.26)

B.3 Properties of HT-AIEE under K-NIA

Here, we find the expected value and the variance of HT-AIE estimator

δ̂HT,ind = Ȳ obs
HT (0,1)− Ȳ obs

HT (0,0). (B.27)

Note that, the average total effect estimator is the sum of the average direct and indirect

estimators:

Lemma B.3.

δ̂HT,tot = δ̂HT,dir + δ̂HT,ind (B.28)
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Proof.

δ̂HT,dir + δ̂HT,ind = Ȳ obs
HT (1,1)− Ȳ obs

HT (0,1) + Ȳ obs
HT (0,1)− Ȳ obs

HT (0,0)

= Ȳ obs
HT (1,1)− Ȳ obs

HT (0,0)

= δ̂HT,tot (B.29)

�

B.3.1 The Expected Value of HT-AIEE

E(δ̂HT,ind) = E(Ȳ obs
HT (0,1)− Ȳ obs

HT (0,0)) = E(Ȳ obs
HT (0,1))− E(Ȳ obs

HT (0,0))

= ȳ(0,1)− ȳ(0,0) = δind. (B.30)

B.3.2 The Variance of HT-AIEE

We derive the variance using the properties Var(X−Y ) = Var(X) + Var(Y ) -2Cov(X, Y )

and Cov(X, Y ) = E(XY )− E(X)E(Y ).
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First, we derive Var(Ȳ obs
HT (0,1)) as follows:

(
E(Ȳ obs

HT (0,1)
)2

=

(
E

(
1

N

N∑
i=1

Ii(0,1)
Y obs
i (0,1)

πi(0,1)

))2

=

(
1

N

N∑
i=1

E (Ii(0,1))
yi(0,1)

πi(0,1)

)2

=
1

N2

(
N∑
i=1

yi(0,1)

)2

=
1

N2

N∑
i=1

y2i (0,1) +
1

N2

N∑
i=1

∑
j 6=i

yi(0,1)yj(0,1)

(B.31)
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E((Ȳ obs
HT (0,1))2) = E

( 1

N

N∑
i=1

Ii(0,1)
Y obs
i (0,1)

πi(0,1)

)2


= E

[(
1

N2

N∑
i=1

I2i (0,1)
Y 2obs

i (0,1)

π2
i (0,1)

)

+

(
1

N2

N∑
i=1

∑
j 6=i

Ii(0,1)Ij(0,1)
Y obs
i (0,1)Y obs

j (0,1)

πi(0,1)πj(0,1)

)]

= E

[(
1

N2

N∑
i=1

I2i (0,1)
Y 2obs

i (0,1)

π2
i (0,1)

)]

+ E

[(
1

N2

N∑
i=1

∑
j 6=i

Ii(0,1)Ij(0,1)
Y obs
i (0,1)Y obs

j (0,1)

πi(0,1)πj(0,1)

)]

=

(
1

N2

N∑
i=1

E[I2i (0,1)]
y2i (0,1)

π2
i (0,1)

)

+

(
1

N2

N∑
i=1

∑
j 6=i

E[Ii(0,1)Ij(0,1)]
yi(0,1)yj(0,1)

πi(0,1)πj(0,1)

)

=
1

N2

N∑
i=1

πi(0,1)
y2i (0,1)

π2
i (0,1)

+
1

N2

N∑
i=1

∑
j 6=i

πij(0,1)
yi(0,1)yj(0,1)

πi(0,1)πj(0,1)

=
1

N2

N∑
i=1

y2i (0,1)

πi(0,1)
+

1

N2

N∑
i=1

∑
j 6=i

πij(0,1)
yi(0,1)yj(0,1)

πi(0,1)πj(0,1)
(B.32)

Hence, the variance of Ȳ obs
HT (0,1) is
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Var(Ȳ obs
HT (0,1)) = E((Ȳ obs

HT (0,1))2)−
(
E(Ȳ obs

HT (0,1)
)2

=
1

N2

N∑
i=1

y2i (0,1)

πi(0,1)
+

1

N2

N∑
i=1

∑
j 6=i

πij(0,1)
yi(0,1)yj(0,1)

πi(0,1)πj(0,1)

− 1

N2

N∑
i=1

y2i (0,1)− 1

N2

N∑
i=1

∑
j 6=i

yi(0,1)yj(0,1)

=
1

N2

N∑
i=1

πi(0,1)[1− πi(0,1)]

[
yi(0,1)

πi(0,1)

]2
+

1

N2

N∑
i=1

∑
j 6=i

[πij(0,1)− πi(0,1)πj(0,1)]
yi(0,1)yj(0,1)

πi(0,1)πj(0,1)
. (B.33)

Similarly, the variance of Ȳ obs
HT (0,0) is

Var(Ȳ obs
HT (0,0)) = E((Ȳ obs

HT (0,0))2)−
(
E(Ȳ obs

HT (0,0)
)2

=
1

N2

N∑
i=1

y2i (0,0)

πi(0,0)
+

1

N2

N∑
i=1

∑
j 6=i

πij(0,0)
yi(0,0)yj(0,0)

πi(0,0)πj(0,0)

− 1

N2

N∑
i=1

y2i (0,0)− 1

N2

N∑
i=1

∑
j 6=i

yi(0,0)yj(0,0)

=
1

N2

N∑
i=1

πi(0,0)[1− πi(0,0)]

[
yi(0,0)

πi(0,0)

]2
+

1

N2

N∑
i=1

∑
j 6=i

[πij(0,0)− πi(0,0)πj(0,0)]
yi(0,0)yj(0,0)

πi(0,0)πj(0,0)
. (B.34)

Next, we find E(Ȳ obs
HT (0,1)Ȳ obs

HT (0,0)) and E(Ȳ obs
HT (0,1))E(Ȳ obs

HT (0,0)):
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E
[
Ȳ obs
HT (0,1)Ȳ obs

HT (0,0)
]

=

E

[(
1

N

N∑
i=1

Ii(0,1)
Y obs
i (0,1)

πi(0,1)

)(
1

N

N∑
i=1

Ii(0,0)
Y obs
i (0,0)

πi(0,0)

)]

= E

[(
1

N2

N∑
i=1

Ii(0,1)Ii(0,0)
Y obs
i (0,1)Y obs

i (0,0)

πi(0,1)πi(0,0)

)

+

(
1

N2

N∑
i=1

∑
j 6=i

Ii(0,1)Ij(0,0)
Y obs
i (0,1)Y obs

j (0,0)

πi(0,1)πj(0,0)

)]

= E

[(
1

N2

N∑
i=1

Ii(0,1)Ii(0,0)
Y obs
i (0,1)Y obs

i (0,0)

πi(0,1)πi(0,0)

)]

+ E

[(
1

N2

N∑
i=1

∑
j 6=i

Ii(0,1)Ij(0,0)
Y obs
i (0,1)Y obs

j (0,0)

πi(0,1)πj(0,0)

)]

=

(
1

N2

N∑
i=1

E [Ii(0,1)Ii(0,0)]
yi(0,1)yi(0,0)

πi(0,1)πi(0,0)

)

+

(
1

N2

N∑
i=1

∑
j 6=i

E [Ii(0,1)Ij(0,0)]
yi(0,1)yi(0,0)

πi(0,1)πj(0,0)

)

=
1

N2

N∑
i=1

πi((0,1), (0,0))
yi(0,1)yi(0,0)

πi(0,1)πi(0,0)

+
1

N2

N∑
i=1

∑
j 6=i

πij((0,1), (0,0))
yi(0,1)yj(0,0)

πi(0,1)πj(0,0)

=
1

N2

N∑
i=1

∑
j 6=i

πij((0,1), (0,0))
yi(0,1)yj(0,0)

πi(0,1)πj(0,0)
(B.35)
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E(Ȳ obs
HT (0,1))E(Ȳ obs

HT (0,0)) =

E

[
1

N

N∑
i=1

Ii(0,1)
Y obs
i (0,1)

πi(0,1)

]
E

[
1

N

N∑
i=1

Ii(0,0)
Y obs
i (0,0)

πi(0,0)

]

=

[
1

N

N∑
i=1

yi(0,1)

][
1

N

N∑
i=1

yi(0,0)

]

=
1

N2

N∑
i=1

yi(0,1)yi(0,0) +
1

N2

N∑
i=1

∑
j 6=i

yi(0,1)yj(0,0) (B.36)

Cov(Ȳ obs
HT (0,1), Ȳ obs

HT (0,0)) = E
[
Ȳ obs
HT (0,1)Ȳ obs

HT (0,0)
]
− E(Ȳ obs

HT (0,1))E(Ȳ obs
HT (0,0))

=
1

N2

N∑
i=1

∑
j 6=i

πij((0,1), (0,0))
yi(0,1)yj(0,0)

πi(0,1)πj(0,0)

− 1

N2

N∑
i=1

yi(0,1)yi(0,0) +
1

N2

N∑
i=1

∑
j 6=i

yi(0,1)yj(0,0)

=
1

N2

N∑
i=1

∑
j 6=i

[πij((0,1), (0,0))− πi(0,1)πj(0,0)]
yi(0,1)yj(0,0)

πi(0,1)πj(0,0)

− 1

N2

N∑
i=1

yi(0,1)yi(0,0). (B.37)

Then, we have the following:
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Var(δ̂HT,ind) = Var(Ȳ obs
HT (0,1)− Ȳ obs

HT (0,0)) = Var(Ȳ obs
HT (0,1)) + Var(Ȳ obs

HT (0,0))

− 2Cov(Ȳ obs
HT (0,1), Ȳ obs

HT (0,0))

=
1

N2

N∑
i=1

πi(0,1)[1− πi(0,1)]

[
yi(0,1)

πi(0,1)

]2
+

1

N2

N∑
i=1

∑
j 6=i

[πij(0,1)− πi(0,1)πj(0,1)]
yi(0,1)yj(0,1)

πi(0,1)πj(0,1)

+
1

N2

N∑
i=1

πi(0,0)[1− πi(0,0)]

[
yi(0,0)

πi(0,0)

]2
+

1

N2

N∑
i=1

∑
j 6=i

[πij(0,0)− πi(0,0)πj(0,0)]
yi(0,0)yj(0,0)

πi(0,0)πj(0,0)

− 2

(
1

N2

N∑
i=1

∑
j 6=i

[πij((0,1), (0,0))− πi(0,1)πj(0,0)]
yi(0,1)yj(0,0)

πi(0,1)πj(0,1)

− 1

N2

N∑
i=1

yi(0,1)yi(0,0)

)
. (B.38)

B.4 Properties of HT-A`NNIEE under K-NIA

Now, we find the expected value and the variance of HT-A`NNIEE under K−NIA assump-

tion.

δ̂HT,` = Ȳ obs
HT (0,W∗

` )− Ȳ obs
HT (0,W∗

`−1). (B.39)

First, note that the indirect effect estimator δ̂HT,ind is the sum of all `-nearest neighbors

indirect effects estimators ,i.e.,

Lemma B.4.

δ̂HT,ind =
K∑
`=1

δ̂HT,`. (B.40)

Proof. For ` ∈ Nik, if we define W∗
` as previously, then we have the following:
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δ̂HT,1st + δ̂HT,2nd + δ̂HT,3rd + · · ·+ δ̂HT,` + · · ·+ δ̂HT,K =

Ȳ obs
HT (0,W∗

1)− Ȳ obs
HT (0,W∗

0)

+ Ȳ obs
HT (0,W∗

2)− Ȳ obs
HT (0,W∗

1)

+ Ȳ obs
HT (0,W∗

3)− Ȳ obs
HT (0,W∗

2)

+ . . .

+ Ȳ obs
HT (0,W∗

` )− Ȳ obs
HT (0,W∗

`−1)

+ . . .

+ Ȳ obs
HT (0,W∗

K)− Ȳ obs
HT (0,W∗

K−1)

= Ȳ obs
HT (0,W∗

K)− Ȳ obs
HT (0,W∗

0)

= Ȳ obs
HT (0,1)− Ȳ obs

HT (0,0)

= δ̂HT,ind

(B.41)

�

B.4.1 The Expected Value of HT-A`NNIEE

E(δ̂HT,`) = E(Ȳ obs
HT (0,W∗

` )− Ȳ obs
HT (0,W∗

`−1)) = E(Ȳ obs
HT (0,W∗

` ))− E(Ȳ obs
HT (0,W∗

`−1))

= ȳ(0,W∗
` )− ȳ(0,W∗

`−1) = δ`. (B.42)

B.4.2 The Variance of HT-A`NNIEE

We find the variance by using the property Var(X −Y ) = Var(X) + Var(Y ) -2Cov(X, Y )

and the property Cov(X, Y ) = E(XY )− E(X)E(Y ).
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First, we derive Var(Ȳ obs
HT (0,W∗

` )) as follows:

(
E(Ȳ obs

HT (0,W∗
` )
)2

=

(
E

(
1

N

N∑
i=1

Ii(0,W
∗
` )
Y obs
i (0,W∗

` )

πi(0,W∗
` )

))2

=

(
1

N

N∑
i=1

E (Ii(0,W
∗
` ))

yi(0,W
∗
` )

πi(0,W∗
` )

)2

=
1

N2

(
N∑
i=1

yi(0,W
∗
` )

)2

=
1

N2

N∑
i=1

y2i (0,W
∗
` ) +

1

N2

N∑
i=1

∑
j 6=i

yi(0,W
∗
` )yj(0,W

∗
` )

(B.43)
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E((Ȳ obs
HT (0,W∗

` ))
2) = E

( 1

N

N∑
i=1

Ii(0,W
∗
` )
Y obs
i (0,W∗

` )

πi(0,W∗
` )

)2


= E

[(
1

N2

N∑
i=1

I2i (0,W∗
` )
Y 2obs

i (0,W∗
` )

π2
i (0,W

∗
` )

)

+

(
1

N2

N∑
i=1

∑
j 6=i

Ii(0,W
∗
` )Ij(0,W

∗
` )
Y obs
i (0,W∗

` )Y
obs
j (0,W∗

` )

πi(0,W∗
` )πj(0,W

∗
` )

)]

= E

[(
1

N2

N∑
i=1

I2i (0,W∗
` )
Y 2obs

i (0,W∗
` )

π2
i (0,W

∗
` )

)]

+ E

[(
1

N2

N∑
i=1

∑
j 6=i

Ii(0,W
∗
` )Ij(0,W

∗
` )
Y obs
i (0,W∗

` )Y
obs
j (0,W∗

` )

πi(0,W∗
` )πj(0,W

∗
` )

)]

=

(
1

N2

N∑
i=1

E[I2i (0,W∗
` )]
y2i (0,W

∗
` )

π2
i (0,W

∗
` )

)

+

(
1

N2

N∑
i=1

∑
j 6=i

E[Ii(0,W
∗
` )Ij(0,W

∗
` )]
yi(0,W

∗
` )yj(0,W

∗
` )

πi(0,W∗
` )πj(0,W

∗
` )

)

=
1

N2

N∑
i=1

πi(0,W
∗
` )
y2i (0,W

∗
` )

π2
i (0,W

∗
` )

+
1

N2

N∑
i=1

∑
j 6=i

πij(0,W
∗
` )
yi(0,W

∗
` )yj(0,W

∗
` )

πi(0,W∗
` )πj(0,W

∗
` )

=
1

N2

N∑
i=1

y2i (0,W
∗
` )

πi(0,W∗
` )

+
1

N2

N∑
i=1

∑
j 6=i

πij(0,W
∗
` )
yi(0,W

∗
` )yj(0,W

∗
` )

πi(0,W∗
` )πj(0,W

∗
` )

(B.44)

Hence, the variance of Ȳ obs
HT (0,W∗

` ) is
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Var(Ȳ obs
HT (0,W∗

` )) = E((Ȳ obs
HT (0,W∗

` ))
2)−

(
E(Ȳ obs

HT (0,W∗
` )
)2

=
1

N2

N∑
i=1

y2i (0,W
∗
` )

πi(0,W∗
` )

+
1

N2

N∑
i=1

∑
j 6=i

πij(0,W
∗
` )
yi(0,W

∗
` )yj(0,W

∗
` )

πi(0,W∗
` )πj(0,W

∗
` )

− 1

N2

N∑
i=1

y2i (0,W
∗
` )−

1

N2

N∑
i=1

∑
j 6=i

yi(0,W
∗
` )yj(0,W

∗
` )

=
1

N2

N∑
i=1

πi(0,W
∗
` )[1− πi(0,W∗

` )]

[
yi(0,W

∗
` )

πi(0,W∗
` )

]2
+

1

N2

N∑
i=1

∑
j 6=i

[πij(0,W
∗
` )− πi(0,W∗

` )πj(0,W
∗
` )]
yi(0,W

∗
` )yj(0,W

∗
` )

πi(0,W∗
` )πj(0,W

∗
` )
. (B.45)

Similarly, the variance of Ȳ obs
HT (0,W∗

`−1) is

Var(Ȳ obs
HT (0,W∗

`−1)) = E((Ȳ obs
HT (0,W∗

`−1))
2)−

(
E(Ȳ obs

HT (0,W∗
`−1)

)2
=

1

N2

N∑
i=1

y2i (0,W
∗
`−1)

πi(0,W∗
`−1)

+
1

N2

N∑
i=1

∑
j 6=i

πij(0,W
∗
`−1)

yi(0,W
∗
`−1)yj(0,W

∗
`−1)

πi(0,W∗
`−1)πj(0,W

∗
`−1)

− 1

N2

N∑
i=1

y2i (0,W
∗
`−1)−

1

N2

N∑
i=1

∑
j 6=i

yi(0,W
∗
`−1)yj(0,W

∗
`−1)

=
1

N2

N∑
i=1

πi(0,W
∗
`−1)[1− πi(0,W∗

`−1)]

[
yi(0,W

∗
`−1)

πi(0,W∗
`−1)

]2
+

1

N2

N∑
i=1

∑
j 6=i

[πij(0,W
∗
`−1)− πi(0,W∗

`−1)πj(0,W
∗
`−1)]

yi(0,W
∗
`−1)yj(0,W

∗
`−1)

πi(0,W∗
`−1)πj(0,W

∗
`−1)

. (B.46)

Next, we find E(Ȳ obs
HT (0,W∗

` )Ȳ
obs
HT (0,W∗

`−1)) and E(Ȳ obs
HT (0,W∗

` ))E(Ȳ obs
HT (0,W∗

`−1)):
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E
[
Ȳ obs
HT (0,W∗

` )Ȳ
obs
HT (0,W∗

`−1)
]

=

E

[(
1

N

N∑
i=1

Ii(0,W
∗
` )
Y obs
i (0,W∗

` )

πi(0,W∗
` )

)(
1

N

N∑
i=1

Ii(0,W
∗
`−1)

Y obs
i (0,W∗

`−1)

πi(0,W∗
`−1)

)]

= E

[(
1

N2

N∑
i=1

Ii(0,W
∗
` )Ii(0,W

∗
`−1)

Y obs
i (0,W∗

` )Y
obs
i (0,W∗

`−1)

πi(0,W∗
` )πi(0,W

∗
`−1)

)

+

(
1

N2

N∑
i=1

∑
j 6=i

Ii(0,W
∗
` )Ij(0,W

∗
`−1)

Y obs
i (0,W∗

` )Y
obs
j (0,W∗

`−1)

πi(0,W∗
` )πj(0,W

∗
`−1)

)]

= E

[(
1

N2

N∑
i=1

Ii(0,W
∗
` )Ii(0,W

∗
`−1)

Y obs
i (0,W∗

` )Y
obs
i (0,W∗

`−1)

πi(0,W∗
` )πi(0,W

∗
`−1)

)]

+ E

[(
1

N2

N∑
i=1

∑
j 6=i

Ii(0,W
∗
` )Ij(0,W

∗
`−1)

Y obs
i (0,W∗

` )Y
obs
j (0,W∗

`−1)

πi(0,W∗
` )πj(0,W

∗
`−1)

)]

=

(
1

N2

N∑
i=1

E
[
Ii(0,W

∗
` )Ii(0,W

∗
`−1)

] yi(0,W∗
` )yi(0,W

∗
`−1)

πi(0,W∗
` )πi(0,W

∗
`−1)

)

+

(
1

N2

N∑
i=1

∑
j 6=i

E
[
Ii(0,W

∗
` )Ij(0,W

∗
`−1)

] yi(0,W∗
` )yi(0,W

∗
`−1)

πi(0,W∗
` )πj(0,W

∗
`−1)

)

=
1

N2

N∑
i=1

πi((0,W
∗
` ), (0,W

∗
`−1))

yi(0,W
∗
` )yi(0,W

∗
`−1)

πi(0,W∗
` )πi(0,W

∗
`−1)

+
1

N2

N∑
i=1

∑
j 6=i

πij((0,W
∗
` ), (0,W

∗
`−1))

yi(0,W
∗
` )yj(0,W

∗
`−1)

πi(0,W∗
` )πj(0,W

∗
`−1)

=
1

N2

N∑
i=1

∑
j 6=i

πij((0,W
∗
` ), (0,W

∗
`−1))

yi(0,W
∗
` )yj(0,W

∗
`−1)

πi(0,W∗
` )πj(0,W

∗
`−1)

(B.47)
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E(Ȳ obs
HT (0,W∗

` ))E(Ȳ obs
HT (0,W∗

`−1)) =

E

[
1

N

N∑
i=1

Ii(0,W
∗
` )
Y obs
i (0,W∗

` )

πi(0,W∗
` )

]
E

[
1

N

N∑
i=1

Ii(0,W
∗
`−1)

Y obs
i (0,W∗

`−1)

πi(0,W∗
`−1)

]

=

[
1

N

N∑
i=1

yi(0,W
∗
` )

][
1

N

N∑
i=1

yi(0,W
∗
`−1)

]

=
1

N2

N∑
i=1

yi(0,W
∗
` )yi(0,W

∗
`−1) +

1

N2

N∑
i=1

∑
j 6=i

yi(0,W
∗
` )yj(0,W

∗
`−1) (B.48)

Cov(Ȳ obs
HT (0,W∗

` ), Ȳ
obs
HT (0,W∗

`−1)) = E(Ȳ obs
HT (0,W∗

` )Ȳ
obs
HT (0,W∗

`−1))−E(Ȳ obs
HT (0,W∗

` ))E(Ȳ obs
HT (0,W∗

`−1))

=
1

N2

N∑
i=1

∑
j 6=i

πij((0,W
∗
` ), (0,W

∗
`−1))

yi(0,W
∗
` )yj(0,W

∗
`−1)

πi(0,W∗
` )πj(0,W

∗
`−1)

− 1

N2

N∑
i=1

yi(0,W
∗
` )yi(0,W

∗
`−1)−

1

N2

N∑
i=1

∑
j 6=i

yi(0,W
∗
` )yj(0,W

∗
`−1)

=
1

N2

N∑
i=1

∑
j 6=i

[
πij((0,W

∗
` ), (0,W

∗
`−1))− πi(0,W∗

` )πj(0,W
∗
`−1)

] yi(0,W∗
` )yj(0,W

∗
`−1)

πi(0,W∗
` )πj(0,W

∗
`−1)

− 1

N2

N∑
i=1

yi(0,W
∗
` )yi(0,W

∗
`−1). (B.49)

Then, we have the following:
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Var(δ̂HT,`) = Var(Ȳ obs
HT (0,W∗

` )−Ȳ obs
HT (0,W∗

`−1)) = Var(Ȳ obs
HT (0,W∗

` ))+Var(Ȳ obs
HT (0,W∗

`−1))

− 2Cov(Ȳ obs
HT (0,W∗

` ), Ȳ
obs
HT (0,W∗

`−1)

=
1

N2

N∑
i=1

πi(0,W
∗
` )[1− πi(0,W∗

` )]

[
yi(0,W

∗
` )

πi(0,W∗
` )

]2
+

1

N2

N∑
i=1

∑
j 6=i

[πij(0,W
∗
` )− πi(0,W∗

` )πj(0,W
∗
` )]
yi(0,W

∗
` )yj(0,W

∗
` )

πi(0,W∗
` )πj(0,W

∗
` )

+
1

N2

N∑
i=1

πi(0,W
∗
`−1)[1− πi(0,W∗

`−1)]

[
yi(0,W

∗
`−1)

πi(0,W∗
`−1)

]2
+

1

N2

N∑
i=1

∑
j 6=i

[πij(0,W
∗
`−1)− πi(0,W∗

`−1)πj(0,W
∗
`−1)]

yi(0,W
∗
`−1)yj(0,W

∗
`−1)

πi(0,W∗
`−1)πj(0,W

∗
`−1)

− 2

(
1

N2

N∑
i=1

∑
j 6=i

[
πij((0,W

∗
` ), (0,W

∗
`−1))− πi(0,W∗

` )πj(0,W
∗
`−1)

] yi(0,W∗
` )yj(0,W

∗
`−1)

πi(0,W∗
` )πj(0,W

∗
`−1)

− 1

N2

N∑
i=1

yi(0,W
∗
` )yi(0,W

∗
`−1)

)
. (B.50)

B.5 Properties of HT-ATOTE under the No-Interaction

between Direct and Indirect Effects Assumption

Under Assumption 3.2, if we assume that there is no interaction between direct and indirect

effects, the unbiased Horvitz–Thompson estimator of ATOT is provided as follows.

δ̂∗HT,tot = δ̂∗HT,dir + δ̂∗HT,ind. (B.51)

Lemma B.5. For C1 = C2 = 1
2
,

δ̂∗HT,tot = δ̂HT,tot. (B.52)
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Proof.

δ̂∗HT,tot = δ̂∗HT,dir + δ̂∗HT,ind = C1[Ȳ
obs
HT (1,1)− Ȳ obs

HT (0,1)] + C2[Ȳ
obs
HT (1,0)− Ȳ obs

HT (0,0)]

+C1[Ȳ
obs
HT (1,1)− Ȳ obs

HT (1,0)] + C2[Ȳ
obs
HT (0,1)− Ȳ obs

HT (0,0)]

= C1Ȳ
obs
HT (1,1) + C1Ȳ

obs
HT (1,1)− C2Ȳ

obs
HT (0,0)− C2Ȳ

obs
HT (0,0)

= 2C1Ȳ
obs
HT (1,1)− 2C2Ȳ

obs
HT (0,0)

and if C1 = C2 = 1
2
, then δ̂∗HT,tot = δ̂HT,tot.

�

B.5.1 The Expected Value of HT-ATOTE

E(δ̂∗HT,tot) = E(δ̂∗HT,dir) + E(δ̂∗HT,ind) = δdir + δind = δtot. (B.53)

where E(δ̂∗HT,dir) and E(δ̂∗HT,ind) are provided in the next two sections.

B.5.2 The Variance of HT-ATOTE

Var(δ̂∗HT,tot) = Var(δ̂∗HT,dir + δ̂∗HT,ind)

= Var(C1[Ȳ
obs
HT (1,1)− Ȳ obs

HT (0,1)] + C2[Ȳ
obs
HT (1,0)− Ȳ obs

HT (0,0)]

+ C1[Ȳ
obs
HT (1,1)− Ȳ obs

HT (1,0)] + C2[Ȳ
obs
HT (0,1)− Ȳ obs

HT (0,0)])

= Var(2C1Ȳ
obs
HT (1,1)− 2C2Ȳ

obs
HT (0,0))

= 4C2
1Var(Ȳ obs

HT (1,1)) + 4C2
2Var(Ȳ obs

HT (0,0))− 2(4C1C2)Cov(Ȳ obs
HT (1,1), Ȳ obs

HT (0,0)) (B.54)

and for C1 = C2 = 1
2
,
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Var(δ̂∗HT,tot) = Var(δ̂HT,tot)

= Var(Ȳ obs
HT (1,1)) + Var(Ȳ obs

HT (0,0))− 2Cov(Ȳ obs
HT (1,1), Ȳ obs

HT (0,0)) (B.55)
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We can also find the variance as follows:

Var(δ̂∗HT,tot) = Var(δ̂∗HT,dir + δ̂∗HT,ind)

= Var(C1[Ȳ
obs
HT (1,1)− Ȳ obs

HT (0,1)] + C2[Ȳ
obs
HT (1,0)− Ȳ obs

HT (0,0)]

+ C1[Ȳ
obs
HT (1,1)− Ȳ obs

HT (1,0)] + C2[Ȳ
obs
HT (0,1)− Ȳ obs

HT (0,0)])

= C2
1Var(Ȳ obs

HT (1,1) + C2
1Var(Ȳ obs

HT (0,1) + C2
2Var(Ȳ obs

HT (1,0) + C2
2Var(Ȳ obs

HT (0,0)

+ C2
1Var(Ȳ obs

HT (1,1) + C2
1Var(Ȳ obs

HT (1,0) + C2
2Var(Ȳ obs

HT (0,1) + C2
2Var(Ȳ obs

HT (0,0)

− 2C2
1Cov(Ȳ obs

HT (1,1), Ȳ obs
HT (0,1)) + 2C1C2Cov(Ȳ obs

HT (1,1), Ȳ obs
HT (1,0))

− 2C1C2Cov(Ȳ obs
HT (1,1), Ȳ obs

HT (0,0)) + 2C2
1Var(Ȳ obs

HT (1,1))

− 2C2
1Cov(Ȳ obs

HT (1,1), Ȳ obs
HT (1,0)) + 2C1C2Cov(Ȳ obs

HT (1,1), Ȳ obs
HT (0,1))

− 2C1C2Cov(Ȳ obs
HT (1,1), Ȳ obs

HT (0,0))

− 2C1C2Cov(Ȳ obs
HT (0,1), Ȳ obs

HT (1,0))

+ 2C1C2Cov(Ȳ obs
HT (0,1), Ȳ obs

HT (0,0))− 2C2
1Cov(Ȳ obs

HT (0,1), Ȳ obs
HT (1,1))

+ 2C2
1Cov(Ȳ obs

HT (0,1), Ȳ obs
HT (1,0))− 2C1C2Var(Ȳ obs

HT (0,1), Ȳ obs
HT (0,1))

+ 2C1C2Cov(Ȳ obs
HT (0,1), Ȳ obs

HT (0,0))

− 2C2
2Cov(Ȳ obs

HT (1,0), Ȳ obs
HT (0,0)) + 2C1C2Cov(Ȳ obs

HT (1,0), Ȳ obs
HT (1,1))

− 2C1C2Var(Ȳ obs
HT (1,0), Ȳ obs

HT (1,0)) + 2C2
2Cov(Ȳ obs

HT (1,0), Ȳ obs
HT (0,1))

− 2C2
2Cov(Ȳ obs

HT (1,0), Ȳ obs
HT (0,0))

− 2C1C2Cov(Ȳ obs
HT (0,0), Ȳ obs

HT (1,1))

+ 2C1C2Cov(Ȳ obs
HT (0,0), Ȳ obs

HT (1,0))− 2C2
2Cov(Ȳ obs

HT (0,0), Ȳ obs
HT (0,1))

+ 2C2
2Var(Ȳ obs

HT (0,0))

− 2C2
1Cov(Ȳ obs

HT (1,1), Ȳ obs
HT (1,0)) + 2C1C2Cov(Ȳ obs

HT (1,1), Ȳ obs
HT (0,1))

− 2C1C2Cov(Ȳ obs
HT (1,1), Ȳ obs

HT (0,0))

− 2C1C2Cov(Ȳ obs
HT (1,0), Ȳ obs

HT (0,1))

+ 2C1C2Cov(Ȳ obs
HT (1,0), Ȳ obs

HT (0,0))− 2C2
2Cov(Ȳ obs

HT (0,1), Ȳ obs
HT (0,0))

(B.56)
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This can be simplified as follows

Var(δ̂∗HT,tot) = Var(δ̂∗HT,dir + δ̂∗HT,ind)

= Var(C1[Ȳ
obs
HT (1,1)− Ȳ obs

HT (0,1)] + C2[Ȳ
obs
HT (1,0)− Ȳ obs

HT (0,0)]

+ C1[Ȳ
obs
HT (1,1)− Ȳ obs

HT (1,0)] + C2[Ȳ
obs
HT (0,1)− Ȳ obs

HT (0,0)])

= 4C2
1Var(Ȳ obs

HT (1,1) + C2
1Var(Ȳ obs

HT (0,1) + C2
2Var(Ȳ obs

HT (1,0) + 4C2
2Var(Ȳ obs

HT (0,0)

+ C2
1Var(Ȳ obs

HT (1,0) + C2
2Var(Ȳ obs

HT (0,1)

− 4C2
1Cov(Ȳ obs

HT (1,1), Ȳ obs
HT (0,1)) + 4C1C2Cov(Ȳ obs

HT (1,1), Ȳ obs
HT (1,0))

− 8C1C2Cov(Ȳ obs
HT (1,1), Ȳ obs

HT (0,0))− 2C2
1Cov(Ȳ obs

HT (1,1), Ȳ obs
HT (1,0))

+ 4C1C2Cov(Ȳ obs
HT (1,1), Ȳ obs

HT (0,1))− 4C1C2Cov(Ȳ obs
HT (0,1), Ȳ obs

HT (1,0))

+ 4C1C2Cov(Ȳ obs
HT (0,1), Ȳ obs

HT (0,0)) + 2C2
1Cov(Ȳ obs

HT (0,1), Ȳ obs
HT (1,0))

− 2C1C2Var(Ȳ obs
HT (0,1))− 4C2

2Cov(Ȳ obs
HT (1,0), Ȳ obs

HT (0,0))

− 2C1C2Var(Ȳ obs
HT (1,0)) + 2C2

2Cov(Ȳ obs
HT (1,0), Ȳ obs

HT (0,1))

+ 4C1C2Cov(Ȳ obs
HT (0,0), Ȳ obs

HT (1,0))− 4C2
2Cov(Ȳ obs

HT (0,0), Ȳ obs
HT (0,1))

− 2C2
1Cov(Ȳ obs

HT (1,1), Ȳ obs
HT (1,0)) (B.57)

and for C1 = C2 = 1
2
,

Var(δ̂∗HT,tot) = Var(δ̂HT,tot)

= Var(Ȳ obs
HT (1,1)) + Var(Ȳ obs

HT (0,0))− 2Cov(Ȳ obs
HT (1,1), Ȳ obs

HT (0,0)) (B.58)

179



B.6 Properties of HT-ADEE under the No-Interaction

between Direct and Indirect Effects Assumption

Next, we compute the expected value and variance of Horvitz–Thompson estimator δ̂∗HT,dir

under the no-interaction between direct and indirect effects assumption.

δ̂∗HT,dir = C1[Ȳ
obs
HT (1,1)− Ȳ obs

HT (0,1)] + C2[Ȳ
obs
HT (1,0)− Ȳ obs

HT (0,0)] (B.59)

B.6.1 The Expected Value of HT-ADEE

Note that under the no-interaction between direct and indirect effects assumption and for

C1 + C2 = 1:

E(δ̂∗HT,dir) = E(C1[Ȳ
obs
HT (1,1)− Ȳ obs

HT (0,1)] + C2[Ȳ
obs
HT (1,0)− Ȳ obs

HT (0,0)])

= E(C1[Ȳ
obs
HT (1,1)− Ȳ obs

HT (0,1)]) + E(C2[Ȳ
obs
HT (1,0)− Ȳ obs

HT (0,0)])

= C1[ȳ(1,1)− ȳ(0,1)] + C2[ȳ(1,0)− ȳ(0,0)]

= C1[ȳ(1,1)− ȳ(0,1)] + C2[ȳ(1,1)− ȳ(0,1)] = δdir (B.60)

Hence, δ̂∗HT,dir is an unbiased estimator for δdir.

B.6.2 The Variance of HT-ADEE

The variance can simply be computed using the property that Var(
∑N

i=1 aiXi) =
∑N

i=1 aiVar(Xi)+

2
∑

j 6=i aiajCov(XiXj) as follows.
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Var(δ̂∗HT,dir) = Var(C1[Ȳ
obs
HT (1,1)− Ȳ obs

HT (0,1)] + C2[Ȳ
obs
HT (1,0)− Ȳ obs

HT (0,0)])

= C2
1Var(Ȳ obs

HT (1,1)) + C2
1Var(Ȳ obs

HT (0,1)) + C2
2Var(Ȳ obs

HT (1,0) + C2
2Var(Ȳ obs

HT (0,0))

− 2C2
1Cov(Ȳ obs

HT (1,1), Ȳ obs
HT (0,1)) + 2C1C2Cov(Ȳ obs

HT (1,1), Ȳ obs
HT (1,0))

− 2C1C2Cov(Ȳ obs
HT (1,1), Ȳ obs

HT (0,0))− 2C1C2Cov(Ȳ obs
HT (0,1), Ȳ obs

HT (1,0))

+ 2C1C2Cov(Ȳ obs
HT (0,1), Ȳ obs

HT (0,0))− 2C2
2Cov(Ȳ obs

HT (1,0), Ȳ obs
HT (0,0))

=
C2

1

N2

N∑
i=1

πi(1,1)[1− πi(1,1)]

[
yi(1,1)

πi(1,1)

]2
+
C2

1

N2

N∑
i=1

∑
j 6=i

[πij(1,1)− πi(1,1)πj(1,1)]
yi(1,1)yj(1,1)

πi(1,1)πj(1,1)
.

+
C2

1

N2

N∑
i=1

πi(0,1)[1− πi(0,1)]

[
yi(0,1)

πi(0,1)

]2
+
C2

1

N2

N∑
i=1

∑
j 6=i

[πij(0,1)− πi(0,1)πj(0,1)]
yi(0,1)yj(0,1)

πi(0,1)πj(0,1)

+
C2

2

N2

N∑
i=1

πi(1,0)[1− πi(1,0)]

[
yi(1,0)

πi(1,0)

]2
+
C2

2

N2

N∑
i=1

∑
j 6=i

[πij(1,0)− πi(1,0)πj(1,0)]
yi(1,0)yj(1,0)

πi(1,0)πj(1,0)
.

+
C2

2

N2

N∑
i=1

πi(0,0)[1− πi(0,0)]

[
yi(0,0)

πi(0,0)

]2
+
C2

2

N2

N∑
i=1

∑
j 6=i

[πij(0,0)− πi(0,0)πj(0,0)]
yi(0,0)yj(0,0)

πi(0,0)πj(0,0)

− 2

(
C2

1

N2

N∑
i=1

∑
j 6=i

[πij((1,1), (0,1))− πi(1,1)πj(0,1)]
yi(1,1)yj(0,1)

πi(1,1)πj(0,1)

−C
2
1

N2

N∑
i=1

yi(1,1)yi(0,1)

)

+ 2

(
C1C2

N2

N∑
i=1

∑
j 6=i

[πij((1,1), (1,0))− πi(1,1)πj(1,0)]
yi(1,1)yj(1,0)

πi(1,1)πj(1,0)

−C1C2

N2

N∑
i=1

yi(1,1)yi(1,0)

)
. (B.61)
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− 2

(
C1C2

N2

N∑
i=1

∑
j 6=i

[πij((1,1), (0,0))− πi(1,1)πj(0,0)]
yi(1,1)yj(0,0)

πi(1,1)πj(0,0)

−C1C2

N2

N∑
i=1

yi(1,1)yi(0,0)

)

− 2

(
C1C2

N2

N∑
i=1

∑
j 6=i

[πij((0,1), (1,0))− πi(0,1)πj(1,0)]
yi(0,1)yj(1,0)

πi(0,1)πj(1,0)

−C1C2

N2

N∑
i=1

yi(0,1)yi(1,0)

)

+ 2

(
C1C2

N2

N∑
i=1

∑
j 6=i

[πij((0,1), (0,0))− πi(0,1)πj(0,0)]
yi(0,1)yj(0,0)

πi(0,1)πj(0,0)

−C1C2

N2

N∑
i=1

yi(0,1)yi(0,0)

)

− 2

(
C2

2

N2

N∑
i=1

∑
j 6=i

[πij((1,0), (0,0))− πi(1,0)πj(0,0)]
yi(1,0)yj(0,0)

πi(1,0)πj(0,0)

−C
2
2

N2

N∑
i=1

yi(1,0)yi(0,0)

)
(B.62)

B.7 Properties of HT-AIEE under the No-Interaction

between Direct and Indirect Effects Assumption

Now, we compute the expected value and variance of Horvitz–Thompson estimator δ̂∗HT,ind

under the no-interaction between direct and indirect effects assumption.

δ̂∗HT,ind = C1[Ȳ
obs
HT (1,1)− Ȳ obs

HT (1,0)] + C2[Ȳ
obs
HT (0,1)− Ȳ obs

HT (0,0)] (B.63)
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B.7.1 The Expected Value of HT-AIEE

Note that under the no-interaction between direct and indirect effects assumption and for

C1 + C2 = 1:

E(δ̂∗HT,ind) = E(C1[Ȳ
obs
HT (1,1)− Ȳ obs

HT (1,0)] + C2[Ȳ
obs
HT (0,1)− Ȳ obs

HT (0,0)])

= E(C1[Ȳ
obs
HT (1,1)− Ȳ obs

HT (1,0)]) + E(C2[Ȳ
obs
HT (0,1)− Ȳ obs

HT (0,0)])

= C1[ȳ(1,1)− ȳ(1,0)] + C2[ȳ(0,1)− ȳ(0,0)]

= C1[ȳ(0,1)− ȳ(0,0)] + C2[ȳ(0,1)− ȳ(0,0)] = δind (B.64)

Hence, δ̂∗HT,ind is an unbiased estimator for δind.

B.7.2 The Variance of HT-AIEE

The variance can simply be computed using the property that Var(
∑N

i=1 aiXi) =
∑N

i=1 aiVar(Xi)+

2
∑

j 6=i aiajCov(XiXj) as follows.
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Var(δ̂∗HT,ind) = Var(C1[Ȳ
obs
HT (1,1)− Ȳ obs

HT (1,0)] + C2[Ȳ
obs
HT (0,1)− Ȳ obs

HT (0,0)])

= C2
1Var(Ȳ obs

HT (1,1)) + C2
1Var(Ȳ obs

HT (1,0)) + C2
2Var(Ȳ obs

HT (0,1)) + C2
2Var(Ȳ obs

HT (0,0))

− 2C2
1Cov(Ȳ obs

HT (1,1), Ȳ obs
HT (1,0)) + 2C1C2Cov(Ȳ obs

HT (1,1), Ȳ obs
HT (0,1))

− 2C1C2Cov(Ȳ obs
HT (1,1), Ȳ obs

HT (0,0))− 2C1C2Cov(Ȳ obs
HT (1,0), Ȳ obs

HT (0,1))

+ 2C1C2Cov(Ȳ obs
HT (1,0), Ȳ obs

HT (0,0))− 2C2
2Cov(Ȳ obs

HT (0,1), Ȳ obs
HT (0,0))

=
C2

1

N2

N∑
i=1

πi(1,1)[1− πi(1,1)]

[
yi(1,1)

πi(1,1)

]2
+
C2

1

N2

N∑
i=1

∑
j 6=i

[πij(1,1)− πi(1,1)πj(1,1)]
yi(1,1)yj(1,1)

πi(1,1)πj(1,1)
.

+
C2

1

N2

N∑
i=1

πi(1,0)[1− πi(1,0)]

[
yi(1,0)

πi(1,0)

]2
+
C2

1

N2

N∑
i=1

∑
j 6=i

[πij(1,0)− πi(1,0)πj(1,0)]
yi(1,0)yj(1,0)

πi(1,0)πj(1,0)

+
C2

2

N2

N∑
i=1

πi(0,1)[1− πi((0,1)]

[
yi(0,1)

πi(0,1)

]2
+
C2

2

N2

N∑
i=1

∑
j 6=i

[πij(0,1)− πi(0,1)πj(0,1)]
yi(0,1)yj(0,1)

πi(0,1)πj(0,1)

+
C2

2

N2

N∑
i=1

πi(0,0)[1− πi(0,0)]

[
yi(0,0)

πi(0,0)

]2
+
C2

2

N2

N∑
i=1

∑
j 6=i

[πij(0,0)− πi(0,0)πj(0,0)]
yi(0,0)yj(0,0)

πi(0,0)πj(0,0)

− 2

(
C2

1

N2

N∑
i=1

∑
j 6=i

[πij((1,1), (1,0))− πi(1,1)πj(1,0)]
yi(1,1)yj(1,0)

πi(1,1)πj(1,0)

−C
2
1

N2

N∑
i=1

yi(1,1)yi(1,0)

)

+ 2

(
C1C2

N2

N∑
i=1

∑
j 6=i

[πij((1,1), (0,1))− πi(1,1)πj(0,1)]
yi(1,1)yj(0,1)

πi(1,1)πj(0,1)

−C1C2

N2

N∑
i=1

yi(1,1)yi(0,1)

)
. (B.65)
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− 2

(
C1C2

N2

N∑
i=1

∑
j 6=i

[πij((1,1), (0,0))− πi(1,1)πj(0,0)]
yi(1,1)yj(0,0)

πi(1,1)πj(0,0)

−C1C2

N2

N∑
i=1

yi(1,1)yi(0,0)

)

− 2

(
C1C2

N2

N∑
i=1

∑
j 6=i

[πij((1,0), (0,1))− πi(1,0)πj(0,1)]
yi(1,0)yj(0,1)

πi(1,0)πj(0,1)

−C1C2

N2

N∑
i=1

yi(1,0)yi(0,1)

)

+ 2

(
C1C2

N2

N∑
i=1

∑
j 6=i

[πij((1,0), (0,0))− πi(1,0)πj(0,0)]
yi(1,0)yj(0,0)

πi(1,0)πj(0,0)

−C1C2

N2

N∑
i=1

yi(1,0)yi(0,0)

)

− 2

(
C2

2

N2

N∑
i=1

∑
j 6=i

[πij((0,1), (0,0))− πi(0,1)πj(0,0)]
yi(0,1)yj(0,0)

πi(0,1)πj(0,0)

−C
2
2

N2

N∑
i=1

yi(0,1)yi(0,0)

)
(B.66)

B.8 Properties of HT-A`NNIEE under the No-Interaction

between Direct and Indirect Effects Assumption

Next, we compute the expected value and variance of Horvitz–Thompson estimator δ̂∗HT,`

under the no-interaction between direct and indirect effects assumption.

δ̂∗HT,` = C`1[Ȳ
obs
HT (1,W∗

` )− Ȳ obs
HT (1,W∗

`−1)] + C`2[Ȳ
obs
HT (0,W∗

` )− Ȳ obs
HT (0,W∗

`−1)] (B.67)
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Lemma B.6. For C`1 + C`2 = 1, C`i = C`′i for `, `′ = 1, 2, . . . , K and i = 1, 2.

δ̂∗HT,ind =
K∑
`=1

δ̂∗HT,` (B.68)

Proof. Under the no-interaction between direct and indirect effects assumption, and for

C`1 + C`2 = 1, C`i = C`′i with `, `′ = 1, 2, . . . , K and i = 1, 2, we have:

K∑
`=1

δ̂∗HT,` = C11[Ȳ
obs
HT (1,W∗

1)− Ȳ obs
HT (1,W∗

0)] + C12[Ȳ
obs
HT (0,W∗

1)− Ȳ obs
HT (0,W∗

0)]

+ C21[Ȳ
obs
HT (1,W∗

2)− Ȳ obs
HT (1,W∗

1)] + C22[Ȳ
obs
HT (0,W∗

2)− Ȳ obs
HT (0,W∗

1)]

+ C31[Ȳ
obs
HT (1,W∗

3)− Ȳ obs
HT (1,W∗

2)] + C32[Ȳ
obs
HT (0,W∗

3)− Ȳ obs
HT (0,W∗

2)]

+ . . .

+ C`1[Ȳ
obs
HT (1,W∗

` )− Ȳ obs
HT (1,W∗

`−1)] + C`2[Ȳ
obs
HT (0,W∗

` )− Ȳ obs
HT (0,W∗

`−1)]

+ . . .

+ CK1[Ȳ
obs
HT (1,W∗

K)− Ȳ obs
HT (1,W∗

K−1)] + CK2[Ȳ
obs
HT (0,W∗

K)− Ȳ obs
HT (0,W∗

K−1)]

= CK1Ȳ
obs
HT (1,W∗

K)− C11Ȳ
obs
HT (1,W∗

0) + CK2Ȳ
obs
HT (0,W∗

K)− C12Ȳ
obs
HT (0,W∗

0)

= CK1Ȳ
obs
HT (1,1)− C11Ȳ

obs
HT (1,0) + CK2Ȳ

obs
HT (0,1)− C12Ȳ

obs
HT (0,0) = δ̂∗HT,ind (B.69)

�
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B.8.1 The Expected Value of HT-A`NNIEE

E(δ̂∗HT,`) = E(C`1[Ȳ
obs
HT (1,W∗

` )− Ȳ obs
HT (1,W∗

`−1)] + C`2[Ȳ
obs
HT (0,W∗

` )− Ȳ obs
HT (0,W∗

`−1)])

= E(C`1[Ȳ
obs
HT (1,W∗

` )− Ȳ obs
HT (1,W∗

`−1)]) + E(C`2[Ȳ
obs
HT (0,W∗

` )− Ȳ obs
HT (0,W∗

`−1)])

= C`1[ȳ(1,W∗
` )− ȳ(1,W∗

`−1)] + C`2[ȳ(0,W∗
` )− ȳ(0,W∗

`−1)]

= C`1[ȳ(0,W∗
` )− ȳ(0,W∗

`−1)] + C`2[ȳ(0,W∗
` )− ȳ(0,W∗

`−1)] = δ` (B.70)

Hence, δ̂∗HT,` is an unbiased estimator for δ`.

B.8.2 The Variance of HT-A`NNIEE

The variance can be computed where we first find Var(C`1[Ȳ
obs
HT (1,W∗

` ) − Ȳ obs
HT (1,W∗

`−1)]),

Var(C`2[Ȳ
obs
HT (0,W∗

` )−Ȳ obs
HT (0,W∗

`−1)]) and Cov(C`1[Ȳ
obs
HT (1,W∗

` )−Ȳ obs
HT (1,W∗

`−1)], C`2[Ȳ
obs
HT (0,W∗

` )−

Ȳ obs
HT (0,W∗

`−1)]) as follows.

First we find:
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Var(C`1[Ȳ
obs
HT (1,W∗

` )− Ȳ obs
HT (1,W∗

`−1)]) = C2
1

(
Var(Ȳ obs

HT (1,W∗
` )) + Var(Ȳ obs

HT (1,W∗
`−1))

−2Cov(Ȳ obs
HT (1,W∗

` ), Ȳ
obs
HT (1,W∗

`−1)
)

=
C2

1

N2

N∑
i=1

πi(1,W
∗
` )[1− πi(1,W∗

` )]

[
yi(1,W

∗
` )

πi(1,W∗
` )

]2
+
C2

1

N2

N∑
i=1

∑
j 6=i

[πij(1,W
∗
` )− πi(1,W∗

` )πj(1,W
∗
` )]
yi(1,W

∗
` )yj(1,W

∗
` )

πi(1,W∗
` )πj(1,W

∗
` )

+
C2

1

N2

N∑
i=1

πi(1,W
∗
`−1)[1− πi(1,W∗

`−1)]

[
yi(1,W

∗
`−1)

πi(1,W∗
`−1)

]2
+
C2

1

N2

N∑
i=1

∑
j 6=i

[πij(1,W
∗
`−1)− πi(1,W∗

`−1)πj(1,W
∗
`−1)]

yi(1,W
∗
`−1)yj(1,W

∗
`−1)

πi(1,W∗
`−1)πj(1,W

∗
`−1)

− 2

(
C2

1

N2

N∑
i=1

∑
j 6=i

[
πij((1,W

∗
` ), (1,W

∗
`−1))− πi(1,W∗

` )πj(1,W
∗
`−1)

] yi(1,W∗
` )yj(1,W

∗
`−1)

πi(1,W∗
` )πj(1,W

∗
`−1)

−C
2
1

N2

N∑
i=1

yi(1,W
∗
` )yi(1,W

∗
`−1)

)
. (B.71)

Next, we find Cov(C`1[Ȳ
obs
HT (1,W∗

` )− Ȳ obs
HT (1,W∗

`−1)], C`2[Ȳ
obs
HT (0,W∗

` )− Ȳ obs
HT (0,W∗

`−1)]).

Note that:

188



E
[
C`1[Ȳ

obs
HT (1,W∗

` )− Ȳ obs
HT (1,W∗

`−1)]C`2[Ȳ
obs
HT (0,W∗

` )− Ȳ obs
HT (0,W∗

`−1)]
]

= C`1C`2E
[(
Ȳ obs
HT (1,W∗

` )Ȳ
obs
HT (0,W∗

` )
)
−
(
Ȳ obs
HT (1,W∗

` )Ȳ
obs
HT (0,W∗

`−1)
)
−
(
Ȳ obs
HT (1,W∗

`−1)Ȳ
obs
HT (0,W∗

` )
)

+
(
Ȳ obs
HT (1,W∗

`−1)Ȳ
obs
HT (0,W∗

`−1)
)]

= C`1C`2
[
E
[(
Ȳ obs
HT (1,W∗

` )Ȳ
obs
HT (0,W∗

` )
)]
− E

[(
Ȳ obs
HT (1,W∗

` )Ȳ
obs
HT (0,W∗

`−1)
)]

−E
[(
Ȳ obs
HT (1,W∗

`−1)Ȳ
obs
HT (0,W∗

` )
)]

+ E
[(
Ȳ obs
HT (1,W∗

`−1)Ȳ
obs
HT (0,W∗

`−1)
)]]

=
C`1C`2
N2

(
N∑
i=1

∑
j 6=i

πij((1,W
∗
` ), (0,W

∗
` ))

yi(1,W
∗
` )yj(0,W

∗
` )

πi(1,W∗
` )πj(0,W

∗
` )

)

− C`1C`2
N2

(
N∑
i=1

∑
j 6=i

πij((1,W
∗
` ), (0,W

∗
`−1))

yi(1,W
∗
` )yj(0,W

∗
`−1)

πi(1,W∗
` )πj(0,W

∗
`−1)

)

− C`1C`2
N2

(
N∑
i=1

∑
j 6=i

πij((1,W
∗
`−1), (0,W

∗
` ))

yi(1,W
∗
`−1)yj(0,W

∗
` )

πi(1,W∗
`−1)πj(0,W

∗
` )

)

+
C`1C`2
N2

(
N∑
i=1

∑
j 6=i

πij((1,W
∗
`−1), (0,W

∗
`−1))

yi(1,W
∗
`−1)yj(0,W

∗
`−1)

πi(1,W∗
`−1)πj(0,W

∗
`−1)

)
(B.72)
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E(C`1[Ȳ
obs
HT (1,W∗

` )− Ȳ obs
HT (1,W∗

`−1)])E(C`2[Ȳ
obs
HT (0,W∗

` )− Ȳ obs
HT (0,W∗

`−1)])

= C`1
[
ȳ(1,W∗

` )− ȳ(1,W∗
`−1)

]
C`2
[
ȳ(0,W∗

` )− ȳ(0,W∗
`−1)

]
= C`1C`2

[
ȳ(1,W∗

` )ȳ(0,W∗
` )− ȳ(1,W∗

` )ȳ(0,W∗
`−1)− ȳ(1,W∗

`−1)ȳ(0,W∗
` ) + ȳ(1,W∗

`−1)ȳ(0,W∗
`−1)

]
=

(
C`1C`2
N2

N∑
i=1

yi(1,W
∗
` )

N∑
i=1

yi(0,W
∗
` )

)
−

(
C`1C`2
N2

N∑
i=1

yi(1,W
∗
` )

1

N

N∑
i=1

yi(0,W
∗
`−1)

)

−

(
C`1C`2
N2

N∑
i=1

yi(1,W
∗
`−1)

1

N

N∑
i=1

yi(0,W
∗
` )

)
+

(
1

N

N∑
i=1

yi(1,W
∗
`−1)

1

N

N∑
i=1

yi(0,W
∗
`−1)

)

=
C`1C`2
N2

N∑
i=1

yi(1,W
∗
` )yi(0,W

∗
` ) +

C`1C`2
N2

N∑
i=1

∑
j 6=i

yi(1,W
∗
` )yj(0,W

∗
` )

− C`1C`2
N2

N∑
i=1

yi(1,W
∗
` )yi(0,W

∗
`−1)−

C`1C`2
N2

N∑
i=1

∑
j 6=i

yi(1,W
∗
` )yj(0,W

∗
`−1)

− C`1C`2
N2

N∑
i=1

yi(1,W
∗
`−1)yi(0,W

∗
` )−

C`1C`2
N2

N∑
i=1

∑
j 6=i

yi(1,W
∗
`−1)yj(0,W

∗
` )

+
C`1C`2
N2

N∑
i=1

yi(1,W
∗
`−1)yi(0,W

∗
`−1) +

C`1C`2
N2

N∑
i=1

∑
j 6=i

yi(1,W
∗
`−1)yj(0,W

∗
`−1) (B.73)
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Cov(C`1[Ȳ
obs
HT (1,W∗

` )− Ȳ obs
HT (1,W∗

`−1)], C`2[Ȳ
obs
HT (0,W∗

` )− Ȳ obs
HT (0,W∗

`−1)]) =

E(C`1[Ȳ
obs
HT (1,W∗

` )− Ȳ obs
HT (1,W∗

`−1)]C`2[Ȳ
obs
HT (0,W∗

` )− Ȳ obs
HT (0,W∗

`−1)])

− E(C`1[Ȳ
obs
HT (1,W∗

` )− Ȳ obs
HT (1,W∗

`−1)])E(C`2[Ȳ
obs
HT (0,W∗

` )− Ȳ obs
HT (0,W∗

`−1)])

=
C`1C`2
N2

(
N∑
i=1

∑
j 6=i

πij((1,W
∗
` ), (0,W

∗
` ))

yi(1,W
∗
` )yj(0,W

∗
` )

πi(1,W∗
` )πj(0,W

∗
` )

)

− C`1C`2
N2

(
N∑
i=1

∑
j 6=i

πij((1,W
∗
` ), (0,W

∗
`−1))

yi(1,W
∗
` )yj(0,W

∗
`−1)

πi(1,W∗
` )πj(0,W

∗
`−1)

)

− C`1C`2
N2

(
N∑
i=1

∑
j 6=i

πij((1,W
∗
`−1), (0,W

∗
` ))

yi(1,W
∗
`−1)yj(0,W

∗
` )

πi(1,W∗
`−1)πj(0,W

∗
` )

)

+
C`1C`2
N2

(
N∑
i=1

∑
j 6=i

πij((1,W
∗
`−1), (0,W

∗
`−1))

yi(1,W
∗
`−1)yj(0,W

∗
`−1)

πi(1,W∗
`−1)πj(0,W

∗
`−1)

)

− C`1C`2
N2

N∑
i=1

yi(1,W
∗
` )yi(0,W

∗
` )−

C`1C`2
N2

N∑
i=1

∑
j 6=i

yi(1,W
∗
` )yj(0,W

∗
` )

+
C`1C`2
N2

N∑
i=1

yi(1,W
∗
` )yi(0,W

∗
`−1) +

C`1C`2
N2

N∑
i=1

∑
j 6=i

yi(1,W
∗
` )yj(0,W

∗
`−1)

+
C`1C`2
N2

N∑
i=1

yi(1,W
∗
`−1)yi(0,W

∗
` ) +

C`1C`2
N2

N∑
i=1

∑
j 6=i

yi(1,W
∗
`−1)yj(0,W

∗
` )

− C`1C`2
N2

N∑
i=1

yi(1,W
∗
`−1)yi(0,W

∗
`−1)−

C`1C`2
N2

N∑
i=1

∑
j 6=i

yi(1,W
∗
`−1)yj(0,W

∗
`−1) (B.74)

We can simplify the covariance further as follows:
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Cov(C`1[Ȳ
obs
HT (1,W∗

` )− Ȳ obs
HT (1,W∗

`−1)], C`2[Ȳ
obs
HT (0,W∗

` )− Ȳ obs
HT (0,W∗

`−1)])

=
C`1C`2
N2

N∑
i=1

∑
j 6=i

[πij((1,W
∗
` ), (0,W

∗
` ))− πi(1,W∗

` )πj(0,W
∗
` )]
yi(1,W

∗
` )yj(0,W

∗
` )

πi(1,W∗
` )πj(0,W

∗
` )

− C`1C`2
N2

N∑
i=1

yi(1,W
∗
` )yi(0,W

∗
` )

− C`1C`2
N2

N∑
i=1

∑
j 6=i

[πij((1,W
∗
` ), (0,W

∗
`−1))− πi(1,W∗

` )πj(0,W
∗
`−1)]

yi(1,W
∗
` )yj(0,W

∗
`−1)

πi(1,W∗
` )πj(0,W

∗
`−1)

+
C`1C`2
N2

N∑
i=1

yi(1,W
∗
` )yi(0,W

∗
`−1)

− C`1C`2
N2

N∑
i=1

∑
j 6=i

[πij((1,W
∗
`−1), (0,W

∗
` ))− πi(1,W∗

`−1)πj(0,W
∗
` )]
yi(1,W

∗
`−1)yj(0,W

∗
` )

πi(1,W∗
`−1)πj(0,W

∗
` )

+
C`1C`2
N2

N∑
i=1

yi(1,W
∗
`−1)yi(0,W

∗
` )

=
C`1C`2
N2

N∑
i=1

∑
j 6=i

[πij((1,W
∗
`−1), (0,W

∗
`−1))−πi(1,W∗

`−1)πj(0,W
∗
`−1)]

yi(1,W
∗
`−1)yj(0,W

∗
`−1)

πi(1,W∗
`−1)πj(0,W

∗
`−1)

− C`1C`2
N2

N∑
i=1

yi(1,W
∗
`−1)yi(0,W

∗
`−1) (B.75)

Then, the variance can be computed using the property Var(X−Y ) = Var(X) + Var(Y )

-2Cov(X, Y ).

Additionally, the variance can simply be computed using the property that Var(
∑N

i=1 aiXi) =∑N
i=1 aiVar(Xi) + 2

∑
j 6=i aiajCov(XiXj) as follows.
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Var(δ̂∗HT,`) = Var(C`1[Ȳ
obs
HT (1,W∗

` )− Ȳ obs
HT (1,W∗

`−1)] + C`2[Ȳ
obs
HT (0,W∗

` )− Ȳ obs
HT (0,W∗

`−1)])

= Var(C`1Ȳ
obs
HT (1,W∗

` )− C`1Ȳ obs
HT (1,W∗

`−1) + C`2Ȳ
obs
HT (0,W∗

` )− C`2Ȳ obs
HT (0,W∗

`−1))

= C2
`1Var(Ȳ obs

HT (1,W∗
` ))+C

2
`1Var(Ȳ obs

HT (1,W∗
`−1))+C

2
`2Var(Ȳ obs

HT (0,W∗
` ))+C

2
`2Var(Ȳ obs

HT (0,W∗
`−1))

− 2C2
`1Cov(Ȳ obs

HT (1,W∗
` ), Ȳ

obs
HT (1,W∗

`−1)) + 2C`1C`2Cov(Ȳ obs
HT (1,W∗

` ), Ȳ
obs
HT (0,W∗

` ))

− 2C`1C`2Cov(Ȳ obs
HT (1,W∗

` ), Ȳ
obs
HT (0,W∗

`−1))− 2C`1C`2Cov(Ȳ obs
HT (1,W∗

`−1), Ȳ
obs
HT (0,W∗

` ))

+ 2C`1C`2Cov(Ȳ obs
HT (1,W∗

`−1), Ȳ
obs
HT (0,W∗

`−1))− 2C2
`2Cov(Ȳ obs

HT (0,W∗
` ), Ȳ

obs
HT (0,W∗

`−1))

=
C2
`1

N2

N∑
i=1

πi(1,W
∗
` )[1− πi(1,W∗

` )]

[
yi(1,W

∗
` )

πi(1,W∗
` )

]2
+
C2
`1

N2

N∑
i=1

∑
j 6=i

[πij(1,W
∗
` )− πi(1,W∗

` )πj(1,W
∗
` )]
yi(1,W

∗
` )yj(1,W

∗
` )

πi(1,W∗
` )πj(1,W

∗
` )
.

+
C2
`1

N2

N∑
i=1

πi(1,W
∗
`−1)[1− πi(1,W∗

`−1)]

[
yi(1,W

∗
`−1)

πi(1,W∗
`−1)

]2
+
C2
`1

N2

N∑
i=1

∑
j 6=i

[πij(1,W
∗
`−1)− πi(1,W∗

`−1)πj(1,W
∗
`−1)]

yi(1,W
∗
`−1)yj(1,W

∗
`−1)

πi(1,W∗
`−1)πj(1,W

∗
`−1)

+
C2
`2

N2

N∑
i=1

πi(0,W
∗
` )[1− πi(0,W∗

` )]

[
yi(0,W

∗
` )

πi(0,W∗
` )

]2
+
C2
`2

N2

N∑
i=1

∑
j 6=i

[πij(0,W
∗
` )− πi(0,W∗

` )πj(0,W
∗
` )]
yi(0,W

∗
` )yj(0,W

∗
` )

πi(0,W∗
` )πj(0,W

∗
` )
.

+
C2
`2

N2

N∑
i=1

πi(0,W
∗
`−1)[1− πi(0,W∗

`−1)]

[
yi(0,W

∗
`−1)

πi(0,W∗
`−1)

]2
+
C2
`2

N2

N∑
i=1

∑
j 6=i

[πij(0,W
∗
`−1)− πi(0,W∗

`−1)πj(0,W
∗
`−1)]

yi(0,W
∗
`−1)yj(0,W

∗
`−1)

πi(0,W∗
`−1)πj(0,W

∗
`−1)

− 2

(
C2
`1

N2

N∑
i=1

∑
j 6=i

[
πij((1,W

∗
` ), (1,W

∗
`−1))− πi(1,W∗

` )πj(1,W
∗
`−1)

] yi(1,W∗
` )yj(1,W

∗
`−1)

πi(1,W∗
` )πj(1,W

∗
`−1)

−C
2
`1

N2

N∑
i=1

yi(1,W
∗
` )yi(1,W

∗
`−1)

)

+ 2

(
C`1C`2
N2

N∑
i=1

∑
j 6=i

[πij((1,W
∗
` ), (0,W

∗
` ))− πi(1,W∗

` )πj(0,W
∗
` )]

yi(1,W
∗
` )yj(0,W

∗
` )

πi(1,W∗
` )πj(0,W

∗
` )

−C`1C`2
N2

N∑
i=1

yi(1,W
∗
` )yi(0,W

∗
` )

)
. (B.76)
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−2

(
C`1C`2
N2

N∑
i=1

∑
j 6=i

[
πij((1,W

∗
` ), (0,W

∗
`−1))− πi(1,W∗

` )πj(0,W
∗
`−1)

] yi(1,W∗
` )yj(0,W

∗
`−1)

πi(1,W∗
` )πj(0,W

∗
`−1)

−C`1C`2
N2

N∑
i=1

yi(1,W
∗
` )yi(0,W

∗
`−1)

)

−2

(
C`1C`2
N2

N∑
i=1

∑
j 6=i

[
πij((1,W

∗
`−1), (0,W

∗
` ))− πi(1,W∗

`−1)πj(0,W
∗
` )
] yi(1,W∗

`−1)yj(0,W
∗
` )

πi(1,W∗
`−1)πj(0,W

∗
` )

−C`1C`2
N2

N∑
i=1

yi(1,W
∗
`−1)yi(0,W

∗
` )

)

+2

(
C`1C`2
N2

N∑
i=1

∑
j 6=i

[
πij((1,W

∗
`−1), (0,W

∗
`−1))− πi(1,W∗

`−1)πj(0,W
∗
`−1)

] yi(1,W∗
`−1)yj(0,W

∗
`−1)

πi(1,W∗
`−1)πj(0,W

∗
`−1)

−C`1C`2
N2

N∑
i=1

yi(1,W
∗
`−1)yi(0,W

∗
`−1)

)

− 2

(
C2
`2

N2

N∑
i=1

∑
j 6=i

[
πij((0,W

∗
` ), (0,W

∗
`−1))− πi(0,W∗

` )πj(0,W
∗
`−1)

] yi(0,W∗
` )yj(0,W

∗
`−1)

πi(0,W∗
` )πj(0,W

∗
`−1)

−C
2
`2

N2

N∑
i=1

yi(0,W
∗
` )yi(0,W

∗
`−1)

)
(B.77)

B.8.3 Weights in HT-A`NNIEE under Assumption 2

Using Lagrange multiplier, we can find the values of C`1 and C`2 in B.67 that gives the

minimum variance of HT-A`NNIEE under Assumption 3.2 as follows.

First, let S2
11 = Var(Ȳ obs

HT (1,W∗
` )), S

2
12 = Var(Ȳ obs

HT (1,W∗
`−1)), S

2
21 = Var(Ȳ obs

HT (0,W∗
` ))

and S2
22 = Var(Ȳ obs

HT (0,W∗
`−1)) and assume that the covariance components in B.76 are equal

to zero.

Then, we want to minimize the variance

Var(δ̂∗HT,`) =
2∑
i=1

C2
`i(S

2
i1 + S2

i2) (B.78)
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subject to the constraint
∑2

i=1C`i = 1

Using the method of Lagrange multiplier, we minimize the function:

φ = Var(δ̂∗HT,`) − λ(
2∑
i=1

C2
`i − 1) =

2∑
i=1

C2
`i(S

2
i1 + S2

i2) − λ(
2∑
i=1

C2
`i − 1) (B.79)

Then, ∂φ
∂C`i

= 0 gives

∂[
∑2

i=1C
2
`i(S

2
i1 + S2

i2)− λ(
∑2

i=1C
2
`i − 1)

∂C`i
] = 0

2C`i(S
2
i1 + S2

i2)− λ = 0

C`i =
λ

2(S2
i1 + S2

i2)
(B.80)

Now, we find Lagrange multiplier λ as follows.

2∑
i=1

C`i = 1⇒ λ

2(S2
11 + S2

12)
+

λ

2(S2
21 + S2

22)
= 1

⇒ λ

2

(
S2
11 + S2

12 + S2
21 + S2

22

(S2
11 + S2

12)(S
2
21 + S2

22)

)
= 1⇒ λ =

2(S2
11 + S2

12)(S
2
21 + S2

22)

S2
11 + S2

12 + S2
21 + S2

22

. (B.81)

Substituting in B.80, we have

C`1 =
S2
21 + S2

22

S2
11 + S2

12 + S2
21 + S2

22

, C`2 =
S2
11 + S2

12

S2
11 + S2

12 + S2
21 + S2

22

, (B.82)

which gives the minimum variance of HT-A`NNIEE under Assumption 3.2.
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Appendix C

Properties of Horvitz-Thompson

Estimators in Chapter 4

Here, we present proofs and properties of estimators provided under the no-interaction be-

tween the indirect effect assumption.

C.1 Properties of HT-ADEE under the No-Interaction

between the Indirect Effects Assumption

The unbiased Horvitz–Thompson estimator of ADE under the no-interaction between the

indirect effects assumption is as follows:

δ̂∗∗HT,dir =
2K∑
e=1

Ce[Ȳ
obs
HT (1,WNike

)− Ȳ obs
HT (0,WNike

)] (C.1)

where WNike
is the eth treatment assignment vector of the K-nearest neighbors with e =

1, 2, . . . , 2K
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C.1.1 The Expected Value of HT-ADEE

Lemma C.1.

E(δ̂∗∗HT,dir) = δdir (C.2)

Proof. Note that under the no-interaction between the indirect effects assumption and for∑2K

e=1Ce = 1,

E[δ̂∗∗HT,dir] = E

 2K∑
e=1

Ce[Ȳ
obs
HT (1,WNike

)− Ȳ obs
HT (0,WNike

)]


=

2K∑
e=1

Ce[E[Ȳ obs
HT (1,WNike

)]− E[Ȳ obs
HT (0,WNike

)]]

=
2K∑
e=1

Ce[ȳ(1,WNike
)− ȳ(0,WNike

)]

=
2K∑
e=1

C`e[ȳ(1,1)− ȳ(0,1)] = δdir (C.3)

�

Hence, δ̂∗∗HT,dir is an unbiased estimator for δdir and the variance can be computed using

the property that Var(
∑N

i=1 aiXi) =
∑N

i=1

∑N
j=1 aiajCov(XiXj) as follows.

C.1.2 The Variance of HT-ADEE

Var(δ̂∗∗HT,dir) =
∑

e,e′,Wi=1

CeCe′Cov(Ȳ obs
HT (1,WNike

), Ȳ obs
HT (1,WNike′

))

+
∑

e,e′,Wi=0

CeCe′Cov(Ȳ obs
HT (0,WNike

), Ȳ obs
HT (0,WNike′

))

− 2
∑

e,e′,Wi=1,Wi=0

CeCe′Cov(Ȳ obs
HT (1,WNike

), Ȳ obs
HT (0,WNike′

)). (C.4)
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C.2 Properties of HT-A`NNIEE under the No-Interaction

between the Indirect Effects Assumption

In this section we derive properties of HT-A`NNIEE under the no-interaction between the

indirect effects assumption. Here, we use (Wi,W` = 1,We,K−1) instead of (Wi,WNik
) in the

previous sections where the unbiased Horvitz–Thompson estimator of the average potential

outcomes of units under any exposure (Wi,W`,We,K−1) is

Ȳ obs
HT (Wi,W`,We,K−1) =

1

N

N∑
i=1

Ii(Wi,W`,We,K−1)
Y obs
i

πi(Wi,W`,We,K−1)
. (C.5)

The unbiased Horvitz–Thompson estimator of A`NNIE under the no-interaction between

the indirect effects assumption as follows:

δ̂∗∗HT,` =
2K∑
e=1

C`e[Ȳ
obs
HT (Wi,W` = 1,We,K−1)− Ȳ obs

HT (Wi,W` = 0,We,K−1)]. (C.6)

C.2.1 The Expected Value of HT-A`NNIEE

Lemma C.2.

E(δ̂∗∗HT,`) = δ`. (C.7)

Proof. Because all differences in Equation C.6 are equal in expectation, the proof follows by

noting that one of the differences is δ̂`th and by Equation B.42 as follows,
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E[δ̂∗∗HT,`] = E

 2K∑
e=1

C`e[Ȳ
obs
HT (Wi,W` = 1,We,K−1)− Ȳ obs

HT (Wi,W` = 0,We,K−1)


=

2K∑
e=1

C`eE
[
Ȳ obs
HT (Wi,W` = 1,We,K−1)− Ȳ obs

HT (Wi,W` = 0,We,K−1)
]

=
2K∑
e=1

C`e[ȳ(Wi,W` = 1,We,K−1)− ȳ(Wi,W` = 0,We,K−1)]

=
2K∑
e=1

C`e[ȳ(0,W∗
` )− ȳ(0,W∗

`−1)] = δ`. (C.8)

�

Hence, δ̂∗∗HT,` is an unbiased estimator for δ` and the variance can be computed using

the property that Var(
∑N

i=1 aiXi) =
∑N

i=1

∑N
j=1 aiajCov(XiXj) as follows.

C.2.2 The Variance of HT-A`NNIEE

For δ̂∗∗HT,` =
∑2K

e=1C`e[Ȳ
obs
HT (Wi,W` = 1,We,K−1) − Ȳ obs

HT (Wi,W` = 0,We,K−1)] where∑2K

e=1C`e = 1, the variance is

Var(δ̂∗∗HT,`) = Var

 2K∑
e=1

C`e[Ȳ
obs
HT (Wi,W` = 1,We,K−1)− Ȳ obs

HT (Wi,W` = 0,We,K−1)]


=

∑
e,e′,W`=1

C`eC`e′Cov(Ȳ obs
HT (Wi,W` = 1,We,K−1), Ȳ obs

HT (Wi,W` = 1,We′,K−1))

+
∑

e,e′,W`=0

C`eC`e′Cov(Ȳ obs
HT (Wi,W` = 0,We,K−1), Ȳ obs

HT (Wi,W` = 0,We′,K−1))

− 2
∑

e,e′,W`=1,W`=0

C`eC`e′Cov(Ȳ obs
HT (Wi,W` = 1,We,K−1), Ȳ obs

HT (Wi,W` = 0,We′,K−1)), (C.9)
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C.3 Properties of HT-AIEE under the No-Interaction

between the Indirect Effects Assumption

The unbiased Horvitz–Thompson estimator of AIE under the no-interaction between the

indirect effects assumption is as follows:

Definition C.1.

δ̂∗∗HT,ind =
K∑
`=1

δ̂∗∗HT,` =
K∑
`=1

2K∑
e=1

C`e[Ȳ
obs
HT (Wi,W` = 1,We,K−1)− Ȳ obs

HT (Wi,W` = 0,We,K−1)]

(C.10)

C.3.1 The Expected Value of HT-AIEE

For HT-AIE estimator under Assumption 4.1 with
∑2K

e=1Ce = 1, the expected value is

provided in the following lemma.

Lemma C.3.

E(δ̂∗∗HT,ind) = δind. (C.11)

Proof. Under the no-interaction between the indirect effects assumption with
∑2K

e=1Ce = 1,
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E[δ̂∗∗HT,ind] = E

 K∑
`=1

2K∑
e=1

C`e[Ȳ
obs
HT (Wi,W` = 1,We,K−1)− Ȳ obs

HT (Wi,W` = 0,We,K−1)]


=

K∑
`=1

2K∑
e=1

C`e(E[Ȳ obs
HT (Wi,W` = 1,We,K−1)− Ȳ obs

HT (Wi,W` = 0,We,K−1)])

=
K∑
`=1

2K∑
e=1

C`e[ȳ(Wi,W` = 1,We,K−1)− ȳ(Wi,W` = 0,We,K−1)]

=
K∑
`=1

2K∑
e=1

C`e[ȳ(0,W∗
` )− ȳ(0,W∗

`−1)]

=
K∑
`=1

2K∑
e=1

C`e(δ`) = δind (C.12)

�

Hence, δ̂∗∗HT,ind is an unbiased estimator for δind and the variance can be computed using

the property that Var(
∑N

i=1 aiXi) =
∑N

i=1 aiVar(Xi) + 2
∑

j 6=i aiajCov(XiXj) as follows.
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C.3.2 The Variance of HT-AIEE

Var(δ̂∗∗HT,ind) = Var

 2K∑
e=1

K∑
`,`′=1

C`e[Ȳ
obs
HT (Wi,W` = 1,We,K−1)− Ȳ obs

HT (Wi,W`′ = 0,We,K−1)]


=

2K∑
e=1

K∑
`,`′=1

C2
`eVar(Ȳ obs

HT (Wi,W` = 1,We,K−1))

+ 2
2K∑

e<e′,W`=1

K∑
`,`=1

C`eC`e′Cov(Ȳ obs
HT (Wi,W` = 1,We,K−1), Ȳ obs

HT (Wi,W` = 1,We′,K−1))

+
2K∑
e=1

K∑
`,`′=1

C2
`eVar(Ȳ obs

HT (Wi,W` = 0,We,K−1))

+ 2
2K∑

e<e′,W`=0

K∑
`,`′=1

C`eC`e′Cov(Ȳ obs
HT (Wi,W` = 0,We,K−1), Ȳ obs

HT (Wi,W` = 0,We′,K−1))

− 2
∑

e,e′,W`=1,W`=0

K∑
`,`′=1

C`eC`e′Cov(Ȳ obs
HT (Wi,W` = 1,We,K−1), Ȳ obs

HT (Wi,W` = 0,We′,K−1))

(C.13)

Or we can simply rewrite Var(δ̂∗∗HT,ind) as follows:

Var(δ̂∗∗HT,ind) =
∑

e,e′,W`=W`′=1

K∑
`,`′=1

C`eC`e′Cov(Ȳ obs
HT (Wi,W` = 1,We,K−1), Ȳ obs

HT (Wi,W`′ = 1,We′,K−1))

+
∑

e,e′,W`=W`′=0

K∑
`,`′=1

C`eC`e′Cov(Ȳ obs
HT (Wi,W` = 0,We,K−1), Ȳ obs

HT (Wi,W`′ = 0,We′,K−1))

− 2
∑

e,e′,W`=1,W`′=0

K∑
`,`′=1

C`eC`e′Cov(Ȳ obs
HT (Wi,W` = 1,We,K−1), Ȳ obs

HT (Wi,W`′ = 0,We′,K−1))

(C.14)

The covariance between any two indirect effect estimators is as follows:

202



Cov(δ̂∗∗HT,`th , δ̂
∗∗
HT,`′th

) =∑
e,e′,W`=W`′=1

C`eC`e′Cov(Ȳ obs
HT (Wi,W` = 1,We,K−1), Ȳ obs

HT (Wi,W`′ = 1,We′,K−1))

+
∑

e,e′,W`=W`′=0

C`eC`e′Cov(Ȳ obs
HT (Wi,W` = 0,We,K−1), Ȳ obs

HT (Wi,W`′ = 0,We′,K−1))

− 2
∑

e,e′,W`=1,W`′=0

C`eC`e′Cov(Ȳ obs
HT (Wi,W` = 1,We,K−1), Ȳ obs

HT (Wi,W`′ = 0,We′,K−1)),

(C.15)

where Cov(δ̂∗∗HT,`th , δ̂
∗∗
HT,`′th

) = E(δ̂∗∗HT,`th δ̂
∗∗
HT,`′th

) − E(δ̂∗∗HT,`th)E(δ̂∗∗HT,`′th) as fol-

lows,

E(δ̂∗∗HT,`th δ̂
∗∗
HT,`′th

) =

E(
2K∑
e=1

C`e[Ȳ
obs
HT (Wi,W` = 1,We,K−1)− Ȳ obs

HT (Wi,W` = 0,We,K−1)]

×
2K∑
e=1

C`′e[Ȳ
obs
HT (Wi,W`′ = 1,We,K−1)− Ȳ obs

HT (Wi,W`′ = 0,We,K−1)])

= E(
2K∑
e=1

C`e[Ȳ
obs
HT (Wi,W` = 1,We,K−1)

2K∑
e=1

C`′e[Ȳ
obs
HT (Wi,W`′ = 1,We,K−1))

− E(
2K∑
e=1

C`e[Ȳ
obs
HT (Wi,W` = 1,We,K−1)

2K∑
e=1

C`′e[Ȳ
obs
HT (Wi,W`′ = 0,We,K−1))

− E(
2K∑
e=1

C`e[Ȳ
obs
HT (Wi,W` = 0,We,K−1)

2K∑
e=1

C`′e[Ȳ
obs
HT (Wi,W`′ = 1,We,K−1))

+ E(
2K∑
e=1

C`e[Ȳ
obs
HT (Wi,W` = 0,We,K−1)

2K∑
e=1

C`′e[Ȳ
obs
HT (Wi,W`′ = 0,We,K−1)) (C.16)

and
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E(δ̂∗∗HT,`th)E(δ̂∗∗HT,`′th)) =

E(
2K∑
e=1

C`e[Ȳ
obs
HT (Wi,W` = 1,We,K−1)− Ȳ obs

HT (Wi,W` = 0,We,K−1)])

× E(
2K∑
e=1

C`′e[Ȳ
obs
HT (Wi,W`′ = 1,We,K−1)− Ȳ obs

HT (Wi,W`′ = 0,We,K−1)])

= E(
2K∑
e=1

C`e[Ȳ
obs
HT (Wi,W` = 1,We,K−1))E(

2K∑
e=1

C`′e[Ȳ
obs
HT (Wi,W`′ = 1,We,K−1))

− E(
2K∑
e=1

C`e[Ȳ
obs
HT (Wi,W` = 1,We,K−1))E(

2K∑
e=1

C`′e[Ȳ
obs
HT (Wi,W`′ = 0,We,K−1))

− E(
2K∑
e=1

C`e[Ȳ
obs
HT (Wi,W` = 0,We,K−1))E(

2K∑
e=1

C`′e[Ȳ
obs
HT (Wi,W`′ = 1,We,K−1))

+ E(
2K∑
e=1

C`e[Ȳ
obs
HT (Wi,W` = 0,We,K−1))E(

2K∑
e=1

C`′e[Ȳ
obs
HT (Wi,W`′ = 0,We,K−1)). (C.17)

Hence,

Cov(δ̂∗∗HT,`th , δ̂
∗∗
HT,`′th

) = E(δ̂∗∗HT,`th δ̂
∗∗
HT,`′th

)− E(δ̂∗∗HT,`th)E(δ̂∗∗HT,`′th)

=
∑

e,e′,W`=W`′=1

C`eC`e′Cov(Ȳ obs
HT (Wi,W` = 1,We,K−1), Ȳ obs

HT (Wi,W`′ = 1,We′,K−1))

+
∑

e,e′,W`=W`′=0

C`eC`e′Cov(Ȳ obs
HT (Wi,W` = 0,We,K−1), Ȳ obs

HT (Wi,W`′ = 0,We′,K−1))

− 2
∑

e,e′,W`=1,W`′=0

C`eC`e′Cov(Ȳ obs
HT (Wi,W` = 1,We,K−1), Ȳ obs

HT (Wi,W`′ = 0,We′,K−1)).

(C.18)
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C.4 Properties of HT-ATOTE under the No-Interaction

between the Indirect Effects Assumption

Next, we compute the expected value and variance of the unbiased Horvitz–Thompson esti-

mator δ̂∗∗HT,tot under the no-interaction between the indirect effects assumption as provided

in the following lemma,

Definition C.2.

δ̂∗∗HT,tot = δ̂∗∗HT,dir + δ̂∗∗HT,ind. (C.19)

C.4.1 The Expected Value of HT-ATOTE

Lemma C.4.

E(δ̂∗∗HT,tot) = δdir + δind = δTotal. (C.20)

The proof follows by lemmas C.1 and C.3.
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C.4.2 The Variance of HT-ATOTE

Var(δ̂∗∗HT,tot) = Var(δ̂∗∗HT,dir + δ̂∗∗HT,ind)

= Var

 2K∑
e=1

Ce[Ȳ
obs
HT (1,WNike

)− Ȳ obs
HT (0,WNike

)]

+
2K∑
e=1

K∑
`=1

C`e[Ȳ
obs
HT (Wi,W` = 1,We,K−1)− Ȳ obs

HT (Wi,W` = 0,We,K−1)]


=
∑
e,e′

CeCe′Cov(Ȳ obs
HT (1,WNike

), Ȳ obs
HT (1,WNike′

))

+
∑
e,e′

CeCe′Cov(Ȳ obs
HT (0,WNike

), Ȳ obs
HT (0,WNike′

))

− 2
∑

e,e′,Wi=1,Wi=0

CeCe′Cov(Ȳ obs
HT (1,WNike

), Ȳ obs
HT (0,WNike′

))

+
∑

e,e′,W`=W`′=1

K∑
`,`′=1

C`eC`e′Cov(Ȳ obs
HT (Wi,W` = 1,We,K−1), Ȳ obs

HT (Wi,W`′ = 1,We′,K−1))

+
∑

e,e′,W`=W`′=0

K∑
`,`′=1

C`eC`e′Cov(Ȳ obs
HT (Wi,W` = 0,We,K−1), Ȳ obs

HT (Wi,W`′ = 0,We′,K−1))

− 2
∑

e,e′,W`=1,W`′=0

K∑
`,`′=1

C`eC`e′Cov(Ȳ obs
HT (Wi,W` = 1,We,K−1), Ȳ obs

HT (Wi,W`′ = 0,We′,K−1))

+ 2I(CȲ obs
HT (W,WNK

), C ′Ȳ obs
HT (W ′,W′

NK
))
∑
e,e′

CC ′Cov(Ȳ obs
HT (W,WNK

), Ȳ obs
HT (W ′,W′

NK
))

−2I(−CȲ obs
HT (W,WNK

), C ′Ȳ obs
HT (W ′,W′

NK
))
∑
e,e′

CC ′Cov(Ȳ obs
HT (W,WNK

), Ȳ obs
HT (W ′,W′

NK
)).

(C.21)
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